WO2024067611A1 - 用于氧气处理装置的阴极和冰箱 - Google Patents

用于氧气处理装置的阴极和冰箱 Download PDF

Info

Publication number
WO2024067611A1
WO2024067611A1 PCT/CN2023/121640 CN2023121640W WO2024067611A1 WO 2024067611 A1 WO2024067611 A1 WO 2024067611A1 CN 2023121640 W CN2023121640 W CN 2023121640W WO 2024067611 A1 WO2024067611 A1 WO 2024067611A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
oxygen
movable
processing device
mesh
Prior art date
Application number
PCT/CN2023/121640
Other languages
English (en)
French (fr)
Inventor
苗建林
朱小兵
李春阳
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2024067611A1 publication Critical patent/WO2024067611A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/12Arrangements of compartments additional to cooling compartments; Combinations of refrigerators with other equipment, e.g. stove
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Definitions

  • the invention relates to a gas conditioning and fresh-keeping technology, in particular to a cathode and a refrigerator used in an oxygen processing device.
  • Some oxygen processing devices utilize electrochemical reactions of electrode pairs to process oxygen, such as absorbing or generating oxygen.
  • the electrodes of these oxygen processing devices, especially the cathode, generally need to be provided with a conductive layer.
  • the conductive layer in the prior art is made of metal and has a relatively small expansion rate. Under the action of stress, it will undergo significant deformation, which will lead to reduced structural stability and performance degradation of the cathode during the manufacturing and use processes. More seriously, it may also cause leakage in the oxygen treatment device.
  • An object of the present invention is to overcome at least one technical drawback of the prior art and to provide a cathode and a refrigerator for an oxygen processing device.
  • a further object of the present invention is to reduce or avoid significant deformation of the mesh conductive film under stress and to improve the structural stability of the cathode.
  • a cathode for an oxygen processing device comprising: a mesh-shaped conductive film on which at least one movable interweaving point is disposed, configured to absorb stress through movement.
  • the mesh conductive film comprises a plurality of first conductive lines arranged in parallel and spaced apart and a plurality of second conductive lines arranged in parallel and spaced apart;
  • the first conductive wire and the second conductive wire are interwoven with each other to form the at least one movable interweaving point, and form a plurality of fixedly connected interweaving points; the fixedly connected interweaving points are more than the movable interweaving points.
  • the fixedly connected interweaving points are distributed around the movable interweaving points.
  • the mesh-shaped conductive film has a central stress absorption region located in a central area and a circumferential stress absorption region surrounding the central stress absorption region;
  • the density of the movable interweaving points in the central stress absorption zone is greater than the density of the movable interweaving points in the circumferential stress absorption zone.
  • the movable interweaving points in the circumferential stress absorption zone are evenly distributed around the circumference of the central stress absorption zone.
  • first conductive line and the second conductive line are perpendicular to each other.
  • the mesh conductive film is a nickel mesh
  • the fixedly connected interlacing point is formed by welding or heat-melting the first conductive wire and the second conductive wire.
  • the cathode for the oxygen processing device further comprises:
  • the first waterproof breathable membrane and the second waterproof breathable membrane jointly clamp the mesh conductive membrane
  • the catalytic membrane is arranged on the side of the first waterproof breathable membrane or the second waterproof breathable membrane facing away from the mesh conductive membrane; and the catalytic membrane, the first waterproof breathable membrane, the second waterproof breathable membrane and the mesh conductive membrane are crimped and fired to form a cathode electrode.
  • the cathode for the oxygen processing device further comprises: a mounting frame, which defines an annular groove surrounding the edge of the cathode electrode and for the edge of the cathode electrode to be embedded therein for clamping.
  • a refrigerator comprising:
  • a box body the interior of which defines a storage space
  • Oxygen processing device comprising:
  • the cathode for the oxygen processing device as described in any one of the above items is arranged at the lateral opening to define together with the shell an electrolysis chamber for containing electrolyte and is used to consume oxygen through electrochemical reaction under the action of electrolysis voltage;
  • the cathode is in airflow communication with the storage space and is used for consuming oxygen in the storage space through an electrochemical reaction under the action of an electrolysis voltage.
  • the cathode for an oxygen processing device, the oxygen processing device and the refrigerator of the present invention are configured by arranging at least one movable interlacing point on the mesh conductive film of the cathode, and the movable interlacing point is configured to absorb stress through movement.
  • the cathode is subjected to stress, since the movable interlacing points on the mesh conductive film can absorb stress through movement, the stress can be transferred to the movable interlacing points to be "concentratedly processed".
  • the movable interlacing points will not cause significant changes in the shape of the mesh conductive film when they are active. Therefore, the mesh conductive film as a whole will hardly be significantly deformed due to stress, which is beneficial to improving the structural stability of the cathode.
  • FIG1 is a schematic structural diagram of a mesh-shaped conductive film for a cathode of an oxygen processing device according to one embodiment of the present invention
  • FIG2 is a schematic structural diagram of a cathode for an oxygen processing device according to one embodiment of the present invention.
  • FIG3 is an assembly structure diagram of a mesh conductive film and a mounting frame for a cathode of the oxygen treatment device shown in FIG2 ;
  • FIG. 4 is a schematic exploded view of a cathode for an oxygen processing device according to one embodiment of the present invention.
  • FIG5 is a schematic structural diagram of an oxygen processing device according to an embodiment of the present invention.
  • FIG6 is a schematic exploded view of the oxygen processing device shown in FIG5;
  • FIG7 is a schematic internal structure diagram of the oxygen processing device shown in FIG5;
  • FIG8 is a schematic top view of the internal structure of the oxygen processing device shown in FIG7;
  • FIG9 is a schematic structural diagram of the installation box of the oxygen processing device shown in FIG5 , in which the top wall of the installation box is hidden;
  • FIG10 is an assembly diagram of a positioning mechanism and an airflow actuating device of an oxygen processing device according to an embodiment of the present invention
  • FIG11 is a schematic exploded view of the assembly structure of the positioning mechanism and the airflow actuating device shown in FIG10;
  • FIG12 is a schematic structural diagram of an oxygen processing assembly of an oxygen processing device according to one embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a refrigerator-freezer according to an embodiment of the present invention.
  • the cathode 320 for the oxygen treatment device 10, the oxygen treatment device 10 and the refrigerator 20 according to the embodiment of the present invention are described below with reference to FIGS. 1 to 13.
  • first”, “second”, etc. are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the definition of “first”, “second”, etc. can explicitly or implicitly include at least one of the features, that is, include one or more of the features. It should be understood that the term “plurality” means at least two, for example, two, three Etc. Unless otherwise clearly specifically defined. When a feature “includes or contains” one or some of the features it covers, unless otherwise specifically described, this indicates that other features are not excluded and other features may be further included.
  • the terms “installed”, “connected”, “connected”, “fixed”, “coupled” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed installed, “connected”, “connected”, “fixed”, “coupled” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • a person skilled in the art should be able to understand the specific meanings of the above terms in the present utility model according to the specific circumstances.
  • FIG1 is a schematic structural diagram of a mesh conductive film 323 of a cathode 320 for an oxygen treatment device 10 according to an embodiment of the present invention.
  • the oxygen treatment device 10 is a device for treating oxygen by electrochemical reaction. Under the action of the electrolysis voltage, oxygen undergoes a reduction reaction at the cathode 320.
  • the cathode 320 may generally include a mesh conductive film 323.
  • the mesh conductive film 323 may serve as a current collecting layer of the cathode 320 and play a conductive role.
  • At least one movable interlacing point 323c is provided on the mesh conductive film 323, and is configured to absorb stress by moving.
  • the mesh conductive film 323 may include a plurality of interlaced conductive lines. The intersection between any two conductive lines forms an interlacing point.
  • the movable interlacing point 323c refers to an intersection point that is not fixedly connected when conductive lines in different directions are interlaced.
  • the mesh conductive film 323 By setting at least one movable interweaving point 323c on the mesh conductive film 323 of the cathode 320, and configuring the movable interweaving point 323c to absorb stress through movement, when the cathode 320 is subjected to stress, since the movable interweaving points 323c on the mesh conductive film 323 can absorb stress through movement, the stress can be transferred to the movable interweaving points 323c for "central processing", and the movable interweaving points 323c will not cause significant changes in the shape of the mesh conductive film 323 when they are active. Therefore, the mesh conductive film 323 as a whole will hardly be significantly deformed due to the action of stress, which is beneficial to improving the structural stability of the cathode 320.
  • the oxygen treatment device 10 may define an electrolysis chamber 311 for containing electrolyte.
  • the cathode 320 generally needs to serve as a wall of the electrolysis chamber 311 or close an opening of the electrolysis chamber 311, so as to be in contact with the external air on one hand and the electrolyte on the other hand.
  • the outer contour of the cathode 320 and the contacting part thereof may be separated, thereby causing leakage.
  • the interlaced points 323c can form a stress absorption area of the mesh conductive film 323, and the external stress on the cathode 320 can be almost completely transferred to the movable interlaced points 323c and converted into a driving force for the movable interlaced points 323c to move, thereby being "absorbed" by the mesh conductive film 323.
  • the remedial measures adopted by the prior art are to "reduce or avoid stress on the cathode 320" (for example, try to avoid the cathode 320 from being bumped, or "monitor the leakage problem and repair it in time when leakage occurs".
  • the inventors recognize that the above-mentioned solutions of the prior art cannot substantially improve the structural stability of the cathode 320.
  • the inventors of the present application creatively set movable interlacing points 323c on the mesh conductive film 323 as stress absorption areas to absorb stress, which breaks through the ideological shackles of the prior art and provides a new idea for solving the leakage problem of the oxygen treatment device 10. At the same time, it also solves multiple technical problems such as the low structural stability of the cathode 320, killing two birds with one stone.
  • the mesh conductive film 323 includes a plurality of first conductive lines 323a arranged in parallel and a plurality of second conductive lines 323b arranged in parallel and in intervals.
  • the first conductive lines 323a and the second conductive lines 323b are interwoven with each other to form at least one movable interweaving point 323c, and to form a plurality of fixedly connected interweaving points 323d.
  • each first conductive line 323a can be interwoven with all the second conductive lines 323b to form a plurality of interweaving points.
  • each second conductive line 323b can also be interwoven with all the first conductive lines 323a to form a plurality of interweaving points.
  • the fixedly connected interlacing point 323d means that the first conductive line 323a and the second conductive line 323b interlaced with each other forming the interlacing point are fixedly connected at the interlacing point.
  • the movable interlacing point 323c means that the first conductive line 323a and the second conductive line 323b interlaced with each other forming the interlacing point are not fixedly connected at the interlacing point, but are arranged separately.
  • the fixedly connected interlacing points 323d and the movable interlacing points 323c can be combined into all the interlacing points.
  • the fixedly connected interlacing points 323d are more than the movable interlacing points 323c.
  • most of the interlacing points are fixedly connected interlacing points 323d, and a small part of the interlacing points are movable interlacing points 323c.
  • the fixed connection interlacing points 323d and the movable interlacing points 323c complement each other, so that the mesh conductive film 323 has a high mechanical strength and a reliable structural stability.
  • the large number of fixed connection interlacing points 323d plays a shaping role.
  • the mesh conductive film 323 has a flat film shape.
  • the mesh-shaped conductive film 323 is significantly deformed.
  • the movable interlacing points 323c absorb stress and absorb stress by moving, so that the mesh-shaped conductive film 323 remains in its original shape under the stress, and the stress does not diffuse and act on the outer contour of the mesh-shaped conductive film 323.
  • the movable interlacing points 323c can be distributed at any position of the mesh conductive film 323.
  • the fixedly connected interlacing points 323d are distributed around the movable interlacing points 323c.
  • the movable interlacing points 323c are surrounded by the fixedly connected interlacing points 323d.
  • the movable interlacing points 323c are not arranged at the edge of the mesh conductive film 323.
  • the movable interlacing point 323c may be one or more.
  • the number of movable interlacing points 323c may be set according to the working area of the mesh conductive film 323, and increases accordingly as the working area of the mesh conductive film 323 increases.
  • the working area of the mesh conductive film 323 is small, only one movable interlacing point 323c is set, which may meet the stress absorption requirement of the mesh conductive film 323.
  • the movable interlacing points 323c are increased accordingly, which can improve the stress absorption capacity of the movable interlacing points 323c of the mesh conductive film 323, and each movable interlacing point 323c can be evenly distributed in each area of the mesh conductive film 323, so that each area of the mesh conductive film 323 can maintain good shape stability.
  • the mesh-shaped conductive film 323 has a central stress absorption region K1 located in the central area and a circumferential stress absorption region K2 surrounding the central stress absorption region K1 .
  • movable interlacing points 323c which are distributed in the central stress absorption area K1 and the circumferential stress absorption area K2.
  • the central stress absorption area K1 and the circumferential stress absorption area K2 are respectively provided with movable interlacing points 323c.
  • the movable interlacing points 323c can be evenly distributed on the mesh conductive film 323. Whether the central area of the mesh conductive film 323 is subjected to stress or the peripheral area of the mesh conductive film 323 is subjected to stress, the movable interlacing points 323c in the corresponding area can be used to absorb the stress, thereby reducing or avoiding obvious shape changes in the area.
  • the number of movable interlacing points 323c distributed in the central stress absorption area K1 can be set according to the area of the central stress absorption area K1, and can be set to one or more.
  • the number of movable interlacing points 323c distributed in the circumferential stress absorption area K2 can be set according to the area of the circumferential stress absorption area K2, and can be set to one or more.
  • the density of the movable interweaving points 323 c in the central stress absorption zone K1 is greater than the density of the movable interweaving points 323 c in the circumferential stress absorption zone K2.
  • the inventors have realized that, due to the particularity of the central region of the mesh conductive film 323, when any part of the peripheral region of the mesh conductive film 323 is subjected to stress, the central region of the mesh conductive film 323 may be affected. Therefore, the density of the movable interlacing points 323c in the central stress absorption region K1 is set to By setting the density of the movable interlacing points 323c greater than that in the circumferential stress absorption area K2, the central area of the mesh conductive film 323 can have better stress absorption performance, improve the overall stress absorption effect and shape maintenance effect of the mesh conductive film 323, and thus maintain a higher structural stability.
  • the movable interlacing points 323c in the circumferential stress absorption area K2 are evenly distributed around the circumference of the central stress absorption area K1.
  • the central stress absorption area K1 is the rectangular central area of the mesh conductive film 323, and the circumferential stress absorption area K2 is the square ring area surrounding the central stress absorption area K1.
  • the movable interlacing points 323c in the circumferential stress absorption area K2 are evenly distributed in the square ring area.
  • the circumferential area of the mesh conductive film 323 can evenly improve the stress absorption effect and shape maintenance effect. Since the movable interlacing points 323c at different positions can absorb stress from different directions, the structural stability of the cathode 320 of this embodiment during the manufacturing process, assembly process and use process can be comprehensively improved.
  • the circumferential stress absorption area K2 can be divided into four different areas, which are respectively located on both sides of the longitudinal direction and the lateral direction of the central stress absorption area K1.
  • a movable interlacing point 323c is respectively arranged in each area.
  • the areas of the four areas can be set to be different.
  • the movable interlacing points 323c in the area with a larger area are more than the movable interlacing points 323c in the area with a smaller area. The stress borne by each area is absorbed by the movable interlacing points 323c in the area.
  • the density of the movable interlacing points 323c in the central stress absorption area K1 may be an integer multiple of the density of the movable interlacing points 323c in the circumferential stress absorption area K2, such as two times, three times or more times.
  • the central stress absorption area K1 and the circumferential stress absorption area K2 are respectively indicated by boxes.
  • each 50 ⁇ 50 (mm) unit is provided with at least one movable interlacing point 323c, for example, one, two, or more; when it is less than one unit, it is calculated as one unit.
  • each 100 ⁇ 100 (mm) unit is provided with at least one movable interlacing point 323c, for example, one, two, or more; when it is less than one unit, it is calculated as one unit.
  • At least one movable interlacing point 323c is provided in each n ⁇ n unit, for example, one, two, or more.
  • n represents the number of grids, and its value can be any value in the range of 5 to 10; when it is less than one unit, it is calculated as one unit.
  • at least one movable interlacing point 323c is provided in each 2n ⁇ 2n unit, for example, one, two, or more.
  • first conductive line 323a and the second conductive line 323b are perpendicular to each other.
  • first conductive wires 323a and the second conductive wires 323b are interwoven to form a plurality of rectangular grids, and each rectangular grid has excellent structural stability, which can further improve the overall shape retention effect of the mesh conductive film 323.
  • the mesh conductive film 323 may be a nickel mesh. Of course, in another example, the mesh conductive film 323 may also be a titanium mesh or other mesh metal structures or mesh non-metal structures having a conductive function.
  • the fixedly connected interlacing point 323d is formed by welding or hot melting of the first conductive line 323a and the second conductive line 323b to enhance the connection reliability of the fixed interlacing point between the first conductive line 323a and the second conductive line 323b.
  • the first conductive line 323a and the second conductive line 323b are not connected together by welding or hot melting at the movable interlacing point 323c.
  • the cathode 320 for the oxygen processing device 10 further includes a first waterproof and breathable membrane 322, a second waterproof and breathable membrane 324, and a catalytic membrane 321.
  • FIG. 2 is a schematic structural diagram of the cathode 320 for the oxygen processing device 10 according to an embodiment of the present invention.
  • FIG. 3 is an assembly structural diagram of the mesh conductive membrane 323 and the mounting frame 325 of the cathode 320 for the oxygen processing device 10 shown in FIG. 2, in which the first waterproof and breathable membrane 322, the second waterproof and breathable membrane 324, and the catalytic membrane 321 are hidden.
  • FIG. 4 is a schematic exploded diagram of the cathode 320 for the oxygen processing device 10 according to an embodiment of the present invention, in which the mounting frame 325 is hidden.
  • the first waterproof breathable membrane 322 and the second waterproof breathable membrane 324 sandwich the mesh conductive membrane 323 together, playing the role of waterproof and breathable, on the one hand, can prevent water or aqueous solution from passing through, on the other hand, can allow gas such as oxygen to pass through.
  • the catalyst film 321 is disposed on the side of the first waterproof breathable film 322 or the second waterproof breathable film 324 facing away from the mesh conductive film 323.
  • the catalyst film 321, the first waterproof breathable film 322, the second waterproof breathable film 324 and the mesh conductive film 323 are pressed and fired to form a cathode electrode.
  • the first waterproof and breathable membrane 322 can be disposed between the mesh conductive membrane 323 and the catalytic membrane 321, and a first capillary hole is formed inside the first capillary hole for only gas to pass through, and the first capillary hole is configured to form a first meniscus when in contact with the electrolyte.
  • the second waterproof and breathable membrane 324 can be disposed on the side of the mesh conductive membrane 323 facing away from the catalytic membrane 321, and a second capillary hole is formed inside the second capillary hole for only gas to pass through, and the second capillary hole is configured to form a second meniscus when in contact with the electrolyte.
  • the cathode 320 of the present embodiment has a four-layer membrane structure, and can include the second waterproof breathable membrane 324, the mesh conductive membrane 323, the first waterproof breathable membrane 322, and the catalytic membrane 321 in order of arrangement.
  • the second waterproof breathable membrane 324 can be located at the outermost layer of the cathode 320, for example, it can be connected to the storage space 610 of the refrigerator 20, and the catalytic membrane 321 can be located at the innermost layer of the cathode 320, for example, it can face the electrolysis chamber 311.
  • the oxygen in the storage space 610 flows through the second waterproof breathable membrane 324, the mesh conductive membrane 323, and the first waterproof breathable membrane 322 in sequence, and then reaches the catalytic membrane 321.
  • the four layers of membranes can be rectangular thin films, and the length and width of each layer of membrane can be roughly the same, and can be set according to the size of the working space.
  • the length of each layer of membrane can be 100 to 300 mm, and the width of each layer of membrane can be 50 to 200 mm.
  • the size of the mesh conductive membrane 323 can be larger than the size of other membrane layers.
  • the cathode electrode is arranged in a first waterproof and breathable membrane 322, a mesh conductive membrane 323, a second waterproof and breathable membrane 324,
  • the arrangement order of the catalytic membrane 321 is formed by crimping and firing, and the first waterproof breathable membrane 322 and the second waterproof breathable membrane 324 respectively have first capillary pores and second capillary pores for only gas to pass through, which can make the cathode electrode waterproof and breathable, ensuring that oxygen can smoothly reach the catalytic membrane 321 from the outside to the inside, and preventing the electrolyte from overflowing from the inside to the outside.
  • the waterproof breathable membrane can provide a gas permeation waterproof interface between air and electrolyte, providing a path for oxygen to enter and diffuse to the catalytic membrane 321.
  • the waterproof breathable membrane is breathable but not leaking liquid, mainly due to the capillary action of the inner wall of the capillary pores and the hydrophobicity of the adhesive material.
  • the capillary pores contact the electrolyte to form a meniscus, namely the aforementioned first meniscus and the second meniscus.
  • first waterproof breathable membrane 322 and the second waterproof breathable membrane 324 can be completely the same.
  • first waterproof breathable membrane 322 and the second waterproof breathable membrane 324 can be made of polytetrafluoroethylene emulsion by a wet method to form first capillary pores and second capillary pores for gas to pass through respectively.
  • the mass concentration of the polytetrafluoroethylene emulsion can be any value in the range of 40% to 80%, for example, 60%.
  • the waterproof breathable membrane is made by a wet method using a polytetrafluoroethylene emulsion of a specific concentration, so that the pore size of the capillary pores and the porosity of the waterproof breathable membrane are within a reasonable range, thereby meeting the performance requirements of waterproof and breathable.
  • the pore size of the capillary pores can be any value less than or equal to 100 microns, for example, 1 micron, 20 microns, 50 microns
  • the porosity of the waterproof breathable membrane can be any value in the range of 60% to 98%, for example, 70% and 90%.
  • polytetrafluoroethylene has poor electrical conductivity, which results in a large ohmic impedance of the entire cathode 320.
  • an appropriate amount of acetylene black and activated carbon may be added to the waterproof breathable membrane.
  • oxygen in the air can undergo a reduction reaction at the catalyst membrane 321 of the cathode 320, for example, O2+2H2O+4e- ⁇ 4OH-.
  • the catalyst membrane 321 is used to catalyze the above reduction reaction, thereby increasing the electrochemical reaction rate.
  • the catalytic film 321 can be made of a precursor by pressing.
  • the precursor can be in powder form.
  • the precursor includes carbon particles and catalytic particles deposited on at least part of the carbon particles, wherein the catalytic particles are selected from a material group consisting of platinum, gold, silver, manganese and rubidium. Platinum, gold, silver, manganese and rubidium are respectively precious metals or rare metals.
  • the carbon particles have electrical conductivity and can be carbon black, preferably, conductive carbon black, such as acetylene black. In some optional embodiments, the carbon particles can also be graphite with good electrical conductivity, which can improve the electrical conductivity of the carbon particles.
  • the cathode 320 of this embodiment has significantly improved electrocatalytic performance by combining carbon particles and catalytic particles, which is beneficial to increasing the electrochemical reaction rate of the cathode 320.
  • carbon particles have excellent electrical conductivity
  • using at least part of the carbon particles as a carrier of catalytic particles can reduce the electrochemical impedance of the entire catalytic film 321 and improve the conductivity of the cathode 320, thereby ensuring the smooth progress of the electrochemical reaction.
  • the cathode 320 for the oxygen processing device 10 may further include The mounting frame 325 defines an annular groove surrounding the edge of the cathode electrode and into which the edge of the cathode electrode is inserted for clamping.
  • the mounting frame 325 can be formed on the outer periphery of the cathode electrode formed by crimping and firing by an injection molding process. During the injection molding process, the mounting frame 325 surrounds the cathode electrode by injecting material around the cathode electrode.
  • the expansion and contraction rate of the mesh conductive film 323 as the metal part is relatively small. If the shape change of the mesh conductive film 323 cannot be effectively alleviated, it will cause the mesh conductive film 323 and the crimped first waterproof breathable membrane 322 and the second waterproof breathable membrane 324 to separate, so that the life and performance of the cathode 320 are greatly reduced. What is more serious is that it may also cause local bulges of the mesh conductive film 323, thereby destroying the structure of the cathode electrode, and then causing electrolyte leakage.
  • the shape change of the mesh conductive film 323 can be effectively alleviated, and the stress generated by the above-mentioned injection molding process and subsequent manufacturing process and use process can be prevented from having an adverse effect on the cathode 320 structure, thereby improving the structural stability of the cathode 320.
  • the mounting frame 325 is made of a flame retardant material, for example, the mounting frame 325 can be made of a flame retardant material that meets the requirements of the glow wire 750 needle flame test, or a flame retardant material with a flame retardant grade of HB grade.
  • the installation frame 325 by wrapping the installation frame 325 with flame retardant function around the cathode electrode, when the installation frame 325 absorbs the heat generated by the electrochemical reaction of the cathode electrode, it can resist the change of physical properties to a large extent, thereby reducing or avoiding the cathode 320 of the oxygen treatment device 10 from heating due to the electrochemical reaction and causing damage to surrounding components, thereby improving the safety of use and structural stability of the device.
  • the installation frame 325 is made of the flame retardant material, so that even if the working current of the cathode electrode exceeds the preset threshold, the oxygen treatment device 10 and its surrounding components will not be damaged due to excessive temperature.
  • the preset threshold can be any value within the range of 0.1 to 0.2A.
  • the embodiment of the present invention further provides an oxygen processing device 10.
  • the oxygen processing device 10 may generally include a housing 310 and a cathode 320 of the oxygen processing device 10 of any of the above embodiments.
  • FIG5 is a schematic structural diagram of the oxygen processing device 10 according to an embodiment of the present invention.
  • FIG6 is a schematic exploded diagram of the oxygen processing device 10 shown in FIG5.
  • the housing 310 has a lateral opening.
  • the housing 310 may be in the shape of a flat rectangular parallelepiped.
  • the lateral opening may be provided on any surface of the housing 310, such as the top surface, the bottom surface or the side surface. In one example, the lateral opening may be provided on the surface of the housing 310 with the largest area.
  • the cathode 320 is disposed at the side opening to define together with the housing 310 an electrolysis chamber 311 for containing electrolyte and for consuming oxygen through electrochemical reaction under the action of the electrolysis voltage.
  • the mounting frame 325 of the cathode 320 can be connected to the periphery of the side opening by hot plate welding, thereby sealing the electrolysis chamber. 311.
  • the oxygen treatment device 10 may further include an anode 330, which is disposed in the electrolysis chamber 311 with a spacing from the cathode 320, and is used to provide reactants to the cathode 320 through an electrochemical reaction and generate oxygen.
  • the OH- generated by the cathode 320 can undergo an oxidation reaction at the anode 330 and generate oxygen, that is: 4OH- ⁇ O2+2H2O+4e-.
  • the anode 330 may be a nickel plate or a titanium plate, or may be a nickel mesh or a titanium mesh.
  • the housing 310, the cathode 320 and the anode 330 together form an oxygen processing assembly 300.
  • the oxygen processing device 10 may further include a mounting box 200.
  • the mounting box 200 is formed with an air inlet interface 231 and an air outlet interface 221 for connecting to an external pipeline, and an air flow channel 280 connecting the air inlet interface 231 and the air outlet interface 221 is defined therein.
  • the air flow channel 280 can be connected to the space to be adjusted through a pipeline, so that the gas in the space to be adjusted can flow from the air inlet interface 231 into the air flow channel 280, and flow through the oxygen processing assembly 300, so as to form oxygen-depleted gas or oxygen-rich gas under the action of the oxygen processing assembly 300.
  • the oxygen processing assembly 300 is disposed in the air flow channel 280 and is used to process the oxygen in the gas flowing into the air flow channel 280 from the air inlet interface 231 to produce oxygen-depleted gas or oxygen-enriched gas.
  • the oxygen-depleted gas or oxygen-enriched gas is sent out through the air outlet interface 221 to adjust the oxygen content of the external space.
  • the external space here may refer to a space to be adjusted, such as a storage space 610 of the refrigerator 20. That is, the air inlet interface 231 and the air outlet interface 221 can be connected to the same space through external pipelines, respectively. Of course, in another example, the air inlet interface 231 and the air outlet interface 221 can be connected to different spaces through external pipelines, respectively.
  • the gas from the external space can flow into the air flow channel 280 through the air inlet interface 231, and be processed by the oxygen processing assembly 300, thereby forming oxygen-depleted gas or oxygen-rich gas, and finally being sent out from the air outlet interface 221.
  • the solution of this embodiment can be used to set the oxygen processing device 10 at any position, for example, at any position away from the space to be adjusted, which can reduce the assembly dependence of the oxygen processing device 10 on the scene structure, improve the assembly flexibility of the oxygen processing device 10 in the refrigerator 20, and expand the application range of the oxygen processing device 10.
  • the oxygen processing device 10 may further include an air inlet pipeline and an air outlet pipeline.
  • the air inlet pipeline is connected to the air inlet interface 231 and serves as an external pipeline of the air inlet interface 231.
  • the air outlet pipeline is connected to the air outlet interface 221 and serves as an external pipeline of the air outlet interface 221.
  • the end of the air inlet pipeline away from the air inlet interface 231 can extend to the space to be regulated.
  • the end of the air outlet pipeline away from the air outlet interface 221 can extend to the space to be regulated.
  • the gas in the space to be regulated flows into the air inlet interface 231 through the air inlet pipeline, and flows into the air flow channel 280, and then The air then flows out of the air flow channel 280 through the air outlet interface 221 and flows back to the space to be regulated through the air outlet pipeline.
  • the air inlet interface 231 and the air outlet interface 221 can be directly or indirectly connected to their own external pipelines.
  • the air inlet interface 231 and the air outlet interface 221 may be openings or holes formed on the installation box 200.
  • the air inlet interface 231 is a hollow cylindrical interface formed on the installation box 200 and bulging outward; and/or the air outlet interface 221 is a hollow cylindrical interface formed on the installation box 200 and bulging outward.
  • the air inlet interface 231 is a hollow cylindrical interface formed on the installation box 200 and bulging outward
  • the air outlet interface 221 is a hollow cylindrical interface formed on the installation box 200 and bulging outward
  • the air inlet interface 231 and/or the air outlet interface 221 can be connected to an external pipeline by plugging or nesting, which can reduce the operational difficulty of connecting the oxygen treatment device 10 with an external pipeline.
  • the air inlet interface 231 and the air outlet interface 221 are formed on two different walls of the installation box 200, so that the distance between the air inlet interface 231 and the air outlet interface 221 can be appropriately extended, so that the air flow channel 280 has a longer air flow path, so that the flow time of the gas when flowing through the air flow channel 280 is increased, so that the gas is fully in contact with the oxygen processing assembly 300.
  • the air inlet interface 231 is formed on the bottom wall 210 or one side wall of the installation box 200
  • the air outlet interface 221 is formed on the top wall 220 or another side wall of the installation box 200. The positions of the air inlet interface 231 and the air outlet interface 221 can be interchanged.
  • the air inlet interface 231 and the air outlet interface 221 are arranged in a longitudinal and transverse dislocation.
  • the air inlet interface 231 is formed at the bottom section of the installation box 200, and the air outlet interface 221 is formed at the top section of the installation box 200; further, the air inlet interface 231 can be located at one lateral side of the installation box 200, and further, the air outlet interface 221 can be located at the other lateral side of the installation box 200.
  • the installation box 200 is generally in the shape of a hollow column, such as a hollow prism or a hollow cylinder
  • the air inlet interface 231 is arranged on the side wall of the installation box 200, and is located at the bottom of the installation box 200
  • the air outlet interface 221 is arranged on the top wall 220 of the installation box 200, and is away from the side wall of the installation box 200 where the air inlet interface 231 is arranged, so as to be obliquely opposite to the air inlet interface 231.
  • the gas flow path flowing through the air flow channel 280 can be extended, so that the gas flowing through the air flow channel 280 is in full contact with the oxygen processing component 300, thereby making the oxygen content of the oxygen-depleted gas delivered out of the air outlet interface 221 at a lower level, or making the oxygen content of the oxygen-rich gas delivered out of the air outlet interface 221 at a higher level.
  • the oxygen processing device 10 further includes an airflow actuating device 400, which is disposed in the airflow channel 280 and has an air inlet 411 and an air outlet 412.
  • the air inlet 411 is in airflow communication with the air inlet interface 231, and the air outlet 412 is opposite to the air outlet interface 221.
  • the airflow actuating device 400 is used to promote the formation of an airflow that flows from the air inlet interface 231 into the airflow channel 280 and flows toward the air outlet interface 221.
  • FIG. 7 is a schematic internal structure diagram of the oxygen processing device 10 shown in FIG. 5, in which the air outlet 412 is shown.
  • FIG. 8 is a schematic top view of the internal structure of the oxygen processing device 10 shown in FIG. 7.
  • the gas in the external space can flow into the airflow channel 280 from the air inlet interface 231 and flow to the air outlet interface 221 under the actuation of the airflow actuating device 400, forming an active high-speed airflow circulation structure, changing the method of capturing oxygen only by relying on the principle of molecular diffusion, and helping to increase the gas flow rate flowing through the airflow channel 280 per unit time, thereby improving the working efficiency of the oxygen treatment device 10.
  • the airflow actuating device 400 is a centrifugal fan.
  • the airflow actuating device 400 can also be replaced by any other fan, such as an axial flow fan.
  • the airflow channel 280 has a first section 281 connected to the air inlet interface 231 and having a gradually expanding flow cross section, and a second section 282 connected to the air inlet 411 of the airflow actuating device 400 and having a gradually shrinking flow cross section.
  • first section 281 the cross-sectional area of the streamline cluster perpendicular to the airflow in the gas flow direction (i.e., the area of the flow cross section) gradually expands.
  • the cross-sectional area of the streamline cluster perpendicular to the airflow in the gas flow direction i.e., the area of the flow cross section
  • the first section 281 and the second section 282 can be used to guide the gas flowing through the airflow channel 280, thereby reducing or avoiding turbulence.
  • the gas flowing into the air inlet interface 231 can flow at a reduced speed to extend the flow time so as to fully contact with the oxygen processing component 300; under the action of the second section 282, the gas can flow at a faster speed and flow out of the air outlet interface 221 at a higher speed, thereby improving the air conditioning efficiency of the space to be conditioned.
  • first section 281 and the second section 282 may be directly connected.
  • the oxygen processing assembly 300 may be disposed in the first section 281 or the second section 282, or may be disposed at the junction of the first section 281 and the second section 282, or may be disposed in both the first section 281 and the second section 282.
  • the air flow channel 280 further has a third section 283 connected between the first section 281 and the second section 282.
  • FIG9 is a schematic structural diagram of the installation box 200 of the oxygen processing device 10 shown in FIG5 , in which the top wall 220 of the installation box 200 is hidden. As shown in FIG9 , the first section 281 and the second section 282 are respectively located on both sides of the third section 283. The dotted lines in FIG9 show the boundary line between the first section 281 and the third section 283 and the boundary line between the second section 282 and the third section 283.
  • the oxygen processing assembly 300 is disposed in the third section 283.
  • the area of the flow cross section of the third section 283 i.e., the cross-sectional area of the streamline cluster perpendicular to the gas flow
  • the flow rate of the gas flowing through the third section 283 does not change significantly, and each part of the oxygen processing assembly 300 can be uniformly contacted with the gas flowing therethrough, thereby uniformly generating oxygen-depleted gas or oxygen-enriched gas.
  • the oxygen processing device 10 further includes a positioning mechanism 500, which is fixed in the airflow channel 280 and fixedly connected to the airflow actuating device 400 to fix the airflow actuating device 400 in the airflow channel 280.
  • FIG. 10 is a diagram of a positioning mechanism 500 and a positioning mechanism 500 of the oxygen processing device 10 according to one embodiment of the present invention.
  • FIG11 is a schematic exploded view of the assembly structure of the positioning mechanism 500 and the airflow actuation device 400 shown in FIG10.
  • the airflow actuating device 400 When the airflow actuating device 400 needs to be installed in the airflow channel 280, the airflow actuating device 400 can be first mounted on the positioning mechanism 500, and then the positioning mechanism 500 can be mounted in the airflow channel 280, for example, fixed on the inner wall of the installation box 200.
  • the positioning mechanism 500 is used to indirectly fix the airflow actuating device 400 to the airflow channel 280, which can avoid directly performing the connection operation between the airflow actuating device 400 and the installation box 200 in the relatively narrow airflow channel 280.
  • the airflow actuating device 400 includes a volute 410 and a wind wheel 420 disposed in the volute 410.
  • An air inlet 411 and an air outlet 412 are formed on the volute 410, respectively.
  • the positioning mechanism 500 defines a mounting groove 510 for the volute 410 to be assembled therein, and further defines a first opening 520 communicating with the mounting groove 510 and penetrating with the air outlet 412, and a second opening 530 communicating with the mounting groove 510 and penetrating with the air suction port 411.
  • the first opening 520 may face the air suction port 411 of the volute 410
  • the second opening 530 may face the air outlet 412 of the volute 410.
  • the volute 410 may be fixed in the mounting groove 510 by screwing.
  • the assembly stability between the airflow actuating device 400 and the positioning mechanism 500 can be improved, and the positioning mechanism 500 can be reduced or avoided from blocking the air intake port 411 and the air outlet 412 of the airflow actuating device 400.
  • the positioning mechanism 500 further defines an outer protruding claw 540 extending outward from at least a portion of the opening edge of the installation slot 510.
  • the inner wall of the installation box 200 correspondingly defines a slot 241 for the outer protruding claw 540 to be inserted into for engagement.
  • the positioning mechanism 500 is fixed in the airflow channel 280, and the positioning mechanism 500 is fixedly connected to the airflow actuating device 400, so as to fix the airflow actuating device 400 in the airflow channel 280.
  • the positioning mechanism 500 is fixed to the inner wall of the installation box 200 by adopting the matching structure of the claw and the slot 241, the assembly method of the airflow actuating device 400 of the oxygen processing device 10 can be simplified.
  • the external protruding claw 540 can be formed by extending radially outward from at least a portion of the opening edge of the mounting groove 510 , for example, it can be formed by extending outward from both lateral ends and the bottom end of the mounting groove 510 .
  • the positioning mechanism 500 further defines a flange 550 extending outward from the top of the opening edge of the mounting groove 510.
  • a first screw hole 551 is formed on the flange 550, and a second screw hole 242 corresponding to the first screw hole 551 is formed on the inner wall of the mounting box 200, so that the flange 550 is fixedly connected to the inner wall of the mounting box 200 by screwing.
  • the positioning mechanism 500 can simultaneously define the protruding claw 540 and the flange 550, so as to simultaneously utilize the matching structure of the claw and the slot 241 and the screw structure to fix the positioning mechanism 500 on the inner wall of the mounting box 200, which is beneficial to further improve the assembly stability of the airflow actuating device 400 in the airflow channel 280.
  • the cathode electrode and the anode 330 are plate-shaped electrodes.
  • the outer surface of the cathode 320 extends along the extension direction of the streamline cluster of the airflow flowing through the third section 283.
  • the second waterproof and breathable membrane 324 can be To form the outer surface of cathode 320.
  • the extension direction of the outer surface of the cathode 320 is parallel to the extension direction of the streamline cluster of the airflow flowing through the third section 283.
  • the gas flowing through the third section 283 can contact various parts of the outer surface of the cathode 320 evenly in a time sequence, thereby extending the contact time between the cathode 320 and the airflow to be treated per unit time.
  • the housing 310 further defines an exhaust chamber 312 above the electrolysis chamber 311, and the exhaust chamber 312 is provided with an exhaust hole 341.
  • the exhaust chamber 312 is connected to the electrolysis chamber 311, and is used to collect oxygen generated by the anode 330 and discharge it through the exhaust hole 341. That is, the exhaust chamber 312 is connected to the electrolysis chamber 311 on the one hand, and is connected to the external environment on the other hand, so as to discharge the oxygen discharged from the exhaust hole 341 to the external environment.
  • the oxygen collected and discharged by the exhaust chamber 312 can be discharged directly.
  • the oxygen collected and discharged by the exhaust chamber 312 can also be delivered to the high-oxygen fresh-keeping space of the refrigerator 20 to create a high-oxygen fresh-keeping atmosphere and improve the fresh-keeping performance of the refrigerator 20.
  • the oxygen processing device 10 can be used to consume the oxygen in the low-oxygen fresh-keeping space of the refrigerator 20, and the oxygen processing device 10 can also be used to increase the oxygen in the high-oxygen fresh-keeping space of the refrigerator 20, thereby realizing the functional reuse of the oxygen processing device 10.
  • the exhaust chamber 312 is integrally formed with the electrolysis chamber 311. With such a configuration, the assembly structure between the exhaust chamber 312 and the electrolysis chamber 311 can be omitted, and the air tightness of the connection structure between the exhaust chamber 312 and the electrolysis chamber 311 is ensured.
  • a gas-liquid communication port is formed between the electrolysis chamber 311 and the exhaust chamber 312, so that the electrolysis chamber 311 and the exhaust chamber 312 can communicate with each other.
  • an oxygen exhaust port 222 is further provided on the installation box 200.
  • the oxygen processing device 10 further includes an oxygen exhaust pipe 350, one end of which is connected to the exhaust hole 341, and the other end of which extends from the oxygen exhaust port 222 to the outside of the installation box 200, for exhausting the oxygen exhausted through the exhaust hole 341 to the outside of the installation box 200.
  • the oxygen processing device 10 may also omit the oxygen exhaust pipe 350, and the exhaust hole 341 may be a hollow cylindrical interface formed on the exhaust bin 312 and bulging outward, and the exhaust hole 341 may extend to the outside of the installation box 200 through the oxygen exhaust port 222 to discharge the oxygen flowing through the installation box 200 to the outside of the installation box 200.
  • a liquid injection port 223 is further provided on the installation box 200.
  • the oxygen treatment device 10 further includes a liquid infusion tube 360, one end of which is connected to the electrolysis chamber 311, and the other end of which extends from the liquid injection port 223 to the outside of the installation box 200, for guiding external liquid to the electrolysis chamber 311.
  • the installation box 200 has a bottom wall 210 and a top wall 220 , and a first side wall 230 and a second side wall 240 respectively extending upward from the bottom wall 210 to the top wall 220 and arranged opposite to each other.
  • the air outlet interface 221 is formed on the top wall 220 of the installation box 200, for example, it can be set on one lateral side of the installation box 200.
  • the air inlet interface 231 is formed on the first side wall 230 of the installation box 200, for example, the first side wall 230 can be formed on the other lateral side of the installation box 200, and the air inlet interface 231 can be set at the bottom center of the first side wall 230.
  • the airflow actuating device 400 is fixed on the second side wall 240 of the installation box 200 and is located below the air outlet interface 221.
  • the gas flowing through the airflow channel 280 can Flowing in an oblique upward direction lengthens the flow path of the gas flowing through the gas flow channel 280 .
  • the installation box 200 further has a third side wall 250 and a fourth side wall 260 , a first guide surface 271 and a second guide surface 272 , and a third guide surface 273 and a fourth guide surface 274 .
  • the third side wall 250 and the fourth side wall 260 extend upward from the bottom wall 210 to the top wall 220, respectively, and together with the first side wall 230 and the second side wall 240, enclose a cylinder with a top opening.
  • the first side wall 230 is substantially parallel to the second side wall 240
  • the third side wall 250 is substantially parallel to the fourth side wall 260.
  • the first guide surface 271 and the second guide surface 272 extend from the inner surface of the first side wall 230 to the inner surface of the third side wall 250 and the inner surface of the fourth side wall 260, respectively, and form an obtuse angle with the inner surface of the first side wall 230 to define a first section 281.
  • the first guide surface 271 may extend from the inner surface of the end section of the first side wall 230 close to the third side wall 250 to the inner surface of the end section of the third side wall 250 close to the first side wall 230.
  • the second guide surface 272 may extend from the inner surface of the end section of the first side wall 230 close to the fourth side wall 260 to the inner surface of the end section of the fourth side wall 260 close to the first side wall 230.
  • the third guide surface 273 and the fourth guide surface 274 extend from the inner surface of the second side wall 240 to the inner surface of the third side wall 250 and the inner surface of the fourth side wall 260, respectively, and form an obtuse angle with the inner surface of the second side wall 240 to define the second section 282.
  • the third guide surface 273 may extend from the inner surface of the end section of the second side wall 240 close to the third side wall 250 to the inner surface of the end section of the third side wall 250 close to the second side wall 240.
  • the fourth guide surface 274 may extend from the inner surface of the end section of the second side wall 240 close to the fourth side wall 260 to the inner surface of the end section of the fourth side wall 260 close to the second side wall 240.
  • the top wall 220, the bottom wall 210, the first side wall 230, the second side wall 240, the third side wall 250, the fourth side wall 260, the first guide surface 271, the second guide surface 272, the third guide surface 273 and the fourth guide surface 274 of the installation box 200 can be manufactured by an integrated molding process.
  • FIG. 12 is a schematic structural diagram of an oxygen processing assembly 300 of an oxygen processing device 10 according to an embodiment of the present invention.
  • the oxygen processing assembly 300 may be provided in plurality and arranged in sequence along a preset direction to enhance the oxygen regulation efficiency of the oxygen processing device 10.
  • the embodiment of the present invention further provides a refrigerator 20.
  • the refrigerator 20 of the embodiment of the present invention should be understood in a broad sense, and can be any refrigeration device with a low-temperature storage function, such as a refrigerator, a freezer, a freezer or a refrigerated cabinet.
  • FIG13 is a schematic structural diagram of a refrigerator 20 according to an embodiment of the present invention.
  • the refrigerator 20 includes a box 600 and an oxygen processing device 10 of any of the above embodiments.
  • the interior of the box 600 defines a storage space 610.
  • the oxygen processing device 10 is used to adjust the oxygen content of the storage space 610.
  • the storage space 610 can be a low-oxygen fresh-keeping space; the cathode 320 of the oxygen processing device 10 is connected to the airflow of the storage space 610, and is used to consume the oxygen in the storage space 610 through an electrochemical reaction under the action of the electrolysis voltage, so that the storage space 610 creates a low-oxygen fresh-keeping atmosphere.
  • a high-oxygen fresh-keeping space can be further defined in the box 600.
  • the electrolysis chamber can be connected to the high-oxygen fresh-keeping space.
  • the oxygen generated by the anode 330 can be transported to the high-oxygen fresh-keeping space, so that the high-oxygen fresh-keeping space creates a high-oxygen fresh-keeping atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明提供了一种用于氧气处理装置的阴极以及氧气处理装置和冰箱,其中,用于氧气处理装置的阴极包括:网状导电膜,其上设置有至少一个可活动的交织点,配置成通过活动吸收应力。当阴极受到应力作用时,由于网状导电膜上的可活动的交织点可通过活动吸收应力,应力可转移至可活动的交织点处"被集中处理",可活动的交织点在活动时不会导致网状导电膜的外形发生明显变化,因此,网状导电膜整体上几乎不会因应力作用而发生明显形变,这有利于提高阴极的结构稳定性。

Description

用于氧气处理装置的阴极和冰箱 技术领域
本发明涉及气调保鲜技术,特别是涉及用于氧气处理装置的阴极和冰箱。
背景技术
一些氧气处理装置利用电极对的电化学反应来处理氧气,例如吸收或产生氧气。这些氧气处理装置的电极,特别是阴极,一般需要设置导电层。
发明人认识到,现有技术中的导电层为金属,伸缩率相对较小,在应力作用下,会发生明显的形变,这会导致阴极在制造过程和使用过程的结构稳定性降低,性能衰减,更为严重的是,还可能导致氧气处理装置漏液。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于氧气处理装置的阴极和冰箱。
本发明的一个进一步的目的是要减少或避免网状导电膜在应力的作用下发生明显形变,提高阴极的结构稳定性。
特别地,根据本发明的一方面,提供了一种用于氧气处理装置的阴极,包括:网状导电膜,其上设置有至少一个可活动的交织点,配置成通过活动吸收应力。
可选地,所述网状导电膜包括多个平行间隔设置的第一导电线以及多个平行间隔设置的第二导电线;且
所述第一导电线与所述第二导电线相互交织形成所述至少一个可活动的交织点,且形成多个固定连接的交织点;所述固定连接的交织点多于所述可活动的交织点。
可选地,所述固定连接的交织点分布在所述可活动的交织点周围。
可选地,所述网状导电膜具有位于中心区域的中心应力吸收区以及环绕所述中心应力吸收区的环周应力吸收区;且
所述可活动的交织点为多个,且分布在所述中心应力吸收区和所述环周应力吸收区。
可选地,所述中心应力吸收区内的所述可活动的交织点的密度大于所述环周应力吸收区内的所述可活动的交织点的密度。
可选地,所述环周应力吸收区内的所述可活动的交织点绕所述中心应力吸收区的周向均匀分布。
可选地,所述第一导电线与所述第二导电线相互垂直。
可选地,所述网状导电膜为镍网;且
所述固定连接的交织点由所述第一导电线和所述第二导电线通过焊接或热熔而形成。
可选地,用于氧气处理装置的阴极还包括:
第一防水透气膜和第二防水透气膜,共同夹持所述网状导电膜;以及
催化膜,设置在所述第一防水透气膜或所述第二防水透气膜背朝所述网状导电膜的一侧;且所述催化膜、所述第一防水透气膜、所述第二防水透气膜以及所述网状导电膜通过压接烧制形成阴极电极。
可选地,用于氧气处理装置的阴极还包括:安装框,其限定出环绕所述阴极电极的边沿且供所述阴极电极的边沿嵌入其中以实现夹持的环状凹槽。
根据本发明的又一方面,还提供了一种冰箱,包括:
箱体,其内部限定出储物空间;以及
氧气处理装置,包括:
壳体,其具有侧向开口;以及
如以上任一项所述的用于氧气处理装置的阴极,设置于所述侧向开口处,以与所述壳体共同限定出用于盛装电解液的电解仓,并用于在电解电压的作用下通过电化学反应消耗氧气;
所述阴极与所述储物空间气流连通,用于在电解电压的作用下通过电化学反应消耗所述储物空间的氧气。
本发明的用于氧气处理装置的阴极以及氧气处理装置和冰箱,通过在阴极的网状导电膜上设置至少一个可活动的交织点,并使可活动的交织点配置成通过活动吸收应力,当阴极受到应力作用时,由于网状导电膜上的可活动的交织点可通过活动吸收应力,应力可转移至可活动的交织点处“被集中处理”,可活动的交织点在活动时不会导致网状导电膜的外形发生明显变化,因此,网状导电膜整体上几乎不会因应力作用而发生明显形变,这有利于提高阴极的结构稳定性。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的用于氧气处理装置的阴极的网状导电膜的示意性结构图;
图2是根据本发明一个实施例的用于氧气处理装置的阴极的示意性结构图;
图3是图2所示的用于氧气处理装置的阴极的网状导电膜与安装框的装配结构图;
图4是根据本发明一个实施例的用于氧气处理装置的阴极的示意性分解图;
图5是根据本发明一个实施例的氧气处理装置的示意性结构图;
图6是图5所示的氧气处理装置的示意性分解图;
图7是图5所示的氧气处理装置的示意性内部结构图;
图8是图7所示的氧气处理装置的内部结构的示意性俯视图;
图9是图5所示的氧气处理装置的安装盒的示意性结构图,图中隐去了安装盒的顶壁;
图10是根据本发明一个实施例的氧气处理装置的定位机构和气流促动装置的装配结构图;
图11是图10所示的定位机构和气流促动装置的装配结构的示意性分解图;
图12是根据本发明一个实施例的氧气处理装置的氧气处理组件的示意性结构图;
图13是根据本发明一个实施例的冷藏冷冻装置的示意性结构图。
具体实施方式
现将详细参考本发明的实施例,其一个或多个示例在附图中示出。提供的各个实施例旨在解释本发明,而非限制本发明。事实上,在不脱离本发明的范围或精神的情况下对本发明进行各种修改和变化对于本领域的技术人员来说是显而易见的。例如,图示或描述为一个实施例的一部分的特征可以与另一个实施例一起使用以产生再另外的实施例。因此,本发明旨在涵盖所附权利要求书及其等同物范围内的此类修改和变化。
下面参照图1至图13来描述本发明实施例的用于氧气处理装置10的阴极320以及氧气处理装置10和冰箱20。其中,“内”“外”“上”“下”“顶”“底”“横向”“水平”“竖直”等指示的方位或位置关系为基于用于氧气处理装置10的阴极320以及氧气处理装置10和冰箱20在正常使用状态下的方位作为参考,并参考附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。为便于示意装置的结构,本发明的部分附图采用透视的形式进行示意。
在本实施例的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。需要理解的是,术语“多个”的含义是至少两个,例如两个,三个 等。除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本实用新型中的具体含义。
在本实施例的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“一个示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
本发明实施例首先提供了一种用于氧气处理装置10的阴极320。图1是根据本发明一个实施例的用于氧气处理装置10的阴极320的网状导电膜323的示意性结构图。氧气处理装置10为用于通过电化学反应处理氧气的装置。在电解电压的作用下,氧气在阴极320处发生还原反应。
阴极320一般性地可包括网状导电膜323。网状导电膜323可作为阴极320的集流层,起导电作用。
网状导电膜323上设置有至少一个可活动的交织点323c,配置成通过活动吸收应力。网状导电膜323可包括多个交织的导电线。任意两个导电线之间的交点形成一个交织点。可活动的交织点323c是指不同方向的导电线交织时形成的未固定连接的交点。
通过在阴极320的网状导电膜323上设置至少一个可活动的交织点323c,并使可活动的交织点323c配置成通过活动吸收应力,当阴极320受到应力作用时,由于网状导电膜323上的可活动的交织点323c可通过活动吸收应力,应力可转移至可活动的交织点323c处“被集中处理”,可活动的交织点323c在活动时不会导致网状导电膜323的外形发生明显变化,因此,网状导电膜323整体上几乎不会因应力作用而发生明显形变,这有利于提高阴极320的结构稳定性。
氧气处理装置10可以限定出用于盛装电解液的电解仓311。阴极320通常需要作为电解仓311的壁,或者封闭电解仓311的开口,从而一方面与外部空气接触,另一方面还与电解液接触。
若阴极320的外形因外力作用而产生明显变化,则阴极320的外部轮廓与其接触的部位可能会发生脱离,从而导致漏液。通过在网状导电膜323上设置可活动的交织点323c,由于网状导电膜323的各个交织点并非全部固定连接,因此,可活动 的交织点323c可形成网状导电膜323的应力吸收区,阴极320所受到的外部应力可几乎全部地转移至可活动的交织点323c,并转化为可活动的交织点323c的活动过程的驱动力,从而被网状导电膜323“吸收”。由此,在阴极320的制造过程、装配过程以及使用过程中,即便网状导电膜323受到应力作用,也几乎不会导致网状导电膜323以及整个阴极320的外形产生明显变化,电解仓311所盛装的电解液不会因网状导电膜323或阴极320发生形变而泄漏,从而提高了氧气处理装置10的结构稳定性和使用过程的安全性。
需要强调的是,虽然现有技术采用镍网作为电化学反应装置的阴极320,但面对阴极320的结构稳定性问题以及电化学反应装置的漏液问题,现有技术所采用的补救措施是“减少或避免应力作用于阴极320”(例如尽量避免阴极320遭受磕碰,或者“对漏液问题进行监测,并在发生漏液时及时修护”。然而,发明人认识到,现有技术的上述方案均不能实质性地提高阴极320的结构稳定性。受限于现有技术的上述方案的制约,本领域普通技术人员显然不会想到从网状导电膜323的结构改造出发来实质性地提高阴极320的结构稳定性。因此,本申请的发明人创造性地在网状导电膜323上设置可活动的交织点323c作为应力吸收区,来吸收应力,这突破了现有技术的思想桎梏,为解决氧气处理装置10的漏液问题提供了全新思路,同时也解决了阴极320的结构稳定性不高等多个技术性问题,一举多得。
在一些可选的实施例中,网状导电膜323包括多个平行间隔设置的第一导电线323a以及多个平行间隔设置的第二导电线323b。第一导电线323a与第二导电线323b相互交织形成至少一个可活动的交织点323c,且形成多个固定连接的交织点323d。在一个示例中,每个第一导电线323a可与全部的第二导电线323b交织,从而形成多个交织点。同样,每个第二导电线323b也可与全部的第一导电线323a交织,从而形成多个交织点。
固定连接的交织点323d是指形成该交织点的相互交织的第一导电线323a和第二导电线323b在该交织点处固定连接。可活动的交织点323c是指形成该交织点的相互交织的第一导电线323a和第二导电线323b在该交织点处并未固定连接,而是分离设置。
固定连接的交织点323d与可活动的交织点323c可组合成全部的交织点。在一个示例中,固定连接的交织点323d多于可活动的交织点323c。也就是说,大部分的交织点为固定连接的交织点323d,小部分的交织点为可活动的交织点323c。
通过将固定连接的交织点323d设置为多于可活动的交织点323c,固定连接的交织点323d与可活动的交织点323c相辅相成,使网状导电膜323具备较高的机械强度和牢靠的结构稳定性。数量较多的固定连接的交织点323d起到定型作用,在多个固定连接的交织点323d的作用下,网状导电膜323的外形呈平整的薄膜状。在固定连接的交织点323d的作用下,即便可活动的交织点323c发生活动,并不会导致网 状导电膜323产生明显形变。可活动的交织点323c起吸收应力的作用,并通过活动吸收应力,从而使网状导电膜323在应力作用下仍保持原状,不会使应力扩散作用于网状导电膜323的外部轮廓。
可活动的交织点323c可以分布在网状导电膜323的任意部位。在一些可选的实施例中,固定连接的交织点323d分布在可活动的交织点323c周围。换言之,可活动的交织点323c被固定连接的交织点323d所环绕。也就是说,可活动的交织点323c并未设置在网状导电膜323的边缘。
通过将固定连接的交织点323d分布在可活动的交织点323c周围,可进一步降低可活动的交织点323c在活动过程中对网状导电膜323的外形所产生的影响。
可活动的交织点323c可以为一个或多个。在一个示例中,可活动的交织点323c的数量可以根据网状导电膜323的工作面积进行设置,并随网状导电膜323的工作面积的增大而相应增多。当网状导电膜323的工作面积较小时,仅设置一个可活动的交织点323c,可能会满足该网状导电膜323的应力吸收需求。当网状导电膜323的工作面积较大时,相应增加可活动的交织点323c,可提高网状导电膜323的可活动的交织点323c的应力吸收能力,各个可活动的交织点323c可以均匀散布在网状导电膜323的各个区域,使得网状导电膜323的各个区域均能保持良好的形状稳定性。
在一些可选的实施例中,网状导电膜323具有位于中心区域的中心应力吸收区K1以及环绕中心应力吸收区K1的环周应力吸收区K2。
可活动的交织点323c为多个,且分布在中心应力吸收区K1和环周应力吸收区K2。也就是说,中心应力吸收区K1和环周应力吸收区K2分别设置有可活动的交织点323c。
采用本实施例的方案,可活动的交织点323c可均匀地散布在网状导电膜323上。无论网状导电膜323的中心区域受到应力作用,还是网状导电膜323的环周区域受到应力作用,均能利用对应区域内的可活动的交织点323c来吸收应力,从而减少或避免该区域发生明显的外形变化。
分布在中心应力吸收区K1的可活动的交织点323c的数量可根据中心应力吸收区K1的面积进行设置,并且可以设置为一个或多个。分布在环周应力吸收区K2的可活动的交织点323c的数量可根据环周应力吸收区K2的面积进行设置,并且可以设置为一个或多个。
在一些可选的实施例中,中心应力吸收区K1内的可活动的交织点323c的密度大于环周应力吸收区K2内的可活动的交织点323c的密度。
发明人认识到,由于网状导电膜323的中心区域的位置具备特殊性,当网状导电膜323的环周区域的任一部位受到应力作用时,网状导电膜323的中心区域均有可能会受到牵涉。因此,将中心应力吸收区K1内的可活动的交织点323c的密度设 置为大于环周应力吸收区K2内的可活动的交织点323c的密度,可使网状导电膜323的中心区域具备更优的应力吸收性能,提高网状导电膜323整体的应力吸收效果和形状维持效果,从而维持较高的结构稳定性。
在一些可选的实施例中,环周应力吸收区K2内的可活动的交织点323c绕中心应力吸收区K1的周向均匀分布。在一个示例中,中心应力吸收区K1为网状导电膜323的矩形状的中心区域,环周应力吸收区K2为环绕中心应力吸收区K1的方环形区域。环周应力吸收区K2内的可活动的交织点323c在方环形区域内均匀分布。
基于本实施例的上述方案,网状导电膜323的环周区域能够均匀地提升应力吸收效果和形状维持效果。由于不同位置的可活动的交织点323c可吸收来自不同方向的应力,因此,本实施例的阴极320,其制造过程和装配过程以及使用过程的结构稳定性可得到全面地提升。
在一个示例中,环周应力吸收区K2可划分为四个不同的片区,分别位于中心应力吸收区K1的纵向两侧和横向两侧。每个片区内分别设置有可活动的交织点323c。四个片区的面积可以设置为不同。在一个示例中,面积较大的片区内的可活动的交织点323c多于面积较小的片区内的可活动的交织点323c。每个片区所承受的应力分别被该片区内的可活动的交织点323c所吸收。
在一些可选的实施例中,中心应力吸收区K1内的可活动的交织点323c的密度可以为环周应力吸收区K2内的可活动的交织点323c的密度的整数倍,例如两倍,三倍或者更多倍。中心应力吸收区K1和环周应力吸收区K2分别采用方框进行示意。
在一个示例中,在中心应力吸收区K1内,每个50×50(毫米)的单位内,设置有至少一个可活动的交织点323c,例如,一个,两个,或者更多个;不满一个单位时,按照一个单位计算。在环周应力吸收区K2内,每个100×100(毫米)的单位内,设置有至少一个可活动的交织点323c,例如,一个,两个,或者更多个;不满一个单位时,按照一个单位计算。或者,在另一个示例中,在环周应力吸收区K2内,设置有一个100×100(毫米)的单位,该单位内设置有至少一个可活动的交织点323c,例如,一个,两个,或者更多个;在该单位之外,可活动的交织点323c的数量N可以设置为N=(L-100)/(D×W),式中,L为环周应力吸收区K2的任一片区的长度,D为每个网格之间的间距,W为环周应力吸收区K2的任一片区的宽度方向上的网格数量。
在另一个示例中,在中心应力吸收区K1内,每个n×n的单位内,设置有至少一个可活动的交织点323c,例如,一个,两个,或者更多个。n表示网格数量,其取值可以为5~10范围内的任意值;不满一个单位时,按照一个单位计算。在环周应力吸收区K2内,每个2n×2n的单位内,设置有至少一个可活动的交织点323c,例如,一个,两个,或者更多个。
在一些可选的实施例中,第一导电线323a与第二导电线323b相互垂直。采用 本实施例的方案,第一导电线323a与第二导电线323b通过交织形成多个矩形形状的网格,每个矩形形状的网格具备优良的结构稳定性,这可以进一步地提高网状导电膜323整体的形状保持效果。
网状导电膜323可以为镍网。当然,在另一个示例中,网状导电膜323也可以为钛网或者其他具备导电功能的网状金属结构或网状的非金属结构。
在一些可选的实施例中,固定连接的交织点323d由第一导电线323a和第二导电线323b通过焊接或热熔而形成,以增强第一导电线323a和第二导电线323b之间的固定交织点的连接牢靠性。第一导电线323a和第二导电线323b在可活动的交织点323c处并未通过焊接或热熔连接在一起。
在一些可选的实施例中,用于氧气处理装置10的阴极320还包括第一防水透气膜322和第二防水透气膜324以及催化膜321。图2是根据本发明一个实施例的用于氧气处理装置10的阴极320的示意性结构图。图3是图2所示的用于氧气处理装置10的阴极320的网状导电膜323与安装框325的装配结构图,图中隐去了第一防水透气膜322和第二防水透气膜324以及催化膜321。图4是根据本发明一个实施例的用于氧气处理装置10的阴极320的示意性分解图,图中隐去了安装框325。
第一防水透气膜322和第二防水透气膜324共同夹持网状导电膜323,起防水透气的作用,一方面能防止水或水溶液通过,另一方面能允许气体例如氧气通过。。
催化膜321设置在第一防水透气膜322或第二防水透气膜324背朝网状导电膜323的一侧。且催化膜321、第一防水透气膜322、第二防水透气膜324以及网状导电膜323通过压接烧制形成阴极电极。
在一个示例中,第一防水透气膜322可以设置于网状导电膜323与催化膜321之间,且其内部形成有仅供气体通过的第一毛细孔,第一毛细孔配置成在与电解液接触时形成第一弯月面。第二防水透气膜324可以设置于网状导电膜323背朝催化膜321的一侧,且其内部形成有仅供气体通过的第二毛细孔,第二毛细孔配置成在与电解液接触时形成第二弯月面。
也就是说,本实施例的阴极320具有四层膜结构,且按照排列顺序可以依次包括第二防水透气膜324、网状导电膜323、第一防水透气膜322、和催化膜321。第二防水透气膜324可以位于阴极320的最外层,例如,可以与冰箱20的储物空间610气流连通,催化膜321可以位于阴极320的最内层,例如,可以面朝电解仓311。储物空间610内的氧气依次流经第二防水透气膜324、网状导电膜323、第一防水透气膜322之后,到达催化膜321。四层膜分别可以呈长方形薄膜状,每层膜的长度和宽度可以大致相同,且可以根据工作空间的大小进行设置,例如每层膜的长度可以分别为100~300mm,每层膜的宽度可以分别为50~200mm。在一些实施例中,网状导电膜323的大小可以大于其他膜层的大小。
由于阴极电极按照第一防水透气膜322、网状导电膜323、第二防水透气膜324、 催化膜321的排列顺序通过压接烧制形成,且第一防水透气膜322和第二防水透气膜324分别具有仅供气体通过的第一毛细孔和第二毛细孔,这可使阴极电极具备防水透气性能,既能保证氧气由外而内地顺利到达催化膜321,又能防止电解液由内而外地溢出。
防水透气膜可提供空气和电解液之间的气体透过防水界面,为氧气进入并扩散到催化膜321提供一条通路。防水透气膜之所以能透气而不漏液体,主要是靠毛细孔内壁的毛细作用和粘合剂材料的憎水特性,毛细孔与电解液接触形成了弯月面,即前述第一弯月面和第二弯月面。
第一防水透气膜322和第二防水透气膜324的结构和成分可以完全相同。本实施例中,第一防水透气膜322和第二防水透气膜324可以分别由聚四氟乙烯乳液通过湿法制成,以分别形成仅供气体通过的第一毛细孔和第二毛细孔。聚四氟乙烯乳液的质量浓度可以为40%~80%范围内的任意值,例如可以为60%。采用特定浓度的聚四氟乙烯乳液通过湿法制成防水透气膜,可使毛细孔的孔径和防水透气膜的孔隙率处于合理范围内,从而满足防水透气的性能要求。本实施例中,毛细孔的孔径可以为小于等于100微米的任意值,例如可以为1微米、20微米、50微米,防水透气膜的孔隙率可以为60%~98%范围内的任意值,例如可以为70%、90%。
发明人认识到,聚四氟乙烯的导电性差,这会导致整个阴极320的欧姆阻抗大。为了增加防水透气膜的导电性,减少聚四氟乙烯的用量,降低阴极320的制造成本,增强防水透气膜各个组分之间的粘结性和可塑性,同时改善防水透气膜的防水透气性能,在一些进一步的实施例中,防水透气膜中还可以添加适量的乙炔黑和活性炭。
在电解电压的作用下,空气中的氧气可以在阴极320的催化膜321处发生还原反应,例如,O2+2H2O+4e-→4OH-。催化膜321用于催化上述还原反应,从而提高电化学反应速率。
催化膜321可以由前驱体通过压制处理制成。前驱体可以为粉末状。前驱体包括碳颗粒以及沉积在至少部分碳颗粒上的催化颗粒,其中,催化颗粒选自由铂、金、银、锰和铷构成的物质组。铂、金、银、锰和铷分别属于贵金属或稀有金属。碳颗粒具备导电性,可以为炭黑,优选地,可以为导电炭黑,例如乙炔黑。在一些可选的实施例中,碳颗粒还可以为具有良好导电性的石墨,这可以提高碳颗粒的导电性。
由于碳颗粒具备导电性,且铂、金、银、锰和铷等贵金属和稀有金属能够促进氧的吸附和还原,因此,利用碳颗粒和催化颗粒相结合,本实施例的阴极320,具备明显提高的电催化性能,从而有利于提高阴极320的电化学反应速率。
由于碳颗粒具备优良的导电性,利用至少部分碳颗粒作为催化颗粒的载体,可以降低整个催化膜321的电化学阻抗,提高阴极320的导电性,从而保证电化学反应的顺利进行。
在一些可选的实施例中,用于氧气处理装置10的阴极320还可以进一步地包括 安装框325,其限定出环绕阴极电极的边沿且供阴极电极的边沿嵌入其中以实现夹持的环状凹槽。
安装框325可以通过注塑工艺成型在通过压接烧制而成的阴极电极的外周。在注塑成型的过程中,通过向阴极电极的四周注料,从而使安装框325将阴极电极包围。
由于注塑过程会导致阴极电极及其所处环境发生温度变化,且会对阴极电极产生拉力作用和压挤作用,作为金属部分的网状导电膜323的伸缩率相对较小,若不能有效缓解网状导电膜323的形状变化,会导致网状导电膜323与压接好的第一防水透气膜322和第二防水透气膜324之间发生分离,使得阴极320的寿命和性能大大降低,更为严重的是,还可能会导致网状导电膜323的局部凸起,从而破坏阴极电极的结构,进而导致电解液泄漏。
采用本发明实施例的方案,由于网状导电膜323上设置有可活动的交织点323c,作为应力吸收源,可以有效缓解网状导电膜323的形状变化,防止上述注塑过程以及后续的制造过程以及使用过程所产生应力对阴极320结构产生不利影响,从而提高阴极320的结构稳定性。
在一些可选的实施例中,安装框325由阻燃材料制成。例如,安装框325可以由符合灼热丝750针焰测试要求的阻燃材料制成,或者由阻燃等级达到HB等级的阻燃材料制成。
采用上述结构,通过在阴极电极的周边包绕具有阻燃功能的安装框325,当该安装框325吸收阴极电极进行电化学反应时所产生的热量时,能够在较大程度上抵抗物性变化,从而减少或避免氧气处理装置10的阴极320因进行电化学反应发热而导致周围部件损毁,提高装置的使用安全性和结构稳定性。
使用上述阻燃材料制成安装框325,即使阴极电极的工作电流超过预设阈值,也不会导致氧气处理装置10及其周围部件因温度过高而发生损毁。预设阈值可以为0.1~0.2A范围内的任意值。
本发明实施例还提供了一种氧气处理装置10。氧气处理装置10一般性地可包括壳体310以及如以上任一实施例的氧气处理装置10的阴极320。图5是根据本发明一个实施例的氧气处理装置10的示意性结构图。图6是图5所示的氧气处理装置10的示意性分解图。
壳体310具有侧向开口。例如壳体310可以呈扁平的长方体形状。侧向开口可以设置在壳体310的任意面上,例如顶面、底面或者侧面。在一个示例中,侧向开口可以设置在壳体310的面积最大的面上。
阴极320设置于侧向开口处,以与壳体310共同限定出用于盛装电解液的电解仓311,并用于在电解电压的作用下通过电化学反应消耗氧气。在一个示例中,阴极320的安装框325可以与侧向开口的周缘通过热板焊连接在一起,从而封闭电解仓 311。
氧气处理装置10还可以进一步地包括阳极330,阳极330与阴极320相互间隔地设置于电解仓311内,并用于通过电化学反应向阴极320提供反应物并生成氧气。阴极320产生的OH-可以在阳极330处发生氧化反应,并生成氧气,即:4OH-→O2+2H2O+4e-。阳极330可以为镍板或钛板,或者可以为镍网或钛网。
以上关于阴极320和阳极330的电化学反应的举例仅仅是示意性的,在了解上述实施例的基础上,本领域技术人员应当易于变换电化学反应的类型,或者针对适用于其他电化学反应类型的氧气处理装置10的结构进行拓展,这些变换和拓展均应落入本发明的保护范围。
壳体310、阴极320以及阳极330共同形成氧气处理组件300。在一些可选的实施例中,氧气处理装置10还可以进一步地包括安装盒200。安装盒200上形成有用于连通外部管路的进气接口231和出气接口221,且其内部限定出连通进气接口231和出气接口221的气流通道280。由于安装盒200上形成有进气接口231和出气接口221,因此,气流通道280可以通过管路连通待调节的空间,使得待调节空间内的气体可以自进气接口231流入气流通道280,并流经氧气处理组件300,以在氧气处理组件300的作用下形成贫氧气体或富氧气体。
氧气处理组件300设置于气流通道280内,并用于处理自进气接口231流入气流通道280的气体中的氧气,以产生贫氧气体或富氧气体。贫氧气体或富氧气体经出气接口221送出,从而调节外部空间的氧气含量。此处的外部空间可以指待调节的空间,例如冰箱20的储物空间610。也就是说,进气接口231和出气接口221可以分别通过外部管路连通同一空间。当然,在另一个示例中,进气接口231和出气接口221可以分别通过外部管路连通不同空间。
通过在安装盒200上设置用于连通外部管路的进气接口231和出气接口221,并将氧气处理组件300设置在连通进气接口231和出气接口221的气流通道280内,来自外部空间的气体可经进气接口231流入气流通道280内,并接受氧气处理组件300的处理,从而形成贫氧气体或富氧气体,最终从出气接口221送出。由于外部空间的气体可经由管路进入进气接口231,因此,采用本实施例的方案,氧气处理装置10可以设置在任意位置,例如,设置在远离待调节空间的任意位置,这可降低氧气处理装置10的装配对场景结构依赖度,提高氧气处理装置10在冰箱20中的装配灵活性,且扩大氧气处理装置10的应用范围。
在一些可选的实施例中,氧气处理装置10还可以进一步地包括进气管路和出气管路。进气管路连通进气接口231,并作为进气接口231的外部管路。出气管路连通出气接口221,并作为出气接口221的外部管路。进气管路远离进气接口231的一端可以延伸至待调节的空间。出气管路远离出气接口221的一端可以延伸至待调节的空间。待调节空间内的气体经进气管路流入进气接口231,并流入气流通道280,然 后经出气接口221流出气流通道280,并经出气管路流回待调节空间,进气接口231和出气接口221可以分别直接或间接地连通各自的外部管路。
在一个示例中,进气接口231和出气接口221可以分别为形成于安装盒200上的开口或开孔。在一些可选的实施例中,进气接口231为形成于安装盒200上并向外隆起的中空柱状接口;且/或出气接口221为形成于安装盒200上并向外隆起的中空柱状接口。
当进气接口231为形成于安装盒200上并向外隆起的中空柱状接口,且/或出气接口221为形成于安装盒200上并向外隆起的中空柱状接口时,进气接口231和/或出气接口221可以通过插接或者嵌套的方式连通外部管路,这可以降低氧气处理装置10与外部管路之间连接的操作难度。
在一些可选的实施例中,进气接口231与出气接口221形成于安装盒200的两个不同的壁上,这样可以适当地延长进气接口231与出气接口221之间的距离,使气流通道280具有较长的气流路径,使得气体流经气流通道280时的流动时间增加,从而与氧气处理组件300充分地接触。在一个示例中,进气接口231形成于安装盒200的底壁210或者一个侧壁上,出气接口221形成于安装盒200的顶壁220或者另一个侧壁上。进气接口231和出气接口221的位置可以互换。
在一个进一步的实施例中,进气接口231与出气接口221沿纵向和横向错位布置。例如,在一个示例中,进气接口231形成于安装盒200的底部区段,出气接口221形成于安装盒200的顶部区段;进一步地进气接口231可以位于安装盒200的横向一侧,进一步地出气接口221可以位于安装盒200的横向另一侧。在一个进一步的示例中,安装盒200大致呈空心柱状,例如空心棱柱或者空心圆柱,进气接口231设置于安装盒200的侧壁上,并位于安装盒200的底部,出气接口221设置于安装盒200的顶壁220上,并远离设置有进气接口231的安装盒200侧壁,以与进气接口231斜向相对。
通过将进气接口231和出气接口221设置在安装盒200的两个不同的壁上,或进一步地使进气接口231与出气接口221沿纵向和横向错位布置,可以延长流经气流通道280的气体流动路径,使流经气流通道280的气体与氧气处理组件300充分接触,从而使得送出出气接口221的贫氧气体的氧气含量处于较低水平,或使得送出出气接口221的富氧气体的氧气含量处于较高水平。
在一些可选的实施例中,氧气处理装置10还包括气流促动装置400,设置于气流通道280内,且其具有吸风口411和出风口412。其中,吸风口411与进气接口231气流连通,出风口412与出气接口221相对。且气流促动装置400用于促使形成自进气接口231流入气流通道280并流向出气接口221的气流。图7是图5所示的氧气处理装置10的示意性内部结构图,图中示出了出风口412。图8是图7所示的氧气处理装置10的内部结构的示意性俯视图。
当在气流通道280内设置气流促动装置400,并使气流促动装置400的吸风口411与进气接口231气流连通,且使气流促动装置400的出风口412与出气接口221相对时,外部空间的气体可以在气流促动装置400的促动下,自进气接口231流入气流通道280并流向出气接口221,形成主动式的高速的气流循环结构,改变了仅依靠分子扩散原理捕捉氧气的方式,有助于提升单位时间内流经气流通道280的气体流量,从而提高氧气处理装置10的工作效率。
在一个示例中,气流促动装置400为离心风机。当然,在另一些示例中,气流促动装置400也可以替换为任意其他风机,例如轴流风机等。
在一些可选的实施例中,气流通道280具有连接进气接口231并且过流截面渐扩的第一区段281以及连接气流促动装置400的吸风口411并且过流截面渐缩的第二区段282。气体在流经第一区段281时,在气体流动方向上,垂直于气流的流线簇的断面面积(即,过流截面的面积)逐渐扩大。气体在流经第二区段282时,在气体流动方向上,垂直于气流的流线簇的断面面积(即,过流截面的面积)逐渐缩小。
通过在气流通道280内设置连接进气接口231并且过流截面渐扩的第一区段281以及连接气流促动装置400的吸风口411并且过流截面渐缩的第二区段282,可以分别利用第一区段281和第二区段282对流经气流通道280的气体进行导流,从而减少或避免扰流。并且在第一区段281的作用下,流入进气接口231的气体可以减速流动,以延长流动时间,从而与氧气处理组件300充分接触;在第二区段282的作用下,气体可以加速流动并以较高的速度流出出气接口221,以提高待调节空间的气调效率。
在一个示例中,第一区段281和第二区段282可以直接地相连。氧气处理组件300可以设置于第一区段281内或者第二区段282内,当然也可以设置于第一区段281和第二区段282的相接部位,或者同时设置于第一区段281和第二区段282内。
在另一个示例中,气流通道280还具有连接于第一区段281和第二区段282之间的第三区段283。图9是图5所示的氧气处理装置10的安装盒200的示意性结构图,图中隐去了安装盒200的顶壁220。如图9所示,第一区段281和第二区段282分别位于第三区段283的两侧。图9中虚线示出了第一区段281与第三区段283之间的分界线以及第二区段282与第三区段283之间的分界线。
氧气处理组件300设置于第三区段283内。在气体流动方向上,第三区段283的过流截面的面积(即,垂直于气流的流线簇的断面面积)可以保持不变。这样一来,流经第三区段283的气体的流速无明显变化,可使氧气处理组件300的各个部位均匀地与流经的气体接触,从而均匀地产生贫氧气体或富氧气体。
在一些可选的实施例中,氧气处理装置10还包括定位机构500,其固定于气流通道280内,并与气流促动装置400固定连接,以将气流促动装置400固定在气流通道280内。图10是根据本发明一个实施例的氧气处理装置10的定位机构500和 气流促动装置400的装配结构图。图11是图10所示的定位机构500和气流促动装置400的装配结构的示意性分解图。
当需要将气流促动装置400安装至气流通道280时,可以先将气流促动装置400装配于定位机构500上,然后再将定位机构500装配于气流通道280内,例如固定于安装盒200的内壁上。采用定位机构500使气流促动装置400间接地固定于气流通道280,可避免直接在较为狭小的气流通道280内执行气流促动装置400与安装盒200的连接操作。
在一些进一步的实施例中,气流促动装置400包括蜗壳410以及设置于蜗壳410内的风轮420。吸风口411和出风口412分别形成于蜗壳410上。
定位机构500限定出供蜗壳410装配其中的安装槽510,还限定出连通安装槽510并与出风口412贯通的第一开口520以及连通安装槽510并与吸风口411贯通的第二开口530。第一开口520可以正对蜗壳410的吸风口411,第二开口530可以正对蜗壳410的出风口412。蜗壳410可以通过螺接的方式固定于安装槽510内。
通过将气流促动装置400装配于定位机构500的安装槽510内,且利用第一开口520和第二开口530连通安装槽510,可以提高气流促动装置400与定位机构500之间的装配稳定性,且减少或避免定位机构500堵塞气流促动装置400的吸风口411和出风口412。
在一些可选的实施例中,定位机构500还限定出自安装槽510的至少一部分开口边缘向外延伸形成的外凸卡爪540。安装盒200的内壁相应地限定出供外凸卡爪540插入其中以实现卡接的卡槽241。
采用上述方案,通过在气流通道280内固定定位机构500,并使定位机构500与气流促动装置400固定连接,以将气流促动装置400固定在气流通道280内,当采用卡爪与卡槽241的配合结构将定位机构500固定在安装盒200的内壁上时,可简化氧气处理装置10的气流促动装置400的装配方式。
在一些可选的实施例中,外凸卡爪540可以自安装槽510的至少一部分开口边缘沿径向向外延伸形成,例如可以自安装槽510的横向两端以及底端向外延伸形成。
在一个示例中,定位机构500还限定出自安装槽510的开口边缘的顶端向外延伸形成的翻边550。翻边550上开设有第一螺孔551,安装盒200的内壁相应形成有与第一螺孔551相对的第二螺孔242,以通过螺接使翻边550与安装盒200的内壁固定连接。
在另一个示例中,定位机构500可以同时限定出外凸卡爪540与翻边550,从而同时利用卡爪与卡槽241的配合结构以及螺接结构将定位机构500固定在安装盒200的内壁上,这有利于进一步提高气流促动装置400在气流通道280内的装配稳定性。
在一些可选的实施例中,阴极电极和阳极330分别为板状电极。阴极320的外表面沿流经第三区段283的气流的流线簇的延伸方向伸展。第二防水透气膜324可 以形成阴极320的外表面。
也即,阴极320的外表面的伸展方向平行于流经第三区段283的气流的流线簇的延伸方向,这样一来,流经第三区段283的气体可以按照时序均匀地与,阴极320的外表面各处接触,从而延长单位时间内阴极320与待处理气流的接触时长。
在一些可选的实施例中,壳体310在电解仓311的上方还限定出排气仓312,并且排气仓312开设有排气孔341。排气仓312连通电解仓311,并用于收集阳极330生成的氧气,且经排气孔341排出。也就是说,排气仓312一方面连通电解仓311,另一方面连通外部环境,以将自排气孔341排出的氧气排至外部环境。
经排气仓312收集并排出的氧气可以直接排放。当然在另一个示例中,经排气仓312收集并排出的氧气也可以输送至冰箱20的高氧保鲜空间,以营造高氧保鲜气氛,提升冰箱20的保鲜性能。
采用上述结构,既可以利用氧气处理装置10消耗冰箱20的低氧保鲜空间的氧气,也可以利用氧气处理装置10提升冰箱20的高氧保鲜空间的氧气,可实现氧气处理装置10的功能复用。
在一些可选的实施例中,排气仓312与电解仓311一体成型。如此设置,可以省略排气仓312与电解仓311之间的装配结构,且保证排气仓312与电解仓311之间的连接结构的气密性。电解仓311和排气仓312之间形成有气液连通口,使电解仓311和排气仓312实现互通。
在一些可选的实施例中,安装盒200上还开设有排氧口222。氧气处理装置10还包括排氧管350,其一端连通排气孔341,另一端自排氧口222伸出至安装盒200外部,用于将经排气孔341排出的氧气排至安装盒200外部。
在另一些可选的实施例中,氧气处理装置10还可以省略排氧管350,排气孔341可以为形成于排气仓312上并向外隆起的中空柱状接口,排气孔341可以经排氧口222伸出至安装盒200外部,以将流经的氧气排至安装盒200外部。
在一些可选的实施例中,安装盒200上还开设有注液口223。且氧气处理装置10还包括补液管360,其一端连通电解仓311,另一端自注液口223伸出至安装盒200外部,用于将外部液体导引至电解仓311。
在一些可选的实施例中,安装盒200具有底壁210和顶壁220以及分别自底壁210向上延伸至顶壁220并且相对设置的第一侧壁230和第二侧壁240。
出气接口221形成于安装盒200的顶壁220上,例如可以设置于安装盒200的横向一侧。进气接口231形成于安装盒200的第一侧壁230上,例如第一侧壁230可以形成于安装盒200的横向另一侧,进气接口231可以设置于第一侧壁230的底部中央。气流促动装置400固定于安装盒200的第二侧壁240上,并且位于出气接口221的下方。
采用上述结构,在气流促动装置400的作用下,流经气流通道280的气体能够 沿倾斜向上的方向流动,延长了流经气流通道280的气体流动路径。
安装盒200还具有第三侧壁250和第四侧壁260、第一导流面271和第二导流面272以及第三导流面273和第四导流面274。
其中,第三侧壁250和第四侧壁260分别自底壁210向上延伸至顶壁220并与第一侧壁230和第二侧壁240共同围出具有顶部开口的筒体。在一个示例中,第一侧壁230大致平行于第二侧壁240,第三侧壁250大致平行于第四侧壁260。
第一导流面271和第二导流面272分别自第一侧壁230的内表面延伸至第三侧壁250的内表面以及第四侧壁260的内表面,且与第一侧壁230的内表面之间形成钝角,以限定出第一区段281。第一导流面271可以自第一侧壁230靠近第三侧壁250的端部区段的内表面延伸至第三侧壁250靠近第一侧壁230的端部区段的内表面。第二导流面272可以自第一侧壁230靠近第四侧壁260的端部区段的内表面延伸至第四侧壁260靠近第一侧壁230的端部区段的内表面。
第三导流面273和第四导流面274分别自第二侧壁240的内表面延伸至第三侧壁250的内表面以及第四侧壁260的内表面,且与第二侧壁240的内表面之间形成钝角,以限定出第二区段282。第三导流面273可以自第二侧壁240靠近第三侧壁250的端部区段的内表面延伸至第三侧壁250靠近第二侧壁240的端部区段的内表面。第四导流面274可以自第二侧壁240靠近第四侧壁260的端部区段的内表面延伸至第四侧壁260靠近第二侧壁240的端部区段的内表面。
在一个示例中,安装盒200的顶壁220、底壁210、第一侧壁230、第二侧壁240、第三侧壁250、第四侧壁260、第一导流面271、第二导流面272、第三导流面273以及第四导流面274均可以通过一体成型工艺制造出来。采用上述结构,由于安装盒200可以采用一体成型工艺批量化生产,因此,一方面可以简化整个氧气处理装置10的装配工序,另一方面可以保证产品的一致性。
图12是根据本发明一个实施例的氧气处理装置10的氧气处理组件300的示意性结构图。在一些可选的实施例中,氧气处理组件300可以设置为多个,且沿预设方向依次间隔排布,以增强氧气处理装置10的氧气调节效率。
本发明实施例还提供了一种冰箱20。本发明实施例的冰箱20应做广义理解,可以为冰箱、冷柜、冷冻柜或者冷藏柜等具备低温储存功能的任意制冷设备。图13是根据本发明一个实施例的冰箱20的示意性结构图。冰箱20包括箱体600和以上任一实施例的氧气处理装置10。箱体600的内部限定出储物空间610。氧气处理装置10用于调节储物空间610的氧气含量。
在一个示例中,储物空间610可以为低氧保鲜空间;氧气处理装置10的阴极320与储物空间610气流连通,用于在电解电压的作用下通过电化学反应消耗储物空间610的氧气,从而使储物空间610营造低氧保鲜气氛。在一个进一步的示例中,箱体600内还可以进一步地限定出高氧保鲜空间。电解仓可以与高氧保鲜空间气流连通, 阳极330所产生的氧气可以输送至高氧保鲜空间,从而使高氧保鲜空间营造高氧保鲜气氛。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种用于氧气处理装置的阴极,其特征在于,包括:
    网状导电膜,其上设置有至少一个可活动的交织点,配置成通过活动吸收应力。
  2. 根据权利要求1所述的用于氧气处理装置的阴极,其特征在于,
    所述网状导电膜包括多个平行间隔设置的第一导电线以及多个平行间隔设置的第二导电线;且
    所述第一导电线与所述第二导电线相互交织形成所述至少一个可活动的交织点,且形成多个固定连接的交织点;所述固定连接的交织点多于所述可活动的交织点。
  3. 根据权利要求2所述的用于氧气处理装置的阴极,其特征在于,
    所述固定连接的交织点分布在所述可活动的交织点周围。
  4. 根据权利要求2所述的用于氧气处理装置的阴极,其特征在于,
    所述网状导电膜具有位于中心区域的中心应力吸收区以及环绕所述中心应力吸收区的环周应力吸收区;且
    所述可活动的交织点为多个,且分布在所述中心应力吸收区和所述环周应力吸收区。
  5. 根据权利要求4所述的用于氧气处理装置的阴极,其特征在于,
    所述中心应力吸收区内的所述可活动的交织点的密度大于所述环周应力吸收区内的所述可活动的交织点的密度。
  6. 根据权利要求4所述的用于氧气处理装置的阴极,其特征在于,
    所述环周应力吸收区内的所述可活动的交织点绕所述中心应力吸收区的周向均匀分布。
  7. 根据权利要求2所述的用于氧气处理装置的阴极,其特征在于,
    所述第一导电线与所述第二导电线相互垂直。
  8. 根据权利要求2所述的用于氧气处理装置的阴极,其特征在于,
    所述网状导电膜为镍网;且
    所述固定连接的交织点由所述第一导电线和所述第二导电线通过焊接或热熔而形成。
  9. 根据权利要求1所述的用于氧气处理装置的阴极,其特征在于,还包括:
    第一防水透气膜和第二防水透气膜,共同夹持所述网状导电膜;以及
    催化膜,设置在所述第一防水透气膜或所述第二防水透气膜背朝所述网状导电膜的一侧;且所述催化膜、所述第一防水透气膜、所述第二防水透气膜以及所述网状导电膜通过压接烧制形成阴极电极。
  10. 根据权利要求9所述的用于氧气处理装置的阴极,其特征在于,还包括:
    安装框,其限定出环绕所述阴极电极的边沿且供所述阴极电极的边沿嵌入其中以实现夹持的环状凹槽。
  11. 一种冰箱,其特征在于,包括:
    箱体,其内部限定出储物空间;以及
    氧气处理装置,包括:
    壳体,其具有侧向开口;以及
    如权利要求1所述的用于氧气处理装置的阴极,设置于所述侧向开口处,以与所述壳体共同限定出用于盛装电解液的电解仓,并用于在电解电压的作用下通过电化学反应消耗氧气;
    所述阴极与所述储物空间气流连通,用于在电解电压的作用下通过电化学反应消耗所述储物空间的氧气。
PCT/CN2023/121640 2022-09-30 2023-09-26 用于氧气处理装置的阴极和冰箱 WO2024067611A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211215948.X 2022-09-30
CN202211215948.XA CN117847926A (zh) 2022-09-30 2022-09-30 用于氧气处理装置的阴极以及氧气处理装置和冰箱

Publications (1)

Publication Number Publication Date
WO2024067611A1 true WO2024067611A1 (zh) 2024-04-04

Family

ID=90476326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121640 WO2024067611A1 (zh) 2022-09-30 2023-09-26 用于氧气处理装置的阴极和冰箱

Country Status (2)

Country Link
CN (1) CN117847926A (zh)
WO (1) WO2024067611A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW461674U (en) * 2000-01-11 2001-10-21 Lu Chiu Lin A net of metal of electric circuit on board
CN102027801A (zh) * 2008-05-16 2011-04-20 富士胶片株式会社 导电膜和透明加热元件
CN106757127A (zh) * 2015-11-23 2017-05-31 上海好旭新能源科技发展有限公司 用于电解水的无间距隔膜电解槽
CN107635911A (zh) * 2015-01-30 2018-01-26 南洋理工大学 互连纳米线的方法、纳米线网络和透明传导性电极
CN212061904U (zh) * 2020-06-03 2020-12-01 融合(山东)信息工程有限公司 一种新型智能网片
CN113945232A (zh) * 2021-10-15 2022-01-18 广东绿展科技有限公司 电阻式传感器及其制备方法
CN115036462A (zh) * 2022-05-31 2022-09-09 苏州时代华景新能源有限公司 一种纯干法钠离子电池负极、制备方法及其电池
CN217465119U (zh) * 2021-12-03 2022-09-20 青岛海尔电冰箱有限公司 氧气处理装置和具有其的冰箱
CN219037285U (zh) * 2022-09-30 2023-05-16 青岛海尔电冰箱有限公司 用于氧气处理装置的阴极以及氧气处理装置和冰箱

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW461674U (en) * 2000-01-11 2001-10-21 Lu Chiu Lin A net of metal of electric circuit on board
CN102027801A (zh) * 2008-05-16 2011-04-20 富士胶片株式会社 导电膜和透明加热元件
CN107635911A (zh) * 2015-01-30 2018-01-26 南洋理工大学 互连纳米线的方法、纳米线网络和透明传导性电极
CN106757127A (zh) * 2015-11-23 2017-05-31 上海好旭新能源科技发展有限公司 用于电解水的无间距隔膜电解槽
CN212061904U (zh) * 2020-06-03 2020-12-01 融合(山东)信息工程有限公司 一种新型智能网片
CN113945232A (zh) * 2021-10-15 2022-01-18 广东绿展科技有限公司 电阻式传感器及其制备方法
CN217465119U (zh) * 2021-12-03 2022-09-20 青岛海尔电冰箱有限公司 氧气处理装置和具有其的冰箱
CN115036462A (zh) * 2022-05-31 2022-09-09 苏州时代华景新能源有限公司 一种纯干法钠离子电池负极、制备方法及其电池
CN219037285U (zh) * 2022-09-30 2023-05-16 青岛海尔电冰箱有限公司 用于氧气处理装置的阴极以及氧气处理装置和冰箱

Also Published As

Publication number Publication date
CN117847926A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
CN102725896B (zh) 燃料电池
CN108899562B (zh) 一种燃料电池双极板
JP5125275B2 (ja) 燃料電池および燃料電池搭載車両
JP6656999B2 (ja) 燃料電池用多孔性分離板
EP2171788B1 (en) Fuel cell, fuel cell-equipped vehicle, and membrane electrode unit
US20120129072A1 (en) Air-cooled metal separator for fuel cell and fuel cell stack using same
JPWO2008126358A1 (ja) 高分子電解質形燃料電池及びそれを備える燃料電池スタック
CN219037285U (zh) 用于氧气处理装置的阴极以及氧气处理装置和冰箱
KR20140099752A (ko) 중공사막 및 이를 포함하는 중공사막 모듈
CN110854405A (zh) 一种流道间压差可控型燃料电池双极板
JP2022520516A (ja) 燃料電池または電気分解装置のためのディストリビュータ構造体
KR101013853B1 (ko) 연료전지용 분리판
WO2024067611A1 (zh) 用于氧气处理装置的阴极和冰箱
CN106602107A (zh) 一种主动排水式燃料电池
US20020150807A1 (en) Bipolar plate for a fuel cell
US8691471B2 (en) Polymer electrolyte fuel cell and fuel cell stack comprising the same
US20190245217A1 (en) Fuel cell stack
JP2008130350A (ja) 燃料電池
WO2023142643A1 (zh) 气体处理装置以及具有其的冰箱
EP4350820A1 (en) Fuel cell membrane humidifier
KR102118370B1 (ko) 분리판 및 이를 포함하는 연료전지 스택
JP2009522753A (ja) 安定した燃料電池の流れ場
JP6880202B2 (ja) 燃料電池スタック
JP2021111585A (ja) 燃料電池単位セル
KR20200028072A (ko) 연료전지 스택

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870839

Country of ref document: EP

Kind code of ref document: A1