WO2024067605A1 - 一种通信方法及通信装置 - Google Patents

一种通信方法及通信装置 Download PDF

Info

Publication number
WO2024067605A1
WO2024067605A1 PCT/CN2023/121624 CN2023121624W WO2024067605A1 WO 2024067605 A1 WO2024067605 A1 WO 2024067605A1 CN 2023121624 W CN2023121624 W CN 2023121624W WO 2024067605 A1 WO2024067605 A1 WO 2024067605A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
phase tracking
tracking reference
offset
resource block
Prior art date
Application number
PCT/CN2023/121624
Other languages
English (en)
French (fr)
Inventor
甘霖霄
张旭
李博
曲秉玉
龚名新
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067605A1 publication Critical patent/WO2024067605A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and a communication device.
  • both uplink and downlink can use demodulation reference signal (DMRS) and phase tracking reference signal (PTRS) to complete channel estimation, phase noise estimation and data demodulation.
  • DMRS demodulation reference signal
  • PTRS phase tracking reference signal
  • DMRS is used for channel estimation and data demodulation
  • PTRS is used for phase noise estimation.
  • a PTRS corresponding to a DMRS port appears once every two or four resource blocks (RBs).
  • RBs resource blocks
  • a PTRS corresponding to a DMRS port is mapped to a resource element (RE) in the RB corresponding to the DMRS port. Therefore, once the number of the RE to which the PTRS is mapped is determined, the PTRS can be received or sent.
  • RE resource element
  • both network devices and terminal devices can determine the RB to which the PTRS is mapped through the radio network temporary identity (RNTI) of the terminal device.
  • RNTI radio network temporary identity
  • the number of REs in an RB is fixed.
  • the PTRSs corresponding to two different DMRS ports are mapped on the same RE, they will interfere with each other, thus affecting the estimation of phase noise. Therefore, how to randomize the interference of PTRS has become an urgent problem to be solved.
  • the present application provides a communication method for improving the degree of PTRS interference randomization.
  • the present application also provides a corresponding communication device, a communication system, a computer-readable storage medium, and a computer program product.
  • the present application provides a communication method, which can be applied to a communication device, comprising: obtaining a port number of a demodulation reference signal, the port number of the demodulation reference signal is used to determine a resource block offset and a resource unit offset; determining a resource unit of a phase tracking reference signal according to the resource block offset and the resource unit offset; and sending or receiving a phase tracking reference signal according to the resource unit of the phase tracking reference signal.
  • the communication device may be a network device or a terminal device.
  • the port numbering of the demodulation reference signal is different in uplink transmission and downlink transmission.
  • the port numbering of the DMRS in downlink transmission starts from 1000, such as: 1000, 1001, ..., and the port numbering of the DMRS in uplink transmission starts from 0, such as: 0, 1, ...
  • the resource block offset is used to indicate the position of the resource block occupied by the PTRS corresponding to the DMRS ports with different port numbers in the scheduling bandwidth.
  • the resource unit offset is used to indicate the position of the resource unit occupied by the PTRS in the occupied resource block, and the resource unit offset is usually represented by 12 integers of 0, 1, 2, ..., 11.
  • the communication device can determine the resource block offset and the resource unit offset based on the port number of the DMRS, and further determine the resource unit mapped by the PTRS, the PTRS corresponding to different port numbers of the DMRS can be mapped to different resource blocks, thereby improving the degree of randomization of PTRS interference.
  • the method further includes: acquiring a wireless network temporary identifier of the terminal device, and the port number of the demodulation reference signal and the wireless network temporary identifier are used to determine the resource block offset.
  • the resource block offset may be further determined in combination with the radio network temporary identifier, thereby further improving the PTRS interference randomization.
  • the method further includes: acquiring resource unit offset indication information, and the port number of the demodulation reference signal and the resource unit offset indication information are used to determine the resource unit offset.
  • the resource unit offset indication information can be represented by Offset 00, Offset 01, Offset 10 and Offset 11, and different resource unit offset indication information corresponding to the same port number have different resource unit offsets.
  • the resource unit offset indication information can further improve PTRS interference randomization.
  • the method further includes: acquiring a configuration type of a demodulation reference signal, wherein the port number of the demodulation reference signal and the configuration type of the demodulation reference signal are used to determine a resource block offset and a resource unit offset.
  • DMRS configuration type 1 there are usually two configuration types of demodulation reference signals, namely DMRS configuration type 1 and DMRS configuration type 2. Under different configuration types, the correspondence between the DMRS port number and the resource unit offset is different.
  • the method also includes: obtaining N RB resource blocks for transmitting data, and resource block density indication information of a phase tracking reference signal, where N RB is an integer greater than 1, and the indexes of the N RB resource blocks are 0, 1, ..., (N RB -1), and the resource block density indication information is used to indicate the resource block density of the phase tracking reference signal, and N RB and resource block density are used to determine the resource block offset.
  • the resource block density indication information may indicate the resource block density, which may also be referred to as frequency domain density.
  • the value of the resource block density may be 2 or 4, that is, a PTRS appears once every two or four resource blocks.
  • the resource block density indication information may indicate the resource block density in an indirect manner.
  • the network device may notify the terminal device of two thresholds of the bandwidth, which are represented by N RB0 and N RB1 , respectively, wherein N RB0 ⁇ N RB1 , if N RB0 ⁇ N RB ⁇ N RB1 , the value of the resource block density is 2, and if N RB1 ⁇ N RB , the value of the resource block density is 4.
  • the present application does not limit the value of the resource block density.
  • the resource block density value of 2 or 4 as described above other values may also be taken.
  • the present application does not limit the indication method of the resource block density. It may be the indirect indication described above, or an indirect indication of other methods, or a direct indication of the resource block density.
  • the phase tracking reference signal is a first phase tracking reference signal, or a second phase tracking reference signal;
  • the first phase tracking reference signal is: a phase tracking reference signal corresponding to a port whose configuration type of the demodulation reference signal is the first type and whose port number of the demodulation reference signal is greater than or equal to 1008, or a phase tracking reference signal corresponding to a port whose configuration type of the demodulation reference signal is the second type and whose port number of the demodulation reference signal is greater than or equal to 1012;
  • the second phase tracking reference signal is: a phase tracking reference signal corresponding to a port whose configuration type of the demodulation reference signal is the first type and whose port number of the demodulation reference signal is less than 1008, or a phase tracking reference signal corresponding to a port whose configuration type of the demodulation reference signal is the second type and whose port number is less than 1012.
  • DMRS configuration type 1 may be referred to as the first type
  • DMRS configuration type 2 may be referred to as the second type.
  • the port number is greater than or equal to 1008, and may include 1008, 1009, 1010, and 1011.
  • the port number is greater than or equal to 1012, and may include 1012, 1013, 1014, 1015, 1016, and 1017.
  • the port numbers listed here are not limited in this application, and both the first type and the second type may have other port numbers.
  • the port number less than 1008 may include 1000, 1001, 1002, 1003, 1004, 1005, 1006 and 1007.
  • the port number less than 1012 may include 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010 and 1011.
  • the port number of the first type less than 1008 can be understood as the original DMRS port number of the first type, and the port number greater than or equal to 1008 can be understood as the newly extended DMRS port number of the first type.
  • the port number of the second type less than 1012 can be understood as the original DMRS port number of the second type.
  • the port number greater than or equal to 1012 can be understood as the newly extended DMRS port number of the second type.
  • the phase tracking reference signal is a first phase tracking reference signal, or a second phase tracking reference signal;
  • the first phase tracking reference signal is: a phase tracking reference signal corresponding to a port whose configuration type of the demodulation reference signal is the first type and whose port number of the demodulation reference signal is greater than or equal to 8, or a phase tracking reference signal corresponding to a port whose configuration type of the demodulation reference signal is the second type and whose port number of the demodulation reference signal is greater than or equal to 12;
  • the second phase tracking reference signal is: a phase tracking reference signal corresponding to a port whose configuration type of the demodulation reference signal is the first type and whose port number of the demodulation reference signal is less than 8, or a phase tracking reference signal corresponding to a port whose configuration type of the demodulation reference signal is the second type and whose port number of the demodulation reference signal is less than 12.
  • DMRS configuration type 1 may be referred to as the first type
  • DMRS configuration type 2 may be referred to as the second type.
  • the port number is greater than or equal to 8, and may include 8, 9, 10, and 11.
  • the port number greater than or equal to 12 may include 12, 13, 14, 15, 16 and 17.
  • the port numbers listed here are not limited in the present application, and both the first type and the second type may have other port numbers.
  • the port number less than 8 may include 0, 1, 2, 3, 4, 5, 6 and 7 and when the configuration type of the demodulation reference signal is the second type, the port number less than 12 may include 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.
  • the port number of the first type less than 8 can be understood as the original DMRS port number of the first type, and the port number greater than or equal to 8 can be understood as the newly extended DMRS port number of the first type.
  • the port number of the second type less than 12 can be understood as the original DMRS port number of the second type.
  • the port number greater than or equal to 12 can be understood as the newly extended DMRS port number of the second type.
  • the resource block offset includes a first offset parameter and a second offset parameter; the first offset parameter and the second offset parameter are used to determine resource units of the first phase tracking reference signal and the second phase tracking reference signal.
  • the resource block offset may include two parameters, and a first offset parameter is determined by the number of resource blocks, the radio network temporary identifier, and the resource block density.
  • the step of determining the resource unit of the phase tracking reference signal according to the resource block offset and the resource unit offset includes: determining the resource unit of the first phase tracking reference signal and/or the second phase tracking reference signal by a first relational expression; the first relational expression is:
  • k is the index of the resource unit of the first phase tracking reference signal or/and the second phase tracking reference signal
  • i is a natural number, is the number of subcarriers in a resource block
  • K PT-RS is the resource block density
  • is the second offset parameter is the resource unit offset
  • n RNTI is the wireless network temporary identifier
  • mod represents modulus
  • N RB is the number of resource blocks.
  • k can be determined through the first relationship, thereby correctly receiving the first phase tracking reference signal and/or the second phase tracking reference signal.
  • K PT-RS 2
  • K PT-RS 4
  • k is the index of the resource unit of the first phase tracking reference signal.
  • k is the index of the resource unit of the second phase tracking reference signal.
  • the second offset parameter is 1, wherein the second offset parameter is 1, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M+1, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 2M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks indexed 1, 3, 5, 7, 9, ..., (N RB -2), and the second phase tracking reference signal may occupy resource blocks indexed 0, 2, 4, 6, 8, ... (N RB -1).
  • the second offset parameter is -1, wherein the second offset parameter is -1, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 2M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks indexed 0, 2, 4, 6, 8, ... (N RB -2), and the second phase tracking reference signal may occupy resource blocks indexed 1, 3, 5, 7, 9, ..., (N RB -1).
  • the resource block density is equal to 2, N RB is an even number, and when the wireless network temporary identifier is an even number, the second offset parameter is 1, wherein the second offset parameter is 1, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M+1, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 2M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy indexes 1, 3, 5, 7, 9, ...
  • the second phase tracking reference signal may occupy resource blocks with indices of 0, 2, 4, 6 , 8, ... (N RB -2 ).
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -2), and the second phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -4).
  • the resource block density is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 1, the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -1), and the second phase tracking reference signal may occupy resource blocks with indices of 1, 5, 9, ... (N RB -3).
  • the resource block density is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 2, the second offset parameter is -2, wherein the second offset parameter is -2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -4), and the second phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -2).
  • the resource block density is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 3, the second offset parameter is -2, wherein the second offset parameter is -2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+1, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks indexed 1, 5, 9, ... (N RB -3), and the second phase tracking reference signal may occupy resource blocks indexed 3, 7, 11, ..., (N RB -1).
  • the resource block density is equal to 4, and when the modulus of N RB is 4 is 1, the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -3), and the second phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -1).
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -4), and the second phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -2).
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -3), and the second phase tracking reference signal may occupy resource blocks with indices of 1, 5, 9, ... (N RB -1).
  • the resource block density is equal to 4
  • N RB takes the modulus of 4 as 3
  • the modulus of 3 of the wireless network temporary identifier is 0, and the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -1), and the second phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -3).
  • the resource block density is equal to 4
  • N RB takes the modulus of 4 as 3
  • the wireless network temporary identifier takes the modulus of 3 as 1
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy indexes 3, 7, 11, ...
  • the second phase tracking reference signal may occupy resource blocks with indices of 1, 5 , 9, ... (N RB -2 ).
  • the resource block density is equal to 4
  • N RB takes the modulus of 4 as 3
  • the wireless network temporary identifier takes the modulus of 3 as 2
  • the second offset parameter is -2, wherein the second offset parameter is -2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -3), and the second phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -1).
  • the step of determining the resource unit of the phase tracking reference signal according to the resource block offset and the resource unit offset includes determining the resource unit of the first phase tracking reference signal by a second relational expression; the second relational expression is:
  • k is the index of the resource unit of the first phase tracking reference signal
  • i is a natural number, is the number of subcarriers in a resource block
  • K PT-RS is the resource block density
  • is the resource block offset is the resource unit offset
  • n RNTI is the wireless network temporary identifier
  • mod represents modulus
  • N RB is the number of resource blocks.
  • the port number of the newly extended DMRS can determine k through the second relationship, so as to correctly receive the first phase tracking reference signal.
  • the resource block offset is 1, wherein the resource block offset of 1 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks indexed 1, 3, 5, 7, 9, ..., (N RB -2).
  • the resource block density is equal to 2, N RB is an even number, and when the wireless network temporary identifier is an even number, the resource block offset is 1, wherein the resource block offset of 1 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks indexed 1, 3, 5, 7, 9, ..., (N RB -1).
  • the resource block density is equal to 2, N RB is an even number, and when the wireless network temporary identifier is an odd number, the resource block offset is 0, wherein the resource block offset of 0 indicates that the index of the resource block to which the first phase tracking reference signal belongs is 2M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 0, 2, 4, 6, 8, ..., (N RB -2).
  • the resource block density indication information is equal to 4, N RB is an integer multiple of 4, and when the wireless network temporary identifier is a multiple of 4, the resource block offset is 2, wherein the resource block offset of 2 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -2).
  • the resource block density indication information is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 1, the resource block offset is 3, wherein the resource block offset of 3 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -1).
  • the resource block density indication information is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 2, the resource block offset is 0.
  • the resource block offset of 0 indicates that the index of the resource block to which the first phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks indexed 0, 4, 8, ... (N RB -4).
  • the resource block density indication information is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 3, the resource block offset is 1, wherein the resource block offset of 1 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks indexed 1, 5, 9, ... (N RB -3).
  • the resource block density indication information is equal to 4, when N RB takes the modulus of 4 as 1, the resource block offset is 2, wherein the resource block offset of 2 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -3).
  • the resource block density indication information is equal to 4, when N RB takes the modulus of 4 as 2, the wireless network temporary identifier is an even number, and the resource block offset is 2, wherein the resource block offset of 2 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -4).
  • the resource block density indication information is equal to 4, when N RB takes the modulus of 4 as 2, the wireless network temporary identifier is an odd number, and the resource block offset is 3, wherein the resource block offset of 3 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -3).
  • the resource block density indication information is equal to 4, when N RB takes the modulus of 4 as 3, the wireless network temporary identifier is an integer multiple of 3, the resource block offset is 2, and the resource block offset is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -1).
  • the resource block density indication information is equal to 4, when N RB takes the modulus of 4 as 3, when the modulus of the wireless network temporary identifier takes 3 as 1, the resource block offset is 3, wherein the resource block offset of 3 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -4).
  • the resource block density indication information is equal to 4, and when N RB takes the modulus of 4 as 3, the radio network temporary identifier takes 3.
  • the modulus is 2, the resource block offset is 0, wherein the resource block offset is 0, indicating that the index of the resource block to which the first phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -3).
  • the resource unit offset of the port number of the first type of demodulation reference signal for downlink transmission under different resource unit offset indication information may be a value from 0 to 11 in the following table;
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information
  • 1008, 1009, 1010 and 1011 are the port numbers of four first type demodulation reference signals.
  • the resource unit offset of the port number of the second type of demodulation reference signal transmitted downlink under different resource unit offset indication information may be a value from 0 to 11 in the following table;
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information
  • 1012, 1013, 1014, 1015, 1016 and 1017 are the port numbers of six second type demodulation reference signals.
  • the resource unit offset of the port number of the first type of demodulation reference signal transmitted uplink under different resource unit offset indication information may be a value from 0 to 11 in the following table;
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information, and 8, 9, 10 and 11 are the port numbers of four first type demodulation reference signals.
  • the resource unit offset of the port number of the second type of demodulation reference signal transmitted uplink under different resource unit offset indication information may be a value from 0 to 11 in the following table;
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information, and 12, 13, 14, 15, 16 and 17 are the port numbers of six second type demodulation reference signals.
  • resource unit offsets for downlink transmission and uplink transmission is only an example, and the value of the resource unit offset corresponding to the same port number and the same resource unit offset indication information may also be other values.
  • a second aspect of the present application provides a communication device, which includes a transceiver module and a processing module.
  • the transceiver module is used to perform the transceiver operations of the method described in the first aspect or any possible implementation of the first aspect
  • the processing module is used to perform the processing operations of the method described in the first aspect or any possible implementation of the first aspect.
  • the third aspect of the present application provides a communication device, which includes: a processor, a memory, and a transceiver.
  • the memory stores a computer program or a computer instruction
  • the processor is used to call and run the computer program or the computer instruction stored in the memory, so that the processor implements the operations processed in the first aspect or any possible implementation of the first aspect
  • the transceiver is used to send and receive signals, such as: implementing the operations of receiving and sending in the first aspect or any possible implementation of the first aspect.
  • a fourth aspect of the present application provides a communication device, which includes a processor, and the processor is used to execute the first aspect or any possible implementation method of the first aspect.
  • the communication device of the second aspect to the fourth aspect of the present application may be a terminal device or a chip in a terminal device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor, and the transceiver module may be a transceiver;
  • the terminal device may also include a storage module, and the storage module may be a memory.
  • the storage module is used to store instructions, and the processing module executes the instructions stored in the storage module so that the terminal device executes the method in the first aspect or any possible implementation of the first aspect.
  • the processing module may be a processor, and the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes the instructions stored in the storage module so that the terminal device executes the method in the first aspect or any possible implementation of the first aspect, and the storage module may be a storage module in the chip (for example, a register, a cache, etc.), or a storage module in the terminal device located outside the chip (for example, a read-only memory, a random access memory, etc.).
  • the communication device of the second aspect to the fourth aspect of the present application may be a network device or a chip in a network device.
  • the communication device may include a processing module and a transceiver module.
  • the processing module may be a processor and the transceiver module may be a transceiver;
  • the network device may also include a storage module, which may be a memory.
  • the storage module is used to store instructions, and the processing module executes the instructions stored in the storage module so that the network device executes the method in the first aspect or any possible implementation of the first aspect.
  • the processing module may be a processor, and the transceiver module may be an input/output interface, a pin or a circuit, etc.; the processing module executes the instructions stored in the storage module so that the network device executes the method in the first aspect or any possible implementation of the first aspect, and the storage module may be a storage module in the chip (for example, a register, a cache, etc.), or a storage module in the network device located outside the chip (for example, a read-only memory, a random access memory, etc.).
  • a fifth aspect of the present application provides a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute the first aspect or any possible implementation of the first aspect.
  • the sixth aspect of the present application provides a computer-readable storage medium, including computer instructions, which, when executed on a computer, enable the computer to execute the first aspect or any possible implementation of the first aspect.
  • the seventh aspect of the present application provides a chip device, including a processor, for calling a computer program or computer instruction in the memory so that the processor executes the above-mentioned first aspect or any possible implementation method of the first aspect.
  • the processor is coupled to the memory via an interface.
  • a communication system which includes a terminal device and a network device, wherein the network device is used to execute the content related to the network device in the method in the above-mentioned first aspect or any possible implementation of the first aspect, and the terminal device is used to execute the content related to the terminal device in the method in the above-mentioned first aspect or any possible implementation of the first aspect.
  • FIG1 is a schematic diagram of an architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of an embodiment of a communication method provided in an embodiment of the present application.
  • 3A to 3D are schematic diagrams showing examples of occupation of resource blocks by phase tracking reference signals under different resource unit offset indications
  • FIG4 is another exemplary schematic diagram of the occupation of resource blocks by phase tracking reference signals
  • FIG5 is another exemplary schematic diagram of the occupation of resource blocks by a phase tracking reference signal
  • FIG6 is another exemplary schematic diagram of the occupation of resource blocks by a phase tracking reference signal
  • FIGS. 7A to 7D are schematic diagrams of several examples of occupation of resource blocks by phase tracking reference signals
  • FIG8 is a schematic diagram of a structure of a communication device provided in an embodiment of the present application.
  • FIG9 is another schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG10 is another schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG11 is another schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIG. 12 is another schematic diagram of the structure of the communication device provided in an embodiment of the present application.
  • the embodiment of the present application provides a communication method for improving the degree of PTRS interference randomization.
  • the present application also provides a corresponding communication device, a communication system, a computer-readable storage medium, and a computer program product, etc. The following are detailed descriptions.
  • 5G fifth generation
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex, FDD
  • LTE time division duplex time division duplex, TDD
  • universal mobile telecommunication system universal mobile telecommunication system, UMTS
  • mobile communication systems after 5G networks for example, 6G mobile communication systems
  • vehicle to everything vehicle to everything, V2X
  • the solution proposed in the embodiment of the present application can be based on new wireless technology, also known as 5G technology, or can be based on subsequent evolution access standards, which are not specifically limited here.
  • a communication system based on 5G is taken as an example for introduction.
  • the communication system includes: a terminal device 101 and a network device 102, the terminal device 101 can receive the configuration of the network device 102, and determine the resource element (RE) of the phase tracking reference signal (PTRS) according to the configuration of the network device 102, and send or receive the phase tracking reference signal according to the resource element of the phase tracking reference signal.
  • the communication system includes: a terminal device 101 and a network device 102, the terminal device 101 can receive the configuration of the network device 102, and determine the resource element (RE) of the phase tracking reference signal (PTRS) according to the configuration of the network device 102, and send or receive the phase tracking reference signal according to the resource element of the phase tracking reference signal.
  • RE resource element
  • PTRS phase tracking reference signal
  • the communication method can be applied to a 5G-based vehicle to everything (V2X) system, that is, a system that provides vehicle information through sensors or vehicle-mounted terminal devices installed on the vehicle to achieve communication between the vehicle and other devices.
  • V2X vehicle to everything
  • V2V vehicles to vehicles
  • V2I vehicles to infrastructure
  • V2N vehicles to networks
  • V2P vehicles to pedestrians
  • the terminal device 101 can send or receive a phase tracking reference signal according to the configuration of the network device 102.
  • the communication method can be applied to a 5G-based Internet of Things (IoT) system.
  • IoT Internet of Things
  • it can be based on the narrowband internet of things (NB-IoT) standard or the enhanced machine type communication (eMTC) standard, which is not limited here.
  • NB-IoT terminals or eMTC terminals are low-power terminal devices, which can perform data connection within a low-power wide-area network (LPWAN) and realize data transmission between the aforementioned low-power terminal devices or between low-power terminal devices and network devices. Therefore, when the terminal device 101 is a NB-IoT terminal or an eMTC terminal, the terminal device 101 can send or receive a phase tracking reference signal according to the configuration of the network device 102.
  • LPWAN low-power wide-area network
  • the aforementioned terminal device 101 includes a device that provides voice and/or data connectivity to the user, for example, it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device 101 can communicate with the core network via a radio access network (RAN) and exchange voice and/or data with the RAN.
  • the terminal device 101 may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote station, access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user equipment (user device), etc.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • some examples of terminal devices are: mobile phones, tablet computers, laptop computers, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in Internet of Vehicles, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, or wireless terminals in smart homes.
  • wireless terminals in Internet of Vehicles can be vehicle-mounted equipment, vehicle equipment, vehicle-mounted modules, vehicles, etc.
  • Wireless terminals in industrial control can be cameras, robots, etc.
  • Wireless terminals in smart homes can be televisions, air conditioners, sweepers, speakers, set-top boxes, etc.
  • the terminal device 101 may be an Internet of Vehicles terminal device, also known as a V2X terminal device.
  • the terminal device 101 may be a vehicle-mounted terminal; in the V2I communication process, the terminal device 101 may be a vehicle-mounted terminal or an infrastructure with mobile communication functions; in other V2X scenarios, the terminal device 101 may also be other V2X devices, which are not specifically limited here.
  • the terminal device 101 may also be a wearable device, such as glasses, gloves, watches, clothing and shoes, or other portable devices that can be worn directly on the body or integrated into the user's clothes or accessories.
  • the terminal device 101 may be a restricted device, for example, a low-power terminal device, or a terminal device with limited storage capacity, or a terminal device with limited computing capacity, which is not specifically limited here.
  • the terminal device 101 in the embodiment of the present application can be a device in any of the above scenarios or a chip in the device, and the specific details are not limited here. Whether as a device or as a chip, the terminal device 101 can be manufactured, sold or used as an independent product.
  • the network device 102 communicating with the aforementioned terminal device 101 may be a device in a wireless network.
  • the network device is a device deployed in a wireless access network to provide wireless communication functions for the terminal device.
  • the network device may be a radio access network (RAN) node that connects the terminal device to the wireless network, and may also be referred to as an access network device.
  • RAN radio access network
  • the network equipment includes, but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), baseband unit (BBU), access point (AP) in wireless fidelity (WIFI) system, wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., and can also be network equipment in 5G mobile communication system.
  • gNB next generation NodeB
  • NR new radio
  • TP transmission reception point
  • TRP transmission and reception point
  • the network device may be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU) or a distributed unit (DU).
  • the network device 102 in the embodiment of the present application can be any of the above devices or a chip in the device, and is not specifically limited here. Whether as a device or as a chip, the network device 102 can be manufactured, sold or used as an independent product.
  • an embodiment of the communication method provided in the embodiment of the present application includes:
  • the communication device obtains the port number of the demodulation reference signal (DMRS), and the port number of the demodulation reference signal is used to determine the resource block offset and the resource unit offset.
  • DMRS demodulation reference signal
  • the communication device may be a network device or a terminal device.
  • step 201 may be that the network device selects a port number for a demodulation reference signal.
  • step 201 may be that the terminal device receives a port number selected by the network device.
  • the port numbering of the demodulation reference signal is different in uplink transmission and downlink transmission.
  • the port numbering of the DMRS in downlink transmission can start from 1000, such as: 1000, 1001, ..., and the port numbering of the DMRS in uplink transmission can start from 0, such as: 0, 1, ...
  • the resource block offset is used to indicate the position of the resource block occupied by the PTRS corresponding to the DMRS ports with different port numbers in the scheduling bandwidth.
  • the resource unit offset is used to indicate the position of the resource unit occupied by the PTRS in the occupied resource block, and the resource unit offset is usually represented by 12 integers of 0, 1, 2, ..., 11.
  • the communication device determines the resource unit of the phase tracking reference signal according to the resource block offset and the resource unit offset.
  • the communication device sends or receives a phase tracking reference signal according to the resource unit of the phase tracking reference signal.
  • step 203 if it is uplink transmission, the terminal device sends a phase tracking reference signal on the resource unit of the phase tracking reference signal, and the network device receives the phase tracking reference signal from the resource unit of the phase tracking reference signal.
  • the network device sends a phase tracking reference signal on the resource unit of the phase tracking reference signal, and the terminal device receives the phase tracking reference signal from the resource unit of the phase tracking reference signal.
  • the communication device can determine the resource block offset and the resource unit offset based on the port number of the DMRS, and further determine the resource unit mapped by the PTRS, the PTRS corresponding to different port numbers of the DMRS can be mapped to different resource blocks, thereby improving the degree of randomization of PTRS interference.
  • the resource unit offset and the resource block offset may be determined, which are respectively introduced below.
  • the communication device further obtains resource unit offset indication information, and the resource unit offset can be determined by the port number of the demodulation reference signal and the resource unit offset indication information.
  • the resource unit offset indication information can be represented by Offset 00, Offset 01, Offset 10 and Offset 11.
  • the resource unit offsets of different resource unit offset indication information corresponding to the same port number are different.
  • the communication device further obtains a configuration type of a demodulation reference signal, and the resource unit offset can be determined by the port number of the demodulation reference signal and the configuration type of the demodulation reference signal.
  • DMRS configuration type 1 There are usually two configuration types of demodulation reference signals, namely DMRS configuration type 1 and DMRS configuration type 2. Under different configuration types, the resource unit offset corresponding to the same port number of DMRS is different.
  • the port number of the demodulation reference signal, the configuration type of the demodulation reference signal, the resource unit offset indication information and the resource unit offset are described below with reference to a table.
  • the relationship between the port number of the demodulation reference signal in downlink transmission, the configuration type of the demodulation reference signal, the resource unit offset indication information and the resource unit offset is first introduced below.
  • Table 1 below is the relevant information of port numbers 1001-1003 in downlink transmission when the configuration type is the first type.
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information.
  • 1000, 1001, 1002 and 1003 are the port numbers of four first-type demodulation reference signals in downlink transmission.
  • the value of the intersection of the resource unit offset indication information and the port number of the demodulation reference signal is the resource unit offset corresponding to the port number, such as: the resource unit offset corresponding to port number 1000 at Offset 00 is 0, and the resource unit offset corresponding to port number 1001 at Offset 01 is 4.
  • Table 2 below is the relevant information of port numbers 1001-1005 in downlink transmission when the configuration type is the second type.
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information.
  • 1000, 1001, 1002, 1003, 1004 and 1005 are the port numbers of the six second type demodulation reference signals in downlink transmission.
  • the value of the intersection of the resource unit offset indication information and the port number of the demodulation reference signal is the resource unit offset corresponding to the port number, such as: the resource unit offset corresponding to port number 1000 at Offset 00 is 0, and the resource unit offset corresponding to port number 1001 at Offset 01 is 6.
  • Table 3 below is the relevant information of port numbers 1008-1011 in downlink transmission when the configuration type is the first type.
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information.
  • 1008, 1009, 1010 and 1011 are the port numbers of the four first-type demodulation reference signals extended in downlink transmission.
  • the value of the intersection of the resource unit offset indication information and the port number of the demodulation reference signal is the resource unit offset corresponding to the port number, such as: the resource unit offset corresponding to port number 1008 at Offset 00 is 4, and the resource unit offset corresponding to port number 1009 at Offset 01 is 8.
  • Table 4 below is the relevant information of port numbers 1012-1017 in downlink transmission when the configuration type is the second type.
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information.
  • 1012, 1013, 1014, 1015, 1016 and 1017 are the port numbers of the six second-type demodulation reference signals extended in downlink transmission.
  • the value of the intersection of the resource unit offset indication information and the port number of the demodulation reference signal is the resource unit offset corresponding to the port number, such as: the resource unit offset corresponding to port number 1012 at Offset 00 is 6, and the resource unit offset corresponding to port number 1013 at Offset 01 is 0.
  • the resource unit offset corresponding to the first type or second type extended port number is not limited to the values in Table 3 and Table 4 above.
  • the extended port number can also directly reuse the resource unit offset corresponding to the original port number, as shown in Table 5 and Table 6.
  • the above introduces the correspondence between the configuration type, port number, resource unit offset indication information and resource unit offset in downlink transmission.
  • the following introduces the correspondence between the configuration type, port number, resource unit offset indication information and resource unit offset in uplink transmission.
  • Table 7 below is the relevant information of port numbers 0-3 in uplink transmission when the configuration type is the first type.
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information.
  • Port numbers 0, 1, 2 and 3 are the port numbers of the four first type demodulation reference signals in uplink transmission.
  • the value of the intersection of the resource unit offset indication information and the port number of the demodulation reference signal is the resource unit offset corresponding to the port number, such as: the resource unit offset corresponding to port number 0 at Offset 00 is 0, and the resource unit offset corresponding to port number 1 at Offset 01 is 4.
  • Table 8 below is the relevant information of port numbers 0-5 in uplink transmission when the configuration type is the second type.
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information.
  • Port numbers 0, 1, 2, 3, 4 and 5 are the port numbers of the six second-type demodulation reference signals in uplink transmission.
  • the value of the intersection of the resource unit offset indication information and the port number of the demodulation reference signal is the resource unit offset corresponding to the port number, such as: the resource unit offset corresponding to port number 0 at Offset 00 is 0, and the resource unit offset corresponding to port number 1 at Offset 01 is 6.
  • Table 9 below is the relevant information of port numbers 8-11 in uplink transmission when the configuration type is the first type.
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information.
  • Port numbers 8, 9, 10 and 11 are the port numbers of the four first-type demodulation reference signals extended in uplink transmission.
  • the value of the intersection of the resource unit offset indication information and the port number of the demodulation reference signal is the resource unit offset corresponding to the port number, such as: the resource unit offset corresponding to port number 8 at Offset 00 is 4, and the resource unit offset corresponding to port number 9 at Offset 01 is 8.
  • Table 10 below is the relevant information of port numbers 12-17 in uplink transmission when the configuration type is the second type.
  • Offset 00, Offset 01, Offset 10 and Offset 11 are all resource unit offset indication information.
  • Port numbers 12, 13, 14, 15, 16 and 17 are port numbers of the six extended second type demodulation reference signals in uplink transmission.
  • the value of the intersection of the resource unit offset indication information and the port number of the demodulation reference signal is the resource unit offset corresponding to the port number, such as: the resource unit offset corresponding to port number 1012 at Offset 00 is 6, and the resource unit offset corresponding to port number 1013 at Offset 01 is 0.
  • the resource unit offset corresponding to the first type or second type of extended port number in the uplink transmission is not limited to the values in Tables 10 and 11 above.
  • the extended port number can also be directly reused as shown in Tables 8 and 9.
  • the original port number corresponds to the resource unit offset.
  • the specific form can be understood by referring to Tables 6 and 7.
  • the port number can be replaced with the port number in the uplink transmission. The corresponding tables are no longer listed here.
  • the above-mentioned scheme involves an extended demodulation reference signal port and an original demodulation reference signal port, and these ports have corresponding phase tracking reference signals.
  • the reference signal is called the first phase tracking reference signal
  • the phase tracking reference signal corresponding to the original demodulation reference signal port is called the second phase tracking reference signal.
  • the first phase tracking reference signal is: the phase tracking reference signal corresponding to the port whose configuration type of the demodulation reference signal is the first type and whose port number of the demodulation reference signal is greater than or equal to 1008, or the phase tracking reference signal corresponding to the port whose configuration type of the demodulation reference signal is the second type and whose port number of the demodulation reference signal is greater than or equal to 1012.
  • the second phase tracking reference signal is: the phase tracking reference signal corresponding to the port whose configuration type of the demodulation reference signal is the first type and whose port number of the demodulation reference signal is less than 1008, or the phase tracking reference signal corresponding to the port whose configuration type of the demodulation reference signal is the second type and whose port number of the demodulation reference signal is less than 1012.
  • port numbers greater than or equal to 1008 may include 1008, 1009, 1010 and 1011
  • port numbers greater than or equal to 1012 may include 1012, 1013, 1014, 1015, 1016 and 1017.
  • Port numbers less than 1008 may include 1000, 1001, 1002, 1003, 1004, 1005, 1006 and 1007
  • port numbers less than 1012 may include 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010 and 1011.
  • the port number of the first type less than 1008 can be understood as the original DMRS port number of the first type, and the port number greater than or equal to 1008 can be understood as the newly extended DMRS port number of the first type.
  • the port number of the second type less than 1012 can be understood as the original DMRS port number of the second type.
  • the port number greater than or equal to 1012 can be understood as the newly extended DMRS port number of the second type.
  • the first phase tracking reference signal is: the phase tracking reference signal corresponding to the port whose configuration type of the demodulation reference signal is the first type and whose port number of the demodulation reference signal is greater than or equal to 8, or the phase tracking reference signal corresponding to the port whose configuration type of the demodulation reference signal is the second type and whose port number of the demodulation reference signal is greater than or equal to 12;
  • the second phase tracking reference signal is: the phase tracking reference signal corresponding to the port whose configuration type of the demodulation reference signal is the first type and whose port number of the demodulation reference signal is less than 8, or the phase tracking reference signal corresponding to the port whose configuration type of the demodulation reference signal is the second type and whose port number of the demodulation reference signal is less than 12.
  • port numbers greater than or equal to 8 may include 8, 9, 10 and 11
  • port numbers greater than or equal to 12 may include 12, 13, 14, 15, 16 and 17.
  • Port numbers less than 8 may include 0, 1, 2, 3, 4, 5, 6 and 7, and port numbers less than 12 may include 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11.
  • the port number of the first type less than 8 can be understood as the original DMRS port number of the first type, and the port number greater than or equal to 8 can be understood as the newly extended DMRS port number of the first type.
  • the port number of the second type less than 12 can be understood as the original DMRS port number of the second type.
  • the port number greater than or equal to 12 can be understood as the newly extended DMRS port number of the second type.
  • the above describes a method for obtaining a resource unit offset.
  • the following describes a method for obtaining a resource block offset.
  • the communication device obtains a radio network temporary identity (RNTI) of the terminal device, and the port number of the demodulation reference signal and the radio network temporary identity (RNTI) are used to determine the resource block offset.
  • RNTI radio network temporary identity
  • the wireless network temporary identifier of the terminal device may include, for example, at least one of the following identifiers: a cell-radio network temporary identifier (C-RNTI), a random access response temporary identifier (RA-RNTI), a temporary C-RNTI, and a transmit power control temporary identifier (TPC-RNTI), which is not limited to the embodiments of the present application.
  • C-RNTI cell-radio network temporary identifier
  • RA-RNTI random access response temporary identifier
  • TPC-RNTI transmit power control temporary identifier
  • the communication device obtains N RB resource blocks for transmitting data, and resource block density indication information of a phase tracking reference signal, where N RB is an integer greater than 1, and the indexes of the N RB resource blocks are 0, 1,..., (N RB -1), and the resource block density indication information is used to indicate the resource block density of the phase tracking reference signal, and N RB and resource block density are used to determine the resource block offset.
  • the resource block density indication information may indicate the resource block density, which may also be referred to as frequency domain density.
  • the value of the resource block density may be 2 or 4, that is, a PTRS appears once every two or four resource blocks.
  • the resource block density indication information may indicate the resource block density indirectly.
  • the downlink transmission may notify two thresholds of the uplink transmission bandwidth. The two thresholds are represented by N RB0 and N RB1 , respectively, where N RB0 ⁇ N RB1 . If N RB0 ⁇ N RB ⁇ N RB1 , the value of the resource block density is 2. If N RB1 ⁇ N RB , the value of the resource block density is 4.
  • the present application does not limit the value of the resource block density.
  • the resource block density described above may have other values besides 2 or 4. It should be noted that the present application does not limit the indication method of the resource block density, which may be the indirect indication described above, or other indirect indications, or directly indicating the resource block density.
  • N RB 1
  • the value of the resource block offset is related to the relationship equation used to determine the resource unit of the phase tracking reference signal.
  • the resource block offset includes a first offset parameter and a second offset parameter; the first offset parameter and the second offset parameter are used to determine resource units of the first phase tracking reference signal and the second phase tracking reference signal.
  • the above step 202 includes: determining the resource unit of the first phase tracking reference signal and/or the second phase tracking reference signal by a first relational expression; the first relational expression is:
  • k is the index of the resource unit of the first phase tracking reference signal or/and the second phase tracking reference signal
  • i is a natural number, is the number of subcarriers in a resource block
  • K PT-RS is the resource block density
  • is the second offset parameter is the resource unit offset
  • n RNTI is the wireless network temporary identifier
  • mod represents modulus
  • N RB is the number of resource blocks.
  • the first offset parameter It can be obtained by the number of resource blocks N RB , the resource block density K PT-RS , and the radio network temporary identifier n RNTI .
  • Second offset parameter can be achieved through K PT-RS , and get.
  • the obtained k is the index of the resource unit of the second phase tracking reference signal, that is, the index of the resource unit of the phase tracking reference signal corresponding to the original port number.
  • N RB resource blocks by the first phase tracking reference signal and the second phase tracking reference signal when the above parameters take different values is described below:
  • the second offset parameter is 1, wherein the second offset parameter is 1, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M+1, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 2M, M ⁇ 0, and M is an integer.
  • K PT-RS 2, N RB is an odd number
  • the index of the resource block to which the resource unit of the first phase tracking reference signal belongs 2M+1
  • it means that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs 2M
  • M ⁇ 0 M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 1, 3, 5, 7, 9, ..., (N RB -2)
  • the second phase tracking reference signal can occupy resource blocks with indices of 0, 2, 4, 6, 8, ... (N RB -1).
  • the resource unit offset indication information is offset 00
  • the second phase tracking reference signals corresponding to the original port numbers 0, 1, 2 and 3 are mapped on the resource block RB X
  • the first phase tracking reference signals corresponding to the extended port numbers 8, 9, 10 and 11 are mapped on the resource block RB Y.
  • Y X + 1. If the If the index is 0, the index of RB Y is 1.
  • FIG3A only illustrates two resource blocks. If there are multiple resource blocks, the RB X and RB Y graphs can be repeated, but the values of X and Y will increase accordingly.
  • FIG3B is a schematic diagram when the resource unit offset indication information is offset 01.
  • FIG3B compared with FIG3A, only the starting RE position of the first phase tracking reference signal in RB Y is moved down by two bits, from RE0 to RE2, and the starting RE position of the second phase tracking reference signal in RB X is moved down by two bits, from RE0 to RE2. The rest can be understood by referring to the introduction of FIG3A.
  • FIG3C is relative to FIG3B except that the starting RE position of the first phase tracking reference signal in RB Y is moved down by two positions, from RE2 to RE4, and the starting RE position of the second phase tracking reference signal in RB X is moved down by two positions, from RE2 to RE4.
  • FIG3A for understanding.
  • FIG3D is relative to FIG3C except that the starting RE position of the first phase tracking reference signal in RB Y is moved down by two positions, from RE4 to RE6, and the starting RE position of the second phase tracking reference signal in RB X is moved down by two positions, from RE4 to RE6.
  • FIG3A please refer to the introduction of FIG3A for understanding.
  • the second offset parameter is -1, wherein the second offset parameter is -1, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 2M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 0, 2, 4, 6, 8, ... (N RB -2), and the second phase tracking reference signal can occupy resource blocks with indices of 1, 3, 5, 7, 9, ..., (N RB -1).
  • the difference is that the first phase tracking reference signal occupies RB X, and the second phase tracking reference signal occupies RB Y.
  • the rest can be understood by referring to the previous introduction.
  • the second offset parameter is 1, wherein the second offset parameter is 1, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M+1, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 2M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 1, 3, 5, 7, 9, ..., (N RB -1), and the second phase tracking reference signal can occupy resource blocks with indices of 0, 2, 4, 6, 8, ... (N RB -2).
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+2
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 2, 6, 10, ..., (N RB -2)
  • the second phase tracking reference signal can occupy resource blocks with indices of 0, 4, 8, ... (N RB -4).
  • the resource unit offset indication information is offset 00
  • the second phase tracking reference signal corresponding to the original port numbers 0, 1, 2 and 3 is mapped on the resource block RB X
  • the first phase tracking reference signal corresponding to the extended port numbers 8, 9, 10 and 11 is mapped on the resource block RB Y.
  • Y X+2
  • FIG4 only illustrates two resource blocks. If there are multiple resource blocks, the RB X and RB Y figures can be repeated, but the values of X and Y also increase accordingly.
  • N RB is an integer multiple of 4
  • the modulus of 4 of the wireless network temporary identifier is 1
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • K PT-RS 4, N RB is an integer multiple of 4, and n RNTI takes the modulus of 4 as 1,
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+3, and the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M+1, where M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -1), and the second phase tracking reference signal may occupy resource blocks with indices of 1, 5, 9, ... (N RB -3).
  • the second offset parameter is -2, wherein the second offset parameter is -2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • K PT-RS 4, N RB is an integer multiple of 4, and n RNTI takes the modulus of 4 as 2.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 0, 4, 8, ... (N RB -4)
  • the second phase tracking reference signal can occupy resource blocks with indices of 2, 6, 10, ..., (N RB -2).
  • the first phase tracking reference signal occupies RB X and the second phase tracking reference signal occupies RB Y.
  • the second offset parameter is -2, wherein the second offset parameter is -2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+1, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • K PT-RS 4, N RB is an integer multiple of 4, and n RNTI takes the modulus of 4 as 3.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+1
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M+3, where M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 1, 5, 9, ... (N RB -3)
  • the second phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -1).
  • the first phase tracking reference signal occupies RB X and the second phase tracking reference signal occupies RB Y.
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB takes the modulus of 4 as 1
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+2
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 2, 6, 10, ..., (N RB -3)
  • the second phase tracking reference signal can occupy resource blocks with indices of 0, 4, 8, ... (N RB -1).
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB takes the modulus of 4 as 2
  • n RNTI is an even number.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+2
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 2, 6, 10, ..., (N RB -4)
  • the second phase tracking reference signal can occupy resource blocks with indices of 0, 4, 8, ... (N RB -2).
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB takes the modulus of 4 as 2
  • n RNTI is an odd number.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+3
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M+1, where M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -3)
  • the second phase tracking reference signal may occupy resource blocks with indices of 1, 5, 9, ... (N RB -1).
  • the modulus of N RB is 4 is 3
  • the modulus of the radio network temporary identifier is 3
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, indicating The index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M, where M ⁇ 0, and M is an integer.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+2
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 2, 6, 10, ..., (N RB -1)
  • the second phase tracking reference signal can occupy resource blocks with indices of 0, 4, 8, ... (N RB -3).
  • N RB takes the modulus of 4 as 3
  • the modulus of the wireless network temporary identifier takes 3 as 1
  • the second offset parameter is 2, wherein the second offset parameter is 2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+3
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M+1, where M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -4)
  • the second phase tracking reference signal may occupy resource blocks with indices of 1, 5, 9, ... (N RB -2).
  • the second offset parameter is -2, wherein the second offset parameter is -2, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M, and indicating that the index of the resource block to which the resource unit of the second phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M
  • the index of the resource block to which the resource unit representing the second phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 0, 4, 8, ... (N RB -3)
  • the second phase tracking reference signal can occupy resource blocks with indices of 2, 6, 10, ..., (N RB -1).
  • K PT-RS is not limited to 2 and 4 listed above, and may also be other values, which is not limited in this embodiment.
  • k can be determined through the first relationship, thereby correctly receiving the first phase tracking reference signal and/or the second phase tracking reference signal.
  • the above describes a scheme for determining the index k of the resource unit of the first phase tracking reference signal and the resource unit of the second phase tracking reference signal by using the first relational expression.
  • the index k of the resource unit of the first phase tracking reference signal can also be determined by using the second relational expression.
  • the above step 202 includes: determining the resource unit of the first phase tracking reference signal by using the second relational expression; the second relational expression is:
  • k is the index of the resource unit of the first phase tracking reference signal
  • i is a natural number, is the number of subcarriers in a resource block
  • K PT-RS is the resource block density
  • is the resource block offset is the resource unit offset
  • n RNTI is the wireless network temporary identifier
  • mod represents modulus
  • N RB is the number of resource blocks.
  • solutions determined by the second relationship above may include the following:
  • the resource block offset is 1, wherein the resource block offset of 1 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M+1, M ⁇ 0, and M is an integer.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 2M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 1, 3, 5, 7, 9, ..., (N RB -2).
  • the first phase tracking reference signal corresponding to the extended port numbers 8, 9, 10 and 11 is mapped on the resource blocks with odd indexes.
  • the first phase tracking reference signal is mapped on RB 1 and RB 3.
  • the resource block offset is 1, wherein the resource block offset is 1, indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 2M+1, M ⁇ 0, and M is an integer.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 2M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can occupy resource blocks with indices of 1, 3, 5, 7, 9, ..., (N RB -1).
  • the resource block offset is 0, wherein the resource block offset is 0, indicating that the index of the resource block to which the first phase tracking reference signal belongs is 2M, M ⁇ 0, and M is an integer.
  • the index of the resource block to which the first phase tracking reference signal belongs is 2M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 0, 2, 4, 6, 8, ..., (N RB -2).
  • the first phase tracking reference signal corresponding to the extended port numbers 8, 9, 10 and 11 is mapped on the resource blocks with even indexes.
  • the first phase tracking reference signal is mapped on RB 0 and RB 2.
  • the resource block offset is 2, wherein the resource block offset of 2 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -2).
  • the first phase tracking reference signal corresponding to the extended port numbers 8, 9, 10 and 11 is mapped on the resource block with index 4M+2, M ⁇ 0.
  • the first phase tracking reference signal is mapped on RB 2 and RB 6.
  • the resource block density indication information is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 1, the resource block offset is 3, wherein the resource block offset of 3 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB is an integer multiple of 4
  • n RNTI takes the modulus of 4 as 1.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -1).
  • the resource unit offset indication information is offset 00
  • the first phase tracking reference signal corresponding to the extended port numbers 8, 9, 10 and 11 is mapped on the resource block with index 4M+3, M ⁇ 0.
  • the first phase tracking reference signal is mapped on RB 3 and RB 7.
  • the resource block density indication information is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 2, the resource block offset is 0.
  • the resource block offset of 0 indicates that the index of the resource block to which the first phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB is an integer multiple of 4
  • n RNTI takes the modulus of 4 as 2.
  • the index of the resource block to which the first phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -4).
  • the first phase tracking reference signal corresponding to the extended port numbers 8, 9, 10 and 11 is mapped on the resource block with index 4M, M ⁇ 0.
  • the first phase tracking reference signal is mapped on RB 0 and RB 4.
  • the resource block density indication information is equal to 4, N RB is an integer multiple of 4, and when the modulus of 4 of the wireless network temporary identifier is 3, the resource block offset is 1, wherein the resource block offset of 1 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB is an integer multiple of 4
  • n RNTI takes the modulus of 4 as 3.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+1, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 1, 5, 9, ... (N RB -3).
  • the first phase tracking reference signal corresponding to the extended port numbers 8, 9, 10 and 11 is mapped on the resource block with index 4M, M ⁇ 0.
  • the first phase tracking reference signal is mapped on RB 1 and RB 5.
  • the resource block offset is 2, wherein the resource block offset of 2 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • K PT-RS 4, when N RB takes the modulus of 4 as 1,
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -3).
  • the schematic diagram of the mapping position of the first phase tracking reference signal in this case can be understood by referring to FIG. 7A .
  • the wireless network temporary identifier is an even number and the resource block offset is 2, wherein the resource block offset of 2 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB takes the modulus of 4 as 2
  • n RNTI is an even number.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 2, 6, 10, ..., (N RB -4).
  • the schematic diagram of the mapping position of the first phase tracking reference signal in this case can be understood by referring to FIG. 7A .
  • the resource block density indication information is equal to 4 and the modulus of N RB is 4 is 2, the wireless network temporary identifier is an odd number and the resource block offset is 3, wherein the resource block offset is 3 indicating that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB takes the modulus of 4 as 2
  • n RNTI is an odd number.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -3).
  • the schematic diagram of the mapping position of the first phase tracking reference signal in this case can be understood by referring to FIG. 7B .
  • the wireless network temporary identifier is an integer multiple of 3 and the resource block offset is 2.
  • the resource block offset of 2 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • K PT-RS 4
  • N RB takes the modulus of 4 as 3
  • n RNTI is an integer multiple of 3.
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+2, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal can be Occupies resource blocks with indices of 2, 6, 10, ..., (N RB -1).
  • the schematic diagram of the mapping position of the first phase tracking reference signal in this case can be understood by referring to FIG. 7A .
  • the resource block density indication information is equal to 4, when N RB takes the modulus of 4 as 3, when the modulus of the wireless network temporary identifier takes 3 as 1, the resource block offset is 3, wherein the resource block offset of 3 indicates that the index of the resource block to which the resource unit of the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • N RB takes the modulus of 4 as 3
  • n RNTI takes the modulus of 3 as 1
  • the index of the resource block to which the resource unit representing the first phase tracking reference signal belongs is 4M+3, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 3, 7, 11, ..., (N RB -4).
  • the schematic diagram of the mapping position of the first phase tracking reference signal in this case can be understood by referring to FIG. 7B .
  • the resource block density indication information is equal to 4, when N RB takes the modulus of 4 as 3, when the modulus of the wireless network temporary identifier takes 3 as 2, the resource block offset is 0, wherein the resource block offset of 0 indicates that the index of the resource block to which the first phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the index indicating the resource block to which the first phase tracking reference signal belongs is 4M, M ⁇ 0, and M is an integer.
  • the first phase tracking reference signal may occupy resource blocks with indices of 0, 4, 8, ... (N RB -3).
  • the schematic diagram of the mapping position of the first phase tracking reference signal in this case can be understood by referring to FIG. 7C .
  • K PT-RS is not limited to 2 and 4 listed above, and may also be other values, which is not limited in this embodiment.
  • the communication device provided in the embodiment of the present application is described below. Please refer to Figure 8, which is a schematic diagram of the structure of the communication device in the embodiment of the present application.
  • the communication device 800 can be used to execute the steps performed by the terminal device in the embodiments shown in Figures 2 to 7D. For details, please refer to the relevant introduction in the above method embodiment.
  • the communication device 800 includes a transceiver module 801 and a processing module 802.
  • the transceiver module 801 can implement corresponding communication functions, and the processing module 802 is used for data processing.
  • the transceiver module 801 can also be called a communication interface or a communication unit.
  • the communication device 800 may further include a storage unit, which may be used to store instructions and/or data, and the processing module 802 may read the instructions and/or data in the storage unit so that the communication device implements the aforementioned method embodiment.
  • a storage unit which may be used to store instructions and/or data
  • the processing module 802 may read the instructions and/or data in the storage unit so that the communication device implements the aforementioned method embodiment.
  • the communication device 800 can be used to perform the actions performed by the terminal device in the above method embodiment.
  • the communication device 800 can be a terminal device or a component that can be configured in a terminal device.
  • the transceiver module 801 is used to perform the reception-related operations on the terminal device side in the above method embodiment, and the processing module 802 is used to perform the processing-related operations on the terminal device side in the above method embodiment.
  • the transceiver module 801 may include a sending module and a receiving module.
  • the sending module is used to perform the sending operation in the above method embodiment.
  • the receiving module is used to perform the receiving operation in the above method embodiment.
  • the communication device 800 may include a sending module but not a receiving module.
  • the communication device 800 may include a receiving module but not a sending module. Specifically, it may depend on whether the above solution executed by the communication device 800 includes a sending action and a receiving action.
  • the communication device 800 is used to execute the actions performed by the terminal device in the embodiment shown in FIG. 2 above.
  • the transceiver module 801 is used to receive configuration information from a network device, such as a port number of a DMRS.
  • the processing module 802 is configured to determine a resource unit of a phase tracking reference signal according to a resource block offset and a resource unit offset.
  • the transceiver module 801 is further configured to send or receive a phase tracking reference signal according to the resource unit of the phase tracking reference signal.
  • the processing module 802 in the above embodiment can be implemented by at least one processor or processor-related circuit.
  • the transceiver module 801 can be implemented by a transceiver or a transceiver-related circuit.
  • the transceiver module 801 can also be called a communication unit or a communication interface.
  • the storage unit can be implemented by at least one memory.
  • the communication device provided in the embodiment of the present application is described below. Please refer to Figure 9, which is a schematic diagram of the structure of the communication device in the embodiment of the present application.
  • the communication device 900 can be used to execute the steps executed by the network device in the embodiment shown in Figure 2. For details, please refer to the above Related introduction in the method embodiment.
  • the communication device 900 includes a transceiver module 901.
  • the communication device 900 also includes a processing module 902.
  • the transceiver module 901 can implement corresponding communication functions, and the processing module 902 is used for data processing.
  • the transceiver module 901 can also be called a communication interface or a communication unit.
  • the communication device 900 can be used to execute the actions executed by the terminal device in the above method embodiment.
  • the communication device 900 can be a network device or a component that can be configured in a network device.
  • the transceiver module 901 is used to execute the reception-related operations on the network device side in the above method embodiment.
  • the transceiver module 901 may include a sending module and a receiving module.
  • the sending module is used to perform the sending operation in the above method embodiment.
  • the receiving module is used to perform the receiving operation in the above method embodiment.
  • the communication device 900 may include a sending module but not a receiving module.
  • the communication device 900 may include a receiving module but not a sending module. Specifically, it may depend on whether the above solution executed by the communication device 900 includes a sending action and a receiving action.
  • the communication device 900 is used to execute the actions performed by the network device in the embodiment shown in FIG. 2 above.
  • the transceiver module 901 is used to send configuration information to the terminal device, such as the port number of the DMRS.
  • the processing module 902 is used to determine the resource unit of the phase tracking reference signal according to the resource block offset and the resource unit offset.
  • the transceiver module 901 is also used to send or receive the phase tracking reference signal according to the resource unit of the phase tracking reference signal.
  • the processing module 902 in the above embodiment can be implemented by at least one processor or processor-related circuit.
  • the transceiver module 901 can be implemented by a transceiver or a transceiver-related circuit.
  • the transceiver module 901 can also be called a communication unit or a communication interface.
  • the storage unit can be implemented by at least one memory.
  • the embodiment of the present application also provides a communication device 1000.
  • the communication device 1000 includes a processor 1010, the processor 1010 is coupled to a memory 1020, the memory 1020 is used to store computer programs or instructions and/or data, and the processor 1010 is used to execute the computer programs or instructions and/or data stored in the memory 1020, so that the method in the above method embodiment is executed.
  • the communication device 1000 includes one or more processors 1010.
  • the communication device 1000 may further include a memory 1020 .
  • the communication device 1000 may include one or more memories 1020 .
  • the memory 1020 may be integrated with the processor 1010 or provided separately.
  • the communication device 1000 may further include a transceiver 1030, and the transceiver 1030 is used for receiving and/or sending signals.
  • the processor 1010 is used to control the transceiver 1030 to receive and/or send signals.
  • the communication device 1000 is used to implement the operations performed by the terminal device in the above method embodiment.
  • the processor 1010 is used to implement the processing-related operations performed by the terminal device in the above method embodiment
  • the transceiver 1030 is used to implement the sending and receiving-related operations performed by the terminal device in the above method embodiment.
  • the communication device 1000 is used to implement the operations performed by the network device in the above method embodiment.
  • the processor 1010 is used to implement the processing-related operations performed by the network device in the above method embodiment
  • the transceiver 1030 is used to implement the sending and receiving-related operations performed by the network device in the above method embodiment.
  • the embodiment of the present application further provides a communication device 1100, which can be a terminal device or a chip.
  • the communication device 1100 can be used to execute the operations executed by the terminal device in the above method embodiment.
  • FIG11 shows a simplified schematic diagram of the structure of the terminal device.
  • the terminal device includes a processor, a memory, and a transceiver, wherein the memory can store computer program code, and the transceiver includes a transmitter 1131, a receiver 1132, a radio frequency circuit (not shown in the figure), an antenna 1133, and an input-output device (not shown in the figure).
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal device, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for conversion between baseband signals and radio frequency signals and processing of radio frequency signals.
  • the antenna is mainly used to transmit and receive radio frequency signals in the form of electromagnetic waves.
  • Input-output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input-output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • the memory may also be referred to as a storage medium or a storage device, etc.
  • the memory may be set independently of the processor or integrated with the processor, and the embodiments of the present application do not limit this.
  • the antenna and the radio frequency circuit with transceiver functions can be regarded as the transceiver unit of the terminal device, and the processor with processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a processor 1110, a memory 1120 and a transceiver 1130.
  • the processor 1110 may also be referred to as a processing unit, a processing board, a processing module, a processing device, etc.
  • the transceiver 1130 may also be referred to as a transceiver unit, a transceiver, a transceiver device, etc.
  • the device for implementing the receiving function in the transceiver 1130 may be regarded as a receiving unit, and the device for implementing the transmitting function in the transceiver 1130 may be regarded as a transmitting unit, that is, the transceiver 1130 includes a receiver and a transmitter.
  • a transceiver may sometimes be referred to as a transceiver, a transceiver unit, or a transceiver circuit, etc.
  • a receiver may sometimes be referred to as a receiver, a receiving unit, or a receiving circuit, etc.
  • a transmitter may sometimes be referred to as a transmitter, a transmitting unit, or a transmitting circuit, etc.
  • the processor 1110 is used to perform the processing action on the terminal device side in the embodiment shown in Figure 2, and the transceiver 1130 is used to perform the transceiver action on the terminal device side in Figure 2.
  • the transceiver 1130 is used to perform the transceiver operations of step 201 and step 203 in the embodiment shown in Figure 2.
  • the processor 1110 is used to perform the processing operation of step 202 in the embodiment shown in Figure 2.
  • FIG11 is merely an example and not a limitation, and the terminal device including the transceiver unit and the processing unit may not rely on the structure shown in FIG11.
  • the chip When the communication device 1100 is a chip, the chip includes a processor, a memory and a transceiver.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processing unit or a microprocessor or an integrated circuit integrated on the chip.
  • the sending operation of the terminal device in the above method embodiment may be understood as the output of the chip, and the receiving operation of the terminal device in the above method embodiment may be understood as the input of the chip.
  • the embodiment of the present application further provides a communication device 1200, which can be a network device or a chip.
  • the communication device 1200 can be used to execute the operations executed by the network device in the above method embodiment.
  • FIG. 12 shows a simplified schematic diagram of the base station structure.
  • the base station includes parts 1210, 1220 and 1230.
  • Part 1210 is mainly used for baseband processing, controlling the base station, etc.;
  • Part 1210 is usually the control center of the base station, which can be usually called a processor, and is used to control the base station to perform the processing operations on the network device side in the above method embodiment.
  • Part 1220 is mainly used to store computer program code and data.
  • Part 1230 is mainly used for receiving and sending radio frequency signals and converting radio frequency signals into baseband signals; Part 1230 can usually be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc.
  • the transceiver unit of part 1230 can also be called a transceiver or a transceiver, etc., which includes an antenna 1233 and a radio frequency circuit (not shown in the figure), wherein the radio frequency circuit is mainly used for radio frequency processing.
  • the device for implementing the receiving function in part 1230 may be regarded as a receiver, and the device for implementing the transmitting function may be regarded as a transmitter, that is, part 1230 includes a receiver 1232 and a transmitter 1231.
  • the receiver may also be referred to as a receiving unit, a receiver, or a receiving circuit, etc.
  • the transmitter may be referred to as a transmitting unit, a transmitter, or a transmitting circuit, etc.
  • Part 1210 and part 1220 may include one or more single boards, each of which may include one or more processors and one or more memories.
  • the processor is used to read and execute the program in the memory to realize the baseband processing function and the control of the base station. If there are multiple single boards, each single board can be interconnected to enhance the processing capability. As an optional implementation, multiple single boards may share one or more processors, or multiple single boards may share one or more memories, or multiple single boards may share one or more processors at the same time.
  • the transceiver unit of part 1230 is used to execute the transceiver-related steps executed by the network device in the embodiment shown in Figure 2.
  • the processor of part 1210 is used to execute the processing-related steps executed by the network device in the embodiment shown in Figure 2.
  • FIG. 12 is merely an example and not a limitation, and the network device including the processor, the memory, and the transceiver may not rely on the structure shown in FIG. 12 .
  • the chip When the communication device 1200 is a chip, the chip includes a transceiver, a memory and a processor.
  • the transceiver may be an input/output circuit or a communication interface;
  • the processor may be a processor or a microprocessor or an integrated circuit integrated on the chip.
  • the sending operation of the network device can be understood as the output of the chip, and the receiving operation of the network device in the above method embodiment can be understood as the input of the chip.
  • An embodiment of the present application also provides a computer-readable storage medium on which computer instructions for implementing the method executed by a terminal device or a method executed by a network device in the above method embodiment are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the terminal device or the method executed by the network device in the above method embodiment.
  • An embodiment of the present application also provides a computer program product comprising instructions, which, when executed by a computer, enables the computer to implement the method executed by a terminal device or a method executed by a network device in the above method embodiment.
  • An embodiment of the present application also provides a communication system, which includes the network device and the terminal device in the above embodiment.
  • An embodiment of the present application also provides a chip device, including a processor, for calling a computer program or computer instruction stored in the memory so that the processor executes the communication method of the embodiment shown in Figures 2 to 7D above.
  • the input of the chip device corresponds to the receiving operation in the embodiments shown in FIG. 2 to FIG. 7D
  • the output of the chip device corresponds to the sending operation in the embodiments shown in FIG. 2 to FIG. 7D .
  • the processor is coupled to the memory via an interface.
  • the chip device further comprises a memory, in which computer programs or computer instructions are stored.
  • the processor mentioned in any of the above may be a general-purpose central processing unit, a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the communication method of the embodiments shown in FIG. 2 to FIG. 7D.
  • the memory mentioned in any of the above may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM), etc.
  • a terminal device or a network device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer may include hardware such as a central processing unit (CPU), a memory management unit (MMU), and a memory (also called main memory).
  • the operating system of the operating system layer may be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system, or Windows operating system.
  • the application layer may include applications such as browsers, address books, word processing software, and instant messaging software.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • a software product which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute the various embodiments of the present application.
  • the aforementioned storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法,包括:获取解调参考信号的端口编号,解调参考信号的端口编号用于确定资源块偏移和资源单元偏移;根据资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元;根据相位跟踪参考信号的资源单元发送或接收相位跟踪参考信号。本申请技术方案由于可以将DMRS的不同端口编号对应的PTRS映射到不同的资源块中,提高了PTRS干扰随机化的程度。

Description

一种通信方法及通信装置
本申请要求于2022年09月30日提交中国专利局、申请号为202211214461.X、发明名称为“一种通信方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种通信方法及通信装置。
背景技术
新无线(new radio,NR)中,上行和下行都可采用解调参考信号(demodulation reference signal,DMRS)和相位跟踪参考信号(phase tracking reference signal,PTRS)来完成信道估计、相位噪声估计以及数据解调。其中,DMRS用于信道估计和数据解调,PTRS用于相位噪声的估计。
NR中PTRS和DMRS端口有对应关系。当前,一个DMRS端口对应的PTRS会每两个或四个资源块(resource block,RB)出现一次。在相应RB中,一个DMRS端口对应的PTRS会映射到该DMRS端口对应的RB中的一个资源单元(resource element,RE)上。因此,确定了PTRS所映射的RE的编号,就可以接收或发送PTRS。
目前网络设备和终端设备都可以通过终端设备的无线网络临时标识(radio network temporary identity,RNTI)确定PTRS所映射的RB。但一个RB中RE的数量是固定的,当两个不同DMRS端口对应的PTRS映射在同一RE上时,就会相互干扰,从而影响相位噪声的估计。因此,如何随机化PTRS的干扰成为亟待解决的问题。
发明内容
本申请提供一种通信方法,用于提高PTRS干扰随机化的程度。本申请还提供了相应的通信装置、通信系统、计算机可读存储介质,以及计算机程序产品等。
本申请第一方面提供一种通信方法,该方法可应用于通信装置,包括:获取解调参考信号的端口编号,解调参考信号的端口编号用于确定资源块偏移和资源单元偏移;根据资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元;根据相位跟踪参考信号的资源单元发送或接收相位跟踪参考信号。
本申请中,通信装置可以为网络设备或终端设备。
本申请中,解调参考信号(demodulation reference signal,DMRS)的端口编号在上行传输中和下行传输中不同。下行传输中DMRS的端口编号从1000开始,如:1000,1001,…,上行传输中DMRS的端口编号从0开始,如:0,1,…。
本申请中,资源块偏移用于指示不同端口编号的DMRS端口对应的PTRS在调度带宽中占用的资源块的位置。
本申请中,资源单元偏移用于表示PTRS在所占用的资源块中占用资源单元的位置,资源单元偏移通常用0,1,2,…,11这12个整数表示。
上述第一方面中,因为通信装置可以基于DMRS的端口编号确定资源块偏移和资源单元偏移,再进一步确定PTRS所映射的资源单元。这样,可以将DMRS的不同端口编号对应的PTRS映射到不同的资源块中,提高了PTRS干扰随机化的程度。
一种可能的实现方式中,该方法还包括:获取终端设备的无线网络临时标识,解调参考信号的端口编号和无线网络临时标识用于确定资源块偏移。
该种可能的实现方式中,可以进一步结合无线网络临时标识确定资源块偏移,从而进一步提高PTRS干扰随机化。
一种可能的实现方式中,该方法还包括:获取资源单元偏移指示信息,解调参考信号的端口编号和资源单元偏移指示信息用于确定资源单元偏移。
该种可能的实现方式中,资源单元偏移指示信息可以用Offset 00、Offset 01、Offset 10和Offset 11表示,同一端口编号对应的不同资源单元偏移指示信息的资源单元偏移不同。通过资源单元偏移指示信息可以进一步提高PTRS干扰随机化。
一种可能的实现方式中,该方法还包括:获取解调参考信号的配置类型,解调参考信号的端口编号和解调参考信号的配置类型用于确定资源块偏移和资源单元偏移。
该种可能的实现方式中,解调参考信号的配置类型通常有两种,分别为DMRS配置类型(DMRS configuration type)1和DMRS配置类型2,在不同配置类型下,DMRS的端口编号与资源单元偏移的对应关系不同。
一种可能的实现方式中,该方法还包括:获取用于传输数据的NRB个资源块,以及相位跟踪参考信号的资源块密度指示信息,NRB为大于1的整数,NRB个资源块的索引为0、1,…,(NRB-1),资源块密度指示信息用于指示相位跟踪参考信号的资源块密度,NRB和资源块密度用于确定资源块偏移。
该种可能的实现方式中,资源块密度指示信息可以指示资源块密度,资源块密度也可以称为频域密度,资源块密度的取值可以为2或4,也即每两个或四个资源块上出现一次PTRS。需要说明的是资源块密度指示信息指示资源块密度的方式可以是间接指示的,例如,网络设备可以通知终端设备带宽的两个阈值,这两个阈值分别用NRB0和NRB1表示,其中,NRB0<NRB1,若NRB0≤NRB<NRB1,则资源块密度的取值为2,若NRB1≤NRB,则资源块密度的取值为4。当然,本申请不限定资源块密度的取值,除了上述所介绍的资源块密度的取值可以为2或4之外,还可以取其他值。需要说明的是,本申请不限定资源块密度的方式的指示方式,可以是上面介绍的间接指示,也可以是其他方式的间接指示,也可以是直接指示资源块密度。
一种可能的实现方式中,该方法还包括:获取用于传输数据的NRB个资源块,NRB=1时,资源块偏移为0。
一种可能的实现方式中,在下行传输时,相位跟踪参考信号为第一相位跟踪参考信号,或,第二相位跟踪参考信号;第一相位跟踪参考信号为:解调参考信号的配置类型为第一类型,且解调参考信号的端口编号大于或等于1008的端口对应的相位跟踪参考信号,或者,解调参考信号的配置类型为第二类型,且解调参考信号的端口编号大于或等于1012对应的相位跟踪参考信号;第二相位跟踪参考信号为:解调参考信号的配置类型为第一类型,且解调参考信号的端口编号小于1008的端口对应的相位跟踪参考信号,或者,解调参考信号的配置类型为第二类型的解调参考信号的端口编号小于1012的端口对应的相位跟踪参考信号。
该种可能的实现方式中,可以将DMRS配置类型1称为第一类型,将DMRS配置类型2称为第二类型。解调参考信号的配置类型为第一类型时,端口编号大于或等于1008,可以包括1008、1009、1010和1011,解调参考信号的配置类型为第二类型时,端口编号大于或等于1012可以包括1012、1013、1014、1015、1016和1017。当然,本申请中不限定此处列举出的端口编号,第一类型和第二类型都还可以有其他的端口编号。解调参考信号的配置类型为第一类型时,端口编号小于1008可以包括1000、1001、1002、1003、1004、1005、1006和1007,解调参考信号的配置类型为第二类型时,端口编号小于1012可以包括1000、1001、1002、1003、1004、1005、1006、1007、1008、1009、1010和1011。
本申请中,在下行传输时,上述第一类型的小于1008的端口编号可以理解为是第一类型的原有的DMRS端口编号,大于或等于1008的端口编号可以理解为是第一类型的新扩展的DMRS端口编号。上述第二类型的小于1012的端口编号可以理解为是第二类型的原有的DMRS端口编号。大于或等于1012的端口编号可以理解为是第二类型的新扩展的DMRS端口编号。
一种可能的实现方式中,在上行传输时,相位跟踪参考信号为第一相位跟踪参考信号,或,第二相位跟踪参考信号;第一相位跟踪参考信号为:解调参考信号的配置类型为第一类型,且解调参考信号的端口编号大于或等于8的端口对应的相位跟踪参考信号,或者,解调参考信号的配置类型为第二类型,且解调参考信号的端口编号大于或等于12的端口对应的相位跟踪参考信号;第二相位跟踪参考信号为:解调参考信号的配置类型为第一类型,且解调参考信号的端口编号小于8的端口对应的相位跟踪参考信号,或者,解调参考信号的配置类型为第二类型,且解调参考信号的端口编号小于12的端口对应的相位跟踪参考信号。
该种可能的实现方式中,可以将DMRS配置类型1称为第一类型,将DMRS配置类型2称为第二类型。解调参考信号的配置类型为第一类型时,端口编号大于或等于8,可以包括8、9、10和11,解调参考信号 的配置类型为第二类型时,端口编号大于或等于12可以包括12、13、14、15、16和17。当然,本申请中不限定此处列举出的端口编号,第一类型和第二类型都还可以有其他的端口编号。解调参考信号的配置类型为第一类型时,端口编号小于8可以包括0、1、2、3、4、5、6和7,解调参考信号的配置类型为第二类型时,端口编号小于12可以包括0、1、2、3、4、5、6、7、8、9、10和11。
本申请中,在上行传输时,上述第一类型的小于8的端口编号可以理解为是第一类型的原有的DMRS端口编号,大于或等于8的端口编号可以理解为是第一类型的新扩展的DMRS端口编号。上述第二类型的小于12的端口编号可以理解为是第二类型的原有的DMRS端口编号。大于或等于12的端口编号可以理解为是第二类型的新扩展的DMRS端口编号。
一种可能的实现方式中,资源块偏移包括第一偏移参数和第二偏移参数;第一偏移参数和第二偏移参数用于确定第一相位跟踪参考信号和第二相位跟踪参考信号的资源单元。
该种可能的实现方式中,资源块偏移可以包括两个参数,第一偏移参数是通过资源块的数量、无线网络临时标识和资源块密度确定的。
一种可能的实现方式中,上述步骤:根据资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元,包括:通过第一关系式确定第一相位跟踪参考信号或/和第二相位跟踪参考信号的资源单元;第一关系式为:
其中,k为第一相位跟踪参考信号或/和第二相位跟踪参考信号的资源单元的索引,i为自然数,为一个资源块内的子载波个数,KPT-RS为资源块密度,为第一偏移参数,为第二偏移参数,为资源单元偏移;其中,
其中,nRNTI为无线网络临时标识,mod表示取模,NRB为资源块的数量。
该种可能的实现方式中,下行传输或上行传输时,无论是原来的DMRS的端口编号,还是新扩展的DMRS的端口编号都可以通过第一关系式确定出k,进而正确接收第一相位跟踪参考信号或/和第二相位跟踪参考信号。
一种可能的实现方式中,KPT-RS=2时,若KPT-RS=4时,若或1,或3,k为第一相位跟踪参考信号的资源单元的索引。
一种可能的实现方式中,k为第二相位跟踪参考信号的资源单元的索引。
一种可能的实现方式中,资源块密度等于2,NRB为奇数时,第二偏移参数为1,其中,第二偏移参数为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-2)的资源块,第二相位跟踪参考信号可以占用索引是0、2、4、6、8,…(NRB-1)的资源块。
一种可能的实现方式中,资源块密度等于2,NRB为偶数,无线网络临时标识为奇数时,第二偏移参数为-1,其中,第二偏移参数为-1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是0、2、4、6、8,…(NRB-2)的资源块,第二相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-1)的资源块。
一种可能的实现方式中,资源块密度等于2,NRB为偶数,无线网络临时标识为偶数时,第二偏移参数为1,其中,第二偏移参数为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是1、3、5、7、9,…, (NRB-1)的资源块,第二相位跟踪参考信号可以占用索引是0、2、4、6、8,…(NRB-2)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB是4的整数倍,无线网络临时标识是4的倍数时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-2)的资源块,第二相位跟踪参考信号可以占用索引是0、4、8,…(NRB-4)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB是4的整数倍,无线网络临时标识取4的模数为1时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-1)的资源块,第二相位跟踪参考信号可以占用索引是1、5、9,…(NRB-3)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB是4的整数倍,无线网络临时标识取4的模数为2时,第二偏移参数为-2,其中,第二偏移参数为-2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是0、4、8,…(NRB-4)的资源块,第二相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-2)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB是4的整数倍,无线网络临时标识取4的模数为3时,第二偏移参数为-2,其中,第二偏移参数为-2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是1、5、9,…(NRB-3)的资源块,第二相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-1)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB取4的模数为1时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-3)的资源块,第二相位跟踪参考信号可以占用索引是0、4、8,…(NRB-1)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB取4的模数为2时,无线网络临时标识为偶数时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-4)的资源块,第二相位跟踪参考信号可以占用索引是0、4、8,…(NRB-2)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB取4的模数为2时,无线网络临时标识为奇数时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-3)的资源块,第二相位跟踪参考信号可以占用索引是1、5、9,…(NRB-1)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB取4的模数为3,无线网络临时标识取3的模数为0时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-1)的资源块,第二相位跟踪参考信号可以占用索引是0、4、8,…(NRB-3)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB取4的模数为3,无线网络临时标识取3的模数为1时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是3、7、11,…, (NRB-4)的资源块,第二相位跟踪参考信号可以占用索引是1、5、9,…(NRB-2)的资源块。
一种可能的实现方式中,资源块密度等于4,NRB取4的模数为3,无线网络临时标识取3的模数为2时,第二偏移参数为-2,其中,第二偏移参数为-2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是0、4、8,…(NRB-3)的资源块,第二相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-1)的资源块。
一种可能的实现方式中,上述步骤:根据资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元,包括:通过第二关系式确定第一相位跟踪参考信号的资源单元;第二关系式为:
其中,k为第一相位跟踪参考信号的资源单元的索引,i为自然数,为一个资源块内的子载波个数,KPT-RS为资源块密度,为资源块偏移,为资源单元偏移;其中,
若KPT-RS=2,则:
若KPT-RS=4且NRB mod 4=0,则:
若KPT-RS=4且NRB mod 4=1,则:
若KPT-RS=4且NRB mod 4=2,则:
若KPT-RS=4且NRB mod 4=3,则:
其中,nRNTI为无线网络临时标识,mod表示取模,NRB为资源块的数量。
该种可能的实现方式中,新扩展的DMRS的端口编号都可以通过第二关系式确定出k,进而正确接收第一相位跟踪参考信号。
一种可能的实现方式中,资源块密度等于2,NRB为奇数时,资源块偏移为1,其中,资源块偏移为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-2)的资源块。
一种可能的实现方式中,资源块密度等于2,NRB为偶数,无线网络临时标识为偶数时,资源块偏移为1,其中,资源块偏移为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-1)的资源块。
一种可能的实现方式中,资源块密度等于2,NRB为偶数,无线网络临时标识为奇数时,资源块偏移为0,其中,资源块偏移为0表示第一相位跟踪参考信号所属的资源块的索引是2M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是0、2、4、6、8,…,(NRB-2)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB是4的整数倍,无线网络临时标识是4的倍数时,资源块偏移为2,其中,资源块偏移为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-2)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB是4的整数倍,无线网络临时标识取4的模数为1时,资源块偏移为3,其中,资源块偏移为3表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-1)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB是4的整数倍,无线网络临时标识取4的模数为2时,资源块偏移为0,资源块偏移为0表示第一相位跟踪参考信号所属的资源块的索引是4M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是0、4、8,…(NRB-4)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB是4的整数倍,无线网络临时标识取4的模数为3时,资源块偏移为1,其中,资源块偏移为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是1、5、9,…(NRB-3)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB取4的模数为1时,资源块偏移为2,其中,资源块偏移为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-3)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB取4的模数为2时,无线网络临时标识为偶数,资源块偏移为2,其中,资源块偏移为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-4)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB取4的模数为2时,无线网络临时标识为奇数,资源块偏移为3,其中,资源块偏移为3表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-3)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB取4的模数为3时,无线网络临时标识是3的整数倍,资源块偏移为2,资源块偏移为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-1)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB取4的模数为3时,无线网络临时标识取3的模数为1时,资源块偏移为3,其中,资源块偏移为3表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-4)的资源块。
一种可能的实现方式中,资源块密度指示信息等于4,NRB取4的模数为3时,无线网络临时标识取3 的模数为2时,资源块偏移为0,其中,资源块偏移为0表示第一相位跟踪参考信号所属的资源块的索引是4M,M≥0,且M为整数。
该种可能的实现方式中,第一相位跟踪参考信号可以占用索引是0、4、8,…(NRB-3)的资源块。
一种可能的实现方式中,下行传输的第一类型的解调参考信号的端口编号在不同资源单元偏移指示信息下的资源单元偏移可以为下表中的数值0至11;
其中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息,1008、1009、1010和1011为四个第一类型的解调参考信号的端口编号。
一种可能的实现方式中,下行传输的第二类型的解调参考信号的端口编号在不同资源单元偏移指示信息下的资源单元偏移可以为下表中的数值0至11;
其中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息,1012、1013、1014、1015、1016和1017为六个第二类型的解调参考信号的端口编号。
一种可能的实现方式中,上行传输的第一类型的解调参考信号的端口编号在不同资源单元偏移指示信息下的资源单元偏移可以为下表中的数值0至11;
其中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息,8、9、10和11为四个第一类型的解调参考信号的端口编号。
一种可能的实现方式中,上行传输的第二类型的解调参考信号的端口编号在不同资源单元偏移指示信息下的资源单元偏移可以为下表中的数值0至11;

其中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息,12、13、14、15、16和17为六个第二类型的解调参考信号的端口编号。
需要说明的是,上述下行传输和上行传输的资源单元偏移的表格只是一种示例,在同一个端口编号和相同的资源单元偏移指示信息所对应的资源单元偏移的取值也可以是其他数值。
本申请第二方面提供一种通信装置,该通信装置包括收发模块和处理模块,收发模块用于执行上述第一方面或第一方面任一可能的实现方式所述方法的收发操作,所述处理模块用于执行上述第一方面或第一方面任一可能的实现方式所述方法的处理操作。
本申请第三方面提供一种通信装置,该通信装置包括:处理器、存储器和收发器。该存储器中存储有计算机程序或计算机指令,该处理器用于调用并运行该存储器中存储的计算机程序或计算机指令,使得处理器实现如第一方面或第一方面任一可能的实现方式中处理的操作,收发器用于收发信号,如:实现如第一方面或第一方面任一可能的实现方式中接收和发送的操作。
本申请第四方面提供一种通信装置,该通信装置包括处理器,处理器用于执行如第一方面或第一方面任一可能的实现方式。
本申请中第二方面至第四方面的通信装置可以是终端设备,也可以是终端设备内的芯片。该通信装置可以包括处理模块和收发模块。当该通信装置是终端设备时,该处理模块可以是处理器,该收发模块可以是收发器;该终端设备还可以包括存储模块,该存储模块可以是存储器。该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该终端设备执行第一方面或第一方面的任一种可能实施方式中的方法。当该通信装置是终端设备内的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该终端设备执行第一方面或第一方面的任一种可能实施方式中的方法,该存储模块可以是该芯片内的存储模块(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储模块(例如,只读存储器、随机存取存储器等)。
本申请中第二方面至第四方面的通信装置可以是网络设备,也可以是网络设备内的芯片。该通信装置可以包括处理模块和收发模块。当该通信装置是网络设备时,该处理模块可以是处理器,该收发模块可以是收发器;该网络设备还可以包括存储模块,该存储模块可以是存储器。该存储模块用于存储指令,该处理模块执行该存储模块所存储的指令,以使该网络设备执行第一方面或第一方面的任一种可能实施方式中的方法。当该通信装置是网络设备内的芯片时,该处理模块可以是处理器,该收发模块可以是输入/输出接口、管脚或电路等;该处理模块执行存储模块所存储的指令,以使该网络设备执行第一方面或第一方面的任一种可能实施方式中的方法,该存储模块可以是该芯片内的存储模块(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储模块(例如,只读存储器、随机存取存储器等)。
本申请第五方面提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行如第一方面或第一方面任一可能的实现方式。
本申请第六方面提供一种计算机可读存储介质,包括计算机指令,当该指令在计算机上运行时,使得计算机执行如第一方面或第一方面任一可能的实现方式。
本申请第七方面提供一种芯片装置,包括处理器,用于调用该存储器中的计算机程序或计算机指令,以使得该处理器执行上述第一方面或第一方面任一可能的实现方式。
可选的,该处理器通过接口与该存储器耦合。
本申请第八方面提供一种通信系统,该通信系统包括如终端设备和网络设备,网络设备用于执行上述第一方面或第一方面任一可能的实现方式中的方法中与网络设备相关的内容,终端设备用于执行上述第一方面或第一方面任一可能的实现方式中的方法中与终端设备相关的内容。
以上第二方面至第八方面以及其任一种可能的实现方式中的有益效果可以参阅第一方面以及其任一种可能的实现方式的相应描述进行理解,此处不再重复描述。
附图说明
图1是本申请实施例提供的通信系统的一架构示意图;
图2是本申请实施例提供的通信方法的一实施例示意图;
图3A至图3D是在不同资源单元偏移指示下的相位跟踪参考信号对资源块的占用示例示意图;
图4是相位跟踪参考信号对资源块的占用的另一示例示意图;
图5是相位跟踪参考信号对资源块的占用的另一示例示意图;
图6是相位跟踪参考信号对资源块的占用的另一示例示意图;
图7A至图7D是相位跟踪参考信号对资源块的占用的几个示例示意图;
图8是本申请实施例提供的通信装置的一个结构示意图;
图9是本申请实施例提供的通信装置的另一个结构示意图;
图10是本申请实施例提供的通信装置的另一个结构示意图;
图11是本申请实施例提供的通信装置的另一个结构示意图;
图12是本申请实施例提供的通信装置的另一个结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供一种通信方法,用于提高PTRS干扰随机化的程度。本申请还提供了相应的通信装置、通信系统、计算机可读存储介质,以及计算机程序产品等。以下分别进行详细说明。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、5G网络之后的移动通信系统(例如,6G移动通信系统)、车联网(vehicle to everything,V2X)通信系统等。
为便于理解,下面先对本申请实施例所提出的通信方法的系统架构和应用场景进行介绍:
本申请实施例提出的方案可以基于新无线技术,又称为5G技术,也可以基于后续演进接入制式,具体此处不做限定。在本实施例以及后续实施例中,以基于5G的通信系统为例进行介绍。如图1所示,该通信系统包括:终端设备101和网络设备102,该终端设备101可以接收网络设备102的配置,并根据网络设备102的配置确定相位跟踪参考信号(phase tracking reference signal,PTRS)的资源单元(resource element,RE),根据相位跟踪参考信号的资源单元发送或接收相位跟踪参考信号。
在一种实现方式中,该通信方法可以应用于基于5G的车联网(vehicle to everything,V2X)系统中,即通过装载在车上的传感器或车载终端设备等提供车辆信息以实现车辆与其他设备之间的通信的系统。在该车联网系统中,车辆与车辆(vehicle to vehicle,V2V),车辆与基础设施(vehicle to infrastructure,V2I),车辆与网络(vehicle to network,V2N)以及车辆与行人(vehicle to pedestrian,V2P)之间均可以通信,当该终端设备101为车联网中的终端时,该终端设备101可以根据网络设备102的配置发送或接收相位跟踪参考信号。
在一种另实现方式中,该通信方法可以应用于基于5G的物联网(internet of things,IoT)系统 中,例如,可以基于窄带物联网(narrowband internet of things,NB-IoT)制式或增强机器类通信(enhanced machine type communication,eMTC)制式,具体此处不做限定。在该系统中,NB-IoT终端或eMTC终端均为低功耗终端设备,可以在低功耗广域网(low-power wide-area network,LPWAN)内进行数据连接,并实现前述低功耗终端设备之间的数据传输或低功耗终端设备与网络设备之间的数据传输。因此,当该终端设备101为NB-IoT终端或eMTC终端时,该终端设备101可以根据网络设备102的配置发送或接收相位跟踪参考信号。
应当理解的是,本申请实施例中的通信方法除了适用于上述场景,还可以适用于其他场景,具体此处不做限定。
本申请实施例中,前述终端设备101,包括向用户提供语音和/或数据连通性的设备,例如,可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备101可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备101可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、用户单元(subscriber unit)、用户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站以及个人数字助理(personal digital assistant,PDA)等设备。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、车联网中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、或智慧家庭(smart home)中的无线终端等。例如,车联网中的无线终端可以为车载设备、整车设备、车载模块、车辆等。工业控制中的无线终端可以为摄像头、机器人等。智慧家庭中的无线终端可以为电视、空调、扫地机、音箱、机顶盒等。
在车联网场景下,该终端设备101可以是车联网终端设备,也被称为V2X终端设备。具体地,在V2V通信过程中,该终端设备101可以为车载终端;在V2I通信过程中,该终端设备101可以为车载终端或带有移动通信功能的基础设施;在其他的V2X场景,该终端设备101还可以是其他的V2X设备,具体此处不做限定。该终端设备101还可以是可穿戴设备,如眼镜、手套、手表、服饰及鞋,或者其他的可以直接穿在身上或是整合到用户的衣服或配件的一种便携式设备。
在物联网场景下,该终端设备101可以为受限设备,例如,低功耗终端设备,或存储能力有限的终端设备,或计算能力有限的终端设备,具体此处不做限定。
应当理解的是,本申请实施例中的终端设备101可以是上述任意一种场景下的设备或该设备中的芯片,具体此处不做限定。无论作为设备还是作为芯片,该终端设备101都可以作为独立的产品进行制造、销售或者使用。
此外,与前述终端设备101进行通信的网络设备102,可以是无线网络中的设备。例如,网络设备是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以为将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。
网络设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G移动通信系统中的网络设备。例如,新空口(new radio,NR)系统中的下一代基站(next generation NodeB,gNB),传输接收点(transmission reception point, TRP),传输点(transmission point,TP);或者,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。例如,基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等。
应当理解的是,本申请实施例中的网络设备102可以是上述任意一种设备或该设备中的芯片,具体此处不做限定。无论作为设备还是作为芯片,该网络设备102都可以作为独立的产品进行制造、销售或者使用。
为便于理解,下面以前述图1所示的系统架构为基础,对本申请实施例提供的通信方法进行介绍。
如图2所示,本申请实施例提供的通信方法的一实施例包括:
201.通信装置获取解调参考信号(demodulation reference signal,DMRS)的端口编号,解调参考信号的端口编号用于确定资源块偏移和资源单元偏移。
本申请实施例中,通信装置可以为网络设备或终端设备。
当通信装置为网络设备时,该步骤201可以是网络设备选择解调参考信号的端口编号。
当通信装置为终端设备时,该步骤201可以是终端设备接收网络设备选定的端口编号。
需要说明是,解调参考信号的端口编号在上行传输中和下行传输中不同。下行传输中DMRS的端口编号可以从1000开始,如:1000,1001,…,上行传输中DMRS的端口编号可以从0开始,如:0,1,…。
本申请实施例中,资源块偏移用于指示不同端口编号的DMRS端口对应的PTRS在调度带宽中占用的资源块的位置。
本申请实施例中,资源单元偏移用于表示PTRS在所占用的资源块中占用资源单元的位置,资源单元偏移通常用0,1,2,…,11这12个整数表示。
202.通信装置根据资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元。
203.通信装置根据相位跟踪参考信号的资源单元发送或接收相位跟踪参考信号。
该步骤203中,若是上行传输,则终端设备在相位跟踪参考信号的资源单元上发送相位跟踪参考信号,网络设备从相位跟踪参考信号的资源单元上接收相位跟踪参考信号。
若是下行传输,则网络设备在相位跟踪参考信号的资源单元上发送相位跟踪参考信号,终端设备从相位跟踪参考信号的资源单元上接收相位跟踪参考信号。
本申请实施例中,因为通信装置可以基于DMRS的端口编号确定资源块偏移和资源单元偏移,再进一步确定PTRS所映射的资源单元。这样,可以将DMRS的不同端口编号对应的PTRS映射到不同的资源块中,提高了PTRS干扰随机化的程度。
本申请实施例中在确定相位跟踪参考信号的资源单元之前,可以确定资源单元偏移和资源块偏移,下面分别进行介绍。
1、确定资源单元偏移。
可选地,本申请实施例中的通信方法中,通信装置还获取资源单元偏移指示信息,可以通过解调参考信号的端口编号和资源单元偏移指示信息确定资源单元偏移。
资源单元偏移指示信息可以用Offset 00、Offset 01、Offset 10和Offset 11表示,同一端口编号对应的不同资源单元偏移指示信息的资源单元偏移不同。
可选地,本申请实施例中的通信方法中,通信装置还获取解调参考信号的配置类型,可以通过解调参考信号的端口编号和解调参考信号的配置类型确定资源单元偏移。
解调参考信号的配置类型通常有两种,分别为DMRS配置类型(DMRS configuration type)1和DMRS配置类型2,在不同配置类型下,DMRS的同一端口编号对应的资源单元偏移不同。
为了便于理解,下面结合表格对解调参考信号的端口编号、解调参考信号的配置类型、资源单元偏移指示信息和资源单元偏移进行说明。
因为下行传输与上行传输中的解调参考信号的端口编号不同,下面先介绍下行传输中的解调参考信号的端口编号、解调参考信号的配置类型、资源单元偏移指示信息和资源单元偏移之间的关系。
下表1为下行传输中端口编号1001-1003在配置类型为第一类型时的相关信息。
表1:
表1中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息。1000、1001、1002和1003为下行传输中的四个第一类型的解调参考信号的端口编号。资源单元偏移指示信息和解调参考信号的端口编号相交位置的数值为该端口编号对应的资源单元偏移,如:端口编号1000在Offset 00对应的资源单元偏移为0,端口编号1001在Offset 01对应的资源单元偏移为4。
下表2为下行传输中端口编号1001-1005在配置类型为第二类型时的相关信息。
表2:
表2中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息。1000、1001、1002、1003、1004和1005为下行传输中的六个第二类型的解调参考信号的端口编号。资源单元偏移指示信息和解调参考信号的端口编号相交位置的数值为该端口编号对应的资源单元偏移,如:端口编号1000在Offset 00对应的资源单元偏移为0,端口编号1001在Offset 01对应的资源单元偏移为6。
下表3为下行传输中端口编号1008-1011在配置类型为第一类型时的相关信息。
表3:
表3中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息。1008、1009、1010和1011为下行传输中扩展的四个第一类型的解调参考信号的端口编号。资源单元偏移指示信息和解调参考信号的端口编号相交位置的数值为该端口编号对应的资源单元偏移,如:端口编号1008在Offset 00对应的资源单元偏移为4,端口编号1009在Offset 01对应的资源单元偏移为8。
下表4为下行传输中端口编号1012-1017在配置类型为第二类型时的相关信息。
表4:

表4中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息。1012、1013、1014、1015、1016和1017为下行传输中扩展的六个第二类型的解调参考信号的端口编号。资源单元偏移指示信息和解调参考信号的端口编号相交位置的数值为该端口编号对应的资源单元偏移,如:端口编号1012在Offset 00对应的资源单元偏移为6,端口编号1013在Offset 01对应的资源单元偏移为0。
需要说明的是,第一类型或第二类型的扩展的端口编号对应的资源单元偏移不限于上述表3和表4中的数值,扩展的端口编号也可以直接复用原有的端口编号对应资源单元偏移,如表5和表6中所示。
表5:
表6:
当然,下行传输中的扩展的端口编号在不同的资源单元偏移指示信息下的资源单元偏移还可以有其他的得到方式,本申请中对此不做限定。
以上介绍了下行传输中的配置类型、端口编号、资源单元偏移指示信息和资源单元偏移之间的对应关系,下面介绍上行传输中的配置类型、端口编号、资源单元偏移指示信息和资源单元偏移之间的对应关系。
下表7为上行传输中端口编号0-3在配置类型为第一类型时的相关信息。
表7:
表7中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息。端口编号0、1、2和3为上行传输中的四个第一类型的解调参考信号的端口编号。资源单元偏移指示信息和解调参考信号的端口编号相交位置的数值为该端口编号对应的资源单元偏移,如:端口编号0在Offset 00对应的资源单元偏移为0,端口编号1在Offset 01对应的资源单元偏移为4。
下表8为上行传输中端口编号0-5在配置类型为第二类型时的相关信息。
表8:
表8中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息。端口编号0、1、2、3、4和5为上行传输中的六个第二类型的解调参考信号的端口编号。资源单元偏移指示信息和解调参考信号的端口编号相交位置的数值为该端口编号对应的资源单元偏移,如:端口编号0在Offset 00对应的资源单元偏移为0,端口编号1在Offset 01对应的资源单元偏移为6。
下表9为上行传输中端口编号8-11在配置类型为第一类型时的相关信息。
表9:
表9中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息。端口编号8、9、10和11为上行传输中扩展的四个第一类型的解调参考信号的端口编号。资源单元偏移指示信息和解调参考信号的端口编号相交位置的数值为该端口编号对应的资源单元偏移,如:端口编号8在Offset 00对应的资源单元偏移为4,端口编号9在Offset 01对应的资源单元偏移为8。
下表10为上行传输中端口编号12-17在配置类型为第二类型时的相关信息。
表10:
表10中,Offset 00、Offset 01、Offset 10和Offset 11都为资源单元偏移指示信息。端口编号12、13、14、15、16和17为上行传输中的扩展的六个第二类型的解调参考信号的端口编号。资源单元偏移指示信息和解调参考信号的端口编号相交位置的数值为该端口编号对应的资源单元偏移,如:端口编号1012在Offset 00对应的资源单元偏移为6,端口编号1013在Offset 01对应的资源单元偏移为0。
上行传输中的第一类型或第二类型的扩展的端口编号对应的资源单元偏移不限于上述表10和表11中的数值,扩展的端口编号也可以直接复用如表8和表9原有的端口编号对应资源单元偏移,具体形式可以参阅表6和表7进行理解,将端口编号替换为上行传输中的端口编号即可,此处不再列出相应表格。
上述所介绍的方案中,涉及到了扩展的解调参考信号端口和原有的解调参考信号端口,这些端口都有对应的相位跟踪参考信号。为了便于理解,本申请中,扩展的解调参考信号端口所对应的相位跟踪参 考信号称为第一相位跟踪参考信号,原有的解调参考信号端口所对应的相位跟踪参考信号称为第二相位跟踪参考信号。
这样,在下行传输时,第一相位跟踪参考信号为:解调参考信号的配置类型为第一类型,且解调参考信号的端口编号大于或等于1008的端口对应的相位跟踪参考信号,或者,解调参考信号的配置类型为第二类型,且解调参考信号的端口编号大于或等于1012对应的相位跟踪参考信号。第二相位跟踪参考信号为:解调参考信号的配置类型为第一类型,且解调参考信号的端口编号小于1008的端口对应的相位跟踪参考信号,或者,解调参考信号的配置类型为第二类型的解调参考信号的端口编号小于1012的端口对应的相位跟踪参考信号。
可以理解的是:端口编号大于或等于1008,可以包括1008、1009、1010和1011,端口编号大于或等于1012可以包括1012、1013、1014、1015、1016和1017。端口编号小于1008可以包括1000、1001、1002、1003、1004、1005、1006和1007,端口编号小于1012可以包括1000、1001、1002、1003、1004、1005、1006、1007、1008、1009、1010和1011。
从上述描述中可知,在下行传输时,上述第一类型的小于1008的端口编号可以理解为是第一类型的原有的DMRS端口编号,大于或等于1008的端口编号可以理解为是第一类型的新扩展的DMRS端口编号。上述第二类型的小于1012的端口编号可以理解为是第二类型的原有的DMRS端口编号。大于或等于1012的端口编号可以理解为是第二类型的新扩展的DMRS端口编号。
在上行传输时,第一相位跟踪参考信号为:解调参考信号的配置类型为第一类型,且解调参考信号的端口编号大于或等于8的端口对应的相位跟踪参考信号,或者,解调参考信号的配置类型为第二类型,且解调参考信号的端口编号大于或等于12的端口对应的相位跟踪参考信号;第二相位跟踪参考信号为:解调参考信号的配置类型为第一类型,且解调参考信号的端口编号小于8的端口对应的相位跟踪参考信号,或者,解调参考信号的配置类型为第二类型,且解调参考信号的端口编号小于12的端口对应的相位跟踪参考信号。
可以理解的是:端口编号大于或等于8,可以包括8、9、10和11,端口编号大于或等于12可以包括12、13、14、15、16和17。端口编号小于8可以包括0、1、2、3、4、5、6和7,端口编号小于12可以包括0、1、2、3、4、5、6、7、8、9、10和11。
从上述描述中可知,在上行传输时,上述第一类型的小于8的端口编号可以理解为是第一类型的原有的DMRS端口编号,大于或等于8的端口编号可以理解为是第一类型的新扩展的DMRS端口编号。上述第二类型的小于12的端口编号可以理解为是第二类型的原有的DMRS端口编号。大于或等于12的端口编号可以理解为是第二类型的新扩展的DMRS端口编号。
以上说明了得到资源单元偏移的方案,下面介绍得到资源块偏移的方案。
2.确定资源块偏移。
可选地,通信装置获取终端设备的无线网络临时标识,解调参考信号的端口编号和无线网络临时标识(radio network temporary identity,RNTI)用于确定资源块偏移。
可选地,该终端设备的无线网络临时标识例如可以包括下列标识中的至少一个:小区无线网络临时标识(cell-radio network temporary identifier,C-RNTI)、随机接入响应临时识别(random access response temporary identifier,RA-RNTI)、临时C-RNTI、传输功率控制临时标识(transmit power control temporary identifier,TPC-RNTI),本申请实施例对此不作限定。
可选地,通信装置获取用于传输数据的NRB个资源块,以及相位跟踪参考信号的资源块密度指示信息,NRB为大于1的整数,NRB个资源块的索引为0、1,…,(NRB-1),资源块密度指示信息用于指示相位跟踪参考信号的资源块密度,NRB和资源块密度用于确定资源块偏移。
该种可能的实现方式中,资源块密度指示信息可以指示资源块密度,资源块密度也可以称为频域密度,资源块密度的取值可以为2或4,也即每两个或四个资源块上出现一次PTRS。需要说明的是资源块密度指示信息指示资源块密度的方式可以是间接指示的,例如,下行传输可以通知上行传输带宽的两个阈值,这两个阈值分别用NRB0和NRB1表示,其中,NRB0<NRB1,若NRB0≤NRB<NRB1,则资源块密度的取值为2,若NRB1≤NRB,则资源块密度的取值为4。当然,本申请不限定资源块密度的取值,除了上述所 介绍的资源块密度的取值可以为2或4之外,还可以取其他值。需要说明的是,本申请不限定资源块密度的方式的指示方式,可以是上面介绍的间接指示,也可以是其他方式的间接指示,也可以是直接指示资源块密度。
若是NRB=1,表示只有一个资源块,则资源块偏移为0。
当有多个资源块时,资源块偏移的取值与用于确定相位跟踪参考信号的资源单元的关系式相关。
当采用第一关系式时:资源块偏移包括第一偏移参数和第二偏移参数;第一偏移参数和第二偏移参数用于确定第一相位跟踪参考信号和第二相位跟踪参考信号的资源单元。
上述步骤202包括:通过第一关系式确定第一相位跟踪参考信号或/和第二相位跟踪参考信号的资源单元;第一关系式为:
其中,k为第一相位跟踪参考信号或/和第二相位跟踪参考信号的资源单元的索引,i为自然数,为一个资源块内的子载波个数,KPT-RS为资源块密度,为第一偏移参数,为第二偏移参数,为资源单元偏移;其中,
其中,nRNTI为无线网络临时标识,mod表示取模,NRB为资源块的数量。
其中,若NRB mod KPT-RS=0,则若NRB mod KPT-RS≠0,则
由以上关系式可以看出,第一偏移参数可以通过资源块的数量NRB、资源块密度KPT-RS,以及无线网络临时标识nRNTI得到。
第二偏移参数可以通过KPT-RS,以及得到。
若KPT-RS=2,则:
也就是说,KPT-RS=2时,若
若KPT-RS=4,则
也就是说,KPT-RS=4时,若或1,或3,
以上,当-1、2或-2时得到的k为第一相位跟踪参考信号的资源单元的索引,也就是扩展的端口编号对应的相位跟踪参考信号的资源单元的索引。
得到的k为第二相位跟踪参考信号的资源单元的索引,也就是原来的端口编号对应的相位跟踪参考信号的资源单元的索引。
为了便于理解,下面对以上参数取不同值时第一相位跟踪参考信号和第二相位跟踪参考信号对NRB个资源块的占用情况进行介绍:
(1).资源块密度等于2,NRB为奇数时,第二偏移参数为1,其中,第二偏移参数为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M,M≥0,且M为整数。
也就是KPT-RS=2,NRB为奇数,时,第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M,M≥0,且M为整数。这种情况时:第一相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-2)的资源块,第二相位跟踪参考信号可以占用索引是0、2、4、6、8,…(NRB-1)的资源块。
参阅图3A,以上行传输中的第一类型的端口编号为例,时,在资源单元偏移指示信息为offset 00时,原有的端口编号0、1、2和3对应的第二相位跟踪参考信号映射在资源块RB X上,扩展的端口编号8、9、10和11对应的第一相位跟踪参考信号映射在资源块RB Y上。图3A中,Y=X+1,若RB X的 索引为0,则RB Y的索引为1。图3A中只示意出了两个资源块,若有多个资源块,则可以重复RB X和RB Y图形,只是X和Y的取值也随之增加。
图3B是资源单元偏移指示信息为offset 01时的示意图。从图3B可以看出,相对于图3A,只是第一相位跟踪参考信号在RB Y中的起始RE位置向下移动了两位,从RE0变为了RE2,第二相位跟踪参考信号在RB X中的起始RE位置向下移动了两位,从RE0变为了RE2,其他都可以参阅图3A部分的介绍进行理解。
同理,图3C所示的资源单元偏移指示信息为offset 10时,图3C相对于图3B,只是第一相位跟踪参考信号在RB Y中的起始RE位置向下移动了两位,从RE2变为了RE4,第二相位跟踪参考信号在RB X中的起始RE位置向下移动了两位,从RE2变为了RE4,其他都可以参阅图3A部分的介绍进行理解。
同理,图3D所示的资源单元偏移指示信息为offset 11时,图3D相对于图3C,只是第一相位跟踪参考信号在RB Y中的起始RE位置向下移动了两位,从RE4变为了RE6,第二相位跟踪参考信号在RB X中的起始RE位置向下移动了两位,从RE4变为了RE6,其他都可以参阅图3A部分的介绍进行理解。
(2).资源块密度等于2,NRB为偶数,无线网络临时标识为奇数时,第二偏移参数为-1,其中,第二偏移参数为-1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
也就是KPT-RS=2,NRB为偶数,nRNTI为奇数时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是0、2、4、6、8,…(NRB-2)的资源块,第二相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-1)的资源块。
结合上述图3A至图3D,与之不同的是,第一相位跟踪参考信号占用RB X,第二相位跟踪参考信号占用RB Y,其他都可以参阅前面的介绍进行理解。
(3).资源块密度等于2,NRB为偶数,无线网络临时标识为偶数时,第二偏移参数为1,其中,第二偏移参数为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M,M≥0,且M为整数。
也就是,KPT-RS=2,NRB为偶数,nRNTI为偶数时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是2M,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-1)的资源块,第二相位跟踪参考信号可以占用索引是0、2、4、6、8,…(NRB-2)的资源块。
这种情况,可以参阅上述图3A至图3D进行理解。
(4).资源块密度等于4,NRB是4的整数倍,无线网络临时标识是4的倍数时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。
也就是KPT-RS=4,NRB是4的整数倍,nRNTI是4的倍数时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-2)的资源块,第二相位跟踪参考信号可以占用索引是0、4、8,…(NRB-4)的资源块。
参阅图4,以上行传输中的第一类型的端口编号为例,时,在资源单元偏移指示信息为offset 00时,原有的端口编号0、1、2和3对应的第二相位跟踪参考信号映射在资源块RB X上,扩展的端口编号8、9、10和11对应的第一相位跟踪参考信号映射在资源块RB Y上。图4中,Y=X+2,若RB X的索引为0,则RB Y的索引为2。图4中只示意出了两个资源块,若有多个资源块,则可以重复RB X和RB Y图形,只是X和Y的取值也随之增加。
其他资源单元偏移指示信息为offset 01、10、11时的情况,可以结合图4,再参阅图3B、图3C和图3D进行理解,此处不一一示出。
(5).资源块密度等于4,NRB是4的整数倍,无线网络临时标识取4的模数为1时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。
也就是,KPT-RS=4,NRB是4的整数倍,nRNTI取4的模数为1时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-1)的资源块,第二相位跟踪参考信号可以占用索引是1、5、9,…(NRB-3)的资源块。
(6).资源块密度等于4,NRB是4的整数倍,无线网络临时标识取4的模数为2时,第二偏移参数为-2,其中,第二偏移参数为-2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
也就是说,KPT-RS=4,NRB是4的整数倍,nRNTI取4的模数为2时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是0、4、8,…(NRB-4)的资源块,第二相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-2)的资源块。
这种情况时,参阅图4,第一相位跟踪参考信号占用RB X,第二相位跟踪参考信号占用RB Y。
(7).资源块密度等于4,NRB是4的整数倍,无线网络临时标识取4的模数为3时,第二偏移参数为-2,其中,第二偏移参数为-2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。
也就是说,KPT-RS=4,NRB是4的整数倍,nRNTI取4的模数为3时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是1、5、9,…(NRB-3)的资源块,第二相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-1)的资源块。
这种情况时,参阅图4,第一相位跟踪参考信号占用RB X,第二相位跟踪参考信号占用RB Y。
(8).资源块密度等于4,NRB取4的模数为1时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。
也就是,KPT-RS=4,NRB取4的模数为1,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-3)的资源块,第二相位跟踪参考信号可以占用索引是0、4、8,…(NRB-1)的资源块。
(9).资源块密度等于4,NRB取4的模数为2时,无线网络临时标识为偶数时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。
也就是,KPT-RS=4,NRB取4的模数为2,nRNTI为偶数时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-4)的资源块,第二相位跟踪参考信号可以占用索引是0、4、8,…(NRB-2)的资源块。
(10).资源块密度等于4,NRB取4的模数为2时,无线网络临时标识为奇数时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。
也就是,KPT-RS=4,NRB取4的模数为2,nRNTI为奇数时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-3)的资源块,第二相位跟踪参考信号可以占用索引是1、5、9,…(NRB-1)的资源块。
(11).资源块密度等于4,NRB取4的模数为3,无线网络临时标识取3的模数为0时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示 第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。
也就是,KPT-RS=4,NRB取4的模数为3,nRNTI取3的模数为0时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-1)的资源块,第二相位跟踪参考信号可以占用索引是0、4、8,…(NRB-3)的资源块。
(12).资源块密度等于4,NRB取4的模数为3,无线网络临时标识取3的模数为1时,第二偏移参数为2,其中,第二偏移参数为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。
也就是,KPT-RS=4,NRB取4的模数为3,nRNTI取3的模数为1时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-4)的资源块,第二相位跟踪参考信号可以占用索引是1、5、9,…(NRB-2)的资源块。
(13).资源块密度等于4,NRB取4的模数为3,无线网络临时标识取3的模数为2时,第二偏移参数为-2,其中,第二偏移参数为-2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
也就是,KPT-RS=4,NRB取4的模数为3,nRNTI取3的模数为2时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M,表示第二相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是0、4、8,…(NRB-3)的资源块,第二相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-1)的资源块。
需要说明的是,上述KPT-RS的取值不限于上述列举的2和4,也可以为其他值,本实施例对此不做限定。
以上所介绍的方案中,无论是原来的DMRS的端口编号,还是新扩展的DMRS的端口编号都可以通过第一关系式确定出k,进而正确接收第一相位跟踪参考信号或/和第二相位跟踪参考信号。
以上介绍了通过第一关系式确定第一相位跟踪参考信号的资源单元和第二相位跟踪参考信号的资源单元的索引k的方案,实际上,第一相位跟踪参考信号的资源单元的索引k也可以通过第二关系式确定,这时,上述步骤202包括:通过第二关系式确定第一相位跟踪参考信号的资源单元;第二关系式为:
其中,k为第一相位跟踪参考信号的资源单元的索引,i为自然数,为一个资源块内的子载波个数,KPT-RS为资源块密度,为资源块偏移,为资源单元偏移;其中,
若KPT-RS=2,则:
若KPT-RS=4且NRB mod 4=0,则:
若KPT-RS=4且NRB mod 4=1,则:
若KPT-RS=4且NRB mod 4=2,则:
若KPT-RS=4且NRB mod 4=3,则:
其中,nRNTI为无线网络临时标识,mod表示取模,NRB为资源块的数量。
通过上述第二关系式确定的方案可以包括如下多种:
(1).资源块密度等于2,NRB为奇数时,资源块偏移为1,其中,资源块偏移为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
也就是KPT-RS=2,NRB为奇数时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-2)的资源块。
参阅图5,以上行传输中的第一类型的端口编号为例,时,在资源单元偏移指示信息为offset 00时,扩展的端口编号8、9、10和11对应的第一相位跟踪参考信号映射在索引是奇数的资源块上。图5中,以示意出的四个资源块为例,第一相位跟踪参考信号映射在RB 1和RB 3上。
此处只以资源单元偏移指示信息为offset 00时为例进行说明,其他资源单元偏移指示信息为offset 01、10和11时的情况只是第一相位跟踪参考信号在RB中映射的起始RE的位置不同,可以结合图3B至图3D进行理解,本申请中不一一示出。
(2).资源块密度等于2,NRB为偶数,无线网络临时标识为偶数时,资源块偏移为1,其中,资源块偏移为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
也就是KPT-RS=2,NRB为偶数,nRNTI为偶数时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是1、3、5、7、9,…,(NRB-1)的资源块。
该种情况也可以参阅图5进行理解。
(3).资源块密度等于2,NRB为偶数,无线网络临时标识为奇数时,资源块偏移为0,其中,资源块偏移为0表示第一相位跟踪参考信号所属的资源块的索引是2M,M≥0,且M为整数。
也就是KPT-RS=2,NRB为偶数,nRNTI为奇数时,表示第一相位跟踪参考信号所属的资源块的索引是2M,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是0、2、4、6、8,…,(NRB-2)的资源块。
参阅图6,以上行传输中的第一类型的端口编号为例,时,在资源单元偏移指示信息为offset 00时,扩展的端口编号8、9、10和11对应的第一相位跟踪参考信号映射在索引是偶数的资源块上。图6中,以示意出的四个资源块为例,第一相位跟踪参考信号映射在RB 0和RB 2上。
(4).资源块密度指示信息等于4,NRB是4的整数倍,无线网络临时标识是4的倍数时,资源块偏移为2,其中,资源块偏移为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
也就是KPT-RS=4,NRB是4的整数倍,nRNTI是4的倍数时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-2)的资源块。
参阅图7A,以上行传输中的第一类型的端口编号为例,时,在资源单元偏移指示信息为offset 00时,扩展的端口编号8、9、10和11对应的第一相位跟踪参考信号映射在索引是4M+2,M≥0的资源块上。图7A中,以示意出的七个资源块为例,第一相位跟踪参考信号映射在RB 2和RB 6上。
(5).资源块密度指示信息等于4,NRB是4的整数倍,无线网络临时标识取4的模数为1时,资源块偏移为3,其中,资源块偏移为3表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。
也就是KPT-RS=4,NRB是4的整数倍,nRNTI取4的模数为1时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-1)的资源块。
参阅7B,以上行传输中的第一类型的端口编号为例,时,在资源单元偏移指示信息为offset 00时,扩展的端口编号8、9、10和11对应的第一相位跟踪参考信号映射在索引是4M+3,M≥0的资源块上。图7B中,以示意出的八个资源块为例,第一相位跟踪参考信号映射在RB 3和RB 7上。
(6).资源块密度指示信息等于4,NRB是4的整数倍,无线网络临时标识取4的模数为2时,资源块偏移为0,资源块偏移为0表示第一相位跟踪参考信号所属的资源块的索引是4M,M≥0,且M为整数。
也就是KPT-RS=4,NRB是4的整数倍,nRNTI取4的模数为2时,表示第一相位跟踪参考信号所属的资源块的索引是4M,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是0、4、8,…(NRB-4)的资源块。
参阅图7C,以上行传输中的第一类型的端口编号为例,时,在资源单元偏移指示信息为offset 00时,扩展的端口编号8、9、10和11对应的第一相位跟踪参考信号映射在索引是4M,M≥0的资源块上。图7C中,以示意出的五个资源块为例,第一相位跟踪参考信号映射在RB 0和RB 4上。
(7).资源块密度指示信息等于4,NRB是4的整数倍,无线网络临时标识取4的模数为3时,资源块偏移为1,其中,资源块偏移为1表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。
也就是KPT-RS=4,NRB是4的整数倍,nRNTI取4的模数为3时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+1,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是1、5、9,…(NRB-3)的资源块。
参阅图7D,以上行传输中的第一类型的端口编号为例,时,在资源单元偏移指示信息为offset 00时,扩展的端口编号8、9、10和11对应的第一相位跟踪参考信号映射在索引是4M,M≥0的资源块上。图7D中,以示意出的六个资源块为例,第一相位跟踪参考信号映射在RB 1和RB 5上。
(8).资源块密度指示信息等于4,NRB取4的模数为1时,资源块偏移为2,其中,资源块偏移为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
也就是KPT-RS=4,NRB取4的模数为1时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。这种情况时第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-3)的资源块。
这种情况第一相位跟踪参考信号的映射位置示意图可以参阅图7A进行理解。
(9).资源块密度指示信息等于4,NRB取4的模数为2时,无线网络临时标识为偶数,资源块偏移为2,其中,资源块偏移为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
也就是KPT-RS=4,NRB取4的模数为2,nRNTI为偶数,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是2、6、10,…,(NRB-4)的资源块。
这种情况第一相位跟踪参考信号的映射位置示意图可以参阅图7A进行理解。
(10).资源块密度指示信息等于4,NRB取4的模数为2时,无线网络临时标识为奇数,资源块偏移为3,其中,资源块偏移为3表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。
也就是KPT-RS=4,NRB取4的模数为2,nRNTI为奇数,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-3)的资源块。
这种情况第一相位跟踪参考信号的映射位置示意图可以参阅图7B进行理解。
(11).资源块密度指示信息等于4,NRB取4的模数为3时,无线网络临时标识是3的整数倍,资源块偏移为2,资源块偏移为2表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。
也就是KPT-RS=4,NRB取4的模数为3,nRNTI是3的整数倍,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+2,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以 占用索引是2、6、10,…,(NRB-1)的资源块。
这种情况第一相位跟踪参考信号的映射位置示意图可以参阅图7A进行理解。
(12).资源块密度指示信息等于4,NRB取4的模数为3时,无线网络临时标识取3的模数为1时,资源块偏移为3,其中,资源块偏移为3表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。
也就是KPT-RS=4,NRB取4的模数为3,nRNTI取3的模数为1时,表示第一相位跟踪参考信号的资源单元所属的资源块的索引是4M+3,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是3、7、11,…,(NRB-4)的资源块。
这种情况第一相位跟踪参考信号的映射位置示意图可以参阅图7B进行理解。
(13).资源块密度指示信息等于4,NRB取4的模数为3时,无线网络临时标识取3的模数为2时,资源块偏移为0,其中,资源块偏移为0表示第一相位跟踪参考信号所属的资源块的索引是4M,M≥0,且M为整数。
也就是KPT-RS=4,NRB取4的模数为3,nRNTI取3的模数为2时,表示第一相位跟踪参考信号所属的资源块的索引是4M,M≥0,且M为整数。这种情况时,第一相位跟踪参考信号可以占用索引是0、4、8,…(NRB-3)的资源块。
这种情况第一相位跟踪参考信号的映射位置示意图可以参阅图7C进行理解。
需要说明的是,上述KPT-RS的取值不限于上述列举的2和4,也可以为其他值,本实施例对此不做限定。
下面对本申请实施例提供的通信装置进行描述。请参阅图8,图8为本申请实施例通信装置的一个结构示意图。通信装置800可以用于执行图2至图7D中所示的实施例中终端设备执行的步骤,具体请参考上述方法实施例中的相关介绍。
通信装置800包括收发模块801和处理模块802。收发模块801可以实现相应的通信功能,处理模块802用于进行数据处理。收发模块801还可以称为通信接口或通信单元。
可选地,该通信装置800还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理模块802可以读取存储单元中的指令和/或数据,以使得通信装置实现前述方法实施例。
该通信装置800可以用于执行上文方法实施例中终端设备所执行的动作。该通信装置800可以为终端设备或者可配置于终端设备的部件。收发模块801用于执行上文方法实施例中终端设备侧的接收相关的操作,处理模块802用于执行上文方法实施例中终端设备侧的处理相关的操作。
可选的,收发模块801可以包括发送模块和接收模块。发送模块用于执行上述方法实施例中的发送操作。接收模块用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置800可以包括发送模块,而不包括接收模块。或者,通信装置800可以包括接收模块,而不包括发送模块。具体可以视通信装置800执行的上述方案中是否包括发送动作和接收动作。
作为一种示例,该通信装置800用于执行上文图2所示的实施例中终端设备所执行的动作。
收发模块801,用于接收来自网络设备的配置信息,如:DMRS的端口编号。
处理模块802,用于根据资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元。
收发模块801,还用于根据相位跟踪参考信号的资源单元发送或接收相位跟踪参考信号。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理模块802可以由至少一个处理器或处理器相关电路实现。收发模块801可以由收发器或收发器相关电路实现。收发模块801还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
下面对本申请实施例提供的通信装置进行描述。请参阅图9,图9为本申请实施例通信装置的一个结构示意图。通信装置900可以用于执行图2中所示的实施例中网络设备执行的步骤,具体请参考上述 方法实施例中的相关介绍。
通信装置900包括收发模块901。可选的,通信装置900还包括处理模块902。收发模块901可以实现相应的通信功能,处理模块902用于进行数据处理。收发模块901还可以称为通信接口或通信单元。
该通信装置900可以用于执行上文方法实施例中终端设备所执行的动作。该通信装置900可以为网络设备或者可配置于网络设备的部件。收发模块901用于执行上文方法实施例中网络设备侧的接收相关的操作。
可选的,收发模块901可以包括发送模块和接收模块。发送模块用于执行上述方法实施例中的发送操作。接收模块用于执行上述方法实施例中的接收操作。
需要说明的是,通信装置900可以包括发送模块,而不包括接收模块。或者,通信装置900可以包括接收模块,而不包括发送模块。具体可以视通信装置900执行的上述方案中是否包括发送动作和接收动作。
作为一种示例,该通信装置900用于执行上文图2所示的实施例中网络设备所执行的动作。
收发模块901,用于向终端设备发送配置信息,如:DMRS的端口编号。
处理模块902,用于根据资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元。收发模块901,还用于根据相位跟踪参考信号的资源单元发送或接收相位跟踪参考信号。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
上文实施例中的处理模块902可以由至少一个处理器或处理器相关电路实现。收发模块901可以由收发器或收发器相关电路实现。收发模块901还可称为通信单元或通信接口。存储单元可以通过至少一个存储器实现。
本申请实施例还提供一种通信装置1000。该通信装置1000包括处理器1010,处理器1010与存储器1020耦合,存储器1020用于存储计算机程序或指令和/或数据,处理器1010用于执行存储器1020存储的计算机程序或指令和/或数据,使得上文方法实施例中的方法被执行。
可选地,该通信装置1000包括的处理器1010为一个或多个。
可选地,如图10所示,该通信装置1000还可以包括存储器1020。
可选地,该通信装置1000包括的存储器1020可以为一个或多个。
可选地,该存储器1020可以与该处理器1010集成在一起,或者分离设置。
可选地,如图10所示,该通信装置1000还可以包括收发器1030,收发器1030用于信号的接收和/或发送。例如,处理器1010用于控制收发器1030进行信号的接收和/或发送。
作为一种方案,该通信装置1000用于实现上文方法实施例中由终端设备执行的操作。
例如,处理器1010用于实现上文方法实施例中由终端设备执行的处理相关的操作,收发器1030用于实现上文方法实施例中由终端设备执行的收发相关的操作。
作为另一种方案,该通信装置1000用于实现上文方法实施例中由网络设备执行的操作。
例如,处理器1010用于实现上文方法实施例中由网络设备执行的处理相关的操作,收发器1030用于实现上文方法实施例中由网络设备执行的收发相关的操作。
本申请实施例还提供一种通信装置1100,该通信装置1100可以是终端设备也可以是芯片。该通信装置1100可以用于执行上述方法实施例中由终端设备所执行的操作。
当该通信装置1100为终端设备时,图11示出了一种简化的终端设备的结构示意图。如图11所示,终端设备包括处理器、存储器、收发器,其中存储器可以存储计算机程序代码,收发器包括发射机1131、接收机1132、射频电路(图中未示出)、天线1133以及输入输出装置(图中未示出)。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图11中仅示出了一个存储器、处理器和收发器,在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。
如图11所示,终端设备包括处理器1110、存储器1120和收发器1130。处理器1110也可以称为处理单元,处理单板,处理模块、处理装置等,收发器1130也可以称为收发单元、收发机、收发装置等。
可选地,可以将收发器1130中用于实现接收功能的器件视为接收单元,将收发器1130中用于实现发送功能的器件视为发送单元,即收发器1130包括接收器和发送器。收发器有时也可以称为收发机、收发单元、或收发电路等。接收器有时也可以称为接收机、接收单元、或接收电路等。发送器有时也可以称为发射机、发射单元或者发射电路等。
例如,在一种实现方式中,处理器1110用于执行图2所示的实施例中终端设备侧的处理动作,收发器1130用于执行图2中终端设备侧的收发动作。例如,收发器1130用于执行图2所示的实施例中的步骤201和步骤203的收发操作。处理器1110用于执行图2所示的实施例中的步骤202的处理操作。
应理解,图11仅为示例而非限定,上述包括收发单元和处理单元的终端设备可以不依赖于图11所示的结构。
当该通信装置1100为芯片时,该芯片包括处理器、存储器和收发器。其中,收发器可以是输入输出电路或通信接口;处理器可以为该芯片上集成的处理单元或者微处理器或者集成电路。上述方法实施例中终端设备的发送操作可以理解为芯片的输出,上述方法实施例中终端设备的接收操作可以理解为芯片的输入。
本申请实施例还提供一种通信装置1200,该通信装置1200可以是网络设备也可以是芯片。该通信装置1200可以用于执行上述方法实施例中由网络设备所执行的操作。
当该通信装置1200为网络设备时,例如为基站。图12示出了一种简化的基站结构示意图。基站包括1210部分、1220部分以及1230部分。1210部分主要用于基带处理,对基站进行控制等;1210部分通常是基站的控制中心,通常可以称为处理器,用于控制基站执行上述方法实施例中网络设备侧的处理操作。1220部分主要用于存储计算机程序代码和数据。1230部分主要用于射频信号的收发以及射频信号与基带信号的转换;1230部分通常可以称为收发单元、收发机、收发电路、或者收发器等。1230部分的收发单元,也可以称为收发机或收发器等,其包括天线1233和射频电路(图中未示出),其中射频电路主要用于进行射频处理。可选地,可以将1230部分中用于实现接收功能的器件视为接收机,将用于实现发送功能的器件视为发射机,即1230部分包括接收机1232和发射机1231。接收机也可以称为接收单元、接收器、或接收电路等,发送机可以称为发射单元、发射器或者发射电路等。
1210部分与1220部分可以包括一个或多个单板,每个单板可以包括一个或多个处理器和一个或多个存储器。处理器用于读取和执行存储器中的程序以实现基带处理功能以及对基站的控制。若存在多个单板,各个单板之间可以互联以增强处理能力。作为一种可选的实施方式,也可以是多个单板共用一个或多个处理器,或者是多个单板共用一个或多个存储器,或者是多个单板同时共用一个或多个处理器。
例如,在一种实现方式中,1230部分的收发单元用于执行图2所示实施例中由网络设备执行的收发相关的步骤。1210部分的处理器用于执行图2所示实施例中由网络设备执行的处理相关的步骤。
应理解,图12仅为示例而非限定,上述包括处理器、存储器以及收发器的网络设备可以不依赖于图12所示的结构。
当该通信装置1200为芯片时,该芯片包括收发器、存储器和处理器。其中,收发器可以是输入输出电路、通信接口;处理器为该芯片上集成的处理器或者微处理器或者集成电路。上述方法实施例中网 络设备的发送操作可以理解为芯片的输出,上述方法实施例中网络设备的接收操作可以理解为芯片的输入。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被计算机执行时使得该计算机实现上述方法实施例中由终端设备执行的方法,或由网络设备执行的方法。
本申请实施例还提供一种通信系统,该通信系统包括上文实施例中的网络设备与终端设备。
本申请实施例还提供一种芯片装置,包括处理器,用于调用该存储器中存储的计算机程度或计算机指令,以使得该处理器执行上述图2至图7D所示的实施例的通信方法。
一种可能的实现方式中,该芯片装置的输入对应上述图2至图7D所示的实施例中的接收操作,该芯片装置的输出对应上述图2至图7D所示的实施例中的发送操作。
可选的,该处理器通过接口与存储器耦合。
可选的,该芯片装置还包括存储器,该存储器中存储有计算机程度或计算机指令。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述图2至图7D所示的实施例的通信方法的程序执行的集成电路。上述任一处提到的存储器可以为只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
所属领域的技术人员可以清楚地了解到,为描述方便和简洁,上述提供的任一种通信装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请实施例中,终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。其中,硬件层可以包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。操作系统层的操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。应用层可以包含浏览器、通讯录、文字处理软件、即时通信软件等应用。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所 述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案范围。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    获取解调参考信号的端口编号,所述解调参考信号的端口编号用于确定资源块偏移和资源单元偏移;
    根据所述资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元;
    根据所述相位跟踪参考信号的资源单元发送或接收所述相位跟踪参考信号。
  2. 根据权利要求1所述方法,其特征在于,所述方法还包括:
    获取终端设备的无线网络临时标识,所述解调参考信号的端口编号和所述无线网络临时标识用于确定所述资源块偏移。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    获取资源单元偏移指示信息,所述解调参考信号的端口编号和所述资源单元偏移指示信息用于确定所述资源单元偏移。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    获取解调参考信号的配置类型,所述解调参考信号的端口编号和所述解调参考信号的配置类型用于确定所述资源块偏移和所述资源单元偏移。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    获取用于传输数据的NRB个资源块,以及所述相位跟踪参考信号的资源块密度指示信息,所述NRB为大于1的整数,所述NRB个资源块的索引为0、1,…,(NRB-1),所述资源块密度指示信息用于指示所述相位跟踪参考信号的资源块密度,NRB和所述资源块密度用于确定所述资源块偏移。
  6. 根据权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    获取用于传输数据的NRB个资源块,NRB=1时,所述资源块偏移为0。
  7. 根据权利要求5所述的方法,其特征在于,在下行传输时,
    所述相位跟踪参考信号为第一相位跟踪参考信号,或,第二相位跟踪参考信号;
    所述第一相位跟踪参考信号为:所述解调参考信号的配置类型为第一类型,且所述解调参考信号的端口编号大于或等于1008的端口对应的相位跟踪参考信号,或者,所述解调参考信号的配置类型为第二类型,且所述解调参考信号的端口编号大于或等于1012对应的相位跟踪参考信号;
    所述第二相位跟踪参考信号为:所述解调参考信号的配置类型为所述第一类型,且所述解调参考信号的端口编号小于1008的端口对应的相位跟踪参考信号,或者,所述解调参考信号的配置类型为所述第二类型的解调参考信号的端口编号小于1012的端口对应的相位跟踪参考信号。
  8. 根据权利要求5所述的方法,其特征在于,在上行传输时,
    所述相位跟踪参考信号为第一相位跟踪参考信号,或,第二相位跟踪参考信号;
    所述第一相位跟踪参考信号为:所述解调参考信号的配置类型为第一类型,且所述解调参考信号的端口编号大于或等于8的端口对应的相位跟踪参考信号,或者,所述解调参考信号的配置类型为第二类型,且所述解调参考信号的端口编号大于或等于12的端口对应的相位跟踪参考信号;
    所述第二相位跟踪参考信号为:所述解调参考信号的配置类型为所述第一类型,且所述解调参考信号的端口编号小于8的端口对应的相位跟踪参考信号,或者,所述解调参考信号的配置类型为所述第二类型,且所述解调参考信号的端口编号小于12的端口对应的相位跟踪参考信号。
  9. 根据权利要求7或8所述的方法,其特征在于,所述资源块偏移包括第一偏移参数和第二偏移参数;
    所述第一偏移参数和所述第二偏移参数用于确定所述第一相位跟踪参考信号和所述第二相位跟踪参考信号的资源单元。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元,包括:
    通过第一关系式确定所述第一相位跟踪参考信号或/和所述第二相位跟踪参考信号的资源单元;
    所述第一关系式为:
    其中,k为所述第一相位跟踪参考信号或/和所述第二相位跟踪参考信号的资源单元的索引,i为自然数,为一个资源块内的子载波个数,KPT-RS为所述资源块密度,为所述第一偏移参数,koRfBfset为所述第二偏移参数,为所述资源单元偏移;其中,
    其中,nRNTI为无线网络临时标识,mod表示取模,NRB为所述资源块的数量。
  11. 根据权利要求10所述的方法,其特征在于,
    KPT-RS=2时,若
    KPT-RS=4时,若
    所述k为所述第一相位跟踪参考信号的资源单元的索引。
  12. 根据权利要求10所述的方法,其特征在于,所述k为所述第二相位跟踪参考信号的资源单元的索引。
  13. 根据权利要求9-11任一项所述的方法,其特征在于,所述资源块密度等于2,NRB为奇数时,所述第二偏移参数为1,其中,所述第二偏移参数为1表示所述第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,表示所述第二相位跟踪参考信号的资源单元所属的资源块的索引是2M,M≥0,且M为整数。
  14. 根据权利要求9-11任一项所述的方法,其特征在于,所述资源块密度等于2,NRB为偶数,无线网络临时标识为奇数时,所述第二偏移参数为-1,其中,所述第二偏移参数为-1表示所述第一相位跟踪参考信号的资源单元所属的资源块的索引是2M,表示所述第二相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
  15. 根据权利要求9-11任一项所述的方法,其特征在于,所述资源块密度等于2,NRB为偶数,无线网络临时标识为偶数时,所述第二偏移参数为1,其中,所述第二偏移参数为1表示所述第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,表示所述第二相位跟踪参考信号的资源单元所属的资源块的索引是2M,M≥0,且M为整数。
  16. 根据权利要求7或8所述的方法,其特征在于,所述根据所述资源块偏移和资源单元偏移确定相位跟踪参考信号的资源单元,包括:
    通过第二关系式确定所述第一相位跟踪参考信号的资源单元;
    所述第二关系式为:
    其中,k为所述第一相位跟踪参考信号的资源单元的索引,i为自然数,为一个资源块内的子载波个数,KPT-RS为所述资源块密度,为所述资源块偏移,为所述资源单元偏移;其中,
    若KPT-RS=2,则:
    若KPT-RS=4且NRBmod 4=0,则:
    若KPT-RS=4且NRBmod 4=1,则:
    若KPT-RS=4且NRBmod 4=2,则:
    若KPT-RS=4且NRBmod 4=3,则:
    其中,nRNTI为所述无线网络临时标识,mod表示取模,NRB为所述资源块的数量。
  17. 根据权利要求7、8或16所述的方法,其特征在于,所述资源块密度等于2,NRB为奇数时,所述资源块偏移为1,其中,所述资源块偏移为1表示所述第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
  18. 根据权利要求7、8或16所述的方法,其特征在于,所述资源块密度等于2,NRB为偶数,无线网络临时标识为偶数时,所述资源块偏移为1,其中,所述资源块偏移为1表示所述第一相位跟踪参考信号的资源单元所属的资源块的索引是2M+1,M≥0,且M为整数。
  19. 根据权利要求7、8或16所述的方法,其特征在于,所述资源块密度等于2,NRB为偶数,无线网络临时标识为奇数时,所述资源块偏移为0,其中,所述资源块偏移为0表示所述第一相位跟踪参考信号所属的资源块的索引是2M,M≥0,且M为整数。
  20. 一种通信装置,其特征在于,所述通信装置包括收发模块和处理模块,所述收发模块用于执行上述权利要求1至19中任一项所述方法的收发操作,所述处理模块用于执行上述权利要求1至19中任一项所述方法的处理操作。
  21. 一种通信装置,其特征在于,所述通信装置包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机程序或计算机指令,使得所述通信装置执行如权利要求1至19中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得所述通信装置执行如权利要求1至19中任一项所述的方法。
  23. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1至19中任一项所述的方法。
PCT/CN2023/121624 2022-09-30 2023-09-26 一种通信方法及通信装置 WO2024067605A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211214461.XA CN117811711A (zh) 2022-09-30 2022-09-30 一种通信方法及通信装置
CN202211214461.X 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067605A1 true WO2024067605A1 (zh) 2024-04-04

Family

ID=90427538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121624 WO2024067605A1 (zh) 2022-09-30 2023-09-26 一种通信方法及通信装置

Country Status (2)

Country Link
CN (1) CN117811711A (zh)
WO (1) WO2024067605A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478993A (zh) * 2017-03-25 2019-03-15 Lg 电子株式会社 无线通信系统中终端接收相位跟踪参考信号的方法和支持该方法的设备
CN109802796A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 参考信号的传输方法和传输装置
CN111092711A (zh) * 2019-11-08 2020-05-01 中兴通讯股份有限公司 参考信号的位置确定方法、装置、通信节点和存储介质
CN111213414A (zh) * 2017-08-11 2020-05-29 联想(北京)有限公司 确定dmrs和ptrs之间的关联

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478993A (zh) * 2017-03-25 2019-03-15 Lg 电子株式会社 无线通信系统中终端接收相位跟踪参考信号的方法和支持该方法的设备
CN111213414A (zh) * 2017-08-11 2020-05-29 联想(北京)有限公司 确定dmrs和ptrs之间的关联
CN109802796A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 参考信号的传输方法和传输装置
CN111092711A (zh) * 2019-11-08 2020-05-01 中兴通讯股份有限公司 参考信号的位置确定方法、装置、通信节点和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LENOVO, MOTOROLA MOBILITY: "Corrections on PTRS", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1800394, 12 January 2018 (2018-01-12), XP051384314 *

Also Published As

Publication number Publication date
CN117811711A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US20200220750A1 (en) Reference signal transmission method and transmission apparatus
EP3709550B1 (en) Information indication method, terminal device and network device
WO2016074157A1 (en) Method, apparatus, system and computer program
WO2021032017A1 (zh) 通信方法和装置
WO2020238992A1 (zh) 一种通信方法及装置
WO2020216130A1 (zh) 一种通信方法及装置
WO2021082930A1 (zh) 一种终端类型的确定方法、网络设备及终端
WO2020052646A1 (zh) 生成参考信号的方法和装置
JP2021503210A (ja) リソース構成方法、端末装置及びネットワーク装置
US20190305902A1 (en) Reference signal transmission method and apparatus
WO2017121384A1 (zh) 一种无线帧的传输方法以及无线网络设备
WO2020098594A1 (zh) 一种序列的生成及处理方法和装置
WO2024067605A1 (zh) 一种通信方法及通信装置
WO2019214586A1 (zh) 通信方法和通信装置
TW201720085A (zh) 針對機器類型通訊(mtc)來執行實體廣播通道(pbch)重複符號對映
US20220272745A1 (en) Communication method and communications apparatus
WO2022165671A1 (zh) 一种通信方法和装置
EP4138477A1 (en) Physical downlink control channel configuration method, apparatus, device, and storage medium
WO2021207908A1 (zh) 一种随机接入方法及终端设备
WO2024066687A1 (zh) 一种确定资源的方法以及通信装置
WO2024065196A1 (zh) 数据传输方法及装置
WO2023066354A1 (zh) 一种端口确定方法、装置、芯片及模组设备
WO2022056856A1 (zh) 一种物理下行控制信道传输方法及装置
WO2023066382A1 (zh) 一种偏移值确定方法、装置、芯片及模组设备
WO2022206271A1 (zh) 一种确定资源的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870833

Country of ref document: EP

Kind code of ref document: A1