WO2024067544A1 - 候选主辅小区评估方法及装置、计算机可读存储介质 - Google Patents

候选主辅小区评估方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2024067544A1
WO2024067544A1 PCT/CN2023/121372 CN2023121372W WO2024067544A1 WO 2024067544 A1 WO2024067544 A1 WO 2024067544A1 CN 2023121372 W CN2023121372 W CN 2023121372W WO 2024067544 A1 WO2024067544 A1 WO 2024067544A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary
candidate
pscell
base station
user equipment
Prior art date
Application number
PCT/CN2023/121372
Other languages
English (en)
French (fr)
Inventor
邓云
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2024067544A1 publication Critical patent/WO2024067544A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present invention relates to the field of wireless communication technology, and in particular to a candidate primary and secondary cell evaluation method and device, and a computer-readable storage medium.
  • a conditional switching mechanism in which the configuration of the candidate cell and the corresponding switching condition (switching execution condition, conditional execution condition) are carried in the reconfiguration signaling, such as judging whether the signal quality of the candidate target cell is higher than the signal quality of the current serving cell by a predetermined offset.
  • the user equipment judges whether the switching condition (switching execution condition) of the candidate cell is met. If it is met, the user equipment uses the configuration parameters of the candidate cell contained in the reconfiguration signaling to access the target cell, synchronize with the target cell, initiate a random access process in the target cell, and implement the switching process.
  • the user equipment can establish dual connections, which can include different types. In wireless communication scenarios, multiple different dual connections can be collectively referred to as multi-radio dual connectivity (Multi Radio Dual Connectivity, MR-DC).
  • MR-DC can include EN-DC (E-UTRAN NR Dual Connectivity), NE-DC (NR E-UTRAN Dual Connectivity), NR-DC (NR NR Dual Connectivity), etc.
  • the secondary base station (SN) side can adopt a conditional switching mechanism. Since the change of the secondary cell group (SCG) on the secondary base station side is not a switch in the strict sense, it is usually called a conditional PSCell Change (CPC).
  • SCG secondary cell group
  • CPC conditional PSCell Change
  • the master base station (MN) or the secondary base station (SN) configures multiple candidate PSCells for the user equipment. After executing the conditional PSCell Change, the user equipment continues to retain the configuration of other candidate PSCells and continues to evaluate other candidate PSCells to avoid unnecessary release of candidate PSCells.
  • the embodiment of the present invention solves the technical problem that continuous evaluation of candidate PSCells results in high power consumption of user equipment.
  • the present invention provides a candidate primary and secondary cell evaluation method, including: updating from a source primary and secondary cell to a target primary and secondary cell; evaluating part or all of the candidate primary and secondary cells; or, in response to a trigger condition, evaluating the candidate primary and secondary cells.
  • the evaluating the candidate primary and secondary cells in response to a trigger condition includes: evaluating the candidate primary and secondary cells when a signal quality of the target primary and secondary cells is less than or equal to a preset threshold.
  • the evaluating the candidate primary and secondary cells in response to a trigger condition includes: receiving indication information, and evaluating the candidate primary and secondary cells.
  • the evaluating part or all of the candidate primary and secondary cells includes: evaluating other candidate primary and secondary cells except the second candidate primary and secondary cell.
  • the candidate primary and secondary cell evaluation method further includes: receiving configuration information; the configuration information is used to configure the candidate primary and secondary cells and indicate the second candidate primary and secondary cell.
  • the target primary and secondary cell and the second candidate primary and secondary cell are non-adjacent cells.
  • the evaluating part or all of the candidate primary and secondary cells includes: evaluating part or all of the candidate primary and secondary cells in response to the trigger condition.
  • evaluating part or all of the candidate primary and secondary cells includes: when the signal quality of the target primary and secondary cell is less than or equal to a preset threshold, evaluating other candidate primary and secondary cells except the second candidate primary and secondary cell.
  • the method further includes: updating the candidate primary and secondary cells.
  • the updating of the candidate primary and secondary cells includes: deleting the configuration of the candidate primary and secondary cells belonging to a source secondary base station; and the target primary and secondary cells and the source primary and secondary cells belong to different secondary base stations.
  • An embodiment of the present invention further provides another candidate primary and secondary cell evaluation method, comprising: deleting configuration of a candidate primary and secondary cell belonging to a source secondary base station, wherein: the source primary and secondary cell and the target primary and secondary cell belong to different secondary base stations.
  • the candidate primary and secondary cell evaluation method further includes: if the target primary and secondary cell and the source primary and secondary cell belong to the same secondary base station, the configuration of the candidate primary and secondary cells belonging to the same secondary base station as the source primary and secondary cell will continue to be saved.
  • the candidate primary and secondary cell evaluation method further includes: upon detecting that a primary base station switching is to be performed, deleting configurations of all candidate primary and secondary cells.
  • the candidate primary and secondary cell evaluation method further includes: evaluating candidate primary and secondary cells whose secondary base stations are different from the source secondary base station.
  • the secondary base station to which the pair belongs is different from the secondary base station to which the source primary and secondary cells belong.
  • the candidate primary and secondary cells are evaluated, including: when the signal quality of the target primary and secondary cells is less than or equal to a preset threshold, evaluating the first remaining candidate primary and secondary cells; the first remaining candidate primary and secondary cells are: the remaining candidate primary and secondary cells after deleting the candidate primary and secondary cells belonging to the source secondary base station from all the candidate primary and secondary cells.
  • the evaluation of candidate primary and secondary cells whose secondary base stations are different from the secondary base stations to which the source primary and secondary cells belong includes: evaluating the candidate primary and secondary cells other than the second candidate primary and secondary cells in the first remaining candidate primary and secondary cells; the first remaining candidate primary and secondary cells are: the remaining candidate primary and secondary cells after deleting the candidate primary and secondary cells belonging to the source secondary base station from all candidate primary and secondary cells.
  • the candidate primary and secondary cell evaluation method further includes: receiving configuration information; the configuration information is used to configure the candidate primary and secondary cells, and the configuration information is used to indicate the second candidate primary and secondary cells.
  • the second candidate primary and secondary cell is not adjacent to the target primary and secondary cell.
  • the evaluating the candidate primary and secondary cells whose secondary base stations are different from the secondary base stations of the source primary and secondary cells includes: when the signal quality of the target primary and secondary cells is less than or equal to a preset threshold, evaluating the candidate primary and secondary cells in the first remaining candidate primary and secondary cells except the second candidate primary and secondary cell.
  • the evaluating the candidate primary and secondary cells to which the secondary base station belongs is different from the secondary base station to which the source primary and secondary cells belong includes: receiving indication information, and evaluating the candidate primary and secondary cells to which the secondary base station belongs is different from the secondary base station to which the source primary and secondary cells belong.
  • the embodiment of the present invention further provides a primary and secondary cell update method, comprising: obtaining a target sk-counter parameter used for the current execution conditional primary and secondary cell update; generating a first security parameter K SN based on the target sk-counter parameter; and accessing a target primary and secondary cell based on the first security parameter K SN .
  • the obtaining of the target sk-counter parameter used for the current secondary execution of the conditional primary and secondary cell update includes: obtaining the number of primary and secondary cell condition updates between secondary base stations; determining the number of primary and secondary cell condition updates between secondary base stations according to the configuration information and the number of primary and secondary cell condition updates between secondary base stations.
  • the target sk-counter parameter used for updating the current execution condition primary and secondary cells; the configuration information is used to configure the sk-counter parameter.
  • the configuration information configures multiple sk-counter parameters; determining the target sk-counter parameter used for the current execution of the primary and secondary cell update based on the configuration information and the number of times the primary and secondary cell conditions are updated between the secondary base stations, includes: selecting a corresponding sk-counter parameter from the multiple sk-counter parameters as the target sk-counter parameter based on the number of times the primary and secondary cell conditions are updated between the secondary base stations.
  • the configuration information configures a sk-counter parameter; determining the target sk-counter parameter used for the current execution of the conditional primary and secondary cell update based on the configuration information and the number of times the primary and secondary cell conditions are updated between the secondary base stations, includes: updating the sk-counter parameter a corresponding number of times according to the number of times the primary and secondary cell conditions are updated between the secondary base stations, and using the obtained updated value as the target sk-counter parameter.
  • the target primary and secondary cell after accessing the target primary and secondary cell based on the first security parameter K SN , it also includes: reporting the number of primary and secondary cell updates associated with the first security parameter K SN to the target primary and secondary cell.
  • accessing the target primary and secondary cells based on the first security parameter K SN includes: updating the first security parameter based on the first security parameter K SN and parameters of the target primary and secondary cells; and accessing the target primary and secondary cells based on the updated first security parameter K SN .
  • An embodiment of the present invention also provides another primary and secondary cell update method, which is applied to a primary base station, including: determining whether a user equipment has executed a primary and secondary cell condition update; updating an sk-counter parameter, and using the updated sk-counter parameter and a second security parameter K MN to update a first security parameter K SN ; and sending the updated first security parameter K SN to a candidate primary and secondary cell configured for the user equipment.
  • the determining that the user equipment has executed the update of the primary and secondary cell conditions includes: determining that the user equipment has executed the update of the primary and secondary cell conditions between secondary base stations.
  • An embodiment of the present invention further provides another method for updating a primary and secondary cell, comprising: configuring multiple first security parameters K SN for selected candidate primary and secondary cells, and configuring multiple sk-counter parameters for user equipment; different first security parameters K SN have different values, and the sk-counter parameter corresponds one-to-one to the first security parameter K SN .
  • An embodiment of the present invention also provides another method for updating a primary and secondary cell, comprising: receiving configuration information, the configuration information comprising multiple first security parameters K SN , and the first security parameter K SN corresponds one-to-one to multiple sk-counter parameters configured by the primary base station for the user equipment; different first security parameters K SN have different values; determining a target primary and secondary cell, traversing the multiple first security parameters K SN , and generating integrity protection keys that correspond one-to-one to the multiple first security parameters K SN ; using the obtained multiple integrity protection keys to verify the information sent by the user equipment, and determining the target first security parameter K SN from the multiple first security parameters K SN .
  • An embodiment of the present invention provides a candidate primary and secondary cell evaluation device, including: a first update unit, used to update from a source primary and secondary cell to a target primary and secondary cell; a first evaluation unit, used to evaluate part or all of the candidate primary and secondary cells; or, in response to a trigger condition, evaluate the candidate primary and secondary cells.
  • An embodiment of the present invention also provides another candidate primary and secondary cell evaluation device, including: a second updating unit, used to update from a source primary and secondary cell to a target primary and secondary cell; a first processing unit, used to delete the configuration of the candidate primary and secondary cell belonging to a source secondary base station, wherein: the source primary and secondary cell and the target primary and secondary cell belong to different secondary base stations.
  • An embodiment of the present invention also provides a primary and secondary cell update device, including: a first acquisition unit, used to obtain a target sk-counter parameter used for the current execution conditional primary and secondary cell update; a first generation unit, used to generate a first security parameter K SN based on the target sk-counter parameter; a first access unit, used to access the target primary and secondary cell based on the first security parameter K SN .
  • the embodiment of the present invention further provides another primary and secondary cell updating device, comprising: a first determining unit, configured to determine whether the user equipment has executed the primary and secondary cell condition update; a third updating unit, configured to update the sk-counter parameter, and use the updated sk-counter parameter with The second security parameter K MN is used to update the first security parameter K SN .
  • the first sending unit is used to send the updated first security parameter K SN to the candidate primary and secondary cells configured for the user equipment.
  • An embodiment of the present invention also provides another primary and secondary cell updating device, comprising: a first configuration unit, used to configure multiple first security parameters K SN for selected candidate primary and secondary cells, and configure multiple sk-counter parameters for user equipment; different first security parameters K SN have different values, and the sk-counter parameter corresponds one-to-one to the first security parameter K SN .
  • An embodiment of the present invention further provides another primary and secondary cell updating device, comprising: a first receiving unit, used to receive configuration information, the configuration information comprising multiple first security parameters K SN , and the first security parameter K SN corresponds one-to-one to multiple sk-counter parameters configured by the primary base station for the user equipment; different first security parameters K SN have different values; a second generating unit, used to determine as a target primary and secondary cell, traverse the multiple first security parameters K SN , and generate integrity protection keys corresponding one-to-one to the multiple first security parameters K SN ; a second determining unit, used to use the obtained multiple integrity protection keys to verify the information sent by the user equipment, and determine the target first security parameter K SN from the multiple first security parameters K SN .
  • the present invention also provides a computer-readable storage medium, which is a non-volatile storage medium or a non-transient storage medium, on which a computer program is stored.
  • a computer program When the computer program is run by a processor, the steps of any of the above-mentioned candidate primary and secondary cell evaluation methods are executed; or, the steps of any of the above-mentioned primary and secondary cell update methods are executed.
  • the present invention also provides a candidate primary and secondary cell evaluation device, comprising a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and the processor executes the steps of any of the above-mentioned candidate primary and secondary cell evaluation methods when running the computer program.
  • the embodiment of the present invention further provides a primary and secondary cell updating device, comprising a memory and a processor, wherein the memory stores a computer program that can be run on the processor, and the processor executes any one of the primary and secondary cell updating operations described above when running the computer program. Steps of the new approach.
  • the candidate primary and secondary cells are evaluated only if the triggering conditions are met, which can reduce the number of times the candidate primary and secondary cells are evaluated, thereby reducing the power consumption of the user equipment.
  • candidate primary and secondary cells may be updated, thereby reducing the number of candidate primary and secondary cells that need to be evaluated and reducing the power consumption of the user equipment.
  • some candidate primary and secondary cells are updated, which can reduce the number of candidate primary and secondary cells that need to be evaluated and the number of evaluations, and further reduce the power consumption of the user equipment.
  • FIG1 is a flow chart of a method for evaluating candidate primary and secondary cells in an embodiment of the present invention
  • FIG2 is a flow chart of another candidate primary and secondary cell evaluation method in an embodiment of the present invention.
  • FIG3 is a flow chart of a method for updating a primary and secondary cell in an embodiment of the present invention.
  • FIG4 is a flow chart of another method for updating primary and secondary cells in an embodiment of the present invention.
  • FIG5 is a schematic diagram of the structure of a candidate primary and secondary cell evaluation device in an embodiment of the present invention.
  • FIG6 is a schematic diagram of the structure of another candidate primary and secondary cell evaluation device in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a primary and secondary cell updating device according to an embodiment of the present invention.
  • FIG8 is a schematic structural diagram of another apparatus for updating primary and secondary cells in an embodiment of the present invention.
  • the user equipment has established dual connections, and the user equipment updates from the source primary and secondary cells to the target primary and secondary cells.
  • the candidate primary and secondary cells are evaluated only if the triggering conditions are met, which can reduce the number of times the candidate primary and secondary cells are evaluated, thereby reducing the power consumption of the user equipment.
  • only some of the candidate primary and secondary cells can be updated, reducing the number of candidate primary and secondary cells that need to be evaluated, thereby reducing the power consumption of the user equipment.
  • An embodiment of the present invention provides a method for updating a primary and secondary cell, which is described below through specific steps with reference to FIG. 1 .
  • the candidate primary and secondary cell evaluation method recorded in the following steps S101 to S102 can be executed by a chip with a data processing function in the user equipment, or by a chip module with a data processing function in the user equipment, or by the user equipment.
  • the following takes the user equipment executing the candidate primary and secondary cell evaluation method as an example for description.
  • Step S101 updating from a source primary and secondary cell to a target primary and secondary cell.
  • the primary base station and/or the secondary base station may configure measurement parameters for the user equipment.
  • the user equipment performs corresponding measurement operations according to the measurement parameters configured by the primary base station and/or the secondary base station.
  • the specific content of the measurement parameters configured by the primary base station and/or the secondary base station for the user equipment and the specific process of the user equipment performing the measurement operation may correspond to the existing protocol.
  • the user equipment obtains the measurement result obtained by the measurement operation, and reports the measurement result when the reporting condition is met.
  • the master base station and/or the secondary base station decides to configure the conditional PSCell change for the user equipment according to the capability information of the user equipment and the measurement report.
  • the master base station For the process of configuring candidate PSCells by the master base station, the master base station first selects multiple candidate PSCells, and then sends an SN add request to the secondary base station (SN) to which the selected candidate PSCell belongs, requesting the secondary base station to configure candidate SCG.
  • the master base station can send SN add requests to multiple secondary base stations, and then obtain request confirmations returned by multiple secondary base stations.
  • the master base station obtains multiple candidate SCGs and sends the obtained multiple SCGs to the user equipment, each SCG containing a PSCell.
  • the master base station configures the corresponding PSCell change execution conditions for each candidate PSCell.
  • the PSCell change execution conditions may include a preset offset that the signal quality of the candidate PSCell is higher than that of the source PSCell.
  • the PSCell change execution conditions corresponding to different candidate PSCells may be the same or different.
  • the secondary base station can configure candidate PSCells belonging to the secondary base station for the user equipment, which is called intra-SN candidate PSCell.
  • the secondary base station can directly send the configuration of these candidate PSCells to the user equipment; the secondary base station can also configure candidate PSCells that do not belong to the secondary base station for the user equipment, which is called inter-SN candidate PSCell.
  • the secondary base station needs to send SN addition requests to other secondary base stations through the primary base station to request other secondary base stations to configure candidate SCG. After other secondary base stations return the candidate PSCell configuration (included in the candidate SCG) to the primary base station, they send it to the user equipment.
  • a network device when a network device (in an embodiment of the present invention, the network device may include a primary base station and/or a secondary base station unless otherwise specified) configures a candidate PSCell for a user device, the user device is usually already at the edge of a source PSCell. After receiving multiple configured candidate PSCells, the user device may evaluate the multiple candidate PSCells. If it is detected that a candidate PSCell satisfies the PSCell change execution condition, the user device may update to the candidate PSCell. At this point, the candidate PSCell that satisfies the PSCell change execution condition may be referred to as the target PSCell.
  • the source PSCell can be regarded as the PSCell that the user equipment accesses before the current PSCell change occurs, and the base station to which the source PSCell belongs is called the source secondary base station.
  • the multiple candidate PSCells configured by the primary base station and/or the source secondary base station for the user equipment are all neighboring cells of the source PSCell.
  • the specific implementation of the user equipment updating from the source PSCell to the target PSCell may be
  • the user equipment may perform a PSCell update by performing a conditional PSCell change, or may perform a PSCell change according to the signaling after receiving the PSCell change signaling sent by the network device.
  • Step S102 evaluating part or all of the candidate primary and secondary cells; or, evaluating the candidate primary and secondary cells in response to a trigger condition.
  • the configuration of the candidate PSCell configured by the network device i.e., the SCG configuration corresponding to the candidate PSCell
  • the candidate PSCell may or may not include the source PSCell.
  • step S101 when the user equipment receives the PSCell change signaling sent by the network device, if the network device sets the source PSCell-related update execution conditions for the user equipment, the user equipment can retain the configuration of the source PSCell and the update execution conditions corresponding to the source PSCell during the execution of the PSCell change, and the source PSCell becomes a candidate PSCell. If the user equipment executes the conditional PSCell change in step S101, the user equipment releases the source PSCell configuration during the execution of the PSCell change, and the candidate PSCell does not include the source PSCell.
  • the user equipment after the user equipment accesses the target PSCell, it can determine, according to the instruction of the network device, whether to use the source PSCell as a candidate PSCell after accessing the target PSCell.
  • the user equipment may continue to retain the candidate PSCell configuration.
  • the user equipment may be based on an explicit indication from the network device when configuring the candidate PSCell, which explicit indication requires the user equipment to continue to retain the candidate PSCell after executing the PSCell change.
  • the candidate PSCell configuration may include the SCG configuration of the candidate PSCell and the associated PSCell update execution conditions.
  • the user equipment may detect that the signal quality of the target PSCell exceeds the preset threshold within a period of time. For example, the user equipment is in a low-speed motion state, and after accessing the target PSCell, it detects that the signal quality of the target PSCell exceeds the preset threshold.
  • the signal quality of the target PSCell remains strong for a period of time. Since the target PSCell can provide normal services to the user equipment for a period of time, the user equipment does not need to evaluate the candidate PSCell during this period of time.
  • the preset threshold can be set according to a specific application scenario. Those skilled in the art will appreciate that the preset threshold needs to meet the normal working requirements of the user equipment. In other words, if the user equipment detects that the signal quality of the target PSCell is less than or equal to the preset threshold, the target PSCell may not be able to provide services to the user equipment.
  • the signal quality of the target PSCell may be the received power of the reference signal of the target PSCell, or the received quality of the reference signal of the target PSCell, or the signal to interference plus noise ratio of the reference signal of the target PSCell.
  • the user equipment when the user equipment detects that the signal quality of the target PSCell is less than or equal to a preset threshold, it can be determined that the trigger condition is met and the candidate PSCells are evaluated.
  • the user equipment after the user equipment accesses the target PSCell, the configuration of the candidate PSCell is continued to be saved, but the user equipment may not need to immediately evaluate the candidate PSCell.
  • the user equipment starts the evaluation of the candidate PSCell only after receiving the indication information sent by the primary base station or the secondary base station, that is, after the primary base station or the secondary base station explicitly instructs to evaluate the candidate PSCell.
  • the primary base station or the secondary base station can determine whether the user equipment is at the edge of the target PSCell based on the new measurement report obtained by the user equipment.
  • the primary base station or the secondary base station generates indication information to trigger the user equipment to evaluate the candidate PSCell.
  • the user equipment evaluates the candidate PSCell only when the trigger condition is met, which can effectively reduce the time for evaluating the candidate PSCell and thus reduce the power consumption of the user equipment.
  • the network device initially configures a candidate PSCell for the user equipment. All of them are neighboring cells of the source PSCell. However, these candidate PSCells are not necessarily neighboring cells of the target PSCell to which the user equipment newly accesses.
  • the primary base station when the primary base station configures a candidate PSCell for the user equipment through configuration information, it may also indicate a second candidate PSCell in the configuration information.
  • the second candidate PSCell may be: a candidate PSCell that the user equipment accesses the target PSCell and that does not need to be evaluated.
  • the second candidate PSCell may be excluded, that is, the second candidate PSCell does not need to be evaluated.
  • the second candidate PSCell may be empty, or include only one candidate PSCell, or may include two or more candidate PSCells.
  • the number of candidate PSCells that need to be evaluated can be reduced, and the power consumption of the user equipment can also be reduced.
  • the second candidate PSCell may be a non-neighboring cell of the target PSCell. In other words, the second candidate PSCell is not a neighboring cell of the target PSCell.
  • the user equipment may also evaluate other candidate PSCells except the second candidate PSCell when the signal quality of the target primary and secondary cells is less than or equal to a preset threshold; or, the user equipment may start evaluating the candidate primary and secondary cells only after receiving the indication information. That is, the embodiment of "evaluating the candidate primary and secondary cells when the trigger condition is met" in the above embodiment can be combined with the embodiment of "evaluating other candidate PSCells except the second candidate PSCell".
  • evaluating other candidate PSCells except the second candidate PSCell can further reduce the power consumption of the user equipment.
  • the primary base station configures six candidate PSCells for the user equipment, which are PSCell 1 to PSCell 6.
  • PSCell 1 to PSCell 6 may be neighboring cells of the currently residing source PSCell.
  • the user equipment After receiving the candidate PSCell configuration, the user equipment evaluates the six PSCells. If any PSCell meets the PSCell change execution condition, the user equipment accesses the PSCell that meets the condition. If the user equipment evaluates and finds that PSCell 1 meets the PSCell change execution condition, the user equipment accesses PSCell 1. The user equipment retains PSCells 2 to PSCell 6.
  • the user equipment detects that the signal quality of PSCell 1 exceeds the preset threshold within a period of time after accessing PSCell 1, it determines that the signal quality of PSCell 1 is good and no conditional PSCell change is required. During this period of time, the user equipment does not need to evaluate PSCell 2 to PSCell 6.
  • the user equipment After a period of time, the user equipment detects that the signal quality of PSCell 1 is less than or equal to the preset threshold, that is, the signal quality of PSCell 1 is poor. At this time, the user equipment evaluates PSCell 2 to PSCell 6.
  • the master base station When configuring 6 candidate PSCells for the user equipment, the master base station indicates the candidate PSCells that do not need to be evaluated corresponding to each candidate PSCell, that is, instructs the user equipment not to evaluate the candidate PSCells after accessing a candidate PSCell.
  • the user equipment After accessing PSCell 1, the user equipment determines, based on the instruction of the primary base station, that it does not need to evaluate PSCell 2, and the user equipment then only evaluates PSCells 3 to 6.
  • the user equipment After accessing PSCell 1, the user equipment does not immediately evaluate PSCell 2 to PSCell 6. Instead, it evaluates PSCell 2 to PSCell 6 only after receiving an instruction from the primary base station or the secondary base station, which clearly instructs the user equipment to start evaluating candidate PSCells.
  • the user equipment executes the conditional PSCell change (accessing from the source PSCell to PSCell 1), it does not immediately evaluate the PSCell, but can wait for a period of time before evaluating the PSCell. Therefore, the number of evaluations of the user equipment can be reduced and the power consumption of the user equipment can be reduced.
  • the master base station When configuring 6 candidate PSCells for the user equipment, the master base station indicates the candidate PSCells that do not need to be evaluated for each candidate PSCell.
  • the master base station indicates as follows: If the user equipment accesses PSCell 1, the user equipment does not need to evaluate PSCell 2.
  • the user equipment detects that the signal quality of PSCell 1 exceeds the preset threshold within a period of time after accessing PSCell 1, it determines that the signal quality of PSCell 1 is good and no conditional PSCell change is required. During this period of time, the user equipment does not need to continue to evaluate PSCell 2 to PSCell 6.
  • the user equipment After a period of time, the user equipment detects that the signal quality of PSCell 1 is less than or equal to the preset threshold. According to the configuration information, the user equipment does not need to evaluate PSCell 2, so the user equipment only needs to continue to evaluate PSCell 3 to PSCell 6.
  • the user equipment is set to save all candidate PSCells.
  • the master base station configures 6 candidate PSCells for the user equipment, which are PSCell 1 to PSCell 6.
  • the user equipment determines PSCell 1 as the target PSCell.
  • the user equipment accesses PSCell 1, the user equipment retains the configuration of PSCell 2 to PSCell 6.
  • the user equipment may not need to evaluate some candidate PSCells.
  • the user equipment can also update all candidate PSCells, delete the configuration of some candidate PSCells, and only evaluate the remaining candidate PSCells. Since only some candidate PSCells need to be evaluated, it can further reduce Power consumption of user equipment.
  • the secondary base stations to which the multiple candidate PSCells configured by the master base station and/or the secondary base station belong may be the same or different.
  • the secondary base stations to which the multiple candidate PSCells belong may be the same as or different from the secondary base station to which the source PSCell belongs.
  • multiple candidate PSCells configured by the base station can be divided into two categories according to the relationship between the secondary base station to which the candidate PSCell belongs and the secondary base station to which the source PSCell belongs: the first category of candidate PSCells may be: the secondary base station to which it belongs is the same as the secondary base station to which the source primary and secondary cells belong (i.e., intra-SN candidate PSCell, that is, the candidate PSCell configuration sent directly by the source secondary base station to the user equipment); the second category of PSCells may be: the secondary base station to which it belongs is different from the secondary base station to which the source primary and secondary cells belong (i.e., inter-SN candidate PSCell, that is, the candidate PSCell configuration sent by the primary base station to the user equipment).
  • the first category of candidate PSCells may be: the secondary base station to which it belongs is the same as the secondary base station to which the source primary and secondary cells belong (i.e., intra-SN candidate PSCell, that is, the candidate PSCell configuration sent directly
  • the primary base station and/or the secondary base station configure 6 candidate PSCells for the user equipment, which are PSCell 1 to PSCell 6.
  • PSCell 1 to PSCell 6 can be the neighboring cells of the source PSCell currently accessed by the user equipment.
  • the secondary base station to which PSCell 1 to PSCell 3 belongs is the source secondary base station
  • the secondary base station to which PSCell 4 to PSCell 6 belongs is the second secondary base station
  • the source secondary base station is different from the second secondary base station.
  • the secondary base station to which the source primary and secondary cells belong is the source secondary base station. Based on this, PSCell 1 to PSCell 3 are classified as the first type of candidate primary and secondary cells, and PSCell 4 to PSCell 6 are classified as the second type of candidate primary and secondary cells.
  • the second type of candidate PSCells can be further divided into: one is the conditional primary and secondary cell update (Conditional PSCell Change, CPC) between secondary base stations (inter-SN) triggered by the source secondary base station, and the other is the CPC between secondary base stations triggered by the primary base station.
  • CPC conditional primary and secondary cell update
  • the first type of candidate PSCell is a candidate PSCell within the secondary base station (intra-SN) configured by the source secondary base station for the user equipment.
  • the first type of candidate PSCell does not contain security parameters on the secondary base station side.
  • the user equipment can directly receive the configuration of the first type of candidate PSCell from the source secondary base station.
  • the second type of candidate PSCell is a candidate PSCell configured by a non-source secondary base station for a user.
  • the configuration of the second type of candidate PSCell can be sent to the user equipment through the primary base station, and the configuration of the second type of candidate PSCell needs to include the security parameters of the secondary base station side, that is, a new KSN needs to be generated when the user equipment accesses the second type of candidate PSCell.
  • the user equipment can continue to retain the configuration of the candidate PSCell, because when the user equipment executes the conditional update of the candidate PSCell, the retained candidate PSCell can continue to be valid; if the target PSC accessed is a second-category candidate PSCell, the user equipment can delete the configuration of the first-category candidate PSCell and only retain the configuration of the second-category candidate PSCell, because the main base station does not know that the first-category candidate PSCell was originally configured on the user equipment side, and will not reconfigure security parameters for these candidate PSCells. If the user equipment subsequently accesses these candidate PSCells, access cannot be implemented without the necessary security parameters, so the configuration of the first-category candidate PSCell needs to be deleted.
  • the secondary base station to which PSCell 1 to PSCell 3 belongs is the source secondary base station
  • the secondary base station to which PSCell 4 to PSCell 6 belongs is the second secondary base station
  • the source secondary base station is different from the second secondary base station.
  • the connected PSCell 4 is the target PSCell, that is, the target PSCell is the second-type PSCell.
  • the user equipment can delete the configuration of PSCell 1 to PSCell 3. That is, the first remaining candidate PSCell includes PSCell 5 to PSCell 6.
  • the user equipment updates the configuration of the stored candidate PSCells and deletes the configuration of some candidate PSCells.
  • the number of candidate PSCells that need to be evaluated can be effectively reduced, thereby reducing the power consumption of the user equipment.
  • the user equipment after deleting the configuration of PSCell 1 to PSCell 3, the user equipment only needs to evaluate PSCell 5 to PSCell 6.
  • the user equipment after updating the candidate PSCells, the user equipment evaluates the remaining candidate PSCells.
  • the user equipment may evaluate the remaining candidate PSCells.
  • the target PSCell is PSCell 4, which is the second type of candidate PSCell.
  • the remaining candidate PSCells include PSCell 5 to PSCell 6.
  • the above PSCell 5 to PSCell 6 are the first remaining candidate primary and secondary cells.
  • the user equipment When the user equipment detects that the trigger condition is met (such as the signal quality of PSCell 4 is less than or equal to the preset threshold), the user equipment evaluates PSCell 5 to PSCell 6.
  • the trigger condition such as the signal quality of PSCell 4 is less than or equal to the preset threshold
  • the master base station may indicate certain candidate PSCells that do not need to be evaluated when each candidate PSCell is used as the target PSCell.
  • the candidate PSCells that do not need to be evaluated are the second candidate primary and secondary cells.
  • the candidate PSCells that do not need to be evaluated are removed from the remaining candidate PSCells to obtain the second updated candidate PSCell. The user equipment evaluates the second updated candidate PSCell.
  • the master base station configures PSCell 4 as the target PSCell, there is no need to measure PSCell 5 (that is, PSCell 5 is the second candidate primary and secondary cell, and PSCell 5 is usually not a neighbor of PSCell 4).
  • the target PSCell is PSCell 4, and PSCell 4 is the second type of candidate PSCell.
  • the remaining candidate PSCells include PSCell 5 to PSCell 6.
  • the user equipment accesses PSCell 4, it updates the remaining candidate PSCells, and the candidate PSCell after the second update is PSCell 6. Therefore, the user equipment evaluates PSCell 6 to evaluate whether it meets the PSCell update execution conditions.
  • the master base station and/or the secondary base station can configure another candidate PSCell for the user equipment.
  • the user equipment may evaluate the candidate PSCell after the second update.
  • the user equipment when the user equipment detects that the signal quality of PSCell 4 is less than or equal to the preset threshold, it evaluates PSCell 6.
  • the user equipment may also update the The candidate PSCells are evaluated.
  • the user equipment After receiving the indication information sent by the main base station, the user equipment evaluates the reserved PSCell 5 to PSCell 6.
  • the user equipment determines whether to delete the first type of candidate PSCell according to whether the accessed target PSCell belongs to the source secondary base station, that is: if the target PSCell belongs to the source secondary base station, the user equipment retains the first type of candidate PSCell; otherwise, deletes the first type of candidate PSCell.
  • the embodiments of the present invention may also have different implementation methods.
  • the user equipment executes the PSCell update, if the accessed PSCell does not belong to the source secondary base station, the user equipment continues to retain the first type of candidate PSCell.
  • the user equipment or the source secondary base station indicates to the main base station the number of first type candidate PSCells retained by the user equipment (as an option, the user equipment or the source secondary base station may also indicate the identifier of the first type candidate PSCell to the main base station), so that the main base station knows the total number of candidate PSCells retained on the user equipment side (the main base station knows the number of second type candidate PSCells retained by the user equipment).
  • the master base station can control the total number of candidate PSCells configured for the user equipment to avoid exceeding the processing capability of the user equipment (eg, supporting configuration of up to 8 candidate PSCells).
  • the primary base station learns that the user equipment has reserved the first type of candidate PSCells, it needs to configure necessary security parameters for these candidate PSCells so that encryption and integrity protection can be applied when the user equipment accesses these PSCells.
  • the master base station may send security parameters to these PSCells. Meanwhile, the master base station needs to inform the user equipment of the security parameters that need to be applied when accessing these PSCells.
  • the master base station can also uniformly configure security parameters for all candidate PSCells and send them to the user equipment in advance.
  • the user equipment applies the corresponding security parameters when accessing these candidate PSCells, and informs the associated information of the applied security parameters to the accessed PSCell, so that the accessed PSCell can accurately derive the encryption key and integrity information applied by the user equipment. Protect the key.
  • the embodiment of the present invention further provides another method for updating primary and secondary cells, which is described in detail below through specific steps with reference to FIG. 2 .
  • the candidate primary and secondary cell evaluation method recorded in the following steps S201 to S202 can be executed by a chip with a data processing function in the user equipment, or by a chip module with a data processing function in the user equipment, or by the user equipment.
  • the following takes the user equipment executing the candidate primary and secondary cell evaluation method as an example for description.
  • Step 201 Update from a source primary and secondary cell to a target primary and secondary cell.
  • the primary base station and/or the secondary base station may configure measurement parameters for the user equipment.
  • the user equipment performs corresponding measurement operations according to the measurement parameters configured by the primary base station and/or the secondary base station.
  • the specific content of the measurement parameters configured by the primary base station and/or the secondary base station for the user equipment and the specific process of the user equipment performing the measurement operation may correspond to the existing protocol.
  • the user equipment obtains the measurement results obtained by the measurement operation and reports the measurement results when the reporting conditions are met.
  • the primary base station and/or the secondary base station decides to configure the conditional PSCell change for the user equipment based on the capability information of the user equipment and the measurement report.
  • the master base station For the process of configuring candidate PSCells by the master base station, the master base station first selects multiple candidate PSCells, and then sends an SN add request to the secondary base station (SN) to which the selected candidate PSCell belongs, requesting the secondary base station to configure candidate SCG.
  • the master base station can send SN add requests to multiple secondary base stations, and then obtain request confirmations returned by multiple secondary base stations.
  • the master base station obtains multiple candidate SCGs and sends the obtained multiple SCGs to the user equipment, each SCG containing a PSCell.
  • the master base station configures the corresponding PSCell change execution conditions for each candidate PSCell.
  • the PSCell change execution conditions may include a preset offset that the signal quality of the candidate PSCell is higher than that of the source PSCell.
  • the PSCell change execution conditions corresponding to different candidate PSCells may be the same or different.
  • the secondary base station can configure The secondary base station configures candidate PSCells belonging to the secondary base station, called intra-SN candidate PSCells.
  • the secondary base station can directly send the configuration of these candidate PSCells to the user equipment; the secondary base station can also configure candidate PSCells that do not belong to the secondary base station for the user equipment, called inter-SN candidate PSCells.
  • the secondary base station needs to send SN addition requests to other secondary base stations through the primary base station to request other secondary base stations to configure candidate SCGs. After other secondary base stations return the candidate PSCell configurations (included in the candidate SCG) to the primary base station, they are sent to the user equipment.
  • the user equipment when the network device configures a candidate PSCell for the user equipment, the user equipment is usually already at the edge of the source PSCell. After receiving multiple configured candidate PSCells, the user equipment can evaluate multiple candidate PSCells. If it is detected that a candidate PSCell meets the PSCell change execution condition, the user equipment can update to the candidate PSCell. At this time, the candidate PSCell that meets the PSCell change execution condition can be called the target PSCell.
  • the source PSCell can be regarded as the PSCell that the user equipment accesses before the conditional PSCell change occurs, and the base station to which the source PSCell belongs is called the source secondary base station.
  • the multiple candidate PSCells configured by the primary base station and/or the source secondary base station for the user equipment can all be neighboring cells of the source PSCell.
  • the master base station may also directly instruct access to the target PSCell, that is, send a PSCell update command. After obtaining the instruction from the master base station, the user equipment updates from the source PSCell to the target PSCell.
  • the specific implementation of the user equipment updating from the source PSCell to the target PSCell may refer to the existing protocol.
  • Step 202 Delete the configuration of candidate primary and secondary cells that belong to the same secondary base station as the source primary and secondary cell.
  • the secondary base stations to which the multiple candidate PSCells configured by the primary base station belong may be the same or different.
  • the secondary base stations to which the multiple candidate PSCells belong may be the same as or different from the secondary base station to which the source PSCell belongs.
  • the secondary base station to which the candidate PSCell belongs and the source PSCell may be The relationship between the secondary base stations, the multiple candidate PSCells configured by the base station are divided into two categories: the first category of candidate PSCells can be: the candidate PSCell to which the secondary base station belongs is the same as the secondary base station to which the source primary and secondary cells belong, or the PSCell configuration is the candidate PSCell sent directly to the user equipment by the source secondary base station; the second category of PSCells can be: the candidate PSCell to which the secondary base station belongs is different from the secondary base station to which the source primary and secondary cells belong, or the PSCell configuration is the candidate PSCell sent to the user equipment by the primary base station.
  • the first category of candidate PSCells can be: the candidate PSCell to which the secondary base station belongs is the same as the secondary base station to which the source primary and secondary cells belong, or the PSCell configuration is the candidate PSCell sent directly to the user equipment by the source secondary base station
  • the second category of PSCells
  • the primary base station configures 6 candidate PSCells for the user equipment, which are PSCell1 to PSCell 6.
  • PSCell 1 to PSCell 6 can be neighboring cells of the currently residing source PSCell.
  • the secondary base station to which PSCell 1 to PSCell 3 belongs is the source secondary base station
  • the secondary base station to which PSCell 4 to PSCell 6 belongs is the second secondary base station
  • the source secondary base station is different from the second secondary base station.
  • the secondary base station to which the source primary and secondary cells belong is the source secondary base station. Based on this, PSCell 1 to PSCell 3 are classified as the first type of candidate primary and secondary cells, and PSCell 4 to PSCell 6 are classified as the second type of candidate primary and secondary cells.
  • the second type of candidate PSCells can be further divided into: one is the conditional update (CPC) of the primary and secondary cells between secondary base stations (inter-SN) triggered by the source secondary base station, and the other is the CPC between secondary base stations triggered by the primary base station.
  • CPC conditional update
  • the first type of candidate PSCell is a candidate PSCell within the secondary base station (intra-SN) configured by the source secondary base station for the user equipment.
  • the first type of candidate PSCell does not contain security parameters on the secondary base station side.
  • the user equipment accesses the first type of candidate PSCell, it does not need to update the key.
  • the user equipment can directly receive the configuration of the first type of candidate PSCell from the source secondary base station.
  • the second type of candidate PSCell is a candidate PSCell configured by a non-source secondary base station for a user.
  • the configuration of the second type of candidate PSCell can be sent to the user equipment through the primary base station, and the configuration of the second type of candidate PSCell needs to include the security parameters of the secondary base station side, that is, a new KSN needs to be generated when the user equipment accesses the second type of candidate PSCell.
  • the user equipment may continue to retain the configuration of the candidate PSCell; if the target PSCell is a second-class candidate PSCell, the user equipment deletes the configuration of the first-class candidate PSCell and only retains the second-class candidate PSCell. Configuration of class candidate PSCell.
  • the secondary base station to which PSCell 1 to PSCell 3 belongs is the source secondary base station
  • the secondary base station to which PSCell 4 to PSCell 6 belongs is the second secondary base station
  • the source secondary base station is different from the second secondary base station.
  • PSCell 4 is the target PSCell, that is, it accesses a secondary base station different from the source secondary base station.
  • the user equipment can delete the configuration of PSCell 1 to PSCell 3. That is, the first remaining candidate PSCells include PSCell 5 to PSCell 6.
  • the user equipment updates the configuration of the stored candidate PSCells and deletes the configuration of some candidate PSCells.
  • the number of candidate PSCells that need to be evaluated can be effectively reduced, thereby reducing the power consumption of the user equipment.
  • the user device after deleting the configuration of PSCell 1 to PSCell 3, the user device only needs to evaluate PSCell 5 to PSCell 6.
  • the user equipment after updating the candidate PSCells, the user equipment evaluates the remaining candidate PSCells.
  • the user equipment may evaluate the remaining candidate PSCells.
  • the target PSCell is PSCell 4
  • the user equipment accesses the non-source secondary base station.
  • the remaining candidate PSCells include PSCell 5 to PSCell 6.
  • the above PSCell 5 to PSCell 6 are the first remaining candidate primary and secondary cells.
  • the user equipment When the user equipment detects that the signal quality of PSCell 4 is less than or equal to the preset threshold, the user equipment evaluates PSCell 5 to PSCell 6.
  • the master base station can indicate each candidate PSCell as a target
  • the candidate PSCell that does not need to be evaluated when marking the PSCell indicates the neighboring cell of the non-target PSCell.
  • the candidate PSCell that does not need to be evaluated is the second candidate primary and secondary cell. After the user equipment accesses the target PSCell, the candidate PSCell that does not need to be evaluated is removed from the remaining candidate PSCells to obtain the second updated candidate PSCell. The user equipment evaluates the second updated candidate PSCell.
  • the primary base station configures PSCell 4 as the target PSCell
  • PSCell 5 is the second candidate primary and secondary cell
  • the remaining candidate PSCells include PSCell 5 to PSCell 6.
  • the user equipment accesses PSCell 4, it updates the remaining candidate PSCells, and the candidate PSCell after the second update is PSCell 6. Therefore, the user equipment evaluates PSCell 6 to evaluate whether it meets the PSCell update execution conditions.
  • the primary base station and/or the secondary base station can configure another candidate PSCell for the user equipment.
  • the user equipment may evaluate the candidate PSCell after the second update.
  • the user equipment when the user equipment detects that the signal quality of PSCell 4 is less than or equal to the preset threshold, it evaluates PSCell 6.
  • the user equipment may also evaluate the updated candidate PSCell after receiving the indication information.
  • the user equipment After receiving the indication information sent by the main base station, the user equipment evaluates the reserved PSCell 5 to PSCell 6.
  • the user equipment if the user equipment performs a primary base station handover, the user equipment releases the configuration of all candidate PSCells.
  • the user equipment determines whether to delete the first type of candidate PSCell according to whether the accessed target PSCell belongs to the source secondary base station. That is, if the target PSCell belongs to the source secondary base station, the user equipment retains the first type of candidate PSCell; otherwise, the first type of candidate PSCell is deleted.
  • the user equipment executes the PSCell update, if the accessed PSCell does not belong to the source secondary base station, the user equipment continues to retain the first type of candidate PSCell, and the user equipment or the source secondary base station indicates to the main base station the number of first type candidate PSCells retained by the user equipment (as an option, the user equipment or the source secondary base station may also indicate the identifier of the first type candidate PSCell to the main base station), so that the main base station knows the total number of candidate PSCells retained on the user equipment side (the main base station knows the number of second type candidate PSCells retained by the user equipment).
  • the master base station can control the total number of candidate PSCells configured for the user equipment to avoid exceeding the processing capability of the user equipment (eg, supporting configuration of up to 8 candidate PSCells).
  • the primary base station learns that the user equipment has reserved the first type of candidate PSCells, it needs to configure necessary security parameters for these candidate PSCells so that encryption and integrity protection can be applied when the user equipment accesses these PSCells.
  • the master base station may send security parameters to these PSCells. Meanwhile, the master base station needs to inform the user equipment of the security parameters that need to be applied when accessing these PSCells.
  • the main base station can also uniformly configure security parameters for all candidate PSCells and send them to the user equipment in advance.
  • the user equipment applies the corresponding security parameters when accessing these candidate PSCells, and at the same time informs the connected PSCell of the associated information of the applied security parameters so that the connected PSCell can accurately derive the encryption key and integrity protection key applied by the user equipment.
  • the primary and secondary cell updating method described in the following steps S301 to S303 may be executed by a chip having a data processing function in the user equipment, or may be executed by a processor.
  • the user equipment is executed by a chip module including a chip with a data processing function, or by the user equipment.
  • the following takes the method for updating the primary and secondary cells executed by the user equipment as an example for description.
  • Step S301 obtaining the target sk-counter parameter used for updating the current secondary execution condition primary and secondary cells.
  • the primary base station and/or the secondary base station may configure measurement parameters for the user equipment.
  • the user equipment performs corresponding measurement operations according to the measurement parameters configured by the primary base station and/or the secondary base station.
  • the specific content of the measurement parameters configured by the primary base station and/or the secondary base station for the user equipment and the specific process of the user equipment performing the measurement operation may correspond to the existing protocol.
  • the user equipment obtains the measurement results obtained by the measurement operation and reports the measurement results when the reporting conditions are met.
  • the primary base station and/or the secondary base station decides to configure the conditional PSCell change for the user equipment based on the capability information of the user equipment and the measurement report.
  • the master base station For the process of configuring candidate PSCells by the master base station, the master base station first selects multiple candidate PSCells, and then sends an SN add request to the secondary base station (SN) to which the selected candidate PSCell belongs, requesting the secondary base station to configure candidate SCG.
  • the master base station can send SN add requests to multiple secondary base stations, and then obtain request confirmations returned by multiple secondary base stations.
  • the master base station obtains multiple candidate SCGs and sends the obtained multiple SCGs to the user equipment, each SCG containing a PSCell.
  • the master base station configures the corresponding PSCell change execution conditions for each candidate PSCell.
  • the PSCell change execution conditions may include a preset offset that the signal quality of the candidate PSCell is higher than that of the source PSCell.
  • the PSCell change execution conditions corresponding to different candidate PSCells may be the same or different.
  • the secondary base station can configure candidate PSCells belonging to the secondary base station for the user equipment, which are called intra-SN candidate PSCells.
  • the secondary base station can directly send the configuration of these candidate PSCells to the user equipment; the secondary base station can also configure candidate PSCells that do not belong to the secondary base station for the user equipment, which are called inter-SN candidate PSCells.
  • the secondary base station needs to send SN addition to other secondary base stations through the primary base station. Request to request other secondary base stations to configure candidate SCGs. After other secondary base stations return candidate PSCell configurations (included in candidate SCGs) to the primary base station, they are sent to the user equipment.
  • a network device when a network device (in an embodiment of the present invention, the network device may include a primary base station and/or a secondary base station unless otherwise specified) configures a candidate PSCell for a user device, the user device is usually already at the edge of a source PSCell. After receiving multiple configured candidate PSCells, the user device may evaluate the multiple candidate PSCells. If it is detected that a candidate PSCell satisfies the PSCell change execution condition, the user device may update to the candidate PSCell. At this point, the candidate PSCell that satisfies the PSCell change execution condition may be referred to as the target PSCell.
  • the source PSCell can be regarded as the PSCell that the user equipment accesses before the current PSCell change occurs.
  • the multiple candidate PSCells configured by the master base station for the user equipment are all neighboring cells of the source PSCell.
  • the specific implementation of the user equipment updating from the source PSCell to the target PSCell may refer to the existing protocol.
  • the user equipment performing the PSCell update may be performing a conditional PSCell change, or performing the PSCell change according to the signaling after receiving the PSCell change signaling sent by the network device.
  • the primary base station may configure a security parameter (sk-counter parameter) for each candidate PSCell, and the value of the sk-counter parameter may be 1 to 32.
  • the primary base station may notify the user equipment of the sk-counter parameter, and notify the candidate secondary base station (i.e., the secondary base station to which the candidate PSCell belongs) of the first security parameter K SN associated with the sk-counter parameter.
  • the user equipment accesses the target PSCell, it needs to know the target sk-counter parameters used in the current execution of the conditional PSCell change.
  • the sk-counter value configured by the master base station for the user equipment is usually the same, that is, the same sk-counter is configured for different candidate PSCells, because after the user equipment performs a PSCell update, other candidate PSCell configurations will be deleted.
  • the user equipment after the user equipment executes the PSCell change (which may be a conditional PSCell update or a PSCell update performed according to the network instruction), the user equipment will continue to retain the candidate PSCell configuration. If the sk-counter contained in different PSCell quotas is the same, the user equipment will use the same first security parameter K SN when accessing different PSCells multiple times in the future, which is not conducive to security.
  • the PSCell change which may be a conditional PSCell update or a PSCell update performed according to the network instruction
  • a direct solution is to configure different sk-counters for different candidate PSCells, so that the user equipment can use different first security parameters K SN when performing conditional PSCell updates multiple times in the future.
  • K SN first security parameters
  • this will cause the sk-counter to be exhausted quickly, that is, the sk-counter needs to be flipped and started again from 0 or 1, which will cause the user equipment's key on the master base station side to need to be updated once. Therefore, this article uses other implementation methods below.
  • the corresponding sk-counter is used for different sub-conditional PSCell updates, that is, the value of sk-counter is associated with the number of conditional PSCell changes.
  • the sk-counter parameters corresponding to different sub-conditional PSCell changes may be different. Therefore, it is necessary to determine the target sk-counter parameter used for the current execution of the conditional PSCell change.
  • Step S302 Generate a first security parameter K SN based on the target sk-counter parameter.
  • Step S303 Access the target primary and secondary cells based on the first security parameter K SN .
  • the target sk-counter parameter when the user equipment accesses the target PSCell, the target sk-counter parameter is used to generate the security parameter applied on the secondary base station side.
  • the second security parameter K MN (such as K gNB or KeNB ) on the main base station side and the target sk-counter parameter can be used to generate the first security parameter (such as K SN ) applied on the secondary base station side, and then the first security parameter K SN is used to generate the Radio Resource Control (RRC) key (encryption key) and integrity protection key for the secondary base station side to access the target PSCell.
  • RRC Radio Resource Control
  • K SN is also called SK eNB or SK gNB .
  • the specific process of generating the RRC key and the integrity protection key can refer to the prior art (TS33.501). No further elaboration.
  • the master base station can configure multiple sk-counter parameters for each candidate PSCell.
  • the user equipment can apply multiple sk-counter parameters configured by the master base station to multiple conditional PSCell changes to avoid using the same sk-counter for different conditional PSCell changes.
  • the first sk-counter parameter is used for the first conditional PSCell change (that is, the first time a candidate PSCell appears that satisfies the PSCell change execution condition), and the second sk-counter parameter is used for the second conditional PSCell change.
  • the user equipment detects for the first time that a candidate PSCell satisfies the PSCell change execution conditions, and accesses the candidate PSCell (i.e., the target PSCell) that satisfies the PSCell change execution conditions from the source PSCell.
  • the user equipment uses the first sk-counter parameter among the configured multiple sk-counter parameters and the second security parameter on the main base station side (such as K gNB ) to derive the first security parameter K SN used for the first conditional PSCell change, and then uses the first security parameter K SN to derive the RRC key and integrity protection key for the secondary base station side.
  • the user equipment can feedback the identification information of the target PSCell to the main base station to inform the main base station of the PSCell it is currently accessing.
  • the primary base station After receiving the feedback from the user equipment, the primary base station can configure the candidate PSCell with the first security parameter K SN required for the user to perform the second conditional PSCell change.
  • the first security parameter K SN used in the second conditional PSCell change is generated according to the second sk-counter parameter.
  • the first security parameter K SN is updated using the second sk-counter parameter among the configured multiple sk-counter parameters and the second security parameter K gNB on the main base station side.
  • the first security parameter K SN used in the first conditional PSCell change is different from the first security parameter K SN used in the second conditional PSCell change.
  • the primary base station sends the first security parameter K SN used in the second conditional PSCell change to the candidate PSCell in advance.
  • the user equipment performs the second conditional PSCell change, since the candidate PSCell has obtained the first security parameter K SN used in the second conditional PSCell change, the user equipment can successfully access the target PSCell determined by the second conditional PSCell change.
  • the master base station configures 6 candidate PSCells for the user equipment, which are PSCell 1 to PSCell 6.
  • PSCell 1 to PSCell 6 can be neighboring cells of the currently residing source PSCell.
  • the user equipment After receiving the candidate PSCell configuration, the user equipment evaluates the 6 PSCells. If the user equipment evaluates and finds that PSCell 1 meets the PSCell change execution conditions, the user equipment accesses PSCell 1. The user equipment retains PSCell 2 to PSCell 6.
  • the master base station configures 10 sk-counter parameters for the user equipment, and the values are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.
  • the sk-counter parameter configured by the primary base station is continuous. It is understandable that the sk-counter configured by the primary base station may also be discontinuous.
  • the user equipment updates from the source PSCell to PSCell 1 (the first conditional PSCell change).
  • the user equipment generates a first security parameter K SN according to the first sk-counter parameter (the sk-counter parameter value is 1) and the second security parameter (K gNB ) on the master base station side.
  • the user equipment notifies the master base station that it has accessed PSCell 1. After learning that the user equipment has accessed PSCell 1, the master base station generates a first security parameter K SN based on the second sk-counter parameter (the sk-counter parameter value is 2) and the second security parameter (K gNB ) on the master base station side. Then, the new first security parameter K SN is sent to other candidate PSCells.
  • the master base station After learning that the user equipment has accessed PSCell 1, the master base station generates a first security parameter K SN based on the second sk-counter parameter (the sk-counter parameter value is 2) and the second security parameter (K gNB ) on the master base station side. Then, the new first security parameter K SN is sent to other candidate PSCells.
  • the user equipment continuously evaluates the candidate PSCells. If the user equipment finds that PSCell 2 meets the PSCell change execution conditions, the user equipment accesses PSCell 2. The user equipment retains PSCell 1, PSCell 3 to PSCell 6.
  • the user equipment updates from PSCell 1 to PSCell 2 (second conditional PSCell change).
  • the user equipment derives a new first security parameter based on the second sk-counter parameter (the sk-counter parameter value is 2) and the second security parameter (K gNB ) on the master base station side.
  • K SN the second security parameter
  • the first security parameter K SN generated by the primary base station after learning that the user equipment accesses PSCell 1 is different from the first security parameter K SN generated by the user equipment for the first time, and is the same as the first security parameter K SN generated by the user equipment for the second time.
  • the user equipment notifies the master base station that it has accessed PSCell 2. After learning that the user equipment has accessed PSCell 2, the master base station updates the first security parameter K SN based on the third sk-counter parameter (the sk-counter parameter value is 3) and the second security parameter (K gNB ) on the master base station side. Then, the new first security parameter K SN is sent to other candidate PSCells.
  • the master base station updates the first security parameter K SN based on the third sk-counter parameter (the sk-counter parameter value is 3) and the second security parameter (K gNB ) on the master base station side. Then, the new first security parameter K SN is sent to other candidate PSCells.
  • the user equipment updates from PSCell 2 to PSCell 3 (the third conditional PSCell change).
  • the user equipment updates the first security parameter K SN according to the third sk-counter parameter (the sk-counter parameter value is 3) and the second security parameter (K gNB ) on the master base station side.
  • the security parameters can be updated during multiple consecutive conditional PSCell changes.
  • the main base station may also configure only one sk-counter parameter.
  • the user equipment updates the sk-counter parameter used last time, and uses the updated sk-counter parameter to update the first security parameter K SN .
  • the main base station updates the sk-counter parameter according to the same update rule, and uses the updated sk-counter parameter to generate the corresponding first security parameter K SN , and sends it to the candidate PSCell.
  • the master base station configures 6 candidate PSCells for the user equipment, which are PSCell 1 to PSCell 6. After receiving the candidate PSCell configuration, the user equipment evaluates the 6 PSCells. If the user equipment finds that PSCell 1 meets the PSCell change execution condition, the user equipment accesses PSCell 1. The user equipment retains PSCell 2 to PSCell 6. The master base station configures 1 sk-counter parameter for the user equipment, and the initial value is 1.
  • the user equipment updates from the source PSCell to PSCell 1 (the first conditional PSCell change).
  • the user equipment updates according to the sk-counter parameter (the sk-counter parameter value is 1) and the second security parameter (K gNB ) on the master base station side, to generate the first security parameter K SN .
  • the user equipment notifies the master base station that it has accessed PSCell 1. After learning that the user equipment has accessed PSCell 1, the master base station updates the sk-counter parameter, and the value of the updated sk-counter parameter is 2. The master base station generates a first security parameter K SN based on the updated sk-counter parameter (value 2) and the second security parameter (K gNB ) on the master base station side. The master base station sends the new first security parameter K SN to the candidate PSCell.
  • the user equipment continuously evaluates the candidate PSCells. If the user equipment finds that PSCell 2 meets the PSCell change execution conditions, the user equipment accesses PSCell 2. The user equipment retains PSCell 1, PSCell 3 to PSCell 6.
  • the user equipment updates from PSCell 1 to PSCell 2 (second conditional PSCell change).
  • the user equipment updates the sk-counter parameter, and the value of the updated sk-counter parameter is 2.
  • the user equipment updates the first security parameter K SN according to the updated sk-counter parameter (value is 2) and the second security parameter (K gNB , which can also be represented by K MN ) on the main base station side.
  • the user equipment uses the new first security parameter K SN to derive the RRC key and integrity protection key to access PSCell2.
  • the user equipment notifies the master base station that it has accessed PSCell 2. After learning that the user equipment has accessed PSCell 2, the master base station continues to update the sk-counter parameter, and the updated sk-counter parameter takes a value of 3.
  • the master base station updates the first security parameter K SN according to the updated sk-counter parameter (with a value of 3) and the second security parameter (K gNB ) on the master base station side.
  • the master base station sends the new first security parameter K SN to the candidate PSCell.
  • the security parameters can be updated during multiple consecutive conditional PSCell changes.
  • the primary base station needs to frequently send updated first security parameter K SN to the candidate PSCells, resulting in a large signaling overhead on the interface between base stations.
  • the primary base station may indicate multiple available first security parameters K SN to the candidate PSCell when configuring the parameters of the conditional PSCell change. Accordingly, the primary base station may configure the sk-counter parameter for the conditional PSCell change, each of which The sk-counter parameter has a one-to-one corresponding first security parameter K SN .
  • the primary base station can send the first security parameter K SN corresponding to multiple sk-counters to the secondary base station when requesting the secondary base station to configure a candidate PSCell, so that when the user equipment accesses the PSCell, the PSCell has the corresponding security parameter.
  • the user equipment When the user equipment performs the first conditional PSCell change, it uses the first sk-counter parameter to generate the first security parameter K SN ; when the user equipment performs the second conditional PSCell change, it uses the second sk-counter parameter to update the first security parameter K SN , and so on.
  • the target PSCell does not actually know how many times the user equipment has executed the conditional PSCell change.
  • the target PSCell can traverse all the first security parameters K SN , derive the corresponding RRC key and integrity protection key on the secondary base station side, and use the integrity protection key to verify the data/signaling sent by the user equipment. If the integrity protection key verification is successful, it means that the correct first security parameter K SN is selected, so the first security parameter K SN is used.
  • the embodiment of the present invention may also have different implementation methods.
  • the user equipment accesses a certain PSCell, the corresponding sk-counter is applied to derive the first security parameter K SN for this access.
  • the user equipment may report the number of PSCell updates associated with the first security parameter K SN when accessing the PSCell. For example, the user equipment may indicate the number of PSCell updates through the layer 2 media access layer, so that the target PSCell may determine the corresponding first security parameter K SN based on the number of PSCell updates.
  • the secondary base stations to which the multiple candidate PSCells configured by the primary base station belong may be the same or different.
  • the secondary base stations to which the multiple candidate PSCells belong may be the same as or different from the secondary base station to which the source PSCell belongs.
  • multiple candidate PSCells configured by the base station can be divided into two categories according to the relationship between the secondary base station to which the candidate PSCell belongs and the secondary base station to which the source PSCell belongs: the first category of candidate PSCells can be: the secondary base station to which the candidate PSCell belongs is the same as the secondary base station to which the source primary and secondary cells belong; the second category of candidate PSCells can be: the secondary base station to which the candidate PSCell belongs is different from the secondary base station to which the source primary and secondary cells belong. same.
  • the primary base station configures 6 candidate PSCells for the user equipment, which are PSCell 1 to PSCell 6.
  • PSCell 1 to PSCell 6 can be neighboring cells of the currently residing source PSCell.
  • the secondary base station to which PSCell 1 to PSCell 3 belongs is the source secondary base station
  • the secondary base station to which PSCell 4 to PSCell 6 belongs is the second secondary base station
  • the source secondary base station is different from the second secondary base station.
  • the secondary base station to which the source primary and secondary cells belong is the source secondary base station. Based on this, PSCell 1 to PSCell 3 are classified as the first type of candidate primary and secondary cells, and PSCell 4 to PSCell 6 are classified as the second type of candidate primary and secondary cells.
  • the second type of candidate PSCells can be further divided into: one is the conditional update (CPC) of the primary and secondary cells between secondary base stations (inter-SN) triggered by the source secondary base station, and the other is the CPC between secondary base stations triggered by the primary base station.
  • CPC conditional update
  • the first type of candidate PSCell is a candidate PSCell within the secondary base station (intra-SN) configured by the source secondary base station for the user equipment.
  • the first type of candidate PSCell does not contain security parameters on the secondary base station side.
  • the user equipment accesses the first type of candidate PSCell, it does not need to update the key.
  • the user equipment can directly receive the configuration of the first type of candidate PSCell from the source secondary base station.
  • the second type of candidate PSCell is a candidate PSCell configured by a non-source secondary base station for a user.
  • the configuration of the second type of candidate PSCell can be sent to the user equipment through the primary base station, and the configuration of the second type of candidate PSCell needs to include the security parameters of the secondary base station side, that is, a new KSN needs to be generated when the user equipment accesses the second type of candidate PSCell.
  • the user equipment if the user equipment performs a conditional PSCell change, the source PSCell and the target PSCell belong to the same secondary base station, and the first security parameter KSN corresponding to the same secondary base station is the same, the user equipment does not need to update the sk-counter parameter. At this time, the user equipment does not need to feedback the identification information of the target PSCell to the main base station. In each PSCell update, the PSCell currently accessed by the user equipment is the source PSCell, and the newly accessed PSCell is the target PSCell.
  • the user equipment executes the conditional PSCell each time.
  • the scenario in which the sk-counter parameter is updated for each conditional PSCell change is that the source PSCell and the target PSCell corresponding to the conditional PSCell change belong to different secondary base stations.
  • the target sk-counter parameter used for the current conditional primary and secondary cell update you can first: obtain the number of times the primary and secondary cell condition updates occur between the secondary base stations; determine the target sk-counter parameter used for the current conditional primary and secondary cell update based on the configuration information and the number of times the primary and secondary cell condition updates occur between the secondary base stations; the configuration information is used to configure the sk-counter parameter.
  • the corresponding sk-counter parameter can be selected from the multiple sk-counter parameters as the target sk-counter parameter according to the number of times the primary and secondary cell conditions are updated between the secondary base stations; if the configuration information configures one sk-counter parameter, the sk-counter parameter is updated a corresponding number of times (such as adding 1 or 2 each time) according to the number of times the primary and secondary cell conditions are updated between the secondary base stations, and the updated value obtained is used as the target sk-counter parameter.
  • the user equipment performs the first conditional PSCell change, updating from the source PSCell to PSCell 1.
  • the source PSCell belongs to the secondary base station 1, and the base station to which PSCell 1 belongs is the secondary base station 2.
  • the user equipment generates the first security parameter K SN according to the first sk-counter parameter (the sk-counter parameter value is 1) and the second security parameter (K gNB ) on the primary base station side.
  • the user equipment notifies the master base station that it has accessed PSCell 1. After learning that the user equipment has accessed PSCell 1, the master base station generates a first security parameter K SN based on the second sk-counter parameter (the sk-counter parameter value is 2) and the second security parameter (K gNB ) on the master base station side. The master base station sends the newly generated first security parameter K SN to the candidate PSCell through the interface between base stations.
  • the user equipment continuously evaluates the candidate PSCells. If the user equipment finds that PSCell 2 meets the PSCell change execution conditions, the user equipment accesses PSCell 2. The user equipment retains PSCell 1, PSCell 3 to PSCell 6.
  • the user equipment updates from PSCell 1 to PSCell 2 (the second conditional PSCell change).
  • the user equipment takes the value of the second sk-counter parameter (sk-counter parameter 2) and the second security parameter (K gNB ) on the master base station side, update the first security parameter K SN .
  • the source PSCell is PSCell 1 and the target PSCell is PSCell 2.
  • PSCell 2 is set to belong to secondary base station 2, and the user equipment does not inform the primary base station to access PSCell 2. Therefore, the primary base station does not need to update the first security parameter K SN .
  • the user equipment generates the first security parameter K SN according to the sk-counter parameter and the second security parameter (K MN ) on the main base station side.
  • K MN the second security parameter
  • some candidate PSCells are always retained on the user equipment side.
  • the first security parameter K SN can be derived in a new way.
  • a new first security parameter K SN is derived using the first security parameter K SN at the time of the first conditional PSCell change and the parameters of the target PSCell to which the user equipment is connected (such as the downlink frequency and/or other parameters such as the physical cell identifier, etc.).
  • the new first security parameter K SN is derived based on the first security parameter K SN at the time of the first conditional PSCell change (at this time, it is assumed that the Counter in the target PSCell configuration at the time of the second conditional PSCell change is the same as the Counter in the target PSCell configuration at the time of the first conditional PSCell change) and the parameters of the target PSCell currently accessed by the user equipment (such as the downlink frequency and/or other parameters such as the physical cell identifier, etc.).
  • the new first security parameter K SN is derived based on the K SN at the time of the first conditional PSCell change (at this time, it is assumed that the Counter in the target PSCell configuration at the time of the third conditional PSCell change is the same as the Counter in the target PSCell configuration at the time of the first conditional PSCell change) and the parameters of the target PSCell currently accessed by the user equipment (such as the downlink frequency and/or other parameters such as the physical cell identifier, etc.).
  • the candidate PSCell side has the first security parameter K SN provided by the master base station for the first conditional PSCell change, it is possible to implement key update for subsequent conditional PSCell changes without modifying the interface between existing base stations.
  • the corresponding key of the first conditional PSCell change can be obtained from the existing candidate PSCell configuration.
  • the candidate PSCell configuration only needs to include one sk-counter
  • the second security parameter (K MN ) on the main base station side and this sk-counter that is, the sk-counter corresponding to the first conditional PSCell change
  • the first security parameter K SN used in the first conditional PSCell change that is, the key derivation mechanism remains unchanged in the first conditional PSCell change
  • the subsequent conditional PSCell change process use the first security parameter K SN used in the first conditional PSCell change and the parameters of the target PSCell currently accessed by the user equipment (such as the downlink frequency and/or other parameters such as the physical cell identifier, etc.) to derive a new first security parameter K SN .
  • a new first security parameter K SN derivation mechanism is adopted, and the source K SN required for each derivation is the first security parameter K SN obtained in the first conditional PSCell change.
  • This implementation method modifies the first safety parameter KSN derivation mechanism when the non-first conditional PSCell change occurs, and can well use the existing first safety parameter KSN derivation mechanism when the first conditional PSCell change occurs (ie, the KSN derivation mechanism remains unchanged when the first conditional PSCell change occurs).
  • One improvement is that, for the scenario where the candidate PSCell configuration needs to be retained after a (conditional) PSCell change occurs, the user equipment adopts a new K SN derivation mechanism in the subsequent conditional PSCell change process, including the first conditional PSCell change scenario.
  • the user equipment when it performs the conditional PSCell change, it generates a first security parameter K SN based on the sk-counter parameter (at this time, there is only one sk-counter value) included in the configuration of the accessed target PSCell and the second security parameter (K MN ) on the master base station side, derives a new first security parameter K SN based on this K SN and the parameters of the accessed target primary and secondary cells (such as downlink frequency and/or other parameters such as physical cell identification, etc.), and accesses the target primary and secondary cells based on the new first security parameter K SN . That is, the RRC key and integrity protection key are derived using the new first security parameter K SN , and the new key is applied when accessing the target PSCell.
  • the primary and secondary cell updating method described in the following steps S401 to S403 may be implemented by a chip having a data processing function in an access network device (such as a primary base station).
  • an access network device such as a primary base station.
  • the method for updating the primary and secondary cells by the primary base station is described below as an example.
  • Step S401 determine whether the user equipment has executed a primary and secondary cell condition update.
  • Step S402 update the sk-counter parameter, and use the updated sk-counter parameter and the second security parameter K gNB to update the first security parameter K SN .
  • Step S403 Send the updated first security parameter K SN to the candidate primary and secondary cells configured for the user equipment.
  • the specific execution process of the above steps S401 to S403 may correspond to the above steps S301 to S303, which will not be described in detail here.
  • the embodiment of the present invention further provides another method for updating primary and secondary cells, which can be executed by an access network device (primary base station).
  • an access network device primary base station
  • the master base station may indicate multiple available first security parameters K SN to the candidate PSCell. Accordingly, the master base station may configure the sk-counter parameter for the conditional PSCell change, and each sk-counter parameter has a one-to-one corresponding first security parameter K SN . The master base station may indicate multiple available K SN in the SN add request.
  • the user equipment When the user equipment performs the first conditional PSCell change, it uses the first sk-counter parameter to generate the first security parameter K SN ; when the user equipment performs the second conditional PSCell change, it uses the second sk-counter parameter to update the first security parameter K SN , and so on.
  • the target PSCell does not actually know how many times the user equipment has executed the conditional PSCell change.
  • the target PSCell can traverse all the first security parameters K SN , derive the corresponding RRC key and integrity protection key on the secondary base station side, and use the integrity protection key to verify the data/signaling sent by the user equipment. If the integrity protection key verification is successful, it means that the correct first security parameter K SN is selected, so the first security parameter K SN is used.
  • the embodiment of the present invention also provides another method for updating primary and secondary cells, which can be executed by the target PSCell.
  • the primary base station can configure multiple sk-counter parameters for conditional PSCell change in the configuration information, and each sk-counter parameter has a one-to-one corresponding first security parameter K SN .
  • the target PSCell When a candidate PSCell is used as the target PSCell, the target PSCell does not actually know how many times the user equipment has executed the conditional PSCell change. The specific reasons can be seen in the above embodiment. Therefore, the target PSCell can traverse all the first security parameters K SN , derive the corresponding RRC key and integrity protection key on the secondary base station side, and use the integrity protection key to verify the data/signaling sent by the user equipment. If the integrity protection key verification is successful, it means that the correct first security parameter K SN is selected, so the first security parameter K SN is used.
  • a candidate primary and secondary cell evaluation device 50 in an embodiment of the present invention comprising: a first updating unit 501 and a first evaluation unit 502, wherein:
  • a first updating unit 501 is configured to update a source primary and secondary cell to a target primary and secondary cell;
  • the first evaluation unit 502 is configured to evaluate part or all of the candidate primary and secondary cells; or, in response to a trigger condition, evaluate the candidate primary and secondary cells.
  • the specific execution process of the first updating unit 501 and the first evaluating unit 502 may correspond to step S101 to step S102, which will not be described in detail here.
  • the above-mentioned candidate primary and secondary cell evaluation device 50 may correspond to a chip with a data processing function in a user equipment, such as a baseband chip; or to a chip module including a chip with a data processing function (such as a baseband chip) in the user equipment, or to the user equipment.
  • another candidate primary and secondary cell evaluation device 60 in an embodiment of the present invention comprising: a second updating unit 601 and a first processing unit 602, wherein:
  • the second updating unit 601 is configured to update the source primary and secondary cells to the target primary and secondary cells;
  • the first processing unit 602 is configured to delete the configuration of a candidate primary and secondary cell belonging to a source secondary base station, wherein: the source primary and secondary cell and the target primary and secondary cell belong to different secondary base stations.
  • the specific execution process of the second updating unit 601 and the first processing unit 602 may correspond to step S201 to step S202, which will not be described in detail here.
  • the above-mentioned candidate primary and secondary cell evaluation device 60 may correspond to a chip with a data processing function in a user equipment, such as a baseband chip; or to a chip module including a chip with a data processing function (such as a baseband chip) in the user equipment, or to a user equipment.
  • an embodiment of the present invention further provides a primary and secondary cell updating device 70, comprising: a first acquiring unit 701, a first generating unit 702 and a first accessing unit 703, wherein:
  • the first acquisition unit 701 is used to acquire the target sk-counter parameter used for the current secondary execution condition primary and secondary cell update;
  • a first generating unit 702 configured to generate a first security parameter K SN based at least on the target sk-counter parameter
  • the first access unit 703 is configured to access a target primary or secondary cell based at least on the first security parameter K SN .
  • the specific execution process of the first acquisition unit 701, the first generation unit 702 and the first access unit 703 may correspond to step S301 to step S303, which will not be described in detail here.
  • the above-mentioned primary and secondary cell updating device 70 may correspond to a chip with data processing function in an access network device (such as a primary base station); or correspond to a chip module in the access network device that includes a chip with data processing function, or correspond to the access network device.
  • another primary and secondary cell updating device 80 in an embodiment of the present invention comprising: a first determining unit 801, a third updating unit 802 and a first sending unit 803, of which:
  • a first determining unit 801 is configured to determine whether the user equipment has executed a primary and secondary cell condition update
  • the third updating unit 802 is used to update the sk-counter parameter, and use the updated sk-counter parameter and the second security parameter K gNB to update the first security parameter K SN ;
  • the first sending unit 803 is configured to send the updated first security parameter K SN to the candidate primary and secondary cells configured for the user equipment.
  • the specific execution process of the first determining unit 801, the third updating unit 802 and the first sending unit 803 may correspond to step S401 to step S403, which will not be described in detail here.
  • the above-mentioned primary and secondary cell updating device 80 may correspond to a chip with data processing function in an access network device (such as a secondary base station); or to a chip module including a chip with data processing function in the access network device, or to the access network device.
  • each module/unit included in each device or product described in the above embodiments may be a software module/unit or a hardware module/unit, or may be partly a software module/unit and partly a hardware module/unit.
  • each module/unit contained therein may be implemented in the form of hardware such as circuits, or at least some of the modules/units may be implemented in the form of software programs, which run on a processor integrated inside the chip, and the remaining (if any) modules/units may be implemented in the form of hardware such as circuits;
  • each module/unit contained therein may be implemented in the form of hardware such as circuits, and different modules/units may be located in the same component (such as a chip, circuit module, etc.) or in different components of the chip module, or at least some of the modules/units may be implemented in the form of software programs, which run on a processor integrated inside the chip module, and the remaining (if any) modules/units may be implemented in the form of hardware such as circuits; for each device or product applied to or integrated in a terminal
  • the various devices and products of the terminal, the various modules/units contained therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units may be implemented in the form of software programs,
  • An embodiment of the present invention further provides a computer-readable storage medium, which is a non-volatile storage medium or a non-transient storage medium, on which a computer program is stored.
  • a computer program is run by a processor, the steps of the candidate primary and secondary cell evaluation method provided in steps S101 to S102 are executed; or, the steps of the candidate primary and secondary cell evaluation method provided in steps S201 to S202 are executed; or, the steps of the primary and secondary cell update method provided in any of the above embodiments are executed.
  • An embodiment of the present invention further provides a candidate primary and secondary cell evaluation device, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, and when the processor executes the computer program, the steps of the candidate primary and secondary cell evaluation method provided in any of the above embodiments are performed.
  • An embodiment of the present invention further provides another primary and secondary cell updating device, comprising a memory and a processor, wherein the memory stores a computer program executable on the processor, and when the processor executes the computer program, the steps of the primary and secondary cell updating method provided in any of the above embodiments are performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种候选主辅小区评估方法及装置、计算机可读存储介质,所述候选主辅小区评估方法包括:从源主辅小区更新至目标主辅小区;对候选主辅小区中的部分或全部进行评估;或,响应于触发条件,对所述候选主辅小区进行评估。采用上述方案,能够有效降低评估候选主辅小区的功耗。

Description

候选主辅小区评估方法及装置、计算机可读存储介质
本申请要求于2022年9月30日提交中国专利局、申请号为202211213890.5、发明名称为“候选主辅小区评估方法及装置、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种候选主辅小区评估方法及装置、计算机可读存储介质。
背景技术
在无线通信中,引入了一种条件切换机制,在重配置信令中携带有候选小区的配置和相应的切换条件(切换执行条件,conditional execution condition),如判断候选目标小区的信号质量是否比当前服务小区的信号质量高预定的偏移量。用户设备在接收到该重配置信令之后,判断候选小区的切换条件(切换执行条件)是否满足,在满足时,用户设备利用重配置信令中包含的候选小区的配置参数接入目标小区,与目标小区取得同步,在目标小区发起随机接入过程,实现切换过程。
用户设备可以建立双连接,双连接可以包括不同的种类。在无线通信场景中,多种不同的双连接可以统称为多无线双连接(Multi Radio Dual Connectivity,MR-DC)。MR-DC可以包括EN-DC(E-UTRAN NR Dual Connectivity)、NE-DC(NR E-UTRAN Dual Connectivity)、NR-DC(NR NR Dual Connectivity)等。
对于建立了双连接的用户设备,辅基站(SN)侧可以采用条件切换机制。由于辅基站侧小区组(Secondary Cell Group,SCG)的改变并不是严格意义上的切换,此时,通常称为条件主辅小区更新(Conditional PSCell Change,CPC)。
在最近的协议研究中,提出一种支持连续的条件PSCell Change的方法。主基站(MN)或辅基站(SN)为用户设备配置多个候选PSCell。用户设备在执行了条件PSCell Change之后,继续保留其他候选PSCell的配置,继续评估其他候选PSCell,以避免无谓的释放候选PSCell的处理。
然而,用户设备执行条件PSCell Change之后,需要持续对候选PSCell进行评估,导致用户设备的功耗较大。
发明内容
本发明实施例解决的是持续对候选PSCell进行评估,导致用户设备的功耗较大的技术问题。
为解决上述技术问题,本发明提供一种候选主辅小区评估方法,包括:从源主辅小区更新至目标主辅小区;对候选主辅小区中的部分或全部进行评估;或,响应于触发条件,对所述候选主辅小区进行评估。
可选的,所述响应于触发条件,对所述候选主辅小区进行评估,包括:所述目标主辅小区的信号质量小于等于预设门限,对所述候选主辅小区进行评估。
可选的,所述响应于触发条件,对所述候选主辅小区进行评估,包括:接收指示信息,对所述候选主辅小区进行评估。
可选的,所述对所述候选主辅小区中的部分或全部进行评估,包括:对除第二候选主辅小区之外的其他候选主辅小区进行评估。
可选的,所述候选主辅小区评估方法还包括:接收配置信息;所述配置信息用于配置候选主辅小区,并指示所述第二候选主辅小区。
可选的,所述目标主辅小区与所述第二候选主辅小区为非相邻小区。
可选的,所述对所述候选主辅小区中的部分或全部进行评估,包括:响应于所述触发条件,对所述候选主辅小区中的部分或全部进行评估。
可选的,所述响应于所述触发条件,对所述候选主辅小区中的部分或全部进行评估,包括:所述目标主辅小区的信号质量小于等于预设门限,对除所述第二候选主辅小区之外的其他候选主辅小区进行评估。
可选的,还包括:对所述候选主辅小区进行更新。
可选的,所述对所述候选主辅小区进行更新,包括:删除属于源辅基站的候选主辅小区的配置;所述目标主辅小区与所述源主辅小区属于不同的辅基站。
本发明实施例还提供了另一种候选主辅小区评估方法,包括:删除属于源辅基站的候选主辅小区的配置,其中:所述源主辅小区与所述目标主辅小区属于不同的辅基站。
可选的,所述候选主辅小区评估方法还包括:所述目标主辅小区与所述源主辅小区属于相同的辅基站,将继续保存与所述源主辅小区属于相同辅基站的候选主辅小区的配置。
可选的,所述候选主辅小区评估方法还包括:检测到执行主基站切换,删除所有候选主辅小区的配置。
可选的,所述候选主辅小区评估方法还包括:对所属辅基站与源辅基站不同的候选主辅小区进行评估。
可选的,所述对所属辅基站与所述源主辅小区所属辅基站不同的 候选主辅小区进行评估,包括:当所述目标主辅小区的信号质量小于等于预设门限时,对第一剩余候选主辅小区进行评估;所述第一剩余候选主辅小区为:所有候选主辅小区中,删除属于源辅基站的候选主辅小区之后的剩余候选主辅小区。
可选的,所述对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估,包括:对第一剩余候选主辅小区中,除第二候选主辅小区之外的候选主辅小区进行评估;所述第一剩余候选主辅小区为:所有候选主辅小区中,删除属于源辅基站的候选主辅小区之后的剩余候选主辅小区。
可选的,所述候选主辅小区评估方法还包括:接收配置信息;所述配置信息用于配置候选主辅小区,且所述配置信息用于指示所述第二候选主辅小区。
可选的,所述第二候选主辅小区与所述目标主辅小区非相邻。
可选的,所述对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估,包括:当所述目标主辅小区的信号质量小于等于预设门限时,对第一剩余候选主辅小区中,除第二候选主辅小区之外的候选主辅小区进行评估。
可选的,所述对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估,包括:接收指示信息,对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估。
本发明实施例还提供了一种主辅小区更新方法,包括:获取当前次执行条件主辅小区更新使用的目标sk-counter参数;基于所述目标sk-counter参数,生成第一安全参数KSN;基于所述第一安全参数KSN接入目标主辅小区。
可选的,所述获取当前次执行条件主辅小区更新使用的目标sk-counter参数,包括:获取发生辅基站间主辅小区条件更新的次数;根据配置信息以及所述发生辅基站间主辅小区条件更新的次数,确定 所述当前次执行条件主辅小区更新使用的目标sk-counter参数;所述配置信息用于配置sk-counter参数。
可选的,所述配置信息配置多个sk-counter参数;所述根据配置信息以及所述发生辅基站间主辅小区条件更新的次数,确定所述当前次执行主辅小区更新使用的目标sk-counter参数,包括:根据所述发生辅基站间主辅小区条件更新的次数,从所述多个sk-counter参数中选择相应的sk-counter参数作为所述目标sk-counter参数。
可选的,所述配置信息配置一个sk-counter参数;所述根据配置信息以及所述发生辅基站间主辅小区条件更新的次数,确定所述当前次执行条件主辅小区更新使用的目标sk-counter参数,包括:根据所述发生辅基站间主辅小区条件更新的次数,对所述一个sk-counter参数进行相应次数的更新,将得到的更新值作为所述目标sk-counter参数。
可选的,在基于所述第一安全参数KSN接入目标主辅小区之后,还包括:向所述目标主辅小区上报所述第一安全参数KSN关联的主辅小区更新次数。
可选的,所述基于所述第一安全参数KSN接入目标主辅小区,包括:基于所述第一安全参数KSN和所述目标主辅小区的参数,对所述第一安全参数进行更新;基于所述更新后的第一安全参数KSN接入所述目标主辅小区。
本发明实施例还提供了另一种主辅小区更新方法,应用于主基站,包括:确定用户设备执行了主辅小区条件更新;对sk-counter参数进行更新,并使用更新后的sk-counter参数与第二安全参数KMN,对第一安全参数KSN进行更新;发送更新后的第一安全参数KSN至为所述用户设备配置的候选主辅小区。
可选的,所述确定用户设备执行了主辅小区条件更新,包括:确定所述用户设备执行了辅基站间的主辅小区条件更新。
本发明实施例还提供了又一种主辅小区更新方法,包括:为选取的候选主辅小区配置多个第一安全参数KSN,并为用户设备配置多个sk-counter参数;不同的第一安全参数KSN的取值不同,且所述sk-counter参数与所述第一安全参数KSN一一对应。
本发明实施例还提供了又一种主辅小区更新方法,包括:接收配置信息,所述配置信息包括多个第一安全参数KSN,且所述第一安全参数KSN与主基站为用户设备配置的多个sk-counter参数一一对应;不同的第一安全参数KSN的取值不同;确定作为目标主辅小区,遍历所述多个第一安全参数KSN,生成所述多个第一安全参数KSN一一对应的完整性保护密钥;采用得到的多个所述完整性保护密钥,验证所述用户设备发送的信息,从所述多个第一安全参数KSN中确定目标第一安全参数KSN
本发明实施例提供了一种候选主辅小区评估装置,包括:第一更新单元,用于从源主辅小区更新至目标主辅小区;第一评估单元,用于对所述候选主辅小区中的部分或全部进行评估;或,响应于触发条件,对所述候选主辅小区进行评估。
本发明实施例还提供了另一种候选主辅小区评估装置,包括:第二更新单元,用于从源主辅小区更新至目标主辅小区;第一处理单元,用于删除属于源辅基站的候选主辅小区的配置,其中:所述源主辅小区与所述目标主辅小区属于不同的辅基站。
本发明实施例还提供了一种主辅小区更新装置,包括:第一获取单元,用于获取当前次执行条件主辅小区更新使用的目标sk-counter参数;第一生成单元,用于基于所述目标sk-counter参数,生成第一安全参数KSN;第一接入单元,用于基于所述第一安全参数KSN接入目标主辅小区。
本发明实施例还提供了另一种主辅小区更新装置,包括:第一确定单元,用于确定用户设备执行了主辅小区条件更新;第三更新单元,用于对sk-counter参数进行更新,并使用更新后的sk-counter参数与 第二安全参数KMN,对第一安全参数KSN进行更新;第一发送单元,用于发送更新后的第一安全参数KSN至为所述用户设备配置的候选主辅小区。
本发明实施例还提供了又一种主辅小区更新装置,包括:第一配置单元,用于为选取的候选主辅小区配置多个第一安全参数KSN,并为用户设备配置多个sk-counter参数;不同的第一安全参数KSN的取值不同,且所述sk-counter参数与所述第一安全参数KSN一一对应。
本发明实施例还提供了再一种主辅小区更新装置,包括:第一接收单元,用于接收配置信息,所述配置信息包括多个第一安全参数KSN,且所述第一安全参数KSN与主基站为用户设备配置的多个sk-counter参数一一对应;不同的第一安全参数KSN的取值不同;第二生成单元,用于确定作为目标主辅小区,遍历所述多个第一安全参数KSN,生成所述多个第一安全参数KSN一一对应的完整性保护密钥;第二确定单元,用于采用得到的多个所述完整性保护密钥,验证所述用户设备发送的信息,从所述多个第一安全参数KSN中确定目标第一安全参数KSN
本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述任一种所述的候选主辅小区评估方法的步骤;或者,执行上述任一种所述的主辅小区更新方法的步骤。
本发明还提供了一种候选主辅小区评估装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述任一种所述的候选主辅小区评估方法的步骤。
本发明实施例还提供了一种主辅小区更新装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述任一种所述的主辅小区更 新方法的步骤。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
从源主辅小区更新至目标主辅小区,若满足触发条件,才对候选主辅小区进行评估,可以减少对候选主辅小区进行评估的次数,进而降低用户设备的功耗。
进一步,可以仅对部分候选主辅小区进行更新,减少需要进行评估的候选主辅小区的个数,降低用户设备的功耗。
此外,若满足触发条件,才对部分候选主辅小区进行更新,可以减少需要进行评估的候选主辅小区的个数和评估的次数,进一步降低用户设备的功耗。
附图说明
图1是本发明实施例中的一种候选主辅小区评估方法的流程图;
图2是本发明实施例中的另一种候选主辅小区评估方法的流程图;
图3是本发明实施例中的一种主辅小区更新方法的流程图;
图4是本发明实施例中的另一种主辅小区更新方法的流程图;
图5是本发明实施例中的一种候选主辅小区评估装置的结构示意图;
图6是本发明实施例中的另一种候选主辅小区评估装置的结构示意图;
图7是本发明实施例中的一种主辅小区更新装置的结构示意图;
图8是本发明实施例中的另一种主辅小区更新装置的结构示意图。
具体实施方式
如上所述,现有技术中,用户设备执行条件PSCell Change之后,需要持续对候选PSCell进行评估,导致用户设备的功耗较大。
在本发明实施例中,用户设备已经建立了双连接,用户设备从源主辅小区更新至目标主辅小区,对候选主辅小区进行评估时,若满足触发条件,才对候选主辅小区进行评估,可以减少对候选主辅小区进行评估的次数,进而降低用户设备的功耗。并且,对候选主辅小区进行评估时,可以仅对部分候选主辅小区进行更新,减少需要进行评估的候选主辅小区的个数,降低用户设备的功耗。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明实施例提供了一种主辅小区更新方法,参照图1,以下通过具体步骤进行说明。
在具体实施中,下述步骤S101~步骤S102所记载的候选主辅小区评估方法可以由用户设备中具有数据处理功能的芯片所执行,也可以由用户设备中包含有数据处理功能的芯片模组来执行,或者由用户设备来执行。下面以用户设备执行候选主辅小区评估方法为例进行说明。
步骤S101,从源主辅小区更新至目标主辅小区。
在具体实施中,主基站和/或辅基站可以为用户设备配置测量参数。用户设备按照主基站和/或辅基站配置的测量参数,执行相应的测量操作。具体的,主基站和/或辅基站为用户设备配置的测量参数的具体内容、用户设备执行测量操作的具体过程可以对应参照现有协议。
用户设备获取测量操作得到的测量结果,并在满足上报条件时上报测量结果。主基站和/或辅基站依据用户设备的能力信息以及测量报告,决定为用户设备配置条件PSCell change。
对于主基站配置候选PSCell的过程,主基站首先选择了多个候选PSCell,然后向所选择的候选PSCell所属的辅基站(SN)发送SN添加请求,以请求辅基站配置候选SCG。主基站可以向多个辅基站发送SN添加请求,进而获得多个辅基站返回的请求确认。
主基站获得多个候选SCG,并将所获得的多个SCG发送给用户设备,每一个SCG包含一个PSCell。主基站为每个候选PSCell配置各自对应的PSCell change执行条件。PSCell change执行条件可以包括候选PSCell比源PSCell的信号质量高预设的偏移量。不同的候选PSCell对应的PSCell change执行条件可以相同或不同。
对于辅基站配置候选PSCell的过程,辅基站可以为用户设备配置属于本辅基站的候选PSCell,称为intra-SN candidate PSCell,辅基站可以直接将这些候选PSCell的配置发送给用户设备;辅基站也可以为用户设备配置不属于本辅基站的候选PSCell,称为inter-SN candidate PSCell,辅基站需要通过主基站向其他辅基站发送SN添加请求,以请求其他辅基站配置候选SCG。其他辅基站向主基站返回候选PSCell配置(包含在候选SCG内)之后,发送给用户设备。
在具体实施中,网络设备(本发明实施例中,如无特殊说明,网络设备可以包括主基站和/或辅基站)为用户设备配置候选PSCell时,通常用户设备已经处于源PSCell的边缘。用户设备在接收到配置的多个候选PSCell后,可以对多个候选PSCell进行评估。若检测到某一个候选PSCell满足PSCell change执行条件,则用户设备可以更新至该候选PSCell。此时,该满足PSCell change执行条件的候选PSCell即可称之为目标PSCell。
在本发明实施例中,源PSCell可以看做是本次PSCell change发生之前,用户设备接入的PSCell,源PSCell所属的基站称为源辅基站。主基站和/或源辅基站为用户设备配置的多个候选PSCell均为源PSCell的邻小区。
具体地,用户设备从源PSCell更新至目标PSCell的具体实现可 以对应参照现有协议。此处用户设备执行PSCell更新可以是执行了条件PSCell change,也可以是收到网络设备发送的PSCell change信令之后按照信令执行了PSCell change。
步骤S102,对候选主辅小区中的部分或全部进行评估;或,响应于触发条件,对候选主辅小区进行评估。
在本发明实施例中,用户设备执行了PSCell change之后,继续保留网络设备所配置的候选PSCell的配置(即候选PSCell对应的SCG配置),候选PSCell可以包含源PSCell,也可以不包含源PSCell。
例如,用户设备在步骤S101中,在收到网络设备发送的PSCell change信令中,如果网络设备为用户设备设置源PSCell相关的更新执行条件,用户设备在执行PSCell change的过程中,可以保留源PSCell的配置,以及源PSCell对应的更新执行条件,源PSCell就成为一个候选PSCell。如果用户设备在步骤S101中执行了条件PSCell change,用户设备在执行PSCell change的过程中释放了源PSCell配置,此时候选PSCell就不包含源PSCell。
也就是说,用户设备在接入到目标PSCell之后,可以根据网络设备的指示,确定是否将源PSCell作为接入目标PSCell之后的候选PSCell。
用户设备在执行了PSCell change之后,可以继续保留候选PSCell配置。在具体实现中,用户设备可以基于网络设备在配置候选PSCell时的显式指示,该显式指示要求用户设备在执行了PSCell change之后继续保留候选PSCell。需要说明的是,本发明实施例中,候选PSCell配置可以包含候选PSCell的SCG配置以及相关联的PSCell更新执行条件。
在具体实施中,用户设备在接入到目标PSCell之后,可能在一段时间内,检测到目标PSCell的信号质量均超过预设门限。例如,用户设备处于低速运动状态,在接入到目标PSCell之后,检测到目 标PSCell的信号质量在一段时间内持续较强。由于目标PSCell能够在一段时间内为用户设备提供正常的服务,故用户设备在该段时间内,可以无需对候选PSCell进行评估。
在具体实施中,预设门限可以根据具体的应用场景进行设定。本领域技术人员能够理解,预设门限需要满足用户设备的正常工作需求。换言之,若用户设备检测到目标PSCell的信号质量小于等于预设门限,则目标PSCell可能无法为用户设备提供服务。
目标PSCell的信号质量可以是目标PSCell的参考信号的接收功率,或者是目标PSCell的参考信号接收质量,或者是目标PSCell的参考信号信干噪比。
在本发明实施例中,当用户设备检测到目标PSCell的信号质量小于等于预设门限时,即可确定满足触发条件,开始对候选PSCell进行评估。
在具体实施中,用户设备在接入到目标PSCell之后,继续保存了候选PSCell的配置,但是,用户设备可以无需立即对候选PSCell进行评估。在本发明实施例中,用户设备在接收到主基站或者辅基站发送的指示信息之后,也即主基站或者辅基站明确指示对候选PSCell进行评估之后,才启动候选PSCell的评估。
在本发明实施例中,当用户设备接入到目标PSCell之后,主基站或者辅基站可以基于用户设备测量得到的新的测量报告,确定用户设备是否在目标PSCell的边缘。当检测到用户设备处于目标PSCell的边缘时,主基站或辅基站才生成指示信息,触发用户设备对候选PSCell进行评估。
可见,在满足触发条件时,用户设备才对候选PSCell进行评估,能够有效降低对候选PSCell进行评估的时间,进而降低用户设备的功耗。
在具体实施中,网络设备在初始为用户设备配置的候选PSCell 均为源PSCell的邻区。但是,这些候选PSCell并不一定是用户设备新接入的目标PSCell的邻区。
在本发明实施例中,主基站在通过配置信息为用户设备配置候选PSCell时,还可在配置信息中指示第二候选PSCell,第二候选PSCell可以为:用户设备接入目标PSCell,无需进行评估的候选PSCell。
用户设备在对候选PSCell进行评估时,即可排除第二候选PSCell,也即不需要对第二候选PSCell进行评估。
在本发明实施例中,第二候选PSCell可以为空,或者仅包括一个候选PSCell,也可以包括两个或者多个候选PSCell。
由此可见,通过排除第二候选PSCell,可以减少需要进行评估的候选PSCell的个数,也可以降低用户设备的功耗。
在具体实施中,第二候选PSCell可以为目标PSCell的非相邻小区。换言之,第二候选PSCell并不是目标PSCell的相邻小区。
在本发明实施例中,用户设备也可以在目标主辅小区的信号质量小于等于预设门限时,对除第二候选PSCell之外的其他候选PSCell进行评估;或者,用户设备也可以在接收到指示信息,才开始对候选主辅小区进行评估。也即:可以将上述实施例中的“满足触发条件对候选主辅小区进行评估”与“对除第二候选PSCell之外的其他候选PSCell进行评估”的实施例进行结合。
由于不需要对第二候选PSCell进行评估,故在满足触发条件时,对除第二候选PSCell之外的其他候选PSCell进行评估,可以进一步降低用户设备的功耗。
下面通过示例,对本发明上述实施例中提供的主辅小区更新方法进行说明。
主基站为用户设备配置了6个候选PSCell,依次为PSCell 1~PSCell 6。PSCell 1~PSCell 6可以为当前驻留的源PSCell的邻小区。
用户设备在接收到候选PSCell配置之后,对6个PSCell进行评估。如果任一个PSCell满足PSCell change执行条件,则用户设备接入该满足条件的PSCell。用户设备评估发现PSCell 1满足PSCell change执行条件,则用户设备接入PSCell 1。用户设备保留PSCell 2~PSCell 6。
依据本发明实施例中记载的一种实现:
用户设备在接入PSCell 1之后的一段时间内,检测到PSCell 1的信号质量超过预设门限,则确定PSCell 1的信号质量较好,无需进行条件PSCell change。在这段时间内,用户设备无需评估PSCell 2~PSCell 6。
又经过一段时间之后,用户设备检测到PSCell 1的信号质量小于等于预设门限,也即PSCell 1的信号质量较差,此时,用户设备才评估PSCell 2~PSCell 6。
可见,在PSCell 1的信号质量较优时,不对PSCell 2~PSCell 6进行评估;在PSCell 1的信号质量较差时,才对PSCell 2~PSCell 6进行评估,能够有效减少用户设备对PSCell 2~PSCell 6的评估时间,降低用户设备的功耗。
依据本发明实施例中记载的另一种实现:
主基站在为用户设备配置6个候选PSCell时,指示每一个候选PSCell对应的不需要进行评估的候选PSCell,即:指示用户设备接入某一个候选PSCell之后,不需要评估的候选PSCell。
用户设备在接入PSCell 1之后,根据主基站的指示,确定不需要评估PSCell 2,则用户设备仅评估PSCell 3~PSCell 6。
可见,通过主基站的指示,用户设备在执行条件PSCell change(从源PSCell接入至PSCell 1)后,可以仅对部分PSCell进行评估,而无需对所有PSCell进行评估,故能够降低用户设备的评估次数,降低用户设备的功耗。
依据本发明实施例中的再一种实现:
用户设备在接入PSCell 1之后,不立即对PSCell 2~PSCell 6进行评估,而是在接收到主基站或辅基站发送的指示,即明确指示开始对候选PSCell进行评估之后,才对PSCell 2~PSCell 6进行评估。
可见,用户设备在执行条件PSCell change(从源PSCell接入至PSCell 1)后,并不是立即对PSCell进行评估,而是可以等待一段时间后才对PSCell进行评估,故也能够降低用户设备的评估次数,降低用户设备的功耗。
依据本发明实施例中的又一种实现:
主基站在为用户设备配置6个候选PSCell时,指示每一个候选PSCell对应的不需要进行评估的候选PSCell。主基站指示如下:若用户设备接入PSCell 1,则用户设备不需要对PSCell 2进行评估。
用户设备在接入PSCell 1之后的一段时间内,检测到PSCell 1的信号质量超过预设门限,则确定PSCell 1的信号质量较好,无需进行条件PSCell change。在这段时间内,用户设备无需继续评估PSCell 2~PSCell 6。
又经过一段时间之后,用户设备检测到PSCell 1的信号质量小于等于预设门限。根据配置信息的指示,用户设备不需要评估PSCell 2,故用户设备只需要继续评估PSCell 3~PSCell 6。
在本发明上述实施例中,均是设定用户设备保存所有候选PSCell。如上述示例,主基站为用户设备配置了6个候选PSCell,依次为PSCell 1~PSCell 6。用户设备确定PSCell 1为目标PSCell。当用户设备接入PSCell 1后,用户设备保留PSCell 2~PSCell 6的配置。
但是,事实上,用户设备可能并不需要对一些候选PSCell进行评估。在本发明实施例中,用户设备还可以对所有候选PSCell进行更新,删除部分候选PSCell的配置,仅对剩余部分候选PSCell进行评估。由于仅需要对部分候选PSCell进行评估,故能够进一步降低 用户设备的功耗。
在具体实施中,主基站和/或辅基站配置的多个候选PSCell各自所属的辅基站可以相同,也可以不同。多个候选PSCell所属的辅基站可以与源PSCell所属的辅基站相同,或者不同。
在本发明实施例中,可以根据候选PSCell所属辅基站与源PSCell所属辅基站的关系,将基站配置的多个候选PSCell划分为两大类:第一类候选PSCell可以为:所属辅基站与源主辅小区所属辅基站相同(即intra-SN candidate PSCell,也即由源辅基站直接向用户设备发送的候选PSCell配置);第二类PSCell可以为:所属辅基站与源主辅小区所属辅基站不同(即inter-SN candidate PSCell,也即由主基站向用户设备发送的候选PSCell配置)。
例如,主基站和/辅基站为用户设备配置了6个候选PSCell,依次为PSCell 1~PSCell 6。PSCell 1~PSCell 6可以为用户设备当前接入的源PSCell的邻小区。PSCell 1~PSCell 3所属辅基站为源辅基站,PSCell 4~PSCell 6所属辅基站为第二辅基站,源辅基站与第二辅基站不同。源主辅小区所属辅基站为源辅基站。据此,将PSCell 1~PSCell 3划分为第一类候选主辅小区,将PSCell 4~PSCell 6划分为第二类候选主辅小区。
在本发明实施例中,还可以继续对第二类候选PSCell进行划分:一种是源辅基站触发的辅基站间(inter-SN)的条件主辅小区更新(Conditional PSCell Change,CPC),另一种是主基站触发的辅基站间的CPC。
在具体实施中,对于第一类候选PSCell,为源辅基站为用户设备配置的辅基站内(intra-SN)的候选PSCell。此时,第一类候选PSCell不包含辅基站侧的安全参数。用户设备在接入第一类候选PSCell时,不需要更新辅基站侧的密钥。用户设备可以直接从源辅基站接收第一类候选PSCell的配置。
对于第二类候选PSCell,为非源辅基站为用户配置的候选PSCell。第二类候选PSCell的配置可以通过主基站发送给用户设备,且第二类候选PSCell的配置中需要包含辅基站侧的安全参数,也即用户设备接入第二类候选PSCell时需要生成新的KSN
在本发明实施例中,若用户设备在执行了PSCell更新之后,接入的目标PSCell为第一类候选PSCell,则用户设备可以继续保留候选PSCell的配置,因为用户设备在执行候选的PSCell条件更新时,保留的候选PSCell可以继续有效;若接入的目标PSCell为第二类候选PSCell,则用户设备可以删除第一类候选PSCell的配置,仅保留第二类候选PSCell的配置,因为主基站不知道用户设备侧原先配置了第一类候选PSCell,也就不会为这些候选PSCell重新配置安全参数,如果用户设备后续接入这些候选PSCell,没有必要的安全参数不能实施接入,因此需要删除第一类候选PSCell的配置。
例如,PSCell 1~PSCell 3所属辅基站为源辅基站,PSCell 4~PSCell 6所属辅基站为第二辅基站,源辅基站与第二辅基站不同。当用户设备在执行PSCell更新之后,接入的PSCell 1为目标PSCell,也即目标PSCell为第一类PSCell。此时,用户设备可以保留PSCell 2~PSCell 6的配置。
又如,用户设备在执行了PSCell更新之后,接入的PSCell 4为目标PSCell,也即目标PSCell为第二类PSCell。此时,用户设备可以删除PSCell 1~PSCell 3的配置。也即:第一剩余候选PSCell包括PSCell 5~PSCell 6。
可见,由用户设备对保存的候选PSCell的配置进行更新,删除部分候选PSCell的配置。在后续进行PSCell的评估的过程中,可以有效减少需要进行评估的候选PSCell的个数,进而降低用户设备的功耗。
继续上述示例,用户设备在删除PSCell 1~PSCell 3的配置之后,仅需要对PSCell 5~PSCell 6进行评估。
在本发明实施例中,用户设备在对候选PSCell进行更新后,对剩余的候选PSCell进行评估。
用户设备可以在目标PSCell的信号质量小于等于预设门限时,对剩余的候选PSCell进行评估。
例如,目标PSCell为PSCell 4,PSCell 4为第二类候选PSCell。剩余的候选PSCell包括PSCell 5~PSCell 6。上述PSCell 5~PSCell 6即为第一剩余候选主辅小区。
当用户设备检测到满足触发条件(如PSCell 4的信号质量小于等于预设门限时),用户设备对PSCell 5~PSCell 6进行评估。
主基站可以在配置候选PSCell时,指示每一候选PSCell作为目标PSCell时无需进行评估的某些候选PSCell,无需进行评估的候选PSCell即为第二候选主辅小区。用户设备在接入目标PSCell后,从剩余的候选PSCell中去除无需进行评估的候选PSCell,得到二次更新后的候选PSCell。用户设备对二次更新后的候选PSCell进行评估。
例如,主基站配置PSCell 4为目标PSCell时,无需对PSCell 5进行测量(也即PSCell5为第二候选主辅小区,通常PSCell5并不是PSCell4的邻区)。目标PSCell为PSCell 4,PSCell 4为第二类候选PSCell。剩余的候选PSCell包括PSCell 5~PSCell 6。用户设备在接入到PSCell 4之后,对剩余的候选PSCell进行更新,得到二次更新后的候选PSCell为PSCell 6。由此,用户设备对PSCell 6进行评估,评估其是否满足PSCell更新执行条件。此时主基站和/或辅基站可以另外为用户设备配置候选PSCell。
用户设备可以在检测到目标PSCell的信号质量小于等于预设门限时,对二次更新后的候选PSCell进行评估。
承接上述示例,用户设备在检测到PSCell 4的信号质量小于等于预设门限时,对PSCell 6进行评估。
在具体实施中,用户设备也可以在接收到指示信息之后,对更新 的候选PSCell进行评估。
例如,用户设备在接收到主基站发送的指示信息之后,对保留的PSCell 5~PSCell 6进行评估。
在上述实施例中,用户设备在执行了PSCell更新之后,依据接入的目标PSCell是否属于源辅基站确定是否删除第一类候选PSCell,即:如果目标PSCell属于源辅基站,用户设备保留第一类候选PSCell;否则,删除第一类候选PSCell。
本发明实施例还可以有不同的实现方式,用户设备在执行了PSCell更新之后,如果接入的PSCell不属于源辅基站,则用户设备继续保留第一类候选PSCell,同时用户设备或源辅基站向主基站指示用户设备保留的第一类候选PSCell的数量(作为一可选项,用户设备或源辅基站还可以向主基站指示第一类候选PSCell的标识),以便主基站获知用户设备侧保留的候选PSCell总数(主基站知道用户设备保留的第二类候选PSCell数量)。
如果后续为用户设备额外配置其他候选PSCell,主基站可以控制为用户设备配置的候选PSCell总数,避免超过用户设备的处理能力(如支持最多配置8个候选PSCell)。
主基站在获知用户设备有保留的第一类候选PSCell,需要为这些候选PSCell配置必要的安全参数以便用户设备在接入这些PSCell时可以应用加密和完整性保护。
主基站可以在获知用户设备有保留的第一类候选PSCell之后,将安全参数发送给这些PSCell,同时主基站需要通知用户设备在接入这些PSCell时需要应用的安全参数。
主基站也可以针对所有候选PSCell统一配置安全参数并提前发送给用户设备,用户设备在接入这些候选PSCell时应用相应的安全参数,同时向接入的PSCell告知应用安全参数的关联信息,以便所接入的PSCell能够准确派生出用户设备所应用的加密密钥和完整性 保护密钥。
本发明实施例还提供了另一种主辅小区更新方法,参照图2,以下通过具体步骤进行详细说明。
在具体实施中,下述步骤S201~步骤S202所记载的候选主辅小区评估方法可以由用户设备中具有数据处理功能的芯片所执行,也可以由用户设备中包含有数据处理功能的芯片模组来执行,或者由用户设备来执行。下面以用户设备执行候选主辅小区评估方法为例进行说明。
步骤201,从源主辅小区更新至目标主辅小区。
在具体实施中,主基站和/或辅基站可以为用户设备配置测量参数。用户设备按照主基站和/或辅基站配置的测量参数,执行相应的测量操作。具体的,主基站和/或辅基站为用户设备配置的测量参数的具体内容、用户设备执行测量操作的具体过程可以对应参照现有协议。
用户设备获取测量操作得到的测量结果,并在满足上报条件时上报测量结果。主基站和/或辅基站依据用户设备的能力信息以及测量报告,决定为用户设备配置条件PSCell change。
对于主基站配置候选PSCell的过程,主基站首先选择了多个候选PSCell,然后向所选择的候选PSCell所属的辅基站(SN)发送SN添加请求,以请求辅基站配置候选SCG。主基站可以向多个辅基站发送SN添加请求,进而获得多个辅基站返回的请求确认。
主基站获得多个候选SCG,并将所获得的多个SCG发送给用户设备,每个SCG包含一个PSCell。主基站为每个候选PSCell配置各自对应的PSCell change执行条件。PSCell change执行条件可以包括候选PSCell比源PSCell的信号质量高预设的偏移量。不同的候选PSCell对应的PSCell change执行条件可以相同或不同。
对于辅基站配置候选PSCell的过程,辅基站可以为用户设备配 置属于本辅基站的候选PSCell,称为intra-SN candidate PSCell,辅基站可以直接将这些候选PSCell的配置发送给用户设备;辅基站也可以为用户设备配置不属于本辅基站的候选PSCell,称为inter-SN candidate PSCell,辅基站需要通过主基站向其他辅基站发送SN添加请求,以请求其他辅基站配置候选SCG。其他辅基站向主基站返回候选PSCell配置(包含在候选SCG内)之后,发送给用户设备。
在具体实施中,网络设备为用户设备配置候选PSCell时,通常用户设备已经处于源PSCell的边缘。用户设备在接收到配置的多个候选PSCell后,可以对多个候选PSCell进行评估。若检测到某一个候选PSCell满足PSCell change执行条件,则用户设备可以更新至该候选PSCell。此时,该满足PSCell change执行条件的候选PSCell即可称之为目标PSCell。
在本发明实施例中,源PSCell可以看做是本次条件PSCell change发生之前,用户设备接入的PSCell,源PSCell所属的基站称为源辅基站。主基站和/或源辅基站为用户设备配置的多个候选PSCell均可以为源PSCell的邻小区。
在具体实施中,主基站也可以直接指示接入目标PSCell即发送PSCell更新命令。用户设备在获取到主基站的指示后,从源PSCell更新至目标PSCell。
具体地,用户设备从源PSCell更新至目标PSCell的具体实现可以对应参照现有协议。
步骤202,删除与源主辅小区属于相同辅基站的候选主辅小区的配置。
在具体实施中,主基站配置的多个候选PSCell各自所属的辅基站可以相同,也可以不同。多个候选PSCell所属的辅基站可以与源PSCell所属的辅基站相同,或者不同。
在本发明实施例中,可以根据候选PSCell所属辅基站与源PSCell 所属辅基站的关系,将基站配置的多个候选PSCell划分为两大类:第一类候选PSCell可以为:所属辅基站与源主辅小区所属辅基站相同的候选PSCell,或者,PSCell的配置是由源辅基站直接向用户设备发送的候选PSCell;第二类PSCell可以为:所属辅基站与源主辅小区所属辅基站不同的候选PSCell,或者,PSCell的配置是由主基站向用户设备发送的候选PSCell。
例如,主基站为用户设备配置了6个候选PSCell,依次为PSCell1~PSCell 6。PSCell 1~PSCell 6可以为当前驻留的源PSCell的邻小区。PSCell 1~PSCell 3所属辅基站为源辅基站,PSCell 4~PSCell 6所属辅基站为第二辅基站,源辅基站与第二辅基站不同。源主辅小区所属辅基站为源辅基站。据此,将PSCell 1~PSCell 3划分为第一类候选主辅小区,将PSCell 4~PSCell 6划分为第二类候选主辅小区。
在本发明实施例中,还可以继续对第二类候选PSCell进行划分:一种是源辅基站触发的辅基站间(inter-SN)的主辅小区条件更新(Conditional PSCell Change,CPC),另一种是主基站触发的辅基站间的CPC。
在具体实施中,对于第一类候选PSCell,为源辅基站为用户设备配置的辅基站内(intra-SN)的候选PSCell。此时,第一类候选PSCell不包含辅基站侧的安全参数。用户设备在接入第一类候选PSCell时,不需要更新密钥。用户设备可以直接从源辅基站接收第一类候选PSCell的配置。
对于第二类候选PSCell,为非源辅基站为用户配置的候选PSCell。第二类候选PSCell的配置可以通过主基站发送给用户设备,且第二类候选PSCell的配置中需要包含辅基站侧的安全参数,也即用户设备接入第二类候选PSCell时需要生成新的KSN
在本发明实施例中,若目标PSCell为第一类候选PSCell,则用户设备可以继续保留候选PSCell的配置;若目标PSCell为第二类候选PSCell,则用户设备删除第一类候选PSCell的配置,仅保留第二 类候选PSCell的配置。
例如,PSCell 1~PSCell 3所属辅基站为源辅基站,PSCell 4~PSCell 6所属辅基站为第二辅基站,源辅基站与第二辅基站不同。用户设备在接入PSCell 1时即PSCell1为目标PSCell,也即接入了源辅基站所管辖的PSCell。此时,用户设备可以保留PSCell 2~PSCell 6的配置。
又如,用户设备在接入PSCell 4时即PSCell4为目标PSCell,也即接入了与源辅基站不同的辅基站。此时,用户设备可以删除PSCell 1~PSCell 3的配置。也即:第一剩余候选PSCell包括PSCell 5~PSCell 6。
可见,由用户设备对保存的候选PSCell的配置进行更新,删除部分候选PSCell的配置。在后续进行PSCell的评估的过程中,可以有效减少需要进行评估的候选PSCell的个数,进而降低用户设备的功耗。
继续上述示例,用户设备在删除PSCell 1~PSCell 3的配置之后,仅需要对PSCell 5~PSCell 6进行评估。
在本发明实施例中,用户设备在对候选PSCell进行更新后,对剩余的候选PSCell进行评估。
用户设备可以在目标PSCell的信号质量小于等于预设门限时,对剩余的候选PSCell进行评估。
例如,目标PSCell为PSCell 4时,用户设备接入了非源辅基站。此时剩余的候选PSCell包括PSCell 5~PSCell 6。上述PSCell 5~PSCell 6即为第一剩余候选主辅小区。
当用户设备检测到PSCell 4的信号质量小于等于预设门限时,用户设备对PSCell 5~PSCell 6进行评估。
主基站可以在配置候选PSCell时,指示每一候选PSCell作为目 标PSCell时无需进行评估的候选PSCell,即指示非目标PSCell的邻区,无需进行评估的候选PSCell即为第二候选主辅小区。用户设备在接入目标PSCell后,从剩余的候选PSCell中去除无需进行评估的候选PSCell,得到二次更新后的候选PSCell。用户设备对二次更新后的候选PSCell进行评估。
例如,主基站配置PSCell 4为目标PSCell时,无需对PSCell5进行测量(也即PSCell5为第二候选主辅小区)。剩余的候选PSCell包括PSCell 5~PSCell 6。用户设备在接入到PSCell 4之后,对剩余的候选PSCell进行更新,得到二次更新后的候选PSCell为PSCell 6。由此,用户设备对PSCell 6进行评估,评估其是否满足PSCell更新执行条件。此时主基站和/或辅基站可以另外为用户设备配置候选PSCell。
用户设备可以在检测到目标PSCell的信号质量小于等于预设门限时,对二次更新后的候选PSCell进行评估。
承接上述示例,用户设备在检测到PSCell 4的信号质量小于等于预设门限时,对PSCell 6进行评估。
在具体实施中,用户设备也可以在接收到指示信息之后,对更新的候选PSCell进行评估。
例如,用户设备在接收到主基站发送的指示信息之后,对保留的PSCell 5~PSCell 6进行评估。
在具体实施中,若用户设备执行了主基站切换,则用户设备释放所有候选PSCell的配置。
可见,通过对候选PSCell进行更新,删除其中部分候选PSCell的配置,可以进一步减少需要进行评估的PSCell的个数,进一步降低用户设备的功耗。
在上述实施例中,用户设备在执行了PSCell更新之后,依据接入的目标PSCell是否属于源辅基站确定是否删除第一类候选PSCell, 即:如果目标PSCell属于源辅基站,用户设备保留第一类候选PSCell;否则,删除第一类候选PSCell。
本发明实施例的不同实现方式,用户设备在执行了PSCell更新之后,如果接入的PSCell不属于源辅基站,则用户设备继续保留第一类候选PSCell,同时用户设备或源辅基站向主基站指示用户设备保留的第一类候选PSCell的数量(作为一可选项,用户设备或源辅基站还可以向主基站指示第一类候选PSCell的标识),以便主基站获知用户设备侧保留的候选PSCell总数(主基站知道用户设备保留的第二类候选PSCell数量)。
如果后续额外配置其他候选PSCell,主基站可以控制为用户设备配置的候选PSCell总数,避免超过用户设备的处理能力(如支持最多配置8个候选PSCell)。
主基站在获知用户设备有保留的第一类候选PSCell,需要为这些候选PSCell配置必要的安全参数以便用户设备在接入这些PSCell时可以应用加密和完整性保护。
主基站可以在获知用户设备有保留的第一类候选PSCell之后,将安全参数发送给这些PSCell,同时主基站需要通知用户设备在接入这些PSCell时需要应用的安全参数。
主基站也可以针对所有候选PSCell统一配置安全参数并提前发送给用户设备,用户设备在接入这些候选PSCell时应用相应的安全参数,同时向接入的PSCell告知应用安全参数的关联信息,以便所接入的PSCell能够准确派生出用户设备所应用的加密密钥和完整性保护密钥。
参照图3,给出了本发明实施例中的又一种主辅小区更新方法,以下通过具体步骤进行详细说明。
在具体实施中,下述步骤S301~步骤S303所记载的主辅小区更新方法可以由用户设备中具有数据处理功能的芯片所执行,也可以由 用户设备中包含有数据处理功能的芯片的芯片模组来执行,或者由用户设备来执行。下面以用户设备执行主辅小区更新方法为例进行说明。
步骤S301,获取当前次执行条件主辅小区更新使用的目标sk-counter参数。
在具体实施中,主基站和/或辅基站可以为用户设备配置测量参数。用户设备按照主基站和/或辅基站配置的测量参数,执行相应的测量操作。具体的,主基站和/或辅基站为用户设备配置的测量参数的具体内容、用户设备执行测量操作的具体过程可以对应参照现有协议。
用户设备获取测量操作得到的测量结果,并在满足上报条件时上报测量结果。主基站和/或辅基站依据用户设备的能力信息以及测量报告,决定为用户设备配置条件PSCell change。
对于主基站配置候选PSCell的过程,主基站首先选择了多个候选PSCell,然后向所选择的候选PSCell所属的辅基站(SN)发送SN添加请求,以请求辅基站配置候选SCG。主基站可以向多个辅基站发送SN添加请求,进而获得多个辅基站返回的请求确认。
主基站获得多个候选SCG,并将所获得的多个SCG发送给用户设备,每一个SCG包含一个PSCell。主基站为每个候选PSCell配置各自对应的PSCell change执行条件。PSCell change执行条件可以包括候选PSCell比源PSCell的信号质量高预设的偏移量。不同的候选PSCell对应的PSCell change执行条件可以相同或不同。
对于辅基站配置候选PSCell的过程,辅基站可以为用户设备配置属于本辅基站的候选PSCell,称为intra-SN candidate PSCell,辅基站可以直接将这些候选PSCell的配置发送给用户设备;辅基站也可以为用户设备配置不属于本辅基站的候选PSCell,称为inter-SN candidate PSCell,辅基站需要通过主基站向其他辅基站发送SN添加 请求,以请求其他辅基站配置候选SCG。其他辅基站向主基站返回候选PSCell配置(包含在候选SCG内)之后,发送给用户设备。
在具体实施中,网络设备(本发明实施例中,如无特殊说明,网络设备可以包括主基站和/或辅基站)为用户设备配置候选PSCell时,通常用户设备已经处于源PSCell的边缘。用户设备在接收到配置的多个候选PSCell后,可以对多个候选PSCell进行评估。若检测到某一个候选PSCell满足PSCell change执行条件,则用户设备可以更新至该候选PSCell。此时,该满足PSCell change执行条件的候选PSCell即可称之为目标PSCell。
在本发明实施例中,源PSCell可以看做是本次PSCell change发生之前,用户设备接入的PSCell。主基站为用户设备配置的多个候选PSCell均为源PSCell的邻小区。
具体地,用户设备从源PSCell更新至目标PSCell的具体实现可以对应参照现有协议。此处用户设备执行PSCell更新可以是执行了条件PSCell change,也可以是收到网络设备发送的PSCell change信令之后按照信令执行了PSCell change。
在具体实施中,主基站在配置多个候选PSCell时,可以为每个候选PSCell配置安全参数(sk-counter参数),sk-counter参数的取值可以为1~32。主基站可以将sk-counter参数通知用户设备,并将sk-counter参数关联的第一安全参数KSN通知给候选辅基站(也即候选PSCell所属的辅基站)。
用户设备在接入目标PSCell时,需要获知当前次执行条件PSCell change使用的目标sk-counter参数。
在现有的针对一次条件PSCell change过程中,主基站为用户设备配置的sk-counter值通常是相同的,即针对不同的候选PSCell配置相同的sk-counter,因为用户设备在执行了一次PSCell更新之后,会把其他的候选PSCell配置删除。
在本发明实施中,在用户设备执行了PSCell change之后(可以是条件PSCell更新或按照网络指示执行PSCell更新),用户设备会继续保留候选PSCell配置。如果不同的PSCell配额中包含的sk-counter相同,会导致用户设备在后续多次接入不同的PSCell时采用相同的第一安全参数KSN,这对安全是不利的。
因此需要考虑不同的解决方案。一种直接的解决方案是为不同的候选PSCell配置不同的sk-counter,这样用户设备在后续多次执行条件PSCell更新时可以使用不同的第一安全参数KSN,但这会导致sk-counter数很快用尽,即sk-counter需要翻转重新从0或1开始,进而会导致用户设备在主基站侧的密钥需要实施一次更新,因此本文下面采用其他实现方式。
在本发明实施例中,考虑针对不同次条件PSCell更新采用对应的sk-counter,即sk-counter的取值与条件PSCell change次数有关联关系。在连续多次的条件PSCell change过程中,不同次条件PSCell change对应的sk-counter参数可以不同。因此,需要确定当前次执行条件PSCell change使用的目标sk-counter参数。
步骤S302,基于目标sk-counter参数,生成第一安全参数KSN
步骤S303,基于第一安全参数KSN接入目标主辅小区。
在具体实施中,用户设备在接入目标PSCell时,利用目标sk-counter参数生成在辅基站侧应用的安全参数。具体地,可以是由主基站侧的第二安全参数KMN(如KgNBKeNB)与目标sk-counter参数生成辅基站侧应用的第一安全参数(如KSN),然后利用第一安全参数KSN生成用于辅基站侧的无线资源控制(Radio Resource Control,RRC)密钥(加密密钥)以及完整性保护密钥,接入目标PSCell。KSN也称为S-KeNB或S-KgNB
具体地,用户设备在接入目标PSCell时,生成RRC密钥以及完整性保护密钥的具体过程可以对应参照现有技术(TS33.501),此处 不做赘述。
在具体实施中,主基站可以为每个候选PSCell配置多个sk-counter参数。用户设备可以将主基站配置的多个sk-counter参数应用于多次条件PSCell change,避免不同次条件PSCell change时使用相同的sk-counter。
例如,第一个sk-counter参数用于第一次条件PSCell change(也即第一次出现候选PSCell满足PSCell change执行条件),第二个sk-counter参数用于第二次条件PSCell change。
用户设备第一次检测到某一候选PSCell满足PSCell change执行条件,从源PSCell接入该满足PSCell change执行条件的候选PSCell(也即目标PSCell)。用户设备在第一次接入目标时,使用配置的多个sk-counter参数中的第一个sk-counter参数以及主基站侧的第二安全参数(如KgNB),派生出进行第一次条件PSCell change使用的第一安全参数KSN,再利用第一安全参数KSN派生出用于辅基站侧的RRC密钥以及完整性保护密钥。用户设备在接入目标PSCell后,可以向主基站反馈目标PSCell的标识信息,以告知主基站其当前所接入的PSCell。
主基站在接收到用户设备的反馈之后,可以为候选PSCell配置用户进行第二次条件PSCell change时所需使用的第一安全参数KSN。第二次条件PSCell change使用的第一安全参数KSN根据第二个sk-counter参数生成。
当用户设备第二次执行条件PSCell change时,使用配置的多个sk-counter参数中的第二个sk-counter参数以及主基站侧的第二安全参数KgNB对第一安全参数KSN进行更新。
也就是说,在本发明实施例中,第一次条件PSCell change使用的第一安全参数KSN与第二次条件PSCell change使用的第一安全参数KSN不同。
主基站提前将第二次条件PSCell change使用的第一安全参数KSN发送给候选PSCell。当用户设备执行第二次条件PSCell change时,由于候选PSCell已经获取到第二次条件PSCell change使用的第一安全参数KSN,因此用户设备可以顺利接入第二次条件PSCell change所确定的目标PSCell。
例如,主基站为用户设备配置了6个候选PSCell,依次为PSCell1~PSCell 6。PSCell 1~PSCell 6可以为当前驻留的源PSCell的邻小区。用户设备在接收到候选PSCell配置之后,对6个PSCell进行评估。用户设备评估发现PSCell 1满足PSCell change执行条件,则用户设备接入PSCell 1。用户设备保留PSCell 2~PSCell 6。主基站为用户设备配置了10个sk-counter参数,取值依次为1、2、3、4、5、6、7、8、9、10。
上述以主基站配置的sk-counter参数连续为例。可以理解的是,主基站配置的sk-counter也可以不连续。
用户设备从源PSCell更新至PSCell 1(第一次条件PSCell change)。用户设备根据第一个sk-counter参数(sk-counter参数取值为1)以及主基站侧的第二安全参数(KgNB),生成第一安全参数KSN
用户设备通知主基站,其接入至PSCell 1。主基站在获知用户设备接入PSCell 1之后,根据第二个sk-counter参数(sk-counter参数取值为2)以及主基站侧的第二安全参数(KgNB),生成第一安全参数KSN。然后将新的第一安全参数KSN发送给其他候选PSCell。
用户设备持续对候选PSCell进行评估。用户设备评估发现PSCell 2满足PSCell change执行条件,则用户设备接入PSCell 2。用户设备保留PSCell 1、PSCell 3~PSCell 6。
用户设备从PSCell 1更新至PSCell 2(第二次条件PSCell change)。用户设备根据第二个sk-counter参数(sk-counter参数取值为2)以及主基站侧的第二安全参数(KgNB),派生出新的第一安全 参数KSN
可见,主基站在获知用户设备接入PSCell 1之后生成的第一安全参数KSN,与用户设备第一次生成的第一安全参数KSN不同,与用户设备第二次生成的第一安全参数KSN相同。
用户设备通知主基站,其接入至PSCell 2。主基站在获知用户设备接入PSCell 2之后,根据第三个sk-counter参数(sk-counter参数取值为3)以及主基站侧的第二安全参数(KgNB),更新第一安全参数KSN。然后将新的第一安全参数KSN发送给其他候选PSCell.
用户设备从PSCell 2更新至PSCell 3(第三次条件PSCell change)。用户设备根据第三个sk-counter参数(sk-counter参数取值为3)以及主基站侧的第二安全参数(KgNB),更新第一安全参数KSN
以此类推,即可实现连续多次的条件PSCell change过程中安全参数的更新。
在具体实施中,主基站也可以仅配置一个sk-counter参数。用户设备在每一次条件PSCell change时,均对上一次使用的sk-counter参数进行更新,并使用更新后的sk-counter参数对第一安全参数KSN进行更新。相应地,主基站在接收到用户设备反馈的目标PSCell的标识信息后,按照相同的更新规则对sk-counter参数进行更新,并采用更新后的sk-counter参数生成相应的第一安全参数KSN,发送至候选PSCell。
例如,主基站为用户设备配置了6个候选PSCell,依次为PSCell 1~PSCell 6。用户设备在接收到候选PSCell配置之后,对6个PSCell进行评估。用户设备评估发现PSCell 1满足PSCell change执行条件,则用户设备接入PSCell 1。用户设备保留PSCell 2~PSCell 6。主基站为用户设备配置了1个sk-counter参数,初始值为1。
用户设备从源PSCell更新至PSCell 1(第一次条件PSCell change)。用户设备根据sk-counter参数(sk-counter参数取值为1) 以及主基站侧的第二安全参数(KgNB),生成第一安全参数KSN
用户设备通知主基站,其接入至PSCell 1。主基站在获知用户设备接入PSCell 1之后,对sk-counter参数进行更新,更新后的sk-counter参数的取值为2。主基站根据更新后的sk-counter参数(取值为2)以及主基站侧的第二安全参数(KgNB),生成第一安全参数KSN。主基站将新的第一安全参数KSN发送给候选PSCell。
用户设备持续对候选PSCell进行评估。用户设备评估发现PSCell2满足PSCell change执行条件,则用户设备接入PSCell 2。用户设备保留PSCell 1、PSCell 3~PSCell 6。
用户设备从PSCell 1更新至PSCell 2(第二次条件PSCell change)。用户设备对sk-counter参数进行更新,更新后的sk-counter参数的取值为2。用户设备根据更新后的sk-counter参数(取值为2)以及主基站侧的第二安全参数(KgNB,也可以用KMN表示),更新第一安全参数KSN。用户设备利用新的第一安全参数KSN派生出RRC密钥和完整性保护密钥接入PSCell2。
用户设备通知主基站,其接入至PSCell 2。主基站在获知用户设备接入PSCell 2之后,继续对sk-counter参数进行更新,更新后的sk-counter参数取值为3。主基站根据更新后的sk-counter参数(取值为3)以及主基站侧的第二安全参数(KgNB),更新第一安全参数KSN。主基站将新的第一安全参数KSN发送给候选PSCell。
以此类推,即可实现连续多次的条件PSCell change过程中安全参数的更新。
在上述实施例中,主基站需要频繁地向候选PSCell发送更新的第一安全参数KSN,导致基站之间接口信令开销较大。
为降低接口信令开销,主基站在配置条件PSCell change的参数时,可以向候选PSCell指示多个可用的第一安全参数KSN。相应地,主基站可以为条件PSCell change配置sk-counter参数,每一个 sk-counter参数存在一个一一对应的第一安全参数KSN。主基站可以在请求辅基站配置候选PSCell时将对应多个sk-counter的第一安全参数KSN发送给辅基站,这样在用户设备接入PSCell时,PSCell有相应的安全参数。
用户设备在执行第一次条件PSCell change时,使用第一个sk-counter参数,生成第一安全参数KSN;用户设备在执行第二次条件PSCell change时,使用第二个sk-counter参数,更新第一安全参数KSN。以此类推。
但是,在某一次条件PSCell change时,目标PSCell实质上并不知道用户设备执行了几次条件PSCell change,具体原因可见下述实施例。因此,目标PSCell可以遍历所有的第一安全参数KSN,派生出相应的辅基站侧的RRC密钥以及完整性保护密钥,并使用完整性保护密钥验证用户设备发送的数据/信令。如果完整性保护密钥验证成功,则说明选择了正确的第一安全参数KSN,故使用该第一安全参数KSN
本发明实施例还可以有不同的实现方式。用户设备在接入某个PSCell时,应用相应的sk-counter派生出本次接入时的第一安全参数KSN,为了使所接入的目标PSCell获知用户设备执行了第几次条件PSCell更新,用户设备在接入PSCell时可以上报所述第一安全参数KSN关联的PSCell更新次数。例如,用户设备可以通过层2媒质接入层指示PSCell更新次数,以便目标PSCell可以依据这个PSCell更新次数确定相应的第一安全参数KSN
在具体实施中,主基站配置的多个候选PSCell各自所属的辅基站可以相同,也可以不同。多个候选PSCell所属的辅基站可以与源PSCell所属的辅基站相同,或者不同。
在本发明实施例中,可以根据候选PSCell所属辅基站与源PSCell所属辅基站的关系,将基站配置的多个候选PSCell划分为两大类:第一类候选PSCell可以为:所属辅基站与源主辅小区所属辅基站相同;第二类PSCell可以为:所属辅基站与源主辅小区所属辅基站不 同。
例如,主基站为用户设备配置了6个候选PSCell,依次为PSCell 1~PSCell 6。PSCell 1~PSCell 6可以为当前驻留的源PSCell的邻小区。PSCell 1~PSCell 3所属辅基站为源辅基站,PSCell 4~PSCell 6所属辅基站为第二辅基站,源辅基站与第二辅基站不同。源主辅小区所属辅基站为源辅基站。据此,将PSCell 1~PSCell 3划分为第一类候选主辅小区,将PSCell 4~PSCell 6划分为第二类候选主辅小区。
在本发明实施例中,还可以继续对第二类候选PSCell进行划分:一种是源辅基站触发的辅基站间(inter-SN)的主辅小区条件更新(Conditional PSCell Change,CPC),另一种是主基站触发的辅基站间的CPC。
在具体实施中,对于第一类候选PSCell,为源辅基站为用户设备配置的辅基站内(intra-SN)的候选PSCell。此时,第一类候选PSCell不包含辅基站侧的安全参数。用户设备在接入第一类候选PSCell时,不需要更新密钥。用户设备可以直接从源辅基站接收第一类候选PSCell的配置。
对于第二类候选PSCell,为非源辅基站为用户配置的候选PSCell。第二类候选PSCell的配置可以通过主基站发送给用户设备,且第二类候选PSCell的配置中需要包含辅基站侧的安全参数,也即用户设备接入第二类候选PSCell时需要生成新的KSN
由此,在本发明实施例中,若用户设备某次执行的条件PSCell change,源PSCell与目标PSCell属于同一辅基站,同一辅基站对应的第一安全参数KSN相同,故用户设备无需对sk-counter参数进行更新。此时,用户设备也无需向主基站反馈目标PSCell的标识信息。在每次PSCell更新中,用户设备当前接入的PSCell为源PSCell,新接入的PSCell为目标PSCell。
换言之,本发明实施例中,用户设备每一次执行条件PSCell  change均对sk-counter参数进行更新的场景,是该次条件PSCell change对应的源PSCell与目标PSCell属于不同的辅基站。
也就是说,获取当前次执行条件主辅小区更新使用的目标sk-counter参数,可以先:获取发生辅基站间主辅小区条件更新的次数;根据配置信息以及所述发生辅基站间主辅小区条件更新的次数,确定所述当前次执行条件主辅小区更新使用的目标sk-counter参数;配置信息用于配置sk-counter参数。
具体地,若配置信息配置了多个sk-counter参数,则可以根据发生辅基站间主辅小区条件更新的次数,从多个sk-counter参数中选择相应的sk-counter参数作为目标sk-counter参数;若配置信息配置了一个sk-counter参数,则根据发生辅基站间主辅小区条件更新的次数,对一个sk-counter参数进行相应次数的更新(如每次可以加1,或加2),将得到的更新值作为目标sk-counter参数。
例如,用户设备执行第一次条件PSCell change,从源PSCell更新至PSCell 1。源PSCell属于辅基站1,PSCell 1所属基站为辅基站2。用户设备根据第一个sk-counter参数(sk-counter参数取值为1)以及主基站侧的第二安全参数(KgNB),生成第一安全参数KSN
用户设备通知主基站,其接入至PSCell 1。主基站在获知用户设备接入PSCell 1之后,根据第二个sk-counter参数(sk-counter参数取值为2)以及主基站侧的第二安全参数(KgNB),生成第一安全参数KSN。主基站通过基站之间的接口将新生成的第一安全参数KSN发送给候选PSCell。
用户设备持续对候选PSCell进行评估。用户设备评估发现PSCell 2满足PSCell change执行条件,则用户设备接入PSCell 2。用户设备保留PSCell 1、PSCell 3~PSCell 6。
用户设备从PSCell 1更新至PSCell 2(第二次条件PSCell change)。用户设备根据第二个sk-counter参数(sk-counter参数取值 为2)以及主基站侧的第二安全参数(KgNB),更新第一安全参数KSN
在第二次条件PSCell change时,源PSCell即为PSCell 1,目标PSCell即为PSCell 2。设定PSCell 2属于辅基站2,则用户设备不告知主基站接入至PSCell 2。由此,主基站无需对第一安全参数KSN进行更新。
在上述的实施例中,用户设备依据sk-counter参数以及主基站侧的第二安全参数(KMN),生成第一安全参数KSN。对于连续的多次PSCell条件更新,有部分候选PSCell是一直保留在用户设备侧的,此时对于非第一次PSCell更新,如第二次条件PSCell change或第三次条件PSCell change,第一安全参数KSN可以采用新的派生方式。
例如,利用第一次条件PSCell change时的第一安全参数KSN和用户设备所接入目标PSCell的参数(如下行频率和/或其他参数如物理小区标识等)派生出新的第一安全参数KSN。用户设备执行第二次条件PSCell change时,依据第一次条件PSCell change时的第一安全参数KSN(此时假定第二次条件PSCell change时的目标PSCell配置中的Counter与第一次条件PSCell change时的目标PSCell配置中的Counter取值相同)和用户设备当前接入目标PSCell的参数(如下行频率和/或其他参数如物理小区标识等)派生出新的第一安全参数KSN。用户设备执行第三次条件PSCell change时,依据第一次条件PSCell change时的KSN(此时假定第三次条件PSCell change时的目标PSCell配置中的Counter与第一次条件PSCell change时的目标PSCell配置中的Counter取值相同)和用户设备当前接入目标PSCell的参数(如下行频率和/或其他参数如物理小区标识等)派生出新的第一安全参数KSN
由于候选PSCell侧有主基站提供的第一次条件PSCell change时的第一安全参数KSN,因此可以不必修改现有基站之间的接口就可以实现后续条件PSCell change时的密钥更新。对于用户设备来说,可以从现有的候选PSCell配置中获知第一次条件PSCell change对应的 sk-counter(此时候选PSCell配置中仅需要包含一个sk-counter),进而基于主基站侧的第二安全参数(KMN)和这个sk-counter(也即第一次条件PSCell change对应的sk-counter),生成第一次条件PSCell change时用的第一安全参数KSN(即第一次条件PSCell change时密钥派生机制不变),然后在后续的条件PSCell change过程中,利用第一次条件PSCell change时用的第一安全参数KSN和用户设备当前接入目标PSCell的参数(如下行频率和/或其他参数如物理小区标识等)派生出新的第一安全参数KSN。即对于非第一次条件PSCell change场景,采用新的第一安全参数KSN派生机制,每次派生时所需要的源KSN为第一次条件PSCell change时获得的第一安全参数KSN。这种实现方式修改了非第一次条件PSCell change时第一安全参数KSN派生机制,可以很好的沿用现有第一次条件PSCell change时的第一安全参数KSN派生机制(即第一次条件PSCell change时KSN派生机制保持不变)。
一种改进方式是,针对发生了(条件)PSCell change之后需要保留候选PSCell配置的场景,用户设备在后续的条件PSCell change过程中均采用新的KSN派生机制,包括第一次条件PSCell change场景,此时用户设备在执行条件PSCell change时,依据所接入目标PSCell配置包含的sk-counter参数(此时仅有一个sk-counter值)以及主基站侧的第二安全参数(KMN),生成第一安全参数KSN,基于这个KSN和所接入的目标主辅小区的参数(如下行频率和/或其他参数如物理小区标识等)派生出新的第一安全参数KSN,基于新的第一安全参数KSN接入所述目标主辅小区。即利用新的第一安全参数KSN派生出RRC密钥和完整性保护密钥,在接入目标PSCell时应用新的密钥。
参照图4,给出了本发明实施例中的另一种主辅小区更新方法,以下通过具体步骤进行详细说明。
在具体实施中,下述步骤S401~步骤S403所记载的主辅小区更新方法可以由接入网设备(如主基站)中具有数据处理功能的芯片所 执行,也可以由接入网设备(如主基站)中包含有数据处理功能的芯片模组来执行,或者由接入网设备(如主基站)来执行。下面以主基站执行主辅小区更新方法为例进行说明。
步骤S401,确定用户设备执行了主辅小区条件更新。
步骤S402,对sk-counter参数进行更新,并使用更新后的sk-counter参数与第二安全参数KgNB,对第一安全参数KSN进行更新。
步骤S403,发送更新后的第一安全参数KSN至为用户设备配置的候选主辅小区。
在具体实施中,上述步骤S401~步骤S403的具体执行过程可以对应参照上述步骤S301~步骤S303,此处不做赘述。
本发明实施例还提供了又一种主辅小区更新方法,可以由接入网设备(主基站)所执行。
主基站在配置条件PSCell change的参数时,可以向候选PSCell指示多个可用的第一安全参数KSN。相应地,主基站可以为条件PSCell change配置sk-counter参数,每一个sk-counter参数存在一个一一对应的第一安全参数KSN。主基站可以在SN添加请求中指示多个可用的KSN
用户设备在执行第一次条件PSCell change时,使用第一个sk-counter参数,生成第一安全参数KSN;用户设备在执行第二次条件PSCell change时,使用第二个sk-counter参数,更新第一安全参数KSN。以此类推。
但是,在某一次条件PSCell change时,目标PSCell实质上并不知道用户设备执行了几次条件PSCell change,具体原因可见上述实施例。因此,目标PSCell可以遍历所有的第一安全参数KSN,派生出相应的辅基站侧的RRC密钥以及完整性保护密钥,并使用完整性保护密钥验证用户设备发送的数据/信令。如果完整性保护密钥验证成功,则说明选择了正确的第一安全参数KSN,故使用该第一安全参数KSN
本发明实施例还提供了再一种主辅小区更新方法,可以由目标PSCell所执行。主基站在配置多个候选PSCell时,可以在配置信息中,为条件PSCell change配置多个sk-counter参数,每一个sk-counter参数存在一个一一对应的第一安全参数KSN
当某一候选PSCell作为目标PSCell时,目标PSCell实质上并不知道用户设备执行了几次条件PSCell change,具体原因可见上述实施例。因此,目标PSCell可以遍历所有的第一安全参数KSN,派生出相应的辅基站侧的RRC密钥以及完整性保护密钥,并使用完整性保护密钥验证用户设备发送的数据/信令。如果完整性保护密钥验证成功,则说明选择了正确的第一安全参数KSN,故使用该第一安全参数KSN
由此,能够实现连续的条件PSCell change过程中安全参数的更新。
参照图5,给出了本发明实施例中的一种候选主辅小区评估装置50,包括:第一更新单元501以及第一评估单元502,其中:
第一更新单元501,用于从源主辅小区更新至目标主辅小区;
第一评估单元502,用于对所述候选主辅小区中的部分或全部进行评估;或,响应于触发条件,对所述候选主辅小区进行评估。
在具体实施中,上述第一更新单元501以及第一评估单元502的具体执行过程可以对应参照步骤S101~步骤S102,此处不做赘述。
在具体实施中,上述的候选主辅小区评估装置50可以对应于用户设备中具有数据处理功能的芯片,如基带芯片;或者对应于用户设备中包括具有数据处理功能的芯片(如基带芯片)的芯片模组,或者对应于用户设备。
参照图6,给出了本发明实施例中的另一种候选主辅小区评估装置60,包括:第二更新单元601以及第一处理单元602,其中:
第二更新单元601,用于从源主辅小区更新至目标主辅小区;
第一处理单元602,用于删除属于源辅基站的候选主辅小区的配置,其中:所述源主辅小区与所述目标主辅小区属于不同的辅基站。
在具体实施中,上述第二更新单元601以及第一处理单元602的具体执行过程可以对应参照步骤S201~步骤S202,此处不做赘述。
在具体实施中,上述的候选主辅小区评估装置60可以对应于用户设备中具有数据处理功能的芯片,如基带芯片;或者对应于用户设备中包括具有数据处理功能的芯片(如基带芯片)的芯片模组,或者对应于用户设备。
参照图7,本发明实施例还提供了一种主辅小区更新装置70,包括:第一获取单元701、第一生成单元702以及第一接入单元703,其中:
第一获取单元701,用于获取当前次执行条件主辅小区更新使用的目标sk-counter参数;
第一生成单元702,用于至少基于所述目标sk-counter参数,生成第一安全参数KSN
第一接入单元703,用于至少基于所述第一安全参数KSN接入目标主辅小区。
在具体实施中,上述第一获取单元701、第一生成单元702以及第一接入单元703的具体执行过程可以对应参照步骤S301~步骤S303,此处不做赘述。
在具体实施中,上述的主辅小区更新装置70可以对应于接入网设备(如主基站)中具有数据处理功能的芯片;或者对应于接入网设备中包括具有数据处理功能的芯片的芯片模组,或者对应于接入网设备。
参照图8,给出了本发明实施例中的又一种主辅小区更新装置80,包括:第一确定单元801、第三更新单元802以及第一发送单元 803,其中:
第一确定单元801,用于确定用户设备执行了主辅小区条件更新;
第三更新单元802,用于对sk-counter参数进行更新,并使用更新后的sk-counter参数与第二安全参数KgNB,对第一安全参数KSN进行更新;
第一发送单元803,用于发送更新后的第一安全参数KSN至为所述用户设备配置的候选主辅小区。
在具体实施中,上述第一确定单元801、第三更新单元802以及第一发送单元803的具体执行过程可以对应参照步骤S401~步骤S403,此处不做赘述。
在具体实施中,上述的主辅小区更新装置80可以对应于接入网设备(如辅基站)中具有数据处理功能的芯片;或者对应于接入网设备中包括具有数据处理功能的芯片的芯片模组,或者对应于接入网设备。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终 端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行步骤S101~步骤S102所提供的候选主辅小区评估方法的步骤;或者,执行步骤S201~步骤S202所提供的候选主辅小区评估方法的步骤;或者,执行上述任一实施例所提供的主辅小区更新方法的步骤。
本发明实施例还提供了一种候选主辅小区评估装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时上述任一实施例提供的候选主辅小区评估方法的步骤。
本发明实施例还提供了另一种主辅小区更新装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时上述任一实施例提供的主辅小区更新方法的步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指示相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (24)

  1. 一种候选主辅小区评估方法,其特征在于,包括:
    从源主辅小区更新至目标主辅小区;
    对候选主辅小区中的部分或全部进行评估;或,响应于触发条件,对所述候选主辅小区进行评估。
  2. 如权利要求1所述的候选主辅小区评估方法,其特征在于,所述响应于触发条件,对所述候选主辅小区进行评估,包括:
    所述目标主辅小区的信号质量小于等于预设门限,对所述候选主辅小区进行评估。
  3. 如权利要求1所述的候选主辅小区评估方法,其特征在于,所述响应于触发条件,对所述候选主辅小区进行评估,包括:
    接收指示信息,对所述候选主辅小区进行评估。
  4. 如权利要求1所述的候选主辅小区评估方法,其特征在于,所述对候选主辅小区中的部分或全部进行评估,包括:
    对除第二候选主辅小区之外的其他候选主辅小区进行评估。
  5. 如权利要求4所述的候选主辅小区评估方法,其特征在于,还包括:
    接收配置信息;所述配置信息用于配置候选主辅小区,并指示所述第二候选主辅小区。
  6. 如权利要求4或5所述的候选主辅小区评估方法,其特征在于,所述目标主辅小区与所述第二候选主辅小区为非相邻小区。
  7. 如权利要求4所述的候选主辅小区评估方法,其特征在于,所述对候选主辅小区中的部分或全部进行评估,包括:
    响应于所述触发条件,对所述候选主辅小区中的部分或全部进行评估。
  8. 如权利要求7所述的候选主辅小区评估方法,其特征在于,所述响应于所述触发条件,对所述候选主辅小区中的部分或全部进行评估,包括:
    所述目标主辅小区的信号质量小于等于预设门限,对除所述第二候选主辅小区之外的其他候选主辅小区进行评估。
  9. 如权利要求1所述的候选主辅小区评估方法,其特征在于,还包括:
    对所述候选主辅小区进行更新。
  10. 如权利要求9所述的候选主辅小区评估方法,其特征在于,所述对所述候选主辅小区进行更新,包括:
    删除属于源辅基站的候选主辅小区的配置;所述目标主辅小区与所述源主辅小区属于不同的辅基站。
  11. 一种候选主辅小区评估方法,其特征在于,包括:
    从源主辅小区更新至目标主辅小区;
    删除属于源辅基站的候选主辅小区的配置,其中:所述源主辅小区与所述目标主辅小区属于不同的辅基站。
  12. 如权利要求11所述的候选主辅小区评估方法,其特征在于,还包括:
    所述目标主辅小区与所述源主辅小区属于相同的辅基站,将继续保存与所述源主辅小区属于相同辅基站的候选主辅小区的配置。
  13. 如权利要求11所述的候选主辅小区评估方法,其特征在于,还包括:
    检测到执行主基站切换,删除所有候选主辅小区的配置。
  14. 如权利要求11所述的候选主辅小区评估方法,其特征在于,还包括:
    对所属辅基站与源辅基站不同的候选主辅小区进行评估。
  15. 如权利要求14所述的候选主辅小区评估方法,其特征在于,所述对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估,包括:
    当所述目标主辅小区的信号质量小于等于预设门限时,对第一剩余候选主辅小区进行评估;所述第一剩余候选主辅小区为:所有候选主辅小区中,删除属于源辅基站的候选主辅小区之后的剩余候选主辅小区。
  16. 如权利要求14所述的候选主辅小区评估方法,其特征在于,所述对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估,包括:
    对第一剩余候选主辅小区中,除第二候选主辅小区之外的候选主辅小区进行评估;所述第一剩余候选主辅小区为:所有候选主辅小区中,删除属于源辅基站的候选主辅小区之后的剩余候选主辅小区。
  17. 如权利要求16所述的候选主辅小区评估方法,其特征在于,还包括:
    接收配置信息;所述配置信息用于配置候选主辅小区,且所述配置信息用于指示所述第二候选主辅小区。
  18. 如权利要求17所述的候选主辅小区评估方法,其特征在于,所述第二候选主辅小区与所述目标主辅小区非相邻。
  19. 如权利要求16所述的候选主辅小区评估方法,其特征在于,所述对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估,包括:
    当所述目标主辅小区的信号质量小于等于预设门限时,对第一剩余候选主辅小区中,除第二候选主辅小区之外的候选主辅小区进行评估。
  20. 如权利要求14所述的候选主辅小区评估方法,其特征在于,所述 对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估,包括:
    接收指示信息,对所属辅基站与所述源主辅小区所属辅基站不同的候选主辅小区进行评估。
  21. 一种候选主辅小区评估装置,其特征在于,包括:
    第一更新单元,用于从源主辅小区更新至目标主辅小区;
    第一评估单元,用于对所述候选主辅小区中的部分或全部进行评估;或,响应于触发条件,对所述候选主辅小区进行评估。
  22. 一种候选主辅小区评估装置,其特征在于,包括:
    第二更新单元,用于从源主辅小区更新至目标主辅小区;
    第一处理单元,用于删除属于源辅基站的候选主辅小区的配置,其中:所述源主辅小区与所述目标主辅小区属于不同的辅基站。
  23. 一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1~20任一项所述的候选主辅小区评估方法的步骤。
  24. 一种候选主辅小区评估装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1~20任一项所述的候选主辅小区评估方法的步骤。
PCT/CN2023/121372 2022-09-30 2023-09-26 候选主辅小区评估方法及装置、计算机可读存储介质 WO2024067544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211213890.5 2022-09-30
CN202211213890.5A CN117858174A (zh) 2022-09-30 2022-09-30 候选主辅小区评估方法及装置、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2024067544A1 true WO2024067544A1 (zh) 2024-04-04

Family

ID=90476345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121372 WO2024067544A1 (zh) 2022-09-30 2023-09-26 候选主辅小区评估方法及装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117858174A (zh)
WO (1) WO2024067544A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021225739A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Signaling aspects of a conditional primary secondary cell change procedure in multi-radio access technology dual connectivity
WO2022021272A1 (en) * 2020-07-31 2022-02-03 Zte Corporation Method for addition and change of conditional primary cells in a secondary cell group
CN114342453A (zh) * 2019-09-29 2022-04-12 中兴通讯股份有限公司 在多连接性操作中释放候选目标小区资源的系统和方法
CN114424620A (zh) * 2019-09-30 2022-04-29 瑞典爱立信有限公司 确定安全密钥
CN114679754A (zh) * 2019-09-29 2022-06-28 展讯通信(上海)有限公司 小区条件更新方法及用户设备、计算机可读存储介质
CN115915304A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 通信方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114342453A (zh) * 2019-09-29 2022-04-12 中兴通讯股份有限公司 在多连接性操作中释放候选目标小区资源的系统和方法
CN114679754A (zh) * 2019-09-29 2022-06-28 展讯通信(上海)有限公司 小区条件更新方法及用户设备、计算机可读存储介质
CN114424620A (zh) * 2019-09-30 2022-04-29 瑞典爱立信有限公司 确定安全密钥
WO2021225739A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Signaling aspects of a conditional primary secondary cell change procedure in multi-radio access technology dual connectivity
WO2022021272A1 (en) * 2020-07-31 2022-02-03 Zte Corporation Method for addition and change of conditional primary cells in a secondary cell group
CN115915304A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN117858174A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
EP4044669A1 (en) Cell condition updating method, user equipment and computer-readable storage medium
US20220353777A1 (en) Communication Method, Network Device, and Terminal
WO2021066018A1 (en) Configurations for conditional primary secondary cell addition/modification
US9668186B2 (en) Method, device and system for processing radio link failure report and for statistically processing abnormal event
EP2538715B1 (en) Measurement task processing method and system in carrier aggregation system
US20200396656A1 (en) Method and apparatus for handover
CN113141638B (zh) 触发条件切换或条件辅小区改变的方法、终端及网络设备
WO2021066033A1 (en) Release of conditional primary secondary cell addition/modification configurations
US20230016688A1 (en) Method for communication and related product
WO2022017400A1 (zh) 一种移动性信息上报的方法和ue
US20230262572A1 (en) Communication method and related device
WO2020262124A1 (en) Release of configurations for conditional handovers based on security configurations
WO2020262123A1 (en) Security configurations for conditional handovers
CN105704767A (zh) 小区重选装置、方法及用户设备
WO2021088642A1 (zh) 一种辅基站变更方法、主基站、辅基站和终端
WO2024067544A1 (zh) 候选主辅小区评估方法及装置、计算机可读存储介质
CN114765810A (zh) 配置方法、装置、设备及可读存储介质
WO2024067545A1 (zh) 主辅小区更新方法及装置、计算机可读存储介质
CN108738087B (zh) 一种切换方法、基站及终端
US20220304095A1 (en) Dual connection re-establishment method, readable storage medium, and base station
CN107708160A (zh) 一种过早切换的检测方法及装置
US20170339604A1 (en) Configuration method for coexistent interference frequency set, base station and ue
WO2024017244A1 (zh) 信息发送方法、信息接收方法、装置及相关设备
WO2023197991A1 (zh) 小区切换方法、小区切换配置方法、装置、终端及网络侧设备
WO2021068655A1 (zh) 终端间干扰判断方法、终端、基站及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870773

Country of ref document: EP

Kind code of ref document: A1