WO2024067495A1 - 发射信号的方法、装置与设备 - Google Patents

发射信号的方法、装置与设备 Download PDF

Info

Publication number
WO2024067495A1
WO2024067495A1 PCT/CN2023/121139 CN2023121139W WO2024067495A1 WO 2024067495 A1 WO2024067495 A1 WO 2024067495A1 CN 2023121139 W CN2023121139 W CN 2023121139W WO 2024067495 A1 WO2024067495 A1 WO 2024067495A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
signal
transmitting
coding sequence
frequency band
Prior art date
Application number
PCT/CN2023/121139
Other languages
English (en)
French (fr)
Inventor
丁仁天
祝艳宏
杨宇信
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067495A1 publication Critical patent/WO2024067495A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits

Definitions

  • the present application relates to the field of signal detection, and more specifically, to a method, device and apparatus for transmitting a signal.
  • the device transmits a signal and receives an echo signal reflected by the target, and determines the detection result of the target based on the echo signal.
  • the present application provides a method, apparatus and device for transmitting a signal, wherein the method allows at least one of the transmission power, duty cycle and bandwidth of a signal determined according to a service to match the service, thereby reducing the possibility of interference to other devices due to the signal transmission power being too high relative to the service, and/or the signal duty cycle being too high relative to the service, and/or the signal bandwidth being too wide relative to the service.
  • a method for transmitting a signal is provided, which is applied to a device with a signal receiving and transmitting function, comprising: determining a target parameter according to a target service, the target parameter comprising at least one of a transmission power of the target signal, a duty cycle of the target signal, and a bandwidth of the target signal, and a size of the target parameter matches the target service; and transmitting the target signal according to the target parameter.
  • the size of at least one of the transmission power, duty cycle and bandwidth of the signal can be matched with the service, thereby reducing the possibility of interference to other devices due to the signal transmission power being too high relative to the service, and/or the signal duty cycle being too high relative to the service, and/or the signal bandwidth being too wide relative to the service.
  • a target frequency band is determined from a plurality of preset frequency bands, and the signal interference corresponding to the target frequency band is the smallest among the plurality of preset frequency bands; transmitting the target signal according to the target parameters includes: transmitting the target signal according to the target parameters and the target frequency band.
  • the device transmits the target signal by selecting the frequency band with the least signal interference, thereby reducing the possibility of other devices causing interference to itself.
  • determining the target frequency band from multiple preset frequency bands includes: receiving a first signal from other devices on the multiple preset frequency bands; determining the target frequency band based on the first signal, and the target frequency band includes the frequency band corresponding to the first signal with the smallest energy in the first signals.
  • the frequency band corresponding to the first signal with the smallest energy among the first signals received on multiple preset frequency bands is finally used as the target frequency band.
  • the device uses the target frequency band to transmit the target signal, the interference caused to the device by other devices is minimized.
  • the method also includes: determining a target coding sequence from a plurality of preset coding sequences, the signal interference corresponding to the target coding sequence being the smallest among the plurality of preset coding sequences; transmitting the target signal according to the target parameters, includes: transmitting the target signal according to the target parameters and the target coding sequence.
  • the device transmits the target signal by selecting the coding sequence with the least signal interference, thereby reducing the possibility of other devices causing interference to itself.
  • determining the target coding sequence from multiple preset coding sequences includes: receiving a second signal from other devices; determining the target coding sequence based on the second signal, the target coding sequence including a coding sequence with the smallest autocorrelation peak value between the coding sequences corresponding to the second signal among the multiple preset coding sequences.
  • the coding sequence with the smallest autocorrelation peak between the coding sequences corresponding to the second signal in the multiple preset coding sequences is finally taken as the target coding sequence.
  • the device uses the target coding sequence to encode the target signal and sends the target signal encoded by the target coding sequence, the interference caused to the device by other devices is minimized.
  • the method further includes: determining an initial transmission time and a transmission period corresponding to the target signal, wherein, during the period when the device transmits a signal based on the initial transmission time and the transmission period, other devices do not transmit signals; transmitting the target signal according to the target parameters includes: transmitting the target signal according to the target parameters, the initial transmission time and the transmission period.
  • the device transmits the target signal by selecting the initial transmission time and transmission period with the least signal interference, thereby reducing the possibility of other devices causing interference to itself.
  • determining the initial transmission time and transmission period corresponding to the target signal includes: receiving a third signal from other devices; and determining the initial transmission time and transmission period corresponding to the target signal according to the reception time corresponding to the third signal.
  • the initial transmission time and transmission period corresponding to the target signal are determined according to the receiving time corresponding to the third signal, so that when the device transmits the target signal based on the initial transmission time and transmission period corresponding to the target signal, at the moment of transmitting the target signal, the other devices that transmit the third signal do not transmit the signal, that is, the moment when the device transmits the signal is staggered with that of other devices.
  • determining the initial transmission time and transmission period corresponding to the target signal according to the third signal includes: determining the initial transmission time and transmission period of the other devices according to the receiving time corresponding to the third signal; determining the initial transmission time and transmission period corresponding to the target signal according to the initial transmission time and transmission period of the other devices.
  • a device for transmitting a signal which is used to execute the method for transmitting a signal executed by a device in the first aspect or any possible implementation of the first aspect.
  • the device may include a unit for executing the method for transmitting a signal executed by a device in the first aspect or any possible implementation of the first aspect.
  • a device for transmitting a signal comprising a memory and a processor.
  • the memory is used to store instructions; the processor executes the instructions stored in the memory, so that the device executes the method for transmitting a signal in the first aspect or any possible implementation of the first aspect.
  • a computer-readable storage medium wherein instructions are stored in the computer-readable storage medium.
  • the computer executes the method for transmitting a signal in the first aspect or any possible implementation of the first aspect.
  • a computer program product comprising instructions.
  • the instructions When the instructions are executed on a computer, the computer executes the method for transmitting a signal in the first aspect or any possible implementation of the first aspect.
  • FIG1 is a schematic diagram of an example scenario provided by the present application.
  • FIG2 is a schematic flow chart of an example of a method for transmitting a signal provided by the present application
  • FIG3 is a schematic flow chart of another example of a method for transmitting a signal provided by the present application.
  • FIG4 is a schematic flow chart of another example of a method for transmitting a signal provided by the present application.
  • FIG5 is a schematic flow chart of another example of a method for transmitting a signal provided in the present application.
  • FIG6 is a timing diagram of an example of transmitting a signal provided in the present application.
  • FIG7 is a schematic structural block diagram of an example of a device for transmitting a signal provided in the present application.
  • FIG8 is a schematic structural block diagram of an example of a device for transmitting signals provided in the present application.
  • device 1 taking radar 1 as an example
  • device 2 taking radar 2 as an example
  • device 1 transmits signal 1.
  • device 1 completes the detection of target 1 based on the received echo signal 3 of signal 1 reflected by target 1.
  • Device 2 transmits signal 2.
  • signal 2 is reflected by target 2
  • device 2 completes the detection of target 2 based on the received echo signal 4 of signal 2 reflected by target 2.
  • signal 1 transmitted by device 1 may be received by device 2.
  • device 2 After receiving signal 1, device 2 will process signal 1 as an echo signal of signal 2 after being reflected by target 2.
  • Signal 2 transmitted by device 2 may be received by device 1.
  • device 1 After receiving signal 2, device 1 will process signal 2 as an echo signal of signal 1 after being reflected by target 1. In this case, signal 2 will interfere with device 1’s detection of target 1, and accordingly, signal 1 will interfere with device 2’s detection of target 2.
  • the same space may include a greater number of devices than those shown in FIG. 1 , and may include a greater number of targets than those shown in FIG. 1 , and this application does not impose any limitation on this.
  • the present application provides a method for transmitting signals, when the device determines at least one of the transmission power, duty cycle and bandwidth of the signal when transmitting the signal according to the service to be executed, the size of at least one of the transmission power, duty cycle and bandwidth of the signal can be matched with the service, thereby reducing the possibility of interference to other devices due to the signal transmission power being too high relative to the service, and/or the signal duty cycle being too high relative to the service, and/or the signal bandwidth being too wide relative to the service.
  • the present application also provides a method for transmitting signals, in which the device transmits signals by selecting a frequency band with less signal interference, and/or a coding sequence with less signal interference, and/or an initial transmission time and transmission period with less signal interference, thereby reducing the possibility of other devices causing interference to itself.
  • devices in this application may include one or more devices.
  • the method for transmitting a signal provided by the present application is introduced below. First, an example of a method 200 for transmitting a signal provided by the present application is introduced.
  • FIG2 shows a schematic flow chart of the method 200 for transmitting a signal.
  • Step 201 the device determines the target parameters corresponding to the target signal according to the target service, the target parameters include at least one of the transmission power of the target signal, the duty cycle of the target signal and the bandwidth of the target signal, and the size of the target parameters matches the target service.
  • the target service to be executed by the device may be determined based on user settings or based on factory settings. For example, the user may manually set the target service when requiring the device to execute a task.
  • the device can determine the target service to be executed by itself. For example, the device determines through detection that there are no active targets in a certain area within a preset time period. In this case, the device can determine the target service to be executed as detecting whether there are active targets in the area.
  • the device can determine the target parameters corresponding to the target signal according to the target service.
  • the size of the target parameters should be matched with the target service to avoid the target parameters being too high relative to the target service.
  • the target service is to detect whether there are active targets in an open area.
  • the detection range of the device needs to be as large as possible, and the distance resolution of the device can be relatively low, and the information that can reflect the real-time status of the target obtained by the device based on the echo signal can be relatively small. Therefore, in order to reduce the possibility of the target signal interfering with other devices while matching the target service, the target signal can be matched with high transmission power, narrow bandwidth or medium bandwidth, and low duty cycle or medium duty cycle.
  • the detection range of the device is related to the transmission power of the signal.
  • the higher the transmission power the larger the detection range of the device.
  • the distance resolution of the device is related to the bandwidth of the signal. The wider the bandwidth of the signal, the higher the distance resolution of the device.
  • the information that the device obtains based on the echo signal that can reflect the real-time status of the target is related to the number of signals transmitted by the device per unit time. The more signals the device transmits per unit time (that is, the higher the duty cycle), the richer the information that the device obtains based on the echo signal that can reflect the real-time status of the target.
  • the target signal By matching the target signal with a medium bandwidth or a narrow bandwidth, the possibility of the target frequency band being close to or overlapping with the frequency bands corresponding to signals transmitted by other devices can be reduced.
  • the target signal By matching the target signal with a medium duty cycle or a low duty cycle, the possibility of the time period corresponding to the target signal overlapping with the time period corresponding to signals transmitted by other devices can be reduced, thereby reducing the possibility of interference to other devices due to the duty cycle of the target signal being too high relative to the target service, or the bandwidth of the target signal being too high relative to the target service.
  • the target parameters are matched with the target service.
  • the target service is to detect whether the target in the detection area is stationary.
  • the detection range of the device since the detection is to detect whether the target already existing in the detection area is stationary, the detection range of the device only needs to be able to cover the target, that is, the transmission power of the target signal can be relatively low. Since it is a targeted detection of whether a target is stationary, the distance resolution of the device needs to be able to identify the target from multiple targets, that is, the bandwidth of the target signal needs to be relatively wide.
  • the target signal In order to detect the micro-movement of various parts of the human body, the target signal needs to meet a larger duty cycle. Therefore, in order to reduce the possibility of the target signal interfering with other devices while matching the target service, the target signal can be matched with high bandwidth or medium bandwidth, high duty cycle or medium duty cycle and medium transmission power or low transmission power.
  • the target signal By matching the target signal with medium transmit power or low transmit power, the energy of the target signal can be reduced, thereby reducing the possibility of interference with other devices due to the target signal's transmit power being too high relative to the target service.
  • the target signal by matching the target signal with high bandwidth or medium bandwidth and high duty cycle or medium duty cycle, the target parameters are matched with the target service.
  • the target service is to track a moving target in real time.
  • the transmission power, duty cycle, and bandwidth need to be relatively large. Therefore, in order to match the target service, the target signal can be matched with high bandwidth, high duty cycle, and high transmission power.
  • the target service is close-range gesture recognition. Since it is close-range recognition, the transmission power can be relatively low. Since the gesture lasts for a relatively short time, a wider bandwidth and a higher duty cycle are required. Therefore, in order to reduce the possibility of the target signal interfering with other devices while matching the target service, the target signal can be matched with a wide bandwidth or a medium bandwidth, a high duty cycle or a medium duty cycle, and a medium transmission power or a low transmission power.
  • the target service is to detect the heart rate or breathing rate of a human body. Since the purpose of detecting the heart rate or breathing rate is usually achieved by detecting the micro-movements of the human chest, in order to detect the micro-movements of the human chest, the target signal needs to meet a higher duty cycle. In addition, when detecting the heart rate of a human body, the target signal needs to meet a higher signal-to-noise ratio. When the target signal transmission power is high, the target signal can have a higher signal-to-noise ratio. Therefore, in order to reduce the possibility of the target signal interfering with other devices while matching the target service, the target signal can be matched with high transmission power or medium transmission power, high duty cycle or medium duty cycle, and medium bandwidth or low bandwidth.
  • Step 202 The device transmits a target signal according to the target parameters.
  • the device transmits the target signal according to the transmission power, duty cycle, and bandwidth matched to the target signal.
  • the transmit power, duty cycle and bandwidth are matched with the target service, thereby reducing the possibility of the device causing interference to other devices.
  • FIG3 shows a schematic flow chart of the signal transmitting method 300 .
  • Step 301 The device determines a target frequency band from a plurality of preset frequency bands, and the signal interference corresponding to the target frequency band is the smallest among the plurality of preset frequency bands.
  • the device may determine the target frequency band from a plurality of preset frequency bands in the following manner:
  • the device may receive first signals from other devices on a plurality of preset frequency bands, and then the device determines a target frequency band according to the first signals, where the target frequency band includes a frequency band corresponding to a first signal having the smallest energy among the first signals.
  • the device can traverse the above-mentioned multiple preset frequency bands, that is, work in multiple preset frequency bands in sequence, and receive a first signal from other devices for a period of time on each frequency band.
  • the device can determine the frequency band corresponding to the first signal with the smallest energy among the first signals received on multiple preset frequency bands as the target frequency band.
  • the device may determine the frequency band as the target frequency band.
  • the device can determine the first signal whose signal energy is less than or equal to the preset first threshold based on the first signals received from other devices on the multiple preset frequency bands, and then determine the frequency band corresponding to the first signal with the smallest energy among the first signals whose signal energy is less than or equal to the preset first threshold as the target frequency band.
  • Step 302 The device transmits a target signal according to a target frequency band.
  • the device selects a frequency band with less or minimum signal interference from a plurality of preset frequency bands as a target frequency band, thereby reducing the possibility of interference caused by other devices to the device.
  • FIG4 shows a schematic flow chart of the method 400 .
  • Step 401 The device determines a target coding sequence from a plurality of preset coding sequences, and the signal interference corresponding to the target coding sequence is the smallest among the plurality of preset coding sequences.
  • the device may determine the target coding sequence from a plurality of preset coding sequences in the following manner:
  • the device can receive a second signal from another device, and then determine a target coding sequence based on the second signal, wherein the target coding sequence includes a coding sequence with the smallest autocorrelation peak value among multiple preset coding sequences and coding sequences corresponding to the second signal.
  • the device can traverse the above-mentioned multiple preset coding sequences, that is, after receiving a second signal of a period of time each time, it selects a coding sequence from the multiple preset coding sequences, and determines the autocorrelation peak between the preset coding sequence and the coding sequence corresponding to the second signal. After the device completes the traversal of the multiple preset coding sequences, the preset coding sequence corresponding to the smallest autocorrelation peak value among the multiple autocorrelation peak values obtained can be determined as the target coding sequence.
  • the device After receiving a second signal of a certain duration from another device, the device performs autocorrelation operations on the coding sequence corresponding to the second signal with multiple preset coding sequences in sequence, and then determines the preset coding sequence corresponding to the smallest autocorrelation peak value among the multiple autocorrelation peak values as the target coding sequence.
  • the device After receiving a second signal of a certain duration from other devices, the device performs an autocorrelation operation on the coding sequence corresponding to the second signal and a preset coding sequence among multiple preset coding sequences. If the autocorrelation peak value between the coding sequence corresponding to the second signal and a preset coding sequence is less than or equal to a preset second threshold, the preset coding sequence is determined as the target coding sequence.
  • the device can determine the autocorrelation peak value that is less than or equal to the preset second threshold from the multiple autocorrelation peak values obtained, and then determine the preset coding sequence corresponding to the smallest autocorrelation peak value among the autocorrelation peak values that are less than or equal to the preset second threshold as the target coding sequence.
  • Step 402 The device transmits a target signal according to a target coding sequence.
  • the device selects a coding sequence with less signal interference from a plurality of preset coding sequences as a target coding sequence, thereby reducing the possibility of other devices causing interference to the device.
  • FIG5 shows a schematic flow chart of the method 500 .
  • Step 501 The device determines an initial transmission time and a transmission period corresponding to a target signal, wherein during a period in which the device transmits a signal based on the initial transmission time and the transmission period, other devices do not transmit signals.
  • the device may determine the initial transmission time and transmission period corresponding to the target signal in the following manner:
  • the device may receive a third signal from other devices, and then determine an initial transmission time and transmission period corresponding to the target signal according to a reception time corresponding to the third signal.
  • the device receives a third signal for a period of time.
  • the device receives the third signal at T1 , T2 , and T3 respectively, and the duration of the third signal received at each time is A, and the time interval between T2 and T1 and the time interval between T3 and T2 are both B.
  • the device transmits the signal at a time that is staggered with other devices
  • the device can use a time after T 3 + A when other devices are not transmitting signals, for example, a time between T 3 + A and T 4 or a time between T 4 + A and T 5 as the initial transmission time corresponding to the target signal, and use time interval B as the target signal
  • the device transmits the target signal based on the initial transmission time and transmission cycle corresponding to the target signal
  • the other devices that transmit the third signal do not transmit the signal, that is, the moment when the device transmits the signal and the moment when other devices transmit signals are staggered with each other.
  • Step 502 The device transmits the target signal according to the initial transmission time and transmission period corresponding to the target signal.
  • the device may execute step 201 and step 301 , and then the device transmits a target signal according to the target parameter and the target frequency band.
  • the device may execute step 201 and step 401, and then the device transmits a target signal according to the target parameter and the target coding sequence.
  • the device may execute steps 201 and 501, and then the device transmits the target signal according to the target parameters, the initial transmission time and the transmission period corresponding to the target signal.
  • the device may execute steps 201, 301, and 401, and then the device transmits a target signal according to target parameters, target frequency band, and target coding sequence.
  • the device can execute steps 201, 301, and 501, and then the device transmits the target signal according to the target parameters, target frequency band, and the initial transmission time and transmission period corresponding to the target signal.
  • the device can execute steps 201, 401, and 501, and then the device transmits the target signal according to the target parameters, target coding sequence, and the initial transmission time and transmission period corresponding to the target signal.
  • the device can execute steps 201, 301, 401, and 501, and then the device transmits the target signal according to the target parameters, target frequency band, target coding sequence, and the initial transmission time and transmission period corresponding to the target signal.
  • the device can monitor the interference of other devices to itself during the transmission of the signal, or during the period when the device suspends the transmission of the signal. If it is determined that other devices cause interference to itself, the device can re-determine the target frequency band according to method 300, and/or determine the target coding sequence according to method 400, and/or determine the initial transmission time and transmission period according to method 500.
  • the device may consider that other devices are interfering with itself. In this case, the device may re-determine the target frequency band, and/or the target coding sequence, and/or the initial transmission time and transmission period.
  • the so-called regular anomaly can be understood as: after a device transmits a signal, it receives multiple echo signals. These multiple echo signals may include transmission signals from other devices. In this case, the device may consider that other devices have caused interference to itself.
  • the device can only receive but not transmit, that is, the device turns on the receiving end and turns off the receiving end.
  • the first signal, the second signal, and the third signal of the above-mentioned period of time may be signals received by the device from other devices in the same time period, or may be signals received from other devices in different time periods, and this application does not limit this.
  • a "frequency band” may also be referred to as a "channel” and a “coding sequence” may also be referred to as a "code channel”.
  • the device in the present application may be a radar.
  • the radar may be any one of ultra wide band (UWB) radar, millimeter wave radar, ultrasonic radar, lidar and the like.
  • UWB ultra wide band
  • millimeter wave radar millimeter wave radar
  • ultrasonic radar lidar and the like.
  • the signal transmitting device 700 includes: a processing unit 710 and a transceiver unit 720.
  • the processing unit 710 is used to determine target parameters according to the target service, wherein the target parameters include at least one of the transmission power of the target signal, the duty cycle of the target signal, and the bandwidth of the target signal, and the size of the target parameters matches the target service.
  • the transceiver unit 720 is used to transmit the target signal according to the target parameter.
  • the signal transmitting device 700 of the embodiment of the present application can be implemented by an application-specific integrated circuit (ASIC), or can be implemented by a programmable logic device (PLD), and the above-mentioned PLD can be a complex programmable logical device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • CPLD complex programmable logical device
  • FPGA field-programmable gate array
  • GAL generic array logic
  • the processing unit 710 is specifically used to: determine a target frequency band from multiple preset frequency bands, and the signal interference corresponding to the target frequency band is the smallest among the multiple preset frequency bands; the transceiver unit 720 is specifically used to: transmit the target signal according to the target parameters and the target frequency band.
  • the transceiver unit 720 is specifically used to: receive a first signal from other devices on the multiple preset frequency bands; the processing unit 710 is specifically used to: determine the target frequency band based on the first signal, and the target frequency band includes the frequency band corresponding to the first signal with the smallest energy in the first signal.
  • the processing unit 710 is specifically used to: determine a target coding sequence from multiple preset coding sequences, and the signal interference corresponding to the target coding sequence is the smallest among the multiple preset coding sequences; the transceiver unit 720 is specifically used to: transmit the target signal according to the target parameters and the target coding sequence.
  • the transceiver unit 720 is specifically used to: receive a second signal from other devices; the processing unit 710 is specifically used to: determine the target coding sequence based on the second signal, and the target coding sequence includes a coding sequence with the smallest autocorrelation peak value among the multiple preset coding sequences and the coding sequences corresponding to the second signal.
  • the processing unit 710 is specifically used to: determine the initial transmission time and transmission period corresponding to the target signal, wherein, during the period when the device transmits the signal based on the initial transmission time and the transmission period, other devices do not transmit signals; the transceiver unit 720 is specifically used to: transmit the target signal according to the target parameters, the initial transmission time and the transmission period.
  • the transceiver unit 720 is specifically used to: receive a third signal from other devices; the processing unit is specifically used to: determine the initial transmission time and transmission period corresponding to the target signal according to the reception time corresponding to the third signal.
  • the device 700 for transmitting a signal may correspond to executing the method described in the embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the device 700 for transmitting a signal are respectively for implementing the corresponding processes executed by the device in the methods in Figures 2 to 5, which will not be described in detail here for the sake of brevity.
  • Fig. 8 is a schematic structural block diagram of an example of a device 800 for transmitting a signal provided in an embodiment of the present application.
  • the device 800 for transmitting a signal includes: a processor 810, a memory 820, a communication interface 830, and a bus 840.
  • the processor 810 in the device 800 for transmitting signals shown in Figure 8 can correspond to the processing unit 710 in the device 700 for transmitting signals in Figure 7, and the communication interface 830 in the device 800 for transmitting signals can correspond to the transceiver unit 720 in the device 700 for transmitting signals.
  • the processor 810 may be connected to a memory 820.
  • the memory 820 may be used to store the program code and data. Therefore, the memory 820 may be a storage unit inside the processor 810, or an external storage unit independent of the processor 810, or a component including a storage unit inside the processor 810 and an external storage unit independent of the processor 810.
  • the signal transmitting device 800 may further include a bus 840.
  • the memory 820 and the communication interface 830 may be connected to the processor 810 via the bus 840.
  • the bus 840 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 840 may be divided into an address bus, a data bus, a control bus, etc.
  • FIG8 is represented by only one line, but it does not mean that there is only one bus or one type of bus.
  • the processor 810 may be a central processing unit (CPU).
  • the processor may also be other general-purpose processors, digital signal processors (DSP), Application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASIC Application specific integrated circuit
  • FPGA field programmable gate array
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the processor 810 uses one or more integrated circuits to execute related programs to implement the technical solutions provided in the embodiments of the present application.
  • the memory 820 may include a read-only memory and a random access memory, and provides instructions and data to the processor 810.
  • a portion of the processor 810 may also include a nonvolatile random access memory.
  • the processor 810 may also store information on the device type.
  • the processor 810 executes the computer-executable instructions in the memory 820 to perform the operation steps of the above method using the hardware resources in the signal transmitting device 800.
  • the device 800 for transmitting signals may correspond to the device 700 for transmitting signals in the embodiment of the present application, and may correspond to the corresponding subject executing the method shown in Figures 2 to 5 according to the embodiment of the present application, and the above-mentioned and other operations and/or functions of each module in the device 800 for transmitting signals are respectively for realizing the corresponding processes executed by the device in the methods in Figures 2 to 5, and for the sake of brevity, they will not be repeated here.
  • the present application also provides a computer-readable storage medium, which stores computer instructions.
  • the computer instructions are executed on a device for transmitting signals
  • the device for transmitting signals executes the method for transmitting signals provided in an embodiment of the present application.
  • the present application also provides a computer program product.
  • the computer program product When the computer program product is run on a computer, the computer executes the method for transmitting a signal provided in an embodiment of the present application.
  • the above embodiments can be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above embodiments can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that contains one or more available media sets.
  • the available medium can be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state drive (SSD).
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a Computer-readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions to enable a memory (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the method described in each embodiment of the embodiment of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请提供了一种发射信号的方法、装置与设备,该方法包括:设备根据目标业务,确定目标参数,目标参数包括目标信号的发射功率、目标信号的占空比以及目标信号的带宽中的至少一项,目标参数的大小与目标业务相匹配,之后根据目标参数,发射目标信号。该方法使得根据业务确定的信号的发射功率、占空比以及带宽中至少一项的大小与业务相匹配即可,降低由于信号的发射功率相对于业务过高,和/或,信号的占空比相对于业务过高,和/或,信号的带宽相对于业务过宽,对其他设备造成干扰的可能性。

Description

发射信号的方法、装置与设备
本申请要求于2022年9月28日提交国家知识产权局、申请号为202211195317.6、申请名称为“发射信号的方法、装置与设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信号探测领域,并且更具体地,涉及发射信号的方法、装置与设备。
背景技术
目前,存在一类设备,该设备可以应用于生物探测、距离探测、方位探测、频率探测等场景中,其通过发射信号,并接收被目标反射后的回波信号,根据回波信号确定目标的探测结果。
然而,如果多个设备在同一空间内均发射了信号,则可能会造成设备间的信号干扰问题。
发明内容
本申请提供了一种发射信号的方法、装置与设备,该方法使得根据业务确定的信号的发射功率、占空比以及带宽中至少一项的大小与业务相匹配即可,降低由于信号的发射功率相对于业务过高,和/或,信号的占空比相对于业务过高,和/或,信号的带宽相对于业务过宽,对其他设备造成干扰的可能性。
第一方面,提供了一种发射信号的方法,所述方法应用于具备信号收发功能的设备,包括:根据目标业务,确定目标参数,所述目标参数包括所述目标信号的发射功率、所述目标信号的占空比以及所述目标信号的带宽中的至少一项,所述目标参数的大小与所述目标业务相匹配;根据所述目标参数,发射所述目标信号。
基于上述技术方案,设备在根据待执行的业务,确定在发射信号时信号的发射功率、占空比以及带宽中的至少一项时,使得信号的发射功率、占空比以及带宽中至少一项的大小与业务相匹配即可,降低由于信号的发射功率相对于业务过高,和/或,信号的占空比相对于业务过高,和/或,信号的带宽相对于业务过宽,对其他设备造成干扰的可能性。
结合第一方面,在第一方面的某些实现方式中,从多个预设的频段中确定目标频段,所述目标频段对应的信号干扰是所述多个预设的频段中最小的;所述根据所述目标参数,发射所述目标信号,包括:根据所述目标参数与所述目标频段,发射所述目标信号。
基于上述技术方案,设备通过选择信号干扰最小的频段发射目标信号,从而降低其他设备对自己造成干扰的可能性。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述从多个预设的频段中确定目标频段,包括:在所述多个预设的频段上接收来自其他设备的第一信号;根据所述第一信号,确定所述目标频段,所述目标频段包括所述第一信号中能量最小的第一信号对应的频段。
基于上述技术方案,通过对多个预设的频段进行遍历,最终将在多个预设的频段上接收到的第一信号中能量最小的第一信号对应的频段作为目标频段,当设备使用该目标频段发射目标信号时,其他设备对该设备造成的干扰便是最小的。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述方法还包括:从多个预设的编码序列中确定目标编码序列,所述目标编码序列对应的信号干扰是所述多个预设的编码序列中最小的;所述根据所述目标参数,发射所述目标信号,包括:根据所述目标参数与所述目标编码序列,发射所述目标信号。
基于上述技术方案,设备通过选择信号干扰最小的编码序列发射目标信号,从而降低其他设备对自己造成干扰的可能性。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述从多个预设的编码序列中确定目标编码序列,包括:接收来自其他设备的第二信号;根据所述第二信号,确定所述目标编码序列,所述目标编码序列包括所述多个预设的编码序列中与所述第二信号对应的编码序列之间的自相关峰值最小的编码序列。
基于上述技术方案,通过对多个预设的编码序列进行遍历,最终将多个预设的编码序列中与第二信号对应的编码序列之间的自相关峰值最小的编码序列作为目标编码序列,当设备使用目标编码序列对目标信号编码后,并发送经目标编码序列编码后的目标信号时,其他设备对该设备造成的干扰便是最小的。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述方法还包括:确定所述目标信号对应的初始发射时刻与发射周期,其中,在所述设备基于所述初始发射时刻与所述发射周期发射信号期间,其他设备未发射信号;所述根据所述目标参数,发射所述目标信号,包括:根据所述目标参数、所述初始发射时刻与所述发射周期,发射所述目标信号。
基于上述技术方案,设备通过选择信号干扰最小的初始发射时刻与发射周期发射目标信号,从而降低其他设备对自己造成干扰的可能性。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述确定所述目标信号对应的初始发射时刻与发射周期,包括:接收来自其他设备的第三信号;根据所述第三信号对应的接收时刻,确定所述目标信号对应的初始发射时刻与发射周期。
基于上述技术方案,通过根据第三信号对应的接收时刻,确定目标信号对应的初始发射时刻与发射周期,从而使得当设备基于目标信号对应的初始发射时刻与发射周期发射目标信号时,在发射目标信号的时刻上,上述发射第三信号的其他设备未发射信号,即,该设备发射信号的时刻与其他设备之间是相互错开的。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述根据所述第三信号,确定所述目标信号对应的初始发射时刻与发射周期,包括:根据所述第三信号对应的接收时刻,确定所述其他设备的初始发射时刻与发射周期;根据所述其他设备的初始发射时刻与发射周期,确定所述目标信号对应的初始发射时刻与发射周期。
第二方面,提供一种发射信号的装置,用于执行上述第一方面或第一方面的任一可能的实现方式中的由设备执行的发射信号的方法。具体地,该装置可以包括用于执行第一方面或第一方面的任一可能的实现方式中的由设备执行的发射信号的方法的单元。
第三方面,提供一种发射信号的设备,该设备包括存储器与处理器。该存储器用于存储指令;该处理器执行该存储器存储的指令,使得该设备执行第一方面或第一方面的任一可能的实现方式中的发射信号的方法。
第四方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,使得计算机执行上述第一方面或第一方面的任一可能的实现方式中的发射信号的方法。
第五方面,提供一种包含指令的计算机程序产品,当该指令在计算机上运行时,使得计算机执行第一方面或第一方面的任一可能的实现方式中的发射信号的方法。
本申请在上述各方面提供的实现方式的基础上,还可以进行进一步组合以提供更多实现方式。
附图说明
图1是本申请提供的一例场景的示意图;
图2是本申请提供的一例发射信号的方法的示意性流程图;
图3是本申请提供的另一例发射信号的方法的示意性流程图;
图4是本申请提供的再一例发射信号的方法的示意性流程图;
图5是本申请提供的再一例发射信号的方法的示意性流程图;
图6是本申请提供了一例发射信号时的时序示意图;
图7是本申请提供的一例发射信号的装置的示意性结构框图;
图8是本申请提供的一例发射信号的设备的示意性结构框图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行描述。
如图1所示,设备1(以雷达1为例)与设备2(以雷达2为例)是同一空间内具备信号收发的功能的两个设备,例如,设备1通过发射信号1,在信号被目标1反射后,设备1根据接收到的被目标1反射后的信号1的回波信号3,完成对目标1的探测,设备2通过发射信号2,在信号2被目标2反射后,设备2根据接收到的被目标2反射后的信号2的回波信号4,完成对目标2的探测。
然而,由于设备1、设备2处于同一空间,设备1发射的信号1可能会被设备2接收到,设备2接收到信号1后,会把信号1当成经目标2反射后的信号2的回波信号进行处理,设备2发射的信号2可能会被设备1接收到,设备1接收到信号2后,会把信号2当成经目标1反射后的信号1的回波信号进行处理,在这种情况下,信号2会对设备1对目标1的探测造成干扰,相应地,信号1会对设备2对目标2的探测造成干扰。
需要说明的是,在具体实现时,同一空间内可以包括比图1所示的更多数量的设备,并且可以包括比图1所示的更多数量的目标,本申请对此不做限定。
鉴于上述提到的设备间的信号干扰问题,本申请提供了一种发射信号的方法,设备在根据待执行的业务,确定在发射信号时信号的发射功率、占空比以及带宽中的至少一项时,使得信号的发射功率、占空比以及带宽中至少一项的大小与业务相匹配即可,降低由于信号的发射功率相对于业务过高,和/或,信号的占空比相对于业务过高,和/或,信号的带宽相对于业务过宽,对其他设备造成干扰的可能性。
此外,本申请还提供了一种发射信号的方法,设备通过选择信号干扰较小的频段,和/或,信号干扰较小的编码序列,和/或,信号干扰较小的初始发射时刻与发射周期发射信号,从而降低其他设备对自己造成干扰的可能性。
值得一提的是,本申请中的其他设备可以包括一个或者多个设备。
下面对本申请提供的发射信号的方法进行介绍。首先对本申请提供的一例发射信号的方法200进行介绍,图2示出了发射信号的方法200的示意性流程图。
步骤201,设备根据目标业务,确定目标信号对应的目标参数,目标参数包括目标信号的发射功率、目标信号的占空比以及目标信号的带宽中的至少一项,目标参数的大小与目标业务相匹配。
在一种实现方式中,设备待执行的目标业务可以基于用户设置或者基于出厂设置确定,例如,用户可以在需要设备执行任务时手动设置目标业务。
在另一种实现方式中,设备可以自行确定待执行的目标业务,例如,设备通过探测,确定在预设的时长内某一区域内没有出现活动的目标,在这种情况下,设备可以将待执行的目标业务确定为探测该区域内是否存在活动的目标。
在确定了目标业务后,设备可以根据目标业务,确定目标信号对应的目标参数,在确定目标参数时,应当使得目标参数的大小与目标业务相匹配即可,避免目标参数相对于目标业务过高。
例如,目标业务为探测空旷的区域内是否存在活动的目标,在这种情况下,由于是在空旷的区域内探测是否存在活动的目标,因此,需要设备的探测范围尽可能地大,而设备的距离分辨率可以相对较低,并且设备根据回波信号获取到的能够反应目标实时状态的信息可以相对较少,因此,为了降低目标信号对其他设备造成干扰的可能性,同时又能够与目标业务相匹配,可以为目标信号匹配高发射功率,窄带宽或者中带宽,低占空比或者中占空比。
值得一提的是,设备的探测范围与信号的发射功率相关,发射功率越高,则设备的探测范围越大,设备的距离分辨率与信号的带宽相关,信号的带宽越宽,则设备的距离分辨率越高,设备根据回波信号获取到的能够反应目标实时状态的信息与设备在单位时间内发射信号的数量相关,设备在单位时间内发射信号的数量越多(即,占空比越高),则设备根据回波信号获取到的能够反应目标实时状态的信息也就越丰富。
通过为目标信号匹配中带宽或者窄带宽,可以降低目标频段与其他设备发射的信号对应的频段相互靠近或者存在交叠的可能性,通过为目标信号匹配中占空比或者低占空比,可以降低目标信号对应的时间段与其他设备发射的信号对应的时间段发生交叠的可能性,从而降低由于目标信号的占空比相对于目标业务过高,或者,目标信号的带宽相对于目标业务过高,对其他设备造成干扰的可能性,同时,通过为目标信号匹配高发射功率,从而使得目标参数与目标业务相匹配。
又例如,目标业务为探测区域内的目标是否是静止状态,在这种情况下,由于是探测区域内已经存在的目标是否是静止状态,因此,设备的探测范围只需能够覆盖目标即可,即目标信号的发射功率可以相对较低,由于是针对性的探测某个目标是否是静止状态,因此,设备的距离分辨率需要能够从多个目标中识别出该目标,即,需要目标信号的带宽相对较宽,此外,在探测目标是否处于静止状态时,通常是通过探测人体的各个部位(例如,手、脚、口等部位)的微动,从而确定人体是否处于静止状态,为了探测人体的各个部位的微动,目标信号需要满足较大的占空比,因此,为了降低目标信号对其他设备造成干扰的可能性,同时又能够与目标业务相匹配,可以为目标信号匹配高带宽或者中带宽,高占空比或者中占空比以及中发射功率或者低发射功率。
通过为目标信号匹配中发射功率或者低发射功率,可以降低目标信号的能量,从而降低由于目标信号的发射功率相对于目标业务过高,对其他设备造成干扰的可能性,同时,通过为目标信号匹配高带宽或者中带宽、高占空比或者中占空比,从而使得目标参数与目标业务相匹配。
再例如,目标业务为实时追踪移动的目标,在这种情况下,由于被追踪的目标是移动的,为了实现对目标的较高精度的追踪,需要发射功率、占空比、带宽均比较大,因此,为了能够与目标业务相匹配,可以为目标信号匹配高带宽,高占空比以及高发射功率。
再例如,目标业务为近距离手势识别,由于是近距离识别,因此,发射功率可以相对较低,由于手势持续的时间比较短,因此,需要较宽的带宽与较高的占空比,因此,为了降低目标信号对其他设备造成干扰的可能性,同时又能够与目标业务相匹配,可以为目标信号匹配宽带宽或者中带宽,高占空比或者中占空比以及中发射功率或者低发射功率。
再例如,目标业务是探测人体的心率或者呼吸频率,由于通常是通过探测人体的胸腔的微动,从而达到探测心率或者呼吸频率的目的,为了探测人体胸腔的微动,目标信号需要满足较高的占空比,此外,在探测人体的心率时,目标信号需要满足较高的信噪比,在目标信号发射功率较高的情况下,能够使得目标信号拥有较高的信噪比,因此,为了降低目标信号对其他设备造成干扰的可能性,同时又能够与目标业务相匹配,可以为目标信号匹配高发射功率或者中发射功率,高占空比或者中占空比以及中带宽或者低带宽。
步骤202,设备根据目标参数,发射目标信号。
设备根据为目标信号匹配的发射功率、占空比以及带宽,发射目标信号。
在方法200中,设备在根据目标业务为目标信号确定发射功率、占空比以及带宽时,使得发射功率、占空比以及带宽与目标业务相匹配即可,从而降低设备对其他设备造成干扰的可能性。
下面对本申请提供的另一例发射信号的方法300进行介绍,图3示出了发射信号的方法300的示意性流程图。
步骤301,设备从多个预设的频段中确定目标频段,目标频段对应的信号干扰是多个预设的频段中最小的。
示例性的,设备可以通过以下方式从多个预设的频段中确定目标频段:
方式1
设备可以在多个预设的频段上接收来自其他设备的第一信号,之后,设备根据第一信号,确定目标频段,目标频段包括第一信号中能量最小的第一信号对应的频段。
例如,设备可以对上述多个预设的频段进行遍历,即,依次工作在多个预设的频段上,并且在每个频段上接收一段时长的来自其他设备的第一信号,设备可以将在多个预设频段上接收到的第一信号中能量最小的第一信号对应的频段确定为目标频段。
方式2
设备在对上述多个预设的频段进行遍历的过程中,如果设备在某个预设的频段上接收到的第一信号的能量小于或等于预设的第一阈值,则设备可以将该频段确定为目标频段。
方式3
设备可以在完成对上述多个预设的频段遍历之后,根据在多个预设的频段上接收到的来自其他设备的第一信号,确定出信号的能量小于或等于预设的第一阈值的第一信号,之后,将信号的能量小于或等于预设的第一阈值的第一信号中能量最小的第一信号对应的频段确定为目标频段。
步骤302,设备根据目标频段,发射目标信号。
在方法300,设备通过从多个预设的频段中选择信号干扰较小或者最小的频段作为目标频段,从而降低其他设备对自己造成干扰的可能性。
下面对本申请提供的再一例发射信号的方法400进行介绍,图4示出了该方法400的示意性流程图。
步骤401,设备从多个预设的编码序列中确定目标编码序列,目标编码序列对应的信号干扰是多个预设的编码序列中最小的。
示例性的,设备可以通过以下方式从多个预设的编码序列中确定目标编码序列:
方式1
设备可以接收来自其他设备的第二信号,之后,根据第二信号,确定目标编码序列,目标编码序列包括多个预设的编码序列中与第二信号对应的编码序列之间的自相关峰值最小的编码序列。
例如,设备可以对上述多个预设的编码序列进行遍历,即,在每接收到一段时长的第二信号后,便从多个预设的编码序列中选择一个编码序列,并确定该预设的编码序列与第二信号对应的编码序列之间的自相关峰值,在设备完成对多个预设的编码序列的遍历之后,可以将获得的多个自相关峰值中最小的自相关峰值对应的预设的编码序列确定为目标编码序列。
再例如,设备在接收到某段时长的来自其他设备的第二信号后,将该第二信号对应的编码序列依次与多个预设的编码序列作自相关运算,之后,将得到多个自相关峰值中最小的自相关峰值对应的预设的编码序列确定为目标编码序列。
方式2
设备在接收到某段时长的来自其他设备的第二信号后,将该第二信号对应的编码序列与多个预设的编码序列中的某一个预设的编码序列作自相关运算,如果第二信号对应的编码序列与某一个预设的编码序列之间的自相关峰值小于或等于预设的第二阈值,则将该预设的编码序列确定为目标编码序列。
方式3
设备可以在完成对多个预设的编码序列的遍历之后,可以从得到的多个自相关峰值中确定出小于或等于预设的第二阈值的自相关峰值,之后,将小于或等于预设的第二阈值的自相关峰值中最小的自相关峰值对应的预设的编码序列确定为目标编码序列。
步骤402,设备根据目标编码序列,发射目标信号。
在方法400,设备通过从多个预设的编码序列中选择信号干扰较小作为的编码序列作为目标编码序列,从而降低其他设备对自己造成干扰的可能性。
下面本申请提供的再一例发射信号的方法500进行介绍,图5示出了该方法500的示意性流程图。
步骤501,设备确定目标信号对应的初始发射时刻与发射周期,其中,在设备基于初始发射时刻与发射周期发射信号期间,其他设备未发射信号。
示例性的,设备可以通过以下方式确定目标信号对应的初始发射时刻与发射周期:
设备可以接收来自其他设备的第三信号,之后,根据第三信号对应的接收时刻,确定目标信号对应的初始发射时刻与发射周期。
例如,设备接收了一段时长的第三信号,如图6所示,假设设备分别在T1、T2、T3时刻接收到了第三信号,在每个时刻接收到的第三信号的持续时长均为A,T2与T1之间的时间间隔、T3与T2之间的时间间隔均为B。
为了实现该设备在将来发生目标信号时,其发射信号的时刻与其他设备之间相互错开,该设备可以将T3+A之后的且其他设备未发射信号的某一时刻,例如,T3+A与T4之间的某一时刻或者T4+A与T5之间的某一时刻作为目标信号对应的初始发射时刻,并且将时间间隔B作为目标信号 对应的发射周期,可以看出,当设备基于目标信号对应的初始发射时刻与发射周期发射目标信号时,在设备发射目标信号的时刻上,上述发射第三信号的其他设备未发射信号,即,该设备发射信号的时刻与其他设备发射信号的时刻之间是相互错开的。
步骤502,设备根据目标信号对应的初始发射时间与发射周期,发射目标信号。
需要说明的是,在具体实现时,上述方法200至方法500可以分别单独使用,或者,也可以将方法200至方法500中的任意几种以任意组合的方式组合后使用。
例如,在将方法200与方法300组合后使用的情况下,则设备可以执行步骤201与步骤301,之后,设备根据目标参数与目标频段,发射目标信号。
再例如,在将方法200与方法400组合后使用的情况下,则设备可以执行步骤201与步骤401,之后,设备根据目标参数与目标编码序列,发射目标信号。
再例如,在将方法200与方法500组合后使用的情况下,则设备可以执行步骤201与步骤501,之后,设备根据目标参数、目标信号对应的初始发射时刻与发射周期,发射目标信号。
再例如,在将方法200、方法300、方法400组合后使用的情况下,则设备可以执行步骤201、步骤301、步骤401,之后,设备根据目标参数、目标频段、目标编码序列,发射目标信号。
再例如,在将方法200、方法300、方法500组合后使用的情况下,则设备可以执行步骤201、步骤301、步骤501,之后,设备根据目标参数、目标频段、目标信号对应的初始发射时刻与发射周期,发射目标信号。
再例如,在将方法200、方法400、方法500组合后使用的情况下,则设备可以执行步骤201、步骤401、步骤501,之后,设备根据目标参数、目标编码序列、目标信号对应的初始发射时刻与发射周期,发射目标信号。
再例如,在将方法200、方法300、方法400、方法500组合后使用的情况下,则设备可以执行步骤201、步骤301、步骤401、步骤501,之后,设备根据目标参数、目标频段、目标编码序列、目标信号对应的初始发射时刻与发射周期,发射目标信号。
在本申请中,在确定了上述目标频段,和/或,目标编码序列,和/或,初始发射时刻与发射周期后,设备可以在发射信号期间,或者,在设备暂停发射信号期间,监测其他设备对自己的干扰,如果确定其他设备对自己的造成了干扰,则设备可以重新根据方法300确定目标频段,和/或,根据方法400确定目标编码序列,和/或,根据方法500确定初始发射时刻与发射周期。
例如,如果设备在发射信号期间,发现接收到的回波信号的功率较大,或者,发现接收到的回波信号的规律异常,则设备可以认为其他设备对自己造成了干扰,在这种情况下,设备可以重新确定目标频段,和/或,目标编码序列,和/或,初始发射时刻与发射周期。
所谓规律异常可以理解为:设备在发射了一个信号后,接收到了多个回波信号,则这多个回波信号中可能包括来自其他设备的发射信号,在这种情况下,设备可以认为其他设备对自己造成了干扰。
值得一提的是,在上述方法中,设备在接收来自其他设备的第一信号期间,为了保证最终确定的目标频段、目标编码序列、目标信号对应的初始发射时刻与发射周期是最优的,设备可以只收不发,即,设备开启接收端,并且关闭接收端。
值得一提的是,上述的一段时长的第一信号、第二信号、第三信号可以是设备在同一时间段接收到的来自其他设备的信号,或者,也可以是在不同时间段接收到的来自其他设备的信号,本申请对此不作限定。
在本申请中,“频段”也可以称为“信道”,“编码序列”也可以称为“码道”。
本申请中的设备可以为雷达,在具体实现时,雷达可以是超宽带(ultra wide band,UWB)雷达、毫米波雷达、超声波雷达、激光雷达等雷达中的任意一种。
上文结合图1至图6,详细描述了本申请提供的发射信号的方法,下面将结合图7至图8,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图7是本申请实施例提供的一例发射信号的装置700的示意性结构框图。该发射信号的装置700包括:处理单元710与收发单元720。
处理单元710,用于根据目标业务,确定目标参数,所述目标参数包括所述目标信号的发射功率、所述目标信号的占空比以及所述目标信号的带宽中的至少一项,所述目标参数的大小与所述目标业务相匹配。
收发单元720,用于根据所述目标参数,发射所述目标信号。
应理解的是,本申请实施例的发射信号的装置700可以通过专用集成电路(application-specific integrated circuit,ASIC)实现,或,可以通过可编程逻辑器件(programmable logic device,PLD)实现,上述PLD可以是复杂程序逻辑器件(complex programmable logical device,CPLD),现场可编程门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。当可以通过软件实现图2所示的发射信号的方法时,发射信号的装置700及其各个单元也可以为软件单元。
可选地,作为一种实现方式,所述处理单元710具体用于:从多个预设的频段中确定目标频段,所述目标频段对应的信号干扰是所述多个预设的频段中最小的;所述收发单元720具体用于:根据所述目标参数与所述目标频段,发射所述目标信号。
可选地,作为一种实现方式,所述收发单元720具体用于:在所述多个预设的频段上接收来自其他设备的第一信号;所述处理单元710具体用于:根据所述第一信号,确定所述目标频段,所述目标频段包括所述第一信号中能量最小的第一信号对应的频段。
可选地,作为一种实现方式,所述处理单元710具体用于:从多个预设的编码序列中确定目标编码序列,所述目标编码序列对应的信号干扰是所述多个预设的编码序列中最小的;所述收发单元720具体用于:根据所述目标参数与所述目标编码序列,发射所述目标信号。
可选地,作为一种实现方式,所述收发单元720具体用于:接收来自其他设备的第二信号;所述处理单元710具体用于:根据所述第二信号,确定所述目标编码序列,所述目标编码序列包括所述多个预设的编码序列中与所述第二信号对应的编码序列之间的自相关峰值最小的编码序列。
可选地,作为一种实现方式,所述处理单元710具体用于:确定所述目标信号对应的初始发射时刻与发射周期,其中,在所述设备基于所述初始发射时刻与所述发射周期发射信号期间,其他设备未发射信号;所述收发单元720具体用于:根据所述目标参数、所述初始发射时刻与所述发射周期,发射所述目标信号。
可选地,作为一种实现方式,所述收发单元720具体用于:接收来自其他设备的第三信号;所述处理单元具体用于:根据所述第三信号对应的接收时刻,确定所述目标信号对应的初始发射时刻与发射周期。
根据本申请实施例的发射信号的装置700可对应于执行本申请实施例中描述的方法,并且发射信号的装置700中的各个单元的上述和其它操作和/或功能分别为了实现图2至图5中的方法中由设备执行的相应流程,为了简洁,在此不再赘述。
图8是本申请实施例提供的一例发射信号的设备800的示意性结构框图。发射信号的设备800包括:处理器810、存储器820、通信接口830、总线840。
应理解,图8所示的发射信号的设备800中的处理器810可以对应于图7中发射信号的装置700中的处理单元710,发射信号的设备800中的通信接口830可以对应于发射信号的装置700中的收发单元720。
其中,该处理器810可以与存储器820连接。该存储器820可以用于存储该程序代码和数据。因此,该存储器820可以是处理器810内部的存储单元,也可以是与处理器810独立的外部存储单元,还可以是包括处理器810内部的存储单元和与处理器810独立的外部存储单元的部件。
可选的,发射信号的设备800还可以包括总线840。其中,存储器820、通信接口830可以通过总线840与处理器810连接。总线840可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线840可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,在本申请实施例中,该处理器810可以采用中央处理单元(central processing unit,CPU)。该处理器还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、 专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate Array,FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。或者该处理器810采用一个或多个集成电路,用于执行相关程序,以实现本申请实施例所提供的技术方案。
该存储器820可以包括只读存储器和随机存取存储器,并向处理器810提供指令和数据。处理器810的一部分还可以包括非易失性随机存取存储器。例如,处理器810还可以存储设备类型的信息。
在发射信号的设备800运行时,所述处理器810执行所述存储器820中的计算机执行指令以利用所述发射信号的设备800中的硬件资源执行上述方法的操作步骤。
应理解,根据本申请实施例的发射信号的设备800可对应于本申请实施例中的发射信号的装置700,并可以对应于执行根据本申请实施例的图2至图5所示方法中的相应主体,并且发射信号的设备800中的各个模块的上述和其它操作和/或功能分别为了实现图2至图5中的方法中由设备执行的相应流程,为了简洁,在此不再赘述。
根据本申请提供的发射信号的方法,本申请还提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,当计算机指令在发射信号的设备上运行时,使得发射信号的设备执行本申请实施例提供的发射信号的方法。
根据本申请提供的发射信号的方法,本申请还提供了一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行本申请实施例提供的发射信号的方法。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储器。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘(solid state drive,SSD)。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个 计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台存储器(可以是个人计算机,服务器,或者网络设备等)执行本申请实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请实施例的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种发射信号的方法,其特征在于,所述方法应用于具备信号收发功能的设备,包括:
    根据目标业务,确定目标参数,所述目标参数包括所述目标信号的发射功率、所述目标信号的占空比以及所述目标信号的带宽中的至少一项,所述目标参数的大小与所述目标业务相匹配;
    根据所述目标参数,发射所述目标信号。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    从多个预设的频段中确定目标频段,所述目标频段对应的信号干扰是所述多个预设的频段中最小的;
    所述根据所述目标参数,发射所述目标信号,包括:
    根据所述目标参数与所述目标频段,发射所述目标信号。
  3. 根据权利要求2所述的方法,其特征在于,所述从多个预设的频段中确定目标频段,包括:
    在所述多个预设的频段上接收来自其他设备的第一信号;
    根据所述第一信号,确定所述目标频段,所述目标频段包括所述第一信号中能量最小的第一信号对应的频段。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    从多个预设的编码序列中确定目标编码序列,所述目标编码序列对应的信号干扰是所述多个预设的编码序列中最小的;
    所述根据所述目标参数,发射所述目标信号,包括:
    根据所述目标参数与所述目标编码序列,发射所述目标信号。
  5. 根据权利要求4所述的方法,其特征在于,所述从多个预设的编码序列中确定目标编码序列,包括:
    接收来自其他设备的第二信号;
    根据所述第二信号,确定所述目标编码序列,所述目标编码序列包括所述多个预设的编码序列中与所述第二信号对应的编码序列之间的自相关峰值最小的编码序列。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述目标信号对应的初始发射时刻与发射周期,其中,在所述设备基于所述初始发射时刻与所述发射周期发射信号期间,其他设备未发射信号;
    所述根据所述目标参数,发射所述目标信号,包括:
    根据所述目标参数、所述初始发射时刻与所述发射周期,发射所述目标信号。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述目标信号对应的初始发射时刻与发射周期,包括:
    接收来自其他设备的第三信号;
    根据所述第三信号对应的接收时刻,确定所述目标信号对应的初始发射时刻与发射周期。
  8. 一种发射信号的装置,其特征在于,所述装置具备信号收发功能,包括:
    处理单元,用于根据目标业务,确定目标参数,所述目标参数包括所述目标信号的发射功率、所述目标信号的占空比以及所述目标信号的带宽中的至少一项,所述目标参数的大小与所述目标业务相匹配;
    收发单元,用于根据所述目标参数,发射所述目标信号。
  9. 根据权利要求8所述的装置,其特征在于,所述处理单元具体用于:从多个预设的频段中确定目标频段,所述目标频段对应的信号干扰是所述多个预设的频段中最小的;
    所述收发单元具体用于:根据所述目标参数与所述目标频段,发射所述目标信号。
  10. 根据权利要求9所述的装置,其特征在于,所述收发单元具体用于:在所述多个预设的频段上接收来自其他设备的第一信号;
    所述处理单元具体用于:根据所述第一信号,确定所述目标频段,所述目标频段包括所述第一信号中能量最小的第一信号对应的频段。
  11. 根据权利要求8至10中任一项所述的装置,其特征在于,所述处理单元具体用于:从多个预设的编码序列中确定目标编码序列,所述目标编码序列对应的信号干扰是所述多个预设的编码序列中最小的;
    所述收发单元具体用于:根据所述目标参数与所述目标编码序列,发射所述目标信号。
  12. 根据权利要求11所述的装置,其特征在于,所述收发单元具体用于:接收来自其他设备的第二信号;
    所述处理单元具体用于:根据所述第二信号,确定所述目标编码序列,所述目标编码序列包括所述多个预设的编码序列中与所述第二信号对应的编码序列之间的自相关峰值最小的编码序列。
  13. 根据权利要求8至12中任一项所述的装置,其特征在于,所述处理单元具体用于:确定所述目标信号对应的初始发射时刻与发射周期,其中,在所述装置基于所述初始发射时刻与所述发射周期发射信号期间,其他设备未发射信号;
    所述收发单元具体用于:根据所述目标参数、所述初始发射时刻与所述发射周期,发射所述目标信号。
  14. 根据权利要求13所述的装置,其特征在于,所述收发单元具体用于:接收来自其他设备的第三信号;
    所述处理单元具体用于:根据所述第三信号,确定所述目标信号对应的初始发射时刻与发射周期。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元具体用于:根据所述第三信号,确定所述其他设备未发射信号的时间段;根据所述其他设备未发射信号的时间段,确定所述目标信号对应的初始发射时刻与发射周期。
  16. 一种发射信号的设备,其特征在于,所述设备具备信号收发功能,包括处理器与存储器,所述存储器用于存储指令,当所述指令被所述处理器执行时,使得所述发射信号的设备执行如权利要求1至7中任一项所述的发射信号的方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,当所述计算机指令在发射信号的设备上运行时,使得所述发射信号的设备执行如权利要求1至7中任一项所述的发射信号的方法。
  18. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述的发射信号的方法。
PCT/CN2023/121139 2022-09-28 2023-09-25 发射信号的方法、装置与设备 WO2024067495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211195317.6 2022-09-28
CN202211195317.6A CN117833937A (zh) 2022-09-28 2022-09-28 发射信号的方法、装置与设备

Publications (1)

Publication Number Publication Date
WO2024067495A1 true WO2024067495A1 (zh) 2024-04-04

Family

ID=90476288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121139 WO2024067495A1 (zh) 2022-09-28 2023-09-25 发射信号的方法、装置与设备

Country Status (2)

Country Link
CN (1) CN117833937A (zh)
WO (1) WO2024067495A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190788A1 (en) * 2018-03-26 2019-10-03 Qualcomm Incorporated Using a side-communication channel for exchanging radar information to improve multi-radar coexistence
WO2021026845A1 (zh) * 2019-08-14 2021-02-18 Oppo广东移动通信有限公司 通信方法和通信装置
CN113709871A (zh) * 2020-05-22 2021-11-26 大唐移动通信设备有限公司 带宽部分bwp配置方法及装置
CN114679735A (zh) * 2022-03-29 2022-06-28 中国铁塔股份有限公司 一种参数调整方法、装置、电子设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019190788A1 (en) * 2018-03-26 2019-10-03 Qualcomm Incorporated Using a side-communication channel for exchanging radar information to improve multi-radar coexistence
WO2021026845A1 (zh) * 2019-08-14 2021-02-18 Oppo广东移动通信有限公司 通信方法和通信装置
CN113709871A (zh) * 2020-05-22 2021-11-26 大唐移动通信设备有限公司 带宽部分bwp配置方法及装置
CN114679735A (zh) * 2022-03-29 2022-06-28 中国铁塔股份有限公司 一种参数调整方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN117833937A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
US10575096B2 (en) Sound processing method and apparatus
CN103995253B (zh) 用于雷达应用的方法和设备
US9408160B2 (en) Device and method for restricting transmission output in a portable terminal
CN105022033B (zh) 雷达装置及控制方法
WO2021017945A1 (zh) 电子设备控制方法、装置、电子设备及存储介质
US20150331100A1 (en) Ultrasonic detection device and detection method thereof
WO2022142853A1 (zh) 一种声源定位方法以及装置
WO2022001348A1 (zh) 数据的发送方法、装置、存储介质以及电子装置
US11593033B2 (en) Electronic device for communicating with host and operating method of the electronic device
WO2019052273A1 (zh) 无人驾驶装置通信控制方法、终端和无人驾驶系统
JP7325619B2 (ja) 無線装置の高周波曝露を抑制する方法及び装置並びに無線装置
WO2017067465A1 (zh) 一种手势识别方法和装置
US20230156429A1 (en) Radio frequency switch circuit, communication unit and method therefor
WO2024067495A1 (zh) 发射信号的方法、装置与设备
WO2013180360A1 (ko) 임피던스 매칭 장치 및 방법
CN114422705A (zh) 电子设备及其控制方法、装置
US9955517B2 (en) Method for establishing wireless communication connection and terminal device
US10367665B2 (en) Radio analyzer and detecting method
JP6141427B2 (ja) ページング遅延を制御するためのシステムおよび方法
WO2018173350A1 (ja) レーダ装置及び電波干渉の回避方法
WO2022247424A1 (zh) 数据处理方法、装置、电子设备及计算机可读介质
WO2022051907A1 (zh) 超声波指纹识别方法、装置、设备和存储介质
CN114640366A (zh) 接收胶囊内窥镜信号的方法、装置及可读存储介质
CN209787200U (zh) 信号识别装置
CN115378482A (zh) 智能表面设备的识别方法、通信设备及智能表面设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870725

Country of ref document: EP

Kind code of ref document: A1