WO2024067466A1 - 一种太阳电池 - Google Patents

一种太阳电池 Download PDF

Info

Publication number
WO2024067466A1
WO2024067466A1 PCT/CN2023/121039 CN2023121039W WO2024067466A1 WO 2024067466 A1 WO2024067466 A1 WO 2024067466A1 CN 2023121039 W CN2023121039 W CN 2023121039W WO 2024067466 A1 WO2024067466 A1 WO 2024067466A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
layer
solar cell
cell according
type region
Prior art date
Application number
PCT/CN2023/121039
Other languages
English (en)
French (fr)
Inventor
陈奕峰
夏锐
马骏
高纪凡
Original Assignee
天合光能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211188919.9A external-priority patent/CN116033764A/zh
Priority claimed from CN202222584432.4U external-priority patent/CN218456634U/zh
Application filed by 天合光能股份有限公司 filed Critical 天合光能股份有限公司
Publication of WO2024067466A1 publication Critical patent/WO2024067466A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the photovoltaic field, to a solar cell, and in particular to the structure of an organic metal halide perovskite solar cell.
  • Perovskite solar cells are generally composed of a substrate, a perovskite layer, an electron transport layer, a hole transport layer, and an external electrode.
  • the electron and hole transport layers are collectively referred to as charge transport layers.
  • the working principle of perovskite solar panels is that the perovskite layer absorbs light to generate electron-hole pairs, and the electron holes are quickly separated in the perovskite layer and extracted by the electron transport layer and the hole transport layer, respectively, and then transported to the external circuit.
  • the perovskite layer is usually sandwiched between the electron transport layer and the hole transport layer, and the electron transport layer or hole transport layer on both sides of the perovskite layer will cause a certain parasitic absorption, thereby affecting the light response of the perovskite layer.
  • a technical solution discloses a perovskite solar cell, wherein the perovskite solar cell structure of silicon-based thin film material includes: a conductive glass: an n-type electron transport layer, which is made on the conductive glass: a perovskite photosensitive layer, which is made on the n-type electron transport layer: a p-type hole transport layer, which is made on the perovskite photosensitive layer: a metal counter electrode, which is made on the p-type hole transport layer.
  • the disclosed solar cell structure is a traditional perovskite solar cell structure, in which the p-layer and the n-layer are arranged at both ends of the perovskite photosensitive layer, and the electron or hole transport layers on both sides of the perovskite layer will cause certain parasitic absorption, thereby affecting the light response of the perovskite layer.
  • Another technical solution discloses a positive cross-finger full back contact perovskite solar cell and its preparation method.
  • the structure is from bottom to top: 1) substrate: 2) positive electrode: 3) hole transport layer: 4) insulating isolation layer: 5) negative electrode: 6) electron transport layer: 7) perovskite absorption layer; 8) passivation layer: 9) anti-reflection protection layer.
  • There is an anti-reflection layer on the perovskite absorption layer and the hole transport layer and the electron transport layer are separated by the negative electrode. Since the hole transport layer and the electron transport layer are separated by the negative electrode, the electrodes are in close contact, and even if they are separated by an insulating isolation layer, there is still a risk of short circuit.
  • Another technical solution discloses a parallel interdigitated full back contact perovskite solar cell structure.
  • the top is: 1) substrate; 2) positive electrode; 3) negative electrode; 4) hole transport layer; 5) electron transport layer; 6) perovskite absorption layer; 7) passivation layer; 8) anti-reflection protection layer.
  • the negative electrode and the electron transport layer from bottom to top are all embedded in the perovskite absorption layer, so the battery structure can only be used in a certain structure, and cannot be stacked or split for use, which has limitations.
  • a solar cell is provided.
  • the structure of the solar cell includes a photoactive layer.
  • the photoactive layer is a perovskite photoactive layer, and at least one first p-type region and at least one first n-type region are arranged at the bottom of the photoactive layer. Each first n-type region and any first p-type region are arranged at intervals, and electrodes are independently arranged under each first p-type region and each first n-type region.
  • the photoactive layer contacts each first n-type region to form a heterojunction structure.
  • the photoactive layer contacts each first p-type region to form a heterojunction structure.
  • each first p-type region and each first n-type region is in the shape of a strip, and along an extension direction perpendicular to the strip, at least one first p-type region and at least one first n-type region are alternately and spaced apart.
  • a first n-type region is disposed between two adjacent first p-type regions.
  • a minimum distance between each first n-type region and any first p-type region is approximately greater than 0 cm and less than or equal to 1 cm.
  • each first n-type region includes at least one first n-type layer.
  • each first n-type layer includes any one or a combination of at least two of n-type single crystal silicon, n-type polycrystalline silicon, n-type amorphous silicon, TiO2 , SnO2 , ZnO, ZrO2 , GZO, IZO, FTO, ITO, BaSnO3 , TiSnOx , SnZnOx or fullerene and derivatives, wherein 0 ⁇ x ⁇ 4.
  • a thickness of each first n-type region is less than or equal to about 100 ⁇ m.
  • each first p-type region includes at least one first p-type layer.
  • each first p-type layer includes any one of p-type single crystal silicon, p-type polycrystalline silicon, p-type amorphous silicon, 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene, polyethylene terephthalate, polymer of 3-hexylthiophene, PEDOT:PSS, Spiro-TTB, F4-TCNQ, F6TCNNQ, TAPC, NiOx, CuSCN, CuAlO 2 or V 2 O 5 , or a combination of at least two thereof.
  • the thickness of each first p-type region is less than or equal to about 100 ⁇ m.
  • At least one active layer is further disposed between each first n-type region and the electrode.
  • Each active layer includes an intermediate layer, a second p-type region, a silicon material layer, and a second n-type region connected in sequence from top to bottom.
  • At least one active layer is further disposed between each first n-type region and the electrode.
  • Each active layer includes an intermediate layer, a second n-type region, a silicon material layer, and a second p-type region connected in sequence from top to bottom.
  • At least one active layer is further provided between each first p-type region and the electrode;
  • Each of the active layers includes an intermediate layer, a second p-type region, a silicon material layer and a second n-type region connected in sequence from top to bottom.
  • At least one active layer is further provided between each first p-type region and the electrode;
  • Each active layer includes an intermediate layer, a second n-type region, a silicon material layer, and a second p-type region connected in sequence from top to bottom.
  • the material of the intermediate layer includes any one or a combination of at least two of polysilicon, amorphous silicon, TiO2 , SnO2 , ZnO, ZrO2 , GZO, IZO, FTO, ITO, BaSnO3 , TiSnOx , SnZnOx or fullerene and derivatives.
  • the thickness of the intermediate layer is less than or equal to about 100 ⁇ m.
  • each second p-type region includes at least one second p-type layer.
  • each second p-type layer includes any one of p-type single crystal silicon, p-type polycrystalline silicon or p-type amorphous silicon, or a combination of at least two of them.
  • each second n-type region includes at least one second n-type layer.
  • each second n-type layer includes any one of n-type single crystal silicon, n-type polycrystalline silicon or n-type amorphous silicon, or a combination of at least two thereof.
  • each second n-type layer and each second p-type layer is less than or equal to about 100 ⁇ m.
  • the silicon material layer includes any one of n-type polysilicon, i-type polysilicon, and p-type polysilicon, or a combination of at least two of them.
  • the photoactive layer includes an organic metal halide perovskite material and/or an inorganic metal halide perovskite material.
  • the organic metal halide perovskite material and/or the inorganic metal halide perovskite material comprises a three-dimensional structure of ABX 3 , wherein A is a monovalent cation, B is a divalent cation, and X is a monovalent anion.
  • A includes any one of cesium, rubidium, methylamine or formamidine, or a combination of at least two thereof.
  • B includes any one of lead, copper, zinc, gallium, tin or calcium, or a combination of at least two thereof.
  • X includes any one of iodine, bromine, chlorine, fluorine or thiocyanate ion or a combination of at least two thereof.
  • the photoactive layer is a photoactive layer without open porosity.
  • the thickness of the photoactive layer is less than or equal to about 100 ⁇ m.
  • the absorption band gap of the photoactive layer is about 0.9 eV to about 3.0 eV.
  • an anti-reflection layer and a substrate are disposed above the photoactive layer.
  • the substrate includes any one of FTO conductive glass, ITO conductive glass, PI flexible substrate or PEN flexible substrate.
  • the material of the anti-reflection layer includes any one of LiF, MgF 2 , Si 3 N 4 , SiO 2 or polydimethylsiloxane, or a combination of at least two thereof.
  • the thickness of the anti-reflection layer is less than or equal to about 5 mm.
  • the material of the electrode includes any one of Au, Ag, Al, Cu, graphene or ITO, or a combination of at least two of them.
  • the thickness of the electrode is less than or equal to about 10 ⁇ m.
  • FIG1 is a schematic diagram of the position of the substrate in Examples 1 to 7 of the present application.
  • FIG2 is a schematic diagram of the coating structure on the substrate in Example 1 of the present application.
  • FIG3 is a schematic diagram of the coating structure on the substrate in Example 2 of the present application.
  • FIG4 is a schematic diagram of the coating structure on the substrate in Example 3 of the present application.
  • FIG5 is a schematic diagram of the coating structure on the substrate in Example 4 of the present application.
  • FIG6 is a schematic diagram of the coating structure on the substrate in Example 5 of the present application.
  • FIG7 is a schematic diagram of the coating structure on the substrate in Example 6 of the present application.
  • FIG8 is a schematic diagram of the coating structure on the substrate in Example 7 of the present application.
  • FIG9 is a schematic diagram of the coating structure in Comparative Example 1 of the present application.
  • FIG. 10 is a schematic diagram of the coating structure in Comparative Example 2 of the present application.
  • Exemplary embodiments are described herein with reference to cross-sectional views and/or plan views that are idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in shape relative to the drawings due to, for example, manufacturing techniques and/or tolerances are conceivable. Therefore, the exemplary embodiments should not be interpreted as being limited to the shapes of the regions shown herein, but include shape deviations due to, for example, manufacturing. For example, an etched region shown as a rectangle will typically have curved features. Therefore, the regions shown in the drawings are schematic in nature, and their shapes are not intended to illustrate the actual shape of regions of the device, and are not intended to limit the scope of the exemplary embodiments.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • one or more means one or more than or equal to two.
  • At least one means more than one, such as one, two and more than two.
  • Multiple or “several” means at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the distribution of the optional numerical values in the numerical interval is considered to be continuous, and includes the two numerical endpoints (i.e., the minimum and maximum values) of the numerical interval, and each numerical value between the two numerical endpoints.
  • the numerical interval only refers to the integers in the numerical interval, including the two endpoint integers of the numerical range, and each integer between the two endpoints, is equivalent to directly listing each integer.
  • the numerical ranges disclosed herein should be understood to include any and all sub-ranges included therein.
  • the "numerical value" in the numerical interval can be any quantitative value, such as a number, a percentage, a ratio, etc.
  • “Numerical interval” allows broadly including numerical interval types such as percentage intervals, ratio intervals, and ratio intervals.
  • the present application provides a method of placing the charge transfer layer in a conventional perovskite solar cell structure on the same side of the perovskite layer, and selectively depositing an anti-reflection film on the other side of the perovskite layer to form a solar cell structure, which can more fully enhance the light absorption of the photoactive layer, thereby increasing the short-circuit current density of the device and further improving the energy conversion efficiency.
  • Some embodiments of the present application provide a solar cell, as shown in Figures 2 to 8, the structure of the solar cell includes a photoactive layer 2.
  • the photoactive layer 2 is a perovskite photoactive layer.
  • At least one first p-type region 3 and at least one first n-type region 4 are arranged at the bottom of the photoactive layer 2, each first n-type region 4 is arranged at intervals from any first p-type region 3, and electrodes 5 are independently arranged under each first p-type region 3 and each first n-type region 4.
  • an anti-reflection film can be selectively deposited on the other side of the perovskite layer, thereby more fully enhancing the light absorption of the photoactive layer 2, thereby increasing the short-circuit current density of the device and further improving the energy conversion efficiency.
  • the above-mentioned first p-type region 3 can be a hole transport layer
  • the first n-type region 4 can be an electron transport layer.
  • the working principle of the solar cell is as follows: after the top perovskite layer absorbs light, the electrons and holes are respectively extracted from the first n-type region and the first n-type region of the bottom film to complete the separation of electron-hole pairs, and then transported to the external circuit through the electrode.
  • the photoactive layer 2 contacts each first n-type region 4 to form a heterojunction structure; in these embodiments, the connection between the photoactive layer 2 and each first n-type region 4 is two different materials, thus forming a heterojunction structure.
  • the photoactive layer 2 contacts each first p-type region 3 to form a heterojunction structure; in these embodiments, the connection between the photoactive layer 2 and each first p-type region 3 is two different materials, thus forming a heterojunction structure.
  • each first p-type region 3 and each first n-type region 4 are in the shape of a strip, and along an extension direction perpendicular to the strip, at least one first p-type region 3 and at least one first n-type region 4 are alternately and spaced apart.
  • a first n-type region 4 is disposed between two adjacent first p-type regions 3 .
  • the minimum spacing between each first n-type region 4 and any first p-type region 3 is greater than 0 cm and less than or equal to 1 cm.
  • the minimum spacing may be 0.5 ⁇ m, 1 ⁇ m, 10 ⁇ m, 100 ⁇ m, 1 mm, 3 mm, 6 mm, 9 mm or 1 cm, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable.
  • each first n-type region 4 includes at least one first n-type layer.
  • each first n-type layer includes any one or a combination of at least two of n-type single crystal silicon, n-type polycrystalline silicon, n-type amorphous silicon, TiO 2 , SnO 2 , ZnO, ZrO 2 , GZO, IZO, FTO, ITO, BaSnO 3 , TiSnO x , SnZnO x or fullerene and derivatives.
  • Typical but non-limiting examples of the combination include: a combination of n-type single crystal silicon and n-type polycrystalline silicon, a combination of n-type amorphous silicon and TiO 2 , a combination of SnO 2 and ZnO and ZrO 2 and GZO, a combination of IZO and FTO and ITO, or a combination of BaSnO 3 and TiSnO x and SnZnO x and fullerene and derivatives, etc., wherein 0 ⁇ x ⁇ 4.
  • the value of x can be 1, 2, 3 or 4, etc., but is not limited to the listed values, and other values not listed within the numerical range are also applicable.
  • the thickness of each first n-type region 4 is less than or equal to (expressed as ⁇ ) about 100 ⁇ m.
  • the thickness may be 50 nm, 100 nm, 500 nm, 1 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m or 100 ⁇ m, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable.
  • each first p-type region 3 includes at least one first p-type layer.
  • each first p-type layer includes p-type single crystal silicon, p-type polycrystalline silicon, p-type amorphous silicon, 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene, polyethylene terephthalate, polymer of 3-hexylthiophene, PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), poly(3,4-ethylenedioxythiophene: polystyrene sulfonate), Spiro-TTB (2,2',7,7'-tetra(N,N-di-tolyl)aMino-spiro-bifluor, 2,2',7,7'-tetra(di-p-tolylamino)spiro-9,9'-bifluorene), F4
  • Typical but non-limiting examples of the combination include: a combination of p-type single crystal silicon and p-type polycrystalline silicon, a combination of p-type amorphous silicon and 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene, a polymer of polyethylene terephthalate and 3-hexylthiophene, a combination of PEDOT:PSS and Spiro-TTB, or a combination of CuAlO 2 and V 2 O 5 , etc.
  • the thickness of each first p-type region 3 is less than or equal to (expressed as ⁇ ) about 100 ⁇ m.
  • the thickness may be 50 nm, 100 nm, 500 nm, 1 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m or 100 ⁇ m, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable.
  • At least one active layer is further disposed between each first n-type region 4 and the electrode 5.
  • Each of the active layers includes an intermediate layer 6, a second p-type region 9, a silicon material layer 8 and a second n-type region 7 connected sequentially from top to bottom.
  • At least one active layer is further disposed between each first n-type region 4 and the electrode 5.
  • Each active layer includes an intermediate layer 6, a second n-type region 7, a silicon material layer 8 and a second p-type region 9 connected sequentially from top to bottom.
  • At least one active layer is further disposed between each first p-type region 3 and the electrode 5.
  • Each active layer includes an intermediate layer 6, a second p-type region 9, a silicon material layer 8 and a second n-type region 7 connected sequentially from top to bottom.
  • At least one active layer is further disposed between each first p-type region 3 and the electrode 5.
  • Each of the active layers includes an intermediate layer 6, a second n-type region 7, a silicon material layer 8, and a second p-type region 9 connected sequentially from top to bottom.
  • the active layer is provided to complete the photoelectric conversion, and can absorb a certain band of spectrum alone, or other materials such as silicon material layer and perovskite photoactive layer are combined to distribute the spectrum.
  • the purpose of absorbing light in different bands is to improve battery efficiency.
  • the intermediate layer provided in the active layer has good light transmittance and electrical transmission performance, and can play the role of connecting the upper and lower battery structures.
  • the second p-type region plays the role of extracting and conducting holes
  • the second n-type region plays the role of extracting and conducting electrons
  • the silicon material layer plays the role of absorbing long-wavelength light to improve efficiency.
  • the material of the intermediate layer 6 includes any one or a combination of at least two of polycrystalline silicon, amorphous silicon, TiO2 , SnO2 , ZnO, ZrO2 , GZO (Gallium Zinc Oxide), IZO (Indium-Zinc-Oxide), FTO (F-doped Tin Oxide), ITO (Indium Tin Oxides), BaSnO3 , TiSnOx , SnZnOx or fullerene and derivatives.
  • Typical but non-limiting examples of the combination include: a combination of polycrystalline silicon and amorphous silicon, a combination of TiO2 , SnO2 and ZnO, a combination of ZrO2 , GZO and IZO, a combination of FTO and ITO, or a combination of BaSnO3 , TiSnOx , SnZnOx and fullerene and derivatives, etc.
  • the thickness of the intermediate layer 6 is less than or equal to ( ⁇ ) about 100 ⁇ m, and the thickness can be 10 nm, 30 nm, 50 nm, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m or 100 ⁇ m, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • each second p-type region 9 includes at least one second p-type layer.
  • each second p-type layer includes any one of p-type single crystal silicon, p-type polycrystalline silicon or p-type amorphous silicon, or a combination of at least two of them.
  • Typical but non-limiting examples of the combination include: a combination of p-type single crystal silicon and p-type polycrystalline silicon, a combination of p-type polycrystalline silicon and p-type amorphous silicon, or a combination of p-type single crystal silicon and p-type amorphous silicon, etc.
  • each second n-type region 7 includes at least one second n-type layer.
  • each second n-type layer includes any one of n-type single crystal silicon, n-type polycrystalline silicon or n-type amorphous silicon, or a combination of at least two of them.
  • Typical but non-limiting examples of the combination include: a combination of n-type single crystal silicon and n-type polycrystalline silicon, a combination of n-type polycrystalline silicon and n-type amorphous silicon, or a combination of n-type single crystal silicon and n-type amorphous silicon, etc.
  • each second n-type layer 7 and each second p-type layer 9 is less than or equal to (expressed as ⁇ ) about 100 ⁇ m, and the thickness can be 10 nm, 30 nm, 50 nm, 100 nm, 500 nm, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m or 100 ⁇ m, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the silicon material layer 8 includes any one of n-type polycrystalline silicon, i-type polycrystalline silicon, and p-type polycrystalline silicon, or a combination of at least two of them.
  • Typical but non-limiting examples of the combination include: a combination of n-type polycrystalline silicon and i-type polycrystalline silicon, a combination of i-crystalline silicon and p-type polycrystalline silicon, a combination of n-type polycrystalline silicon and p-type polycrystalline silicon, etc.
  • the photoactive layer 2 includes an organic metal halide perovskite material and/or an inorganic metal halide perovskite material.
  • the organic metal halide perovskite material and/or the inorganic metal halide perovskite material comprises a three-dimensional structure of ABX 3 , wherein A is a monovalent cation, B is a divalent cation, and X is a monovalent anion.
  • A includes any one of cesium, rubidium, methylamine or formamidine or a combination of at least two thereof, and typical but non-limiting examples of such combinations include: a combination of cesium and rubidium, a combination of rubidium and methylamine, a combination of methylamine and formamidine, or a combination of rubidium, methylamine and formamidine, etc.
  • B includes any one of lead, copper, zinc, gallium, tin or calcium or a combination of at least two thereof, and typical but non-limiting examples of such combinations include: a combination of lead and copper, a combination of copper and zinc, a combination of gallium and tin, or a combination of tin and calcium, etc.
  • X includes any one of iodine, bromine, chlorine, fluorine or thiocyanate ion or a combination of at least two thereof, and typical but non-limiting examples of such combinations include: a combination of iodine and bromine, a combination of bromine and chlorine, or a combination of chlorine, fluorine and thiocyanate ion, etc.
  • the photoactive layer 2 is a photoactive layer with no open porosity.
  • Open porosity refers to the percentage of the volume of pores in a material that can be saturated with water (i.e., filled with water) to the volume of the material in a natural state.
  • the no open porosity is specifically used to indicate that the photoactive layer 2 does not have pores penetrated by fluids (including water and gas).
  • the thickness of the photoactive layer 2 is less than or equal to (expressed as ⁇ ) about 100 ⁇ m, and the thickness can be 0.3 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m or 100 ⁇ m, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the absorption band gap of the photoactive layer 2 is about 0.9 eV to about 3.0 eV.
  • the band gap can be 0.9 eV, 1.2 eV, 1.4 eV, 1.5 eV, 1.8 eV, 2.1 eV, 2.4 eV, 2.7 eV or 3.0 eV, etc., but is not limited to the listed values, and other values not listed in the numerical range are also applicable.
  • an anti-reflection layer 1 and a substrate 10 are disposed above the photoactive layer 2 .
  • the substrate 10 includes any one of FTO conductive glass, ITO conductive glass, PI flexible substrate, or PEN flexible substrate.
  • the material of the anti-reflection layer 1 includes any one of LiF, MgF2 , Si3N4 , SiO2 or polydimethylsiloxane, or a combination of at least two thereof.
  • Typical but non-limiting examples of the combination include: a combination of LiF and MgF2 , a combination of MgF2 and Si3N4 , a combination of Si3N4 and SiO2 , a combination of SiO2 and polydimethylsiloxane, etc.
  • the thickness of the anti-reflection layer 1 is less than or equal to (expressed as ⁇ ) about 5 mm.
  • the thickness can be 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, 1 mm, 2 mm, 3 mm, 4 mm or 5 mm, etc., but is not limited to the listed values. Other unlisted values within the numerical range are also applicable.
  • the material of the electrode 5 includes any one of Au, Ag, Al, Cu, graphene or ITO or a combination of at least two of them.
  • Typical but non-limiting examples of the combination include: a combination of Au and Ag, a combination of Al and Cu, or a combination of graphene and ITO, etc.
  • the thickness of the electrode 5 is less than or equal to (expressed as ⁇ ) about 10 ⁇ m, and the thickness can be 50 nm, 100 nm, 500 nm, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m or 10 ⁇ m, etc., but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
  • the preparation methods of all the above structural layers include any one or a combination of at least two of spin coating, blade coating, evaporation, printing, spray coating, spray pyrolysis, slit coating, mechanical bonding, chemical vapor phase method or physical vapor phase method, and typical but non-limiting examples of the combination include: a combination of spin coating and blade coating, a combination of evaporation and printing, a combination of spray coating and spray pyrolysis, or a combination of slit coating and mechanical bonding, etc.
  • These operations are conventional operations in the art and are not specifically limited here.
  • the present invention has at least one of the following beneficial effects:
  • the present application places the charge transport layer in the conventional perovskite solar cell structure on the same side of the perovskite layer, and selectively deposits an anti-reflection film on the other side of the perovskite layer, thereby more fully improving the light absorption of the photoactive layer, thereby increasing the short-circuit current density of the device, and further improving the energy conversion efficiency;
  • This embodiment provides a coating structure on a substrate as shown in FIG2 , and the preparation method is as follows:
  • the FTO conductive glass with an area of 100 ⁇ 100 cm 2 was cleaned, and a 1 ⁇ m thick MgF 2 layer, namely the anti-reflection layer 1, was prepared on the FTO conductive glass by thermal evaporation.
  • a coater to drop the MAPbI3 precursor solution on the edge of the substrate.
  • the coater coats the substrate with the solution at a speed of 1 cm per second.
  • a first n-type layer is deposited using a mask. Except for the preparation area, the rest is shielded with a metal plate. Then, a SnO 2 layer with an area of 49.99 ⁇ 100 cm 2 and a thickness of 50 nm is deposited on the surface of the photoactive layer 2 using a chemical vapor method, thereby forming a first n-type region 4 .
  • the rest is shielded with a metal plate, and a Spiro-TTB layer with a thickness of 150nm and a preparation area of 49.99 ⁇ 100cm2 is prepared on the surface of the photoactive layer 2 by thermal evaporation, that is, the first p-type region 3 is formed.
  • the first p-type region and the first n-type region are not in contact, and the interval is 1 ⁇ m.
  • the electrode Au is prepared on the surface of the first p-type region 3 and the first n-type region 4 by thermal evaporation, and the non-prepared area is shielded with a baffle to prepare the electrode 5 with a thickness of 60nm.
  • This embodiment provides a coating structure on a substrate as shown in FIG3 , and the preparation method is as follows:
  • An ITO conductive glass with an area of 200 ⁇ 100 cm 2 was cleaned, and a Si 3 N 4 layer with a thickness of 2 mm, ie, the anti-reflection layer 1, was prepared on the ITO conductive glass by using an evaporation method.
  • the Cs 0.2 FA 0.8 PbI 2.4 Br 0.6 precursor solution was uniformly scraped onto the ITO conductive glass, and the substrate coated with the Cs 0.2 FA 0.8 PbI 2.4 Br 0.6 precursor solution was transferred to a heating stage and heated at 100 degrees Celsius for 30 minutes to form a perovskite film with a thickness of 1 ⁇ m, i.e., the light absorption layer 2.
  • the first n-type layer was deposited using a mask, and the rest was shielded with a metal plate except for the preparation area. Then, PCBM was prepared on the surface of the photoactive layer 2 using a slit coating method, forming a first n-type region 4 with a thickness of 100 nm and a preparation area of 24.99 ⁇ 100 cm 2 .
  • the rest is shielded with a metal plate, and an F4-TCNQ layer is prepared on the surface of the photoactive layer 2 by evaporation, that is, a first p-type region 3 is formed, with a thickness of 100nm and a preparation area of 24.99 ⁇ 100cm 2.
  • the first n-type region and the first p-type region are not in contact, and the interval is 1 ⁇ m.
  • the non-prepared area is shielded with a baffle on the surface of the first p-type region 3 and the first n-type region 4 by spraying, and an electrode Ag, that is, an electrode 5, is prepared with a thickness of 80nm.
  • This embodiment provides a coating structure on a substrate as shown in FIG4 , and the preparation method is as follows:
  • a PI flexible substrate with an area of 300 ⁇ 100 cm 2 was cleaned, and a LiF layer with a thickness of 1 mm, namely, the anti-reflection layer 1, was prepared on the PI flexible substrate by using a spray pyrolysis method.
  • the CH 3 NH 3 PbBr 3 precursor solution was uniformly scraped onto the PI flexible substrate.
  • the substrate coated with the CH 3 NH 3 PbBr 3 precursor solution was transferred to a heating stage and heated at 100 degrees Celsius for 30 minutes to form a perovskite film with a thickness of 400 nm, namely, the photoactive layer 2.
  • the first n-type layer is deposited using a mask. Except for the preparation area, the rest is shielded with a metal plate. Then, IZO is deposited on the surface of the photoactive layer 2 using an evaporation method to form a first n-type region 4 with a thickness of 100 nm and a preparation area of 16 ⁇ 100 cm 2 .
  • the rest is shielded with a metal plate, and CuAlO 2 is prepared on the surface of the photoactive layer 2 by printing, that is, the first p-type region 3 is formed, with a thickness of 150nm and a preparation area of 16 ⁇ 100cm 2.
  • the first p-type region and the first n-type region are not in contact, and the interval is 1 ⁇ m.
  • the non-prepared area is shielded with a baffle on the surface of the first p-type region 3 and the first n-type region 4 by thermal evaporation, and the electrode Al, that is, the electrode 5, thickness is 1 ⁇ m.
  • This embodiment provides a coating structure on a substrate as shown in FIG5 , and the preparation method is as follows:
  • the FTO substrate with an area of 200 ⁇ 100 cm 2 was cleaned, and a SiO 2 layer with a thickness of 400 nm, namely the anti-reflection layer 1, was prepared on the FTO substrate using a slit coating method.
  • a 500 nm thick FA 0.8 MA 0.2 PbI 3 perovskite film, i.e., the photoactive layer 2 was prepared on a FTO substrate using a thermal evaporation method.
  • the first n-type layer is deposited using a mask. Except for the preparation area, the rest is shielded with a metal plate. Then, a SnO 2 layer is deposited on the surface of the photoactive layer 2 using a coating method to form a first n-type region 4 with a thickness of 100 nm and a preparation area of 49.99 ⁇ 100 cm 2 .
  • the sputtering method to form an ITO layer on the first n-type layer, i.e., an intermediate layer 6, with a thickness of 40 nm and a preparation area of 49.99 ⁇ 100 cm 2 ; use the PVD method (physical vapor deposition method) to form a p-type polycrystalline silicon layer on the ITO layer, i.e., forming a second p-type region 9, with a thickness of 3 ⁇ m and a preparation area of 49.99 ⁇ 100 cm 2 ; use the CVD method (chemical vapor deposition method) to form an n-type silicon material layer on the p-type polycrystalline silicon layer, i.e., forming a silicon material layer 8, with a thickness of 1 ⁇ m and a preparation area of 49.99 ⁇ 100 cm 2 ; use the sputtering method to form an ITO layer on the silicon material layer, i.e., forming a second n-type region 7, with a thickness of 100 nm and a preparation area of 49.99 ⁇
  • a CuAlO 2 layer is formed on the surface of the photoactive layer 2 by spraying, that is, the first p-type region 3 is formed, with a thickness of 100nm and a preparation area of 49.99 ⁇ 100cm 2.
  • a thermal evaporation method is used to cover the non-prepared area on the surface of the first p-type region 3 and the first n-type region 4 with a baffle to prepare an electrode Au, that is, an electrode 5, with a thickness of 100nm.
  • This embodiment provides a coating structure on a substrate as shown in FIG6 , and the preparation method is as follows:
  • An ITO conductive glass with an area of 400 ⁇ 100 cm 2 was cleaned, and a 1 ⁇ m thick MgF 2 layer, namely, the anti-reflection layer 1, was prepared on the ITO conductive glass by thermal evaporation.
  • the first n-type layer is deposited using a mask. Except for the first n-type layer deposited in the preparation area, the rest is shielded with a metal plate. Then, a BaSnO 3 layer is prepared on the surface of the photoactive layer 2 using a slit coating method, that is, a first n-type region 4 is formed, with a thickness of 70nm and a preparation area of 49.99 ⁇ 100cm 2. The IZO layer is further prepared on the first n-type region using an evaporation method to obtain an intermediate layer 6 with a thickness of 50nm and a preparation area of 49.99 ⁇ 100cm 2.
  • a p-type polysilicon layer is prepared on the IZO layer using a PVD method (physical vapor deposition method) to form a second p-type region 9 with a thickness of 2 ⁇ m and a preparation area of 49.99 ⁇ 100 cm 2
  • an n-type polysilicon material is prepared on the p-type single crystal silicon layer using CVD (chemical vapor deposition) method, that is, a silicon material layer 8 is formed to obtain a second n-type region 7 with a thickness of 1.5 ⁇ m and a preparation area of 49.99 ⁇ 100 cm 2 .
  • a PTAA layer is prepared on the surface of the photoactive layer 2 by evaporation, that is, a first p-type region 3 is formed, with a thickness of 175nm and a preparation area of 49.99 ⁇ 100cm 2.
  • a printing method is used to shield the non-prepared area on the surface of the first p-type region 3 and the first n-type region 4 with a baffle, and an electrode Al, that is, an electrode 5, is prepared with a thickness of 1 ⁇ m.
  • This embodiment provides a coating structure on a substrate as shown in FIG7 .
  • ITO is continuously prepared on Spiro-TTB by evaporation, i.e., an intermediate layer 6, with a thickness of 40 nm and a preparation area of 49.99 ⁇ 100 cm 2 .
  • N-type amorphous silicon is prepared on ITO by PVD, i.e., a second n-type region 7 is formed, with a thickness of 1 ⁇ m and a preparation area of 49.99 ⁇ 100 cm 2 .
  • i-type polycrystalline silicon material is prepared on n-type amorphous silicon by PVD, i.e., a silicon material layer 8 is formed, with a thickness of 1 ⁇ m and a preparation area of 49.99 ⁇ 100 cm 2 .
  • p-type polycrystalline silicon is prepared on the i-type silicon material layer by PVD, i.e., a second p-type region 9 is formed, with a thickness of 500 nm and a preparation area of 49.99 ⁇ 100 cm 2 .
  • the rest is the same as in Embodiment 1.
  • This embodiment provides a coating structure on a substrate as shown in FIG8 .
  • TiO 2 , p-type single crystal silicon, silicon material layer, and n-type single crystal silicon on the n-type layer are removed, and TiSnO x is prepared on V 2 O 5 by printing method, i.e., intermediate layer 6, with a thickness of 150 nm and a preparation area of 49.9 ⁇ 100 cm 2 .
  • n-type polycrystalline silicon is prepared on the TiSnO x layer by PVD method, i.e., forming a second n-type region 7, with a thickness of 2.5 ⁇ m and a preparation area of 49.9 ⁇ 100 cm 2 .
  • n-type polycrystalline silicon is prepared on the n-type polycrystalline silicon by printing method, i.e., forming a silicon material layer 8, with a thickness of 1 ⁇ m and a preparation area of 49.9 ⁇ 100 cm 2 .
  • p-type amorphous silicon is prepared on the silicon material layer by CVD method, i.e., forming a second p-type region 9, with a thickness of 1.3 ⁇ m and a preparation area of 49.9 ⁇ 100 cm 2 .
  • the remaining conditions are the same as those in Example 5.
  • This comparative example provides a coating structure on a substrate as shown in FIG9 .
  • SnO 2 is sequentially prepared on a substrate 10, i.e., a FTO glass substrate, i.e., forming a first n-type layer 4.
  • a MAPbI 3 perovskite layer, i.e., a photoactive layer 2, a Spiro-TTB layer, i.e., forming a first p-type region 3, and a gold electrode, i.e., a metal electrode 5 are prepared.
  • the preparation method and thickness are the same as those in Example 1.
  • FIG9 As shown in FIG9 .
  • This comparative example provides a coating structure on a substrate as shown in FIG10 .
  • F4-TCNQ is sequentially prepared on a substrate 10, i.e., an ITO glass substrate, to form a first p-type region 3.
  • a Cs 0.2 FA 0.8 PbI 2.4 Br 0.6 perovskite layer, i.e., a photoactive layer 2 is prepared.
  • PCBM is prepared, i.e., to form a first n-type region 4, and a silver electrode, i.e., a metal electrode, is prepared.
  • Pole 5 The preparation method and thickness are the same as those in Example 2, as shown in FIG10 .
  • the current density is tested by testing the quantum efficiency of the solar cell under different wavelengths of light and integrating the results.
  • the comparative example is a currently commonly used perovskite battery structure. From the above results, it can be seen that the present application has a significant effect of improving the short-circuit current density of the device.
  • the present application illustrates the detailed structural features of the present application through the above-mentioned embodiments, but the present application is not limited to the above-mentioned detailed structural features, that is, it does not mean that the present application must rely on the above-mentioned detailed structural features to be implemented.
  • the technicians in the relevant technical field should understand that any improvement to the present application, the equivalent replacement of the components selected by the present application, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present application.
  • the technical features of the above-mentioned embodiments can be combined arbitrarily. In order to make the description concise, all possible combinations of the technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, they should be considered to be within the scope recorded in this specification.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种太阳电池,太阳电池的结构包括光活性层(2),光活性层(2)为钙钛矿光活性层,光活性层(2)底部设置有至少一个第一p型区域(3)和至少一个第一n型区域(4),每个第一n型区域(4)和任一个第一p型区域(3)间隔设置,每个第一p型区域(3)和每个第一n型区域(4)的下方分别独立地设置有电极(5)。

Description

一种太阳电池
相关申请
本申请要求2022年09月28日申请的,申请号为202222584432.4,名称为“一种太阳电池”,以及申请号为202211188919.9,名称为“一种太阳电池”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及光伏领域,涉及一种太阳电池,尤其涉及一种有机金属卤化物钙钛矿太阳电池的结构。
背景技术
有机金属卤化物钙钛矿太阳电池凭借低成本高效率的特点成为光伏领域的热点之一,该类电池器件的商业化进程也受到了广泛关注。钙钛矿太阳电池一般由基底,钙钛矿层,电子传输层,空穴传输层,外电极组成,电子和空穴传输层统称为电荷传输层。钙钛矿太阳电池板的工作原理为,钙钛矿层吸收光产生电子空穴对,电子空穴在钙钛矿层中迅速分离,并分别被电子传输层和空穴传输层抽取,接着输送至外电路。目前已研究的钙钛矿太阳电池结构中,钙钛矿层通常夹在电子传输层和空穴传输层中,而位于钙钛矿层两侧的电子传输层或空穴传输层会造成一定的寄生吸收,从而影响钙钛矿层的光响应。
在相关技术中,一种技术方案公开了一种钙钛矿太阳电池,其中硅基薄膜材料的钙钛矿太阳电池结构,包括:一导电玻璃:一n型电子传输层,其制作在导电玻璃上:一钙钛矿光敏层,其制作在n型电子传输层上:一p型空穴传输层,其制作在钙钛矿光敏层上:一金属对电极,其制作在p型空穴传输层上。公开的太阳能电池结构是传统的钙钛矿太阳能电池结构,p层和n层的设置为钙钛光敏层两端,钙钛矿层两侧的电子或空穴传输层会造成一定的寄生吸收,从而影响钙钛矿层的光响应。
另外一种技术方案公开了一种正交叉指全背接触钙钛矿太阳电池及其制备方法,该结构从下到上依次是:1)衬底:2)正电极:3)空穴传输层:4)绝缘隔离层:5)负电极:6)电子传输层:7)钙钛矿吸收层;8)钝化层:9)减反保护层。在钙钛矿吸收层上具有减反层,空穴传输层和电子传输层中被负电极隔开。空穴传输层与电子传输层由于被负电极所隔开,电极近距离接触,即使用绝缘隔离层所隔开,仍然存在短路的风险。
另外一种技术方案公开了一种平行叉指全背接触钙钛矿太阳电池结构。该结构从下到 上依次是:1)衬底;2)正电极;3)负电极:4)空穴传输层;5)电子传输层6)钙钛矿吸收层:7)钝化层;8)减反射保户层。在钙钛吸收层上具有减反层,采用了空穴传输层和电子传输层间隔设置的结构,但是从下到上的负电极到电子传输层都是镶嵌在钙钛吸收层内的,使得电池结构的使用只能是确定的结构,不能叠加或者拆分使用,具有局限性。
如何利用简单的制备方法,制备出高能量转换效率,充分提高光活性层的光吸收是钙钛矿太阳电池的结构研究的重要方向。
发明内容
根据本申请的各种实施例,提供一种太阳电池,太阳电池的结构包括光活性层。
光活性层为钙钛矿光活性层,光活性层底部设置有至少一个第一p型区域和至少一个第一n型区域,每个第一n型区域和任一个第一p型区域间隔设置,每个第一p型区域和每个第一n型区域的下方分别独立地设置有电极。
本申请的一种实现方式中,光活性层与每个第一n型区域接触形成异质结结构。
本申请的一种实现方式中,光活性层与每个第一p型区域接触形成异质结结构。
本申请的一种实现方式中,每个第一p型区域和每个第一n型区域均为长条形,沿垂直于长条形的延伸方向,至少一个第一p型区域和至少一个第一n型区域交替且间隔设置。
本申请的一种实现方式中,相邻两个第一p型区域之间设置有一个第一n型区域。
本申请的一种实现方式中,每个第一n型区域和任一个第一p型区域之间的最小间距为约大于0cm小于或等于1cm。
本申请的一种实现方式中,每个第一n型区域包括至少一个第一n型层。
每个第一n型层的材料包括n型单晶硅、n型多晶硅、n型非晶硅、TiO2、SnO2、ZnO、ZrO2、GZO、IZO、FTO、ITO、BaSnO3、TiSnOx、SnZnOx或富勒烯及衍生物中的任意一种或至少两种的组合,其中0<x≤4。
本申请的一种实现方式中,每个第一n型区域的厚度小于或等于约100μm。
本申请的一种实现方式中,每个第一p型区域包括至少一个第一p型层。
每个第一p型层的材料包括p型单晶硅、p型多晶硅、p型非晶硅、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、聚对苯二甲酸乙二醇酯、3-己基噻吩的聚合物、PEDOT:PSS、Spiro-TTB、F4-TCNQ、F6TCNNQ、TAPC、NiOx、CuSCN、CuAlO2或V2O5中的任意一种或至少两种的组合。
本申请的一种实现方式中,每个第一p型区域的厚度小于或等于约100μm。
本申请的一种实现方式中,每个第一n型区域与电极之间还设置有至少一个活性层。
每个活性层包括从上到下依次连接的中间层、第二p型区域、硅材料层和第二n型区域。
本申请的一种实现方式中,每个第一n型区域与电极之间还设置有至少一个活性层。
每个活性层包括从上到下依次连接的中间层、第二n型区域、硅材料层和第二p型区域。
本申请的一种实现方式中,每个第一p型区域与电极之间还设置有至少一个活性层;
每个该活性层包括从上到下依次连接的中间层、第二p型区域、硅材料层和第二n型区域。
本申请的一种实现方式中,每个第一p型区域与电极之间还设置有至少一个活性层;
每个活性层包括从上到下依次连接的中间层、第二n型区域、硅材料层和第二p型区域。
本申请的一种实现方式中,中间层的材料包括多晶硅、非晶硅、TiO2、SnO2、ZnO、ZrO2、GZO、IZO、FTO、ITO、BaSnO3、TiSnOx、SnZnOx或富勒烯及衍生物中的任意一种或至少两种的组合。
本申请的一种实现方式中,中间层的厚度小于或等于约100μm。
本申请的一种实现方式中,每个第二p型区域包括至少一个第二p型层。
每个第二p型层的材料包括p型单晶硅、p型多晶硅或p型非晶硅中任意一种或至少两种的组合。
第一方面的一种实现方式中,每个第二n型区域包括至少一个第二n型层。
每个第二n型层的材料包括n型单晶硅、n型多晶硅或n型非晶硅中任意一种或至少两种的组合。
本申请的一种实现方式中,每个第二n型层和每个第二p型层的厚度均小于或等于约100μm。
本申请的一种实现方式中,硅材料层包括n型多晶硅、i型多晶硅、p型多晶硅中的任意一种或至少两种的组合。
本申请的一种实现方式中,光活性层包括有机金属卤化物钙钛矿材料和/或无机金属卤化物钙钛矿材料。
本申请的一种实现方式中,有机金属卤化物钙钛矿材料和/或无机金属卤化物钙钛矿材料包括三维结构的ABX3,其中,A为一价阳离子,B为二价阳离子,X为一价阴离子。
A包括铯、铷、甲胺基或甲脒中的任意一种或至少两种的组合。
B包括铅、铜、锌、镓、锡或钙中的任意一种或至少两种的组合。
X包括碘、溴、氯、氟或硫氰根离子中的任意一种或至少两种的组合。
本申请的一种实现方式中,光活性层为无开口孔隙率的光活性层。
本申请的一种实现方式中,光活性层的厚度小于或等于约100μm。
本申请的一种实现方式中,光活性层的吸收带隙为约0.9eV~约3.0eV。
本申请的一种实现方式中,光活性层的上方设置减反层和基底。
本申请的一种实现方式中,基底包括FTO导电玻璃、ITO导电玻璃、PI柔性衬底或PEN柔性衬底中的任意一种。
本申请的一种实现方式中,减反射层的材料包括LiF、MgF2、Si3N4、SiO2或聚二甲基硅氧烷中的任意一种或至少两种的组合。
本申请的一种实现方式中,减反射层的厚度小于或等于约5mm。
本申请的一种实现方式中,电极的材料包括Au、Ag、Al、Cu、石墨烯或ITO中的任意一种或至少两种的组合。
本申请的一种实现方式中,电极的厚度小于或等于约10μm。
本申请的一个或多个实施例的细节在下面的附图和描述中提出,本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1是本申请实施例1~7中基底位置的示意图;
图2是本申请实施例1中的基底上的涂层结构示意图;
图3是本申请实施例2中的基底上的涂层结构示意图;
图4是本申请实施例3中的基底上的涂层结构示意图;
图5是本申请实施例4中的基底上的涂层结构示意图;
图6是本申请实施例5中的基底上的涂层结构示意图;
图7是本申请实施例6中的基底上的涂层结构示意图;
图8是本申请实施例7中的基底上的涂层结构示意图;
图9是本申请对比例1中的涂层结构示意图;
图10是本申请对比例2中的涂层结构示意图。
图中:1-减反射层;2-光活性层;3-第一p型区域;4-第一n型区域;5-电极;6-中间层;7-第二n型区域;8-硅材料层;9-第二p型区域;10-基底。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例性地”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
在本文中,除非另有说明,“一种或多种”表示一种或大于等于两种。
本文中,“例如”、“如”、“示例”、“举例”等用于描述目的,表示在前与在后的不同技术方案在涵盖内容上存在关联,但并不应理解为对前一技术方案的限定,也不能理解为对本文保护范围的限制。在本文中,如无其他说明,A(如B),表示B为A中的一种非限制性示例,可以理解A不限于为B。
本文中,“第一方面”、“第二方面”等中,术语“第一”、“第二”等仅用于描述目的,不能理解为指示或暗示相对重要性或数量,也不能理解为隐含指明所指示的技术特征的重要性或数量。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可 以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本文中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。
在本文中,“至少一种”的含义是一种以上,如一种,两种及两种以上。“多种”或“几种”的含义是至少两种,例如两种,三种等,除非另有明确具体的限定。
本文中,涉及到数值区间(也即数值范围),如无特别说明,该数值区间内可选的数值的分布视为连续,且包括该数值区间的两个数值端点(即最小值及最大值),以及这两个数值端点之间的每一个数值。如无特别说明,当数值区间仅仅指向该数值区间内的整数时,包括该数值范围的两个端点整数,以及两个端点之间的每一个整数,相当于直接列举了每一个整数。当提供多个数值范围描述特征或特性时,可以合并这些数值范围。换言之,除非另有指明,否则本文中所公开之数值范围应理解为包括其中所归入的任何及所有的子范围。该数值区间中的“数值”可以为任意的定量值,比如数字、百分比、比例等。“数值区间”允许广义地包括百分比区间,比例区间,比值区间等数值区间类型。
鉴于相关技术中存在的问题,本申请提供了一种将常规钙钛矿太阳电池结构中的电荷传输层放置在钙钛矿层的同一侧,在钙钛矿层另外一侧可选择性地沉积减反膜构成太阳电池结构,能更充分的提升光活性层的光吸收,从而提高器件的短路电流密度,进而提高能量转换效率。
下面将对本申请提供的太阳电池进行详细地示例性地描述。
本申请的一些实施例提供一种太阳电池,如图2~图8所示,该太阳电池的结构包括光活性层2。该光活性层2为钙钛矿光活性层。
该光活性层2底部设置有至少一个第一p型区域3和至少一个第一n型区域4,每个第一n型区域4和任一个第一p型区域3间隔设置,每个第一p型区域3和每个第一n型区域4的下方分别独立地设置有电极5。
本申请中,通过将常规钙钛矿太阳电池结构中的电荷传输层放置在钙钛矿层的同一侧,可以在钙钛矿层的另外一侧选择性地沉积减反膜,从而能更充分的提升光活性层2的光吸收,从而提高器件的短路电流密度,进而提高能量转换效率。
本申请中,上述第一p型区域3可以是空穴传输层,第一n型区域4可以是电子传输层,太阳能电池的工作原理如下:顶部的钙钛矿层吸光后,电子和空穴分别被底部的第一n型区域和第一n型区域抽取出薄膜,完成电子空穴对分离,并接着通过电极运输到外电路。
在一些实施例中,光活性层2与每个第一n型区域4接触形成异质结结构;在这些实施例中,光活性层2与每个第一n型区域4之间的连接是不同的两种材料,因而形成异质结结构。
在另一些实施例中,光活性层2与每个第一p型区域3接触形成异质结结构;在这些实施例中,光活性层2与每个第一p型区域3之间的连接是不同的两种材料,因而形成异质结结构。
在一些实施例中,如图2~图8所示,每个第一p型区域3和每个第一n型区域4均为长条形,沿垂直于长条形的延伸方向,至少一个第一p型区域3和至少一个第一n型区域4交替且间隔设置。
在一些实施例中,如图2~图8所示,相邻两个第一p型区域3之间设置有一个第一n型区域4。
在一些实施例中,每个第一n型区域4和任一个第一p型区域3之间的最小间距为约大于0cm小于或等于1cm。其中,该最小间距示例地可以是0.5μm、1μm、10μm、100μm、1mm、3mm、6mm、9mm或1cm等,但并不限于所列举的数值,该数值范围内其他未列举的数值也同样适用。
在一些实施例中,每个第一n型区域4包括至少一个第一n型层。
其中,每个第一n型层的材料包括n型单晶硅、n型多晶硅、n型非晶硅、TiO2、SnO2、ZnO、ZrO2、GZO、IZO、FTO、ITO、BaSnO3、TiSnOx、SnZnOx或富勒烯及衍生物中的任意一种或至少两种的组合。该组合典型但非限制性实例有:n型单晶硅和n型多晶硅的组合、n型非晶硅和TiO2的组合、SnO2和ZnO和ZrO2和GZO的组合、IZO和FTO和ITO的组合或BaSnO3和TiSnOx和SnZnOx和富勒烯及衍生物的组合等。其中,0<x≤4。x的值示例地可以是1、2、3或4等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,每个第一n型区域4的厚度小于或等于(表示成≤)约100μm。该厚度示例地可以是50nm、100nm、500nm、1μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,每个第一p型区域3包括至少一个第一p型层。
其中,每个第一p型层的材料包括p型单晶硅、p型多晶硅、p型非晶硅、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、聚对苯二甲酸乙二醇酯、3-己基噻吩的聚合物、PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate),聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐)、Spiro-TTB(2,2',7,7'-tetra(N,N-di-tolyl)aMino-spiro-bifluor,2,2',7,7'-四(二-对甲苯基氨基)螺-9,9'-二芴)、F4-TCNQ(2,3,5,6-四氟-7,7',8,8'-四氰二甲基对苯醌)、F6TCNNQ(2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile,2,2'-(全氟萘-2,6-二亚基)二丙二腈)、TAPC(4,4'-cyclohexylidenebis[N,N-bis(p-tolyl)aniline],4,4'-环己基二[N,N-二(4-甲基苯基)苯胺])、NiOx、CuSCN、CuAlO2或V2O5中的任意一种或至少两种的组合,其中,x为1~2,示例地,x可以为1或2。该组合典型但非限制性实例有:p型单晶硅和p型多晶硅的组合、p型非晶硅和2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴的组合、聚对苯二甲酸乙二醇酯和3-己基噻吩的聚合物和PEDOT:PSS和Spiro-TTB的组合或CuAlO2和V2O5的组合等。
在一些实施例中,每个第一p型区域3的厚度小于或等于(表示成≤)约100μm。该厚度示例地可以是50nm、100nm、500nm、1μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,如图5和图6所示,每个第一n型区域4与电极5之间还设置有至少一个活性层。每个该活性层包括从上到下依次连接的中间层6、第二p型区域9、硅材料层8和第二n型区域7。
在另一些实施例中,每个第一n型区域4与电极5之间还设置有至少一个活性层。每个该活性层包括从上到下依次连接的中间层6、第二n型区域7、硅材料层8和第二p型区域9。
在另一些实施例中,每个第一p型区域3与电极5之间还设置有至少一个活性层。每个该活性层包括从上到下依次连接的中间层6、第二p型区域9、硅材料层8和第二n型区域7。
在又一些实施例中,如图7和图8所示,每个第一p型区域3与电极5之间还设置有至少一个活性层。每个该活性层包括从上到下依次连接的中间层6、第二n型区域7、硅材料层8和第二p型区域9。
本申请中,设置活性层起到了完成光电转换的作用,可以起到单独吸收某一波段的光谱的作用,或起到其他材料如硅材料层和钙钛矿光活性层结合起来起到分配光谱的作用, 达到吸收不同波段的光,提升电池效率的目的。
本申请中,活性层中设置的中间层具有良好的光透过性和电传输性能,可以起到连接上下电池结构的作用。第二p型区域起到抽取和传导空穴的作用,第二n型区域起到抽取和传导电子的作用,硅材料层起到吸收长波段光从而提升效率的作用。
在一些实施例中,中间层6的材料包括多晶硅、非晶硅、TiO2、SnO2、ZnO、ZrO2、GZO(Gallium Zinc Oxide,镓掺杂氧化锌)、IZO(Indium-Zinc-Oxide,氧化铟锌)、FTO(F-doped Tin Oxide,氟掺杂氧化锡)、ITO(Indium Tin Oxides,氧化铟锡)、BaSnO3、TiSnOx、SnZnOx或富勒烯及衍生物中的任意一种或至少两种的组合,该组合典型但非限制性实例有:多晶硅和非晶硅的组合、TiO2和SnO2和ZnO的组合、ZrO2和GZO和IZO的组合、FTO和ITO的组合或BaSnO3和TiSnOx和SnZnOx和富勒烯及衍生物的组合等。
在一些实施例中,中间层6的厚度小于或等于(≤)约100μm,该厚度示例地可以是10nm、30nm、50nm、1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,每个第二p型区域9包括至少一个第二p型层。
每个该第二p型层的材料包括p型单晶硅、p型多晶硅或p型非晶硅中任意一种或至少两种的组合,该组合典型但非限制性实例有:p型单晶硅和p型多晶硅的组合、p型多晶硅和p型非晶硅的组合或p型单晶硅和p型非晶硅的组合等。
在一些实施例中,每个第二n型区域7包括至少一个第二n型层。
每个该第二n型层的材料包括n型单晶硅、n型多晶硅或n型非晶硅中任意一种或至少两种的组合,该组合典型但非限制性实例有:n型单晶硅和n型多晶硅的组合、n型多晶硅和n型非晶硅的组合或n型单晶硅和n型非晶硅的组合等。
在一些实施例中,每个第二n型层7和每个第二p型层9的厚度均小于或等于(表示成≤)约100μm,该厚度可以是10nm、30nm、50nm、100nm、500nm、1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,硅材料层8包括n型多晶硅、i型多晶硅、p型多晶硅中的任意一种或至少两种的组合,该组合典型但非限制性实例有:n型多晶硅和i型多晶硅的组合、i晶硅和p型多晶硅的组合、n型多晶硅和p型多晶硅的组合等。
在一些实施例中,光活性层2包括有机金属卤化物钙钛矿材料和/或无机金属卤化物钙钛矿材料。
在一些实施例中,有机金属卤化物钙钛矿材料和/或无机金属卤化物钙钛矿材料包括三维结构的ABX3,其中,A为一价阳离子,B为二价阳离子,X为一价阴离子。
其中,A包括铯、铷、甲胺基或甲脒中的任意一种或至少两种的组合,该组合典型但非限制性实例有:铯和铷的组合、铷和甲胺基的组合、甲胺基和甲脒的组合或铷、甲胺基和甲脒的组合等。B包括铅、铜、锌、镓、锡或钙中的任意一种或至少两种的组合,该组合典型但非限制性实例有:铅和铜的组合、铜和锌的组合、镓和锡的组合或锡和钙的组合等。X包括碘、溴、氯、氟或硫氰根离子中的任意一种或至少两种的组合,该组合典型但非限制性实例有:碘和溴的组合、溴和氯的组合或氯和氟和硫氰根离子的组合等。
在一些实施例中,光活性层2为无开口孔隙率的光活性层。开口孔隙率是指材料中能被水饱和(即被水所充满)的孔隙体积占材料在自然状态下的体积的百分率。在此,特用该无开口孔隙率来表示该光活性层2不具有被流体(包括水和气体)贯通的孔隙。
在一些实施例中,光活性层2的厚度小于或等于(表示成≤)约100μm,该厚度示例地可以是0.3μm、0.5μm、1μm、5μm、10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,光活性层2的吸收带隙为约0.9eV~约3.0eV。该带隙示例地可以是0.9eV、1.2eV、1.4eV、1.5eV、1.8eV、2.1eV、2.4eV、2.7eV或3.0eV等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,结合图1、图2和图3所示,光活性层2的上方设置减反射层1和基底10。
在一些实施例中,基底10包括FTO导电玻璃、ITO导电玻璃、PI柔性衬底或PEN柔性衬底中的任意一种。
在一些实施例中,减反射层1的材料包括LiF、MgF2、Si3N4、SiO2或聚二甲基硅氧烷中的任意一种或至少两种的组合,该组合典型但非限制性实例有:LiF和MgF2的组合、MgF2和Si3N4的组合、Si3N4和SiO2的组合或SiO2和聚二甲基硅氧烷的组合等。
在一些实施例中,减反射层1的厚度小于或等于(表示成≤)约5mm,该厚度示例地可以是1μm、5μm、10μm、1mm、2mm、3mm、4mm或5mm等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在一些实施例中,电极5的材料包括Au、Ag、Al、Cu、石墨烯或ITO中的任意一种或至少两种的组合,该组合典型但非限制性实例有:Au和Ag的组合、Al和Cu的组合或石墨烯和ITO的组合等。
在一些实施例中,电极5的厚度小于或等于(表示成≤)约10μm,该厚度示例地可以是50nm、100nm、500nm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm等,但并不限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,上述所有的结构层的制备方法包括旋涂、刮涂、蒸镀、印刷、喷涂、喷雾热解、狭缝涂布、机械粘贴、化学气相法或物理气相法中的任意一种或至少两种的组合,该组合典型但非限制性实例有:旋涂和刮涂的组合、蒸镀和印刷的组合、喷涂和喷雾热解的组合或狭缝涂布和机械粘贴的组合等。这些操作为本领域常规操作,在此不做特殊限定。
与相关技术相比,本申请至少具有以下有益效果之一:
(1)本申请将常规钙钛矿太阳电池结构中的电荷传输层放置在钙钛矿层的同一侧,并在钙钛矿层的另外一侧选择性的沉积减反膜,从而能更充分的提升光活性层的光吸收,从而提高器件的短路电流密度,进而提高能量转换效率;
(2)适合叠层使用;
(3)制备简单。
为了对本申请的效果进行客观评价,以下将通过实施例和对比例对本申请进行详细地示例性地描述,如下描述并不对本申请的保护范围造成限制。
实施例1
先取FTO玻璃衬底10,置于太阳电池最上层(基底位置如图1所示)。
本实施例提供一种如图2所示的在基底上的涂层结构,制备方法如下:
将100×100cm2面积的FTO导电玻璃洗净,使用热蒸发法在FTO导电玻璃上制备1μm厚度的MgF2层,即减反射层1。
使用涂布机将MAPbI3前驱体溶液滴涂在基底边缘,涂布机以每秒1cm的速度将溶液涂满基底,将涂覆MAPbI3前驱体溶液的基底转移至加热台,100摄氏度加热30分钟,形成厚度为500nm的钙钛矿薄膜,即光活性层2。
使用掩膜版沉积第一n型层,除制备区域沉积第一n型层外,其余部分使用金属板遮挡,接着使用化学气相法在光活性层2表面沉积面积为49.99×100cm2、厚度为50nm的SnO2层,即形成第一n型区域4。
沉积完成后,除制备第一p型层的区域外,其余部分使用金属板遮挡,使用热蒸发法在光活性层2表面制备厚度为150nm,制备面积为49.99×100cm2的Spiro-TTB层,即形成第一p型区域3。第一p型区域和第一n型区域不接触,间隔为1μm。最后使用热蒸发法在第一p型区域3以及第一n型区域4表面制备电极Au,将非制备区域用挡板遮挡,制备电极5,厚度为60nm。
实施例2
先取基底10,基底需置于太阳电池最上层(基底位置如图1所示)。
本实施例提供一种如图3所示的在基底上的涂层结构,制备方法如下:
将200×100cm2面积的ITO导电玻璃洗净,使用蒸镀法在ITO导电玻璃上制备2mm厚度的Si3N4层,即减反射层1。
将Cs0.2FA0.8PbI2.4Br0.6,前驱体溶液均匀的刮涂在ITO导电玻璃上,将涂覆Cs0.2FA0.8PbI2.4Br0.6前驱体溶液的基底转移至加热台,100摄氏度加热30分钟,形成厚度为1μm的钙钛矿薄膜,即光吸收层2。
使用掩膜版沉积第一n型层,除制备区域沉积第一n型层外,其余部分使用金属板遮挡。接着使用狭缝涂布法在光活性层2表面制备PCBM,即形成第一n型区域4,厚度为100nm,制备面积为24.99×100cm2
沉积完成后,除制备第一p型层的区域外,其余部分使用金属板遮挡,使用蒸发法制备在光活性层2表面制备F4-TCNQ层,即形成第一p型区域3,厚度为100nm,制备面积为24.99×100cm2。第一n型区域和第一p型区域不接触,间隔为1μm。最后使用喷涂法在第一p型区域3以及第一n型区域4表面将非制备区域用挡板遮挡住,制备电极Ag,即电极5,厚度为80nm。
实施例3
先取基底10,基底需置于太阳电池最上层(基底位置如图1所示)。
本实施例提供一种如图4所示的在基底上的涂层结构,制备方法如下:
将300×100cm2面积的PI柔性衬底洗净,使用喷雾热解法在PI柔性衬底上制备1mm厚度的LiF层,即减反射层1。
将CH3NH3PbBr3前驱体溶液均匀的刮涂在PI柔性衬底上。将涂覆CH3NH3PbBr3前驱体溶液的基底转移至加热台,100摄氏度加热30分钟,形成厚度为400nm的钙钛矿薄膜,即光活性层2。
使用掩膜版沉积第一n型层,除制备区域沉积第一n型层外,其余部分使用金属板遮挡,接着使用蒸镀法在光活性层2表面制备IZO,即形成第一n型区域4,厚度为100nm,制备面积为16×100cm2
沉积完成后,除制备第一p型层的区域外,其余部分使用金属板遮挡,使用印刷法制备在光活性层2表面制备CuAlO2,即形成第一p型区域3,厚度为150nm,制备面积为16×100cm2。第一p型区域和第一n型区域不接触,间隔为1μm。最后使用热蒸发法在第一p型区域3以及第一n型区域4表面将非制备区域用挡板遮挡住,制备电极Al,即电极 5,厚度为1μm。
实施例4
先取FTO基底10,基底需置于太阳电池最上层(基底位置如图1所示)。
本实施例提供一种如图5所示的在基底上的涂层结构,制备方法如下:
将200×100cm2面积的FTO衬底洗净,使用狭缝涂布法在FTO衬底上制备400nm厚度的SiO2层,即减反射层1。
使用热蒸发法在FTO衬底上制备500nm的FA0.8MA0.2PbI3钙钛矿薄膜,即光活性层2。
使用掩膜版沉积第一n型层,除制备区域沉积第一n型层外,其余部分使用金属板遮挡。接着使用涂布法在光活性层2表面制备SnO2层,即形成第一n型区域4,厚度为100nm,制备面积为49.99×100cm2
继续在第一n型层上使用溅射法制备ITO层,即中间层6,厚度为40nm,制备面积为49.99×100cm2,在ITO层上使用PVD法(物理气相法)制备p型多晶硅层,即形成第二p型区域9,厚度为3μm,制备面积为49.99×100cm2,在p型多晶硅层上使用CVD法(化学气相法)制备n型硅材料层,即形成硅材料层8,厚度为1μm,制备面积为49.99×100cm2,在硅材料层上使用溅射法制备ITO层,即形成第二n型区域7,厚度为100nm,制备面积为49.99×100cm2
沉积完成后,在光活性层2表面使用喷涂法制CuAlO2层,即形成第一p型区域3,厚度为100nm,制备面积为49.99×100cm2。最后使用热蒸发法在第一p型区域3以及第一n型区域4表面将非制备区域用挡板遮挡,制备电极Au,即电极5,厚度为100nm。。
实施例5
先取基底10,基底需置于太阳电池最上层(基底位置如图1所示)。
本实施例提供一种如图6所示的在基底上的涂层结构,制备方法如下:
将400×100cm2面积的ITO导电玻璃洗净,使用热蒸发在ITO导电玻璃上制备1μm厚度的MgF2层,即减反射层1。
使用热蒸发法在ITO导电玻璃上制备600nm MAPbI3,即光活性层2。
使用掩膜版沉积第一n型层,除制备区域沉积第一n型层外,其余部分使用金属板遮挡。接着使用狭缝涂布法在光活性层2表面制备BaSnO3层,即形成第一n型区域4,厚度为70nm,制备面积为49.99×100cm2,继续在第一n型区域上使用蒸镀法制备IZO层,得到中间层6,厚度为50nm,制备面积为49.99×100cm2,在IZO层上使用PVD法(物理气相法)制备p型多晶硅层,即形成第二p型区域9,厚度为2μm,制备面积为49.99×100 cm2,在p型单晶硅层上使用CVD法(化学气相法)制备n型多晶硅材料,即形成硅材料层8,得到第二n型区域7,厚度为1.5μm,制备面积为49.99×100cm2
沉积完成后,除制备第一p型层的区域外,其余部分使用金属板遮挡,使用蒸发法在光活性层2表面制备PTAA层,即形成第一p型区域3,厚度为175nm,制备面积同样为49.99×100cm2。最后使用印刷法在第一p型区域3以及第一n型区域4表面将非制备区域用挡板遮挡住,制备电极Al,即电极5,厚度为1μm。
实施例6
本实施例提供一种如图7所示的在基底上的涂层结构,在本实施例中,继续在Spiro-TTB上使用蒸镀法制备ITO,即中间层6,厚度为40nm,制备面积为49.99×100cm2。在ITO上使用PVD法制备n型非晶硅,即形成第二n型区域7,厚度为1μm,制备面积为49.99×100cm2。在n型非晶硅上使用PVD法制备i型多晶硅材料,即形成硅材料层8,厚度为1μm,制备面积为49.99×100cm2。在i型硅材料层上使用PVD法制备p型多晶硅,即形成第二p型区域9,厚度为500nm,制备面积为49.99×100cm2,其余均与实施例1相同。
实施例7
本实施例提供一种如图8所示的在基底上的涂层结构,在本实施例中,将n型层上的TiO2、p型单晶硅、硅材料层、n型单晶硅去掉,在V2O5上使用印刷法制备TiSnOx,即中间层6,厚度为150nm,制备面积为49.9×100cm2。在TiSnOx层上使用PVD法制备n型多晶硅,即形成第二n型区域7,厚度为2.5μm,制备面积为49.9×100cm2。在n型多晶硅上使用印刷法制备n型多晶硅,即形成硅材料层8,厚度为1μm,制备面积为49.9×100cm2。在硅材料层上使用CVD法制备p型非晶硅,即形成第二p型区域9,厚度为1.3μm,制备面积为49.9×100cm2。其余条件均与实施例5相同。
对比例1
本对比例提供一种如图9所示的在基底上的涂层结构,在本对比例中,依次在基底10,也即FTO玻璃衬底上制备SnO2,即形成第一n型层4。制备MAPbI3钙钛矿层,即光活性层2,制备Spiro-TTB层,即形成第一p型区域3,和制备金电极即金属电极5,制备方法和厚度与实施例1相同。如图9所示。
对比例2
本对比例提供一种如图10所示的在基底上的涂层结构,在本对比例中,依次在基底10,也即ITO玻璃衬底上制备F4-TCNQ,即形成第一p型区域3。制备Cs0.2FA0.8PbI2.4Br0.6钙钛矿层,即光活性层2。制备PCBM,即形成第一n型区域4,和制备银电极,即金属电 极5。制备方法和厚度与实施例2相同,如图10所示。
将实施例1~7和对比例1~2提供的太阳电池的电流密度和能量转换效率进行测试,其结果如表1所示。
其中,电流密度的测试方法为通过测试太阳电池在不同波长光下的量子效率并积分获得。
表1
对比例为目前常用的钙钛矿电池结构,通过上述结果可以看出本申请具有明显的提升器件短路电流密度的作用。
申请人声明,本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (31)

  1. 一种太阳电池,其中,所述太阳电池的结构包括光活性层;
    所述光活性层为钙钛矿光活性层;
    所述光活性层底部设置有至少一个第一p型区域和至少一个第一n型区域,每个所述第一n型区域和任一个所述第一p型区域间隔设置,每个所述第一p型区域和每个所述第一n型区域的下方分别独立地设置有电极。
  2. 根据权利要求1所述的太阳电池,其中,所述光活性层与每个所述第一n型区域接触形成异质结结构。
  3. 根据权利要求1所述的太阳电池,其中,所述光活性层与每个所述第一p型区域接触形成异质结结构。
  4. 根据权利要求1~3所述的太阳电池,其中,每个所述第一p型区域和每个所述第一n型区域均为长条形,沿垂直于所述长条形的延伸方向,所述至少一个第一p型区域和所述至少一个第一n型区域交替且间隔设置。
  5. 根据权利要求4所述的太阳电池,其中,相邻两个所述第一p型区域之间设置有一个所述第一n型区域。
  6. 根据权利要求1~5任一项所述的太阳电池,其中,
    每个所述第一n型区域和任一个所述第一p型区域之间的最小间距为约大于0cm小于或等于1cm。
  7. 根据权利要求1~6任一项所述的太阳电池,其中,每个所述第一n型区域包括至少一个第一n型层;
    每个所述第一n型层的材料包括n型单晶硅、n型多晶硅、n型非晶硅、TiO2、SnO2、ZnO、ZrO2、GZO、IZO、FTO、ITO、BaSnO3、TiSnOx、SnZnOx或富勒烯及衍生物中的任意一种或至少两种的组合,其中,0<x≤4。
  8. 根据权利要求1~7任一项所述的太阳电池,其中,每个所述第一n型区域的厚度小于或等于约100μm。
  9. 根据权利要求1~8任一项所述的太阳电池,其中,每个所述第一p型区域包括至少一个第一p型层;
    每个所述第一p型层的材料包括p型单晶硅、p型多晶硅、p型非晶硅、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、聚对苯二甲酸乙二醇酯、3-己基噻吩的聚合物、PEDOT:PSS、Spiro-TTB、F4-TCNQ、F6TCNNQ、TAPC、NiOx、CuSCN、CuAlO2或V2O5 中的任意一种或至少两种的组合。
  10. 根据权利要求1~9任一项所述的太阳电池,其中,每个所述第一p型区域的厚度小于或等于约100μm。
  11. 根据权利要求1~10任一项所述的太阳电池,其中,每个所述第一n型区域与电极之间还设置有至少一个活性层;
    每个该活性层包括从上到下依次连接的中间层、第二p型区域、硅材料层和第二n型区域。
  12. 根据权利要求1~10任一项所述的太阳电池,其中,每个所述第一n型区域与电极之间还设置有至少一个活性层;
    每个该活性层包括从上到下依次连接的中间层、第二n型区域、硅材料层和第二p型区域。
  13. 根据权利要求1~10任一项所述的太阳电池,其中,每个所述第一p型区域与电极之间还设置有至少一个活性层;
    每个该活性层包括从上到下依次连接的中间层、第二p型区域、硅材料层和第二n型区域。
  14. 根据权利要求1~10任一项所述的太阳电池,其中,每个所述第一p型区域与电极之间还设置有至少一个活性层;
    每个该活性层包括从上到下依次连接的中间层、第二n型区域、硅材料层和第二p型区域。
  15. 根据权利要求11~14任一项所述的太阳电池,其中,所述中间层的材料包括多晶硅、非晶硅、TiO2、SnO2、ZnO、ZrO2、GZO、IZO、FTO、ITO、BaSnO3、TiSnOx、SnZnOx或富勒烯及衍生物中的任意一种或至少两种的组合。
  16. 根据权利要求11~15任一项所述的太阳电池,其中,所述中间层的厚度小于或等于约100μm。
  17. 根据权利要求11~16任一项所述的太阳电池,其中,每个所述第二p型区域包括至少一个第二p型层;
    每个所述第二p型层的材料包括p型单晶硅、p型多晶硅或p型非晶硅中任意一种或至少两种的组合。
  18. 根据权利要求11~17任一项所述的太阳电池,其中,每个所述第二n型区域包括至少一个第二n型层;
    每个所述第二n型层的材料包括n型单晶硅、n型多晶硅或n型非晶硅中任意一种或 至少两种的组合。
  19. 根据权利要求18所述的太阳电池,其中,每个所述第二n型层和每个所述第二p型层的厚度均小于或等于约100μm。
  20. 根据权利要求11~19任一项所述的太阳电池,其中,所述硅材料层包括n型多晶硅、i型多晶硅、p型多晶硅中的任意一种或至少两种的组合。
  21. 根据权利要求1~20任一项所述的太阳电池,其中,所述光活性层包括有机金属卤化物钙钛矿材料和/或无机金属卤化物钙钛矿材料。
  22. 根据权利要求21所述的太阳电池,其中,所述有机金属卤化物钙钛矿材料和/或无机金属卤化物钙钛矿材料包括三维结构的ABX3,其中,A为一价阳离子,B为二价阳离子,X为一价阴离子;
    所述A包括铯、铷、甲胺基或甲脒中的任意一种或至少两种的组合;
    所述B包括铅、铜、锌、镓、锡或钙中的任意一种或至少两种的组合;
    所述X包括碘、溴、氯、氟或硫氰根离子中的任意一种或至少两种的组合。
  23. 根据权利要求1~22任一项所述的太阳电池,其中,所述光活性层为无开口孔隙率的光活性层。
  24. 根据权利要求1~23任一项所述的太阳电池,其中,所述光活性层的厚度小于或等于约100μm。
  25. 根据权利要求1~24任一项所述的太阳电池,其中,所述光活性层的吸收带隙为约0.9eV~约3.0eV。
  26. 根据权利要求1~25任一项所述的太阳电池,其中,所述光活性层的上方设置减反射层和基底。
  27. 根据权利要求26所述的太阳电池,其中,所述基底包括FTO导电玻璃、ITO导电玻璃、PI柔性衬底或PEN柔性衬底中的任意一种。
  28. 根据权利要求26或27所述的太阳电池,其中,所述减反射层的材料包括LiF、MgF2、Si3N4、SiO2或聚二甲基硅氧烷中的任意一种或至少两种的组合。
  29. 根据权利要求26~28任一项所述的太阳电池,其中,所述减反射层的厚度小于或等于约5mm。
  30. 根据权利要求1~29任一项所述的太阳电池,其中,所述电极的材料包括Au、Ag、Al、Cu、石墨烯或ITO中的任意一种或至少两种的组合。
  31. 根据权利要求1~30任一项所述的太阳电池,其中,所述电极的厚度小于或等于约10μm。
PCT/CN2023/121039 2022-09-28 2023-09-25 一种太阳电池 WO2024067466A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211188919.9A CN116033764A (zh) 2022-09-28 2022-09-28 一种太阳电池
CN202222584432.4 2022-09-28
CN202211188919.9 2022-09-28
CN202222584432.4U CN218456634U (zh) 2022-09-28 2022-09-28 一种太阳电池

Publications (1)

Publication Number Publication Date
WO2024067466A1 true WO2024067466A1 (zh) 2024-04-04

Family

ID=90476293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121039 WO2024067466A1 (zh) 2022-09-28 2023-09-25 一种太阳电池

Country Status (1)

Country Link
WO (1) WO2024067466A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150380667A1 (en) * 2014-06-30 2015-12-31 Sharp Laboratories Of America, Inc. Back Contact Perovskite Solar Cell
JP2019036652A (ja) * 2017-08-17 2019-03-07 株式会社カネカ バックコンタクト型太陽電池の製造方法
CN110061136A (zh) * 2019-03-26 2019-07-26 西南石油大学 一种背接触式钙钛矿太阳电池及其制备方法
CN112164729A (zh) * 2020-10-29 2021-01-01 深圳黑晶光电技术有限公司 光转化效率高的两端钙钛矿异质结晶硅叠层太阳能电池及其制备方法
CN113380950A (zh) * 2021-05-12 2021-09-10 郑州轻工业大学 一种背接触钙钛矿太阳能电池及其制备方法
CN116033764A (zh) * 2022-09-28 2023-04-28 天合光能股份有限公司 一种太阳电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150380667A1 (en) * 2014-06-30 2015-12-31 Sharp Laboratories Of America, Inc. Back Contact Perovskite Solar Cell
JP2019036652A (ja) * 2017-08-17 2019-03-07 株式会社カネカ バックコンタクト型太陽電池の製造方法
CN110061136A (zh) * 2019-03-26 2019-07-26 西南石油大学 一种背接触式钙钛矿太阳电池及其制备方法
CN112164729A (zh) * 2020-10-29 2021-01-01 深圳黑晶光电技术有限公司 光转化效率高的两端钙钛矿异质结晶硅叠层太阳能电池及其制备方法
CN113380950A (zh) * 2021-05-12 2021-09-10 郑州轻工业大学 一种背接触钙钛矿太阳能电池及其制备方法
CN116033764A (zh) * 2022-09-28 2023-04-28 天合光能股份有限公司 一种太阳电池

Similar Documents

Publication Publication Date Title
US10573770B2 (en) Solar cell and method of manufacturing the same
CN107924933B (zh) 多结光伏装置
JP6650462B2 (ja) 多接合型光電変換装置および光電変換モジュール
CN110600614B (zh) 一种钙钛矿/钙钛矿两端叠层太阳能电池的隧穿结结构
CN111081878A (zh) 一种钙钛矿/硅基异质结叠层太阳能电池及其制备方法
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
CN111244278A (zh) 非掺杂晶硅异质结钙钛矿叠层太阳电池结构及制备方法
CN112736200B (zh) 一种叠层电池及其制备方法和应用
CN111293222A (zh) 正交叉指全背接触钙钛矿太阳电池及其制备方法
CN111312901A (zh) 叠拼叉指全背接触钙钛矿太阳电池及其制备方法
CN112103392A (zh) 一种复合空穴传输层及包含其的钙钛矿太阳能电池
CN114695671A (zh) 钙钛矿太阳能电池及其制备方法、光伏系统
CN110890464A (zh) 太阳能电池及其制备方法
CN114824094A (zh) 一种钙钛矿/晶体硅叠层太阳电池的电荷传输层结构及钙钛矿/晶体硅叠层太阳电池
CN209087911U (zh) 一种钙钛矿/晶硅叠层太阳能电池
GB2566293A (en) Multi-junction photovoltaic device
WO2024067466A1 (zh) 一种太阳电池
CN116033764A (zh) 一种太阳电池
CN115172602B (zh) 一种掺杂金属氧化物复合层结构
WO2023098038A1 (zh) 一种钙钛矿太阳能电池的柱状电极结构的制备方法
WO2016152857A1 (ja) 光電変換装置
CN116828873A (zh) 一种太阳能电池及其制造方法
KR20200036780A (ko) 태양 전지 및 이의 제조 방법
CN116259672A (zh) 一种太阳能电池
CN218456634U (zh) 一种太阳电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870697

Country of ref document: EP

Kind code of ref document: A1