WO2024067253A1 - 光学镜头 - Google Patents
光学镜头 Download PDFInfo
- Publication number
- WO2024067253A1 WO2024067253A1 PCT/CN2023/119747 CN2023119747W WO2024067253A1 WO 2024067253 A1 WO2024067253 A1 WO 2024067253A1 CN 2023119747 W CN2023119747 W CN 2023119747W WO 2024067253 A1 WO2024067253 A1 WO 2024067253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- optical
- optical lens
- focal length
- satisfy
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 237
- 238000003384 imaging method Methods 0.000 claims abstract description 39
- 210000001747 pupil Anatomy 0.000 claims description 3
- 230000004075 alteration Effects 0.000 description 44
- 238000010586 diagram Methods 0.000 description 30
- 238000005286 illumination Methods 0.000 description 18
- 230000009286 beneficial effect Effects 0.000 description 13
- 230000007704 transition Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 208000001644 thecoma Diseases 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B30/00—Camera modules comprising integrated lens units and imaging units, specially adapted for being embedded in other devices, e.g. mobile phones or vehicles
Definitions
- the present application relates to the technical field of imaging lenses, and in particular to an optical lens.
- Front cameras can enhance active safety and driver assistance functions, such as automatic emergency braking (AEB), adaptive cruise control (ACC), lane keeping assist system (LKAS) and traffic jam assist (TJA). While front cameras meet the advantages of high resolution, large field of view, good environmental adaptability, etc., they also have disadvantages such as a large number of lenses and a long total optical length, which is not conducive to the miniaturization of electronic systems.
- AEB automatic emergency braking
- ACC adaptive cruise control
- LKAS lane keeping assist system
- TJA traffic jam assist
- front cameras meet the advantages of high resolution, large field of view, good environmental adaptability, etc., they also have disadvantages such as a large number of lenses and a long total optical length, which is not conducive to the miniaturization of electronic systems.
- the purpose of the present application is to propose an optical lens having the advantages of a large field of view, a large aperture and miniaturization.
- An optical lens, with a total of seven lenses, along the optical axis from the object side to the imaging surface are:
- the first lens has negative optical power, and both the object side surface and the image side surface are concave;
- the second lens has positive refractive power, and its object side surface and image side surface are both convex;
- the third lens has positive power, its object side surface is concave and its image side surface is convex;
- a fourth lens element having positive refractive power and a convex image-side surface
- a fifth lens having negative optical power whose object side surface is concave and image side surface is convex;
- a sixth lens having optical power, wherein the object side surface is concave and the image side surface is convex;
- the seventh lens having an optical angle has a convex object side surface and a concave image side surface
- the total optical length TTL and the effective focal length f of the optical lens satisfy: TTL/f ⁇ 5.0.
- the total optical length TTL of the optical lens and the real image height IH corresponding to the maximum field angle satisfy: 2.5 ⁇ TTL/IH.
- the optical back focus BFL of the optical lens and the effective focal length f satisfy: 0.6 ⁇ BFL/f.
- the entrance pupil diameter EPD of the optical lens and the real image height IH corresponding to the maximum field angle satisfy: 2.5 ⁇ IH/EPD ⁇ 2.9.
- the maximum field of view FOV of the optical lens and the incident angle CRA of the principal ray of the maximum field of view on the image plane satisfy: 3.0 ⁇ (FOV/2)/CRA ⁇ 5.5.
- the effective focal length f of the optical lens and the combined focal length f12 of the first lens and the second lens satisfy: 0 ⁇ f12 /f ⁇ 5.0.
- the effective focal length f of the optical lens and the combined focal length f 35 of the third lens to the fifth lens satisfy: 0 ⁇ f 35 /f ⁇ 10.0.
- the effective focal length f of the optical lens and the focal length f6 of the sixth lens satisfy:
- the effective focal length f of the optical lens and the focal length f7 of the seventh lens satisfy:
- the total optical length TTL of the optical lens and the sum ⁇ CT of the center thicknesses of the first lens to the seventh lens along the optical axis respectively satisfy: 0.5 ⁇ CT/TTL ⁇ 0.7.
- the beneficial effect of the present application is that the optical lens of the present application achieves the advantages of large field of view, large aperture and miniaturization by reasonably matching the lens shape and optical focal length combination between each lens.
- FIG1 is a schematic diagram of the structure of an optical lens according to Example 1 of the present application.
- FIG2 is a field curvature curve diagram of the optical lens in Example 1 of the present application.
- FIG3 is a F-tan ⁇ distortion curve diagram of the optical lens in Example 1 of the present application.
- FIG4 is a relative illumination curve diagram of the optical lens in Example 1 of the present application.
- FIG5 is a MTF curve diagram of the optical lens in Example 1 of the present application.
- FIG6 is a graph showing an axial aberration of the optical lens in Example 1 of the present application.
- FIG. 7 is a vertical axis chromatic aberration curve diagram of the optical lens in Example 1 of the present application.
- FIG8 is a schematic structural diagram of an optical lens according to Example 2 of the present application.
- FIG9 is a field curvature curve diagram of the optical lens in Example 2 of the present application.
- FIG10 is a F-tan ⁇ distortion curve diagram of the optical lens in Example 2 of the present application.
- FIG11 is a relative illumination curve diagram of the optical lens in Example 2 of the present application.
- FIG12 is a MTF curve diagram of the optical lens in Example 2 of the present application.
- FIG13 is an axial aberration curve diagram of the optical lens in Example 2 of the present application.
- FIG14 is a vertical axis chromatic aberration curve diagram of the optical lens in Example 2 of the present application.
- FIG15 is a schematic diagram of the structure of an optical lens according to Example 3 of the present application.
- FIG16 is a field curvature curve diagram of the optical lens in Example 3 of the present application.
- FIG17 is a F-tan ⁇ distortion curve diagram of the optical lens in Example 3 of the present application.
- FIG18 is a relative illumination curve diagram of the optical lens in Example 3 of the present application.
- FIG19 is a MTF curve diagram of the optical lens in Example 3 of the present application.
- FIG20 is an axial aberration curve diagram of the optical lens in Example 3 of the present application.
- FIG21 is a vertical axis chromatic aberration curve diagram of the optical lens in Example 3 of the present application.
- FIG22 is a schematic diagram of the structure of an optical lens according to Example 4 of the present application.
- FIG23 is a field curvature curve diagram of the optical lens in Example 4 of the present application.
- FIG24 is a F-tan ⁇ distortion curve diagram of the optical lens in Example 4 of the present application.
- FIG25 is a relative illumination curve diagram of the optical lens in Example 4 of the present application.
- FIG26 is a MTF curve diagram of the optical lens in Example 4 of the present application.
- FIG27 is a graph showing an axial aberration of the optical lens in Example 4 of the present application.
- FIG. 28 is a vertical axis chromatic aberration curve diagram of the optical lens in Example 4 of the present application.
- first, second, third, etc. are only used to distinguish one feature from another feature, and do not represent any limitation on the features. Therefore, without departing from the teaching of the present application, the first lens discussed below may also be referred to as the second lens or the third lens.
- the thickness, size and shape of the lenses have been slightly exaggerated for ease of explanation.
- the shapes of the spherical or aspherical surfaces shown in the drawings are shown by way of example. That is, the shapes of the spherical or aspherical surfaces are not limited to the shapes of the spherical or aspherical surfaces shown in the drawings.
- the drawings are only examples and are not drawn strictly to scale.
- the paraxial region refers to the region near the optical axis. If the lens surface is convex and the position of the convex surface is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the position of the concave surface is not defined, it means that the lens surface is concave at least in the paraxial region.
- the surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging plane is called the image side of the lens.
- the optical lens according to the embodiment of the present application includes, from the object side to the image side, a first lens, a second lens, an aperture, a third lens, a fourth lens, a fifth lens, a sixth lens and a seventh lens.
- the first lens may have a negative optical power, which is beneficial to reduce the inclination angle of the incident light, thereby effectively sharing the large field of view on the object side.
- the object side and image side of the first lens are both concave, which can reduce the effective working aperture of the first lens and prevent the light from diverging too much, resulting in an excessively large aperture of the lens behind the optical lens.
- the second lens may have positive focal length, which is beneficial for converging light while reducing the light deflection angle, allowing the light to transition smoothly.
- Both the object side and the image side of the second lens are convex, which can reduce the coma generated by the second lens itself and improve the imaging quality of the optical lens.
- the third lens may have positive focal length, which is beneficial for converging light while reducing the angle of light deflection, so that the light transition is smooth.
- the object side of the third lens is concave, and the image side is convex, which can not only converge the edge field light, so that the converged light can smoothly enter the back-end optical system, but also reduce the field curvature generated by the third lens itself, and improve the imaging quality of the optical lens.
- the fourth lens element may have positive refractive power, which is beneficial for converging light while reducing the light deflection angle, so that the light trend transitions smoothly.
- the fifth lens may have a negative light angle, which is beneficial to increase the imaging area of the optical lens and improve the imaging quality of the optical lens.
- the object side of the fifth lens is concave, and the image side is convex, which can control the range of the exit angle of light on the image side of the fifth lens, reduce the ghost energy of the light reflected by the object side of the fifth lens, and improve the imaging quality of the optical lens.
- the object side surface of the sixth lens is concave, and the image side surface is convex, which can reduce the field curvature generated by the sixth lens itself and improve the imaging quality of the optical lens.
- the object side surface of the seventh lens is convex, and the image side surface is concave, which can reduce the field curvature generated by the seventh lens itself and improve the imaging quality of the optical lens.
- the fourth lens and the fifth lens can be glued to form a glued lens, which can effectively correct the chromatic aberration of the optical lens, reduce the eccentricity sensitivity of the optical lens, balance the aberration of the optical lens, and improve the imaging quality of the optical lens; it can also reduce the assembly sensitivity of the optical lens, thereby reducing the difficulty of the processing technology of the optical lens and improving the assembly yield of the optical lens.
- an aperture for limiting the light beam may be provided between the second lens and the third lens.
- the aperture may be provided near the object side of the second lens, which can reduce the generation of optical lens ghosts and is beneficial for focusing the light entering the optical system and reducing the rear port diameter of the optical lens.
- the aperture value FNO of the optical lens satisfies: FNO ⁇ 1.64. Meeting the above range is conducive to achieving a large aperture characteristic, and can ensure image clarity in a low-light environment or at night.
- the maximum field of view FOV of the optical lens satisfies: 100° ⁇ FOV. Meeting the above range is conducive to achieving wide-angle characteristics, thereby being able to obtain more scene information and meet the needs of large-scale detection.
- the incident angle CRA of the principal ray of the maximum field angle of the optical lens on the image plane satisfies: 10° ⁇ CRA ⁇ 17°. Meeting the above range can make the allowable error between the CRA of the optical lens and the CRA of the chip photosensitive element larger, thereby improving the adaptability of the optical lens to the image sensor.
- the total optical length TTL of the optical lens and the effective focal length f satisfy: TTL/f ⁇ 5.0. If the above range is met, the length of the lens can be effectively limited, and the miniaturization of the optical lens can be achieved.
- the total optical length TTL of the optical lens and the real image height IH corresponding to the maximum field angle satisfy: 2.5 ⁇ TTL/IH. Meeting the above range is conducive to shortening the total length of the optical lens while taking into account good imaging quality, thereby achieving miniaturization of the optical lens.
- the optical back focus BFL of the optical lens and the effective focal length f satisfy: 0.6 ⁇ BFL/f. Meeting the above range is conducive to achieving a balance between obtaining good imaging quality and easy assembly of the optical back focal length, ensuring the imaging quality of the optical lens while reducing the difficulty of the camera module assembly process.
- the entrance pupil diameter EPD of the optical lens and the real image height IH corresponding to the maximum field angle satisfy: 2.5 ⁇ IH/EPD ⁇ 2.9.
- the width of the light beam incident on the optical lens can be increased, so that the brightness of the optical lens at the image plane is improved to avoid dark corners.
- the maximum field of view FOV of the optical lens and the incident angle CRA of the principal ray of the maximum field of view on the image plane satisfy: 3.0 ⁇ (FOV/2)/CRA ⁇ 5.5. Meeting the above range can enable the optical lens to achieve a large field of view while allowing the incident light to be incident on the image sensor at a suitable angle, thereby improving the photosensitivity of the image sensor and the imaging quality of the optical lens.
- the effective focal length f of the optical lens, the maximum field of view FOV, and the real image height IH corresponding to the maximum field of view satisfy: 0.6 ⁇ (IH/2)/(f ⁇ tan(FOV/2)). Meeting the above range is conducive to controlling the ideal image height to be close to the actual image height and achieving small distortion.
- the effective focal length f of the optical lens and the focal length f1 of the first lens satisfy: -1.5 ⁇ f1 /f ⁇ 0.
- the first lens can have an appropriate negative focal length, which is conducive to a gentle change in the refraction angle of the incident light, avoiding excessive aberration caused by excessive refraction change, and at the same time helping more light to enter the rear optical system, increasing the illumination and improving the imaging quality of the optical lens.
- the effective focal length f of the optical lens and the focal length f2 of the second lens satisfy: 0 ⁇ f2 /f ⁇ 3.0. Meeting the above range can make the second lens have appropriate positive focal length, which is conducive to converging light while reducing the light deflection angle, making the light transition smoothly, and improving the imaging quality of the optical lens.
- the effective focal length f of the optical lens and the focal length f3 of the third lens satisfy: 0 ⁇ f3 /f ⁇ 5.0. Meeting the above range can make the third lens have appropriate positive focal power, which is conducive to converging light while reducing the light deflection angle, making the light transition smoothly, and improving the imaging quality of the optical lens.
- the effective focal length f of the optical lens and the focal length f4 of the fourth lens satisfy: 0 ⁇ f4 /f ⁇ 2.0. Meeting the above range can make the fourth lens have an appropriate positive focal power, which is conducive to converging light while reducing the light deflection angle, making the light trend transition smoothly, and improving the imaging quality of the optical lens.
- the effective focal length f of the optical lens and the focal length f5 of the fifth lens satisfy: -3.0 ⁇ f5 /f ⁇ 0.
- the fifth lens can have an appropriate negative focal power, which is beneficial to balance the spherical aberration of the fourth lens, correct the chromatic aberration of the optical lens, and improve the imaging quality of the optical lens.
- the effective focal length f of the optical lens and the focal length f6 of the sixth lens satisfy:
- the effective focal length f of the optical lens and the focal length f7 of the seventh lens satisfy:
- the effective focal length f of the optical lens and the combined focal length f12 of the first lens and the second lens satisfy: 0 ⁇ f12 /f ⁇ 5.0. Meeting the above range and reasonably allocating the focal lengths of the first lens and the second lens is conducive to balancing various aberrations and improving the imaging quality of the optical lens.
- the effective focal length f of the optical lens and the combined focal length f35 of the third lens to the fifth lens satisfy: 0 ⁇ f35 /f ⁇ 10.0.
- the curvature radius R1 of the object side surface of the first lens and the curvature radius R2 of the image side surface satisfy: -5.0 ⁇ R1 / R2 ⁇ -2.0. Meeting the above range can make the object side surface and the image side surface of the first lens symmetrical, which is beneficial to reduce the coma aberration of the first lens and improve the imaging quality of the optical lens.
- the radius of curvature R2 of the image side surface of the first lens and the radius of curvature R3 of the object side surface of the second lens satisfy: 0.4 ⁇ R2 / R3 ⁇ 0.8.
- the sag height Sag 11 of the object side of the sixth lens and the semi-aperture d 11 of the object side of the sixth lens and the sag height Sag 12 of the image side of the sixth lens and the semi-aperture d 12 of the object side of the sixth lens respectively satisfy:
- Meeting the above ranges can avoid the problem of uneven coating caused by the excessive curvature of the object side of the sixth lens, reduce the difficulty of processing the sixth lens; at the same time, it is also beneficial for the edge light to be transmitted to the rear end of the optical lens, improving the imaging quality of the optical lens.
- the vector height Sag 13 of the object side of the seventh lens and the semi-aperture d 13 of the object side of the seventh lens and the vector height Sag 14 of the image side of the seventh lens and the semi-aperture d 14 of the object side of the seventh lens respectively satisfy: 0.1 ⁇ Sag 13 /d 13 ⁇ 0.5, 0 ⁇ Sag 14 /d 14 ⁇ 0.3. Meeting the above range can avoid the object side of the seventh lens being too flat and reduce the risk of ghosting.
- the optical lens can also effectively constrain the surface shape of the off-axis field of view of the image side of the seventh lens, and can ensure that the incident angle of the light when it is incident on the imaging surface is small, thereby ensuring that the optical lens has a large relative illumination and improving the imaging quality of the optical lens.
- the maximum field of view FOV of the optical lens, the real image height IH corresponding to the maximum field of view, and the first lens object side aperture D1 satisfy: 0.5 ⁇ D1 / IH/Tan(FOV/2) ⁇ 0.8.
- the optical lens can have a large field of view and a large image surface while having a small front aperture, which is conducive to the miniaturization of the optical lens.
- the total optical length TTL of the optical lens and the sum of the center thicknesses of the first lens to the seventh lens along the optical axis ⁇ CT satisfy: 0.5 ⁇ CT/TTL ⁇ 0.7. Meeting the above range can effectively reduce the total length of the optical lens, and is beneficial to the structural design and production process of the optical lens.
- z is the distance between the surface and the vertex of the surface in the direction of the optical axis
- h is the distance from the optical axis to the surface
- c is the curvature of the vertex of the surface
- K is the quadratic surface coefficient
- A, B, C, D, E, and F are the second order, fourth order, sixth order, eighth order, tenth order, and twelfth order respectively.
- the present application is further described below in multiple embodiments.
- the thickness, radius of curvature, and material selection of each lens in the optical lens are different.
- the following embodiments are only preferred embodiments of the present application, but the embodiments of the present application are not limited to the following embodiments. Any other changes, substitutions, combinations, or simplifications that do not deviate from the innovative points of the present application should be regarded as equivalent replacement methods and are included in the protection scope of the present application.
- FIG. 1 is a schematic diagram of the structure of the optical lens provided in Example 1 of the present application.
- the optical lens includes, along the optical axis from the object side to the imaging surface, a first lens L1, a second lens L2, an aperture ST, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, a seventh lens L7, a filter G1, and a protective glass G2.
- the first lens L1 has negative refractive power, and its object side surface S1 and image side surface S2 are both concave;
- the second lens L2 has positive refractive power, and its object-side surface S3 and image-side surface S4 are both convex surfaces;
- the third lens L3 has positive refractive power, its object-side surface S5 is concave, and its image-side surface S6 is convex;
- the fourth lens L4 has positive refractive power, and its object-side surface S7 and image-side surface S8 are both convex surfaces;
- the fifth lens L5 has negative refractive power, its object-side surface S9 is concave, and its image-side surface S10 is convex;
- the sixth lens L6 has negative refractive power, and its object-side surface S11 is concave, and its image-side surface S12 is convex;
- the seventh lens L7 has a positive optical angle, its object-side surface S13 is convex, and its image-side surface S14 is concave;
- the fourth lens L4 and the fifth lens L5 may be cemented together to form a cemented lens
- the object side surface S15 and the image side surface S16 of the filter G1 are both planes;
- the object side surface S17 and the image side surface S18 of the protective glass G2 are both planes;
- the imaging surface S19 is a plane.
- the surface parameters of the aspherical lens of the optical lens in Example 1 are shown in Table 1-2.
- FIG3 shows the F-tan ⁇ distortion curve of Example 1. It can be seen from the figure that the F-tan ⁇ distortion of the optical lens is controlled within ⁇ 40%, indicating that the optical lens can correct the F-tan ⁇ distortion well.
- FIG. 4 shows a relative illumination curve of Example 1. It can be seen from the figure that the relative illumination value of the optical lens is still greater than 70% at the maximum half field angle, indicating that the optical lens has good relative illumination.
- FIG5 shows an MTF (modulation transfer function) curve of Example 1. It can be seen from the figure that the MTF value of this embodiment is above 0.4 in the entire field of view. In the range of 0 to 160 lp/mm, the MTF curve decreases evenly and smoothly from the center to the edge of the field of view, and has good imaging quality and good detail resolution capability in both low-frequency and high-frequency conditions.
- MTF modulation transfer function
- FIG6 shows the axial aberration curve of Example 1. It can be seen from the figure that the offset of the axial aberration is controlled within ⁇ 20 ⁇ m, indicating that the optical lens can correct the axial aberration well.
- FIG7 shows the vertical chromatic aberration curve of Example 1. It can be seen from the figure that the vertical chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 3 ⁇ m, indicating that the optical lens can effectively correct the chromatic aberration of the edge field of view and the secondary spectrum of the entire image plane.
- FIG 8 is a schematic diagram of the structure of the optical lens provided in Example 2 of the present application.
- the optical lens includes, from the object side to the imaging surface along the optical axis, a first lens L1, a second lens L2, an aperture ST, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, a seventh lens L7, a filter G1 and a protective glass G2.
- the first lens L1 has negative refractive power, and its object side surface S1 and image side surface S2 are both concave;
- the second lens L2 has positive refractive power, and its object-side surface S3 and image-side surface S4 are both convex surfaces;
- the third lens L3 has positive refractive power, its object-side surface S5 is concave, and its image-side surface S6 is convex;
- the fourth lens L4 has positive refractive power, and its object-side surface S7 and image-side surface S8 are both convex surfaces;
- the fifth lens L5 has negative refractive power, its object-side surface S9 is concave, and its image-side surface S10 is convex;
- the sixth lens L6 has negative refractive power, and its object-side surface S11 is concave, and its image-side surface S12 is convex;
- the seventh lens L7 has a positive optical angle, its object-side surface S13 is convex, and its image-side surface S14 is concave;
- the fourth lens L4 and the fifth lens L5 can be cemented together to form a cemented lens.
- FIG9 shows the field curvature curve of Example 2. It can be seen from the figure that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.06 mm, indicating that the optical lens can correct the field curvature well.
- FIG10 shows the F-tan ⁇ distortion curve of Example 2. It can be seen from the figure that the F-tan ⁇ distortion of the optical lens is controlled within ⁇ 40%, indicating that the optical lens can correct the F-tan ⁇ distortion well.
- FIG. 11 shows a relative illumination curve of Example 2. It can be seen from the figure that the relative illumination value of the optical lens is still greater than 70% at the maximum half field angle, indicating that the optical lens has good relative illumination.
- FIG12 shows the MTF (Modulation Transfer Function) curve of Example 2. It can be seen from the figure that the MTF value of this embodiment is above 0.3 in the entire field of view. In the range of 0 to 160 lp/mm, the MTF curve decreases evenly and smoothly from the center to the edge of the field of view, and has good imaging quality and good detail resolution capability in both low-frequency and high-frequency conditions.
- MTF Modulation Transfer Function
- FIG. 13 shows the axial aberration curve of Example 2. It can be seen from the figure that the offset of the axial aberration is controlled within ⁇ 20 ⁇ m, indicating that the optical lens can correct the axial aberration well.
- FIG14 shows the vertical axis chromatic aberration curve of Example 2. It can be seen from the figure that the vertical axis chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 3 ⁇ m, indicating that the optical lens can effectively correct the chromatic aberration of the edge field of view and the secondary light of the entire image plane. Score.
- FIG 15 is a schematic diagram of the structure of the optical lens provided in Example 3 of the present application.
- the optical lens includes, along the optical axis from the object side to the imaging surface, a first lens L1, a second lens L2, an aperture ST, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, a seventh lens L7, a filter G1 and a protective glass G2.
- the first lens L1 has negative refractive power, and its object side surface S1 and image side surface S2 are both concave;
- the second lens L2 has positive refractive power, and its object-side surface S3 and image-side surface S4 are both convex surfaces;
- the third lens L3 has positive refractive power, its object-side surface S5 is concave, and its image-side surface S6 is convex;
- the fourth lens L4 has positive refractive power, its object-side surface S7 is concave, and its image-side surface S8 is convex;
- the fifth lens L5 has negative refractive power, its object-side surface S9 is concave, and its image-side surface S10 is convex;
- the sixth lens L6 has positive refractive power, an object-side surface S11 thereof is concave, and an image-side surface S12 thereof is convex;
- the seventh lens L7 has a negative optical angle, its object-side surface S13 is convex, and its image-side surface S14 is concave;
- the fourth lens L4 and the fifth lens L5 can be cemented together to form a cemented lens.
- FIG16 shows the field curvature curve of Example 3. It can be seen from the figure that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05 mm, indicating that the optical lens can correct the field curvature well.
- FIG17 shows the F-tan ⁇ distortion curve of Example 3. It can be seen from the figure that the F-tan ⁇ distortion of the optical lens is controlled within ⁇ 40%, indicating that the optical lens can correct the F-tan ⁇ distortion well.
- FIG. 18 shows a relative illumination curve of Example 3. It can be seen from the figure that the relative illumination value of the optical lens is still greater than 70% at the maximum half field angle, indicating that the optical lens has good relative illumination.
- FIG19 shows the MTF (Modulation Transfer Function) curve of Example 3. It can be seen from the figure that the MTF value of this embodiment is above 0.4 in the entire field of view. In the range of 0 to 160 lp/mm, the MTF curve decreases evenly and smoothly from the center to the edge of the field of view, and has good imaging quality and good detail resolution capability in both low-frequency and high-frequency conditions.
- MTF Modulation Transfer Function
- FIG. 20 shows the axial aberration curve of Example 3. It can be seen from the figure that the offset of the axial aberration is controlled within ⁇ 15 ⁇ m, indicating that the optical lens can correct the axial aberration well.
- FIG21 shows the vertical chromatic aberration curve of Example 3. It can be seen from the figure that the vertical chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 3 ⁇ m, indicating that the optical lens can effectively correct the chromatic aberration of the edge field of view and the secondary spectrum of the entire image plane.
- FIG 22 is a schematic diagram of the structure of the optical lens provided in Example 4 of the present application.
- the optical lens includes, along the optical axis from the object side to the imaging surface, a first lens L1, a second lens L2, an aperture ST, a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, a seventh lens L7, a filter G1 and a protective glass G2.
- the first lens L1 has negative refractive power, and its object side surface S1 and image side surface S2 are both concave;
- the second lens L2 has positive refractive power, and its object-side surface S3 and image-side surface S4 are both convex surfaces;
- the third lens L3 has positive refractive power, its object-side surface S5 is concave, and its image-side surface S6 is convex;
- the fourth lens L4 has positive refractive power, its object-side surface S7 is concave, and its image-side surface S8 is convex;
- the fifth lens L5 has negative refractive power, its object-side surface S9 is concave, and its image-side surface S10 is convex;
- the sixth lens L6 has positive refractive power, an object-side surface S11 thereof is concave, and an image-side surface S12 thereof is convex;
- the seventh lens L7 has a negative optical angle, its object-side surface S13 is convex, and its image-side surface S14 is concave;
- the fourth lens L4 and the fifth lens L5 can be cemented together to form a cemented lens.
- FIG23 shows the field curvature curve of Example 4. It can be seen from the figure that the field curvature of the meridional image plane and the sagittal image plane is controlled within ⁇ 0.05 mm, indicating that the optical lens can correct the field curvature well.
- FIG24 shows the F-tan ⁇ distortion curve of Example 4. It can be seen from the figure that the F-tan ⁇ distortion of the optical lens is controlled within ⁇ 40%, indicating that the optical lens can correct the F-tan ⁇ distortion well.
- FIG. 25 shows the relative illumination curve of Example 4. It can be seen from the figure that the relative illumination value of the optical lens is still greater than 70% at the maximum half field of view angle, indicating that the optical lens has good relative illumination.
- FIG26 shows the MTF (Modulation Transfer Function) curve of Example 4. It can be seen from the figure that the MTF value of this embodiment is above 0.4 in the entire field of view. In the range of 0 to 160 lp/mm, the MTF curve decreases evenly and smoothly from the center to the edge of the field of view, and has good imaging quality and good detail resolution capability in both low-frequency and high-frequency conditions.
- MTF Modulation Transfer Function
- FIG27 shows the axial aberration curve of Example 4. It can be seen from the figure that the offset of the axial aberration is controlled within ⁇ 15 ⁇ m, indicating that the optical lens can correct the axial aberration well.
- FIG28 shows the vertical axis chromatic aberration curve of Example 4. It can be seen from the figure that the vertical axis chromatic aberration of the longest wavelength and the shortest wavelength is controlled within ⁇ 3 ⁇ m, indicating that the optical lens can effectively correct the chromatic aberration of the edge field of view and the secondary aberration of the entire image plane. spectrum.
- Table 5 shows the optical characteristics corresponding to the above embodiments, including the effective focal length f, the total optical length TTL, the aperture value FNO, the real image height IH and the maximum field of view FOV of the optical lens, and the numerical values corresponding to each conditional expression in each embodiment.
- the optical lens of the embodiment of the present application achieves the advantages of a large field of view, a large aperture, and miniaturization by reasonably matching the lens shapes and optical focal lengths of the lenses.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
一种光学镜头,共七片透镜,沿光轴从物侧到成像面依次为:具有负光焦度的第一透镜(L1),其物侧面(S1)和像侧面(S2)均为凹面;具有正光焦度的第二透镜(L2),其物侧面(S3)和像侧面(S4)均为凸面;光阑(ST);具有正光焦度的第三透镜(L3),其物侧面(S5)为凹面,像侧面(S6)为凸面;具有正光焦度的第四透镜(L4),其像侧面(S8)为凸面;具有负光焦度的第五透镜(L5),其物侧面(S9)为凹面,像侧面(S10)为凸面;具有光焦度的第六透镜(L6),其物侧面(S11)为凹面,像侧面(S12)为凸面;具有光角度的第七透镜(L7),其物侧面(S13)为凸面,像侧面(S14)为凹面;光学镜头的光学总长TTL与有效焦距f满足:TTL/f<5.0。光学镜头具备大视场、大光圈以及小型化的优点。
Description
相关申请的交叉引用
本申请要求于2022年09月28日提交的申请号为2022111867857的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
本申请涉及成像镜头的技术领域,特别涉及一种光学镜头。
随着汽车智能化发展,车辆的驾驶辅助功能逐渐增强,其中视觉信息采集是核心工具。随着自动驾驶级别的提升,对车载摄像头的要求也逐步提高,尤其是前置摄像头。前置摄像头可增强主动安全和驾驶员辅助功能,如自动紧急制动(AEB)、自适应巡航控制(ACC)、车道保持辅助系统(LKAS)和交通堵塞辅助(TJA)等,前置摄像头在满足高分辨率、大的视场角、良好的环境适应性等优点的同时,也存在着镜片数量多,光学总长过长等缺点,不利于电子系统的小型化。
申请内容
针对上述问题,本申请的目的在于提出一种光学镜头,具备大视场、大光圈以及小型化的优点。
为实现上述目的,本申请的技术方案如下:
一种光学镜头,共七片透镜,沿光轴从物侧到成像面依次为:
具有负光焦度的第一透镜,其物侧面和像侧面均为凹面;
具有正光焦度的第二透镜,其物侧面和像侧面均为凸面;
光阑;
具有正光焦度的第三透镜,其物侧面为凹面,像侧面为凸面;
具有正光焦度的第四透镜,其像侧面为凸面;
具有负光焦度的第五透镜,其物侧面为凹面,像侧面为凸面;
具有光焦度的第六透镜,其物侧面为凹面,像侧面为凸面;
具有光角度的第七透镜,其物侧面为凸面,像侧面为凹面;
光学镜头的光学总长TTL与有效焦距f满足:TTL/f<5.0。
较佳地,所述光学镜头的光学总长TTL与最大视场角所对应的真实像高IH满足:2.5<TTL/IH。
较佳地,所述光学镜头的光学后焦BFL与有效焦距f满足:0.6<BFL/f。
较佳地,所述光学镜头的入瞳直径EPD与最大视场角所对应的真实像高IH满足:2.5<IH/EPD<2.9。
较佳地,所述光学镜头的最大视场角FOV与最大视场角主光线在像面上的入射角CRA满足:3.0<(FOV/2)/CRA<5.5。
较佳地,所述光学镜头的有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足:0<f12/f<5.0。
较佳地,所述光学镜头的有效焦距f与所述第三透镜至所述第五透镜的组合焦距f35满足:0<f35/f<10.0。
较佳地,所述光学镜头的有效焦距f与所述第六透镜的焦距f6满足:|f6/f|<3.0。
较佳地,所述光学镜头的有效焦距f与所述第七透镜的焦距f7满足:|f7/f|<3.0。
较佳地,所述光学镜头的光学总长TTL与所述第一透镜至所述第七透镜分别沿光轴的中心厚度的总和∑CT满足:0.5<∑CT/TTL<0.7。
相较于现有技术,本申请的有益效果是:本申请的光学镜头通过合理的搭配各透镜之间的镜片形状与光焦度组合,实现了同时具备大视场、大光圈以及小型化的优点。
本申请的附加方面与优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
本申请的上述与/或附加的方面与优点从结合下面附图对实施例的描述中将变得明显与容易理解,其中:
图1为本申请实施例1的光学镜头的结构示意图;
图2为本申请实施例1中光学镜头的场曲曲线图;
图3为本申请实施例1中光学镜头的F-tanθ畸变曲线图;
图4为本申请实施例1中光学镜头的相对照度曲线图;
图5为本申请实施例1中光学镜头的MTF曲线图;
图6为本申请实施例1中光学镜头的轴向像差曲线图;
图7为本申请实施例1中光学镜头的垂轴色差曲线图;
图8为本申请实施例2的光学镜头的结构示意图;
图9为本申请实施例2中光学镜头的场曲曲线图;
图10为本申请实施例2中光学镜头的F-tanθ畸变曲线图;
图11为本申请实施例2中光学镜头的相对照度曲线图;
图12为本申请实施例2中光学镜头的MTF曲线图;
图13为本申请实施例2中光学镜头的轴向像差曲线图;
图14为本申请实施例2中光学镜头的垂轴色差曲线图;
图15为本申请实施例3的光学镜头的结构示意图;
图16为本申请实施例3中光学镜头的场曲曲线图;
图17为本申请实施例3中光学镜头的F-tanθ畸变曲线图;
图18为本申请实施例3中光学镜头的相对照度曲线图;
图19为本申请实施例3中光学镜头的MTF曲线图;
图20为本申请实施例3中光学镜头的轴向像差曲线图;
图21为本申请实施例3中光学镜头的垂轴色差曲线图;
图22为本申请实施例4的光学镜头的结构示意图;
图23为本申请实施例4中光学镜头的场曲曲线图;
图24为本申请实施例4中光学镜头的F-tanθ畸变曲线图;
图25为本申请实施例4中光学镜头的相对照度曲线图;
图26为本申请实施例4中光学镜头的MTF曲线图;
图27为本申请实施例4中光学镜头的轴向像差曲线图;
图28为本申请实施例4中光学镜头的垂轴色差曲线图。
如下具体实施方式将结合上述附图进一步说明本申请。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的实施例的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
根据本申请实施例的光学镜头从物侧到像侧依次包括:第一透镜、第二透镜、光阑、第三透镜、第四透镜、第五透镜、第六透镜和第七透镜。
在一些实施例中,第一透镜可具有负光焦度,有利于减小入射光线的倾角,从而对物方大视场实现有效分担。第一透镜物侧面和像侧面均为凹面,能够缩小第一透镜的有效工作口径,同时避免光线过于发散导致光学镜头后方透镜的口径过大。
在一些实施例中,第二透镜可具有正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡。第二透镜物侧面和像侧面均为凸面,能够降低第二透镜自身产生的慧差,提升光学镜头的成像品质。
在一些实施例中,第三透镜可具有正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡。第三透镜物侧面为凹面,像侧面为凸面,不仅可以汇聚边缘视场光线,使汇聚后的光线顺利进入后端光学系统,而且还能降低第三透镜自身产生的场曲,提升光学镜头的成像品质。
在一些实施例中,第四透镜可具有正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡。
在一些实施例中,第五透镜可具有负光角度,有利于增大光学镜头的成像面积,提升光学镜头的成像品质。第五透镜物侧面为凹面,像侧面为凸面,能够控制光线在第五透镜像侧面的出射角范围,减小第五透镜物侧面光线反射的鬼影能量,提升光学镜头的成像品质。
在一些实施例中,第六透镜物侧面为凹面,像侧面为凸面,能够降低第六透镜自身产生的场曲,提升光学镜头的成像品质。
在一些实施例中,第七透镜物侧面为凸面,像侧面为凹面,能够降低第七透镜自身自身产生的场曲,提升光学镜头的成像品质。
在一些实施例中,第四透镜和第五透镜可胶合组成胶合透镜,可以有效矫正光学镜头的色差、降低光学镜头的偏心敏感度,还可以平衡光学镜头的像差,提升光学镜头的成像品质;还可以降低光学镜头的组装敏感度,进而降低光学镜头的加工工艺难度,提高光学镜头的组装良率。
在一些实施例中,第二透镜和第三透镜之间可设置用于限制光束的光阑,光阑可设置在第二透镜的物侧面的附近处,能够减少光学镜头鬼影的产生,并且有利于收束进入光学系统的光线,降低光学镜头后端口径。
在一些实施例中,光学镜头的光圈值FNO满足:FNO≤1.64。满足上述范围,有利于实现大光圈特性,在弱光环境或夜晚时,也能保证图像的清晰。
在一些实施例中,光学镜头的最大视场角FOV满足:100°<FOV。满足上述范围,有利于实现广角特性,从而能够获取更多的场景信息,满足大范围探测的需求。
在一些实施例中,光学镜头的最大视场角主光线在像面上的入射角CRA满足:10°<CRA<17°。满足上述范围,可以使光学镜头的CRA与芯片感光元件的CRA之间的容许误差数值较大,提升光学镜头对于图像传感器的适配能力。
在一些实施例中,光学镜头的光学总长TTL与有效焦距f满足:TTL/f<5.0。满足上述范围,可以有效地限制镜头的长度,实现光学镜头小型化。
在一些实施例中,光学镜头的光学总长TTL与最大视场角所对应的真实像高IH满足:2.5<TTL/IH。满足上述范围,在兼顾良好的成像品质的同时有利于缩短光学镜头的总长,实现光学镜头小型化。
在一些实施例中,光学镜头的光学后焦BFL与有效焦距f满足:0.6<BFL/f。满足上述范围,有利于在取得良好地成像品质与易于装配地光学后焦距长度之间取得平衡,保证光学镜头成像品质的同时,降低摄像头模组装配工艺难度。
在一些实施例中,光学镜头的入瞳直径EPD与最大视场角所对应的真实像高IH满足:2.5<IH/EPD<2.9。满足上述范围,能够增大射入光学镜头的光线束的宽度,使得光学镜头在像面处亮度得到提升避免暗角产生。
在一些实施例中,光学镜头的最大视场角FOV与最大视场角主光线在像面上的入射角CRA满足:3.0<(FOV/2)/CRA<5.5。满足上述范围,可以使得光学镜头在实现大视场的同时入射光线能够以合适的角度射入到图像传感器上,进而提高图像传感器的感光性能,提高光学镜头的成像品质。
在一些实施例钟,光学镜头的有效焦距f、最大视场角FOV和最大视场角所对应的真实像高IH满足:0.6<(IH/2)/(f×tan(FOV/2))。满足上述范围,有利于控制理想像高与实际像高接近,实现小畸变。
在一些实施例中,光学镜头的有效焦距f与第一透镜的焦距f1满足:-1.5<f1/f<0。满足上述范围,可以使第一透镜具有适当的负光焦度,有利于入射光折射角度变化较为缓和,避免折射变化过于强烈而产生过多像差,同时有助于更多的光线进入后方光学系统,增加照度提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第二透镜的焦距f2满足:0<f2/f<3.0。满足上述范围,可以使第二透镜具有适当的正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第三透镜的焦距f3满足:0<f3/f<5.0。满足上述范围,可以使第三透镜具有适当的正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第四透镜的焦距f4满足:0<f4/f<2.0。满足上述范围,可以使第四透镜具有适当的正光焦度,有利于汇聚光线的同时降低光线偏折角度,让光线走势平稳过渡,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第五透镜的焦距f5满足:-3.0<f5/f<0。满足上述范围,可以使第五透镜具有适当的负光焦度,有利于平衡第四透镜的球差,同时矫正光学镜头的色差,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第六透镜的焦距f6满足:|f6/f|<3.0。满足上述范围,可以使第六透镜具有适当的光焦度,有利于平衡光学镜头的各类像差,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第七透镜的焦距f7满足:|f7/f|<3.0。满足上述范围,可以使第七透镜具有适当的光焦度,有利于平衡光学镜头的各类像差,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第一透镜和第二透镜的组合焦距f12满足:0<f12/f<5.0。满足上述范围,通过合理分配第一透镜和第二透镜的焦距,有利于平衡各类像差,提升光学镜头的成像品质。
在一些实施例中,光学镜头的有效焦距f与第三透镜至第五透镜的组合焦距f35满足:0<f35/f<10.0。满足上述范围,通过合理分配第三透镜、第四透镜和第五透镜的光焦度分配,一方面有利于控制光线束射出第五透镜时的出射光线角度,从而减少边缘视场光束进入第六透镜的光线角度,以减小光学镜头中的高阶像差和后续透镜的工作口径;另一方面可校正第一透镜和第二透镜产生的场曲,从而减小对光学镜头解像力的影响。
在一些实施例中,第一透镜物侧面的曲率半径R1和像侧面的曲率半径R2满足:-5.0<R1/R2<-2.0。满足上述范围,可以使第一透镜物侧面与像侧面取得对称面型,有利于降低第一透镜的慧差,提升光学镜头的成像品质。
在一些实施例中,第一透镜像侧面的曲率半径R2与第二透镜物侧面的曲率半径R3满足:0.4<R2/R3<0.8。满足上述范围,可以校正光学镜头的各类像差,同时保证从第一透镜出射的光线入射到第二透镜物侧面时,入射光线较为平缓,从而降低光学镜头的公差敏感度,提升光学镜头的成像品质。
在一些实施例中,第六透镜物侧面的矢高Sag11与第六透镜物侧面的通光半口径d11和第六透镜像侧面的矢高Sag12与第六透镜物侧面的通光半口径d12分别满足足:|Sag11/d11|<0.3,|Sag12/d12|<0.2。满足上述范围,可以避免第六透镜物侧面面型过弯导致的镀膜不均匀的问题,减小第六透镜的加工难度;同时也有利于边缘光线传递至光学镜头后端,提升光学镜头的成像质量。
在一些实施例中,第七透镜物侧面的矢高Sag13与第七透镜物侧面的通光半口径d13和第七透镜像侧面的矢高Sag14与第七透镜物侧面的通光半口径d14分别满足足:0.1<Sag13/d13<0.5,0<Sag14/d14<0.3。满足上述范围,可以避免第七透镜物侧面过平,降低产生鬼影的风险。同时还能有效约束第七透镜像侧面离轴视场的面型,可以保证光线入射至成像面时的入射角角度较小,从而确保光学镜头具有较大的相对照度,提升光学镜头的成像品质。
在一些实施例中,光学镜头的最大视场角FOV、最大视场角所对应的真实像高IH和第一透镜物侧面通光口径D1满足:0.5<D1/IH/Tan(FOV/2)<0.8。满足上述范围,可以在满足光学镜头具有大视场角与大像面的同时前端口径小,有利于光学镜头的小型化。
在一些实施例中,光学镜头的光学总长TTL与第一透镜至第七透镜分别沿光轴的中心厚度的总和∑CT满足:0.5<∑CT/TTL<0.7。满足上述范围,可以有效压缩光学镜头的总长,同时有利于光学镜头的结构设计和生产工艺。
为使系统具有更好的光学性能,镜头中采用多片非球面透镜,所述光学镜头的各非球面表面形状满足下列方程:
其中,z为曲面与曲面顶点在光轴方向的距离,h为光轴到曲面的距离,c为曲面顶点的曲率,K为二次曲面系数,A、B、C、D、E、F分别为二阶、四阶、六阶、八阶、十阶、十二阶
曲面系数。
下面分多个实施例对本申请进行进一步的说明。在各个实施例中,光学镜头中的各个透镜的厚度、曲率半径、材料选择部分有所不同,具体不同可参见各实施例的参数表。下述实施例仅为本申请的较佳实施方式,但本申请的实施方式并不仅仅受下述实施例的限制,其他的任何未背离本申请创新点所作的改变、替代、组合或简化,都应视为等效的置换方式,都包含在本申请的保护范围之内。
实施例1
请参阅图1,所示为本申请实施例1中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为凸面;
第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;
第六透镜L6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有正光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜;
滤光片G1的物侧面S15、像侧面S16均为平面;
保护玻璃G2的物侧面S17、像侧面S18均为平面;
成像面S19为平面。
实施例1中的光学镜头中各透镜的相关参数如表1-1所示。
表1-1
实施例1中的光学镜头的非球面透镜的面型参数如表1-2所示。
表1-2
图3示出了实施例1的F-tanθ畸变曲线,从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图4示出了实施例1的相对照度曲线,从图中可以看出,在最大半视场角时光学镜头的相对照度值仍大于70%,说明光学镜头具有良好地相对照度。
图5示出了实施例1的MTF(调制传递函数)曲线图,从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好的成像品质和良好的细节分辨能力。
图6示出了实施例1的轴向像差曲线,从图中可以看出,轴向像差的偏移量控制在±20μm以内,说明光学镜头能够良好地矫正轴向像差。
图7示出了实施例1的垂轴色差曲线,从图中可以看出,最长波长和最短波长的垂轴色差控制在±3μm以内,说明该光学镜头能够有效矫正边缘视场的色差以及整个像面的二级光谱。
实施例2
请参阅图8,所示为本申请实施例2中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;
第四透镜L4具有正光焦度,其物侧面S7和像侧面S8均为凸面;
第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;
第六透镜L6具有负光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有正光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例2中的光学镜头中各透镜的相关参数如表2-1所示。
表2-1
实施例2中的光学镜头的非球面透镜的面型参数如表2-2所示。
表2-2
图9示出了实施例2的场曲曲线,从图中可以看出,子午像面和弧矢像面的场曲控制在±0.06mm以内,说明光学镜头能够良好地矫正场曲。
图10示出了实施例2的F-tanθ畸变曲线,从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图11示出了实施例2的相对照度曲线,从图中可以看出,在最大半视场角时光学镜头的相对照度值仍大于70%,说明光学镜头具有良好地相对照度。
图12示出了实施例2的MTF(调制传递函数)曲线图,从图中可以看出,本实施例的MTF值在全视场内均在0.3以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有较好的成像品质和较好的细节分辨能力。
图13示出了实施例2的轴向像差曲线,从图中可以看出,轴向像差的偏移量控制在±20μm以内,说明光学镜头能够良好地矫正轴向像差。
图14示出了实施例2的垂轴色差曲线,从图中可以看出,最长波长和最短波长的垂轴色差控制在±3μm以内,说明该光学镜头能够有效矫正边缘视场的色差以及整个像面的二级光
谱。
实施例3
请参阅图15,所示为本申请实施例3中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;
第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面;
第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;
第六透镜L6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有负光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例3中的光学镜头中各透镜的相关参数如表3-1所示。
表3-1
实施例3中的光学镜头的非球面透镜的面型参数如表3-2所示。
表3-2
图16示出了实施例3的场曲曲线,从图中可以看出,子午像面和弧矢像面的场曲控制在±0.05mm以内,说明光学镜头能够较好地矫正场曲。
图17示出了实施例3的F-tanθ畸变曲线,从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图18示出了实施例3的相对照度曲线,从图中可以看出,在最大半视场角时光学镜头的相对照度值仍大于70%,说明光学镜头具有良好地相对照度。
图19示出了实施例3的MTF(调制传递函数)曲线图,从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好的成像品质和良好的细节分辨能力。
图20示出了实施例3的轴向像差曲线,从图中可以看出,轴向像差的偏移量控制在±15μm以内,说明光学镜头能够良好地矫正轴向像差。
图21示出了实施例3的垂轴色差曲线,从图中可以看出,最长波长和最短波长的垂轴色差控制在±3μm以内,说明该光学镜头能够有效矫正边缘视场的色差以及整个像面的二级光谱。
实施例4
请参阅图22,所示为本申请实施例4中提供的光学镜头的结构示意图,该光学镜头沿光轴从物侧到成像面依次包括:第一透镜L1、第二透镜L2、光阑ST、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7以及滤光片G1和保护玻璃G2。
第一透镜L1具有负光焦度,其物侧面S1和像侧面S2均为凹面;
第二透镜L2具有正光焦度,其物侧面S3和像侧面S4均为凸面;
光阑ST;
第三透镜L3具有正光焦度,其物侧面S5为凹面,像侧面S6为凸面;
第四透镜L4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面;
第五透镜L5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面;
第六透镜L6具有正光焦度,其物侧面S11为凹面,像侧面S12为凸面;
第七透镜L7具有负光角度,其物侧面S13为凸面,像侧面S14为凹面;
第四透镜L4与第五透镜L5可胶合组成胶合透镜。
实施例4中的光学镜头中各透镜的相关参数如表4-1所示。
表4-1
实施例4中的光学镜头的非球面透镜的面型参数如表4-2所示。
表4-2
图23示出了实施例4的场曲曲线,从图中可以看出,子午像面和弧矢像面的场曲控制在±0.05mm以内,说明光学镜头能够较好地矫正场曲。
图24示出了实施例4的F-tanθ畸变曲线,从图中可以看出,光学镜头的F-tanθ畸变控制在±40%以内,说明光学镜头能够较好地矫正F-tanθ畸变。
图25示出了实施例4的相对照度曲线,从图中可以看出,在最大半视场角时光学镜头的相对照度值仍大于70%,说明光学镜头具有良好地相对照度。
图26示出了实施例4的MTF(调制传递函数)曲线图,从图中可以看出,本实施例的MTF值在全视场内均在0.4以上,在0~160lp/mm的范围内,从中心至边缘视场的过程中MTF曲线均匀平滑下降,在低频和高频情况下都具有良好地成像品质和良好地细节分辨能力。
图27示出了实施例4的轴向像差曲线,从图中可以看出,轴向像差的偏移量控制在±15μm以内,说明光学镜头能够良好地矫正轴向像差。
图28示出了实施例4的垂轴色差曲线,从图中可以看出,最长波长和最短波长的垂轴色差控制在±3μm以内,说明该光学镜头能够极好地矫正边缘视场的色差以及整个像面的二级
光谱。
请参阅表5,为上述各实施例对应的光学特性,包括所述光学镜头的有效焦距f、光学总长TTL、光圈值FNO、真实像高IH以及最大视场角FOV以及与各实施例中每个条件式对应的数值。
表5
综上所述,本申请实施例的光学镜头通过合理的搭配各透镜之间的镜片形状与光焦度组合,实现了同时具备大视场、大光圈以及小型化的优点。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体与详细,但并不能因此而理解为对本申请范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形与改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。
Claims (10)
- 一种光学镜头,共七片透镜,其特征在于,沿光轴从物侧到成像面依次为:具有负光焦度的第一透镜,其物侧面和像侧面均为凹面;具有正光焦度的第二透镜,其物侧面和像侧面均为凸面;光阑;具有正光焦度的第三透镜,其物侧面为凹面,像侧面为凸面;具有正光焦度的第四透镜,其像侧面为凸面;具有负光焦度的第五透镜,其物侧面为凹面,像侧面为凸面;具有光焦度的第六透镜,其物侧面为凹面,像侧面为凸面;具有光角度的第七透镜,其物侧面为凸面,像侧面为凹面;光学镜头的光学总长TTL与有效焦距f满足:TTL/f<5.0。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的光学总长TTL与最大视场角所对应的真实像高IH满足:2.5<TTL/IH。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的光学后焦BFL与有效焦距f满足:0.6<BFL/f。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的入瞳直径EPD与最大视场角所对应的真实像高IH满足:2.5<IH/EPD<2.9。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的最大视场角FOV与最大视场角主光线在像面上的入射角CRA满足:3.0<(FOV/2)/CRA<5.5。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的有效焦距f与所述第一透镜和所述第二透镜的组合焦距f12满足:0<f12/f<5.0。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的有效焦距f与所述第三透镜至所述第五透镜的组合焦距f35满足:0<f35/f<10.0。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的有效焦距f与所述第六透镜的焦距f6满足:|f6/f|<3.0。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的有效焦距f与所述第七透镜的焦距f7满足:|f7/f|<3.0。
- 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头的光学总长TTL与所述第一透镜至所述第七透镜分别沿光轴的中心厚度的总和∑CT满足:0.5<∑CT/TTL<0.7。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211186785.7 | 2022-09-28 | ||
CN202211186785.7A CN115268039B (zh) | 2022-09-28 | 2022-09-28 | 光学镜头 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024067253A1 true WO2024067253A1 (zh) | 2024-04-04 |
Family
ID=83757803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/119747 WO2024067253A1 (zh) | 2022-09-28 | 2023-09-19 | 光学镜头 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115268039B (zh) |
WO (1) | WO2024067253A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118534567A (zh) * | 2024-07-18 | 2024-08-23 | 江西联创电子有限公司 | 光学镜头 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115268039B (zh) * | 2022-09-28 | 2023-02-03 | 江西联创电子有限公司 | 光学镜头 |
CN115508986B (zh) * | 2022-11-16 | 2023-05-12 | 江西联益光学有限公司 | 光学镜头 |
CN115951483B (zh) * | 2023-03-15 | 2023-06-13 | 江西联创电子有限公司 | 光学镜头 |
CN117170069B (zh) * | 2023-11-02 | 2024-03-08 | 江西联创电子有限公司 | 光学镜头 |
CN118033874B (zh) * | 2024-04-09 | 2024-08-02 | 江西联创电子有限公司 | 光学镜头 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003140041A (ja) * | 2001-10-31 | 2003-05-14 | Pentax Corp | ズームレンズ系 |
CN213957733U (zh) * | 2021-01-25 | 2021-08-13 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN114089500A (zh) * | 2020-08-24 | 2022-02-25 | 宁波舜宇车载光学技术有限公司 | 光学镜头及电子设备 |
CN216411705U (zh) * | 2021-10-27 | 2022-04-29 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN115268039A (zh) * | 2022-09-28 | 2022-11-01 | 江西联创电子有限公司 | 光学镜头 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI490538B (zh) * | 2011-07-06 | 2015-07-01 | Ability Entpr Co Ltd | 變焦鏡頭 |
KR101659167B1 (ko) * | 2014-10-16 | 2016-09-22 | 삼성전기주식회사 | 촬상 광학계 |
WO2017145265A1 (ja) * | 2016-02-23 | 2017-08-31 | Hoya株式会社 | 内視鏡用変倍光学系及び内視鏡 |
CN114690368A (zh) * | 2020-12-25 | 2022-07-01 | 宁波舜宇车载光学技术有限公司 | 光学镜头及电子设备 |
CN112612121A (zh) * | 2021-01-07 | 2021-04-06 | 浙江舜宇光学有限公司 | 一种光学成像镜头 |
CN112612122B (zh) * | 2021-01-26 | 2022-04-19 | 江西联益光学有限公司 | 光学成像镜头 |
CN113204103B (zh) * | 2021-05-18 | 2022-10-28 | 广东旭业光电科技股份有限公司 | 一种光学成像镜头及摄像装置 |
TWI807361B (zh) * | 2021-07-07 | 2023-07-01 | 先進光電科技股份有限公司 | 光學成像系統 |
CN113281886B (zh) * | 2021-07-22 | 2021-10-08 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
CN113514940B (zh) * | 2021-09-15 | 2022-02-11 | 江西联创电子有限公司 | 光学成像镜头及成像设备 |
CN114578524B (zh) * | 2022-05-07 | 2022-10-11 | 江西联创电子有限公司 | 光学镜头 |
-
2022
- 2022-09-28 CN CN202211186785.7A patent/CN115268039B/zh active Active
-
2023
- 2023-09-19 WO PCT/CN2023/119747 patent/WO2024067253A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003140041A (ja) * | 2001-10-31 | 2003-05-14 | Pentax Corp | ズームレンズ系 |
CN114089500A (zh) * | 2020-08-24 | 2022-02-25 | 宁波舜宇车载光学技术有限公司 | 光学镜头及电子设备 |
CN213957733U (zh) * | 2021-01-25 | 2021-08-13 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN216411705U (zh) * | 2021-10-27 | 2022-04-29 | 浙江舜宇光学有限公司 | 光学成像镜头 |
CN115268039A (zh) * | 2022-09-28 | 2022-11-01 | 江西联创电子有限公司 | 光学镜头 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118534567A (zh) * | 2024-07-18 | 2024-08-23 | 江西联创电子有限公司 | 光学镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN115268039B (zh) | 2023-02-03 |
CN115268039A (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024067253A1 (zh) | 光学镜头 | |
CN114815179B (zh) | 光学镜头 | |
WO2024103957A1 (zh) | 光学镜头 | |
CN114578524B (zh) | 光学镜头 | |
WO2024179218A1 (zh) | 光学镜头 | |
CN114675402B (zh) | 光学镜头 | |
WO2024061220A1 (zh) | 光学镜头 | |
CN115128769B (zh) | 光学镜头 | |
CN115291371B (zh) | 光学镜头 | |
CN115128771B (zh) | 光学镜头 | |
CN115079384B (zh) | 光学镜头 | |
CN115576084B (zh) | 光学镜头 | |
WO2024125017A1 (zh) | 光学镜头 | |
CN115494623B (zh) | 光学镜头 | |
CN114675404A (zh) | 光学镜头 | |
CN115128770B (zh) | 光学镜头 | |
CN114415350A (zh) | 光学镜头 | |
CN115291370A (zh) | 光学镜头 | |
CN115308886B (zh) | 光学镜头 | |
CN115308887B (zh) | 光学镜头 | |
CN115236842B (zh) | 光学镜头 | |
CN115016105B (zh) | 光学镜头 | |
CN115951482A (zh) | 光学镜头 | |
CN115128781B (zh) | 光学镜头 | |
CN115236841B (zh) | 光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23870485 Country of ref document: EP Kind code of ref document: A1 |