WO2024067075A1 - 基于smtc窗口的信号测量方法、装置以及存储介质 - Google Patents

基于smtc窗口的信号测量方法、装置以及存储介质 Download PDF

Info

Publication number
WO2024067075A1
WO2024067075A1 PCT/CN2023/118370 CN2023118370W WO2024067075A1 WO 2024067075 A1 WO2024067075 A1 WO 2024067075A1 CN 2023118370 W CN2023118370 W CN 2023118370W WO 2024067075 A1 WO2024067075 A1 WO 2024067075A1
Authority
WO
WIPO (PCT)
Prior art keywords
smtc
neighboring cell
window
time domain
ssb
Prior art date
Application number
PCT/CN2023/118370
Other languages
English (en)
French (fr)
Inventor
王妮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067075A1 publication Critical patent/WO2024067075A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of communication technology, and in particular to a signal measurement method, device and storage medium based on an SMTC window.
  • the terminal can detect the synchronization signal block (SSB) of the neighboring cell on the carrier to measure the signal quality of the SSB of the neighboring cell and the current cell, and then report the measurement results to assist network equipment (such as base stations) in making mobility-related decisions.
  • SSB synchronization signal block
  • a terminal device can measure multiple SSBs of the same neighboring cell through an SSB measurement timing configuration (SMTC) window configured by a network device.
  • SMTC SSB measurement timing configuration
  • the SMTC window configured by the network device cannot accurately measure multiple SSBs of the same neighboring cell.
  • the embodiments of the present application provide a signal measurement method, device and storage medium based on the SMTC window, so as to effectively measure the SSB of the neighboring cell while reducing the impact on the communication services of the current cell.
  • an embodiment of the present application provides a signal measurement method for configuring an SMTC window based on the synchronization signal block measurement time, which is applied to a terminal device or a chip system in a terminal device, including: receiving configuration information sent by a network device, the configuration information being at least used to configure the time domain starting position and window duration of each SMTC window in M SMTC windows, the window duration of the i-th SMTC window in the M SMTC windows being used for measuring the SSB of the j-th neighboring cell in at least one neighboring cell, M being an integer greater than 1, i being an integer greater than or equal to 1 and less than or equal to M, and j being an integer greater than or equal to 1; measuring multiple SSBs of the j-th neighboring cell under the M SMTC windows.
  • the terminal equipment can measure multiple SSBs of the j-th neighboring cell through M SMTC windows.
  • the measurement of multiple SSBs of the same neighboring cell can be achieved, which improves the measurement accuracy compared to measuring multiple SSBs of this neighboring cell based on only one SMTC window.
  • the time domain interval between the time domain resources occupied by the last SSB of the jth neighboring cell within the window duration of the i-th SMTC window and the time domain resources occupied by the first SSB of the j-th neighboring cell within the window duration of the i+1-th SMTC window is greater than a preset time domain interval, and the preset time domain interval is greater than or equal to the time domain interval between the i-th SMTC window and the i+1-th SMTC window.
  • the number of SSBs of the jth neighboring cell included in the window duration of the i-th SMTC window is mi
  • the time domain interval between every two adjacent SSBs in the SSBs of the j-th neighboring cell is less than or equal to the preset time domain interval
  • mi is a positive integer
  • the configuration information is also used to configure the perimeter of each SMTC window in the M SMTC windows. Expect.
  • each of the M SMTC windows can be periodically configured, and the periodic repetition of the M SMTC windows in the time domain can be achieved through flexible scheduling of the SMTC windows.
  • the terminal device is in the overlapping coverage area of multiple SSB coverage of the j-th neighboring cell under the M SMTC windows; when the configuration information is public signaling, the public signaling is used to configure one of the following of the j-th neighboring cell: same-frequency reselection frequency point; different-frequency reselection frequency point; when the configuration information is dedicated signaling, the dedicated signaling is used to configure one of the following of the j-th neighboring cell: the measurement frequency of the j-th neighboring cell by the terminal device when the current cell is in an RRC connected state; the redirection frequency of the j-th neighboring cell by the terminal device when the current cell enters an RRC inactive state or an idle state from an RRC connected state.
  • the signal measurement method based on the SMTC window provided by this embodiment, when the SSB of the j-th neighboring cell measured by the terminal device through the SMTC window is the SSB covered in the overlapping coverage area, compared with all the SSBs of the j-th neighboring cell, the number of SSBs measured through the SMTC window is reduced, thereby reducing the window duration of the SMTC window and/or the number of SMTC windows, thereby further reducing the occupancy of communication resources.
  • the common signaling is used to configure one of the following for the j-th neighboring cell:
  • the dedicated signaling is used to configure one of the following for the j-th neighboring cell:
  • the terminal device redirects the frequency of the j-th neighboring cell when the current cell enters the RRC inactive state or the idle state from the RRC connected state.
  • the process of configuring M SMTC windows with configuration information can be implemented in different communication scenarios, thereby improving the applicability of the signal measurement method based on the SMTC window.
  • an embodiment of the present application provides a signal measurement method based on an SMTC window, which is applied to a network device or a chip system in a network device, including: determining the time domain starting position and window duration of each SMTC window in M SMTC windows of the j-th neighboring cell in at least one neighboring cell, the window duration of the i-th SMTC window in the M SMTC windows is used for the measurement of the SSB of the j-th neighboring cell, M is an integer greater than 1, i is an integer greater than or equal to 1 and less than or equal to M, and j is an integer greater than or equal to 1; sending configuration information to a terminal device, the configuration information is at least used to configure the time domain starting position and window duration of each SMTC window in the M SMTC windows.
  • the time domain interval between the time domain resources occupied by the last SSB of the jth neighboring cell within the window duration of the i-th SMTC window and the time domain resources occupied by the first SSB of the j-th neighboring cell within the window duration of the i+1-th SMTC window is greater than a preset time domain interval, and the preset time domain interval is greater than or equal to the time domain interval between the i-th SMTC window and the i+1-th SMTC window.
  • the number of SSBs of the jth neighboring cell included in the window duration of the i-th SMTC window is mi, and the time domain interval between every two adjacent SSBs in the SSBs of the j-th neighboring cell is less than or equal to the preset time domain interval.
  • the configuration information is also used to configure a period of each SMTC window in the M SMTC windows.
  • the common signaling is used to configure one of the following for the j-th neighboring cell:
  • the dedicated signaling is used to configure one of the following for the j-th neighboring cell:
  • the terminal device redirects the frequency of the j-th neighboring cell when the current cell enters the RRC inactive state or the idle state from the RRC connected state.
  • the determining of each of the M SMTC windows of the j-th neighboring cell in at least one neighboring cell is The time domain starting position and window duration of the SMTC window include: dividing the multiple SSBs into M SSB groups according to the sending timing of multiple SSBs of the j-th neighboring cell; determining the time domain starting position of the i-th SMTC window according to the sending timing of the first SSB of the i-th SSB group in the M SSB groups, and determining the window duration of the i-th SMTC window according to the time domain length occupied by the i-th SSB group.
  • the method further includes: receiving the sending timing of multiple SSBs of the jth neighboring cell sent by the network equipment of the jth neighboring cell, and the sending timing of the multiple SSBs is used to determine the time domain starting position and window duration of each SMTC window in the M SMTC windows.
  • the terminal device is located in an overlapping coverage area of multiple SSB coverages of the j-th neighboring cell under the M SMTC windows.
  • beneficial effects of the signal measurement method based on the SMTC window provided by the above-mentioned second aspect and each possible implementation manner of the above-mentioned second aspect can be referred to the beneficial effects brought about by the above-mentioned first aspect and each possible implementation manner of the first aspect, and will not be repeated here.
  • an embodiment of the present application provides a communication device, comprising a module for executing a method as in the first aspect or each possible implementation manner described above, or comprising a module for executing a method as in the second aspect or each possible implementation manner described above.
  • beneficial effects of the communication device provided by the third aspect and each possible implementation manner of the third aspect can be referred to the beneficial effects brought about by the first aspect, the second aspect or each possible implementation manner, which will not be repeated here.
  • an embodiment of the present application provides a communication device, comprising: a processor and a memory, the memory being used to store a computer program, the processor being used to call and run the computer program stored in the memory, and executing the method in the first aspect, the second aspect, or each possible implementation manner.
  • an embodiment of the present application provides a chip, comprising: a processor, configured to call and execute computer instructions from a memory, so that a device equipped with the chip executes a method as in the first aspect, the second aspect, or any possible implementation manner.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer program instructions, wherein the computer program enables a computer to execute a method as in the first aspect, the second aspect, or each possible implementation manner.
  • an embodiment of the present application provides a computer program product, comprising computer program instructions, which enable a computer to execute a method as in the first aspect, the second aspect, or each possible implementation manner.
  • an embodiment of the present application provides a device, comprising a logic circuit and an input-output interface, wherein the input-output interface is used to receive signals from other communication devices outside the device and transmit them to the logic circuit or send signals from the logic circuit to other communication devices outside the device, and the logic circuit is used to execute code instructions to implement the method in the first aspect, the second aspect or each possible implementation method.
  • FIG1a is a schematic diagram of a time domain resource of SSB provided by the present application.
  • FIG1b is a schematic diagram of an SSB transmission timing provided by the present application.
  • FIG2 is a schematic diagram of a satellite communication system provided in an embodiment of the present application.
  • FIG3 is a schematic interactive flow chart of a signal measurement method based on an SMTC window provided in an embodiment of the present application
  • FIG4 is a schematic diagram of an SMTC window provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of an overlapping coverage area provided in an embodiment of the present application.
  • FIG6 is a schematic block diagram of a communication device provided in an embodiment of the present application.
  • FIG. 7 is another schematic block diagram of a communication device provided in an embodiment of the present application.
  • LTE Long Term Evolution
  • LTE-A advanced long term evolution
  • 5G fifth-generation communication
  • 6G sixth-generation
  • the terminal device involved in the embodiments of the present application may also be referred to as user equipment (UE), access terminal terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user equipment, etc.
  • UE user equipment
  • access terminal terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communication device
  • user agent or user equipment etc.
  • Terminal equipment can also be called terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • Terminal equipment can be mobile phones, tablet computers, smart wearable devices, computers with wireless transceiver functions, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • the network device is an access device that the terminal device accesses to the mobile communication system in a wireless manner. It can be a base station, such as NodeB, an evolved base station, such as an evolved NodeB eNodeB, a base station in a new radio access technology (NR) mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system.
  • the network device can provide services to the terminal device in the form of a central unit (CU) and a distributed unit (DU).
  • CU central unit
  • DU distributed unit
  • terminal devices and network devices can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; they can also be deployed on the water surface (such as ships, etc.); they can also be deployed in the air (for example, on drones, airplanes, balloons and satellites, etc.).
  • Network devices and terminal devices may communicate through a licensed spectrum, or may communicate through an unlicensed spectrum, or may communicate through both a licensed spectrum and an unlicensed spectrum.
  • Network devices and terminal devices, as well as terminal devices and terminal devices may communicate through a spectrum below 6 gigahertz (GHz), or may communicate through a spectrum at or above 6 GHz, or may communicate using a spectrum below 6 GHz and a spectrum at or above 6 GHz at the same time.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used between network devices and terminal devices.
  • the terminal can detect the synchronization signal block (SSB) of the neighboring cell on the carrier to measure the signal quality of the SSB of the neighboring cell and the current cell, and then report the measurement results to assist the network equipment (such as the base station) in making mobility-related decisions.
  • the network equipment can scan the SSB beam based on the beamforming technology to complete the SSB transmission.
  • Beamforming also known as beamforming and spatial filtering, is a signal processing technology that uses a sensor array to send and receive signals in a directional manner. For each type of channel and signal, a narrow beam with more concentrated energy and stronger directionality is formed.
  • the NR cell synchronization and broadcast channels share one SSB beam, also known as a broadcast beam.
  • the terminal device can detect the SSB within the SMTC window configured by the network device.
  • the NR terrestrial network protocol requires the cell to complete the scanning of the SSB beam within 5ms, that is, the transmission period of the SSB is less than or equal to 5ms. Accordingly, the terminal device measures the SSB in the SMTC window with a window duration less than or equal to 5ms.
  • the number of SSB beams scanned by the transmitter is large, resulting in a large SSB transmission cycle.
  • continuous random access coverage can only be achieved by increasing the number of SSB beams.
  • 8 SSBs are deployed in the first 4 time slots in every 20ms time domain resource, and it takes 640ms to complete the scanning of the SSB beam.
  • the SSB transmission timing and the physical random access occasion (RO) are shown in Figure 1b.
  • an embodiment of the present application configures multiple SMTC windows to measure SSB within the same measurement cycle, which improves the measurement accuracy compared to measuring multiple SSBs of a neighboring cell based on only one SMTC window.
  • FIG2 is a schematic diagram of a satellite communication system provided by an embodiment of the present application.
  • a ground mobile terminal communicates with a satellite via a 5G new air interface access network.
  • a 5G base station is deployed on a satellite and connected to a ground core network via a wireless link.
  • the network device involved in the technical solution of the present application is a base station, and the terminal device is the terminal in the figure.
  • the various network elements in FIG2 and their The interface description is as follows:
  • the terminal is a mobile device that supports the 5G new air interface, such as a mobile phone, a tablet (pad) and other mobile devices. It can access the satellite network through the air interface and initiate calls, surf the Internet and other services.
  • 5G new air interface such as a mobile phone, a tablet (pad) and other mobile devices. It can access the satellite network through the air interface and initiate calls, surf the Internet and other services.
  • the base station mainly provides wireless access services, dispatches wireless resources to access terminals, and provides reliable wireless transmission protocols and data encryption protocols.
  • the core network includes services such as user access control, mobility management, session management, user security authentication, and billing. It consists of multiple functional units, which can be divided into functional entities of the control plane and the data plane.
  • the access and mobility management unit Authentication Management Function, AMF
  • AMF Authentication Management Function
  • UPF user plane function
  • Ground station responsible for forwarding signaling and business data between satellite base stations and the core network.
  • the new air interface is the wireless link between the terminal and the base station.
  • the Xn interface is the interface between 5G base stations and is mainly used for signaling interactions such as switching.
  • the NG interface is the interface between the 5G base station and the 5G core network, which mainly interacts with the core network's NAS and other signaling, as well as the user's business data.
  • predefinition can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices). This application does not limit its specific implementation method.
  • Pre-configuration can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), or by signaling pre-configuration, such as network devices pre-configuring through signaling, etc. This application does not limit its specific implementation method.
  • the preset time domain interval may be predefined, or may be preconfigured, or may be indicated by the base station through radio resource control (RRC) and/or downlink control information (DCI).
  • RRC radio resource control
  • DCI downlink control information
  • the "protocol” involved in the embodiments of the present application may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, which is not limited in the present application.
  • the terminal device may be, for example, a terminal in the satellite communication system shown in FIG2, and the network device may be a satellite in the communication system shown in FIG2.
  • the terminal device shown in the following embodiment can also be replaced by a component in the terminal device, such as a chip, a chip system or other functional module that can call and execute a program;
  • the network device shown in the following embodiment can also be replaced by a component in the network device, such as a chip, a chip system or other functional module that can call and execute a program.
  • Fig. 3 is a schematic interactive flow chart of a signal measurement method 100 based on an SMTC window provided in an embodiment of the present application. As shown in Fig. 3, the method 100 may include part or all of the processes in S110 to S130. Each step in the method 100 is described below.
  • the network device determines the time domain starting position and window duration (duration) of each SMTC window among the M SMTC windows of the j-th neighboring cell in at least one neighboring cell, the window duration of the i-th SMTC window among the M SMTC windows is used for the measurement of the SSB of the j-th neighboring cell, M is an integer greater than 1, i is an integer greater than or equal to 1 and less than or equal to M, and j is an integer greater than or equal to 1.
  • the network device sends configuration information to the terminal device, where the configuration information is at least used to configure the time domain start position and window duration of each SMTC window in the M SMTC windows.
  • the terminal device receives the configuration information sent by the network device.
  • the terminal device measures multiple SSBs of the j-th neighboring cell under the M SMTC windows.
  • the time domain starting position of each of the M SMTC windows may be different.
  • the time domain starting position of the first SMTC window (SMTC window #0) is time slot #0
  • the time domain starting position of the second SMTC window (SMTC window #1) is time slot #350.
  • the time domain starting position may be a time domain offset within an SSB measurement cycle. That is, the time domain starting position is used to indicate the starting position of the SMTC window within each SSB measurement cycle.
  • the time domain starting position of the first SMTC window in each SSB measurement cycle is the first time slot (time slot #0) in each SSB measurement cycle
  • the time domain starting position of the second SMTC window in each SSB measurement cycle is the 351st time slot (time slot 350#) in each SSB measurement cycle.
  • an SSB measurement cycle may include one or more SSB transmission cycles.
  • the transmission cycle of SSB is 1280 time slots (slot)
  • an SSB measurement cycle is 1280 slots, that is, the terminal device measures the SSB of the neighboring cell in each SSB transmission cycle, see Figure 4;
  • the SSB transmission cycle is 640 slots
  • an SSB measurement cycle can be 1280 slots, that is, the terminal device only measures the SSB of the neighboring cell once every two SSB transmission cycles.
  • an SSB measurement cycle may include the above-mentioned M SMTC windows, and may also include other SMTC windows, such as an SMTC window for measuring the current cell.
  • the SMTC window for measuring the current cell may be configured by a network device, or defined by a protocol, or indicated by a network device through RRC and/or DCI. This application does not limit this.
  • the embodiment of the present application is only described by measuring the SSB of the jth neighboring cell in the SMTC window, but is not limited to this.
  • the terminal device can measure the SSB of the current cell in the SMTC window, or measure the SSB of more neighboring cells.
  • each SMTC window in the M SMTC windows may be the same or different.
  • the time domain positions occupied by each SMTC window in the M SMTC windows do not overlap, so as to measure SSBs of different sending opportunities or different SSB groups respectively.
  • there is a time domain interval between each SMTC window in the M SMTC windows so that the terminal device and the network device can communicate on the time domain resources between the SMTC windows, thereby improving communication efficiency.
  • the present application does not exclude the situation where the time domain positions of each SMTC window overlap or there is no time domain interval between adjacent SMTC windows.
  • the SSB of the j-th neighboring cell measured by M SMTC windows may be the entire SSB of the j-th neighboring cell, or may be a partial SSB of the j-th neighboring cell.
  • the SSB of the j-th neighboring cell measured by M SMTC windows is the SSB covered within the overlapping coverage area where the terminal device is located. In other words, the terminal device is in the overlapping coverage area covered by multiple SSBs of the j-th neighboring cell that can be detected by the M SMTC windows.
  • the window duration of the SMTC window and/or the number of SMTC windows are reduced, further reducing the occupancy of communication resources.
  • the network device can determine the time domain starting position and window duration of M SMTC windows based on the sending timing of multiple SSBs of neighboring cells, so that the terminal device can measure multiple SSBs of neighboring cells through M SMTC windows.
  • the embodiment of the present application takes the example of the network device determining M SMTC windows based on the sending timing of the SSB of the jth neighboring cell.
  • the network device can determine M SMTC windows based on the sending timing of the SSBs of multiple neighboring cells.
  • multiple SSBs of neighboring cells may refer to all SSBs of neighboring cells or SSBs covered by neighboring cells in the overlapping coverage area where the terminal device is located.
  • the network device may divide the multiple SSBs into M SSB groups according to the transmission timing of the multiple SSBs of the jth neighboring cell.
  • the time domain resources occupied by each SSB in the multiple SSBs may be a time slot or one or more symbols in a time slot.
  • the time slot may be, for example, an NR time slot or an LTE time slot, etc. This application is not limited to this. For example, two SSBs may be sent in one time slot.
  • the time domain interval between each two adjacent SSBs may be less than or equal to a preset time domain interval, and the time domain interval between different SSB groups (for example, the last SSB in the i-th group and the first SSB in the i+1-th group) is greater than the preset time domain interval.
  • the preset time domain interval may be, for example, 7 symbols, 1 time slot, 15 time slots, etc.
  • the first SSB group is formed, and the time domain interval between the first SSB in the second SSB group (occupying part or all of the symbols in time slot #350) and the last SSB of the first SSB group is greater than 1 time slot, and the time domain interval between each SSB sent within 2 subframes starting from time slot #350 is less than 1 time slot, then the SSB sent within 2 subframes starting from time slot #350 forms the second SSB group.
  • the preset time domain interval may be defined by a protocol, or pre-configured by a network device, or indicated by a network device through RRC and/or DCI, which is not limited in this application.
  • the network device needs to determine the SMTC window corresponding to each SSB group for the M SSB groups determined in the above process, so as to measure the SSB in each SSB group through the SMTC window.
  • M SMTC windows corresponding one to one.
  • the time domain starting position of the i-th SMTC window should be the same as the sending timing of the first SSB in the i-th SSB group, or the time domain starting position of the i-th SMTC window should be earlier than the sending timing of the first SSB in the i-th SSB group; similarly, the time domain end position of the i-th SMTC window should be the same as the sending timing of the last SSB in the i-th SSB group, or the time domain end position of the i-th SMTC window should be later than the sending timing of the last SSB in the i-th SSB group.
  • the network device can determine the time domain starting position of the i-th SMTC window according to the sending timing of the first SSB of the i-th SSB group among the M SSB groups, and determine the window duration of the i-th SMTC window according to the time domain length occupied by the i-th SSB group.
  • the time domain interval between the time domain resources occupied by the last SSB of the jth neighboring cell within the window duration of the i-th SMTC window and the time domain resources occupied by the first SSB of the jth neighboring cell within the window duration of the i+1-th SMTC window is greater than the preset time domain interval, and the preset time domain interval is greater than or equal to the time domain interval between the i-th SMTC window and the i+1-th SMTC window, where the time domain interval between the i-th SMTC window and the i+1-th SMTC window refers to the time domain interval between the end time domain position of the i-th SMTC window and the start time domain position of the i+1-th SMTC window.
  • the window duration of the M SMCT windows may be 5 ms, or less than 5 ms.
  • the number of SSBs of the jth neighboring cell included in the window duration of the i-th SMTC window is mi , where mi is a positive integer, and the time domain interval between every two adjacent SSBs in the SSBs of the j-th neighboring cell is less than or equal to the preset time domain interval.
  • the time domain starting position of the first SMTC window (SMTC window #0) is the same as the time domain resources occupied by the first SSB (SSB #0) in the first SSB group of the j-th neighboring cell, and the window duration of the first SMTC window (SMTC window #0) is the same as the length of the time domain resources occupied by the first SSB group;
  • the time domain starting position of the second SMTC window (SMTC window #1) is the same as the time domain resources occupied by the first SSB (SSB #0) in the second SSB group of the j-th neighboring cell, and the window duration of the second SMTC window (SMTC window #1) is the same as the length of the time domain resources occupied by the second SSB group.
  • the time domain starting position of the first SMTC window (SMTC window #0) is time slot #0, and the window duration is 2 subframes (sf2); the time domain starting position of the second SMTC window (SMTC window #1) is time slot #350, and the window duration is sf2.
  • the configuration information sent by the network device to the terminal device may include:
  • periodicityAndOffset slot1280:0 //The position with an offset of 0 in the SSB measurement period (1280 slot) is the time domain starting position of the first SMTC window
  • periodicityAndOffset slot1280:350 //The position with an offset of 350 slots within the SSB measurement period (1280 slots) is the time domain starting position of the second SMTC window
  • the above-mentioned SSB measurement period can also be expressed as the period of the SMTC window.
  • the period of each SMTC window in the M SMTC windows can be the same or different, and this application does not limit this.
  • the period of the first SMTC window can be the same as the transmission period of the SSB
  • the period of the second SMTC window can be twice the transmission period of the SSB.
  • the above configuration information may also be used to configure the period of each SMTC window in the M SMTC windows.
  • the network equipment of this cell can receive the transmission timing of multiple SSBs of the jth neighboring cell sent by the network equipment of the jth neighboring cell.
  • the network equipment of this cell and the network equipment of the jth neighboring cell can interact through the Xn interface to realize the transmission of the SSB transmission timing.
  • the present application does not limit the interaction method between the network equipment of the current cell and the network equipment of the neighboring cell.
  • the network equipment of the current cell and the network equipment of the jth neighboring cell can interact through the NG interface to realize the transmission of the SSB sending timing.
  • the network device can divide the SSBs of all neighboring cells into M SSB groups according to the sending timing of the SSBs of each neighboring cell, and then determine the SMTC window corresponding to each SSB group, so that each SMTC window can be used to measure the SSB in the corresponding SSB group.
  • the specific implementation method is similar to the above example, except that the multiple SSBs divided into M SSB groups come from multiple neighboring cells.
  • the identifiers or indexes of SSB, SSB group, SMTC window, time slot, etc. are all numbered from 0, for example, the first SSB is SSB#0, and the second SSB is SSB#1.
  • the present application is not limited to this.
  • any An identifier or index can also be numbered starting from 1.
  • the configuration information may be carried in RRC signaling.
  • the standard of the UU interface supports the network device to send configuration information to the terminal device to configure M SMTC windows to measure multiple SSBs of the j-th neighboring cell.
  • the process of configuring M SMTC windows with configuration information can be implemented in different communication scenarios.
  • the network device can configure the intra-frequency cell reselection frequency or the inter-frequency cell reselection frequency through configuration information, such as configuring the intra-frequency reselection frequency through system information block (SIB) 2 (such as intraFreqCellReselectionInfo) and configuring the inter-frequency cell reselection frequency through SIB 4 (such as InterFreqCarrierFreqInfo).
  • SIB system information block
  • SIB 4 such as InterFreqCarrierFreqInfo
  • the configuration information is the public signaling within the cell.
  • the network equipment broadcasts multiple SMTC windows of neighboring cells at the same frequency or different frequency points through public messages.
  • the public message broadcasts multiple SMTC windows of each neighboring cell at the same frequency or different frequency points.
  • the terminal device measures the SSB of the neighboring cell through multiple SMTC windows to avoid the inability to complete the SSB measurement based on the existing SMTC window when the number of SSB beams is large, thereby ensuring the effective reselection of the same frequency and/or different frequency cells.
  • the configuration information is the dedicated signaling of the terminal device in the cell, and the dedicated signaling can be used to configure the measurement frequency of the jth neighboring cell, such as through the MeasObjectNR field, to implement the sending of the RRC connected state measurement frequency.
  • This embodiment sends multiple SMTC windows of each neighboring cell to the terminal device in the RRC connected state, so that the terminal device measures multiple SSBs of the neighboring cell through multiple SMTC windows, and improves the effectiveness of the terminal device measurement in the case of a large number of SSBs sent by the satellite system, a long sending cycle, and discrete sending timings.
  • the configuration information is a dedicated signaling
  • the dedicated signaling is used to configure the redirection frequency for the j-th neighboring cell.
  • the dedicated signaling may be, for example, an RRC release message (such as CarrierInfoNR).
  • This embodiment configures multiple SMTC windows of each neighboring cell under the redirection frequency through the RRC release message, so that the terminal device measures multiple SSBs of the neighboring cell through multiple SMTC windows, and improves the effectiveness of the terminal device measurement in view of the situation where the number of SSBs sent by the satellite system is large, the sending cycle is long, and the sending timing is discrete.
  • the terminal device can measure multiple SSBs of the j-th neighboring cell in each of the M SMTC windows. For example, the terminal device can measure the first SSB group sent by the network device of the j-th neighboring cell in the first SMTC window, and measure the second SSB group sent by the network device of the j-th neighboring cell in the second SMTC window... until the terminal device completes a period of SSB measurement after measuring the M-th SSB group sent by the network device of the j-th neighboring cell in the M-th SMTC window.
  • the terminal device can periodically measure multiple SSBs of the j-th neighboring cell according to the period of each SMTC window. For example, for the first SMTC window, the terminal device can measure the SSB group (such as the first SSB group) within the first SMTC window at the time domain position of the first SMTC window in the second SSB measurement period.
  • the terminal device may only measure multiple SSBs of the jth neighboring cell in at least one neighboring cell, or the terminal device may also perform SSB measurements on some or all neighboring cells except the jth neighboring cell in at least one neighboring cell.
  • its implementation method may refer to the SSB measurement process of the jth neighboring cell, that is, the network device may determine the time domain starting position and window duration of at least two SMTC windows corresponding to each neighboring cell, and then configure the at least two SMTC windows to the terminal device, so that the terminal device measures multiple SSBs of the corresponding neighboring cells under the at least two SMTC windows.
  • the network device can determine the number of SMTC windows for each neighboring cell based on the number of SSBs sent by each neighboring cell (or the overlapping coverage area where the terminal device is located). For neighboring cells with a small number of SSB transmissions (for example, the scanning of the SSB beam is completed within 5ms), the network device can configure one SMTC window for the neighboring cell. For neighboring cells with a large number of SSB transmissions (for example, the scanning of the SSB beam cannot be completed within 5ms), the network device can configure two or more SMTC windows for the cell.
  • the terminal device after the terminal device measures multiple SSBs of the jth neighboring cell, it can report the measurement results to the network device.
  • the reported measurement results can also include the terminal device's measurement results of the SSB of the current cell, so that the network device can make mobility-related decisions based on the measurement results reported by the terminal device.
  • the embodiment of the present application configures the time domain starting position and window duration of each SMTC window in the M SMTC windows, so that the terminal device can measure multiple SSBs of the jth neighboring cell through the M SMTC windows, and designs multiple SMTC windows.
  • the SMTC window can realize the measurement of multiple SSBs of the same neighboring cell, which improves the measurement accuracy compared to measuring multiple SSBs of this neighboring cell based on only one SMTC window.
  • FIG6 is a schematic block diagram of a communication device provided in an embodiment of the present application.
  • the device 200 may include: a transceiver module 210 and a processing module 220 .
  • the communication device 200 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device, or a component configured in the terminal device (such as a chip or a chip system, etc.).
  • the transceiver module 210 can be used to receive configuration information sent by the network device, and the configuration information is at least used to configure the time domain starting position and window duration of each SMTC window in M SMTC windows, and the window duration of the i-th SMTC window in the M SMTC windows is used for the measurement of the SSB of the j-th neighboring cell in at least one neighboring cell, M is an integer greater than 1, i is an integer greater than or equal to 1 and less than or equal to M, and j is an integer greater than or equal to 1; the processing module 220 can be used to measure multiple SSBs of the j-th neighboring cell under the M SMTC windows.
  • the communication device 200 may correspond to the network device in the above method embodiment, for example, it may be a network device, or a component configured in the network device (such as a chip or a chip system, etc.).
  • the processing module 220 can be used to determine the time domain starting position and window duration of each SMTC window in the M SMTC windows of the j-th neighboring cell in at least one neighboring cell, and the window duration of the i-th SMTC window in the M SMTC windows is used for the measurement of the SSB of the j-th neighboring cell, M is an integer greater than 1, i is an integer greater than or equal to 1 and less than or equal to M, and j is an integer greater than or equal to 1; the transceiver module 210 can be used to send configuration information to the terminal device, and the configuration information is at least used to configure the time domain starting position and window duration of each SMTC window in the M SMTC windows.
  • the transceiver unit 210 in the communication device 200 can be implemented by a transceiver, for example, it can correspond to the transceiver 310 in the communication device 300 shown in Figure 7, and the processing unit 220 in the communication device 200 can be implemented by at least one processor, for example, it can correspond to the processor 320 in the communication device 300 shown in Figure 7.
  • the transceiver unit 210 in the communication device 200 can be implemented by a transceiver, for example, it can correspond to the transceiver 310 in the communication device 300 shown in Figure 7, and the processing unit 220 in the communication device 200 can be implemented by at least one processor, for example, it can correspond to the processor 320 in the communication device 300 shown in Figure 7.
  • the transceiver unit 210 in the communication device 200 can be implemented through an input/output interface, circuit, etc., and the processing unit 220 in the communication device 200 can be implemented through a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG7 is another schematic block diagram of a communication device provided in an embodiment of the present application.
  • the communication device 300 may include: a transceiver 310, a processor 320, and a memory 330.
  • the transceiver 310, the processor 320, and the memory 330 communicate with each other through an internal connection path, the memory 330 is used to store instructions, and the processor 320 is used to execute the instructions stored in the memory 330 to control the transceiver 310 to send signals and/or receive signals.
  • the communication device 300 may correspond to the terminal device or network device in the above method embodiment, and may be used to execute the various steps and/or processes executed by the terminal device or network device in the above method embodiment.
  • the memory 330 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory 330 may be a separate device or may be integrated in the processor 320.
  • the processor 320 may be used to execute instructions stored in the memory 330, and when the processor 320 executes instructions stored in the memory, the processor 320 is used to execute the various steps and/or processes of the above method embodiment corresponding to the terminal device or network device.
  • the communication device 300 is the terminal device in the previous embodiment.
  • the communication device 300 is the network device in the previous embodiment.
  • the transceiver 310 may include a transmitter and a receiver.
  • the transceiver 310 may further include an antenna, and the number of antennas may be one or more.
  • the processor 320 and the memory 330 may be devices integrated on different chips with the transceiver 310.
  • the processor 320 and the memory 330 may be integrated in a baseband chip, and the transceiver 310 may be integrated in a radio frequency chip.
  • the processor 320 and the memory 330 and the transceiver 310 may also be devices integrated on the same chip. This application does not limit this.
  • the communication device 300 is a component configured in a terminal device, such as a chip, a chip system, etc.
  • the communication device 300 is a component configured in a network device, such as a chip, a chip system, etc.
  • the transceiver 320 may also be a communication interface, such as an input/output interface, a circuit, etc.
  • the transceiver 320, the processor 310, and the memory 330 may be integrated into the same chip, such as a baseband chip.
  • the present application also provides a processing device, including at least one processor, wherein the at least one processor is used to execute a computer program stored in a memory, so that the processing device executes the method executed by the terminal device or the network device in the above method embodiment.
  • the embodiment of the present application also provides a processing device, including a processor and an input/output interface.
  • the input/output interface is coupled to the processor.
  • the input/output interface is used to input and/or output information.
  • the information includes at least one of an instruction and data.
  • the processor is used to execute a computer program so that the processing device executes the method executed by the terminal device or the network device in the above method embodiment.
  • the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the terminal device or network device in the above method embodiment.
  • the above-mentioned processing device can be one or more chips.
  • the processing device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor unit (CPU), a network processor (NP), a digital signal processor (DSP), a microcontroller unit (MCU), a programmable logic device (PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the steps of the method disclosed in conjunction with the embodiment of the present application can be directly embodied as a hardware processor for execution, or a combination of hardware and software modules in a processor for execution.
  • the software module can be located in a storage medium mature in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in conjunction with its hardware. To avoid repetition, it is not described in detail here.
  • the processor in the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above processor can be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined and performed.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • ESDRAM synchronous linked dynamic random access memory
  • ESDRAM synchronous linked dynamic random access memory
  • the present application also provides a computer program product, which includes: computer program code, when the computer program code runs on a computer, the computer executes the method executed by the terminal device or network device in the above method embodiment.
  • the present application also provides a computer-readable storage medium, which stores a program code.
  • the program code runs on a computer, the computer executes the method executed by the terminal device or network device in the above method embodiment.
  • the present application also provides a communication system, which may include the aforementioned terminal device and network device.
  • a component can be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program and/or a computer.
  • applications and computing devices running on a computing device can be components.
  • One or more components may reside in a process and/or an execution thread, and a component may be located on a computer and/or distributed between two or more computers.
  • these components may be executed from various computer-readable media having various data structures stored thereon.
  • Components may, for example, communicate through local and/or remote processes according to signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
  • signals having one or more data packets (e.g., data from two components interacting with another component between a local system, a distributed system and/or a network, such as the Internet interacting with other systems through signals).
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the part of the technical solution of the present application that contributes essentially or the part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种基于SMTC窗口的信号测量方法、装置以及存储介质。该方法包括:接收网络设备发送的配置信息,该配置信息至少用于配置M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,该M个SMTC窗口中的第i个SMTC窗口的窗口持续时间用于至少一个邻小区中第j个邻小区的SSB的测量,M为大于1的整数;测量该M个SMTC窗口下该第j个邻小区的多个SSB。通过设计多个SMTC窗口,可实现对同一邻小区多个SSB的测量,相比于仅基于一个SMTC窗口测量这一个邻小区的多个SSB,提高了测量的准确性。

Description

基于SMTC窗口的信号测量方法、装置以及存储介质
本申请要求于2022年09月29日提交中国专利局、申请号为202211198943.0、申请名称为“基于SMTC窗口的信号测量方法、装置以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于SMTC窗口的信号测量方法、装置以及存储介质。
背景技术
目前,终端可以在载波上检测邻小区的同步信号块(synchronization signal block,SSB),以测量邻小区和本小区的SSB的信号质量,进而可以上报测量结果,辅助网络设备(例如基站)进行移动性相关决策。
目前,终端设备可以通过网络设备配置的一个SSB测量时间配置(SSB measurement timing configuration,SMTC)窗口进行同一邻小区的多个SSB的测量。然而,对于一些扫描SSB波束的数量较多的通信系统,如卫星通信系统来说,通过网络设备配置的这一个SMTC窗口无法对同一邻小区的多个SSB进行准确测量。
发明内容
本申请实施例提供的一种基于SMTC窗口的信号测量方法、装置以及存储介质,以期在对邻小区的SSB进行有效测量的同时,降低对本小区的通信业务带来的影响。
第一方面,本申请实施例提供一种基于同步信号块测量时间配置SMTC窗口的信号测量方法,应用于终端设备或者终端设备中的芯片系统,包括:接收网络设备发送的配置信息,该配置信息至少用于配置M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,该M个SMTC窗口中的第i个SMTC窗口的窗口持续时间用于至少一个邻小区中第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数;测量该M个SMTC窗口下该第j个邻小区的多个SSB。
通过第一方面提供的基于SMTC窗口的信号测量方法,通过配置M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,使终端设备可以通过M个SMTC窗口测量第j个邻小区的多个SSB,通过设计多个SMTC窗口,可实现对同一邻小区多个SSB的测量,相比于仅基于一个SMTC窗口测量这一个邻小区的多个SSB,提高了测量的准确性。
在一种可能的实施方式中,该第i个SMTC窗口的窗口持续时间内该第j个邻小区的最后一个SSB占用的时域资源与第i+1个SMTC窗口的窗口持续时间内该第j个邻小区的第一个SSB占用的时域资源之间的时域间隔大于预设时域间隔,该预设时域间隔大于或等于该第i个SMTC窗口与该第i+1个SMTC窗口之间的时域间隔。
通过该实施方式提供的基于SMTC窗口的信号测量方法,将两个时域间隔较大的相邻的SSB分别通过相邻的两个不同的SMTC窗口进行测量,使得不同SMTC窗口之间的时域间隔可以用于通信数据的传输,提高了通信系统的通信效率。
在一种可能的实施方式中,该第i个SMTC窗口的窗口持续时间内包括第j个邻小区的SSB的数量为mi个,该第j个邻小区的SSB中每两个相邻的SSB之间的时域间隔均小于或等于预设时域间隔,mi为正整数。
通过该实施方式提供的基于SMTC窗口的信号测量方法,在同一SMTC窗口测量时域间隔较小的多个SSB,提高SSB的测量效率。
在一种可能的实施方式中,该配置信息还用于配置该M个SMTC窗口中各SMTC窗口的周 期。
通过该实施方式提供的基于SMTC窗口的信号测量方法,可以针对M个SMTC窗口中的各SMTC窗口进行周期的配置,通过对SMTC窗口的灵活调度,实现M个SMTC窗口在时域上的周期性重复。
在一种可能的实施方式中,该终端设备处于该M个SMTC窗口下该第j个邻小区的多个SSB覆盖的交叠覆盖区;该配置信息为公共信令时,该公共信令用于配置该第j个邻小区的以下之一:同频重选频点;异频重选频点;该配置信息为专用信令时,该专用信令用于配置该第j个邻小区的以下之一:该终端设备在本小区处于RRC连接态时对该第j个邻小区的测量频点;该终端设备在本小区由RRC连接态进入RRC非激活态或空闲态时对该第j个邻小区的重定向频点。
通过该实施方式提供的基于SMTC窗口的信号测量方法,终端设备通过SMTC窗口测量的第j个邻小区的SSB是交叠覆盖区内所覆盖的SSB时,相比于第j个邻小区的全部SSB,通过SMTC窗口测量的SSB的数量减少了,进而可以减小SMTC窗口的窗口持续时间和/或SMTC窗口的数量,进一步降低对通信资源的占用。
在一种可能的实施方式中,该配置信息为公共信令时,该公共信令用于配置该第j个邻小区的以下之一:
同频重选频点;
异频重选频点;
该配置信息为专用信令时,该专用信令用于配置该第j个邻小区的以下之一:
该终端设备在本小区处于RRC连接态时对该第j个邻小区的测量频点;
该终端设备在本小区由RRC连接态进入RRC非激活态或空闲态时对该第j个邻小区的重定向频点。
通过该实施方式提供的基于SMTC窗口的信号测量方法,配置信息配置M个SMTC窗口的过程可以实现于不同的通信场景中,提高了基于SMTC窗口的信号测量方法的适用性。
第二方面,本申请实施例提供一种基于SMTC窗口的信号测量方法,应用于网络设备或者网络设备中的芯片系统,包括:确定至少一个邻小区中第j个邻小区的M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,该M个SMTC窗口中第i个SMTC窗口的窗口持续时间用于该第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数;向终端设备发送配置信息,该配置信息至少用于配置该M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间。
在一种可能的实施方式中,该第i个SMTC窗口的窗口持续时间内该第j个邻小区的最后一个SSB占用的时域资源与第i+1个SMTC窗口的窗口持续时间内该第j个邻小区的第一个SSB占用的时域资源之间的时域间隔大于预设时域间隔,该预设时域间隔大于或等于该第i个SMTC窗口与该第i+1个SMTC窗口之间的时域间隔。
在一种可能的实施方式中,该第i个SMTC窗口的窗口持续时间内包括第j个邻小区的SSB的数量为mi个,该第j个邻小区的SSB中每两个相邻的SSB之间的时域间隔均小于或等于预设时域间隔。
在一种可能的实施方式中,该配置信息还用于配置该M个SMTC窗口中各SMTC窗口的周期。
在一种可能的实施方式中,该配置信息为公共信令时,该公共信令用于配置该第j个邻小区的以下之一:
同频重选频点;
异频重选频点;
该配置信息为专用信令时,该专用信令用于配置该第j个邻小区的以下之一:
该终端设备在本小区处于RRC连接态时对该第j个邻小区的测量频点;
该终端设备在本小区由RRC连接态进入RRC非激活态或空闲态时对该第j个邻小区的重定向频点。
在一种可能的实施方式中,该确定至少一个邻小区中第j个邻小区的M个SMTC窗口中各 SMTC窗口的时域起始位置和窗口持续时间,包括:根据该第j个邻小区的多个SSB的发送时机,将该多个SSB划分为M个SSB组;根据该M个SSB组中第i个SSB组的第一个SSB的发送时机,确定第i个SMTC窗口的时域起始位置,并根据该第i个SSB组占用的时域长度确定该第i个SMTC窗口的窗口持续时间。
在一种可能的实施方式中,该方法还包括:接收该第j个邻小区的网络设备发送的该第j个邻小区的多个SSB的发送时机,该多个SSB的发送时机用于确定该M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间。
在一种可能的实施方式中,该终端设备处于该M个SMTC窗口下该第j个邻小区的多个SSB覆盖的交叠覆盖区。
上述第二方面以及上述第二方面的各可能的实施方式所提供的基于SMTC窗口的信号测量方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信装置,包括用于执行如上述第一方面或各可能的实施方式中的方法的模块,或者,包括用于执行如上述第二方面或各可能的实施方式中的方法的模块。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面、第二方面或各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如第一方面、第二方面或各可能的实现方式中的方法。
第五方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实现方式中的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第七方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种装置,包括逻辑电路和输入输出接口,其中,该输入输出接口用于接收来自该装置之外的其他通信装置的信号并传输至该逻辑电路或将来自该逻辑电路的信号发送给该装置之外的其他通信装置,该逻辑电路用于执行代码指令以实现如第一方面、第二方面或各可能的实现方式中的方法。
附图说明
图1a为本申请提供的一种SSB的时域资源示意图;
图1b为本申请提供的一种SSB发送时机示意图;
图2为本申请实施例提供的一种卫星通信系统的示意图;
图3为本申请实施例提供的基于SMTC窗口的信号测量方法的示意性交互流程图;
图4为本申请实施例提供的一种SMTC窗口的示意图;
图5为本申请实施例提供的一种交叠覆盖区示意图;
图6是本申请实施例提供的通信装置的示意性框图;
图7是本申请实施例提供的通信装置的另一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、第五代通信(5th-Generation,5G)系统、第六代(6th Generation,6G)移动通信系统或其他通信系统、或者未来的通信系统等。
本申请实施例中所涉及的终端设备,也可以称为用户设备(User Equipment,UE)、接入终 端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、智能可穿戴设备、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站例如,NodeB、演进型基站,例如演进节点B eNodeB、新无线接入技术(new radio access technology,NR)移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等。网络设备可以以中心单元(central unit,CU)和分布式单元(distributed unit,DU)分离的形式为终端设备提供服务。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
在本申请实施例中,终端设备和网络设备均可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如无人机、飞机、气球和卫星上等)。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz及6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz及以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在NR系统中,终端可以在载波上检测邻小区的同步信号块(synchronization signal block,SSB),以测量邻小区和本小区的SSB的信号质量,进而可以上报测量结果,辅助网络设备(例如基站)进行移动性相关决策。在该过程中,网络设备可以基于波束赋形技术实现SSB波束的扫描以完成SSB发送,其中,波束赋形(Beamforming)又叫波束成型、空域滤波,是一种使用传感器阵列定向发送和接收信号的信号处理技术,对每类信道和信号都会形成能量更集中,方向性更强的窄波束。NR小区同步和广播信道共用一个SSB波束,也称为广播波束。终端设备可以在网络设备配置的SMTC窗口内检测SSB。NR地面网络协议要求小区在5ms内完成SSB波束的扫描,也即SSB的发送周期为小于或等于5ms,相应的,终端设备在窗口持续时间小于或等于5ms的SMTC窗口测量SSB。
然而,在一些通信系统中,发送端扫描的SSB波束的数量较多,导致SSB的发送周期较大。例如在卫星通信系统中,由于单星覆盖面积大,通过增多SSB波束的数量才能实现连续的随机接入覆盖,以NTN网络512SSB波束的一种部署为例,结合图1a所示,在每20ms的时域资源中的前4个时隙(slot)部署8个SSB,则完成SSB波束的扫描需要640ms,SSB发送时机和物理随机接入时机(physical random access occasion,RO)参见图1b所示。此种情况下,将SMTC窗口的窗口持续时间限制在5ms之内无法测量邻小区所有的SSB,为了能测量所有的SSB增加SMTC窗口的窗口持续时间则使得测量间隙(gap)无法被调用,占用了通信系统的数据传输资源,对本小区的业务带来较大影响。因此,目前如何通过SMTC窗口对邻小区的SSB进行准确测量,是亟待解决的问题。
针对上述问题,本申请实施例在同一测量周期内配置多个SMTC窗口对SSB进行测量,相比于仅基于一个SMTC窗口测量这一个邻小区的多个SSB,提高了测量的准确性。
图2为本申请实施例提供的一种卫星通信系统的示意图,如图2所示,地面移动终端通过5G新空口接入网络与卫星进行通信,5G基站部署在卫星上,并通过无线链路与地面的核心网相连。同时,在卫星之间存在无线链路,完成基站与基站之间的信令交互和用户数据传输。该场景中,涉及到本申请技术方案的网络设备为基站,终端设备则为图中的终端。图2中的各个网元以及他 们的接口说明如下:
终端为支持5G新空口的移动设备,典型的比如手机,平板(pad)等移动设备。可以通过空口接入卫星网络并发起呼叫,上网等业务。
基站主要是提供无线接入服务,调度无线资源给接入终端,提供可靠的无线传输协议和数据加密协议等。
核心网包括用户接入控制,移动性管理,会话管理,用户安全认证,计费等业务。它有多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(Authentication Management Function,AMF),负责用户接入管理,安全认证,还有移动性管理。用户面功能(user plane function,UPF)负责管理用户面数据的传输,流量统计等功能。
地面站:负责转发卫星基站和核心网之间的信令和业务数据。
新空口为终端和基站之间的无线链路。
Xn接口为5G基站和5G基站之间的接口,主要用于切换等信令交互。
NG接口为5G基站和5G核心网之间接口,主要交互核心网的NAS等信令,以及用户的业务数据。
为便于理解本申请实施例,做出如下几点说明。
第一,“预定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,也可以通过信令预配置,比如网络设备通过信令预配置等方式来实现,本申请对于其具体的实现方式不做限定。
本申请实施例中预设时域间隔可以是预定义的,或者可以是预配置的,或者基站通过无线资源控制(radio resource control,RRC)和/或下行控制信息(downlink control information,DCI)指示的。
第二,本申请实施例中涉及的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
下面将结合附图对本申请实施例提供的通信方法进行说明。
应理解,下文仅为便于理解和说明,主要以终端设备和网络设备之间的交互为例对本申请实施例所提供的方法进行说明。该终端设备例如可以是图2所示的卫星通信系统中的终端,网络设备可以是图2所示的通信系统中的卫星。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行有本申请实施例提供的方法的代码的程序,以执行本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的终端设备也可以替换为终端设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块;下文实施例所示的网络设备也可以替换为网络设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。
图3为本申请实施例提供的基于SMTC窗口的信号测量方法100的示意性交互流程图。如图3所示,该方法100可以包括S110至S130中的部分或者全部过程。下面对方法100中的各个步骤进行说明。
S110,网络设备确定至少一个邻小区中第j个邻小区的M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间(duration),该M个SMTC窗口中第i个SMTC窗口的窗口持续时间用于第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数。
S120,网络设备向终端设备发送配置信息,该配置信息至少用于配置M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间。相应的,终端设备接收网络设备发送的配置信息。
S130,终端设备测量该M个SMTC窗口下该第j个邻小区的多个SSB。
本申请实施例中,M个SMTC窗口中各SMTC窗口的时域起始位置可以均不相同。举例而言,参见图4,第1个SMTC窗口(SMTC窗口#0)的时域起始位置为时隙#0,第2个SMTC窗口(SMTC窗口#1)的时域起始位置为时隙#350。
时域起始位置可以是SSB测量周期内的时域偏移量。也即,该时域起始位置用于指示SMTC窗口在每个SSB测量周期内的起始位置。例如,第1个SMTC窗口在每个SSB测量周期的时域起始位置为每个SSB测量周期中的第一个时隙(时隙#0),第2个SMTC窗口在每个SSB测量周期的时域起始位置为每个SSB测量周期中第351个时隙(时隙350#)。
上述M个SMTC窗口可以分别用于测量一个SSB测量周期内不同的SSB或者不同的SSB组。其中,一个SSB测量周期可以包括一个或者多个SSB的发送周期。例如SSB的发送周期为1280时隙(slot),一个SSB测量周期为1280slot,也即终端设备在每个SSB的发送周期内均对邻小区的SSB进行测量,参见图4;又例如SSB的发送周期为640slot,一个SSB测量周期可以为1280slot,也即终端设备在每两个SSB的发送周期只测量一次邻小区的SSB。
可选的,一个SSB测量周期内可以包括上述M个SMTC窗口,还可以包括其他SMTC窗口,例如用于测量本小区的SMTC窗口,用于测量本小区的SMTC窗口可以由网络设备配置,或者协议定义,或者网络设备通过RRC和/或DCI指示的,本申请对此不作限定。
需要说明的是,本申请实施例仅以在SMTC窗口内对第j个邻小区的SSB测量为例进行说明,但并不对此进行限定。例如终端设备在SMTC窗口中可以对本小区的SSB进行测量,或者对更多的邻小区的SSB进行测量。
还应理解的是,M个SMTC窗口中各SMTC窗口的窗口持续时间可以相同也可以不同。一般来说,M个SMTC窗口中各SMTC窗口占用的时域位置均不重叠,以分别测量不同发送时机的SSB或者不同的SSB组。在一些实施例中,M个SMTC窗口中各SMTC窗口之间具有时域间隔,以使终端设备和网络设备之间可以在SMTC窗口之间的时域资源上进行通信,提高通信效率。当然,本申请也不排除各SMTC窗口的时域位置重叠或者相邻SMTC窗口之间不存在时域间隔的情况。
本申请实施例中,通过M个SMTC窗口测量的第j个邻小区的SSB可以是第j个邻小区的全部SSB,或者可以是第j个邻小区的部分SSB。例如,结合图5所示,通过M个SMTC窗口测量的第j个邻小区的SSB是终端设备所处的交叠覆盖区内所覆盖的SSB,换言之,终端设备处于该M个SMTC窗口所能检测的第j个邻小区的多个SSB覆盖的交叠覆盖区。M个SMTC窗口测量的第j个邻小区的SSB是交叠覆盖区内所覆盖的SSB时,减小了SMTC窗口的窗口持续时间和/或SMTC窗口的数量,进一步减小了对通信资源的占用。
在上述S110中,网络设备可以基于邻小区的多个SSB的发送时机确定M个SMTC窗口的时域起始位置和窗口持续时间,使终端设备可以通过M个SMTC窗口测量邻小区的多个SSB。需要说明的是,本申请实施例以网络设备基于第j个邻小区的SSB的发送时机确定M个SMTC窗口为例进行说明,当SMTC窗口用于测量多个邻小区的SSB时,网络设备可以根据多个邻小区的SSB的发送时机,确定M个SMTC窗口。如前所述,邻小区的多个SSB可以指邻小区的全部SSB或者终端设备所处的交叠覆盖区内邻小区所覆盖的SSB。
示例性的,网络设备可以根据第j个邻小区的多个SSB的发送时机,将该多个SSB划分为M个SSB组。该多个SSB中各SSB占用的时域资源可以是时隙或者时隙中的一个或多个符号,该时隙例如可以是NR时隙或LTE时隙等,本申请对此不做限定,例如,一个时隙中可以发送两个SSB。在每组SSB中,每两个相邻的SSB之间的时域间隔可以小于或等于预设时域间隔,不同SSB组之间(例如第i组中的最后一个SSB和第i+1组中第一个SSB之间)的时域间隔大于预设时域间隔,可选的,预设时域间隔例如可以是7个符号、1个时隙、15个时隙等。例如图4所示,由时隙#0开始2个子帧内发送的各SSB之间的时域间隔小于1个时隙,则组成第1个SSB组,第2个SSB组中第1个SSB(占用时隙#350中的部分或者全部符号)与第1个SSB组的最后一个SSB之间的时域间隔大于1个时隙,且由时隙#350开始2个子帧内发送的各SSB之间的时域间隔小于1个时隙,则由时隙#350开始2个子帧内发送的SSB组成第2个SSB组。
可选的,预设时域间隔可以是协议定义的,或者网络设备预配置的,或者网络设备通过RRC和/或DCI指示的,本申请对此不做限定。
接续上述示例,网络设备针对上述过程中确定的M个SSB组,需要确定与每个SSB组对应的SMTC窗口,以通过SMTC窗口对每个SSB组中的SSB进行测量,换言之,M个SSB组存在 一一对应的M个SMTC窗口。可选的,针对M个SSB组中的第i个SSB组,第i个SMTC窗口的时域起始位置应与该第i个SSB组中第1个SSB的发送时机相同,或者第i个SMTC窗口的时域起始位置早于该第i个SSB组中第1个SSB的发送时机;与之类似的,第i个SMTC窗口的时域截止位置与第i个SSB组中最后一个SSB的发送时机相同,或者第i个SMTC窗口的时域截止位置晚于该第i个SSB组中最后一个SSB的发送时机。基于此,网络设备可以根据M个SSB组中第i个SSB组的第一个SSB的发送时机,确定第i个SMTC窗口的时域起始位置,并根据第i个SSB组占用的时域长度确定第i个SMTC窗口的窗口持续时间。
基于上述示例,第i个SMTC窗口的窗口持续时间内第j个邻小区的最后一个SSB占用的时域资源与第i+1个SMTC窗口的窗口持续时间内第j个邻小区的第一个SSB占用的时域资源之间的时域间隔大于预设时域间隔,而该预设时域间隔大于或等于第i个SMTC窗口与第i+1个SMTC窗口之间的时域间隔,这里第i个SMTC窗口与第i+1个SMTC窗口之间的时域间隔是指第i个SMTC窗口的结束时域位置与第i+1个SMTC窗口的时域开始位置之间的时域间隔。
可选的,M个SMCT窗口的窗口持续时间可以为5ms,或者小于5ms。
第i个SMTC窗口的窗口持续时间内包括第j个邻小区的SSB的数量为mi个,mi为正整数,第j个邻小区的SSB中每两个相邻的SSB之间的时域间隔均小于或等于预设时域间隔。
结合图4所示,第1个SMTC窗口(SMTC窗口#0)的时域起始位置与第j个邻小区的第1个SSB组中第1个SSB(SSB#0)占用的时域资源相同,且第1个SMTC窗口(SMTC窗口#0)的窗口持续时间与第1个SSB组占用的时域资源的长度相同;第2个SMTC窗口(SMTC窗口#1)的时域起始位置与第j个邻小区的第2个SSB组中第1个SSB(SSB#0)占用的时域资源相同,且第2个SMTC窗口(SMTC窗口#1)的窗口持续时间与第2个SSB组占用的时域资源的长度相同。
接续上述示例,第1个SMTC窗口(SMTC窗口#0)的时域起始位置为时隙#0,窗口持续时间为2个子帧(sf2);第2个SMTC窗口(SMTC窗口#1)的时域起始位置为时隙#350,窗口持续时间为sf2。网络设备向终端设备发送的配置信息可以包括:
periodicityAndOffset:slot1280:0//在SSB测量周期(1280slot)内偏移为0的位置为第1个SMTC窗口的时域起始位置
duration:sf2//第1个SMTC窗口的窗口持续时间为2个子帧
periodicityAndOffset:slot1280:350//在SSB测量周期(1280slot)内偏移为350slot的位置为第2个SMTC窗口的时域起始位置
duration:sf2//第2个SMTC窗口的窗口持续时间为2个子帧
上述SSB测量周期也可以表述为SMTC窗口的周期。M个SMTC窗口中各SMTC窗口的周期可以相同也可以不同,本申请对此不做限定,例如第1个SMTC窗口的周期可以与SSB的发送周期相同,第2个SMTC窗口的周期可以是SSB的发送周期的2倍。当各SMTC窗口的周期均相同时,可以降低测量以及调度的复杂度。
可选的,上述配置信息还可以用于配置M个SMTC窗口中各SMTC窗口的周期。
示例性的,本小区的网络设备可以接收第j个邻小区的网络设备发送的该第j个邻小区的多个SSB的发送时机。可选的,本小区的网络设备和第j个邻小区的网络设备之间可以通过Xn接口进行交互,以实现SSB发送时机的传输。
当然,本申请并不对本小区的网络设备和邻小区的网络设备之间的交互方式进行限定,例如本小区的网络设备和第j个邻小区的网络设备之间可以通过NG接口进行交互,以实现SSB发送时机的传输。
在网络设备基于多个邻小区确定SMTC窗口时,与上述示例类似,网络设备可以根据各邻小区的SSB的发送时机,将所有邻小区的SSB划分为M个SSB组,进而确定各SSB组对应的SMTC窗口,使得每个SMTC窗口能够用于测量对应的SSB组中的SSB,具体实现方式与前述示例类似,区别在于划分得到M个SSB组的多个SSB来自于多个邻小区。
本申请实施例中,SSB、SSB组、SMTC窗口、时隙等的标识或者索引均从0开始编号,例如,第1个SSB也即SSB#0,第2个SSB也即SSB#1。当然,本申请并不对此进行限定,例如任 一标识或者索引也可以从1开始编号。
可选的,配置信息可以承载于RRC信令。
可选的,UU接口的标准支持网络设备向终端设备发送配置信息,以配置M个SMTC窗口对第j个邻区的多个SSB进行测量。
本申请实施例中,配置信息配置M个SMTC窗口的过程可以实现于不同的通信场景中。
例如,在同频或异频小区重选频点的场景中,网络设备可以通过配置信息配置同频小区重选频点或异频小区重选频点,例如通过系统信息块(system information block,SIB)2(如intraFreqCellReselectionInfo)配置同频重选频点,通过SIB 4(如InterFreqCarrierFreqInfo)配置异频小区重选频点。
此种情况下,该配置信息为本小区内的公共信令,如网络设备通过公共消息广播同频或者异频频点下邻小区的多个SMTC窗口,当存在多个邻小区时,公共消息广播同频或者异频频点下每个邻小区的多个SMTC窗口,终端设备通过多个SMTC窗口对邻小区的SSB进行测量,避免在SSB波束数量较多的情况下无法基于现有的SMTC窗口完成SSB测量,确保同频和/或异频小区重选的有效进行。
又例如,在终端设备在本小区处于RRC连接态时,配置信息为本小区内该终端设备的专用信令,该专用信令可以用于配置对第j个邻小的测量频点,如通过MeasObjectNR字段,实现RRC连接态测量频点下发。本实施例通过向RRC连接态的终端设备下发各邻小区的多个SMTC窗口,使终端设备通过多个SMTC窗口测量邻小区的多个SSB,针对卫星系统SSB发送数量多、发送周期长、发送时机离散的情况,提高了终端设备测量的有效性。
再例如,在终端设备在本小区由RRC连接态进入RRC非激活态或空闲态时,配置信息为专用信令,该专用信令用于配置对第j个邻小区的重定向频点。该专用信令例如可以是RRC释放消息(如CarrierInfoNR)。本实施例通过RRC释放消息配置重定向频点下各邻小区的多个SMTC窗口,使终端设备通过多个SMTC窗口测量邻小区的多个SSB,针对卫星系统SSB发送数量多、发送周期长、发送时机离散的情况,提高了终端设备测量的有效性。
在上述S130中,终端设备可以测量M个SMTC窗口中各SMTC窗口下第j个邻小区的多个SSB,例如终端设备可以在第1个SMTC窗口测量第j个邻小区的网络设备发送的第1个SSB组,在第2个SMTC窗口测量第j个邻小区的网络设备发送的第2个SSB组……直至终端设备在第M个SMTC窗口测量第j个邻小区的网络设备发送的第M个SSB组后完成一个周期的SSB测量。可选的,终端设备可以根据各SMTC窗口的周期,周期性测量第j个邻小区的多个SSB,例如,针对第1个SMTC窗口,终端设备可以在第1个SMTC窗口于第2个SSB测量周期的时域位置,测量该第1个SMTC窗口内的SSB组(如第1个SSB组)。
终端设备可以仅对至少一个邻小区中的第j个邻小区的多个SSB进行测量,或者终端设备还可以对至少一个邻小区中除第j个邻小区之外的部分或者全部邻小区进行SSB测量。当终端设备对除第j个邻小区之外的部分或者全部邻小区进行SSB测量时,其实现方式可以参照对第j个邻小区的SSB测量过程,也即网络设备可以确定各邻小区对应的至少两个SMTC窗口各自的时域起始位置和窗口持续时间,进而向终端设备配置该至少两个SMTC窗口,以使终端设备测量至少两个SMTC窗口下对应的邻小区的多个SSB。
在一些实施例中,网络设备可以根据各邻小区(或者终端设备所处的交叠覆盖区)的SSB的发送数量,确定各邻小区的SMTC窗口的数量,对于SSB发送数量较少的邻小区(例如5ms内完成SSB波束的扫描),网络设备可以对该邻小区配置一个SMTC窗口,对于SSB发送数量较多(例如5ms内无法完成SSB波束的扫描)的邻小区,网络设备可以对该小区配置两个或者两个以上的SMTC窗口。
在一些实施例中,终端设备测量第j个邻小区的多个SSB之后,可以向网络设备上报测量结果,上报的测量结果中还可以包括终端设备对本小区的SSB的测量结果,使网络设备可以基于终端设备上报的测量结果进行移动性相关决策。
因此,本申请实施例通过配置M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,使终端设备可以通过M个SMTC窗口测量第j个邻小区的多个SSB,通过设计多个SMTC 窗口,可实现对同一邻小区多个SSB的测量,相比于仅基于一个SMTC窗口测量这一个邻小区的多个SSB,提高了测量的准确性。
图6是本申请实施例提供的通信装置的示意性框图。如图6所示,该装置200可以包括:收发模块210和处理模块220。
可选地,该通信装置200可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如,芯片或芯片系统等)。
其中,当通信装置200用于执行终端侧的方法时,收发模块210可以用于接收网络设备发送的配置信息,该配置信息至少用于配置M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,该M个SMTC窗口中的第i个SMTC窗口的窗口持续时间用于至少一个邻小区中第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数;处理模块220可以用于测量该M个SMTC窗口下该第j个邻小区的多个SSB。
应理解,各模块执行的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置200可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如,芯片或芯片系统等)。
其中,当通信装置200用于执行网络侧的方法时,处理模块220可以用于确定至少一个邻小区中第j个邻小区的M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,该M个SMTC窗口中第i个SMTC窗口的窗口持续时间用于该第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数;收发模块210可以用于向终端设备发送配置信息,该配置信息至少用于配置该M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间。
应理解,各模块执行的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
当该通信装置200为终端设备时,该通信装置200中的收发单元210可以通过收发器实现,例如可对应于图7中所示的通信装置300中的收发器310,该通信装置200中的处理单元220可通过至少一个处理器实现,例如可对应于图7中示出的通信装置300中的处理器320。
当该通信装置200为网络设备时,该通信装置200中的收发单元210可以通过收发器实现,例如可对应于图7中所示的通信装置300中的收发器310,该通信装置200中的处理单元220可通过至少一个处理器实现,例如可对应于图7中示出的通信装置300中的处理器320。
当该通信装置200为配置于通信设备(如终端设备或网络设备)中的芯片或芯片系统时,该通信装置200中的收发单元210可以通过输入/输出接口、电路等实现,该通信装置200中的处理单元220可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图7是本申请实施例提供的通信装置的另一示意性框图。如图7所示,该通信装置300可以包括:收发器310、处理器320和存储器330。其中,收发器310、处理器320和存储器330通过内部连接通路互相通信,该存储器330用于存储指令,该处理器320用于执行该存储器330存储的指令,以控制该收发器310发送信号和/或接收信号。
应理解,该通信装置300可以对应于上述方法实施例中的终端设备或网络设备,并且可以用于执行上述方法实施例中终端设备或网络设备执行的各个步骤和/或流程。可选地,该存储器330可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器330可以是一个单独的器件,也可以集成在处理器320中。该处理器320可以用于执行存储器330中存储的指令,并且当该处理器320执行存储器中存储的指令时,该处理器320用于执行上述与终端设备或网络设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置300是前文实施例中的终端设备。
可选地,该通信装置300是前文实施例中的网络设备。
其中,收发器310可以包括发射机和接收机。收发器310还可以进一步包括天线,天线的数量可以为一个或多个。该处理器320和存储器330与收发器310可以是集成在不同芯片上的器件。 如,处理器320和存储器330可以集成在基带芯片中,收发器310可以集成在射频芯片中。该处理器320和存储器330与收发器310也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置300是配置在终端设备中的部件,如芯片、芯片系统等。
可选地,该通信装置300是配置在网络设备中的部件,如芯片、芯片系统等。
其中,收发器320也可以是通信接口,如输入/输出接口、电路等。该收发器320与处理器310和存储器330都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储 器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的终端设备和网络设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种基于同步信号块测量时间配置SMTC窗口的信号测量方法,其特征在于,应用于终端设备或者终端设备中的芯片系统,包括:
    接收网络设备发送的配置信息,所述配置信息至少用于配置M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,所述M个SMTC窗口中的第i个SMTC窗口的窗口持续时间用于至少一个邻小区中第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数;
    测量所述M个SMTC窗口下所述第j个邻小区的多个SSB。
  2. 根据权利要求1所述的方法,其特征在于,所述第i个SMTC窗口的窗口持续时间内所述第j个邻小区的最后一个SSB占用的时域资源与第i+1个SMTC窗口的窗口持续时间内所述第j个邻小区的第一个SSB占用的时域资源之间的时域间隔大于预设时域间隔,所述预设时域间隔大于或等于所述第i个SMTC窗口与所述第i+1个SMTC窗口之间的时域间隔。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第i个SMTC窗口的窗口持续时间内包括第j个邻小区的SSB的数量为mi个,所述第j个邻小区的SSB中每两个相邻的SSB之间的时域间隔均小于或等于预设时域间隔,mi为正整数。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述配置信息还用于配置所述M个SMTC窗口中各SMTC窗口的周期。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述终端设备处于所述M个SMTC窗口下所述第j个邻小区的多个SSB覆盖的交叠覆盖区。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,
    所述配置信息为公共信令时,所述公共信令用于配置所述第j个邻小区的以下之一:
    同频重选频点;
    异频重选频点;
    所述配置信息为专用信令时,所述专用信令用于配置所述第j个邻小区的以下之一:
    所述终端设备在本小区处于RRC连接态时对所述第j个邻小区的测量频点;
    所述终端设备在本小区由RRC连接态进入RRC非激活态或空闲态时对所述第j个邻小区的重定向频点。
  7. 一种基于SMTC窗口的信号测量方法,其特征在于,应用于网络设备或者网络设备中的芯片系统,包括:
    确定至少一个邻小区中第j个邻小区的M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,所述M个SMTC窗口中第i个SMTC窗口的窗口持续时间用于所述第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数;
    向终端设备发送配置信息,所述配置信息至少用于配置所述M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间。
  8. 根据权利要求7所述的方法,其特征在于,所述第i个SMTC窗口的窗口持续时间内所述第j个邻小区的最后一个SSB占用的时域资源与第i+1个SMTC窗口的窗口持续时间内所述第j个邻小区的第一个SSB占用的时域资源之间的时域间隔大于预设时域间隔,所述预设时域间隔大于或等于所述第i个SMTC窗口与所述第i+1个SMTC窗口之间的时域间隔。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第i个SMTC窗口的窗口持续时间内包括第j个邻小区的SSB的数量为mi个,所述第j个邻小区的SSB中每两个相邻的SSB之间的时域间隔均小于或等于预设时域间隔。
  10. 根据权利要求7至9任一项所述的方法,其特征在于,所述配置信息还用于配置所述M个SMTC窗口中各SMTC窗口的周期。
  11. 根据权利要求7至10任一项所述的方法,其特征在于,
    所述配置信息为公共信令时,所述公共信令用于配置所述第j个邻小区的以下之一:
    同频重选频点;
    异频重选频点;
    所述配置信息为专用信令时,所述专用信令用于配置所述第j个邻小区的以下之一:
    所述终端设备在本小区处于RRC连接态时对所述第j个邻小区的测量频点;
    所述终端设备在本小区由RRC连接态进入RRC非激活态或空闲态时对所述第j个邻小区的重定向频点。
  12. 根据权利要求7至11任一所述的方法,其特征在于,所述确定至少一个邻小区中第j个邻小区的M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,包括:
    根据所述第j个邻小区的多个SSB的发送时机,将所述多个SSB划分为M个SSB组;
    根据所述M个SSB组中第i个SSB组的第一个SSB的发送时机,确定第i个SMTC窗口的时域起始位置,并根据所述第i个SSB组占用的时域长度确定所述第i个SMTC窗口的窗口持续时间。
  13. 根据权利要求7至12任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第j个邻小区的网络设备发送的所述第j个邻小区的多个SSB的发送时机,所述多个SSB的发送时机用于确定所述M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间。
  14. 根据权利要求7至13任一项所述的方法,其特征在于,所述终端设备处于所述M个SMTC窗口下所述第j个邻小区的多个SSB覆盖的交叠覆盖区。
  15. 一种通信装置,其特征在于,包括:
    收发模块,用于接收网络设备发送的配置信息,所述配置信息至少用于配置M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,所述M个SMTC窗口中的第i个SMTC窗口的窗口持续时间用于至少一个邻小区中第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数;
    处理模块,用于测量所述M个SMTC窗口下所述第j个邻小区的多个SSB。
  16. 根据权利要求15所述的装置,其特征在于,所述第i个SMTC窗口的窗口持续时间内所述第j个邻小区的最后一个SSB占用的时域资源与第i+1个SMTC窗口的窗口持续时间内所述第j个邻小区的第一个SSB占用的时域资源之间的时域间隔大于预设时域间隔,所述预设时域间隔大于或等于所述第i个SMTC窗口与所述第i+1个SMTC窗口之间的时域间隔。
  17. 根据权利要求15或16所述的装置,其特征在于,所述第i个SMTC窗口的窗口持续时间内包括第j个邻小区的SSB的数量为mi个,所述第j个邻小区的SSB中每两个相邻的SSB之间的时域间隔均小于或等于预设时域间隔,mi为正整数。
  18. 根据权利要求15至17任一项所述的装置,其特征在于,所述配置信息还用于配置所述M个SMTC窗口中各SMTC窗口的周期。
  19. 根据权利要求15至18任一项所述的装置,其特征在于,所述通信装置处于所述M个SMTC窗口下所述第j个邻小区的多个SSB覆盖的交叠覆盖区。
  20. 根据权利要求15至19任一项所述的装置,其特征在于,
    所述配置信息为公共信令时,所述公共信令用于配置所述第j个邻小区的以下之一:
    同频重选频点;
    异频重选频点;
    所述配置信息为专用信令时,所述专用信令用于配置所述第j个邻小区的以下之一:
    所述通信装置在本小区处于RRC连接态时对所述第j个邻小区的测量频点;
    所述通信装置在本小区由RRC连接态进入RRC非激活态或空闲态时对所述第j个邻小区的重定向频点。
  21. 一种通信装置,其特征在于,包括:
    处理模块,用于确定至少一个邻小区中第j个邻小区的M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间,所述M个SMTC窗口中第i个SMTC窗口的窗口持续时间用于所述第j个邻小区的SSB的测量,M为大于1的整数,i为大于或等于1,且小于或等于M的整数,j为大于或等于1的整数;
    收发模块,用于向终端设备发送配置信息,所述配置信息至少用于配置所述M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间。
  22. 根据权利要求21所述的装置,其特征在于,所述第i个SMTC窗口的窗口持续时间内所述第j个邻小区的最后一个SSB占用的时域资源与第i+1个SMTC窗口的窗口持续时间内所述第j个邻小区的第一个SSB占用的时域资源之间的时域间隔大于预设时域间隔,所述预设时域间隔大于或等于所述第i个SMTC窗口与所述第i+1个SMTC窗口之间的时域间隔。
  23. 根据权利要求21或22所述的装置,其特征在于,所述第i个SMTC窗口的窗口持续时间内包括第j个邻小区的SSB的数量为mi个,所述第j个邻小区的SSB中每两个相邻的SSB之间的时域间隔均小于或等于预设时域间隔。
  24. 根据权利要求21至23任一项所述的装置,其特征在于,所述配置信息还用于配置所述M个SMTC窗口中各SMTC窗口的周期。
  25. 根据权利要求21至24任一项所述的装置,其特征在于,
    所述配置信息为公共信令时,所述公共信令用于配置所述第j个邻小区的以下之一:
    同频重选频点;
    异频重选频点;
    所述配置信息为专用信令时,所述专用信令用于配置所述第j个邻小区的以下之一:
    所述终端设备在本小区处于RRC连接态时对所述第j个邻小区的测量频点;
    所述终端设备在本小区由RRC连接态进入RRC非激活态或空闲态时对所述第j个邻小区的重定向频点。
  26. 根据权利要求21至25任一所述的装置,其特征在于,所述处理模块具体用于:
    根据所述第j个邻小区的多个SSB的发送时机,将所述多个SSB划分为M个SSB组;
    根据所述M个SSB组中第i个SSB组的第一个SSB的发送时机,确定第i个SMTC窗口的时域起始位置,并根据所述第i个SSB组占用的时域长度确定所述第i个SMTC窗口的窗口持续时间。
  27. 根据权利要求21至26任一项所述的装置,其特征在于,所述收发模块还用于:
    接收所述第j个邻小区的网络设备发送的所述第j个邻小区的多个SSB的发送时机,所述多个SSB的发送时机用于确定所述M个SMTC窗口中各SMTC窗口的时域起始位置和窗口持续时间。
  28. 根据权利要求21至27任一项所述的装置,其特征在于,所述通信装置处于所述M个SMTC窗口下所述第j个邻小区的多个SSB覆盖的交叠覆盖区。
  29. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至12中任一项所述的方法。
  30. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有所述芯片的设备执行如权利要求1至12中任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至12中任一项所述的方法。
  32. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至12中任一项所述的方法。
PCT/CN2023/118370 2022-09-29 2023-09-12 基于smtc窗口的信号测量方法、装置以及存储介质 WO2024067075A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211198943.0 2022-09-29
CN202211198943.0A CN117793739A (zh) 2022-09-29 2022-09-29 基于smtc窗口的信号测量方法、装置以及存储介质

Publications (1)

Publication Number Publication Date
WO2024067075A1 true WO2024067075A1 (zh) 2024-04-04

Family

ID=90384088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118370 WO2024067075A1 (zh) 2022-09-29 2023-09-12 基于smtc窗口的信号测量方法、装置以及存储介质

Country Status (2)

Country Link
CN (1) CN117793739A (zh)
WO (1) WO2024067075A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913444A (zh) * 2019-12-25 2020-03-24 展讯通信(上海)有限公司 一种待机态的nr小区测量方法及装置
CN110972289A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 无线资源管理rrm测量的方法和装置
US20200374735A1 (en) * 2019-08-13 2020-11-26 Intel Corporation Signaling enhancements of smtc configuration for an iab mt
CN114760665A (zh) * 2017-03-24 2022-07-15 瑞典爱立信有限公司 新无线电中的小区重选测量窗口

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114760665A (zh) * 2017-03-24 2022-07-15 瑞典爱立信有限公司 新无线电中的小区重选测量窗口
CN110972289A (zh) * 2018-09-28 2020-04-07 华为技术有限公司 无线资源管理rrm测量的方法和装置
US20200374735A1 (en) * 2019-08-13 2020-11-26 Intel Corporation Signaling enhancements of smtc configuration for an iab mt
CN110913444A (zh) * 2019-12-25 2020-03-24 展讯通信(上海)有限公司 一种待机态的nr小区测量方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on measurement requirements for NTN", 3GPP TSG-RAN WG4 MEETING #101-BIS-E, R4-2201632, 10 January 2022 (2022-01-10), XP052092408 *

Also Published As

Publication number Publication date
CN117793739A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US11864038B2 (en) Method and user equipment for performing initial beam alignment during random access (RACH) procedure
JP7094979B2 (ja) チャネルフィードバックフレームワークを介する同期信号を使用するビーム管理
TW201902248A (zh) 共享射頻頻譜頻帶中的系統獲取
EP3577813B1 (en) Implicit system information (si) content variation enabling soft combining
TWI812691B (zh) 信號傳輸的方法、網路設備和終端設備
KR102584215B1 (ko) 측정 간격의 구성 방법 및 네트워크 노드
WO2020000269A1 (zh) 传输信号的方法、网络设备和终端设备
WO2021196965A1 (zh) 一种测量间隙的配置方法及装置
JP2024053043A (ja) 情報の送信方法、装置、および記憶媒体
WO2019158071A1 (zh) 信号传输的方法和装置
US20230308141A1 (en) Communication Method, Device, and System
WO2023061255A1 (zh) 一种通信方法
WO2019178776A1 (zh) 传输信息的方法和设备
JP2020500443A (ja) ビームフォーミング情報の交換方法及びネットワーク機器
CN113923750A (zh) 接入小区的方法和装置
WO2021062775A1 (zh) 一种寻呼消息的检测方法、装置及通信设备
US11792831B2 (en) Method and device for signal transmission
WO2022027811A1 (zh) 无线通信的方法、终端设备和网络设备
US20230354118A1 (en) Wireless communication method, terminal device and network device
CN112399498B (zh) 用于小区测量的方法和装置
WO2024067075A1 (zh) 基于smtc窗口的信号测量方法、装置以及存储介质
WO2022028558A1 (zh) 通信的方法、通信装置及系统
WO2024061077A1 (zh) 一种通信方法及装置
US11758495B2 (en) Signal transmission method and apparatus and computer storage medium
WO2023273935A1 (zh) 下行控制信息的接收方法、信息的发送方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870312

Country of ref document: EP

Kind code of ref document: A1