WO2024067024A1 - 一种天线的配置方法、装置及设备 - Google Patents

一种天线的配置方法、装置及设备 Download PDF

Info

Publication number
WO2024067024A1
WO2024067024A1 PCT/CN2023/117750 CN2023117750W WO2024067024A1 WO 2024067024 A1 WO2024067024 A1 WO 2024067024A1 CN 2023117750 W CN2023117750 W CN 2023117750W WO 2024067024 A1 WO2024067024 A1 WO 2024067024A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement data
antenna
antenna parameter
parameter combination
service
Prior art date
Application number
PCT/CN2023/117750
Other languages
English (en)
French (fr)
Inventor
耿海建
黄志良
饶琼
龚政委
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067024A1 publication Critical patent/WO2024067024A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communication technology, and in particular to a method, device and equipment for configuring an antenna.
  • multi-band coordination (MBC) technology can achieve complementary characteristics between spectrums.
  • MBC technology can achieve inter-band carrier aggregation between multiple frequency points or multi-band coordination of long-term evolution (LTE) and new radio (NR) in non-stand-alone (NSA) scenarios, thereby achieving complementarity between performance coverage and capacity.
  • LTE long-term evolution
  • NR new radio
  • NSA non-stand-alone
  • Multi-frequency homogeneity means that the antenna parameters of multiple frequency points are the same, but due to the multi-frequency homogeneity, the coverage characteristics of different frequency points are the same.
  • Multi-frequency heterogeneity means that the antenna parameters of multiple frequency points are different, but the current multi-frequency heterogeneity antenna parameters are designed based on the preset network model and/or existing engineering parameters. For example, if the service characteristics in the actual system are significantly different from the preset network model, the reception performance of the devices in the network will be poor, resulting in reduced network coverage performance, reduced spectrum efficiency, and reduced throughput.
  • the present application provides an antenna configuration method, apparatus and device, in which the parameters of the multi-frequency heterogeneous antenna can be adjusted based on the measurement data fed back by the terminal device, thereby facilitating improving the spectrum efficiency and throughput of the network.
  • the present application provides a method, apparatus and device for configuring an antenna, which can be applied to an access network device, wherein the access network device includes a first frequency point and a second frequency point, and multiple frequency points correspond to multiple sets of antennas.
  • the method is executed by the access network device, and can also be executed by a component of the access network device (such as a processor, a chip, or a chip system, etc.), and can also be implemented by a logic module or software that can realize all or part of the functions of the access network device.
  • the access network device receives first measurement data from a terminal device, and adjusts the parameters of the antenna (such as multiple sets of antennas corresponding to multiple frequency points) from a first antenna parameter combination to a second antenna parameter combination according to the first measurement data.
  • the first antenna parameter combination includes the first antenna parameter of the first frequency point and the first antenna parameter of the second frequency point
  • the second antenna parameter combination includes the second antenna parameter of the first frequency point and the second antenna parameter of the second frequency point.
  • the access network equipment can adjust the antenna parameters according to the measurement data fed back by the terminal equipment in real time. That is, the antenna parameters can change over time, which is conducive to different antenna parameters being able to adapt to different service characteristics in real time, which is conducive to improving the receiving performance of the equipment in the network (for example, improving the reference signal receiving power of the terminal equipment), thereby helping to improve the spectrum efficiency and throughput of the network.
  • the access network device determines a first utility indicator corresponding to the first measurement data, and determines a second antenna parameter combination based on the first utility indicator.
  • the measurement data is data measured by a terminal device in a frequency point network, and the utility indicator is used to indicate networking performance.
  • the utility indicator corresponding to the measurement data is a statistical distribution characteristic value of the RSRP level.
  • the access network device can convert the first measurement data fed back by the terminal device into a first utility indicator for indicating the networking performance. If the first utility indicator is lower than the utility indicator expected by the network (that is, the networking performance is poor when the first antenna parameter combination is used), the access network device can adjust the antenna parameters from the first antenna parameter combination to the second antenna parameter combination, which is conducive to improving the networking performance.
  • the access network device receives X groups of measurement data from the terminal device, wherein any group of measurement data in the X groups of measurement data includes measurement data of a first frequency point and measurement data of a second frequency point, the X groups of measurement data include the first measurement data, and X is a positive integer.
  • the access network device can receive multiple groups of measurement data fed back by the terminal under different antenna parameter combinations. For example, at a first moment, the access network device receives a first group of measurement data from the terminal device, and the first group of measurement data includes measurement data fed back by the terminal device in the network at the first frequency point and measurement data fed back by the terminal device in the network at the second frequency point when the first antenna parameter combination is used for the first frequency point and the second frequency point at the first moment.
  • the access network device receives a second group of measurement data from the terminal device, and the second group of measurement data
  • the data includes measurement data fed back by terminal devices in the network of the first frequency point and measurement data fed back by terminal devices in the network of the second frequency point when the first frequency point and the second frequency point adopt the second antenna parameter combination at the second moment.
  • the measurement data includes a signal-to-noise ratio SNR or a reference signal received power RSRP.
  • the access network device determines X utility indicators based on X groups of measurement data, wherein each group of measurement data in the X groups of measurement data corresponds to a utility indicator; and then, based on a service feature, determines an antenna parameter combination corresponding to a maximum value of the X utility indicators that matches the service feature as a second antenna parameter combination.
  • the access network device determines the antenna parameter combination not only based on the real-time terminal measurement feedback, but also based on the service characteristics.
  • Different measurement data correspond to different utility indicators.
  • the utility indicator corresponding to the measurement data is the channel quality index CQI level corresponding to SNR; or, when the measurement data is RSRP, the utility indicator corresponding to the measurement data is the RSRP level corresponding to RSRP.
  • the utility indicator corresponding to the measurement data is the throughput or spectrum efficiency corresponding to SNR.
  • the access network device can convert the X groups of measurement data fed back by the terminal device into X utility indicators for indicating the networking performance.
  • the maximum value (that is, the value with the best networking performance) is selected from the utility indicators matching the service characteristics, the antenna parameter combination corresponding to the maximum value is obtained, and the antenna parameters are adjusted to the antenna parameter combination corresponding to the maximum value, thereby improving the networking performance.
  • the antenna parameters when adjusting antenna parameters, you can only adjust the parameters of some antennas, such as adjusting only the antenna parameters of the first frequency point and not adjusting the antenna parameters of the second frequency point; you can also adjust the parameters of all antennas, such as adjusting the antenna parameters of the first frequency point and the antenna parameters of the second frequency point.
  • the service characteristics include one or more of a service time period, a user location distribution, and a measurement feedback distribution; wherein the user location distribution includes the angular range of the terminal device; the measurement feedback distribution includes the proportion of terminal devices with different channel quality index levels and/or the proportion of terminal devices with different reference signal receiving power levels.
  • the service time period can be divided into multiple sections in chronological order, and each section represents a service feature.
  • the horizontal coordinate of the user location distribution is the angular range of the terminal device
  • the vertical coordinate of the user location distribution is the probability of the angular range of the terminal device.
  • Each group of angular ranges and corresponding probabilities represent a service feature.
  • the angular range of the terminal device is determined according to the geographical location and angle of the terminal device.
  • the horizontal coordinate of the measurement feedback distribution is the CQI level, and the vertical coordinate is the proportion of terminal devices at the CQI level; or, the horizontal coordinate of the measurement feedback distribution is the RSRP level, and the vertical coordinate is the proportion of terminal devices at the RSRP level.
  • Each group of CQI levels represents a service feature, or each group of RSRP levels represents a service feature.
  • the user location distribution in the service feature is the user location distribution in a time period before the current time period, or the user location distribution is predicted based on the user location distribution in a time period before the current time period.
  • the access network device can directly use the user location distribution of the previous time period of the current time period. For example, the access network device obtains the user location distribution from 10 to 12 o'clock as the service feature, and also uses the user location distribution from 10 to 12 o'clock as the service feature from 12 to 14 o'clock, which is conducive to simplifying the processing flow of the access network device.
  • the access network device can predict the user location distribution of the current time period. For example, the access network device obtains the user location distribution from 10 to 12 o'clock, and uses the user location distribution from 10 to 12 o'clock to predict the user location distribution from 12 to 14 o'clock (the user location distribution of adjacent time periods may not change much), thereby determining the service feature.
  • the X utility indicators of the service feature include one or more of the following: statistical distribution characteristic values of X channel quality index levels of the service time period, statistical distribution characteristic values of X reference signal received power levels of the service time period, and statistical distribution characteristic values of X directional angle ranges of the service time period.
  • the utility index of the service feature is specifically defined when the service feature includes the service time period.
  • the X utility indexes of the service feature include one or more of the following: the statistical distribution characteristic values of the X CQI levels at 10-12 o'clock of the service time period (for example, the proportion of terminal devices with high CQI level, the proportion of terminal devices with medium CQI level and the proportion of terminal devices with low CQI level at 10-12 o'clock), the statistical distribution characteristic values of the X RSRP levels at 10-12 o'clock of the service time period (for example, the proportion of terminal devices with the first RSRP level at 10-12 o'clock, the proportion of terminal devices with the second RSRP level, etc.), the statistical distribution characteristic values of the X directional angle ranges at 10-12 o'clock of the service time period (for example, the proportion of terminal devices with the first directional angle range at 10-12 o'clock, the proportion of terminal devices with
  • each service feature can correspond to a different utility index.
  • the utility index of each service time period may include one or more of the above utility indexes.
  • the X utility indicators of the service feature include one or more of the following: statistical distribution characteristic values of X channel quality index levels of the user location distribution, or statistical distribution characteristic values of X reference signal received power levels of the user location distribution.
  • the utility index of the service feature is specifically defined when the service feature includes the user location distribution.
  • the X utility indicators of the service feature include one or more of the following: the statistical distribution characteristic values of the X CQI levels in the first angular range (for example, the proportion of terminal devices with high CQI levels, the proportion of terminal devices with medium CQI levels, and the proportion of terminal devices with low CQI levels in the angular range of 0-90 degrees), or, the statistical distribution characteristic values of the X RSRP levels in the first angular range (for example, the proportion of terminal devices with the first RSRP level, the proportion of terminal devices with the second RSRP level in the angular range of 0-90 degrees, etc.).
  • each service feature can correspond to a different utility indicator.
  • the utility indicator of each user position distribution can include one or more of the above-mentioned utility indicators.
  • the X utility indicators of the service feature include statistical distribution characteristic values of X directional angle ranges of the measurement feedback distribution.
  • the utility index of the service feature is specifically defined when the service feature includes the measurement feedback distribution.
  • the X utility indexes of the service feature include the statistical distribution characteristic values of the X directional angle ranges of the first RSRP level (for example, the proportion of terminal devices in the first directional angle range in the first RSRP level, the proportion of terminal devices in the second directional angle range, etc.).
  • the X utility indexes of the service feature include the statistical distribution characteristic values of the X directional angle ranges of the high CQI level (for example, the proportion of terminal devices in the first directional angle range in the high CQI level, the proportion of terminal devices in the second directional angle range, etc.).
  • each service feature can correspond to different utility indicators.
  • the utility index of each measurement feedback distribution can include one or more of the above-mentioned utility indicators.
  • the access network device before receiving the first measurement data from the terminal device, configures the antenna parameters as a first antenna parameter combination, where the first antenna parameter combination is an initial default value.
  • the access network device may preset a first antenna parameter combination (for example, preset a group of antenna parameter combinations according to specific networking parameters) to complete the initialization of networking optimization.
  • a first antenna parameter combination for example, preset a group of antenna parameter combinations according to specific networking parameters
  • the antenna parameters include one or more of a horizontal direction angle, a vertical direction angle, a horizontal beam width, and a vertical beam width.
  • the present application provides a communication device, which may be an access network device, or a device in an access network device, or a device that can be used in combination with an access network device.
  • the communication device may include a module that executes a method/operation/step/action described in the first aspect and any possible implementation of the first aspect, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the communication device may include a processing unit and a communication unit.
  • the specific description of the method executed by the access network device can refer to the corresponding description in the above-mentioned first aspect and any possible implementation of the first aspect, which will not be repeated here. It can be understood that the communication device can also achieve the effect that can be achieved in the first aspect.
  • the present application provides an access network device, comprising: a processor, the processor is coupled to a memory, the memory is used to store instructions, when the instructions are executed by the processor, the terminal device implements the method in the above-mentioned first aspect and any possible implementation manner of the first aspect.
  • the present application provides a computer-readable storage medium storing instructions, which, when executed on a computer, enables the computer to execute the method in the first aspect and any possible implementation of the first aspect.
  • the present application provides a chip system, which includes a processor and an interface, and may also include a memory, for implementing the functions of the method in the first aspect and any possible implementation of the first aspect.
  • the chip system may be composed of a chip, or may include a chip and other discrete devices.
  • the present application provides a computer program product, comprising instructions, which, when executed on a computer, enable the computer to execute the method in the first aspect and any possible implementation of the first aspect.
  • FIG1 is a schematic diagram of a communication system provided by the present application.
  • FIG2 is a schematic diagram of an access network device using a time-varying and configurable multi-frequency heterogeneous antenna provided by the present application;
  • FIG3 is a schematic diagram of a flow chart of a method for configuring an antenna provided in the present application.
  • FIG4 is a schematic diagram of a flow chart of adjusting antenna parameters provided by the present application.
  • FIG5 is a schematic diagram of another process of adjusting antenna parameters provided by the present application.
  • FIG6 is a schematic diagram of an antenna configuration device provided by the present application.
  • FIG. 7 is a schematic diagram of an access network device provided in the present application.
  • A/B can indicate A or B
  • a and/or B can indicate: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • words such as “first” and “second” can be used to distinguish technical features with the same or similar functions. The words such as “first” and “second” do not limit the quantity and execution order, and the words such as “first” and “second” do not necessarily limit the difference.
  • the present application provides an antenna configuration method, which is conducive to improving the spectrum efficiency and throughput of the network.
  • FIG1 is a schematic diagram of a communication system provided in the present application, wherein the communication system includes a terminal device and an access network device, and the terminal device and the access network device are communicatively connected.
  • the communication systems mentioned in this application include but are not limited to: narrowband Internet of things (NB-IoT), global system for mobile communications (GSM), enhanced data rate for GSM evolution (EDGE), wideband code division multiple access (WCDMA), code division multiple access 2000 (CDMA2000), time division synchronous code division multiple access (TD-SCDMA), and 5G wireless communication.
  • NB-IoT narrowband Internet of things
  • GSM global system for mobile communications
  • EDGE enhanced data rate for GSM evolution
  • WCDMA wideband code division multiple access
  • CDMA2000 code division multiple access 2000
  • TD-SCDMA time division synchronous code division multiple access
  • 5G wireless communication The three major application scenarios of 5G mobile communication systems are enhanced mobile broadband (eMBB), ultra-reliable and low latency communications (URLLC) and enhanced machine-type communications (eMTC) as well as future communication systems (such as 6G/7G, etc.).
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • eMTC
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal devices are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, drones, virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, terminal devices in 5G networks, terminal devices in future evolved PLMN networks or terminal devices in future communication systems, etc.
  • Access network equipment refers to the radio access network (RAN) node (or device) that connects terminal devices to the wireless network, which can also be called a base station.
  • RAN nodes are: evolved Node B (gNB), transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home Node B, HNB), base band unit (BBU), or wireless fidelity (Wifi) access point (AP), satellite in satellite communication system, wireless controller in cloud radio access network (CRAN) scenario, wearable device, drone, or device in Internet of Vehicles (e.g., vehicle to everything (V2X)), or communication device in device to device (D2D) communication, etc.
  • V2X vehicle to everything
  • D2D communication device to device
  • the access network device may include a centralized unit (CU) node, a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • the RAN device including the CU node and the DU node splits the protocol layer of the eNB in the long term evolution (LTE) system, places the functions of some protocol layers in the CU for centralized control, and distributes the functions of the remaining part or all of the protocol layers in the DU, and the DU is centrally controlled by the CU.
  • LTE long term evolution
  • FIG2 is an access network device with a multi-frequency heterogeneous antenna provided by the present application, and the access network device includes multiple cells (for example, the first cell, the second cell, and the third cell in FIG2). It includes multiple frequency points (for example, the first cell includes the first frequency point and the second frequency point), and the multiple frequency points correspond to multiple sets of antennas, and the antenna parameters of different antennas are different (that is, the antenna parameters of different frequency points are different).
  • the first frequency point is shown as the dotted curve in Figure 2
  • the second frequency point is shown as the solid curve in Figure 2
  • the antenna parameters of the first frequency point are different from the antenna parameters of the second frequency point, therefore, the coverage area formed by the first frequency point (for example, the dotted straight line in Figure 2) and the coverage area formed by the second frequency point (for example, the solid straight line in Figure 2) are also different, that is, as shown in the first coverage area and the second coverage area in Figure 2.
  • Figure 2 is only an example and does not limit the number of cells and the number of frequency points of the access network equipment in this application.
  • antenna parameters of an antenna are used to configure the antenna angle and/or beam width of the antenna so that the coverage area formed by the antenna (the antenna can also be referred to by the center frequency of the antenna, and the frequency in the following text refers to the center frequency) points to a certain area, and the signal strength in the area meets certain signal strength conditions.
  • antenna parameters may include but are not limited to horizontal direction angle, vertical direction angle, horizontal beam width, and vertical beam width.
  • the first antenna parameter combination includes the first antenna parameter of the first frequency point and the first antenna parameter of the second frequency point; at the second moment, the second antenna parameter combination includes the second antenna parameter of the first frequency point and the second antenna parameter of the second frequency point, and the first antenna parameter combination and the second antenna parameter combination are different. That is, as time changes, the access network device can adopt different antenna parameter combinations, and which antenna parameter combination is specifically adopted is determined by the measurement data fed back in real time by the terminal devices in the network of the first frequency point and the second frequency point.
  • the antenna parameters can be configured as initial default values, which are a set of antenna parameter combinations preset according to specific networking parameters.
  • initial default values in the existing network can be referred to, and this application is not limited to this.
  • the measurement data is the data obtained by measuring the terminal equipment in the network of the frequency point.
  • the measurement data may include but is not limited to the signal-to-noise ratio (SNR), the reference signal receiving power (RSRP), etc.
  • the measurement data of the first frequency point includes the SNR and/or RSRP measured by the terminal equipment in the network of the first frequency point
  • the measurement data of the second frequency point includes the SNR and/or RSRP measured by the terminal equipment in the network of the second frequency point.
  • This application is subsequently described as the measurement data including at least one of SNR or RSRP.
  • the access network device can adopt different antenna parameter combinations. Then, when the antenna parameters change, the measurement data obtained by the terminal device in the network of the frequency point may also change. In this case, the terminal device can obtain multiple sets of measurement data, and any set of measurement data includes the measurement data of each frequency point at the same time.
  • Table 1 is a list of multiple sets of measurement data provided by the present application. Assuming that the antenna parameters are the first antenna parameter combination, the terminal device can obtain a first set of measurement data and a second set of measurement data by measurement.
  • the first set of measurement data includes the SNR and/or RSRP measured by the terminal device in the network of the first frequency point when the antenna parameters are the first antenna parameter combination, and the SNR and/or RSRP measured by the terminal device in the network of the second frequency point.
  • the second set of measurement data includes the SNR and/or RSRP measured by the terminal device in the network of the first frequency point when the antenna parameters are the second antenna parameter combination, and the SNR and/or RSRP measured by the terminal device in the network of the second frequency point.
  • the access network device may also include multiple other frequency points (for example, a third frequency point, a fourth frequency point, etc.), and the antenna parameters may also be other antenna parameter combinations (for example, a third antenna parameter combination).
  • the first group of measurement data may also include the SNR and/or RSRP measured by the terminal device in the network of the third frequency point when the antenna parameters are the first antenna parameter combination.
  • the second group of measurement data may also include the SNR and/or RSRP measured by the terminal device in the network of the third frequency point when the antenna parameters are the second antenna parameter combination.
  • Multiple groups of measurement data may also include a third group of measurement data measured by the terminal device when the antenna parameters are the third antenna parameter combination.
  • the terminal device sends the measurement data to the network side (eg, access network device), so the network side can obtain the measurement feedback distribution according to the measurement data.
  • the network side eg, access network device
  • Table 1 A list of multiple sets of measurement data
  • the utility indicator is used to indicate the networking performance.
  • the networking performance includes the spectrum efficiency and throughput of the network, which are obtained by the access network device based on the measurement data.
  • the utility indicator is obtained by function modeling based on the measurement data, or by using a machine learning algorithm based on the measurement data.
  • the measurement data includes SNR
  • the access network device can obtain the utility indicator corresponding to the measurement data by performing function modeling based on the SNR, which is the channel quality index (CQI) level corresponding to the SNR.
  • CQI channel quality index
  • the measurement data includes RSRP
  • the access network device can obtain the utility indicator corresponding to the measurement data by using a machine learning algorithm based on the RSRP, which is the RSRP level.
  • the access network device can obtain the utility indicator corresponding to the measurement data by performing function modeling based on the SNR, which is the throughput or spectrum efficiency corresponding to the SNR.
  • the measurement data obtained by the terminal device may change, and the utility indicator corresponding to the measurement data may also change.
  • the multiple sets of measurement data correspond to multiple utility indicators, wherein each set of measurement data corresponds to a utility indicator.
  • the first set of measurement data includes the SNR measured by the terminal device in the network of the first frequency point at the first moment, and the SNR measured by the terminal device in the network of the second frequency point at the first moment
  • the first utility indicator corresponding to the first set of measurement data is the first CQI level obtained by the access network device through function modeling based on the two SNRs.
  • the second utility indicator corresponding to the second set of measurement data is the second CQI level obtained by the access network device through function modeling based on the two SNRs.
  • Service characteristics are used to distinguish services that change in real time in the network.
  • the service characteristics in this application may include but are not limited to service time periods, user location distribution, measurement feedback distribution, etc.
  • the access network device can adjust the parameters of the antenna to optimize the utility index corresponding to the service characteristic.
  • the poor utility index can be understood as the spectrum efficiency of the network is less than or equal to the first threshold, or the throughput is less than or equal to the second threshold.
  • the first threshold or the second threshold can be set according to actual needs, and this application does not limit it. The above description is also applicable to the description of any embodiment of the present application and will not be repeated.
  • the service time period is used to distinguish the services that change in the network from the time dimension.
  • the service feature is the service time period
  • the service time period can be divided into multiple segments in chronological order, and each segment represents a service feature. For example, 24 hours can be divided into 12 segments, that is, 12 service time periods, and each service time period is 2 hours.
  • the user location distribution includes the angular range of the terminal device.
  • the horizontal coordinate of the user location distribution is the angular range of the terminal device
  • the vertical coordinate of the user location distribution is the probability of the angular range of the terminal device
  • each group of angular ranges represents a service feature.
  • the angular range of the terminal device is the angular range corresponding to the terminal device, and the angular range belongs to [0,360°] or [0,180°].
  • the angular range of the terminal device includes a horizontal angular range and a vertical angular range.
  • Table 2 is a list of user location distributions provided in this application. Assuming that the angular range of the terminal device includes a first angular range, a second angular range, and a third angular range, the first angular range and the corresponding probability represent the first user location distribution, the second angular range and the corresponding probability represent the second user location distribution, and the third angular range and the corresponding probability represent the third user location distribution.
  • the directional angle range of the terminal device may also include multiple other directional angle ranges (for example, a fourth directional angle range, etc.), then the user location distribution list includes a fourth user location distribution (i.e., a fourth directional angle range and a corresponding probability), etc., which are represented by ellipsis in Table 2 and are not fully shown, and this application does not limit them.
  • Table 2 A list of user location distribution
  • the user location distribution in the service feature is the user location distribution in a time period before the current time period, or the user location distribution is predicted based on the user location distribution in a time period before the current time period.
  • the access network device obtains the user location distribution from 10:00 to 12:00 as the service feature, and also uses the user location distribution from 10:00 to 12:00 as the service feature from 12:00 to 14:00, which is conducive to simplifying the processing flow of the access network device.
  • the access network device obtains the user location distribution from 10:00 to 12:00, and uses the user location distribution from 10:00 to 12:00 to predict the user location distribution from 12:00 to 14:00 (the user location distribution in adjacent time periods may not change much), thereby determining the service feature.
  • the measurement feedback distribution includes CQI level and/or RSRP level.
  • the horizontal coordinate of the measurement feedback distribution is the CQI level
  • the vertical coordinate is the proportion of terminal devices at the CQI level
  • the horizontal coordinate of the measurement feedback distribution is the RSRP level
  • the vertical coordinate is the proportion of terminal devices at the RSRP level
  • each group of CQI levels represents a service feature
  • each group of RSRP levels represents a service feature.
  • Table 3 is a list of measurement feedback distributions provided in this application. Table 3 describes the distribution of measurement feedback distribution as CQI level as an example.
  • the CQI level can be divided into a high CQI level, a medium CQI level and a low CQI level, wherein the CQI value range is 0 to 31, and the common value is 12 to 24.
  • This application assumes that the high CQI level is a CQI value range of 25 to 30, the medium CQI level is a CQI value range of 12 to 24, and the low CQI level is a CQI value range of 0 to 11.
  • the high CQI level and the corresponding terminal device ratio represent the first measurement feedback distribution, the medium CQI level and the corresponding terminal device ratio represent the second measurement feedback distribution, and the low CQI level and the corresponding terminal device ratio represent the third measurement feedback distribution.
  • the measurement feedback distribution is the distribution of RSRP level
  • another measurement feedback distribution list similar to Table 3 can also be obtained, which is not repeated here.
  • the medium, high and low value ranges of the above CQI level are only an example. In actual use, the medium, high and low value ranges of the CQI level can be set according to needs, and this application is not limited.
  • Table 3 A list of measurement feedback distributions
  • FIG3 is a flow chart of a method for configuring an antenna provided by the present application.
  • the method for configuring an antenna is applied to the communication system shown in FIG1 , and can be specifically applied to the access network device shown in FIG2 .
  • the method for configuring an antenna can be executed by the access network device, and the method includes the following steps:
  • An access network device receives first measurement data from a terminal device.
  • the data obtained by the terminal device in the network through measurement is the first measurement data.
  • the first measurement data includes the measurement data of the terminal devices in the network at the multiple frequency points.
  • the access network device includes a first frequency point and a second frequency point
  • the first antenna parameter combination includes the first antenna parameter of the first frequency point.
  • the first antenna parameters of the second frequency point The subscript A1 represents the first frequency point, A2 represents the second frequency point, and the subscript 1 represents the number of the antenna parameter combination.
  • the first measurement data includes the measurement data of the terminal device in the network at the first frequency point.
  • the first measurement data can be expressed as including and Collection
  • the access network device further includes multiple other frequency points (such as a third frequency point, a fourth frequency point, etc.), assuming that the total number of frequency points is G, the first measurement data can be expressed as G is a positive integer greater than 2.
  • the network at the first frequency point may include multiple terminal devices (for example, N terminal devices), and the measurement data of the terminal devices at the network at the first frequency point It can also be expressed as a collection of measurement data including N terminal devices
  • the network at the second frequency point may also include multiple terminal devices (for example, including M terminal devices), and the measurement data of the terminal devices in the network at the second frequency point may be It can also be expressed as a set of measurement data including M terminal devices Then the first measurement data can be expressed as including and Collection
  • the access network device receives X groups of measurement data from the terminal device, wherein any group of measurement data in the X groups of measurement data includes measurement data of a first frequency point and measurement data of a second frequency point, the X groups of measurement data include the above-mentioned first measurement data, and X is a positive integer.
  • X is a positive integer greater than or equal to 2, it indicates that the access network device receives at least two sets of measurement data.
  • the access network device receives two sets of measurement data fed back by a terminal device (e.g., terminal device 1) in a network with a first frequency point and a terminal device (e.g., terminal device 2) in a network with a second frequency point.
  • a terminal device e.g., terminal device 1
  • a terminal device e.g., terminal device 2
  • the first set of measurement data includes the parameters of the antenna as the first antenna parameter combination
  • the second set of measurement data includes the parameters of the antenna as the second antenna parameter combination
  • the network at the first frequency point may include multiple terminal devices (for example, N terminal devices), and the measurement data of the terminal devices in the network at the first frequency point It can also be expressed as a collection of measurement data including N terminal devices
  • the network at the second frequency point may also include multiple terminal devices (for example, including M terminal devices), and the measurement data of the terminal devices in the network at the second frequency point may be It can also be expressed as a set of measurement data including M terminal devices
  • the first set of measurement data can be expressed as including
  • the antenna parameters are configured as a first antenna parameter combination, and the first antenna parameter combination is an initial default value.
  • the access network device can preset a first antenna parameter combination (for example, preset a set of antenna parameter combinations according to specific networking parameters) to complete the initialization networking optimization.
  • the access network device may also preset multiple antenna parameter combinations.
  • the access network device presets K antenna parameter combinations, any one of which (numbered k, where k is a positive integer greater than 0 and less than or equal to K) includes the kth antenna parameter of the first frequency point. and the kth antenna parameters at the second frequency That is, the kth antenna parameter combination can be expressed as and Collection
  • the access network device also includes multiple other frequency points (such as a third frequency point, a fourth frequency point, etc.), assuming that the total number of frequency points is G, the kth antenna parameter combination can be expressed as
  • the access network device adjusts antenna parameters from a first antenna parameter combination to a second antenna parameter combination according to the first measurement data.
  • the access network device adjusts the antenna parameters to the second antenna parameter combination, that is, the access network device configures the antenna state according to the second antenna parameter combination. For example, assuming that the second antenna parameter combination includes a horizontal direction angle of 15 degrees and a vertical direction angle of 20 degrees, the horizontal direction angle of the antenna is configured to be 15 degrees and the vertical direction angle is 20 degrees.
  • the access network device may adjust the antenna parameters (for example, select one antenna parameter combination from K antenna parameter combinations as the antenna parameters) according to the measurement data (for example, X groups of measurement data) fed back by the terminal device.
  • this step includes the following implementations:
  • FIG4 is a flow chart of adjusting the parameters of the antenna provided by the present application, including the following steps:
  • the access network device determines a first utility indicator corresponding to the first measurement data.
  • the access network device determines a second antenna parameter combination according to the first utility indicator.
  • the first utility indicator is obtained by converting the first measurement data (for example, performing function modeling based on the measurement data). For example, when the access network device includes a first frequency point and a second frequency point, the first antenna parameter combination includes the first antenna parameter of the first frequency point. and the first antenna parameters of the second frequency point
  • the first measurement data can be represented as the measurement data of the terminal device in the network including the first frequency point. and the measurement data of the terminal equipment in the network at the second frequency point Collection
  • the first utility index corresponding to the first measurement data can be expressed as Wherein, U 1 represents the first utility index, and f(.) represents the function for calculating the utility index based on the measurement data.
  • the first utility indicator U1 is the CQI level or throughput or spectrum efficiency corresponding to SNR; when and When it is RSRP, the first utility indicator U1 is the RSRP level.
  • the access network device can select a new antenna parameter combination (i.e., the second antenna parameter combination) from the preset K antenna parameter combinations, and configure the antenna parameters to the second antenna parameter combination.
  • a new antenna parameter combination i.e., the second antenna parameter combination
  • the access network device may adjust the antenna parameters once according to the first measurement data fed back by the terminal device, thereby achieving time-varying configurability of the antenna.
  • FIG5 is a schematic diagram of another process of adjusting the parameters of the antenna provided by the present application, including the following steps:
  • the access network device determines X utility indicators according to X groups of measurement data, wherein each group of measurement data in the X groups of measurement data corresponds to one utility indicator.
  • the access network device determines, according to the service characteristics, an antenna parameter combination corresponding to a maximum value of a utility indicator matching the service characteristics as a second antenna parameter combination.
  • the first utility indicator corresponding to the first set of measurement data can be expressed as The second set of measurement data includes the parameters of the antenna as the second antenna parameter combination
  • the second set of measurement data can be expressed as including and Collection
  • the second utility indicator corresponding to the second set of measurement data can be expressed as
  • the third set of measurement data includes the parameters of the antenna as the third antenna parameter combination
  • Table 4 Correspondence between antenna parameter combinations, measurement data and utility indicators
  • the access network device After the access network device determines X utility indicators, it can determine one or more utility indicators that match the service characteristics according to the service characteristics, and select the maximum value among the utility indicators to adjust the antenna parameters to the antenna parameter combination corresponding to the maximum value.
  • the service characteristics defined in this application include one or more of the service time period, user location distribution, and measurement feedback distribution, and the utility indicators of different service characteristics also include one or more.
  • the X utility indicators of the service feature include one or more of the following: statistical distribution characteristic values of X CQI levels of the service time period, statistical distribution characteristic values of X RSRP levels of the service time period, and statistical distribution characteristic values of X directional angle ranges of the service time period.
  • the three utility indicators of the service time period include the statistical distribution characteristic values of the three CQI levels of the service time period, as shown in Table 5.
  • Table 5 List of utility indicators for a business feature
  • the access network device selects the maximum value of the three utility indicators of the service time period, that is, the statistical distribution characteristic value 1 of the CQI level (indicating that most of the terminal devices in the service time period are at the medium CQI level, and there are fewer terminal devices at the low CQI level, and the networking performance is better at this time), and adjusts the antenna parameters to the antenna parameter combination corresponding to the statistical distribution characteristic value 1 of the CQI level.
  • the above Table 5 is only an example.
  • the three utility indicators of the service time period may also include the statistical distribution characteristic values of the three RSRP levels of the service time period, or the statistical distribution characteristic values of the three directional angle ranges of the service time period.
  • a utility indicator list of service characteristics similar to that in Table 5 may also be derived, which will not be repeated here.
  • the X utility indicators of the service feature include one or more of the following: statistical distribution characteristic values of X channel quality index levels of the user location distribution, or statistical distribution characteristic values of X reference signal received power levels of the user location distribution.
  • the service characteristic includes user location distribution
  • the three utility indicators of the user location distribution include statistical distribution characteristic values of three RSRP levels of the user location distribution, as shown in Table 6.
  • Table 6 List of utility indicators for another business feature
  • the access network device selects the maximum value of the three utility indicators of the user location distribution, that is, the statistical distribution characteristic value 1 of the RSRP level (indicating that the RSRP of most of the terminal devices in the location area is high, and the number of terminal devices with low RSRP is small, and the networking performance is better at this time), and adjusts the antenna parameters to the antenna parameter combination corresponding to the statistical distribution characteristic value 1 of the RSRP level.
  • the X utility indicators of the service feature include statistical distribution characteristic values of X directional angle ranges of the measurement feedback distribution.
  • the three utility indicators of the measurement feedback distribution include statistical distribution characteristic values of three directional angle ranges of the measurement feedback distribution, as shown in Table 7.
  • Table 7 Another list of utility indicators for business characteristics
  • the access network device selects the maximum value of the three utility indicators of the measurement feedback distribution, that is, the statistical distribution characteristic value 1 of the directional angle range (indicating that most of the terminal devices of the measurement feedback distribution are in the same directional angle range, which is conducive to the concentrated coverage of the beam, and the networking performance is better at this time), and adjusts the antenna parameters to the antenna parameter combination corresponding to the statistical distribution characteristic value 1 of the directional angle range.
  • the antenna parameters can be adjusted multiple times, thereby obtaining multiple sets of measurement data.
  • the access network device can determine the optimal antenna parameter combination based on the multiple sets of measurement data.
  • the access network device can configure the antenna parameters to the optimal antenna parameter combination, thereby facilitating improving the spectrum efficiency and throughput of the network.
  • the access network device can configure different antenna parameter combinations for different service characteristics, then the terminal device can measure and feed back multiple groups of measurement data, the access network device analyzes the multiple groups of measurement data to obtain multiple utility indicators, selects the optimal utility indicator from the multiple utility indicators, and adjusts the antenna parameters.
  • This implementation is similar to the steps performed by the access network device in the second implementation, except that the X groups of measurement data include multiple groups of measurement data of multiple service characteristics, and the X utility indicators include multiple utility indicators of multiple service characteristics.
  • the service feature is a time period, that is, when the multiple service features include W service time periods
  • the set of the multiple service features is ⁇ T 1 ,T 2 ,...,T W ⁇ .
  • the antenna parameters are configured as different antenna parameter combinations. It is assumed that in any service time period z (z is a positive integer less than or equal to W), K antenna parameter combinations are traversed.
  • the K groups of measurement data in the service time period w include the measurement data of the terminal device in the network at the first frequency point and the measurement data of the terminal equipment in the network at the second frequency point Then for W service time periods, the terminal device can measure and obtain W*K groups of measurement data.
  • the W*K groups of measurement data correspond to W*K utility indicators (that is, the X utility indicators in this implementation are specifically W*K utility indicators).
  • the method of calculating the utility indicator is the same as the calculation method in the previous implementation, and will not be repeated here.
  • Table 8 is a corresponding relationship table between service characteristics, antenna parameter combinations, measurement data and utility indicators.
  • Table 8 Correspondence between service characteristics, antenna parameter combinations, measurement data and utility indicators
  • Table 8 is only an example.
  • the terminal device can measure and obtain Y*K groups of measurement data by traversing K antenna parameter combinations.
  • the Y*K groups of measurement data correspond to Y*K utility indicators respectively, and the corresponding relationship between the user position distribution, antenna parameter combination, measurement data and utility indicator can be obtained (that is, a corresponding relationship table similar to Table 8 can be obtained), which will not be repeated here.
  • the access network device can retain the correspondence between service characteristics, antenna parameter combinations, measurement data and utility indicators.
  • the antenna parameter combination corresponding to the maximum value of the utility indicator is selected according to specific service characteristics to configure the antenna parameters, thereby optimizing the networking performance.
  • the access network device may select a service feature according to the priority order of the multiple service features, and select the maximum value of the utility index of the service feature. For example, when the multiple service features include service time period and angular range, assuming that the priority of the service time period is higher than the angular range, the access network device selects the maximum value 1 of the multiple utility indexes of the service time period, and determines the antenna parameter combination corresponding to the maximum value 1 as the second antenna parameter combination.
  • the access network device may select a service feature according to the service priority order specified by the network side (for example, which type of service is given priority), and select the maximum value of the utility index of the service feature.
  • the multiple service features include service time period, angular range, and CQI level, assuming that the service priority order specified by the network side is that the CQI level has the highest priority
  • the access network device selects the maximum value 2 of the multiple utility indexes of the CQI level, and determines the antenna parameter combination corresponding to the maximum value 2 as the second antenna parameter combination.
  • the service characteristics can change, and the antenna parameters can be adjusted multiple times as the service characteristics change.
  • different antenna parameter combinations are used for different service characteristics, which is conducive to optimizing the networking performance for the service characteristics.
  • the device or equipment provided in this application may include a hardware structure and/or a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether it is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • the division of modules in this application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • each functional module in each embodiment of the present application can be integrated into a processor, or it can exist physically separately, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • FIG 6 is a schematic diagram of an antenna configuration device provided by the present application.
  • the antenna configuration device may include a module that performs the method/operation/step/action described in the method embodiments corresponding to Figures 3 to 5, and the module may be a hardware circuit, or software, or a combination of a hardware circuit and software.
  • the antenna configuration device 600 includes a communication unit 601 and a processing unit 602, which are used to implement the method executed by the access network device in the above embodiment.
  • the communication unit 601 is used to receive first measurement data from a terminal device.
  • the processing unit 602 is used to adjust the antenna parameters from a first antenna parameter combination to a second antenna parameter combination according to the first measurement data; wherein the first antenna parameter combination includes a first antenna parameter of a first frequency point and a first antenna parameter of a second frequency point, and the second antenna parameter combination includes a second antenna parameter of the first frequency point and a second antenna parameter of the second frequency point.
  • the processing unit 602 is configured to adjust the antenna parameter from the first antenna parameter combination to the second antenna parameter combination according to the first measurement data, including:
  • a second antenna parameter combination is determined according to the first utility indicator.
  • the communication unit 601 is configured to receive first measurement data from a terminal device, including:
  • X groups of measurement data are received from a terminal device, wherein any group of measurement data in the X groups of measurement data includes measurement data of a first frequency point and measurement data of a second frequency point, the X groups of measurement data include the first measurement data, and X is a positive integer.
  • the measurement data includes a signal-to-noise ratio or a reference signal received power.
  • the processing unit 602 is configured to adjust the antenna parameter from the first antenna parameter combination to the second antenna parameter combination according to the first measurement data, including:
  • an antenna parameter combination corresponding to a maximum value in a utility indicator matching the service characteristics is determined as a second antenna parameter combination.
  • the service characteristics include one or more of service time period, user location distribution, and measurement feedback distribution; wherein, the user location distribution includes the angular range of the terminal device; and the measurement feedback distribution includes the channel quality index level and/or the reference signal receiving power level.
  • the user location distribution in the service feature is the user location distribution in a time period before the current time period, or the user location distribution is predicted based on the user location distribution in a time period before the current time period.
  • the X utility indicators of the service feature include one or more of the following: statistical distribution characteristic values of X channel quality index levels of the service time period, statistical distribution characteristic values of X reference signal received power levels of the service time period, and statistical distribution characteristic values of X directional angle ranges of the service time period.
  • the X utility indicators of the service feature include one or more of the following: statistical distribution characteristic values of X channel quality index levels of the user location distribution, and statistical distribution characteristic values of X reference signal received power levels of the user location distribution.
  • the X utility indicators of the service feature include statistical distribution characteristic values of X directional angle ranges of the measurement feedback distribution.
  • processing unit 602 is further configured to:
  • the antenna parameters are configured as a first antenna parameter combination, where the first antenna parameter combination is an initial default value.
  • the antenna parameters include one or more of a horizontal direction angle, a vertical direction angle, a horizontal beam width, and a vertical beam width.
  • the specific execution process of the communication unit 601 and the processing unit 602 in this implementation mode can also refer to the description of the method embodiments corresponding to Figures 3 to 5, which will not be repeated here.
  • the antenna configuration method implemented by the antenna configuration device can adjust the antenna parameters according to the measurement data fed back by the terminal device in real time, that is, the antenna parameters can change over time, so that different antenna parameters can be adapted to different service characteristics in real time, thereby improving the networking performance.
  • FIG7 is a schematic diagram of an access network device provided by the present application, which is used to implement the antenna configuration method in the above method embodiment.
  • the network access device 700 may also be a chip system.
  • the access network device 700 includes a communication interface 701 and a processor 702.
  • the communication interface 701 may be, for example, a transceiver, an interface, a bus, a circuit, or a device capable of implementing transceiver functions.
  • the communication interface 701 is used to communicate with other devices through a transmission medium, so that the access network device 700 can communicate with other devices.
  • the processor 702 is used to perform processing-related operations.
  • the communication interface 701 is used to receive first measurement data from a terminal device.
  • the processor 702 is used to adjust the antenna parameters from a first antenna parameter combination to a second antenna parameter combination according to the first measurement data; wherein the first antenna parameter combination includes a first antenna parameter of a first frequency point and a first antenna parameter of a second frequency point, and the second antenna parameter combination includes a second antenna parameter of the first frequency point and a second antenna parameter of the second frequency point.
  • the processor 702 is configured to adjust, according to the first measurement data, a parameter of the antenna from a first antenna parameter combination to a second antenna parameter combination, including:
  • a second antenna parameter combination is determined according to the first utility indicator.
  • the communication interface 701 is used to receive first measurement data from a terminal device, including:
  • X groups of measurement data are received from a terminal device, wherein any group of measurement data in the X groups of measurement data includes measurement data of a first frequency point and measurement data of a second frequency point, the X groups of measurement data include the first measurement data, and X is a positive integer.
  • the measurement data includes a signal-to-noise ratio or a reference signal received power.
  • the processor 702 is configured to adjust, according to the first measurement data, a parameter of the antenna from a first antenna parameter combination to a second antenna parameter combination, including:
  • an antenna parameter combination corresponding to a maximum value in a utility indicator matching the service characteristics is determined as a second antenna parameter combination.
  • the service characteristics include one or more of service time period, user location distribution, and measurement feedback distribution; wherein, the user location distribution includes the angular range of the terminal device; and the measurement feedback distribution includes the channel quality index level and/or the reference signal receiving power level.
  • the user location distribution in the service feature is the user location distribution in a time period before the current time period, or the user location distribution is predicted based on the user location distribution in a time period before the current time period.
  • the X utility indicators of the service feature include one or more of the following: statistical distribution characteristic values of X channel quality index levels of the service time period, statistical distribution characteristic values of X reference signal received power levels of the service time period, and statistical distribution characteristic values of X directional angle ranges of the service time period.
  • the X utility indicators of the service feature include one or more of the following: statistical distribution characteristic values of X channel quality index levels of the user location distribution, and statistical distribution characteristic values of X reference signal received power levels of the user location distribution.
  • the X utility indicators of the service feature include statistical distribution characteristic values of X directional angle ranges of the measurement feedback distribution.
  • processor 702 is further configured to:
  • the antenna parameters are configured as a first antenna parameter combination, where the first antenna parameter combination is an initial default value.
  • the antenna parameters include one or more of a horizontal direction angle, a vertical direction angle, a horizontal beam width, and a vertical beam width.
  • the specific execution process of the communication interface 701 and the processor 702 in this implementation mode can also refer to the description of the method embodiments corresponding to Figures 3 to 5, which will not be repeated here.
  • the antenna configuration method implemented by the antenna configuration device can adjust the antenna parameters according to the measurement data fed back by the terminal device in real time, that is, the antenna parameters can change over time, which is conducive to different antenna parameters being able to adapt to different service characteristics in real time and improve networking performance.
  • the access network device 700 may also include at least one memory 703 for storing program instructions and/or data.
  • the memory and the processor are coupled.
  • the coupling in this application is an indirect coupling or communication connection between devices, units or modules, which may be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor may operate in conjunction with the memory.
  • the processor may execute program instructions stored in the memory.
  • the at least one memory and the processor are integrated together.
  • connection medium between the above-mentioned communication interface, processor and memory is not limited in this application.
  • the memory, processor and communication interface are connected via a bus, and bus 704 is represented by a thick line in FIG. 7 .
  • the connection mode between other components is only for schematic illustration and is not limited thereto.
  • the bus can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or the like.
  • Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components can implement or execute the methods, steps and logic block diagrams disclosed in this application.
  • a general-purpose processor can be a microprocessor or any conventional processor. The steps of the method disclosed in this application can be directly embodied as a hardware processor to be executed, or can be executed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), such as a random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the present application may also be a circuit or any other device that can realize a storage function, used to store program instructions and/or data.
  • the present application provides a communication system, which includes a terminal device and an access network device as shown in the embodiments corresponding to Figures 3 to 5.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a program or instruction.
  • the program or instruction is executed on a computer, the computer executes the antenna configuration method in the embodiments corresponding to FIGS. 3 to 5 .
  • the present application provides a computer program product, which includes instructions.
  • the instructions When the instructions are executed on a computer, the computer executes the antenna configuration method in the embodiments corresponding to FIGS. 3 to 5 .
  • the present application provides a chip or a chip system, which includes at least one processor and an interface, the interface and the at least one processor are interconnected through lines, and the at least one processor is used to run computer programs or instructions to execute the antenna configuration method in the embodiments corresponding to Figures 3 to 5.
  • the interface in the chip may be an input/output interface, a pin or a circuit, etc.
  • the above-mentioned chip system can be a system on chip (SOC) or a baseband chip, etc., wherein the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem and an interface module, etc.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem and an interface module, etc.
  • the chip or chip system described above in the present application further includes at least one memory, in which instructions are stored.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (e.g., a read-only memory, a random access memory, etc.).
  • the technical solution provided in this application can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented by software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, a network device, a terminal device or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center to another website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium, etc.
  • the various embodiments may reference each other, for example, the methods and/or terms between method embodiments may reference each other, for example, the functions and/or terms between device embodiments may reference each other, for example, the functions and/or terms between device embodiments and method embodiments may reference each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种天线的配置方法、装置及设备。该方法中,接入网设备接收来自终端设备的第一测量数据,并根据该第一测量数据,将天线的参数从第一天线参数组合调整为第二天线参数组合。通过上述方法,接入网设备可以根据终端设备实时反馈的测量数据,调整天线参数,从而有利于不同的天线参数可以实时适配不同的业务特征,有利于提升网络中的设备的接收性能(例如提升终端设备的参考信号接收功率),从而有利于提升网络的频谱效率和吞吐量。

Description

一种天线的配置方法、装置及设备
本申请要求于2022年9月30日提交中国专利局、申请号为202211215342.6,申请名称为“一种天线的配置方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线的配置方法、装置及设备。
背景技术
无线通信系统中,多频协同(multi-band cordination,MBC)技术可以实现频谱之间的特性互补。例如,MBC技术可以实现多频点之间的载波聚合(inter-band carrier aggregation)或非独立组网(none stand-alone,NSA)场景中长期演进(long term evolution,LTE)和新空口(new radio,NR)的多频协同,从而实现性能覆盖和容量之间的互补。其中,在多频协同系统中,基于天线结构与频点的响应关系,可以分为多频同构和多频异构。多频同构是指多个频点的天线参数相同,但是由于多频同构导致不同频点的覆盖特性相同,一旦其中的一个频点干扰较强,则其他频点的干扰也维持同样趋势,导致多个频点的覆盖独立性较差。多频异构是指多个频点的天线参数不同,但是目前的多频异构的天线参数是基于预设的网络模型和/或已有工参来设计的。举例来说,若实际系统中的业务特征与预设的网络模型差别较大,则导致网络中的设备接收性能较差,从而导致网络的覆盖性能下降,频谱效率也下降,吞吐量也下降。
发明内容
本申请提供一种天线的配置方法、装置及设备,该方法中的多频异构天线的参数可以基于终端设备反馈的测量数据进行调整,从而有利于提升网络的频谱效率和吞吐量。
第一方面,本申请提供一种天线的配置方法、装置及设备,该方法可以应用于接入网设备,该接入网设备包括第一频点和第二频点,多个频点对应多套天线。具体来说,该方法由接入网设备所执行,也可以由接入网设备的部件(例如处理器、芯片、或芯片系统等)执行,还可以由能实现全部或部分接入网设备功能的逻辑模块或软件实现。其中,接入网设备接收来自终端设备的第一测量数据,并根据该第一测量数据,将天线(例如多个频点对应的多套天线)的参数从第一天线参数组合调整为第二天线参数组合。其中,第一天线参数组合包括该第一频点的第一天线参数和该第二频点的第一天线参数,第二天线参数组合包括该第一频点的第二天线参数和该第二频点的第二天线参数。
该方法中,接入网设备可以根据终端设备实时反馈的测量数据,调整天线参数,也即是,天线参数可以随着时间变化而变化,从而有利于不同的天线参数可以实时适配不同的业务特征,有利于提升网络中的设备的接收性能(例如提升终端设备的参考信号接收功率),从而有利于提升网络的频谱效率和吞吐量。
一种可能的实施方式中,接入网设备在接收第一测量数据后,确定该第一测量数据对应的第一效用指标,并根据该第一效用指标,确定第二天线参数组合。其中,测量数据为频点的网络中的终端设备进行测量得到的数据,效用指标用于指示组网性能。例如,当测量数据为参考信号接收功率RSRP时,测量数据对应的效用指标为RSRP等级的统计分布特征值。
该方法中,接入网设备可以将终端设备反馈的第一测量数据转换为用于指示组网性能的第一效用指标。若第一效用指标低于网络预期的效用指标(也即是采用第一天线参数组合时组网性能较差),则接入网设备可以将天线的参数从第一天线参数组合调整为第二天线参数组合,有利于提升组网性能。
一种可能的实施方式中,接入网设备接收来自终端设备的X组测量数据,其中,该X组测量数据中的任意一组测量数据包括第一频点的测量数据和第二频点的测量数据,该X组测量数据中包括第一测量数据,X为正整数。
该方法中,接入网设备可以接收不同的天线参数组合下终端反馈的多组测量数据。例如,第一时刻,接入网设备接收来自终端设备的第一组测量数据,该第一组测量数据包括第一时刻的第一频点和第二频点采用第一天线参数组合时,第一频点的网络中的终端设备反馈的测量数据和第二频点的网络中的终端设备反馈的测量数据。又例如,第二时刻,接入网设备接收来自终端设备的第二组测量数据,该第二组测量数 据包括第二时刻的第一频点和第二频点采用第二天线参数组合时,第一频点的网络中的终端设备反馈的测量数据和第二频点的网络中的终端设备反馈的测量数据。
一种可能的实施方式中,测量数据包括信噪比SNR或参考信号接收功率RSRP。
一种可能的实施方式中,接入网设备根据X组测量数据,确定X个效用指标,其中,该X组测量数据中的每一组测量数据对应一个效用指标;再根据业务特征,确定匹配该业务特征的X个效用指标中的最大值对应的天线参数组合为第二天线参数组合。
该方法中,接入网设备不仅基于实时的终端测量反馈,还基于业务特征来确定天线参数组合。其中,不同的测量数据对应不同的效用指标,例如,当测量数据为SNR时,测量数据对应的效用指标为SNR对应的信道质量指数CQI等级;或者,当测量数据为RSRP时,测量数据对应的效用指标为RSRP对应的RSRP等级。又例如,当测量数据为SNR时,测量数据对应的效用指标为SNR对应的吞吐量(throuput)或频谱效率(spectrum efficiency)。进一步,接入网设备可以将终端设备反馈的X组测量数据分别转换为用于指示组网性能的X个效用指标。然后从匹配业务特征的效用指标中选择最大值(也即是组网性能最优的值),获取该最大值对应的天线参数组合,并将天线的参数调整为该最大值对应的天线参数组合,从而提升组网性能。可选的,在调整天线的参数时,可以只调整部分天线的参数,例如只调整第一频点的天线参数,不调整第二频点的天线参数;也可以调整全部天线的参数,例如调整第一频点的天线参数和第二频点的天线参数。
一种可能的实施方式中,业务特征包括业务时间段、用户位置分布、测量反馈分布中的一种或多种;其中,用户位置分布包括终端设备的方向角范围;测量反馈分布包括不同信道质量指数等级的终端设备比例和/或不同参考信号接收功率等级的终端设备比例。
该方法中,当业务特征为业务时间段时,业务时间段可以按时间顺序分为多段,每一段表示一种业务特征。当业务特征为用户位置分布时,用户位置分布的横坐标为终端设备的方向角范围,用户位置分布的纵坐标为终端设备的方向角范围的概率,每一组方向角范围以及对应的概率表示一种业务特征。其中,终端设备的方向角范围是根据终端设备的地理位置和角度确定的。当业务特征为测量反馈分布时,测量反馈分布的横坐标为CQI等级,纵坐标为CQI等级的终端设备比例;或者,测量反馈分布的横坐标为RSRP等级,纵坐标为RSRP等级的终端设备比例,每一组CQI等级表示一种业务特征,或者每一组RSRP等级表示一种业务特征。
一种可能的实施方式中,业务特征中的用户位置分布为当前时间段的前一时间段的用户位置分布,或者,用户位置分布是根据当前时间段的前一时间段的用户位置分布预测得到的。
该方法中,接入网设备可以直接采用当前时间段的前一时间段的用户位置分布,例如,接入网设备获取10-12点的用户位置分布作为业务特征,并且在12-14点也采用10-12点的用户位置分布作为业务特征,有利于简化接入网设备的处理流程。或者,接入网设备可以预测当前时间段的用户位置分布,例如,接入网设备获取10-12点的用户位置分布,并且采用10-12点的用户位置分布预测12-14点的用户位置分布(相邻时间段的用户位置分布可能变化不大),从而确定业务特征。
一种可能的实施方式中,当业务特征包括业务时间段时,该业务特征的X个效用指标包括以下中的一种或多种:该业务时间段的X个信道质量指数等级的统计分布特征值、该业务时间段的X个参考信号接收功率等级的统计分布特征值、该业务时间段的X个方向角范围的统计分布特征值。
该方法中,具体定义了业务特征包括业务时间段时,业务特征的效用指标。例如,当业务特征包括业务时间段10-12点时,该业务特征的X个效用指标包括以下中的一种或多种:该业务时间段10-12点的X个CQI等级的统计分布特征值(例如10-12点的高CQI等级的终端设备比例、中CQI等级的终端设备比例和低CQI等级的终端设备比例)、该业务时间段10-12点的X个RSRP等级的统计分布特征值(例如10-12点的第一RSRP等级的终端设备比例、第二RSRP等级的终端设备比例等)、该业务时间段10-12点的X个方向角范围的统计分布特征值(例如10-12点的第一方向角范围的终端设备比例、第二方向角范围的终端设备比例等)。其中,当包括多种业务特征时,每一种业务特征可以对应不同的效用指标。例如,当业务特征包括多个业务时间段(例如10-12点、12-14点等)时,每一个业务时间段的效用指标都可以包括上述效用指标中的一种或多种。
一种可能的实施方式中,当业务特征包括用户位置分布时,该业务特征的X个效用指标包括以下中的一种或多种:该用户位置分布的X个信道质量指数等级的统计分布特征值,或,该用户位置分布的X个参考信号接收功率等级的统计分布特征值。
该方法中,具体定义了业务特征包括用户位置分布时,业务特征的效用指标。例如,当业务特征包括 用户位置分布为第一方向角范围(例如第一方向角范围为0-90度)时,该业务特征的X个效用指标包括以下中的一种或多种:该第一方向角范围的X个CQI等级的统计分布特征值(例如0-90度方向角范围中的高CQI等级的终端设备比例、中CQI等级的终端设备比例和低CQI等级的终端设备比例),或,该第一方向角范围的X个RSRP等级的统计分布特征值(例如0-90度方向角范围中的第一RSRP等级的终端设备比例、第二RSRP等级的终端设备比例等)。其中,当包括多种业务特征时,每一种业务特征可以对应不同的效用指标。例如,当业务特征包括多个用户位置分布(例如第一方向角范围为0-90度、第二方向角范围为90-180度等)时,每一个用户位置分布的效用指标都可以包括上述效用指标中的一种或多种。
一种可能的实施方式中,当业务特征包括测量反馈分布时,该业务特征的X个效用指标包括该测量反馈分布的X个方向角范围的统计分布特征值。
该方法中,具体定义了业务特征包括测量反馈分布时,业务特征的效用指标。例如,当业务特征包括测量反馈分布为第一RSRP等级时,该业务特征的X个效用指标包括该第一RSRP等级的X个方向角范围的统计分布特征值(例如第一RSRP等级中的第一方向角范围的终端设备比例、第二方向角范围的终端设备比例等)。又例如,当业务特征包括测量反馈分布为高CQI等级时,该业务特征的X个效用指标包括该高CQI等级的X个方向角范围的统计分布特征值(例如高CQI等级中的第一方向角范围的终端设备比例、第二方向角范围的终端设备比例等)。其中,当包括多种业务特征时,每一种业务特征可以对应不同的效用指标。例如,当业务特征包括多个测量反馈分布(例如高CQI等级、中CQI等级、低CQI等级)时,每一个测量反馈分布的效用指标都可以包括上述效用指标中的一种或多种。
一种可能的实施方式中,接入网设备接收来自终端设备的第一测量数据之前,将天线的参数配置为第一天线参数组合,该第一天线参数组合为初始默认值。
该方法中,接入网设备可以预设第一天线参数组合(例如根据特定的组网工参预设一组天线参数组合),完成初始化组网优化。
一种可能的实施方式中,天线参数包括水平方向角、垂直方向角、水平波束宽度、垂直波束宽度中的一种或多种。
第二方面,本申请提供一种通信装置,该通信装置可以是接入网设备,也可以是接入网设备中的装置,或者是能够和接入网设备匹配使用的装置。一种设计中,该通信装置可以包括执行如第一方面和第一方面中任一种可能的实施方式中描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理单元和通信单元。
其中,对接入网设备执行的方法的具体描述可以参考上述第一方面和第一方面中任一种可能的实施方式中对应的描述,此处不再赘述。可以理解的是,该通信装置也可以实现如第一方面中可以实现的效果。
第三方面,本申请提供一种接入网设备,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得该终端设备实现上述第一方面和第一方面中任一种可能的实施方式中的方法。
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得计算机执行第一方面和第一方面任一种可能的实施方式中的方法。
第五方面,本申请提供一种芯片系统,该芯片系统包括处理器和接口,还可以包括存储器,用于实现上述第一方面和第一方面任一种可能的实施方式中的方法中的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,本申请提供一种计算机程序产品,包括指令,当所述指令在计算机上运行时,使得计算机执行第一方面和第一方面任一种可能的实施方式中的方法。
附图说明
图1为本申请提供的一种通信系统的示意图;
图2为本申请提供的一种采用时变可配的多频异构天线的接入网设备的示意图;
图3为本申请提供的一种天线的配置方法的流程示意图;
图4为本申请提供的一种调整天线的参数的流程示意图;
图5为本申请提供的另一种调整天线的参数的流程示意图;
图6为本申请提供的一种天线的配置装置的示意图;
图7为本申请提供的一种接入网设备的示意图。
具体实施方式
在本申请中,“/”可以表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;“和/或”可以用于描述关联对象存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。为了便于描述本申请的技术方案,在本申请中,可以采用“第一”、“第二”等字样对功能相同或相似的技术特征进行区分。该“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。在本申请中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
下面将结合本申请中的附图,对本申请中的技术方案进行描述。
举例来说,为了解决实际系统中的业务特征与预设的网络模型差别较大,从而导致网络的频谱效率和吞吐量降低的问题,本申请提供了一种天线的配置方法,该方法有利于提升网络的频谱效率和吞吐量。
其中,本申请提供的天线配置方法可以应用于通信系统中,具体来说,可以应用于基于多频协同的通信系统中。例如,图1为本申请提供的一种通信系统的示意图,该通信系统包括终端设备和接入网设备,终端设备和接入网设备之间通信连接。
本申请提及的通信系统包括但不限于:窄带物联网系统(narrow band-Internet of things,NB-IoT)、全球移动通信系统(global system for mobile communications,GSM)、增强型数据速率GSM演进系统(enhanced data rate for GSM evolution,EDGE)、宽带码分多址系统(wideband code division multiple access,WCDMA)、码分多址2000系统(code division multiple access,CDMA2000)、时分同步码分多址系统(time division-synchronization code division multiple access,TD-SCDMA),长期演进系统(long term evolution,LTE)以及5G移动通信系统的三大应用场景增强移动宽带(enhanced mobility broad band,eMBB),超高可靠与低时延通信(ultra-reliable and low latency communications,URLLC)和增强型机器类通信(enhanced machine-type communication,eMTC)以及未来的通信系统(例如6G/7G等)。
终端设备,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,无人机、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、5G网络中的终端设备、未来演进的PLMN网络中的终端设备或未来的通信系统中的终端设备等。
接入网设备,是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)、卫星通信系统中的卫星、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、可穿戴设备、无人机、或者车联网中的设备(例如车联万物设备(vehicle to everything,V2X)),或者设备间(device to device,D2D)通信中的通信设备等。另外,在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
一、本申请涉及的相关概念:
1、本申请的接入网设备架构:
其中,本申请中的接入网设备采用多频异构架构。例如,图2为本申请提供的一种多频异构天线的接入网设备,该接入网设备包括多个小区(例如图2中的第一小区、第二小区和第三小区),一个小区可以 包括多个频点(例如第一小区包括第一频点和第二频点),多个频点对应多套天线,不同天线的天线参数不同(也即是不同频点的天线参数不同)。其中,假设第一频点如图2中的虚线曲线所示,第二频点如图2中的实线曲线所示;第一频点的天线参数和第二频点的天线参数不同,因此,第一频点所形成的覆盖区域(例如图2中的虚线直线)和第二频点所形成的覆盖区域(例如图2中的实线直线)也不同,也即是,图2中的第一覆盖区域和第二覆盖区域所示。其中,图2仅为一种示例,并不限定本申请中接入网设备的小区数量、频点数量。
2、天线的参数和天线参数组合:
天线的参数(也称为天线的天线参数)用于配置该天线的天线角度和/或波束宽度,以使该天线(也可以通过该天线的中心频点来指代天线,后文中的频点就是指中心频点)所形成的覆盖区域指向某一区域,并且该区域内的信号强度满足一定的信号强度条件。具体来说,天线参数可以包括但不限于水平方向角、垂直方向角、水平波束宽度和垂直波束宽度等。
同一时刻的多个频点的多个天线参数称为一个天线参数组合。例如,第一时刻,第一天线参数组合包括第一频点的第一天线参数和第二频点的第一天线参数;第二时刻,第二天线参数组合包括第一频点的第二天线参数和第二频点的第二天线参数,第一天线参数组合和第二天线参数组合不同。也即是,随着时间的变化,该接入网设备可以采用不同的天线参数组合,具体采用哪一个天线参数组合是由第一频点和第二频点的网络中的终端设备实时反馈的测量数据确定的。
可选的,在初始状态下(例如初始化配置天线的参数以及网络中的其他参数时),天线的参数可以配置为初始默认值,该初始默认值是根据特定的组网工参预设的一组天线参数组合,例如可以参考现网中的初始默认值,本申请不作限定。
3、测量数据:
测量数据为频点的网络中的终端设备进行测量得到的数据。其中,测量数据可以包括但不限于信噪比(signal to noise ratio,SNR)、参考信号接收功率(reference signal receiving power,RSRP)等。例如,第一频点的测量数据包括第一频点的网络中的终端设备测量得到的SNR和/或RSRP,第二频点的测量数据包括第二频点的网络中的终端设备测量得到的SNR和/或RSRP。本申请后续以测量数据包括SNR或者RSRP中的至少一个进行描述。
可选的,随着时间的变化,接入网设备可以采用不同的天线参数组合,则当天线参数变化时,该频点的网络中的终端设备得到的测量数据也可能变化。在这种情况下,终端设备可以得到多组测量数据,任意一组测量数据包括同一时刻的各个频点的测量数据。例如,表1为本申请提供的一种多组测量数据的列表。假设天线的参数为第一天线参数组合时,终端设备测量可以得到第一组测量数据和第二组测量数据。第一组测量数据包括天线的参数为第一天线参数组合时,第一频点的网络中的终端设备测量得到的SNR和/或RSRP,和第二频点的网络中的终端设备测量得到的SNR和/或RSRP。第二组测量数据包括天线的参数为第二天线参数组合时,第一频点的网络中的终端设备测量得到的SNR和/或RSRP,和第二频点的网络中的终端设备测量得到的SNR和/或RSRP。可选的,该接入网设备还可以包括其他多个频点(例如第三频点、第四频点等),天线的参数也可以是其他的天线参数组合(例如第三天线参数组合),则第一组测量数据还可以包括天线的参数为第一天线参数组合时,第三频点的网络中的终端设备测量得到的SNR和/或RSRP,第二组测量数据还可以包括天线的参数为第二天线参数组合时,第三频点的网络中的终端设备测量得到的SNR和/或RSRP,多组测量数据还可以包括天线的参数为第三天线参数组合时,终端设备测量得到的第三组测量数据,上述内容在表1中以省略号代表,并未全部示出,本申请也不作限定。
终端设备将测量数据发送至网络侧(例如,接入网设备),因此,网络侧可以根据该测量数据得到测量反馈分布。
表1:一种多组测量数据的列表

4、效用指标:
效用指标用于指示组网性能,例如,组网性能包括网络的频谱效率和吞吐量,是由接入网设备根据测量数据进行处理得到的。具体来说,效用指标是基于测量数据进行函数建模得到的,或者基于测量数据使用机器学习算法得到的。例如,当测量数据包括SNR时,接入网设备根据SNR进行函数建模可以得到测量数据对应的效用指标为SNR对应的信道质量指数(channelquality indicator,CQI)等级。又例如,当测量数据包括RSRP时,接入网设备根据RSRP并使用机器学习算法可以得到测量数据对应的效用指标为RSRP等级。又例如,当测量数据包括SNR时,接入网设备根据SNR进行函数建模可以得到测量数据对应的效用指标为SNR对应的吞吐量(throuput)或频谱效率(spectrum efficiency)。
可选的,随着时间的变化,终端设备得到的测量数据可能变化,则测量数据对应的效用指标也可能变化。例如,当终端设备在不同时刻得到多组测量数据时,多组测量数据对应多个效用指标,其中,每一组测量数据对应一个效用指标。例如,假设第一组测量数据包括第一时刻的第一频点的网络中的终端设备测量得到的SNR,和第一时刻的第二频点的网络中的终端设备测量得到的SNR,则第一组测量数据对应的第一效用指标是接入网设备根据该两个SNR进行函数建模得到的第一CQI等级。又例如,假设第二组测量数据包括第二时刻的第一频点的网络中的终端设备测量得到的SNR,和第二时刻的第二频点的网络中的终端设备测量得到的SNR,则第二组测量数据对应的第二效用指标是接入网设备根据该两个SNR进行函数建模得到的第二CQI等级。
5、业务特征:
业务特征用于区分网络中实时变化的业务。本申请中的业务特征可以包括但不限于业务时间段、用户位置分布、测量反馈分布等。其中,在一个业务特征下,若该业务特征对应的效用指标较差,接入网设备可以调整天线的参数,以优化该业务特征对应的效用指标。其中,效用指标较差可以理解为,网络的频谱效率小于或等于第一阈值,或者吞吐量小于或等于第二阈值,第一阈值或者第二阈值可以根据实际需求设定,本申请并不限定。上述描述也适用于本申请任何实施例的描述,不再赘述。
(1)业务时间段:
其中,业务时间段用于从时间维度区分网络中变化的业务。当业务特征为业务时间段时,业务时间段可以按时间顺序分为多段,每一段表示一种业务特征。例如,将24小时分成12段,即12个业务时间段,每个业务时间段为2小时。
(2)用户位置分布:
其中,不同的用户位置分布用于区分网络中变化的业务。用户位置分布包括终端设备的方向角范围。具体来说,当业务特征为用户位置分布时,用户位置分布的横坐标为终端设备的方向角范围,用户位置分布的纵坐标为终端设备的方向角范围的概率,每一组方向角范围表示一种业务特征。其中,终端设备的方向角为终端设备对应的方向角度,方向角度属于[0,360°]或[0,180°]。终端设备的方向角范围包括水平方向角范围和垂直方向角范围。例如,表2为本申请提供的一种用户位置分布的列表。假设终端设备的方向角范围包括第一方向角范围、第二方向角范围和第三方向角范围,则第一方向角范围以及对应的概率表示第一种用户位置分布,第二方向角范围以及对应的概率表示第二种用户位置分布,第三方向角范围以及对应的概率表示第三种用户位置分布。可选的,终端设备的方向角范围还可以包括其他多个方向角范围(例如第四方向角范围等),则该用户位置分布列表包括第四种用户位置分布(即第四方向角范围以及对应的概率)等,在表2中以省略号代表,并未全部示出,本申请也不作限定。
表2:一种用户位置分布的列表

可选的,业务特征中的用户位置分布为当前时间段的前一时间段的用户位置分布,或者,用户位置分布是根据当前时间段的前一时间段的用户位置分布预测得到的。
例如,接入网设备获取10-12点的用户位置分布作为业务特征,并且在12-14点也采用10-12点的用户位置分布作为业务特征,有利于简化接入网设备的处理流程。或者,接入网设备获取10-12点的用户位置分布,并且采用10-12点的用户位置分布预测12-14点的用户位置分布(相邻时间段的用户位置分布可能变化不大),从而确定业务特征。
(3)测量反馈分布
其中,不同的测量反馈分布用于区分网络中变化的业务。测量反馈分布包括CQI等级和/或RSRP等级。具体来说,当业务特征为测量反馈分布时,测量反馈分布的横坐标为CQI等级,纵坐标为CQI等级的终端设备比例;或者,测量反馈分布的横坐标为RSRP等级,纵坐标为RSRP等级的终端设备比例,每一组CQI等级表示一种业务特征,或者每一组RSRP等级表示一种业务特征。例如,表3为本申请提供的一种测量反馈分布的列表。表3以测量反馈分布为CQI等级的分布为例进行描述。其中,CQI等级可以分为高CQI等级、中CQI等级和低CQI等级,其中,CQI取值范围为0~31,一般常见的取值为12~24,本申请假设高CQI等级为CQI取值范围25~30,中CQI等级为CQI取值范围12~24,低CQI等级为CQI取值范围0~11。高CQI等级以及对应的终端设备比例表示第一种测量反馈分布,中CQI等级以及对应的终端设备比例表示第二种测量反馈分布,低CQI等级以及对应的终端设备比例表示第三种测量反馈分布。可选的,当测量反馈分布为RSRP等级的分布时,也可以得到类似于表3的另一种测量反馈分布列表,此处不再赘述。应理解的是,上述CQI等级的中、高、低的取值范围仅仅为一个示例,实际使用时可以根据需求设定该CQI等级的中、高、低的取值范围,本申请并不限定。
表3:一种测量反馈分布的列表
二、本申请提供的天线的配置方法:
图3为本申请提供的一种天线的配置方法的流程示意图。该天线的配置方法应用于如图1所示的通信系统,具体可以应用于如图2所示的接入网设备中。例如,该天线的配置方法可以由接入网设备所执行,该方法包括以下步骤:
S101,接入网设备接收来自终端设备的第一测量数据。
当天线的参数为第一天线参数组合时,网络中的终端设备进行测量得到的数据为第一测量数据。当包括多个频点时,该第一测量数据包括多个频点的网络中的终端设备分别的测量数据。例如,当接入网设备包括第一频点和第二频点时,第一天线参数组合包括第一频点的第一天线参数和第二频点的第一天线参数其中,下标A1表示第一频点,A2表示第二频点,下标1表示天线参数组合的编号。第一测量数据包括第一频点的网络中的终端设备的测量数据和第二频点的网络中的终端设备的测量数据则第一测量数据可以表示为包括的集合可选的,当接入网设备还包括其他多个频点(例如第三频点、第四频点等)时,假设频点总数为G,则第一测量数据可以表示为 G为大于2的正整数。可选的,第一频点的网络中可以包括多个终端设备(例如包括N个终端设备),则第一频点的网络中的终端设备的测量数据也可以表示为包括N个终端设备的测量数据的集合类似的,第二频点的网络中也可以包括多个终端设备(例如包括M个终端设备),则第二频点的网络中的终端设备的测量数据也可以表示为包括M个终端设备的测量数据的集合则第一测量数据可以表示为包括的集合
可选的,接入网设备接收来自终端设备的X组测量数据。其中,该X组测量数据中的任意一组测量数据包括第一频点的测量数据和第二频点的测量数据,该X组测量数据中包括上述第一测量数据,X为正整数。
例如,当X=1时,表示接入网设备接收一组测量数据,该组测量数据即为第一测量数据。当X为大于或等于2的正整数时,表示接入网设备接收至少两组测量数据。
例如,当X=2时,接入网设备接收第一频点的网络中一个终端设备(例如称为终端设备1)和第二频点的网络中一个终端设备(例如称为终端设备2)反馈的两组测量数据。其中,第一组测量数据包括当天线的参数为第一天线参数组合时,第一频点的网络中终端设备1的测量数据以及第二频点的网络中终端设备2的测量数据则第一组测量数据可以表示为第二组测量数据包括当天线的参数为第二个天线参数组合时,第一频点的网络中终端设备1的测量数据以及第二频点的网络中终端设备2的测量数据则第二组测量数据可以表示为可选的,第一频点的网络中可以包括多个终端设备(例如包括N个终端设备),则第一频点的网络中的终端设备的测量数据也可以表示为包括N个终端设备的测量数据的集合类似的,第二频点的网络中也可以包括多个终端设备(例如包括M个终端设备),则第二频点的网络中的终端设备的测量数据也可以表示为包括M个终端设备的测量数据的集合则第一组测量数据可以表示为包括的集合第二组测量数据直至第X组测量数据与第一组测量数据类似,此处不再赘述。
可选的,接入网设备接收来自终端设备的第一测量数据之前,将天线的参数配置为第一天线参数组合,该第一天线参数组合为初始默认值。例如,接入网设备可以预设第一天线参数组合(例如根据特定的组网工参预设一组天线参数组合),完成初始化组网优化。
可选的,在初始化配置天线的参数以及网络中的其他参数时,接入网设备还可以预设多个天线参数组合。例如,接入网设备预设K个天线参数组合,其中的任意一个天线参数组合(编号为k,k为大于0且小于或等于K的正整数)包括第一频点的第k天线参数和第二频点的第k天线参数即第k个天线参数组合可以表示为包括的集合可选的,当接入网设备还包括其他多个频点(例如第三频点、第四频点等)时,假设频点总数为G,则第k个天线参数组合可以表示为
S102,接入网设备根据第一测量数据,将天线的参数从第一天线参数组合调整为第二天线参数组合。
其中,接入网设备将天线的参数调整为第二天线参数组合,也即是,接入网设备按照第二天线参数组合配置天线的状态。例如,假设第二天线参数组合包括水平方向角为15度,垂直方向角为20度,则配置该天线的水平方向角为15度,垂直方向角为20度。
其中,接入网设备可以根据终端设备反馈的测量数据(例如X组测量数据),调整天线的参数(例如从K个天线参数组合中选择一个天线参数组合作为天线的参数)。具体来说,该步骤包括以下几种实施方式:
1、实施方式一:在同一业务特征下,根据一组测量数据确定一个天线参数组合。
该实施方式中,假设业务特征不变,当接入网设备接收第一测量数据后,根据第一测量数据进行分析得到当前网络的组网性能较差,则对天线的参数进行一次调整。例如,图4为本申请提供的一种调整天线的参数的流程示意图,包括以下步骤:
S102a,接入网设备确定第一测量数据对应的第一效用指标。
S102b,接入网设备根据第一效用指标,确定第二天线参数组合。
其中,第一效用指标是由第一测量数据进行转换处理(例如基于测量数据进行函数建模)得到的。例如,当接入网设备包括第一频点和第二频点时,第一天线参数组合包括第一频点的第一天线参数和第二频点的第一天线参数则第一测量数据可以表示为包括第一频点的网络中的终端设备的测量数据和第二频点的网络中的终端设备的测量数据的集合则第一测量数据对应的第一效用指标可以表示为其中,U1表示第一效用指标,f(.)表示根据测量数据计算效用指标的函数。其中,第一测量数据中是相同类型的测量数据,例如,当为SNR时,第一效用指标U1为SNR对应的CQI等级或吞吐量或频谱效率;当为RSRP时,第一效用指标U1为RSRP等级。
其中,若第一效用指标低于网络预期的效用指标(也可以理解为,采用第一天线参数组合时组网性能较差),例如,若第一效用指标U1为吞吐量,且该吞吐量低于网络预期的吞吐量阈值,则第一效用指标U1低于网络预期的效用指标,接入网设备可以从预设的K个天线参数组合中选择一个新的天线参数组合(即第二天线参数组合),并且将天线的参数配置为该第二天线参数组合。
该实施方式中,接入网设备可以根据终端设备反馈的第一测量数据,调整一次天线参数,从而实现了天线时变可配。
2、实施方式二:在同一业务特征下,采用多个天线参数组合得到多组测量数据,再根据多组测量数据确定最优的天线参数组合。
该实施方式中,假设业务特征不变,接入网设备可以接收多组测量数据,并对多组测量数据进行分析得到多个效用指标,从多个效用指标中选择最优的效用指标,并对天线的参数进行调整。例如,图5为本申请提供的另一种调整天线的参数的流程示意图,包括以下步骤:
S102_1,接入网设备根据X组测量数据,确定X个效用指标,其中,该X组测量数据中的每一组测量数据对应一个效用指标。
S102_2,接入网设备根据业务特征,确定匹配该业务特征的效用指标中的最大值对应的天线参数组合为第二天线参数组合。
其中,X个效用指标是由X组测量数据分别进行转换处理得到的。例如,假设X=3即接入网设备接收三组测量数据,第一组测量数据包括当天线的参数为第一天线参数组合时,第一频点的网络中终端设备的测量数据以及第二频点的网络中终端设备的测量数据则第一组测量数据可以表示为包括的集合第一组测量数据对应的第一个效用指标可以表示为第二组测量数据包括当天线的参数为第二天线参数组合时,第一频点的网络中终端设备的测量数据以及第二频点的网络中终端设备的测量数据则第二组测量数据可以表示为包括的集合第二组测量数据对应的第二个效用指标可以表示为第三组测量数据包括当天线的参数为第三天线参数组合时,第一频点的网络中终端设备的测量数据以及第二频点的网络中终端设备的测量数据则第二组测量数据可以表示为包括的集合第三组测量数据对应的第三个效用指标可以表示为根据上述对天线参数组合、测量数据和效用指标的描述可知,当业务特征不变时,天线参数组合、测量数据和效用指标之间的对应关系如表4所示。其中,表4仅为一种示例,本申请不作限定。
表4:天线参数组合、测量数据和效用指标之间的对应关系表

当接入网设备确定X个效用指标后,可以根据业务特征,确定匹配该业务特征的一个或多个效用指标,并且选取效用指标中的最大值,将天线的参数调整为该最大值对应的天线参数组合。根据前文对业务特征的描述,本申请中定义的业务特征包括业务时间段、用户位置分布、测量反馈分布中的一种或多种,则不同业务特征的效用指标也包括一种或多种。
(1)当业务特征包括业务时间段时,该业务特征的X个效用指标包括以下一种或多种:该业务时间段的X个CQI等级的统计分布特征值、该业务时间段的X个RSRP等级的统计分布特征值、该业务时间段的X个方向角范围的统计分布特征值。
例如,当业务特征包括业务时间段时,假设X=3,则该业务时间段的3个效用指标包括该业务时间段的3个CQI等级的统计分布特征值,如表5所示。
表5:一种业务特征的效用指标列表
根据表5,接入网设备选择该业务时间段的3个效用指标的最大值即CQI等级的统计分布特征值1(表示该业务时间段的大部分的终端设备都处于中CQI等级,且处于低CQI等级的终端设备较少,此时组网性能较优),并且将天线的参数调整为该CQI等级的统计分布特征值1对应的天线参数组合。可选的,上述表5仅为一种示例,当业务特征包括业务时间段时,假设X=3,则该业务时间段的3个效用指标还可以包括该业务时间段的3个RSRP等级的统计分布特征值,或者该业务时间段的3个方向角范围的统计分布特征值,也可以推导出类似于表5的业务特征的效用指标列表,此处不再赘述。
(2)当业务特征包括用户位置分布时,该业务特征的X个效用指标包括以下中的一种或多种:该用户位置分布的X个信道质量指数等级的统计分布特征值,或,该用户位置分布的X个参考信号接收功率等级的统计分布特征值。
例如,当业务特征包括用户位置分布时,假设X=3,则该用户位置分布的3个效用指标包括该用户位置分布的3个RSRP等级的统计分布特征值,如表6所示。
表6:另一种业务特征的效用指标列表
根据表6,接入网设备选择该用户位置分布的3个效用指标的最大值即RSRP等级的统计分布特征值1(表示该位置区域的大部分的终端设备的RSRP较高,且RSRP较低的终端设备较少,此时组网性能较优),并且将天线的参数调整为该RSRP等级的统计分布特征值1对应的天线参数组合。可选的,上述表6仅为 一种示例,当业务特征包括用户位置分布时,假设X=3,则该用户位置分布的3个效用指标还可以包括该业务时间段的3个CQI等级的统计分布特征值,也可以推导出类似于表6的业务特征的效用指标列表,此处不再赘述。
(3)当业务特征包括测量反馈分布时,该业务特征的X个效用指标包括该测量反馈分布的X个方向角范围的统计分布特征值。
例如,当业务特征包括测量反馈分布时,假设X=3,则该测量反馈分布的3个效用指标包括该测量反馈分布的3个方向角范围的统计分布特征值,如表7所示。
表7:又一种业务特征的效用指标列表
根据表7,接入网设备选择该测量反馈分布的3个效用指标的最大值即方向角范围的统计分布特征值1(表示该测量反馈分布的大部分的终端设备都处于相同的方向角范围,有利于波束的集中覆盖,此时组网性能较优),并且将天线的参数调整为该方向角范围的统计分布特征值1对应的天线参数组合。
综上,该实施方式中,针对同一业务特征,天线的参数可以调整多次,从而得到多组测量数据。接入网设备可以根据该多组测量数据确定最优的天线参数组合,在后续业务传输过程中,当业务特征为该业务特征时,接入网设备可以将天线的参数配置为该最优的天线参数组合,从而有利于提高网络的频谱效率和吞吐量。
3、实施方式三:业务特征多次变化,天线的参数调整多次。
该实施方式中,假设业务特征变化,针对不同的业务特征,接入网设备可以配置不同的天线参数组合,则终端设备可以测量并反馈多组测量数据,接入网设备对多组测量数据进行分析得到多个效用指标,从多个效用指标中选择最优的效用指标,并对天线的参数进行调整。该实施方式中与实施方式二中接入网设备执行的步骤是类似的,区别在于X组测量数据包括多个业务特征的多组测量数据,X个效用指标包括多个业务特征的多个效用指标。
例如,业务特征为时间段时,即,当多个业务特征包括W个业务时间段时,假设多个业务特征的集合为{T1,T2,...,TW}。针对该W个业务时间段,将天线的参数配置为不同的天线参数组合。假设在任意一个业务时间段z(z为小于或等于W的正整数),遍历K个天线参数组合(也即是将天线的参数配置为该K个天线参数组合),则该业务时间段w的K组测量数据包括第一频点的网络中终端设备的测量数据和第二频点的网络中终端设备的测量数据则针对W个业务时间段,终端设备可以测量得到W*K组测量数据。该W*K组测量数据分别对应W*K个效用指标(也即是,该实施方式中X个效用指标具体为W*K个效用指标)。其中,计算效用指标的方式与前文实施方式中的计算方式是相同的,此处不再赘述。例如,表8为业务特征、天线参数组合、测量数据和效用指标之间的对应关系表。
表8:业务特征、天线参数组合、测量数据和效用指标之间的对应关系表

其中,表8仅为一种示例,针对其他的业务特征(例如Y个用户位置分布),遍历K个天线参数组合,终端设备可以测量得到Y*K组测量数据。该Y*K组测量数据分别对应Y*K个效用指标,则可以得到用户位置分布、天线参数组合、测量数据和效用指标之间的对应关系(即可以得到类似于表8的对应关系表),此处不再赘述。
可选的,接入网设备可以保留业务特征、天线参数组合、测量数据和效用指标之间的对应关系,在后续业务传输过程中,根据特定的业务特征,选择效用指标最大值对应的天线参数组合,用于配置天线的参数,从而优化组网性能。
可选的,当接入网设备根据多个业务特征确定匹配业务特征的效用指标中的最大值时,接入网设备可以根据多个业务特征的优先级顺序选择一个业务特征,并选择该业务特征的效用指标的最大值。例如,多个业务特征包括业务时间段和方向角范围时,假设业务时间段的优先级高于方向角范围,则接入网设备选择业务时间段的多个效用指标中的最大值1,并确定该最大值1对应的天线参数组合为第二天线参数组合。或者,当接入网设备根据多个业务特征确定匹配业务特征的效用指标中的最大值时,接入网设备可以根据网络侧所规定的业务优先级顺序(例如优先保证哪类业务)选择一个业务特征,并选择该业务特征的效用指标的最大值。例如,多个业务特征包括业务时间段、方向角范围、CQI等级时,假设网络侧所规定的业务优先级顺序为CQI等级的优先级最高,则接入网设备选择CQI等级的多个效用指标中的最大值2,并确定该最大值2对应的天线参数组合为第二天线参数组合。
综上,该实施方式中,业务特征可以变化,天线的参数可以随着业务特征的变化调整多次,例如,针对不同的业务特征采用不同的天线参数组合,有利于优化针对业务特征的组网性能。
为了实现本申请提供的方法中的各功能,本申请提供的装置或设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬 件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图6为本申请提供的一种天线的配置装置的示意图。该天线的配置装置可以包括执行如图3至图5对应的方法实施例中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可以是软件,也可以是硬件电路结合软件实现。
该天线的配置装置600包括通信单元601和处理单元602,用于实现前述实施例中接入网设备所执行的方法。
一种可能的实施方式中,通信单元601用于接收来自终端设备的第一测量数据。处理单元602用于根据第一测量数据,将天线的参数从第一天线参数组合调整为第二天线参数组合;其中,第一天线参数组合包括第一频点的第一天线参数和第二频点的第一天线参数,第二天线参数组合包括第一频点的第二天线参数和第二频点的第二天线参数。
可选的,处理单元602用于根据第一测量数据,将天线的参数从第一天线参数组合调整为第二天线参数组合,包括:
确定第一测量数据对应的第一效用指标;
根据第一效用指标,确定第二天线参数组合。
可选的,通信单元601用于接收来自终端设备的第一测量数据,包括:
接收来自终端设备的X组测量数据,其中,X组测量数据中的任意一组测量数据包括第一频点的测量数据和第二频点的测量数据,X组测量数据中包括第一测量数据,X为正整数。
可选的,测量数据包括信噪比或参考信号接收功率。
可选的,处理单元602用于根据第一测量数据,将天线的参数从第一天线参数组合调整为第二天线参数组合,包括:
根据X组测量数据,确定X个效用指标,其中,该X组测量数据中的每一组测量数据对应一个效用指标;
根据业务特征,确定匹配该业务特征的效用指标中的最大值对应的天线参数组合为第二天线参数组合。
可选的,业务特征包括业务时间段、用户位置分布、测量反馈分布中的一种或多种;其中,用户位置分布包括终端设备的方向角范围;测量反馈分布包括信道质量指数等级和/或参考信号接收功率等级。
可选的,业务特征中的用户位置分布为当前时间段的前一时间段的用户位置分布,或者,用户位置分布是根据当前时间段的前一时间段的用户位置分布预测得到的。
可选的,当业务特征包括业务时间段时,该业务特征的X个效用指标包括以下中的一种或多种:该业务时间段的X个信道质量指数等级的统计分布特征值、该业务时间段的X个参考信号接收功率等级的统计分布特征值、该业务时间段的X个方向角范围的统计分布特征值。
可选的,当业务特征包括用户位置分布时,该业务特征的X个效用指标包括以下中的一种或多种:该用户位置分布的X个信道质量指数等级的统计分布特征值、该用户位置分布的X个参考信号接收功率等级的统计分布特征值。
可选的,当业务特征包括测量反馈分布时,该业务特征的X个效用指标包括该测量反馈分布的X个方向角范围的统计分布特征值。
可选的,处理单元602还用于:
将天线的参数配置为第一天线参数组合,第一天线参数组合为初始默认值。
可选的,天线参数包括水平方向角、垂直方向角、水平波束宽度、垂直波束宽度中的一种或多种。
该实施方式中通信单元601和处理单元602的具体执行流程还可以参考图3至图5对应的方法实施例中的描述,此处不再赘述。该天线的配置装置所实现的天线的配置方法可以根据终端设备实时反馈的测量数据,调整天线参数,也即是,天线参数可以随着时间变化而变化,从而有利于不同的天线参数可以实时适配不同的业务特征,提升组网性能。
下面对包括图6所示的多个功能单元的设备进行描述。本申请所述的设备包括图6所示的多个功能单元。图7为本申请提供的一种接入网设备的示意图,用于实现上述方法实施例中的天线的配置方法。该接 入网设备700也可以是芯片系统。
其中,接入网设备700包括通信接口701和处理器702。通信接口701例如可以是收发器、接口、总线、电路或者能够实现收发功能的装置。其中,通信接口701用于通过传输介质和其它设备进行通信,从而用于接入网设备700可以和其它设备进行通信。处理器702用于执行处理相关的操作。
一种可能的实施方式中,通信接口701用于接收来自终端设备的第一测量数据。处理器702用于根据第一测量数据,将天线的参数从第一天线参数组合调整为第二天线参数组合;其中,第一天线参数组合包括第一频点的第一天线参数和第二频点的第一天线参数,第二天线参数组合包括第一频点的第二天线参数和第二频点的第二天线参数。
可选的,处理器702用于根据第一测量数据,将天线的参数从第一天线参数组合调整为第二天线参数组合,包括:
确定第一测量数据对应的第一效用指标;
根据第一效用指标,确定第二天线参数组合。
可选的,通信接口701用于接收来自终端设备的第一测量数据,包括:
接收来自终端设备的X组测量数据,其中,X组测量数据中的任意一组测量数据包括第一频点的测量数据和第二频点的测量数据,X组测量数据中包括第一测量数据,X为正整数。
可选的,测量数据包括信噪比或参考信号接收功率。
可选的,处理器702用于根据第一测量数据,将天线的参数从第一天线参数组合调整为第二天线参数组合,包括:
根据X组测量数据,确定X个效用指标,其中,该X组测量数据中的每一组测量数据对应一个效用指标;
根据业务特征,确定匹配该业务特征的效用指标中的最大值对应的天线参数组合为第二天线参数组合。
可选的,业务特征包括业务时间段、用户位置分布、测量反馈分布中的一种或多种;其中,用户位置分布包括终端设备的方向角范围;测量反馈分布包括信道质量指数等级和/或参考信号接收功率等级。
可选的,业务特征中的用户位置分布为当前时间段的前一时间段的用户位置分布,或者,用户位置分布是根据当前时间段的前一时间段的用户位置分布预测得到的。
可选的,当业务特征包括业务时间段时,该业务特征的X个效用指标包括以下中的一种或多种:该业务时间段的X个信道质量指数等级的统计分布特征值、该业务时间段的X个参考信号接收功率等级的统计分布特征值、该业务时间段的X个方向角范围的统计分布特征值。
可选的,当业务特征包括用户位置分布时,该业务特征的X个效用指标包括以下中的一种或多种:该用户位置分布的X个信道质量指数等级的统计分布特征值、该用户位置分布的X个参考信号接收功率等级的统计分布特征值。
可选的,当业务特征包括测量反馈分布时,该业务特征的X个效用指标包括该测量反馈分布的X个方向角范围的统计分布特征值。
可选的,处理器702还用于:
将天线的参数配置为第一天线参数组合,第一天线参数组合为初始默认值。
可选的,天线参数包括水平方向角、垂直方向角、水平波束宽度、垂直波束宽度中的一种或多种。
该实施方式中通信接口701和处理器702的具体执行流程还可以参考图3至图5对应的方法实施例中的描述,此处不再赘述。该天线的配置装置所实现的天线的配置方法可以根据终端设备实时反馈的测量数据,调整天线参数,也即是,天线参数可以随着时间变化而变化,从而有利于不同的天线参数可以实时适配不同的业务特征,提升组网性能。
可选的,该接入网设备700还可以包括至少一个存储器703,用于存储程序指令和/或数据。一种实施方式中,存储器和处理器耦合。本申请中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器可能和存储器协同操作。处理器可能执行存储器中存储的程序指令。所述至少一个存储器和处理器集成在一起。
本申请中不限定上述通信接口、处理器以及存储器之间的具体连接介质。例如,存储器、处理器以及通信接口之间通过总线连接,总线704在图7中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其 他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请提供一种通信系统,该通信系统包括如图3至图5对应的实施例中的终端设备和接入网设备。
本申请提供一种计算机可读存储介质。该计算机可读存储介质存储有程序或指令。当所述程序或指令在计算机上运行时,使得计算机执行如图3至图5对应的实施例中的天线的配置方法。
本申请中提供一种计算机程序产品。该计算机程序产品包括指令。当所述指令在计算机上运行时,使得计算机执行如图3至图5对应的实施例中的天线的配置方法。
本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行如图3至图5对应的实施例中的天线的配置方法。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种实现方式中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
本申请提供的技术方案可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、终端设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质等。
在本申请中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (28)

  1. 一种天线的配置方法,其特征在于,应用于接入网设备,所述接入网设备包括第一频点和第二频点,所述方法包括:
    接收来自终端设备的第一测量数据;
    根据所述第一测量数据,将所述天线的参数从第一天线参数组合调整为第二天线参数组合;
    其中,第一天线参数组合包括所述第一频点的第一天线参数和所述第二频点的第一天线参数,第二天线参数组合包括所述第一频点的第二天线参数和所述第二频点的第二天线参数。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一测量数据,将所述天线的参数从第一天线参数组合调整为第二天线参数组合,包括:
    确定所述第一测量数据对应的第一效用指标;
    根据所述第一效用指标,确定所述第二天线参数组合。
  3. 根据权利要求1或2所述的方法,其特征在于,所述接收来自终端设备的第一测量数据,包括:
    接收来自所述终端设备的X组测量数据,其中,所述X组测量数据中的任意一组测量数据包括所述第一频点的测量数据和所述第二频点的测量数据,所述X组测量数据中包括所述第一测量数据,所述X为正整数。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述测量数据包括信噪比或参考信号接收功率。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述第一测量数据,将所述天线的参数从第一天线参数组合调整为第二天线参数组合,包括:
    根据所述X组测量数据,确定X个效用指标,其中,所述X组测量数据中的每一组测量数据对应一个效用指标;
    根据业务特征,确定匹配所述业务特征的效用指标中的最大值对应的天线参数组合为所述第二天线参数组合。
  6. 根据权利要求5所述的方法,其特征在于,所述业务特征包括业务时间段、用户位置分布、测量反馈分布中的一种或多种;
    其中,所述用户位置分布包括终端设备的方向角范围;
    所述测量反馈分布包括信道质量指数等级和/或参考信号接收功率等级。
  7. 根据权利要求6所述的方法,其特征在于,所述业务特征中的用户位置分布为当前时间段的前一时间段的用户位置分布,或者,
    所述用户位置分布是根据当前时间段的前一时间段的用户位置分布预测得到的。
  8. 根据权利要求6或7所述的方法,其特征在于,当所述业务特征包括所述业务时间段时,所述业务特征的X个效用指标包括以下中的一种或多种:所述业务时间段的X个信道质量指数等级的统计分布特征值、所述业务时间段的X个参考信号接收功率等级的统计分布特征值、所述业务时间段的X个方向角范围的统计分布特征值。
  9. 根据权利要求6或7所述的方法,其特征在于,当所述业务特征包括所述用户位置分布时,所述业务特征的X个效用指标包括以下中的一种或多种:所述用户位置分布的X个信道质量指数等级的统计分布特征值,或,所述用户位置分布的X个参考信号接收功率等级的统计分布特征值。
  10. 根据权利要求6或7所述的方法,其特征在于,当所述业务特征包括所述测量反馈分布时,所述业务特征的X个效用指标包括所述测量反馈分布的X个方向角范围的统计分布特征值。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述接收来自终端设备的第一测量数据之前,所述方法还包括:
    将所述天线的参数配置为第一天线参数组合,所述第一天线参数组合为初始默认值。
  12. 根据权利要求1至11任一项所述的方法,其特征在于,所述天线参数包括水平方向角、垂直方向角、水平波束宽度、垂直波束宽度中的一种或多种。
  13. 一种天线的配置装置,其特征在于,所述天线的配置装置为接入网设备中的装置,所述接入网设备包括第一频点和第二频点,所述天线的配置装置包括:
    通信单元,用于接收来自终端设备的第一测量数据;
    处理单元,用于根据所述第一测量数据,将所述天线的参数从第一天线参数组合调整为第二天线参数组合;
    其中,第一天线参数组合包括所述第一频点的第一天线参数和所述第二频点的第一天线参数,第二天线参数组合包括所述第一频点的第二天线参数和所述第二频点的第二天线参数。
  14. 根据权利要求13所述的装置,其特征在于,所述处理单元用于根据所述第一测量数据,将所述天线的参数从第一天线参数组合调整为第二天线参数组合,包括:
    确定所述第一测量数据对应的第一效用指标;
    根据所述第一效用指标,确定所述第二天线参数组合。
  15. 根据权利要求13或14所述的装置,其特征在于,所述通信单元用于接收来自终端设备的第一测量数据,包括:
    接收来自所述终端设备的X组测量数据,其中,所述X组测量数据中的任意一组测量数据包括所述第一频点的测量数据和所述第二频点的测量数据,所述X组测量数据中包括所述第一测量数据,所述X为正整数。
  16. 根据权利要求13至15任一项所述的装置,其特征在于,所述测量数据包括信噪比或参考信号接收功率。
  17. 根据权利要求15所述的装置,其特征在于,所述处理单元用于根据所述第一测量数据,将所述天线的参数从第一天线参数组合调整为第二天线参数组合,包括:
    根据所述X组测量数据,确定X个效用指标,其中,所述X组测量数据中的每一组测量数据对应一个效用指标;
    根据业务特征,确定匹配所述业务特征的效用指标中的最大值对应的天线参数组合为所述第二天线参数组合。
  18. 根据权利要求17所述的装置,其特征在于,所述业务特征包括业务时间段、用户位置分布、测量反馈分布中的一种或多种;
    其中,所述用户位置分布包括终端设备的方向角范围;
    所述测量反馈分布包括信道质量指数等级和/或参考信号接收功率等级。
  19. 根据权利要求18所述的装置,其特征在于,所述业务特征中的用户位置分布为当前时间段的前一时间段的用户位置分布,或者,
    所述用户位置分布是根据当前时间段的前一时间段的用户位置分布预测得到的。
  20. 根据权利要求18或19所述的装置,其特征在于,当所述业务特征包括所述业务时间段时,所述业务特征的X个效用指标包括以下中的一种或多种:所述业务时间段的X个信道质量指数等级的统计分布特征值、所述业务时间段的X个参考信号接收功率等级的统计分布特征值、所述业务时间段的X个方向角范围的统计分布特征值。
  21. 根据权利要求18或19所述的装置,其特征在于,当所述业务特征包括所述用户位置分布时,所述业务特征的X个效用指标包括以下中的一种或多种:所述用户位置分布的X个信道质量指数等级的统计分布特征值、所述用户位置分布的X个参考信号接收功率等级的统计分布特征值。
  22. 根据权利要求18或19所述的装置,其特征在于,当所述业务特征包括所述测量反馈分布时,所述业务特征的X个效用指标包括所述测量反馈分布的X个方向角范围的统计分布特征值。
  23. 根据权利要求13至22任一项所述的装置,其特征在于,所述处理单元还用于:
    将所述天线的参数配置为第一天线参数组合,所述第一天线参数组合为初始默认值。
  24. 根据权利要求13至23任一项所述的装置,其特征在于,所述天线参数包括水平方向角、垂直方向角、水平波束宽度、垂直波束宽度中的一种或多种。
  25. 一种接入网设备,其特征在于,包括:处理器,该处理器与存储器耦合,该存储器用于存储指令,当指令被处理器执行时,使得如权利要求1至12中任一项所述的方法被执行。
  26. 一种芯片,其特征在于,包括处理器和接口;
    所述处理器用于读取指令以执行权利要求1至12中任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至12任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至12任一项所述的方法。
PCT/CN2023/117750 2022-09-30 2023-09-08 一种天线的配置方法、装置及设备 WO2024067024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211215342.6A CN117858115A (zh) 2022-09-30 2022-09-30 一种天线的配置方法、装置及设备
CN202211215342.6 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067024A1 true WO2024067024A1 (zh) 2024-04-04

Family

ID=90476019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117750 WO2024067024A1 (zh) 2022-09-30 2023-09-08 一种天线的配置方法、装置及设备

Country Status (2)

Country Link
CN (1) CN117858115A (zh)
WO (1) WO2024067024A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474299A (zh) * 2018-10-18 2019-03-15 维沃移动通信有限公司 一种天线确定方法及移动终端
CN112469060A (zh) * 2020-12-08 2021-03-09 中国联合网络通信集团有限公司 一种天线参数确定方法及装置
KR20210048815A (ko) * 2019-10-24 2021-05-04 주식회사 케이티 무선 네트워크 최적화 시스템 및 방법
CN112929907A (zh) * 2021-02-04 2021-06-08 中国联合网络通信集团有限公司 天线参数的确定方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474299A (zh) * 2018-10-18 2019-03-15 维沃移动通信有限公司 一种天线确定方法及移动终端
KR20210048815A (ko) * 2019-10-24 2021-05-04 주식회사 케이티 무선 네트워크 최적화 시스템 및 방법
CN112469060A (zh) * 2020-12-08 2021-03-09 中国联合网络通信集团有限公司 一种天线参数确定方法及装置
CN112929907A (zh) * 2021-02-04 2021-06-08 中国联合网络通信集团有限公司 天线参数的确定方法及装置

Also Published As

Publication number Publication date
CN117858115A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US20220247469A1 (en) Method and device for transmitting channel state information
WO2019096005A1 (zh) 组网方法和装置、网络接入方法、以及用户设备
JP7001704B2 (ja) 通信方法およびデバイス
WO2018095305A1 (zh) 一种波束训练方法及装置
EP3691326A1 (en) Method and device for network optimization
WO2020192363A1 (zh) 一种通信方法及设备
CN103155658A (zh) 上行链路功率控制机制的方法
WO2022228267A1 (zh) 一种通信处理方法、通信装置以及通信系统
CN113423146B (zh) 一种多小区大规模mimo系统中的非授权随机接入方法
WO2012051842A1 (zh) 一种异构网络中的接入方法和设备
WO2020108433A1 (zh) 网络参数处理方法和设备
CN108093482B (zh) 一种无线信息中心网络资源分配的优化方法
WO2024067024A1 (zh) 一种天线的配置方法、装置及设备
WO2011087935A2 (en) Method of controlling resource usage in communication systems
CN106028362B (zh) 一种室内高密度网络的天线云节点通讯实现方法及系统
CN113473505B (zh) 一种多链路同步接入吞吐量优化方法、系统终端及介质
CN111343722B (zh) 边缘计算中基于认知无线电的能效优化方法
CN104509178A (zh) 基站状态处理方法及装置
CN107484111A (zh) 一种m2m通信网络关联及功率分配算法
CN109982336B (zh) 一种在5g网络中超高频小基站构造虚拟宏基站的方法
JP6111765B2 (ja) 基地局装置及び送信電力決定方法
WO2024148504A1 (zh) 关断物理天线的方法和装置
WO2024065755A1 (zh) 一种通信方法及装置
WO2024125509A1 (zh) 模型更新方法、装置、设备及存储介质
CN109361422A (zh) 广域物联网中扩频因子调整方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870263

Country of ref document: EP

Kind code of ref document: A1