WO2024066934A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2024066934A1
WO2024066934A1 PCT/CN2023/116754 CN2023116754W WO2024066934A1 WO 2024066934 A1 WO2024066934 A1 WO 2024066934A1 CN 2023116754 W CN2023116754 W CN 2023116754W WO 2024066934 A1 WO2024066934 A1 WO 2024066934A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
random access
measurement window
message
measurement
Prior art date
Application number
PCT/CN2023/116754
Other languages
English (en)
French (fr)
Inventor
陈莹
张佳胤
铁晓磊
杜颖钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024066934A1 publication Critical patent/WO2024066934A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of communication technology, and in particular to a communication method and device.
  • Non-terrestrial networks have their own unique advantages over terrestrial communications.
  • satellite communications can provide a wider coverage area, and satellite base stations are not easily damaged by natural disasters or external forces.
  • Satellite communications can provide communication services for areas such as oceans and forests that are not covered by terrestrial communication networks; they can also enhance the reliability of communications, such as ensuring that airplanes, trains, and users of these transportations receive better communication services; they can also provide more data transmission resources and increase the speed of the network. Therefore, supporting communications with both the ground and satellites at the same time is an inevitable trend in future communications, and it has relatively large benefits in terms of wide coverage, reliability, multiple connections, and high throughput.
  • Satellite communication has been introduced in the 3rd generation partnership project (3GPP) standard as a communication scenario for the 5th generation (5G) communication or future communication. It can not only support various terminal devices of 5G communication, but also support terminal devices of the Internet of Things (IoT). Satellite communication has the characteristics of high mobility and large communication delay. Compared with terrestrial communication, the difference is that the terminal equipment needs to be synchronized based on the global navigation satellite system (GNSS) information and ephemeris, or other auxiliary information on the basis of the existing uplink synchronization.
  • GNSS global navigation satellite system
  • the 3GPP standard has enhanced the communication method for short-term connections.
  • the so-called "short-term connection” in this application can be understood as: the terminal device initiates access, sends uplink data, and then exits the connection state.
  • the GNSS information obtained by the terminal device before random access is always valid, that is, during the entire connection process, the GNSS information does not need to be updated and can meet the synchronization requirements.
  • the terminal device when the terminal device is in a connected state for a long time, the GNSS information may expire; when the GNSS information expires, the terminal device synchronization may fail due to the accumulated time and frequency errors. Therefore, how to keep the terminal device uplink synchronized for a long time in the satellite communication scenario needs to be solved urgently.
  • the embodiments of the present application provide a communication method and apparatus, which can enable a terminal device to maintain synchronization with a satellite for a long time when the terminal device and the satellite are in a connected state for a long time.
  • GNSS information may refer to information related to the geographic location of the terminal device, such as spatial coordinates X, Y, Z, or longitude, latitude, altitude and other information.
  • the present application provides a communication method, which can be applied to a terminal device, or a processor, chip or chip system, functional module, etc. in a terminal device.
  • the method includes: a first communication device receives a first message and a second message from a second communication device, and determines a random access timing according to the second message.
  • the first message is used to configure a measurement window of a GNSS signal for the first communication device, and the measurement window is used for the first communication device to measure the GNSS signal.
  • the second message is a radio resource control (RRC) signaling, or a physical downlink control channel (PDCCH), or a medium access control (MAC) control element (CE) signaling.
  • RRC radio resource control
  • PDCCH physical downlink control channel
  • CE medium access control element
  • the terminal device i.e., the first communication device mentioned above
  • the timing advance (TA) for uplink synchronization based on its own geographic location information (here, GNSS information) and the geographic location information of the network device (i.e., the second communication device mentioned above)
  • GNSS information the geographic location information of the network device
  • the uplink synchronization requirement may not be met.
  • the second communication device configures the measurement window and random access opportunity of the GNSS signal for the first communication device, so that after the GNSS information expires, the first communication device can correct the TA by initiating a non-competitive random access within the random access opportunity, or obtain the latest GNSS information by measuring the GNSS signal within the measurement window, and then calculate the TA based on the latest GNSS information, so that the terminal device can maintain synchronization with the satellite for a long time.
  • the preset range is an interval [-(T RO +T), + (T win +T)], T RO represents the length of the random access opportunity, T represents the preset threshold, T win represents the length of the measurement window, and in the preset range, "-" represents negative and "+” represents positive. It can be understood that when the preset range is 0 to (T win -T RO ), the random access opportunity is within the measurement window. Generally, the length of the measurement window is greater than the length of the random access opportunity.
  • the second message includes a random access opportunity.
  • the first communication device sends a preamble code in the random access opportunity to initiate a non-contention random access. At this time, the first communication device may not measure the GNSS signal in the measurement window.
  • the first communication device when the measurement window and random access opportunity are configured at the same time, the first communication device can give priority to initiating non-competitive random access within the random access opportunity, so that after the GNSS information expires, non-competitive random access is used to replace the measurement of GNSS signals, which can reduce the power consumption caused by GNSS signal measurement, and can reduce the number of GNSS signal measurements and reduce the complexity.
  • the second message is a PDCCH. If the first communication device receives a PDCCH (the second message) for triggering non-competitive random access before the measurement window arrives, the first communication device sends a preamble code within the random access opportunity indicated by the PDCCH, and may not measure the GNSS signal within the measurement window. If the first communication device does not receive a PDCCH (the second message) for triggering non-competitive random access before the measurement window arrives, the first communication device measures the GNSS signal within the measurement window.
  • the present application schedules the non-competitive random access of the first communication device through the PDCCH, and before the PDCCH arrives at the measurement window, the first communication device initiates the non-competitive random access within the random access opportunity indicated by the PDCCH, and does not measure the GNSS signal within the measurement window.
  • the measurement of the GNSS signal can be replaced by the non-competitive random access, which can not only keep the first communication device and the second communication device synchronized for a long time, but also reduce the power consumption caused by the GNSS signal measurement, and can reduce the number of GNSS signal measurements and reduce the complexity.
  • the second message is RRC signaling or MAC CE signaling, and both RRC signaling and MAC CE signaling are used to configure random access opportunities.
  • the first message is RRC signaling
  • the first message and the second message can be the same RRC signaling, or they can be two different signalings.
  • the random access opportunity configured by the second message corresponds to (or is bound to) the measurement window configured by the first message, and a measurement window can correspond to one or more random access opportunities.
  • the offset of the starting position of each random access opportunity corresponding to (or bound to) the measurement window relative to the starting position of the measurement window is within a preset range.
  • the present application binds the measurement window of the GNSS signal to the random access opportunity, and does not require an additional PDCCH to configure the random access opportunity and trigger non-competitive random access, which can save PDCCH overhead and reduce PDCCH detection before the random access opportunity.
  • the method after the first communication device sends a preamble code within a random access opportunity, the method also includes: the first communication device receives a random access response message from the second communication device, the random access response message including indication information, and the indication information is used to indicate whether the value of TA is positive or negative.
  • the method also includes: the first communication device receives a third message from the second communication device, and the third message is used to notify the first communication device to measure the GNSS signal; the first communication device measures the GNSS signal within (the remaining time of) the measurement window.
  • the present application allows the first communication device to continue to update the GNSS information by measuring the GNSS signal when the TA error is too large, thereby meeting the synchronization requirement.
  • the method further includes: the first communication device receives a third message from the second communication device, the third message being used to notify the first communication device to measure the GNSS signal; the first communication device redetermines the starting position and/or ending position of the measurement window, and measures the GNSS signal in the redetermined measurement window.
  • the starting position of the measurement window can be postponed to the end position of the random access opportunity (the length of the measurement window remains unchanged), or the measurement window is postponed to a period of time after the end of the random access opportunity (the length of the measurement window remains unchanged), or the end position of the measurement window is postponed for a period of time (the length of the measurement window becomes larger).
  • the first communication device of the present application After receiving the notification to continue updating the GNSS information through the measurement of GNSS signals, the first communication device of the present application redetermines the position of the measurement window so that the time for GNSS signal measurement is sufficient and the measurement of GNSS signals can be completed within the redetermined measurement window.
  • the method before the first communication device receives the first message from the second communication device, the method further includes: the first communication device sends a fourth message to the second communication device, the fourth message being used to indicate the measurement duration required for the first communication device to perform GNSS signal measurement and the valid duration of GNSS information.
  • the measurement duration is used to determine the length of the measurement window, and the valid duration of the GNSS information is used to determine the starting position of the measurement window.
  • the first communication device of the present application reports the measurement duration required for the first communication device to perform GNSS signal measurement and the validity duration of GNSS information to the second communication device, so that the measurement window configured by the second communication device is more reasonable.
  • the first message includes one or more of the following: a starting position of a measurement window, an ending position of a measurement window, a length of the measurement window, or a measurement period.
  • the present application provides a communication method, which can be applied to a network device (such as a satellite or ground base station), or a network Processors, chips or chip systems, functional modules, etc. in network devices.
  • the method includes: a second communication device sends a first message and a second message to a first communication device, the second message is used to determine a random access opportunity, and the second communication device detects a preamble code within the random access opportunity determined by the second message.
  • the first message is used to configure a measurement window of a GNSS signal for the first communication device, and the measurement window is used for the first communication device to measure the GNSS signal.
  • the second message is RRC signaling, or PDCCH, or MAC CE signaling.
  • the offset of the starting position of the random access opportunity relative to the starting position of the measurement window is within a preset range.
  • the preset range is an interval [-(T RO +T), +(T win +T)], T RO represents the length of the random access opportunity, T represents the preset threshold, T win represents the length of the measurement window, and in the preset range, "-" represents negative and "+” represents positive. It can be understood that when the preset range is 0 to (T win -T RO ), the random access opportunity is within the measurement window. Generally, the length of the measurement window is greater than the length of the random access opportunity.
  • the second message includes a random access opportunity.
  • the PDCCH indicates a random access opportunity and is used to trigger non-contention random access.
  • the second message is RRC signaling or MAC CE signaling, and the RRC signaling or the MAC CE signaling is used to configure a random access opportunity.
  • the first message is RRC signaling
  • the first message and the second message can be the same RRC signaling, or can be two different signalings.
  • the random access opportunity configured by the second message corresponds to (or is bound to) the measurement window configured by the first message, and a measurement window can correspond to one or more random access opportunities.
  • the offset of the starting position of each random access opportunity corresponding to (or bound to) the measurement window relative to the starting position of the measurement window is within a preset range.
  • the second communication device if the second communication device detects a preamble code within a random access opportunity, the second communication device sends a random access response message to the first communication device, where the random access response message includes indication information, where the indication information is used to indicate whether the value of TA is positive or negative.
  • the second communication device After the second communication device detects the preamble code within the random access opportunity, if the second communication device finds that the TA error detected by the preamble does not exceed the range of closed-loop correction, or the second communication device feels that the TA error of the first communication device can be compensated through non-competitive random access, the second communication device sends the random access response message to the first communication device.
  • the second communication device if the second communication device detects a preamble code during a random access opportunity, and the second communication device finds that the TA error detected by the preamble is relatively large and has exceeded the range of closed-loop correction, or the second communication device feels that it is difficult to compensate for the TA error of the first communication device through non-competitive random access, the second communication device sends a third message to the first communication device, and the third message is used to notify the first communication device to measure the GNSS signal.
  • the present application allows the first communication device to continue to update the GNSS information by measuring the GNSS signal when the TA error is too large, thereby meeting the synchronization requirement.
  • the second communication device if the second communication device does not detect the preamble code within the random access opportunity and does not receive the fifth message from the first communication device on the feedback resource corresponding to the measurement window, the second communication device (re)sends the PDCCH for triggering non-competitive random access after the measurement window ends.
  • the PDCCH can indicate a new random access opportunity so that the first communication device can initiate a new non-competitive random access within this new random access opportunity, thereby reducing the possibility of uplink desynchronization.
  • the method before the second communication device sends a first message to the first communication device, the method also includes: the second communication device receives a fourth message from the first communication device, the fourth message being used to indicate the measurement duration required for the first communication device to perform GNSS signal measurement and the valid duration of the GNSS information; the second communication device can determine the length of the measurement window based on the measurement duration, and determine the starting position of the measurement window based on the valid duration of the GNSS information.
  • the first message includes one or more of the following: a starting position of a measurement window, an ending position of a measurement window, a length of the measurement window, or a measurement period.
  • an embodiment of the present application provides a first communication device, configured to execute the method in the first aspect or any possible implementation of the first aspect.
  • the first communication device includes a unit having the function of executing the method in the first aspect or any possible implementation of the first aspect.
  • the first communication device may be a terminal device or a chip, and the chip may be applied to a terminal device, etc.
  • an embodiment of the present application provides a second communication device, configured to execute the method in the second aspect or any possible implementation of the second aspect.
  • the second communication device includes a unit having the function of executing the method in the second aspect or any possible implementation of the second aspect.
  • the second communication device may be a network device or a chip, and the chip may be applied to a network device, etc.
  • the communication device may include a transceiver unit and a processing unit.
  • a transceiver unit and a processing unit For a specific description of the transceiver unit and the processing unit, reference may also be made to the device embodiment shown below.
  • the beneficial effects of the third aspect to the fourth aspect may refer to the relevant description of the first aspect and the second aspect, which will not be repeated here.
  • the present application provides a first communication device, the first communication device comprising a processor, configured to execute the method described in the first aspect or any possible implementation of the first aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed When the method described in the first aspect or any possible implementation of the first aspect is executed.
  • the memory is located outside the first communication device.
  • the memory is located in the first communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the first communication device further includes a transceiver, and the transceiver is used to receive a signal or send a signal.
  • the transceiver can also be used to receive at least one of the first message or the second message.
  • the transceiver can also be used to send a preamble code, etc.
  • the first communication device may be a terminal device or a chip in the terminal device, etc.
  • an embodiment of the present application provides a second communication device, the second communication device comprising a processor, configured to execute the method described in the second aspect or any possible implementation of the second aspect.
  • the processor is configured to execute a program stored in a memory, and when the program is executed, the method described in the second aspect or any possible implementation of the second aspect is executed.
  • the memory is located outside the second communication device.
  • the memory is located in the second communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the second communication device further includes a transceiver, and the transceiver is used to receive a signal or send a signal.
  • the transceiver can be used to send at least one of the first message or the second message.
  • the transceiver can also be used to receive a fourth message, or a preamble code, etc.
  • the second communication device may be a network device or a chip in a network device, etc.
  • the present application provides a first communication device, the first communication device comprising a logic circuit and an interface, the logic circuit and the interface being coupled.
  • the interface is used to input a first message and a second message, the first message is used to configure a measurement window of a GNSS signal for the first communication device, the measurement window is used for the first communication device to measure the GNSS signal, and the second message is RRC signaling or PDCCH;
  • the logic circuit is used to determine a random access timing according to the second message.
  • the offset of the starting position of the random access timing relative to the starting position of the measurement window is within a preset range.
  • the present application provides a second communication device, the second communication device comprising a logic circuit and an interface, the logic circuit and the interface being coupled.
  • the interface is used to output a first message and a second message, the first message is used to configure a measurement window of a GNSS signal for the first communication device, the measurement window is used for the first communication device to measure the GNSS signal, and the second message is RRC signaling or PDCCH, the second message is used to determine a random access opportunity; the logic circuit is used to detect a preamble code within the random access opportunity.
  • the offset of the starting position of the random access opportunity relative to the starting position of the measurement window is within a preset range.
  • the present application provides a computer-readable storage medium for storing a computer program, which, when executed on a computer, enables the method shown in the above-mentioned first aspect, or any possible implementation of the first aspect, to be executed.
  • the present application provides a computer-readable storage medium for storing a computer program, which, when executed on a computer, enables the method shown in the above-mentioned second aspect, or any possible implementation of the second aspect, to be executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program or a computer code.
  • the computer program product is run on a computer, the method shown in the above-mentioned first aspect, or any possible implementation of the first aspect, is executed.
  • an embodiment of the present application provides a computer program product, which includes a computer program or a computer code.
  • the computer program product runs on a computer, the method shown in the above-mentioned second aspect, or any possible implementation of the second aspect, is executed.
  • the present application provides a computer program.
  • the computer program When the computer program is run on a computer, the method shown in the above-mentioned first aspect, or any possible implementation of the first aspect, is executed.
  • the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the above-mentioned second aspect, or any possible implementation of the second aspect, is executed.
  • an embodiment of the present application provides a wireless communication system, which includes a first communication device and a second communication device, the first communication device is used to execute the method shown in the above-mentioned first aspect, or any possible implementation of the first aspect, and the second communication device is used to execute the method shown in the above-mentioned second aspect, or any possible implementation of the second aspect.
  • FIG1 is a schematic diagram of an architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is another schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG3 is another schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG4 is a flow chart of a communication method provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the positional relationship between the random access opportunity and the measurement window provided in an embodiment of the present application
  • FIG6 is a timing diagram of a communication method provided in an embodiment of the present application.
  • FIG7 is another schematic diagram of a flow chart of a communication method provided in an embodiment of the present application.
  • FIG8a is another timing diagram of the communication method provided in an embodiment of the present application.
  • FIG8b is another timing diagram of the communication method provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of a structure of a communication device provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a communication device 1000 provided in an embodiment of the present application.
  • FIG. 11 is another schematic diagram of the structure of the communication device provided in an embodiment of the present application.
  • first and second in this application are only used to distinguish different objects, rather than to describe a specific order.
  • the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusions.
  • a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but may optionally include steps or units that are not listed, or may optionally include other steps or units that are inherent to these processes, methods, products or devices.
  • At least one (item) or similar expressions refer to one or more, “multiple” refers to two or more, and “at least two (items)” refers to two or three and more than three.
  • “And/or” is used to describe the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: only A exists, only B exists, and A and B exist at the same time, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an “or” relationship.
  • At least one of the following items” or similar expressions refers to any combination of these items.
  • at least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c”.
  • the technical solution provided by this application can be applied to various communication systems, for example, it can be applied to 5G communication systems, such as the new generation radio access technology (NR) system, or to various communication systems evolved after 5G, for example, the sixth generation (6G) communication system.
  • 5G communication systems such as the new generation radio access technology (NR) system
  • NR new generation radio access technology
  • 6G sixth generation
  • This application can also be applied to various other communication systems supporting satellite communication, etc.
  • FIG1, FIG2, and FIG3 exemplarily illustrate the architecture of a possible communication system supporting satellite communication.
  • the communication method provided in the embodiment of the present application can be applied to the architecture of any communication system in FIG1, FIG2, or FIG3.
  • the architecture of the above communication system can also be called the architecture of a satellite-ground fusion network.
  • the base station can be deployed on the ground, and the satellite is connected to the ground station (also called a gateway) through the air interface, and the ground station can be connected to the ground base station wirelessly or by wire, and the ground base station can be connected to the core network by wire or wireless.
  • the terminal device on the ground can access the network through the air interface (the air interface can be various types of air interfaces, such as 5G air interfaces, etc.), and the satellite, as a transmission node, forwards the information of the terminal device.
  • the satellite can have a transparent forwarding function (that is, the corresponding base station is deployed on the ground), and transparent forwarding can be achieved between satellites.
  • the base station can be deployed on the satellite, such as the base station or part of the base station function is deployed on the satellite.
  • the satellite can be connected to the ground station through the air interface, and the ground station can be connected to the core network wirelessly or wired.
  • the terminal equipment on the ground can communicate with the satellite base station through the air interface (the air interface can be various types of air interfaces, such as 5G air interfaces, etc.) to access the network.
  • the satellite is connected to the ground station as a base station through the NG interface, and the ground station is connected to the core network through the NG interface.
  • the NG interface can be wireless or wired.
  • the communication system shown in FIG3 adds a communication scenario between satellite base stations. Specifically, satellite base stations can communicate with each other through the Xn interface, and satellites can complete signaling interaction and user data transmission between base stations.
  • each satellite may provide services to one or more terminal devices, each satellite may correspond to one or more ground stations, each ground station may correspond to one or more satellites, and so on, which are not limited in this application.
  • each network element and its interface in FIG. 1 to FIG. 3 are described as follows:
  • the terminal device can be various types of terminals that support NR, such as mobile phones, tablet computers, vehicle-mounted terminal devices, Wearable terminal devices, etc.
  • the terminal device can access the satellite network through the air interface and initiate calls, surf the Internet and other services.
  • the terminal device can be called a terminal, user equipment (UE), access terminal, subscriber unit, user station, mobile station, customer-premises equipment (CPE), remote station, remote terminal, mobile device, user terminal, wireless communication equipment, user agent or user device.
  • UE user equipment
  • CPE customer-premises equipment
  • the terminal device in this application can be: a satellite phone, a cellular phone, a smart phone, a wireless data card, a wireless modem, a machine type communication device, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a communication device carried on a high-altitude aircraft, a wearable device, a drone, a robot, and a smart point of sale (POS) machine.
  • POS smart point of sale
  • the terminal device in the present application may also be: a terminal in the Internet of Things (IoT), a terminal in device-to-device communication (D2D), a terminal in vehicle to everything (V2X), a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a wireless terminal in a smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city, a wireless terminal in a smart home, or a terminal device of any form in a future communication network, etc., and the present application does not impose any limitation.
  • IoT Internet of Things
  • D2D device-to-device communication
  • V2X vehicle to everything
  • VR virtual reality
  • AR augmented reality
  • a wireless terminal in industrial control a wireless terminal in self driving
  • a wireless terminal in remote medical a wireless terminal in a smart grid, a wireless terminal in transportation safety, a wireless terminal in a smart city
  • a base station is an example of a network device, which can be used to provide wireless access services, schedule wireless resources to accessed terminal devices, provide reliable wireless transmission protocols and data encryption protocols, etc.
  • the network device in this application can be a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • a network device can be a radio access network (RAN) node that connects a terminal device to a wireless network, and can also be called an access network device.
  • the network device in this application can be a next generation NodeB (gNB) in a 5G communication system, and can also be a base station in a future communication system (such as a 6G communication system).
  • gNB next generation NodeB
  • the network equipment may include, but is not limited to, evolved Node B (eNB), home base station (for example, home evolved Node B, or home Node B, HNB), baseband unit (BBU), active antenna unit (AAU), wireless relay node, wireless backhaul node, transmission point (TP) or transmission reception point (TRP), device-to-device (D2D), vehicle-to-everything (V2X), and machine-to-machine (M2M) communications, etc.
  • eNB evolved Node B
  • HNB home base station
  • BBU baseband unit
  • AAU active antenna unit
  • wireless relay node wireless backhaul node
  • TP transmission point
  • TRP transmission reception point
  • D2D device-to-device
  • V2X vehicle-to-everything
  • M2M machine-to-machine
  • the network device may also include: a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (C-RAN) system, a network device in an NTN communication system (which may be deployed on a high altitude platform or a satellite); or may be one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G mobile communication system; or, the network device may also be a network node constituting a gNB or a transmission point.
  • CU centralized unit
  • DU distributed unit
  • NTN communication system which may be deployed on a high altitude platform or a satellite
  • the network device may also be a network node constituting a gNB or a transmission point.
  • the ground station can be used to forward signaling and business data between the satellite and the base station, or between the satellite and the core network.
  • the core network can be used for user access control, mobility management, session management, user security authentication or billing, etc.
  • the core network can be composed of multiple functional units, such as functional entities including control plane and data plane.
  • the core network shown in Figures 1 to 3 may include access and mobility management function (AMF), session management function (SMF) and user plane function (UPF), etc.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • AMF can be responsible for user access management, security authentication, and mobility management.
  • UPF can be responsible for managing the transmission of user plane data, traffic statistics, etc.
  • the air interface shown in FIG. 1 to FIG. 3 can be understood as a wireless link between a terminal and a base station, or a wireless link between a satellite and a ground station.
  • the Xn interface can be understood as an interface between base stations, and is mainly used for signaling interactions such as switching.
  • the NG interface can represent the interface between the base station and the core network, or the interface between the ground station and the core network, or the interface between the satellite base station and the ground station (in this case, the interface is a wireless link), which is used for signaling such as non-access stratum (NAS) of the interactive core network, as well as user service data.
  • NAS non-access stratum
  • the satellite may be a geostationary earth orbit (GEO) satellite, a medium earth orbit (MEO) satellite or a low earth orbit (LEO) satellite of a non-geostationary earth orbit (NGEO), or a high altitude communication platform (HAPS).
  • GEO geostationary earth orbit
  • MEO medium earth orbit
  • LEO low earth orbit
  • NGEO non-geostationary earth orbit
  • HAPS high altitude communication platform
  • the standard has separately defined the timing, synchronization, and hybrid automatic retransmission request.
  • the present application mainly focuses on the synchronization problem in the satellite communication scenario.
  • the terminal device needs to achieve synchronization based on GNSS information and ephemeris, or other auxiliary information on the basis of the existing uplink synchronization.
  • the 3GPP standard only enhances the communication method of the terminal device and the satellite for a short time, but does not enhance the communication method of the terminal device and the satellite for a long time.
  • the terminal device obtains GNSS information before random access, and the GNSS information is valid until the terminal device exits the connection state. This is because the time for the terminal device to initiate access and exit the connection state after sending the uplink data is very short, so even if the terminal device moves during this process, the deviation of the GNSS information caused by the movement can meet the synchronization requirements.
  • the terminal device is in a connected state with the satellite for a long time, because the GNSS information has a valid time, that is, if it is too long, the current GNSS information will expire, so in the communication scenario where the terminal device is connected to the satellite for a long time, the GNSS information may expire.
  • the accumulated time and frequency errors may cause the terminal device to fail to synchronize, resulting in wireless link failure, that is, the terminal device cannot continue to maintain connection with the satellite.
  • the terminal device when the terminal device is connected to the satellite for a long time, it may need to re-acquire GNSS information, but the complexity of acquiring GNSS information is high and the power consumption is high.
  • the terminal device for existing IoT terminals, there are situations where communication and acquisition of GNSS information cannot be performed at the same time, so if the terminal device re-acquires GNSS information in the connected state, it will affect normal communication, such as causing service interruption of the terminal device.
  • the embodiments of the present application provide a communication method and device to enhance the communication mode when the terminal device is in a long-term connection with the satellite, which can not only enable the terminal device to maintain synchronization with the satellite for a long time, but also reduce the power consumption (or overhead) caused by the terminal device performing GNSS signal measurement, as well as reduce the number of GNSS signal measurements and reduce the complexity.
  • GNSS information in this application can refer to information related to the geographical location of the terminal device, such as spatial coordinates X, Y, Z, or longitude, latitude, altitude and other information.
  • the random access opportunity in this application may refer to RO: PRACH occasion or PRACH transmission occasion, PRACH occasion or PRACH transmission occasion; PRACH: physical random access channel, physical random access channel.
  • the communication method provided by the present application is described in detail by taking the first communication device and the second communication device as examples.
  • the first communication device can be a terminal device, or a processor, chip or chip system, functional module, etc. in the terminal device.
  • the second communication device can be a network device (such as a satellite or ground base station), or a processor, chip or chip system, functional module, etc. in a network device.
  • a network device such as a satellite or ground base station
  • Figure 4 is a flow chart of a communication method provided in an embodiment of the present application. As shown in Figure 4, the communication method includes:
  • a second communication device sends a first message to a first communication device, where the first message is used to configure a measurement window of a GNSS signal for the first communication device, where the measurement window is used for the first communication device to measure the GNSS signal.
  • the first communication device receives the first message.
  • the first communication device reports its capability to the second communication device.
  • the capability of the first communication device can be divided into two types: limited capability or unlimited capability.
  • the second communication device configures a measurement window of the GNSS signal for the first communication device, that is, executes step S101.
  • the second communication device does not need to configure a measurement window of the GNSS signal.
  • the "limited capability” referred to in this application may mean that during the process of GNSS signal measurement, communication signals cannot be monitored (such as monitoring the physical downlink control channel (PDCCH)), and GNSS signal measurements cannot be performed during random access.
  • “limited capability” can also be understood as: the inability to support communication (such as sending and receiving communication data, monitoring PDCCH, etc.) and GNSS signal measurement at the same time.
  • the "unlimited capability” referred to in this application may mean that during the process of GNSS signal measurement, communication signals can be monitored (such as monitoring PDCCH), and GNSS signal measurements can be performed during random access.
  • “unlimited capability” can also be understood as: the ability to support communication and GNSS signal measurements at the same time.
  • the first message may be a radio resource control (RRC) signaling.
  • the second communication device may configure a measurement window for a GNSS signal for the first communication device through RRC signaling.
  • the measurement window configured by the second communication device for the first communication device may be one or more, and the embodiment of the present application does not impose any limitation thereto.
  • the measurement window configured by the second communication device for the first communication device may be used by the first communication device to measure GNSS signals.
  • the first message may be a medium access control (MAC) control element (CE) signaling.
  • the second communication device configures the measurement of the GNSS signal for the first communication device through the MAC CE signaling. Measurement window. It can be understood that when the terminal device receives the MAC CE signaling, the terminal device will send a feedback. If an ACK (acknowledge) message is fed back, it means that the terminal device has correctly received the MAC CE signaling, and the MAC CE signaling takes effect 3ms (milliseconds) after the feedback. Therefore, the starting position of the measurement window configured by the MAC CE signaling can be the effective position of the MAC CE signaling. Of course, if the terminal device feeds back a NACK (non-acknowledge) message, it means that the terminal device has not correctly received the MAC CE signaling.
  • NACK non-acknowledge
  • the second communication device sends a MAC CE signaling to the first communication device (the MAC CE signaling is used to configure the measurement window of the GNSS signal for the first communication device)
  • the first communication device can send a first feedback to the second communication device. If the first communication device correctly receives the MAC CE signaling and the first communication device does not want to measure the GNSS signal within the measurement window configured by the MAC CE, the first communication device can send a second feedback to the second communication device.
  • the second communication device sends a MAC CE signaling to configure the measurement window of the GNSS signal when there are 5s left in the valid time of the GNSS information.
  • the first communication device decides to skip the measurement of the GNSS signal once. If the first communication device correctly receives the MAC CE signaling and the first communication device is ready to measure the GNSS signal within the measurement window configured by the MAC CE, the first communication device can send a third feedback to the second communication device.
  • the first feedback can be used to indicate that the first communication device did not correctly receive the MAC CE signaling.
  • the second feedback can be used to indicate that the first communication device correctly received the MAC CE signaling, but the first communication device did not want to measure the GNSS signal within the measurement window configured by the MAC CE.
  • the third feedback can be used to indicate that the first communication device correctly received the MAC CE signaling and the first communication device is ready to measure the GNSS signal within the measurement window configured by the MAC CE.
  • the first feedback, the second feedback and the third feedback can be represented by 2 bits, for example, 00 represents the first feedback, 01 represents the second feedback, and 10 represents the third feedback.
  • the first communication device may send a fourth feedback to the second communication device.
  • the second communication device configures both the measurement window of the GNSS signal and the random access opportunity for the first communication device, and the priority of the non-competitive random access corresponding to the random access opportunity is higher than the measurement of the GNSS signal, and the first communication device may give priority to non-competitive random access.
  • the fourth feedback can be used to indicate that: the first communication device correctly receives the MAC CE signaling, and the first communication device will measure the GNSS signal within the measurement window configured by the MAC CE, but the first communication device receives the configured random access opportunity and chooses to perform non-competitive random access without measuring the GNSS signal.
  • the fourth feedback can be represented by the bit "11".
  • ACK/NACK messages can be reused with sounding request (SR), that is, SR is implicitly carried in ACK/NACK messages through a COVER CODE (hidden code); this operation is similar to scrambling, and there are two cover code sequences, each representing different information.
  • the network device detects the cover code to determine whether SR is 0 or 1.
  • the second communication device sends a MAC CE signaling to the first communication device (the MAC CE signaling is used to configure a measurement window for the GNSS signal for the first communication device)
  • the first communication device can feedback an ACK message to the second communication device, and the ACK message includes one of the first cover code, the second cover code, or the third cover code.
  • the first cover code can indicate that the first communication device does not want to measure the GNSS signal within the measurement window configured by the MAC CE.
  • the second cover code can indicate that the first communication device is ready to measure the GNSS signal within the measurement window configured by the MAC CE.
  • the second cover code can indicate that the first communication device has received the configured random access opportunity and chooses to perform non-competitive random access instead of measuring the GNSS signal.
  • the first communication device can feedback a NACK message to the second communication device.
  • the second communication device will consider that the previously configured measurement window has been released after receiving the corresponding feedback, and continue to schedule data normally.
  • the first communication device will also monitor the communication signal at an appropriate time after receiving the feedback. For example, if the first communication device sends the second feedback or an ACK message carrying the first cover code to the second communication device, then the first communication device will start to monitor the data scheduling of the second communication device after a period of time after sending the second feedback or the ACK message carrying the first cover code.
  • the second communication device can configure the feedback resources corresponding to the measurement window, such as the feedback time-frequency resources, coding and modulation scheme (MCS), number of repetitions, etc., while configuring the measurement window of the GNSS signal through MAC CE signaling.
  • the feedback resources of the measurement window are used by the first communication device to feedback the information that the GNSS signal measurement has been completed.
  • the time domain resource needs to have a scheduling delay parameter such as Koffset, which indicates the relative logical relationship between the uplink resource and the MAC CE time domain resource.
  • Koffset indicates the relative logical relationship between the uplink resource and the MAC CE time domain resource.
  • the second communication device can send the information that the GNSS signal measurement has been completed in advance on the corresponding time domain resource.
  • the Koffset can be UE-level or cell-level, and the embodiment of the present application does not limit this.
  • the UE-level Koffset may expire, and the cell-level Koffset can be used. It can be understood that if the first communication device does not complete the measurement of the GNSS signal due to problems such as signal quality, the second communication device can schedule non-competitive random access or continue to configure the measurement window of the GNSS signal.
  • the first message may be downlink control information (DCI).
  • DCI downlink control information
  • the second communication device configures the measurement window of the GNSS signal for the first communication device through the DCI. It is understandable that the DCI is carried in the PDCCH and no feedback is required. However, if the second communication device configures the measurement window of the GNSS signal through the DCI, it also configures the feedback resources corresponding to the measurement window, such as the feedback time-frequency resources, MCS, number of repetitions, etc.; then the time domain resources also need to have scheduling delay parameters such as Koffset, which will not be repeated here.
  • the measurement window can be determined by at least two of the following: the starting position of the measurement window, the ending position of the measurement window, and the length of the measurement window. Because the length of the measurement window is often related to the capability of the terminal device (here, the first communication device), the length of the measurement window can be configured once, and only the starting position or the ending position of the measurement window can be configured when the measurement window is subsequently configured. Of course, the length of the measurement window can also be updated after configuration, and its update can be indicated by another signaling, or the length of the updated measurement window can be carried in the first message, which is not limited in the embodiment of the present application.
  • the first message can include one or more of the following: the starting position of the measurement window, the ending position of the measurement window, or the length of the measurement window.
  • the starting position and the ending position of the measurement window can be represented by system frames and subframes, and the embodiment of the present application does not limit the specific expression of the starting position and the ending position of the measurement window.
  • the length of the measurement window can be represented by the number of system frames or subframes, or by a time interval, such as x (x>0) milliseconds (ms), etc., and can also be represented by the number of time slots or the number of symbols, etc., and the embodiment of the present application does not limit the specific expression of the length of the measurement window.
  • the measurement window may be periodic or non-periodic. If the measurement window is periodic, the period of the measurement window may be predefined, such as specified by a standard protocol, or may be determined by negotiation between the first communication device and the second communication device, or may be configured by the second communication device through the first message (that is, the first message may also include the period of the measurement window, referred to as the measurement period), etc., which is not limited in this embodiment of the present application. If the measurement window is non-periodic, the second communication device may indicate a specific system frame and subframe as the starting position or end position of the next measurement window to the first communication device each time the measurement window needs to be configured, and may optionally indicate information such as the length of the next measurement window.
  • the length of the measurement window can be determined based on the measurement duration required for the first communication device to perform GNSS signal measurement.
  • the length of the measurement window can be greater than or equal to the measurement duration.
  • the starting position of the measurement window can be determined based on the effective duration of the GNSS information.
  • the starting position of the measurement window can be before the end of the effective duration of the GNSS information, or the starting position of the measurement window is the end position of the effective duration of the GNSS information. It can be understood that if the measurement window is periodic, the distance between two adjacent measurement windows can be less than or equal to the effective duration of the GNSS information.
  • the distance between two adjacent measurement windows can refer to: the distance between the end position of the i-th measurement window and the starting position of the i+1-th measurement window, where i is an integer greater than or equal to 1.
  • the first communication device may send a fourth message to the second communication device, and the fourth message may be used to indicate the measurement duration required for the first communication device to perform GNSS signal measurement and the valid duration of the GNSS information.
  • the second communication device determines the length of the measurement window according to the measurement duration, and may determine the starting position of the measurement window according to the valid duration of the GNSS information.
  • the first communication device may report one or more measurement durations to the second communication device, corresponding to different GNSS startup modes.
  • GNSS startup modes include hot start, cold start and warm start.
  • the first communication device may report the measurement durations corresponding to the three GNSS startup modes of hot start, cold start and warm start. It can be understood that the measurement durations corresponding to the three GNSS startup modes (i.e., hot start, cold start and warm start) are different.
  • the second communication device may configure the measurement window of the GNSS signal in a non-periodic manner.
  • the second communication device When the second communication device configures the next measurement window for the first communication device through RRC signaling, if the second communication device finds that the time interval between the current time and the last GNSS signal measurement is long, such as more than 2 hours, the second communication device may determine the length of the next measurement window according to the measurement duration corresponding to the warm start. This is because the measurement duration corresponding to the warm start is long, and the length of the corresponding next measurement window is also relatively large, so that the first communication device can complete the measurement of the GNSS signal within the configured measurement window. If the second communication device finds that the time interval between the current time and the last GNSS signal measurement is short, such as less than 2 hours, the second communication device can determine the length of the next measurement window according to the measurement duration corresponding to the hot start. This is because the hot start time is relatively short, and the corresponding measurement duration is also relatively short, so the length of the next measurement window is also relatively small.
  • the terminal device i.e., the first communication device
  • the terminal device needs to calculate the timing advance (TA) for uplink synchronization based on its own geographic location information (here, GNSS information) and the geographic location information of the network device (i.e., the second communication device)
  • GNSS information is expired, it means that the GNSS information is no longer accurate, and it may not be able to meet the requirements of uplink synchronization. Therefore, the second communication device of the embodiment of the present application configures a measurement window for the GNSS signal for the first communication device, so that the first communication device can also measure the GNSS signal in the connected state, thereby obtaining the latest GNSS information for uplink synchronization, and meeting the requirements of uplink synchronization.
  • the second communication device sends a PDCCH to the first communication device, the PDCCH is used to determine a random access opportunity, the offset of the starting position of the random access opportunity relative to the starting position of the measurement window is within a preset range.
  • the PDCCH is also used to trigger a non-contention random access. enter.
  • S104 The first communication device sends a preamble code in the random access opportunity.
  • the second communication device may determine whether to send a physical downlink control channel (PDCCH) for triggering non-competitive random access to correct TA based on the effective duration of the GNSS information reported by the first communication device, the TA error of the uplink signal, or the number of updates of the timing advance command (TAC), thereby achieving uplink synchronization.
  • PDCCH physical downlink control channel
  • the second communication device may send the PDCCH before the next measurement window (for ease of description, denoted as measurement window j) arrives, and the PDCCH includes a random access opportunity.
  • the offset of the starting position of the random access opportunity relative to the starting position of the measurement window j is within a preset range.
  • the starting position of the random access opportunity may be after the end position of the PDCCH, and the offset between the starting position of the random access opportunity and the end position of the PDCCH is within a certain range, such as a certain range of x time slots. It can be understood that the measurement window configured by the first message includes measurement window j.
  • the measurement window j here may be the measurement window configured by the first message; if the measurement window configured by the first message is periodic, then the measurement window j here may be the first measurement window after the second communication device sends the PDCCH for triggering non-competitive random access.
  • the preset range may be an interval [-(T RO +T), +(T win +T)], where T RO represents the length of the random access opportunity, T represents the preset threshold, T win represents the length of the measurement window, and in the preset range, "-" represents negative, and "+” represents positive.
  • FIG5 is a schematic diagram of the positional relationship between the random access opportunity and the measurement window provided in an embodiment of the present application.
  • "RO” represents the random access opportunity
  • GNSS window represents the measurement window of the GNSS signal.
  • the random access opportunity (RO) may overlap with the measurement window (GNSS window), for example: the random access opportunity is within the measurement window of the GNSS signal, or the random access opportunity partially overlaps with the measurement window of the GNSS signal; the random access opportunity (RO) may also not overlap with the measurement window (GNSS window), for example, the random access opportunity is a period of time before or after the measurement window of the GNSS signal (the length of this period of time is equal to T).
  • T the positional relationship between the measurement window and the random access opportunity shown in FIG5 is only an example. In actual applications, it is sufficient to satisfy that the offset of the starting position of the random access opportunity relative to the starting position of the measurement window j is within a preset range.
  • the first communication device does not monitor the PDCCH in the measurement window configured by the first message, and of course the second communication device will not send the PDCCH in the measurement window, because the first communication device cannot receive communication signals while measuring GNSS signals.
  • the first communication device needs to monitor the PDCCH at other times except the measurement window. Therefore, the second communication device can send the PDCCH for triggering non-contention random access at other times except the measurement window.
  • the first communication device can determine the random access opportunity according to the received PDCCH, and can initiate non-competitive random access within the random access opportunity, such as sending a preamble code within the random access opportunity.
  • the first communication device after the first communication device receives the PDCCH, if the random access opportunity indicated by the PDCCH overlaps with the measurement window j, because the capability of the first communication device is limited, such as the first communication device is an IoT type terminal, which cannot support the measurement of communication and GNSS signals at the same time, the first communication device does not start the GNSS module for GNSS positioning within the measurement window j, that is, does not measure the GNSS signal.
  • the measurement window j is no longer used for the first communication device to measure the GNSS signal, but is used for the first communication device to monitor the scheduling of subsequent data, such as monitoring the PDCCH for data scheduling.
  • the second communication device can release the resources of the measurement window j, and can use the released resources to continue the subsequent data scheduling. This can not only reduce the power consumption of the first communication device, but also ensure that the service is not interrupted.
  • the first communication device receives a PDCCH for triggering non-competitive random access before the measurement window j arrives. If the random access timing indicated by the PDCCH does not overlap with the measurement window j, the first communication device can initiate non-competitive random access within the random access timing, and can measure the GNSS signal within the measurement window j. Of course, in order to save power consumption of the first communication device, after receiving the PDCCH, the first communication device may not measure the GNSS signal within the measurement window j, that is, the GNSS module is not started. Of course, if the non-competitive random access of the first communication device fails, the first communication device can still measure the GNSS signal.
  • the first communication device receives the PDCCH for triggering non-competitive random access before the measurement window j arrives, and can decide whether to initiate non-competitive random access within the random access opportunity or to measure the GNSS signal within the measurement window j; and then perform corresponding operations, which are not described in detail here.
  • the second communication device sends a PDCCH for triggering non-contention random access before the measurement window j arrives, if the first communication device does not receive the PDCCH before the measurement window j arrives, Because the capability of the first communication device is limited, it will not monitor the PDCCH within the measurement window j, but when the measurement window j arrives, it will measure the GNSS signal within the measurement window j, so as to obtain the latest GNSS information and achieve uplink synchronization.
  • the first communication device receives the GNSS signal within the measurement window j, refreshes its own geographic location information (i.e., updates the GNSS information), and after the GNSS repositioning is completed, sends a fifth message to the second communication device to notify that the GNSS repositioning has been completed, i.e., the measurement of the GNSS signal has been completed.
  • the first communication device if the second communication device determines not to send a PDCCH for triggering non-contention random access, the first communication device will not receive the PDCCH either, and the first communication device measures the GNSS signal within the measurement window configured by the first message.
  • FIG6 is a timing diagram of a communication method provided by an embodiment of the present application.
  • the second communication device configures a measurement window of a GNSS signal for the first communication device through RRC signaling (indicated by GNSS window in FIG6 ).
  • the first communication device measures the GNSS signal in the first measurement window from left to right, and does not monitor the PDCCH in the first measurement window.
  • the first communication device After the first communication device receives the PDCCH for triggering non-competitive random access (indicated by PDCCH 1 in FIG6 ) before the second measurement window from left to right, the first communication device initiates non-competitive random access within the random access opportunity (RO) indicated by the PDCCH, such as sending a preamble code; and does not measure the GNSS signal in the second measurement window.
  • the second measurement window is no longer used for measuring GNSS signals, and it can also be understood that the resources corresponding to the second measurement window are released.
  • the first communication device can monitor the scheduling of subsequent data on the resources corresponding to the second measurement window, such as the first communication device monitors the PDCCH for data scheduling after sending the preamble code, as shown in PDCCH 2 in FIG6 .
  • the first communications device measures the GNSS signal in the third measurement window from left to right, and does not monitor the PDCCH in the third measurement window.
  • the measurement window shown in Figure 6 can be periodic or non-periodic. If it is non-periodic, the three measurement windows shown in Figure 6 can be configured through three RRC signaling. It can also be understood that Figure 6 only shows part of the measurement windows, and in actual applications, the number of measurement windows can be more or less than that shown in Figure 6.
  • S105 The second communication device detects a preamble code in the random access opportunity.
  • the second communication device If the second communication device detects a preamble code within the random access opportunity, the second communication device sends a random access response message to the first communication device, where the random access response message includes indication information for indicating whether the value of TA is a positive value or a negative value.
  • the second communication device can detect the preamble code in the random access opportunity (RO). If the second communication device detects the preamble code in the random access opportunity (RO), it means that the first communication device corrects the TA error introduced by the expiration of the GNSS information through non-competitive random access, then it can be considered that the measurement window j is released as a communication resource, and subsequent data scheduling can continue.
  • RO random access opportunity
  • the second communication device after the second communication device detects the preamble code within the random access opportunity, it can send a random access response message to the first communication device. Since the GNSS information obtained last time may have expired, the TA error becomes larger and may be negative, so the TAC used to correct the TA in the random access response needs to support both positive and negative value ranges. Therefore, the random access response message may include an indication information for indicating whether the value of TA is positive or negative.
  • the second communication device can send a third message to the first communication device, and the third message can be used to notify the first communication device to measure the GNSS signal. It can be understood that the first communication device receives the third message, which can be regarded as a failure of non-competitive random access.
  • the first communication device can measure the GNSS signal within the measurement window j or the remaining time of the measurement window j. It is understandable that if the second communication device wants to configure the random access opportunity within the measurement window j, then the second communication device can configure the length of the measurement window j to be longer when configuring the measurement window j, and the position of the random access opportunity can also be configured relatively forward. In this way, even if the second communication device receives the preamble code and then feeds back to the first communication device to measure the GNSS signal, the first communication device can have enough time to measure the GNSS signal.
  • the first communication device may redetermine the starting position and/or ending position of the measurement window j, and perform GNSS signal measurement in the redetermined measurement window. For example, when the random access opportunity (RO) overlaps with the measurement window j, considering that the time for the first communication device to perform GNSS signal measurement after receiving the third message is insufficient, the starting position of the measurement window j may be postponed to the ending position of the random access opportunity (the length of the measurement window j remains unchanged), or the measurement window j may be postponed to the ending position of the random access opportunity (the length of the measurement window j remains unchanged).
  • the time period starts after the random access opportunity ends (the length of the measurement window j remains unchanged), or the end position of the measurement window j is postponed for a period of time (the length of the measurement window j becomes larger).
  • the period of time here may be specified in the standard protocol, or may be negotiated by the first communication device and the second communication device, or may be configured by the second communication device in the third message, and the embodiment of the present application does not limit this.
  • the first communication device may fail to complete the GNSS signal measurement. At this time, if the first communication device fails to complete the GNSS signal measurement, it may cause uplink desynchronization and failure to initiate the wireless link. However, if the first communication device completes the GNSS signal measurement, the first communication device can feedback the fifth message to the second communication device to indicate that the first communication device has completed the GNSS signal measurement.
  • the first communication device when the TA error is too large, the first communication device is allowed to continue to update the GNSS information by measuring the GNSS signal, thereby meeting the synchronization requirement.
  • the second communication device can send a random access response message to the first communication device, and the random access response message includes an indication information for indicating whether the TA value is positive or negative.
  • the fifth message is used to notify that the measurement of the GNSS signal has been completed, indicating that the first communication device updates the GNSS information through GNSS repositioning, thereby calculating TA for uplink synchronization.
  • the feedback resources corresponding to the measurement window are used to carry the fifth message.
  • the feedback resources corresponding to the measurement window are predefined or specified by the standard protocol, such as the feedback resources are at the end of the measurement window.
  • the feedback resources corresponding to the measurement window are configured by the second communication device through signaling, such as after the second communication device sends the first message to the first communication device, it sends a signaling to configure the feedback resources corresponding to (each) measurement window; or, the second communication device configures the corresponding feedback resources while configuring the measurement window, that is, the measurement window and its feedback resources are configured in one signaling.
  • the second communication device can resend the PDCCH for triggering non-competitive random access after the measurement window i ends.
  • the PDCCH can indicate a new random access opportunity so that the first communication device can initiate a new non-competitive random access within this new random access opportunity, thereby reducing the possibility of uplink desynchronization.
  • the second communication device configures the measurement window of the GNSS signal for the first communication device through the first message, and then configures the random access opportunity (RO) through the PDCCH, and the PDCCH is before the measurement window arrives.
  • the first communication device initiates non-competitive random access in the RO, and does not measure the GNSS signal in the measurement window.
  • the measurement of the GNSS signal can be replaced by non-competitive random access, which can not only keep the first communication device and the second communication device synchronized for a long time, but also reduce the power consumption caused by the GNSS signal measurement, and can reduce the number of GNSS signal measurements and reduce the complexity.
  • the communication method shown in FIG. 4 above configures the random access opportunity (RO) and triggers non-competitive random access through PDCCH.
  • the present application can also configure the random access opportunity and/or trigger non-competitive random access through RRC signaling without PDCCH configuration and triggering.
  • FIG. 7 is another flow chart of a communication method provided in an embodiment of the present application.
  • the capability of the first communication device is limited.
  • the communication method includes:
  • a second communication device sends a first message to a first communication device, where the first message is used to configure a measurement window of a GNSS signal for the first communication device, where the measurement window is used for the first communication device to measure the GNSS signal.
  • the first communication device receives the first message.
  • the second communication device sends a second message to the first communication device, the second message is used to determine a random access opportunity, the offset of the starting position of the random access opportunity relative to the starting position of the measurement window is within a preset range.
  • the second message is RRC signaling or medium access control (MAC) control element (CE) signaling.
  • the first communication device receives the second message.
  • S203 The first communication device determines a random access timing according to the second message.
  • the first message may be an RRC signaling
  • the second message may also be an RRC signaling.
  • the first message and the second message may be different RRC signalings, or the first message and the second message may be the same RRC signaling. If the first message and the second message are the same RRC signaling, the above steps S201 and S202 may be replaced by the following steps: the second communication device sends an RRC signaling to the first communication device, and the RRC signaling is used to configure a measurement window and a random access timing of a GNSS signal for the first communication device, and the starting position of the random access timing is offset from the starting position of the measurement window within a preset range, and the measurement window is used for the first communication device to measure the GNSS signal.
  • step S203 may be replaced by: the first communication device determines the random access timing according to the RRC signaling.
  • the preset range may be an interval [-(T RO +T), +(T win +T)], T RO represents the length of the random access opportunity, T represents the preset threshold, T win represents the length of the measurement window, and in the preset range, "-" represents negative and "+” represents positive.
  • T RO represents the length of the random access opportunity
  • T represents the preset threshold
  • T win represents the length of the measurement window
  • "-" represents negative and "+” represents positive.
  • the starting position of the random access opportunity may be after the end position of the RRC signaling, and the offset between the starting position of the random access opportunity and the end position of the RRC signaling is within a first range, such as the first range is x time slots.
  • the starting position of the measurement window may also be after the end position of the RRC signaling, and the offset between the starting position of the measurement window and the end position of the RRC signaling is within a second range, such as the second range is y time slots.
  • the random access opportunity and measurement window configured by the RRC signaling satisfy: the offset of the starting position of the random access opportunity relative to the starting position of the measurement window is within a preset range.
  • the random access opportunity in the embodiment of the present application corresponds to (or is bound to) the measurement window
  • one measurement window can correspond to one or more random access opportunities.
  • the second communication device can configure one or more measurement windows for the first communication device, which is not limited in the embodiment of the present application. It is understandable that if the measurement window is periodic, the random access opportunity corresponding to (or bound to) the measurement window may also be periodic. It is also understandable that if the measurement window is not periodic, the second communication device can reconfigure the measurement window and the random access opportunity corresponding to (or bound to) the measurement window when necessary, and only configure the measurement window when there is no need.
  • step S101 in the embodiment shown in Figure 4 above, which will not be described in detail here.
  • a measurement window is used as an example for explanation.
  • the second communication device may simultaneously configure the starting position of the corresponding random access opportunity by means of an offset value (offset).
  • the RRC signaling includes: a measurement window, and a position offset of the random access opportunity corresponding to the measurement window relative to the measurement window.
  • the position offset of the random access opportunity relative to the measurement window may be an offset (offset) of the starting position of the random access opportunity relative to the starting position of the measurement window; wherein the offset may be a positive value or a negative value.
  • the RRC signaling may include the position offsets of the multiple random access opportunities relative to the measurement window, that is, there may be multiple offset values in the RRC signaling.
  • the embodiment of the present application binds the measurement window of the GNSS signal to the random access opportunity, and does not require an additional PDCCH to configure the random access opportunity and trigger non-competitive random access, thereby saving PDCCH overhead and reducing PDCCH detection before the random access opportunity.
  • the second message includes a random access opportunity
  • the measurement window configured in the first message still corresponds to (or is bound to) the random access opportunity included in the second message
  • the offset of the starting position of the random access opportunity relative to the starting position of the measurement window is still within a preset range.
  • the measurement window can be determined by at least two of the following: the starting position of the measurement window, the ending position of the measurement window, and the length of the measurement window.
  • the random access opportunity can also be determined by at least two of the following: the starting position of the random access opportunity, the ending position of the random access opportunity, and the length of the random access opportunity.
  • the second communication device configures a random access opportunity (RO) for the first communication device through RRC signaling
  • the second communication device wants to schedule the first communication device for non-competitive random access, it can send a medium access control (MAC) control element (CE) signaling to the first communication device, and the MAC CE signaling is used to activate the random access opportunity (RO) configured by the RRC signaling.
  • MAC medium access control
  • CE control element
  • the MAC CE signaling can activate one of them, such as activating the first RO after the end position of the MAC CE signaling; it can also activate all ROs bound to (or corresponding to) the first measurement window after the end position of the MAC CE signaling; it can also activate all ROs configured by RRC signaling, which is not limited by the embodiments of the present application. Accordingly, the first communication device can initiate non-competitive random access within the random access opportunity (RO) activated by the MAC CE signaling.
  • RO random access opportunity
  • the first message may be RRC signaling or MAC CE signaling
  • the second message may be MAC CE signaling. It is understandable that when the first message is MAC CE signaling, the first message and the second message may be the same MAC CE signaling or different MAC CE signaling, which is not limited in the embodiment of the present application.
  • the implementation method of the second communication device configuring the measurement window of the GNSS signal for the first communication device through the first message see the description of step S101 in the embodiment shown in Figure 4 above, which is not described in detail here.
  • the second communication device may send MAC CE signaling (here is the second message) to the first communication device, and the MAC CE signaling may be used to configure the random access opportunity.
  • the random access opportunity configured by the MAC CE signaling and the measurement window configured by the RRC signaling still satisfy: the offset of the starting position of the random access opportunity relative to the starting position of the measurement window is within a preset range. It is understandable that in the existing standard, the terminal device will send a feedback after receiving the MAC CE signaling, and the MAC CE signaling will take effect in the kth time slot after the feedback, so the starting position of the random access opportunity may be the effective position of the MAC CE signaling.
  • the communication method shown in FIG. 7 may further include step S204a or step S204b.
  • S204a The first communication device sends a preamble code in the random access opportunity.
  • S204b The first communication device measures the GNSS signal within the measurement window.
  • the first communication device can initiate a non-competitive random access within the random access opportunity. For example, a preamble code is sent within the random access opportunity, and the GNSS module is not started for GNSS positioning within the measurement window corresponding to (or bound to) the random access opportunity, that is, no GNSS signal measurement is performed.
  • the second communication device ie, the network side
  • the random access opportunity (RO) through RRC signaling
  • the offset of the starting position of the random access opportunity relative to the starting position of the measurement window is configured in the RRC signaling, indicating that the first communication device (ie, the terminal side) needs to perform non-competitive random access; then after the first communication device receives the RRC signaling, it can send a preamble code within the random access opportunity configured by the RRC signaling to initiate non-competitive random access.
  • the first communication device can select one of the random access opportunities to send the preamble code.
  • the network side does not configure the random access opportunity (RO)
  • the terminal side does not need to perform non-competitive random access, and the first communication device can only measure the GNSS signal.
  • the embodiment of the present application focuses on the situation where the random access opportunity (RO) is configured on the network side.
  • the first communication device can decide whether to initiate a non-competitive random access within the random access opportunity or to measure the GNSS signal in the corresponding measurement window; then perform corresponding operations, which are not described in detail here.
  • the second communication device i.e., the network side
  • the first communication device i.e., the terminal side
  • the first communication device can choose whether to initiate a non-competitive random access or to measure the GNSS signal. If the first communication device chooses to measure the GNSS signal within the measurement window, when the first communication device completes the measurement, it can send a fifth message to the second communication device to notify that the measurement of the GNSS signal has been completed.
  • Figure 8a is another timing diagram of the communication method provided in an embodiment of the present application.
  • take the random access opportunity within the measurement window and one measurement window is bound to (corresponding to) a random access opportunity as an example.
  • the second communication device configures the measurement window (represented by GNSS window in Figure 8a) and the random access opportunity (represented by RO in Figure 8a) of the GNSS signal for the first communication device through RRC signaling.
  • the first communication device chooses to measure the GNSS signal in the first measurement window from left to right, and does not monitor the PDCCH in the first measurement window. At this time, it can be understood that the resources corresponding to the random access opportunity bound (or corresponding) to the first measurement window have been released.
  • the first communication device chooses to initiate non-competitive random access in the random access opportunity (RO) bound (or corresponding) to the second measurement window from left to right, and does not measure the GNSS signal in the second measurement window.
  • the second measurement window is no longer used for measuring GNSS signals, but is used for the first communication device to monitor the scheduling of subsequent data, such as the PDCCH after the random access opportunity (RO) in Figure 8a; it can also be understood that the resources corresponding to the second measurement window are released, that is, the first communication device can monitor the PDCCH on the resources corresponding to the second measurement window.
  • the first communication device chooses to measure GNSS signals in the third measurement window from left to right, and does not monitor the PDCCH in the third measurement window.
  • the measurement windows and random access opportunities shown in FIG8a can be periodic or non-periodic. If they are non-periodic, the three measurement windows and three random access opportunities shown in FIG8a can be configured through three RRC signaling. It can also be understood that FIG8a only shows some measurement windows and some random access opportunities. In actual applications, the number of measurement windows and random access opportunities may be more or less than the number shown in FIG8a.
  • Figure 8b is another timing diagram of the communication method provided in an embodiment of the present application.
  • the second communication device configures the measurement window 1 of the GNSS signal for the first communication device through RRC signaling 1 (represented by GNSS window 1 in Figure 8b), and configures the measurement window 2 of the GNSS signal (GNSS window 2 in Figure 8b) and the random access opportunity (represented by RO in Figure 8b) for the first communication device through RRC signaling 2.
  • the first communication device measures the GNSS signal within the measurement window 1 and does not monitor the PDCCH within the measurement window 1.
  • the first communication device initiates non-competitive random access within the random access opportunity bound to (or corresponding to) the measurement window 2, and does not measure the GNSS signal within the measurement window 2.
  • step S204a and step S204b may not exist at the same time.
  • step S204a and step S204b may be executed one by one, that is, if step S204a is executed, step S204b is not executed; if step S204b is executed, step S204a is not executed.
  • step S204a and step S204b may exist at the same time.
  • the first communication device can still measure the GNSS signal within the measurement window.
  • the non-competitive random access initiated by the first communication device within the random access opportunity is successful, the first communication device does not need to measure the GNSS signal within the measurement window.
  • S205 The second communication device detects a preamble code in the random access opportunity.
  • the communication method shown in FIG. 7 may further include step S206 and step S207.
  • the second communication device If the second communication device detects a preamble code within the random access opportunity, the second communication device sends a random access response message to the first communication device, where the random access response message includes indication information for indicating whether the value of TA is positive or negative.
  • the second communication device if the second communication device does not detect the preamble code within the random access opportunity and does not receive the fifth message from the first communication device, the second communication device sends a PDCCH for triggering non-contention random access after the measurement window ends, and the PDCCH indicates It can be understood that the random access timing indicated by the PDCCH is different from the random access timing determined according to the aforementioned second message.
  • steps S205 to S207 in the embodiment of the present application may refer to the implementation of steps S105 to S107 in the embodiment shown in FIG. 4 , which will not be described in detail here.
  • the second communication device configures the measurement window and random access opportunity (RO) of the GNSS signal for the first communication device through the first message, and the random access opportunity is bound to (or corresponds to) the measurement window; after receiving the RRC signaling, the first communication device initiates non-competitive random access within the RO, and does not measure the GNSS signal within the measurement window.
  • the measurement of the GNSS signal can be replaced by non-competitive random access, so that the first communication device and the second communication device can maintain synchronization for a long time, reduce the power consumption caused by the GNSS signal measurement, reduce the number of GNSS signal measurements and reduce the complexity; and can also reduce the PDCCH overhead.
  • the present application when the capability of the first communication device is not limited, considering that the power consumption of the first communication device for GNSS signal measurement is large and the complexity is high; the present application also provides a communication method, which can not only synchronize the first communication device with the second communication device for a long time, but also reduce the power consumption and complexity of the first communication device. Specifically, the first communication device reports the effective duration of the GNSS information to the second communication device.
  • the second communication device finds that the GNSS information has expired based on the effective duration of the GNSS information, and the TA error of the first communication device can be compensated by non-competitive random access, the second communication device can send a PDCCH for triggering non-competitive random access to the first communication device, and the PDCCH indicates the random access timing; the first communication device initiates non-competitive random access within the random access timing. It can be understood that the power consumption of the first communication device for non-competitive random access is lower than the power consumption for GNSS signal measurement.
  • the embodiment of the present application also provides corresponding devices or equipment.
  • the present application divides the functional modules of the communication device according to the above method embodiment.
  • each functional module can be divided according to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of modules in the present application is schematic and is only a logical function division. There may be other division methods in actual implementation.
  • the communication device of the embodiment of the present application will be described in detail below in conjunction with Figures 9 to 11.
  • Fig. 9 is a schematic diagram of a structure of a communication device provided in an embodiment of the present application.
  • the communication device includes a transceiver unit 10 and a processing unit 20 .
  • the communication device may be the first communication device shown above, such as the first communication device may include a terminal device or a chip, etc. That is, the communication device shown in FIG9 may be used to execute the steps or functions performed by the first communication device in the above method embodiment.
  • the transceiver unit 10 is used to receive a first message and a second message from a second communication device; the processing unit 20 is used to determine a random access opportunity according to the second message.
  • the first message and the second message reference can be made to the method embodiments shown above (including FIG. 4 and FIG. 7 ), which will not be described in detail here.
  • the transceiver unit 10 is further configured to send a preamble code during a random access opportunity.
  • the transceiver unit 10 is further used to receive a random access response message from the second communication device, where the random access response message includes indication information, where the indication information is used to indicate whether the value of TA is a positive value or a negative value.
  • the transceiver unit 10 is further used to receive a third message from the second communication device, where the third message is used to notify the first communication device to measure the GNSS signal; the processing unit 20 is further used to measure the GNSS signal within the measurement window.
  • the transceiver unit 10 is also used to receive a third message from the second communication device, and the third message is used to notify the first communication device to measure the GNSS signal; the processing unit 20 is also used to redetermine the starting position and/or end position of the measurement window, and measure the GNSS signal within the redetermined measurement window.
  • the transceiver unit 10 is also used to send a fourth message to the second communication device, where the fourth message is used to indicate the measurement time required for the first communication device to perform GNSS signal measurement and the valid time of the GNSS information; the measurement time is used to determine the length of the measurement window, and the valid time of the GNSS information is used to determine the starting position of the measurement window.
  • the specific description of the third message, the fourth message, the random access response message, etc. can refer to the method shown above.
  • the method embodiments (including Figures 4 and 7) will not be described in detail here.
  • transceiver unit and the processing unit shown in the embodiment of the present application is only an example.
  • specific functions or execution steps of the transceiver unit and the processing unit reference can be made to the above-mentioned method embodiment, which will not be described in detail here.
  • the communication device may be the second communication device shown above or a chip therein, that is, the communication device shown in FIG9 may be used to execute the steps or functions executed by the second communication device in the above method embodiment.
  • the transceiver unit 10 is used to send a first message and a second message to the first communication device; the processing unit 20 is used to detect the preamble code in the random access opportunity.
  • the specific description of the first message and the second message can refer to the method embodiments shown above (including Figures 4 and 7), which will not be described in detail here.
  • the transceiver unit 10 is further configured to send a random access response message to the first communication device when a preamble code is detected within the random access opportunity, where the random access response message includes indication information, where the indication information is used to indicate whether the value of TA is positive or negative.
  • the transceiver unit 10 is further configured to send a third message to the first communication device when a preamble code is detected within the random access opportunity, where the third message is used to notify the first communication device to measure the GNSS signal.
  • the transceiver unit 10 is further used to resend the PDCCH for triggering non-competitive random access after the measurement window ends when no preamble code is detected within the random access opportunity and no fifth message is received from the first communication device, and the fifth message is used to notify that the measurement of the GNSS signal has been completed.
  • the transceiver unit 10 is also used to receive a fourth message from the first communication device, where the fourth message is used to indicate the measurement time required for the first communication device to perform GNSS signal measurement and the valid time of the GNSS information; the measurement time is used to determine the length of the measurement window, and the valid time of the GNSS information is used to determine the starting position of the measurement window.
  • the specific description of the third message, the fourth message, the fifth message, and the random access response message, etc. can refer to the method embodiment shown above (including Figures 4 and 7), which will not be described in detail here.
  • transceiver unit and the processing unit shown in the embodiment of the present application is only an example.
  • specific functions or execution steps of the transceiver unit and the processing unit reference can be made to the above-mentioned method embodiment, which will not be described in detail here.
  • the communication device of the embodiment of the present application is introduced above, and the possible product form of the communication device is introduced below. It should be understood that any product of any form having the functions of the communication device described in FIG. 9 above falls within the protection scope of the embodiment of the present application. It should also be understood that the following introduction is only an example and does not limit the product form of the communication device of the embodiment of the present application to this.
  • the processing unit 20 may be one or more processors, the transceiver unit 10 may be a transceiver, or the transceiver unit 10 may also be a sending unit and a receiving unit, the sending unit may be a transmitter, the receiving unit may be a receiver, and the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the embodiment of the present application does not limit the connection mode of the processor and the transceiver.
  • the process of sending information in the above method can be understood as the process of outputting the above information by the processor.
  • the processor When outputting the above information, the processor outputs the above information to the transceiver so that it is transmitted by the transceiver. After the above information is output by the processor, it may also need to be processed in other ways before it reaches the transceiver. Similarly, the process of receiving information in the above method can be understood as the process of the processor receiving the input information.
  • the processor receives the input information
  • the transceiver receives the above information and inputs it into the processor. Furthermore, after the transceiver receives the above information, the above information may need to be processed in other ways before it is input into the processor.
  • FIG. 10 is a schematic diagram of the structure of a communication device 1000 provided in an embodiment of the present application.
  • the communication device 1000 may be a first communication device or a second communication device, or a chip therein.
  • FIG. 10 only shows the main components of the communication device 1000.
  • the communication device may further include a memory 1003, and an input/output device (not shown in the figure).
  • the processor 1001 is mainly used to process the communication protocol and communication data, and to control the entire communication device, execute the software program, and process the data of the software program.
  • the memory 1003 is mainly used to store the software program and data.
  • the transceiver 1002 may include a control circuit and an antenna.
  • the control circuit is mainly used to convert the baseband signal and the radio frequency signal and process the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output devices such as a touch screen, a display screen, a keyboard, etc., are mainly used to receive data input by the user and output data to the user.
  • the processor 1001 can read the software program in the memory 1003, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1001 performs baseband processing on the data to be sent, and outputs the baseband signal to the RF circuit.
  • the RF circuit performs RF processing on the baseband signal and then sends the RF signal outward in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor 1001.
  • the processor 1001 converts the baseband signal into data and processes the data.
  • the RF circuit and antenna may be provided independently of the processor performing baseband processing, for example in a distributed field.
  • the RF circuit and antenna can be independent of the communication device and arranged remotely.
  • the transceiver 1002 may include a receiver and a transmitter, wherein the receiver is used to perform a receiving function (or operation) and the transmitter is used to perform a transmitting function (or operation), and the transceiver is used to communicate with other devices/apparatuses through a transmission medium.
  • the processor 1001 , the transceiver 1002 , and the memory 1003 may be connected via a communication bus.
  • the transceiver 1002 is used to receive a first message and a second message; and the processor 1001 is used to determine a random access timing according to the second message.
  • the transceiver 1002 is used to send the first message and the second message; the processor 1001 is used to detect the preamble code within the random access opportunity.
  • the description of the first message, the second message, the random access opportunity, the first communication device, the second communication device, etc. can refer to the description in the above method embodiment (including Figures 4 and 7), and will not be described in detail here. It can be understood that the specific description of the processor and the transceiver can also refer to the description of the processing unit and the transceiver unit shown in Figure 9, which will not be repeated here.
  • the processor 1001 may include a transceiver for implementing the receiving and sending functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuit, interface, or interface circuit for implementing the receiving and sending functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface, or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface, or interface circuit may be used for transmitting or delivering signals.
  • the processor 1001 may store instructions, which may be computer programs.
  • the computer programs run on the processor 1001, and the communication device 1000 may execute the method described in the above method embodiment.
  • the computer program may be fixed in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit that can implement the functions of sending or receiving or communicating in the aforementioned method embodiment.
  • the processor and transceiver described in the present application can be implemented in an integrated circuit (IC), an analog IC, a radio frequency integrated circuit (RFIC), a mixed signal IC, an application specific integrated circuit (ASIC), a printed circuit board (PCB), an electronic device, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS N-type metal oxide semiconductor
  • PMOS P-type metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device shown in the embodiment of the present application may also have more components than those in FIG10, and the embodiment of the present application is not limited to this.
  • the method performed by the processor and transceiver shown above is only an example, and the specific steps performed by the processor and transceiver can refer to the introduction of the method embodiment above.
  • the processing unit 20 may be one or more logic circuits, and the transceiver unit 10 may be an input/output interface, or a communication interface, or an interface circuit, or an interface, etc.
  • the transceiver unit 10 may also be a sending unit and a receiving unit, the sending unit may be an output interface, the receiving unit may be an input interface, and the sending unit and the receiving unit are integrated into one unit, such as an input/output interface.
  • FIG11 is another structural schematic diagram of a communication device provided in an embodiment of the present application. As shown in FIG11 , the communication device shown in FIG11 includes a logic circuit 901 and an interface 902.
  • the above-mentioned processing unit 20 may be implemented with a logic circuit 901, and the transceiver unit 10 may be implemented with an interface 902.
  • the logic circuit 901 may be a chip, a processing circuit, an integrated circuit, or a system on chip (SoC) chip, etc.
  • the interface 902 may be a communication interface, an input/output interface, a pin, etc.
  • FIG11 is shown as an example of the above-mentioned communication device being a chip, and the chip includes a logic circuit 901 and an interface 902.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection method between the logic circuit and the interface.
  • the interface 902 is used to input the first message and the second message; and the logic circuit 901 is used to determine the random access timing according to the second message.
  • the interface 902 is used to output the first message and the second message; and the logic circuit 901 is used to detect the preamble code within the random access opportunity.
  • the description of the first message, the second message, the random access opportunity, the first communication device, the second communication device, etc. can refer to the description in the above method embodiment (including Figures 4 and 7), which will not be described in detail here. It can be understood that the specific description of the logic circuit 901 and the interface 902 can also refer to the description of the processing unit and the transceiver unit shown in Figure 9, which will not be repeated here.
  • the communication device shown in the embodiment of the present application can implement the method provided in the embodiment of the present application in the form of hardware, or can implement the method provided in the embodiment of the present application in the form of software, etc., and the embodiment of the present application is not limited to this.
  • An embodiment of the present application also provides a wireless communication system, which includes a first communication device and a second communication device.
  • the first communication device and the second communication device can be used to execute the method in any of the aforementioned embodiments ( Figure 4 or Figure 7).
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the first communication device in the method provided by the present application.
  • the present application also provides a computer program, which is used to implement the operations and/or processing performed by the second communication device in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, in which computer codes are stored.
  • the computer codes are executed on a computer, the computer executes the operations and/or processes performed by the first communication device in the method provided in the present application.
  • the present application also provides a computer-readable storage medium, in which computer codes are stored.
  • the computer codes are executed on a computer, the computer executes the operations and/or processes performed by the second communication device in the method provided in the present application.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the present application also provides a computer program product, which includes a computer code or a computer program.
  • a computer program product which includes a computer code or a computer program.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or units, or it can be an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided in the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, including a number of instructions to enable a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及装置,该方法应用于非地面网络,该方法包括:第一通信装置接收来自第二通信装置的第一消息和第二消息,并根据该第二消息确定随机接入时机,该第一消息用于为第一通信装置配置GNSS信号的测量窗口,该测量窗口用于第一通信装置进行GNSS信号的测量,该随机接入时机的起始位置相对于测量窗口的起始位置的偏移在预设范围内。采用本申请实施例,可以使终端设备与卫星长时间保持同步。

Description

通信方法及装置
本申请要求于2022年09月28日提交中国专利局、申请号为202211192764.6、申请名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
非地面网络(non-terrestrial network,NTN)相比于地面通信有其独有的优点,以卫星通信为例说明,例如卫星通信可以提供更广的覆盖范围、卫星基站不容易受到自然灾害或者外力的破坏等。卫星通信可以为海洋,森林等一些地面通信网络不能覆盖的地区提供通信服务;也可以增强通信的可靠性,例如确保飞机,火车,以及这些交通上的用户获得更加优质的通信服务;还可以提供更多数据传输的资源,提升网络的速率。因此,同时支持与地面与卫星的通信是未来通信的必然趋势,它在广覆盖,可靠性,多连接,高吞吐等方面都有比较大的益处。
目前卫星通信已经在第三代合作伙伴(3rd generation partnership project,3GPP)标准中引入,作为第5代(5th generation,5G)通信或未来通信的一个通信场景,其不仅可以支持5G通信的各类终端设备,还可以支持物联网(internet of things,IoT)类型的终端设备。卫星通信具有高移动性和大通信延迟的特点,其与地面通信相比不同的是终端设备在现有上行同步的基础上还需要根据全球导航卫星系统(global navigation satellite system,GNSS)信息和星历、或者其他辅助信息来实现同步。
对于IoT类型的终端设备,考虑到大部分IoT业务具有短包周期性传输的特点,3GPP标准对短时间连接的通信方式进行了增强。本申请所称“短时间连接”可以理解为:终端设备发起接入,发完上行数据后,退出连接态,在此过程中,终端设备在随机接入前获得的GNSS信息一直有效,即在整个连接的过程中,GNSS信息不需要进行更新,能够满足同步的要求。然而,当终端设备长时间处于连接态时,GNSS信息可能会过期;当GNSS信息过期后,由于累积的时间和频率误差可能会导致终端设备同步失败。因此,在卫星通信场景中如何使终端设备长时间保持上行同步亟待解决。
发明内容
本申请实施例提供一种通信方法及装置,可以在终端设备与卫星长时间处于连接态的情况下,使终端设备与卫星长时间保持同步。
本申请中,“GNSS信息”可以表示与终端设备的地理位置相关的信息,例如:空间坐标X,Y,Z,或者经度,纬度,高度等信息。
第一方面,本申请提供一种通信方法,该方法可以应用于终端设备、或者终端设备中的处理器、芯片或芯片系统、功能模块等。该方法包括:第一通信装置接收来自第二通信装置的第一消息和第二消息,并根据该第二消息确定随机接入时机。其中,第一消息用于为第一通信装置配置GNSS信号的测量窗口,该测量窗口用于第一通信装置进行GNSS信号的测量。第二消息为无线资源控制(radio resource control,RRC)信令、或物理下行控制信道(physical downlink control channel,PDCCH)、或介质接入控制(medium access control,MAC)控制元素(control element,CE)信令。该随机接入时机的起始位置相对于测量窗口的起始位置的偏移在预设范围内。
因为终端设备(即上述第一通信装置)需要根据自己的地理位置信息(这里指GNSS信息)和网络设备(即上述第二通信装置)的地理位置信息计算定时提前量(timing advance,TA)来做上行同步,所以如果GNSS信息过期,说明GNSS信息已经不准确,则可能不能够满足上行同步的要求。因此,本申请中,第二通信装置为第一通信装置配置GNSS信号的测量窗口和随机接入时机,以便于第一通信装置在GNSS信息过期后,通过在随机接入时机内发起非竞争的随机接入来纠正TA,或者通过在测量窗口内进行GNSS信号的测量来获取最新的GNSS信息,再根据最新的GNSS信息计算TA,从而使终端设备与卫星长时间保持同步。
结合第一方面,在一种可能的实现方式中,上述预设范围是区间[-(TRO+T),+(Twin+T)],TRO表示随机接入时机的长度,T表示预设阈值,Twin表示测量窗口的长度,预设范围中“-”表示负,“+”表示正。可理解,当预设范围是0到(Twin-TRO)时,随机接入时机在测量窗口内。通常,测量窗口的长度大于随机接入时机的长度。
结合第一方面,在一种可能的实现方式中,上述第二消息包括随机接入时机。
结合第一方面,在一种可能的实现方式中,第一通信装置在该随机接入时机内发送前导(preamble)码,用于发起非竞争的随机接入。此时,第一通信装置可以在该测量窗口内不进行GNSS信号的测量。
本申请在同时配置了测量窗口和随机接入时机的情况下,第一通信装置可以优先选择在随机接入时机内发起非竞争的随机接入,这样在GNSS信息过期后,用非竞争的随机接入代替GNSS信号的测量,可以减少GNSS信号测量所带来的功耗,并可以减少GNSS信号测量的次数和降低复杂度。
结合第一方面,在一种可能的实现方式中,上述第二消息是PDCCH,如果第一通信装置在上述测量窗口到来之前接收到用于触发非竞争的随机接入的PDCCH(这里指第二消息),则第一通信装置在该PDCCH指示的随机接入时机内发送preamble码,并可以在该测量窗口内不进行GNSS信号的测量。如果第一通信装置在上述测量窗口到来之前没有接收到用于触发非竞争的随机接入的PDCCH(这里指第二消息),则第一通信装置在上述测量窗口内进行GNSS信号的测量。
本申请在通过第一消息为第一通信装置配置GNSS信号的测量窗口后,再通过PDCCH调度第一通信装置的非竞争随机接入,且PDCCH在测量窗口到来之前,第一通信装置在该PDCCH指示的随机接入时机内发起非竞争的随机接入,而不在测量窗口内进行GNSS信号的测量。这样可以用非竞争的随机接入代替GNSS信号的测量,不仅可以使第一通信装置与第二通信装置长时间保持同步,还可以减少GNSS信号测量所带来的功耗,并可以减少GNSS信号测量的次数和降低复杂度。
结合第一方面,在一种可能的实现方式中,上述第二消息是RRC信令或MAC CE信令,这时RRC信令和MAC CE信令都用于配置随机接入时机。示例性的,上述第一消息是RRC信令,第一消息和第二消息可以是同一个RRC信令,当然也可以是两个不同的信令。第二消息配置的随机接入时机与第一消息配置的测量窗口对应(或绑定),一个测量窗口可以对应一个或多个随机接入时机。与测量窗口对应(或绑定)的每个随机接入时机的起始位置相对于该测量窗口的起始位置的偏移都在预设范围内。
本申请将GNSS信号的测量窗口与随机接入时机绑定,无需额外的PDCCH来配置随机接入时机和触发非竞争的随机接入,可以节省PDCCH的开销,减少随机接入时机之前PDCCH的检测。
结合第一方面,在一种可能的实现方式中,第一通信装置在随机接入时机内发送preamble码之后,该方法还包括:第一通信装置接收来自第二通信装置的随机接入响应消息,该随机接入响应消息包括指示信息,该指示信息用于指示TA的值是正值还是负值。
结合第一方面,在一种可能的实现方式中,第一通信装置在随机接入时机内发送preamble码之后,该方法还包括:第一通信装置接收来自第二通信装置的第三消息,该第三消息用于通知第一通信装置进行GNSS信号的测量;第一通信装置在该测量窗口(的剩余时间)内进行GNSS信号的测量。
本申请在TA误差过大时,允许第一通信装置继续通过GNSS信号的测量来更新GNSS信息,从而满足同步的要求。
结合第一方面,在一种可能的实现方式中,第一通信装置在随机接入时机内发送preamble码之后,该方法还包括:第一通信装置接收来自第二通信装置的第三消息,该第三消息用于通知第一通信装置进行GNSS信号的测量;第一通信装置重新确定该测量窗口的起始位置和/或结束位置,并在重新确定的测量窗口内进行GNSS信号的测量。示例性的,考虑到第一通信装置接收到第三消息后再进行GNSS信号测量的时间不够,该测量窗口的起始位置可以推迟到随机接入时机的结束位置(测量窗口的长度不变),或者该测量窗口推迟到随机接入时机结束后的一段时间后开始(测量窗口的长度不变),或者该测量窗口的结束位置往后推迟一段时间(测量窗口的长度变大)。
本申请的第一通信装置在接收到继续通过GNSS信号的测量来更新GNSS信息的通知后,重新确定测量窗口的位置,以使GNSS信号测量的时间足够,在重新确定的测量窗口内能够完成GNSS信号的测量。
结合第一方面,在一种可能的实现方式中,第一通信装置接收来自第二通信装置的第一消息之前,该方法还包括:第一通信装置向第二通信装置发送第四消息,该第四消息用于指示第一通信装置进行GNSS信号测量所需的测量时长和GNSS信息的有效时长。其中,测量时长用于确定测量窗口的长度,GNSS信息的有效时长用于确定测量窗口的起始位置。
本申请的第一通信装置向第二通信装置上报自己进行GNSS信号测量所需的测量时长和GNSS信息的有效时长,以使第二通信装置配置的测量窗口更合理。
结合第一方面,在一种可能的实现方式中,上述第一消息包括以下一项或多项:测量窗口的起始位置,测量窗口的结束位置,测量窗口的长度,或测量周期。
第二方面,本申请提供一种通信方法,该方法可以应用于网络设备(比如卫星或地面基站)、或者网 络设备中的处理器、芯片或芯片系统、功能模块等。该方法包括:第二通信装置向第一通信装置发送第一消息和第二消息,该第二消息用于确定随机接入时机,第二通信装置在该第二消息确定的随机接入时机内检测preamble码。其中,第一消息用于为第一通信装置配置GNSS信号的测量窗口,该测量窗口用于第一通信装置进行GNSS信号的测量。第二消息为RRC信令、或PDCCH、或MAC CE信令。该随机接入时机的起始位置相对于测量窗口的起始位置的偏移在预设范围内。
结合第二方面,在一种可能的实现方式中,上述预设范围是区间[-(TRO+T),+(Twin+T)],TRO表示随机接入时机的长度,T表示预设阈值,Twin表示测量窗口的长度,预设范围中“-”表示负,“+”表示正。可理解,当预设范围是0到(Twin-TRO)时,随机接入时机在测量窗口内。通常,测量窗口的长度大于随机接入时机的长度。
结合第二方面,在一种可能的实现方式中,上述第二消息包括随机接入时机。
可选的,上述第二消息是PDCCH时,该PDCCH指示随机接入时机,并用于触发非竞争的随机接入。
可选的,上述第二消息是RRC信令或MAC CE信令,该RRC信令或该MAC CE信令用于配置随机接入时机。示例性的,上述第一消息是RRC信令,第一消息和第二消息可以是同一个RRC信令,当然也可以是两个不同的信令。第二消息配置的随机接入时机与第一消息配置的测量窗口对应(或绑定),一个测量窗口可以对应一个或多个随机接入时机。与测量窗口对应(或绑定)的每个随机接入时机的起始位置相对于该测量窗口的起始位置的偏移都在预设范围内。
结合第二方面,在一种可能的实现方式中,如果第二通信装置在随机接入时机内检测到preamble码,第二通信装置向第一通信装置发送随机接入响应消息,该随机接入响应消息包括指示信息,该指示信息用于指示TA的值是正值还是负值。
可选的,第二通信装置在随机接入时机内检测到preamble码后,如果第二通信装置发现通过preamble检测的TA误差没有超过闭环纠正的范围,或者第二通信装置觉得通过非竞争随机接入可以补偿第一通信装置的TA误差,第二通信装置才向第一通信装置发送该随机接入响应消息。
结合第二方面,在一种可能的实现方式中,如果第二通信装置在随机接入时机内检测到preamble码,并且第二通信装置发现通过preamble检测的TA误差比较大,已经超过了闭环纠正的范围,或者第二通信装置觉得通过非竞争随机接入已经很难补偿第一通信装置的TA误差时,第二通信装置向第一通信装置发送第三消息,该第三消息用于通知第一通信装置进行GNSS信号的测量。
本申请在TA误差过大时,允许第一通信装置继续通过GNSS信号的测量来更新GNSS信息,从而满足同步的要求。
结合第二方面,在一种可能的实现方式中,如果第二通信装置在随机接入时机内未检测到preamble码,且在该测量窗口对应的反馈资源上也没有接收到来自第一通信装置的第五消息,则第二通信装置在测量窗口结束后(重新)发送用于触发非竞争随机接入的PDCCH,该PDCCH可以指示一个新的随机接入时机,以便于第一通信装置在这个新的随机接入时机内发起新的非竞争随机接入,从而减少上行失步的可能。
结合第二方面,在一种可能的实现方式中,第二通信装置向第一通信装置发送第一消息之前,该方法还包括:第二通信装置接收来自第一通信装置的第四消息,该第四消息用于指示第一通信装置进行GNSS信号测量所需的测量时长和GNSS信息的有效时长;第二通信装置可以根据该测量时长确定该测量窗口的长度,并根据该GNSS信息的有效时长确定该测量窗口的起始位置。
结合第二方面,在一种可能的实现方式中,上述第一消息包括以下一项或多项:测量窗口的起始位置,测量窗口的结束位置,测量窗口的长度,或测量周期。
第三方面,本申请实施例提供一种第一通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。该第一通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的单元。
示例性的,该第一通信装置可以为终端设备或芯片,该芯片可以应用于终端设备中等。
第四方面,本申请实施例提供一种第二通信装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。该第二通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的单元。
示例性的,该第二通信装置可以为网络设备或芯片,该芯片可以应用于网络设备中等。
在第三方面或第四方面中,上述通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。上述第三方面到第四方面的有益效果可以参考前述第一方面和第二方面的相关描述,这里不赘述。
第五方面,本申请提供一种第一通信装置,该第一通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执 行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述第一通信装置之外。
在一种可能的实现方式中,存储器位于上述第一通信装置之内。
本申请中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,第一通信装置还包括收发器,该收发器,用于接收信号或发送信号。示例性的,该收发器还可以用于接收第一消息或第二消息中的至少一项。示例性的,该收发器还可以用于发送preamble码等。
本申请中,该第一通信装置可以为终端设备或终端设备中的芯片等。
第六方面,本申请实施例提供一种第二通信装置,该第二通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述第二通信装置之外。
在一种可能的实现方式中,存储器位于上述第二通信装置之内。
在本申请中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,第二通信装置还包括收发器,该收发器,用于接收信号或发送信号。示例性的,该收发器可以用于发送第一消息或第二消息中的至少一项。示例性的,该收发器还可以用于接收第四消息、或preamble码等。
本申请中,该第二通信装置可以为网络设备或网络设备中的芯片等。
第七方面,本申请提供一种第一通信装置,该第一通信装置包括逻辑电路和接口,该逻辑电路和该接口耦合。接口,用于输入第一消息和第二消息,第一消息用于为第一通信装置配置GNSS信号的测量窗口,该测量窗口用于第一通信装置进行GNSS信号的测量,第二消息为RRC信令或PDCCH;逻辑电路,用于根据第二消息确定随机接入时机。其中,该随机接入时机的起始位置相对于该测量窗口的起始位置的偏移在预设范围内。
第八方面,本申请提供一种第二通信装置,该第二通信装置包括逻辑电路和接口,该逻辑电路和该接口耦合。接口,用于输出第一消息和第二消息,第一消息用于为第一通信装置配置GNSS信号的测量窗口,该测量窗口用于第一通信装置进行GNSS信号的测量,第二消息为RRC信令或PDCCH,该第二消息用于确定随机接入时机;逻辑电路,用于在随机接入时机内检测preamble码。其中,该随机接入时机的起始位置相对于该测量窗口的起始位置的偏移在预设范围内。
第九方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面、或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面、或第二方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面、或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面、或第二方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面、或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面、或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信系统,该无线通信系统包括第一通信装置和第二通信装置,所述第一通信装置用于执行上述第一方面、或第一方面的任意可能的实现方式所示的方法,所述第二通信装置用于执行上述第二方面、或第二方面的任意可能的实现方式所示的方法。
上述各个方面达到的技术效果可以相互参考或参考下文所示的方法实施例中的有益效果,此处不再赘述。
附图说明
图1是本申请实施例提供的通信系统的一架构示意图;
图2是本申请实施例提供的通信系统的另一架构示意图;
图3是本申请实施例提供的通信系统的又一架构示意图;
图4是本申请实施例提供的通信方法的一流程示意图;
图5是本申请实施例提供的随机接入时机与测量窗口的位置关系示意图;
图6是本申请实施例提供的通信方法的一种时序示意图;
图7是本申请实施例提供的通信方法的另一流程示意图;
图8a是本申请实施例提供的通信方法的另一种时序示意图;
图8b是本申请实施例提供的通信方法的又一种时序示意图;
图9是本申请实施例提供的通信装置的一结构示意图;
图10是本申请实施例提供的通信装置1000的结构示意图;
图11是本申请实施例提供的通信装置的另一结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”或其类似表达是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的技术方案可以应用于各种通信系统,例如:可以应用于5G通信系统,如新一代无线接入技术(new radio access technology,NR)系统,或应用于5G之后演进的各种通信系统,例如,第六代(6th generation,6G)通信系统。本申请还可以应用于其它支持卫星通信的各种通信系统等。
图1、图2、图3示例性地示出了支持卫星通信的可能通信系统的架构。本申请实施例提供的通信方法,可以应用于图1、图2或图3中任一通信系统的架构中。上述通信系统的架构也可以称为星地融合网络的架构。
在图1所示的通信系统中,基站可以部署在地面上,卫星通过空口与地面站(也可以称为关口站、信关站)(gateway)相连,而地面站可以通过无线或有线与地面基站相连,地面基站又可以通过有线或者无线与核心网相连。地面的终端设备可以通过空口(该空口可以是各种类型的空口,例如5G空口等)接入网络,卫星作为传输节点,对终端设备的信息进行转发。卫星之间也可以存在无线链路,在图1所示的通信系统中,卫星可以有透传转发功能(即对应的基站部署在地面),卫星之间可以实现透传转发。
在图2所示的通信系统中,基站可以部署在卫星上,如基站或者部分基站功能部署在卫星上。卫星可以通过空口与地面站相连,而地面站可以通过无线或有线与核心网相连。地面的终端设备可以通过空口(该空口可以是各种类型的空口,例如5G空口等)与卫星基站通信,从而接入网络。卫星作为基站通过NG接口与地面站相连,地面站通过NG接口与核心网相连,该NG接口可以为无线形式也可以为有线形式。
图3所示的通信系统与图2所示的通信系统相比,增加了卫星基站与卫星基站之间的通信场景,具体的,卫星基站与卫星基站之间可以通过Xn接口通信,卫星之间可以完成基站与基站之间的信令交互和用户数据传输。
可理解,上述图1、图2、图3示出的通信系统中网元的个数仅是示例,在实际使用中,可根据需要采取多卫星和/或多地面站的架构。也就是说,每个卫星可向一个或多个终端设备提供服务,每个卫星可对应于一个或多个地面站,每个地面站可对应于一个或多个卫星等等,本申请不予限定。
示例性的,图1至图3中各个网元以及它们的接口介绍如下:
在图1至图3中,终端设备可以是支持NR的各种类型的终端,例如手机、平板电脑、车载终端设备、 可穿戴终端设备等。终端设备可以通过空口接入卫星网络并发起呼叫,上网等业务。终端设备可以称为终端、用户设备(user equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动台(mobile station)、客户终端设备(customer-premises equipment,CPE)、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请中的终端设备可以是:卫星电话、蜂窝电话、智能手机、无线数据卡、无线调制解调器、机器类型通信设备、可以是无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、高空飞机上搭载的通信设备、可穿戴设备、无人机、机器人、智能销售点(point of sale,POS)机。本申请中的终端设备还可以是:物联网(internet of things,IoT)中的终端、设备到设备通信(device-to-device,D2D)中的终端、车到一切(vehicle to everything,V2X)中的终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端或者未来通信网络中任意形态的终端设备等,本申请不做限制。
基站是网络设备的一种举例,可以用于提供无线接入服务、调度无线资源给接入的终端设备、提供可靠的无线传输协议和数据加密协议等。本申请中的网络设备可以是部署在无线接入网中为终端设备提供无线通信功能的设备。例如,网络设备可以是将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点,又可以称为接入网设备。本申请中的网络设备可以是5G通信系统中的下一代基站(next generation NodeB,gNB),还可以为未来通信系统(如6G通信系统)中的基站。具体的,网络设备可以包括但不限于:演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU)、有源天线处理单元(active antenna unit,AAU)无线中继节点、无线回传节点、传输点(transmission point,TP)或者传输接收点(transmission reception point,TRP)、设备到设备(device-to-device,D2D)、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备等。网络设备还可以包括:云接入网(cloud radio access network,C-RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)、NTN通信系统中的网络设备(可以部署于高空平台或者卫星);或者可以是,5G移动通信系统中的基站的一个或一组(包括多个天线面板)天线面板;或者,网络设备还可以为构成gNB或传输点的网络节点。本申请实施例对此不做限定。
地面站可以用于负责转发卫星与基站,或者卫星与核心网之间的信令和业务数据。
核心网可以用于用户接入控制、移动性管理、会话管理、用户安全认证或计费等。核心网可以由多个功能单元组成,如包括控制面和数据面的功能实体。示例性的,图1至图3所示的核心网可以包括接入移动管理功能(access and mobility management function,AMF)、会话管理功能(session management function,SMF)和用户面功能(user plane function,UPF)等。如AMF可以用于负责用户接入管理,安全认证,还有移动性管理等。UPF可以用于负责管理用户面数据的传输,流量统计等。
图1至图3所示的空口可以理解为终端和基站之间的无线链路,或卫星与地面站之间的无线链路。
Xn接口可以理解为基站和基站之间的接口,主要用于切换等信令交互。
NG接口可以表示基站和核心网之间接口,或者地面站与核心网之间的接口,或者卫星基站与地面站之间的接口(此时该接口为无线链路),用于交互核心网的非接入(non-access stratum,NAS)等信令,以及用户的业务数据。
可理解,在不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,本申请不再一一示出。
可选的,卫星可以是静止轨道(geostationary earth orbit,GEO)卫星,也可以是非静止轨道(none-geostationary earth orbit,NGEO)的中轨道(medium earth orbit,MEO)卫星或低轨道(low earth orbit,LEO)卫星,还可以是高空通信平台(High Altitude Platform Station,HAPS)等。本申请对于卫星的具体类型不做限定。
本申请实施例描述的系统架构和业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
目前,标准为了适配卫星通信的高移动性和大通信延迟的特点,分别对定时、同步、混合自动重传请 求等技术做了增强。本申请主要关注卫星通信场景下的同步问题。考虑到卫星通信具有高移动性和大通信延迟的特点,终端设备在现有上行同步的基础上还需要根据GNSS信息和星历、或者其他辅助信息来实现同步。目前3GPP标准仅对终端设备与卫星短时间连接的通信方式进行了增强,而未对终端设备与卫星长时间连接的通信方式进行增强。针对终端设备与卫星短时间连接的通信场景,终端设备在随机接入前获得GNSS信息,该GNSS信息在终端设备退出连接态前一直有效。这是因为终端设备发起接入,发完上行数据后退出连接态这一过程的时间很短,所以在此过程中即使终端设备发生运动,但运动导致的GNSS信息的偏差也能够满足同步的要求。而对于终端设备与卫星长时间处于连接态的情况,因为GNSS信息存在有效时长,即过多长时间,当前的GNSS信息会过期,所以在终端设备与卫星长时间连接的通信场景中,GNSS信息可能会过期。当GNSS信息过期后,由于累积的时间和频率误差可能会导致终端设备同步失败,从而导致无线链路失败,即终端设备无法与卫星继续保持连接。
因此,当终端设备与卫星长时间处于连接态时,可能需要重新进行GNSS信息的获取,但获取GNSS信息的复杂度高、功耗大。此外,对于现有的IoT终端,存在通信和获取GNSS信息无法同时进行的情况,所以如果终端设备在连接态重新进行GNSS信息的获取将会对正常的通信产生影响,比如可能会导致终端设备的业务中断。
基于此,本申请实施例提供一种通信方法及装置,对终端设备与卫星处于长时间连接的通信方式进行增强,不仅可以使终端设备与卫星长时间保持同步,还可以减少终端设备进行GNSS信号的测量所带来的功耗(或开销),以及减少GNSS信号测量的次数和降低复杂度。
本申请中,“进行GNSS信号的测量”、“获取GNSS信息”以及“启动GNSS模块进行GNSS定位”等均可以理解为:根据导航卫星的信号进行定位获得终端设备的地理位置信息的过程。本申请中的“GNSS信息”可以表示与终端设备的地理位置相关的信息,例如:空间坐标X,Y,Z,或者经度,纬度,高度等信息。
需要说明的是,本申请中的随机接入时机可以指RO:PRACH occasion or PRACH transmission occasion,PRACH时机或PRACH传输时机;PRACH:physical random access channel,物理随机接入信道。
在本申请实施例中,以第一通信装置和第二通信装置为例对本申请提供的通信方法进行详细说明。其中,第一通信装置可以是终端设备,或者终端设备中的处理器、芯片或芯片系统、功能模块等。第二通信装置可以是网络设备(比如卫星或地面基站),或者网络设备中的处理器、芯片或芯片系统、功能模块等。关于终端设备和网络设备等的说明可以参考上述图1至图3,这里不再一一详述。本申请实施例对第一通信装置和第二通信装置的具体形态不做限制。
参见图4,图4是本申请实施例提供的通信方法的一流程示意图。如图4所示,该通信方法包括:
S101,第二通信装置向第一通信装置发送第一消息,该第一消息用于为第一通信装置配置GNSS信号的测量窗口,该测量窗口用于第一通信装置进行GNSS信号的测量。
相应地,第一通信装置接收该第一消息。
可选的,在步骤S101之前,第一通信装置向第二通信装置上报自己的能力。第一通信装置的能力可以分为能力受限或能力不受限两种。当第一通信装置的能力受限时,第二通信装置为第一通信装置配置GNSS信号的测量窗口,即执行步骤S101。当第一通信装置的能力不受限时,无需第二通信装置配置GNSS信号的测量窗口。
本申请所称“能力受限”可以指在进行GNSS信号测量的过程中不能监听通信信号(比如监听物理下行控制信道(physical downlink control channel,PDCCH)),在随机接入过程中也不能进行GNSS信号的测量。换句话说,“能力受限”也可以理解为:不能同时支持通信(比如收发通信数据、监听PDCCH等)和GNSS信号的测量。本申请所称“能力不受限”可以指在进行GNSS信号测量的过程中可以监听通信信号(比如监听PDCCH),在随机接入过程中也可以进行GNSS信号的测量。换句话说,“能力不受限”也可以理解为:能够同时支持通信和GNSS信号的测量。
可理解,本申请实施例中第一通信装置的能力受限,下文不再赘述。
一种可能的实现方式中,上述第一消息可以是无线资源控制(radio resource control,RRC)信令。第二通信装置可以通过RRC信令为第一通信装置配置GNSS信号的测量窗口。这里,第二通信装置为第一通信装置配置的测量窗口可以是一个或多个,本申请实施例不做限制。第二通信装置为该第一通信装置配置的测量窗口可以用于第一通信装置进行GNSS信号的测量。
另一种可能的实现方式中,上述第一消息可以是介质接入控制(medium access control,MAC)控制元素(control element,CE)信令。第二通信装置通过MAC CE信令为第一通信装置配置GNSS信号的测 量窗口。可理解,当终端设备接收到MAC CE信令后,终端设备会发送一个反馈,如果反馈了ACK(acknowledge,确认)消息,说明终端设备正确接收了MAC CE信令,从反馈后过3ms(毫秒)开始MAC CE信令生效。因此,通过MAC CE信令配置的测量窗口的起始位置可以是该MAC CE信令的生效位置。当然,如果终端设备反馈的是NACK(non-acknowledge)消息,说明终端设备未正确接收MAC CE信令。
在此基础上,第二通信装置向第一通信装置发送MAC CE信令后(该MAC CE信令用于为第一通信装置配置GNSS信号的测量窗口),如果第一通信装置没有正确接收MAC CE信令,则第一通信装置可以向第二通信装置发送第一反馈。如果第一通信装置正确接收了MAC CE信令且第一通信装置不想在该MAC CE配置的测量窗口内进行GNSS信号的测量,则第一通信装置可以向第二通信装置发送第二反馈。这里一种可能的场景中,假设GNSS信息的有效时长是10秒(s),第二通信装置在GNSS信息的有效时长还剩5s时就发送MAC CE信令配置GNSS信号的测量窗口,这时第一通信装置决定跳过一次GNSS信号的测量。如果第一通信装置正确接收了MAC CE信令且第一通信装置准备在该MAC CE配置的测量窗口内进行GNSS信号的测量,则第一通信装置可以向第二通信装置发送第三反馈。
其中,第一反馈可以用于表示第一通信装置没有正确接收MAC CE信令。第二反馈可以用于表示第一通信装置正确接收了MAC CE信令,但第一通信装置不想在该MAC CE配置的测量窗口内进行GNSS信号的测量。第三反馈可以用于表示第一通信装置正确接收了MAC CE信令且第一通信装置准备在该MAC CE配置的测量窗口内进行GNSS信号的测量。示例性的,第一反馈、第二反馈以及第三反馈可以用2比特表示,比如,00表示第一反馈,01表示第二反馈,10表示第三反馈。
可选的,如果第一通信装置正确接收了MAC CE信令且如果配置了随机接入时机,第一通信装置选择发起非竞争的随机接入而不进行GNSS信号的测量,则第一通信装置可以向第二通信装置发送第四反馈。换句话说,第二通信装置为第一通信装置既配置了GNSS信号的测量窗口,又配置了随机接入时机,该随机接入时机对应的非竞争随机接入的优先级高于GNSS信号的测量,第一通信装置可以优先选择进行非竞争的随机接入。其中,第四反馈可以用于表示:第一通信装置正确接收了MAC CE信令,且第一通信装置会在该MAC CE配置的测量窗口内进行GNSS信号的测量,但第一通信装置接收到了配置的随机接入时机,选择进行非竞争的随机接入而不进行GNSS信号的测量。示例性的,第四反馈可以用比特“11”表示。
还可理解,因为现有标准中ACK/NACK消息是可以和侦听请求(sounding request,SR)复用的,即通过一个COVER CODE(隐藏码)将SR隐式的携带在ACK/NACK消息中;该操作类似于加扰,有两种cover code序列,分别表示不同的信息。网络设备通过cover code的检测,来获得SR是0还是1。
基于此,第二通信装置向第一通信装置发送MAC CE信令后(该MAC CE信令用于为第一通信装置配置GNSS信号的测量窗口),如果第一通信装置正确接收了MAC CE信令,第一通信装置可以向第二通信装置反馈ACK消息,该ACK消息包括第一cover code、第二cover code、或第三cover code中的一个。其中,第一cover code可以表示第一通信装置不想在该MAC CE配置的测量窗口内进行GNSS信号的测量。第二cover code可以表示第一通信装置准备在该MAC CE配置的测量窗口内进行GNSS信号的测量。第二cover code可以表示第一通信装置接收到了配置的随机接入时机,选择进行非竞争的随机接入而不进行GNSS信号的测量。当然,如果第一通信装置未正确接收MAC CE信令,第一通信装置可以向第二通信装置反馈NACK消息。
可选的,如果第一通信装置不想在该MAC CE配置的测量窗口内进行GNSS信号的测量,第二通信装置收到相应的反馈后,认为之前配置的测量窗口释放了,继续正常的调度数据。第一通信装置也会在反馈后,在合适的时间进行通信信号的监听。例如,第一通信装置向第二通信装置发送的是第二反馈或携带第一cover code的ACK消息,那么第一通信装置再发送完第二反馈或携带第一cover code的ACK消息后过一段时间就会开始监听第二通信装置的数据调度。
可选的,第二通信装置在通过MAC CE信令配置GNSS信号的测量窗口的同时,可以配置该测量窗口对应的反馈资源,比如反馈的时频资源、编码与调制策略(modulation and coding scheme,MCS)、重复次数等。该测量窗口的反馈资源用于第一通信装置反馈GNSS信号测量已完成的信息。其中,考虑到第一通信装置与第二通信装置之间的传输延时,时域资源需要有调度延迟参数如Koffset,表示上行资源与MAC CE时域资源的相对逻辑关系。第二通信装置可以在相应的时域资源上做定时提前发送GNSS信号测量已完成的信息。该Koffset可以是UE级别的也可以是小区级别的,本申请实施例对此不限定。示例性的,考虑到第一通信装置反馈时,距离MAC CE信令下发已经过了一段比较长的时间,UE级别的Koffset可能过期,可以采用小区级别的Koffset。可理解,如果第一通信装置由于信号质量等问题没有完成GNSS信号的测量,第二通信装置可以调度非竞争的随机接入或继续配置GNSS信号的测量窗口。
又一种可能的实现方式,上述第一消息可以是下行控制信息(downlink control information,DCI)。第二通信装置通过DCI为第一通信装置配置GNSS信号的测量窗口。可理解,DCI承载在PDCCH中,且无需反馈。但如果第二通信装置在通过DCI配置GNSS信号的测量窗口的同时,还配置了该测量窗口对应的反馈资源,比如反馈的时频资源、MCS、重复次数等;那么该时域资源也需要有调度延迟参数如Koffset,这里不再赘述。
可选的,上述测量窗口可以通过以下至少两项确定:测量窗口的起始位置,测量窗口的结束位置,测量窗口的长度。因为测量窗口的长度往往和终端设备(这里是第一通信装置)的能力有关,所以测量窗口的长度可以配置一次,后续配置测量窗口时可以只配置测量窗口的起始位置或结束位置。当然,测量窗口的长度配置后也可以更新,其更新可以通过另外的信令指示,也可以在第一消息中携带更新后的测量窗口的长度,本申请实施例对此不限定。因此,上述第一消息中可以包括以下一项或多项:测量窗口的起始位置,测量窗口的结束位置,或测量窗口的长度。示例性的,测量窗口的起始位置和结束位置均可以通过系统帧和子帧来表示,本申请实施例不限制测量窗口的起始位置和结束位置的具体表现形式。示例性的,测量窗口的长度可以通过系统帧或子帧的个数来表示,也可以通过时间间隔来表示,例如x(x>0)毫秒(ms)等,还可以通过时隙个数或符号个数来表示等,本申请实施例不限制测量窗口的长度的具体表现形式。
可选的,上述测量窗口可以是周期性的,也可以是非周期性的。如果测量窗口是周期性的,则测量窗口的周期可以是预定义的,例如标准协议规定,也可以是第一通信装置和第二通信装置协商确定的,还可以是第二通信装置通过上述第一消息配置的(也就是说上述第一消息还可以包括该测量窗口的周期,简称为测量周期),等等,本申请实施例对此不限定。如果测量窗口是非周期性的,则第二通信装置可以每次在需要配置测量窗口时,为第一通信装置指示一个具体的系统帧和子帧作为下一个测量窗口的起始位置或结束位置,可选的还可以指示下一个测量窗口的长度等信息。
可选的,上述测量窗口的长度可以根据第一通信装置进行GNSS信号测量所需要的测量时长确定。举例来说,该测量窗口的长度可以大于或等于该测量时长。上述测量窗口的起始位置可以根据GNSS信息的有效时长确定。示例性的,该测量窗口的起始位置可以在该GNSS信息的有效时长结束之前,或者该测量窗口的起始位置是该GNSS信息的有效时长的结束位置。可理解,如果测量窗口是周期性的,相邻两个测量窗口之间的距离可以小于或等于该GNSS信息的有效时长。这里,相邻两个测量窗口之间的距离可以指:第i个测量窗口的结束位置与第i+1个测量窗口的起始位置之间的距离,i为大于或等于1的整数。
示例性的,在步骤S101之前,第一通信装置可以向第二通信装置发送第四消息,该第四消息可以用于指示第一通信装置进行GNSS信号测量所需的测量时长和GNSS信息的有效时长。第二通信装置根据该测量时长确定测量窗口的长度,并可以根据该GNSS信息的有效时长确定测量窗口的起始位置。
在一些场景中,步骤S101之前,第一通信装置可以向第二通信装置上报一个或者多个测量时长,分别对应不同的GNSS启动模式。通常,GNSS启动模式包括热启动,冷启动以及温启动。第一通信装置可以上报热启动、冷启动以及温启动这3种GNSS启动模式分别对应的测量时长。可理解,这3种GNSS启动模式(即热启动、冷启动以及温启动)对应的测量时长不相同。此时,第二通信装置可以采用非周期性的方式配置GNSS信号的测量窗口。当第二通信装置通过RRC信令为第一通信装置配置下一个测量窗口时,如果第二通信装置发现当前时间距离上一次GNSS信号测量的时间间隔较长,比如已经超过了2小时,则第二通信装置可以根据温启动对应的测量时长确定下一个测量窗口的长度。这是因为温启动对应的测量时长较长,相应的下一个测量窗口的长度也相对较大,以便于第一通信装置能够在配置的测量窗口内完成GNSS信号的测量。如果第二通信装置发现当前时间距离上一次GNSS信号测量的时间间隔较短,比如小于2小时,则第二通信装置可以根据热启动对应的测量时长确定下一个测量窗口的长度。这是因为热启动的时间会比较短,其对应的测量时长也比较短,所以下一个测量窗口的长度也相对较小。
可理解,终端设备(即上述第一通信装置)需要根据自己的地理位置信息(这里指GNSS信息)和网络设备(即上述第二通信装置)的地理位置信息计算定时提前量(timing advance,TA)来做上行同步,那么如果GNSS信息过期,说明GNSS信息已经不准确,则可能不能够满足上行同步的要求。因此,本申请实施例的第二通信装置为第一通信装置配置GNSS信号的测量窗口,以便于第一通信装置在连接态也可以进行GNSS信号的测量,从而获得最新的GNSS信息来做上行同步,满足上行同步的要求。
S102,第二通信装置向第一通信装置发送PDCCH,该PDCCH用于确定随机接入时机,该随机接入时机的起始位置相对于该测量窗口的起始位置的偏移在预设范围内。该PDCCH还用于触发非竞争随机接 入。
S103,若第一通信装置在该测量窗口到来之前接收到该PDCCH,则第一通信装置根据该PDCCH确定随机接入时机。
S104,第一通信装置在该随机接入时机内发送preamble码。
可选的,第二通信装置向第一通信装置发送第一消息后(即步骤S101后),第二通信装置可以根据第一通信装置上报的GNSS信息的有效时长,上行信号的TA误差或者定时提前命令(timing advance command,TAC)的更新次数,确定是否发送用于触发非竞争随机接入的物理下行控制信道(physical downlink control channel,PDCCH),来纠正TA,从而实现上行同步。
在一种可能的实现方式中,如果第二通信装置确定发送用于触发非竞争随机接入的PDCCH,则第二通信装置可以在下一个测量窗口(为便于描述,记为测量窗口j)到来之前发送该PDCCH,该PDCCH中包括随机接入时机。该随机接入时机的起始位置相对于该测量窗口j的起始位置的偏移在预设范围内。该随机接入时机的起始位置可以在该PDCCH的结束位置后,且该随机接入时机的起始位置与该PDCCH的结束位置之间的偏移在一定范围内,比如一定范围是x个时隙。可理解,上述第一消息配置的测量窗口包括测量窗口j。举例来说,如果上述第一消息配置的测量窗口是非周期性,那这里的测量窗口j可以是该第一消息配置的测量窗口;如果上述第一消息配置的测量窗口是周期性的,则这里的测量窗口j可以是第二通信装置发送完用于触发非竞争随机接入的PDCCH后的第一个测量窗口。
可选的,上述预设范围可以是区间[-(TRO+T),+(Twin+T)],TRO表示随机接入时机的长度,T表示预设阈值,Twin表示测量窗口的长度,预设范围中“-”表示负,“+”表示正。参见图5,图5是本申请实施例提供的随机接入时机与测量窗口的位置关系示意图。图5中“RO”表示随机接入时机,“GNSS window”表示GNSS信号的测量窗口。如图5所示,随机接入时机(RO)可以与测量窗口(GNSS window)重叠,比如:随机接入时机在GNSS信号的测量窗口内,或者随机接入时机与GNSS信号的测量窗口部分重叠;随机接入时机(RO)也可以与测量窗口(GNSS window)不存在重叠,比如随机接入时机在GNSS信号的测量窗口之前或之后一段时间(这段时间长度等于T)。可理解,图5示出的测量窗口和随机接入时机的位置关系仅是示例,在实际应用中,满足随机接入时机的起始位置相对于该测量窗口j的起始位置的偏移在预设范围内即可。
通常,第一通信装置在上述第一消息配置的测量窗口内不监听PDCCH,当然第二通信装置也不会在测量窗口内发送PDCCH,因为第一通信装置无法在进行GNSS信号测量的同时接收通信信号。但第一通信装置在除测量窗口外的其他时间都需要监听PDCCH。因此,第二通信装置可以在除测量窗口外的其他时间发送用于触发非竞争随机接入的PDCCH。
相应地,如果第一通信装置在上述测量窗口j到来之前接收到上述用于触发非竞争随机接入的PDCCH,第一通信装置可以根据接收到的该PDCCH确定该随机接入时机,并可以在该随机接入时机内发起非竞争的随机接入,比如在该随机接入时机内发送前导(preamble)码。可选的,第一通信装置接收到该PDCCH后,如果该PDCCH指示的随机接入时机与测量窗口j存在重叠,因为第一通信装置的能力受限,比如第一通信装置是IoT类型的终端,其不能同时支持通信和GNSS信号的测量,所以第一通信装置在测量窗口j内不启动GNSS模块进行GNSS定位,也就是不进行GNSS信号的测量。换句话说,该测量窗口j不再用于第一通信装置进行GNSS信号的测量,而是用于第一通信装置监听后续数据的调度,比如监听用于数据调度的PDCCH。那么在网络侧,当第二通信装置接收到preamble码时,第二通信装置可以释放测量窗口j的资源,并可以利用释放的资源继续进行后续的数据调度。这样既可以减少第一通信装置的功耗,也可以保证业务不中断。
可选的,第一通信装置在测量窗口j到来之前接收到用于触发非竞争随机接入的PDCCH,如果该PDCCH指示的随机接入时机与测量窗口j不存在重叠,第一通信装置可以在该随机接入时机内发起非竞争的随机接入,并可以在该测量窗口j内进行GNSS信号的测量。当然,为了节省第一通信装置的功耗,第一通信装置接收到该PDCCH后,也可以不在该测量窗口j内进行GNSS信号的测量,也就是不启动GNSS模块。当然,如果第一通信装置的非竞争随机接入失败,第一通信装置还是可以进行GNSS信号的测量。
可选的,第一通信装置在上述测量窗口j到来之前接收到上述用于触发非竞争随机接入的PDCCH,可以自己决定是在该随机接入时机内发起非竞争的随机接入,还是在测量窗口j内进行GNSS信号的测量;然后进行相应操作,这里不一一详述。
可理解,在一些场景下,例如链路质量较差的场景,虽然第二通信装置在测量窗口j到来之前发送了用于触发非竞争随机接入的PDCCH,但如果第一通信装置在该测量窗口j到来之前没有收到该PDCCH, 因为第一通信装置的能力受限,其不会在该测量窗口j内监听PDCCH,而是当该测量窗口j到来时,在该测量窗口j内进行GNSS信号的测量,从而获取最新的GNSS信息,实现上行同步。例如,第一通信装置在该测量窗口j内接收GNSS信号,重新刷新自己的地理位置信息(即更新GNSS信息),在GNSS重新定位完成后,向第二通信装置发送第五消息,用于通知已完成GNSS重新定位,即已完成GNSS信号的测量。
在另一种可能的实现方式中,如果第二通信装置确定不发送用于触发非竞争随机接入的PDCCH,当然第一通信装置也不会收到该PDCCH,那么第一通信装置在上述第一消息配置的测量窗口内进行GNSS信号的测量。
举例来说,参见图6,图6是本申请实施例提供的通信方法的一种时序示意图。如图6所示,第二通信装置通过RRC信令为第一通信装置配置GNSS信号的测量窗口(图6中用GNSS window表示)。如图6所示,第一通信装置在从左到右的第一个测量窗口内都进行GNSS信号的测量,且在该第一个测量窗口内不监听PDCCH。第一通信装置在从左到右的第二个测量窗口前接收到用于触发非竞争随机接入的PDCCH(图6中用PDCCH 1表示)后,第一通信装置在该PDCCH指示的随机接入时机(RO)内发起非竞争的随机接入,比如发送preamble码;并在该第二个测量窗口内不进行GNSS信号的测量。换句话说,该第二个测量窗口不再用于进行GNSS信号的测量,也可以理解该第二个测量窗口对应的资源被释放。也就是说,第一通信装置可以在该第二个测量窗口对应的资源上监听后续数据的调度,比如第一通信装置在发送preamble码之后监听用于数据调度的PDCCH,如图6中的PDCCH 2。第一通信装置在从左到右的第三个测量窗口内都进行GNSS信号的测量,且在该第三个测量窗口内不监听PDCCH。
可以理解,图6示出的测量窗口可以是周期性的,也可以是非周期性,如果是非周期性的,则图6示出的3个测量窗口可以通过3个RRC信令配置。还可理解,图6仅示出了部分测量窗口,在实际应用中可以多于或少于图6示出的测量窗口数量。
S105,第二通信装置在该随机接入时机内检测preamble码。
S106,若第二通信装置在该随机接入时机内检测到preamble码,第二通信装置向第一通信装置发送随机接入响应消息,该随机接入响应消息包括指示信息,用于指示TA的值是正值还是负值。
S107,若第二通信装置在该随机接入时机内未检测到preamble码,且也没有接收到来自第一通信装置的第五消息,第二通信装置在该测量窗口结束后重新发送用于触发非竞争随机接入的PDCCH。
可选的,在步骤S102之后,第二通信装置就可以在随机接入时机(RO)内检测preamble码。如果第二通信装置在随机接入时机(RO)内检测到preamble码,说明第一通信装置是通过非竞争的随机接入来纠正GNSS信息过期引入的TA误差,那么可以认为测量窗口j释放为通信资源,可以继续进行后续的数据调度。
一种可能的实现方式中,当第二通信装置在随机接入时机内检测到preamble码后,可以向第一通信装置发送随机接入响应消息。由于上一次获得的GNSS信息可能已经过期,TA误差变大且可能为负值,所以随机接入响应中用于纠正TA的TAC需要同时支持正值和负值范围。因此,该随机接入响应消息中可以包括一个指示信息,用于指示TA的值是正值还是负值。
另一种可能的实现方式中,当第二通信装置在随机接入时机内检测到preamble码后,如果第二通信装置发现通过preamble检测的TA误差比较大,已经超过了闭环纠正的范围,或者第二通信装置觉得通过非竞争随机接入已经很难补偿第一通信装置的TA误差,则第二通信装置可以向第一通信装置发送第三消息,该第三消息可以用于通知第一通信装置进行GNSS信号的测量。可理解,第一通信装置接收到该第三消息,可以视为非竞争随机接入失败。
一些场景中,第一通信装置接收到该第三消息后,可以在测量窗口j内或者测量窗口j的剩余时间内进行GNSS信号的测量。可理解,如果第二通信装置想要把随机接入时机配置在测量窗口j内,那么第二通信装置可以在配置测量窗口j时,将测量窗口j的长度配置得长一些,随机接入时机的位置也可以配置得相对靠前。这样即使第二通信装置接收到preamble码后又反馈第一通信装置进行GNSS信号的测量,第一通信装置也可以有足够的时间进行GNSS信号的测量。
再一些场景中,第一通信装置接收到该第三消息后,可以重新确定测量窗口j的起始位置和/或结束位置,并在重新确定的测量窗口内进行GNSS信号的测量。举例来说,在随机接入时机(RO)与测量窗口j存在重叠的情况下,考虑到第一通信装置接收到第三消息后再进行GNSS信号测量的时间不够,可以将测量窗口j的起始位置推迟到随机接入时机的结束位置(测量窗口j的长度不变),或者将测量窗口j推迟到 随机接入时机结束后的一段时间后开始(测量窗口j的长度不变),再或者将测量窗口j的结束位置往后推迟一段时间(测量窗口j的长度变大)。这里的一段时间可以是标准协议中规定的,也可以是第一通信装置和第二通信装置协商的,还可以是第二通信装置在第三消息中配置的,本申请实施例对此不做限定。
可理解,即使第二通信装置将测量窗口j的长度配置得长一些,或者第一通信装置重新确定了测量窗口j的位置,也可能会出现第一通信装置无法完成GNSS信号测量的情况,此时如果第一通信装置无法完成GNSS信号测量,则可能会导致上行失步,发起无线链路失败。但如果第一通信装置完成了GNSS信号的测量,则第一通信装置可以向第二通信装置反馈第五消息,用于说明第一通信装置已经完成了GNSS信号的测量。
本申请实施例在TA误差过大时,允许第一通信装置继续通过GNSS信号的测量来更新GNSS信息,从而满足同步的要求。
当然,如果第二通信装置发现通过preamble检测的TA误差没有超过闭环纠正的范围,或者第二通信装置觉得通过非竞争随机接入可以补偿第一通信装置的TA误差,则第二通信装置可以向第一通信装置发送随机接入响应消息,该随机接入响应消息中包括一个指示信息,用于指示TA的值是正值还是负值。
可选的,如果第二通信装置在随机接入时机(RO)内未检测到preamble码,但第二通信装置在测量窗口j对应的反馈资源上接收到来自第一通信装置的第五消息,该第五消息用于通知已完成GNSS信号的测量,说明第一通信装置是通过GNSS重新定位来更新GNSS信息,从而计算TA来做上行同步。其中,测量窗口对应的反馈资源用于承载该第五消息。示例性的,测量窗口对应的反馈资源是预定义的或标准协议规定的,比如反馈资源在测量窗口的末尾。再示例性的,测量窗口对应的反馈资源是第二通信装置通过信令配置的,比如第二通信装置向第一通信装置发送第一消息后,再发送一个信令配置(各个)测量窗口对应的反馈资源;或者,第二通信装置在配置测量窗口的同时也配置相应的反馈资源,也就是说测量窗口及其反馈资源在一个信令中配置。
可选的,如果第二通信装置在随机接入时机(RO)内未检测到preamble码,且在测量窗口j对应的反馈资源上没有接收到来自第一通信装置的第五消息,则第二通信装置可以在测量窗口i结束后重新发送用于触发非竞争随机接入的PDCCH,该PDCCH可以指示一个新的随机接入时机,以便于第一通信装置在这个新的随机接入时机内发起新的非竞争随机接入,从而减少上行失步的可能。
本申请实施例中,第二通信装置通过第一消息为第一通信装置配置GNSS信号的测量窗口,再通过PDCCH配置随机接入时机(RO),且PDCCH在测量窗口到来之前,此时第一通信装置在RO内发起非竞争的随机接入,而不在测量窗口内进行GNSS信号的测量。这样可以用非竞争的随机接入代替GNSS信号的测量,不仅可以使第一通信装置与第二通信装置长时间保持同步,还可以减少GNSS信号测量所带来的功耗,并可以减少GNSS信号测量的次数和降低复杂度。
上述图4所示的通信方法是通过PDCCH来配置随机接入时机(RO)和触发非竞争的随机接入,本申请还可以通过RRC信令来配置随机接入时机和/或触发非竞争的随机接入,无需PDCCH配置和触发。
参见图7,图7是本申请实施例提供的通信方法的另一流程示意图。其中,该方法中第一通信装置的能力受限。如图7所示,该通信方法包括:
S201,第二通信装置向第一通信装置发送第一消息,该第一消息用于为第一通信装置配置GNSS信号的测量窗口,该测量窗口用于第一通信装置进行GNSS信号的测量。
相应地,第一通信装置接收该第一消息。
S202,第二通信装置向第一通信装置发送第二消息,该第二消息用于确定随机接入时机,该随机接入时机的起始位置相对于该测量窗口的起始位置的偏移在预设范围内。该第二消息为RRC信令或介质接入控制(medium access control,MAC)控制元素(control element,CE)信令。
相应地,第一通信装置接收该第二消息。
S203,第一通信装置根据该第二消息确定随机接入时机。
一种可能的实现方式中,上述第一消息可以是RRC信令,上述第二消息也可以是RRC信令。第一消息和第二消息可以是不同的RRC信令,第一消息和第二消息也可以是同一个RRC信令。如果第一消息和第二消息是同一个RRC信令,上述步骤S201和步骤S202可以替换成下述步骤:第二通信装置向第一通信装置发送RRC信令,该RRC信令用于为第一通信装置配置GNSS信号的测量窗口和随机接入时机,该随机接入时机的起始位置相对于该测量窗口的起始位置的偏移在预设范围内,该测量窗口用于第一通信装置进行GNSS信号的测量。相应的,步骤S203可以替换成:第一通信装置根据该RRC信令确定该随机接 入时机和该测量窗口。其中,该预设范围可以是区间[-(TRO+T),+(Twin+T)],TRO表示随机接入时机的长度,T表示预设阈值,Twin表示测量窗口的长度,预设范围中“-”表示负,“+”表示正。该随机接入时机与该测量窗口的位置关系如前述图5所示,这里不再赘述。
示例性的,上述随机接入时机的起始位置可以在该RRC信令的结束位置后,且该随机接入时机的起始位置与该RRC信令的结束位置之间的偏移在第一范围内,比如第一范围是x个时隙(slot)。上述测量窗口的起始位置也可以在该RRC信令的结束位置后,且该测量窗口的起始位置与该RRC信令的结束位置之间的偏移在第二范围内,比如第二范围是y个时隙。同时,该RRC信令配置的随机接入时机和测量窗口满足:该随机接入时机的起始位置相对于该测量窗口的起始位置的偏移在预设范围内。
可选的,本申请实施例中的随机接入时机与测量窗口对应(或绑定),一个测量窗口可以对应一个或多个随机接入时机,第二通信装置可以为第一通信装置配置一个或多个测量窗口,本申请实施例不限制。可理解,如果测量窗口是周期性的,与测量窗口对应(或绑定)的随机接入时机也可以是周期性的。还可理解,如果测量窗口不是周期性的,那么第二通信装置可以在有需要时再配置测量窗口和与该测量窗口对应(或绑定)的随机接入时机,没有需要时可以只配置测量窗口。具体的,第二通信装置通过RRC信令为第一通信装置配置GNSS信号的测量窗口的实现方式,参见前述图4所示实施例中步骤S101的描述,这里不一一详述。下文为便于描述,以一个测量窗口为例进行说明。
可选的,第二通信装置在配置GNSS信号的测量窗口时,可以通过偏移值(offset)的方式同时配置对应随机接入时机的起始位置。那么,RRC信令中包括:测量窗口,和该测量窗口对应的随机接入时机相对于该测量窗口的位置偏移。示例性的,随机接入时机相对于测量窗口的位置偏移,可以是随机接入时机的起始位置相对于测量窗口的起始位置的偏移(offset);其中,该偏移可能是正值也可能是负值。可理解,如果一个测量窗口对应(或绑定)多个随机接入时机,那么RRC信令中可以包括这多个随机接入时机分别相对于该测量窗口的位置偏移,也就是说该RRC信令中可以有多个偏移值。
本申请实施例通过将GNSS信号的测量窗口与随机接入时机绑定,无需额外的PDCCH来配置随机接入时机和触发非竞争的随机接入,可以节省PDCCH的开销,减少随机接入时机之前PDCCH的检测。
可理解,如果第一消息和第二消息是不同的RRC信令,第二消息中包括随机接入时机,第一消息配置的测量窗口与第二消息包括的随机接入时机仍然对应(或绑定),并且该随机接入时机的起始位置相对于该测量窗口的起始位置的偏移仍然在预设范围内。可选的,测量窗口可以通过以下至少两项确定:测量窗口的起始位置,测量窗口的结束位置,测量窗口的长度。同理,随机接入时机也可以通过以下至少两项确定:随机接入时机的起始位置,随机接入时机的结束位置,随机接入时机的长度。
可选的,第二通信装置通过RRC信令为第一通信装置配置随机接入时机(RO)后,当第二通信装置想要调度第一通信装置进行非竞争的随机接入时,可以向第一通信装置发送介质接入控制(medium access control,MAC)控制元素(control element,CE)信令,该MAC CE信令用于激活RRC信令配置的随机接入时机(RO)。可理解,如果RRC信令配置的随机接入时机(RO)有多个,MAC CE信令可以激活其中的一个,比如激活MAC CE信令结束位置后的第一个RO;也可以激活与MAC CE信令结束位置后的第一个测量窗口绑定(或对应)的全部RO;还可以激活RRC信令配置的所有RO,本申请实施例不限制。相应的,第一通信装置可以在MAC CE信令激活的随机接入时机(RO)内发起非竞争的随机接入。
另一种可能的实现方式中,上述第一消息可以是RRC信令或MAC CE信令,上述第二消息可以是MAC CE信令。可理解,当第一消息是MAC CE信令时,第一消息和第二消息可以是同一个MAC CE信令,也可以是不同的MAC CE信令,本申请实施例不做限制。第二通信装置通过第一消息为第一通信装置配置GNSS信号的测量窗口的实现方式,参见前述图4所示实施例中步骤S101的描述,这里不一一详述。第二通信装置可以向第一通信装置发送MAC CE信令(这里是第二消息),该MAC CE信令可以用于配置随机接入时机。该MAC CE信令配置的随机接入时机和该RRC信令配置的测量窗口仍然满足:该随机接入时机的起始位置相对于该测量窗口的起始位置的偏移在预设范围内。可理解,现有标准中终端设备接收到MAC CE信令后会发送一个反馈,在反馈后的第k个时隙MAC CE信令生效,所以该随机接入时机的起始位置可以是该MAC CE信令的生效位置。
在一种可能的实现方式中,图7所示的通信方法还可以包括步骤S204a或者步骤S204b。
S204a,第一通信装置在该随机接入时机内发送preamble码。
S204b,第一通信装置在该测量窗口内进行GNSS信号的测量。
可选的,第一通信装置确定出随机接入时机后,可以在该随机接入时机内发起非竞争的随机接入,比 如在该随机接入时机内发送preamble码,并且在该随机接入时机对应(或绑定)的测量窗口内不启动GNSS模块进行GNSS定位,也就是不进行GNSS信号的测量。换句话说,当第二通信装置(即网络侧)通过RRC信令配置了随机接入时机(RO),例如在RRC信令中配置了随机接入时机的起始位置相对于测量窗口的起始位置的offset,说明第一通信装置(即终端侧)需要进行非竞争的随机接入;那么第一通信装置接收到这个RRC信令之后,可以在该RRC信令配置的随机接入时机内发送preamble码来发起非竞争的随机接入。可理解,如果一个测量窗口对应(或绑定)多个随机接入时机,则第一通信装置可以选择其中一个随机接入时机进行preamble码的发送。还可理解,如果网络侧没有配置随机接入时机(RO)则终端侧不需要进行非竞争的随机接入,此时第一通信装置只能进行GNSS信号的测量。需要说明的是,本申请实施例关注网络侧配置了随机接入时机(RO)的情况。
可选的,第一通信装置确定出随机接入时机后,可以自己决定是在该随机接入时机内发起非竞争的随机接入,还是在相应的测量窗口进行GNSS信号的测量;然后进行相应操作,这里不一一详述。换句话说,在第二通信装置(即网络侧)配置了随机接入时机(RO)的情况下,第一通信装置(即终端侧)可以自己来选择发起非竞争随机接入还是进行GNSS信号的测量。如果第一通信装置选择在测量窗口内进行GNSS信号的测量,当第一通信装置完成测量后,可以向第二通信装置发送第五消息,用于通知已完成GNSS信号的测量。
举例来说,参见图8a,图8a是本申请实施例提供的通信方法的另一种时序示意图。其中,以随机接入时机在测量窗口内,且一个测量窗口绑定(对应)一个随机接入时机为例。如图8a所示,第二通信装置通过RRC信令为第一通信装置配置GNSS信号的测量窗口(图8a中用GNSS window表示)和随机接入时机(图8a中用RO表示)。第一通信装置选择在从左到右的第一个测量窗口内进行GNSS信号的测量,并且在该第一个测量窗口内不监听PDCCH。这时,可以理解为与该第一个测量窗口绑定(或对应)的随机接入时机所对应的资源已经被释放。第一通信装置选择在从左到右的第二个测量窗口绑定(或对应)的随机接入时机(RO)内发起非竞争的随机接入,并在该第二个测量窗口内不进行GNSS信号的测量。换句话说,该第二个测量窗口不再用于进行GNSS信号的测量,而是用于第一通信装置监听后续数据的调度,如图8a中随机接入时机(RO)后的PDCCH;也可以理解为该第二个测量窗口对应的资源被释放,也就是说第一通信装置可以在该第二个测量窗口对应的资源上监听PDCCH。第一通信装置选择在从左到右的第三个测量窗口内进行GNSS信号的测量,并且在该第三个测量窗口内不监听PDCCH。
应理解,图8a示出的测量窗口和随机接入时机可以是周期性的,也可以是非周期性,如果是非周期性的,则图8a示出的3个测量窗口和3个随机接入时机可以通过3个RRC信令配置。还可理解,图8a仅示出了部分测量窗口和部分随时接入时机,在实际应用中可以多于或少于图8a示出的测量窗口数量和随机接入时机数量。
再举例来说,参见图8b,图8b是本申请实施例提供的通信方法的又一种时序示意图。其中以随机接入时机在测量窗口内为例。如图8b所示,第二通信装置通过RRC信令1为第一通信装置配置GNSS信号的测量窗口1(图8b中用GNSS window 1表示),通过RRC信令2为第一通信装置配置GNSS信号的测量窗口2(图8b中的GNSS window 2)和随机接入时机(图8b中用RO表示)。第一通信装置在测量窗口1内进行GNSS信号的测量,并且在该测量窗口1内不监听PDCCH。第一通信装置在与测量窗口2绑定(或对应)的随机接入时机内进行发起非竞争的随机接入,并在该测量窗口2内不进行GNSS信号的测量。
可理解,步骤S204a和步骤S204b可以不是同时存在的,换句话说,步骤S204a和步骤S204b可以择一执行,也就是说,如果执行步骤S204a,则不执行步骤S204b;如果执行步骤S204b,则不执行步骤S204a。在一些场景中,如果测量窗口与其绑定(或对应)的随机接入时机不存在重叠,那么步骤S204a和步骤S204b可以同时存在。例如,随机接入时机在测量窗口的起始位置之前,如果第一通信装置在该随机接入时机内发起的非竞争随机接入失败,为了减少上行失步的可能,第一通信装置仍然可以在该测量窗口内进行GNSS信号的测量。当然,如果第一通信装置在该随机接入时机内发起的非竞争随机接入成功,则第一通信装置无需再在该测量窗口内进行GNSS信号的测量。
S205,第二通信装置在该随机接入时机内检测preamble码。
在一种可能的实现方式中,图7所示的通信方法还可以包括步骤S206和步骤S207。
S206,若第二通信装置在该随机接入时机内检测到preamble码,第二通信装置向第一通信装置发送随机接入响应消息,该随机接入响应消息包括指示信息,用于指示TA的值是正值还是负值。
S207,若第二通信装置在该随机接入时机内未检测到preamble码,且也没有接收到来自第一通信装置的第五消息,第二通信装置在该测量窗口结束后发送用于触发非竞争随机接入的PDCCH,该PDCCH指 示随机接入时机。可理解,该PDCCH指示的随机接入时机与根据前述第二消息确定的随机接入时机不相同。
可选的,本申请实施例中步骤S205至步骤S207的实现方式,可以参考前述图4所示实施例中步骤S105至步骤S107的实现方式,这里不赘述。
本申请实施例中,第二通信装置通过第一消息为第一通信装置配置GNSS信号的测量窗口和随机接入时机(RO),且该随机接入时机与该测量窗口绑定(或对应);第一通信装置接收到该RRC信令后,在RO内发起非竞争的随机接入,而不在测量窗口内进行GNSS信号的测量。这样,既可以用非竞争的随机接入代替GNSS信号的测量,使第一通信装置与第二通信装置长时间保持同步,减少GNSS信号测量所带来的功耗,减少GNSS信号测量的次数和降低复杂度;还可以减少PDCCH的开销。
一个可选实施例中,在第一通信装置的能力不受限的情况下,考虑到第一通信装置进行GNSS信号测量的功耗较大且复杂度较高;本申请还提供一种通信方法,既可以使第一通信装置与第二通信装置长时间同步,也可以减少第一通信装置的功耗和降低复杂度。具体的,第一通信装置向第二通信装置上报GNSS信息的有效时长,如果第二通信装置根据该GNSS信息的有效时长发现该GNSS信息已经失效,且通过非竞争随机接入可以补偿第一通信装置的TA误差,则第二通信装置可以向第一通信装置发送用于触发非竞争随机接入的PDCCH,该PDCCH指示随机接入时机;第一通信装置在该随机接入时机内发起非竞争的随机接入。可理解,第一通信装置进行非竞争随机接入的功耗低于进行GNSS信号测量的功耗。
本申请中,除特殊说明外,各个实施例或实现方式之间相同或相似的部分可以互相参考。在本申请中各个实施例、以及各实施例中的各个实施方式/实施方法/实现方法中,如果没有特殊说明以及逻辑冲突,不同的实施例之间、以及各实施例中的各个实施方式/实施方法/实现方法之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例、以及各实施例中的各个实施方式/实施方法/实现方法中的技术特征根据其内在的逻辑关系可以组合形成新的实施例、实施方式、实施方法、或实现方法。
上述内容详细阐述了本申请提供的方法,为了便于实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图9至图11详细描述本申请实施例的通信装置。
参见图9,图9是本申请实施例提供的通信装置的一结构示意图。如图9所示,该通信装置包括收发单元10和处理单元20。
在本申请的一些实施例中,该通信装置可以是上文示出的第一通信装置,如该第一通信装置可以包括终端设备或芯片等。即图9所示的通信装置可以用于执行上文方法实施例中由第一通信装置执行的步骤或功能等。
收发单元10,用于接收来自第二通信装置的第一消息和第二消息;处理单元20,用于根据该第二消息确定随机接入时机。其中,关于第一消息和第二消息的具体说明可以参考上文所示的方法实施例(包括图4和图7),这里不再一一详述。
可选的,收发单元10,还用于在随机接入时机内发送preamble码。
可选的,收发单元10,还用于接收来自第二通信装置的随机接入响应消息,该随机接入响应消息包括指示信息,该指示信息用于指示TA的值是正值还是负值。
可选的,收发单元10,还用于接收来自第二通信装置的第三消息,该第三消息用于通知第一通信装置进行GNSS信号的测量;处理单元20,还用于在该测量窗口内进行GNSS信号的测量。
可选的,收发单元10,还用于接收来自第二通信装置的第三消息,该第三消息用于通知第一通信装置进行GNSS信号的测量;处理单元20,还用于重新确定该测量窗口的起始位置和/或结束位置,并在重新确定的测量窗口内进行GNSS信号的测量。
可选的,收发单元10,还用于向第二通信装置发送第四消息,该第四消息用于指示第一通信装置进行GNSS信号测量所需的测量时长和GNSS信息的有效时长;该测量时长用于确定该测量窗口的长度,该GNSS信息的有效时长用于确定该测量窗口的起始位置。
本申请实施例中,关于第三消息、第四消息、随机接入响应消息等的具体说明可以参考上文所示的方 法实施例(包括图4和图7),这里不再一一详述。
可以理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
复用图9,在本申请的另一些实施例中,该通信装置可以是上文示出的第二通信装置或其中的芯片。即图9所示的通信装置可以用于执行上文方法实施例中由第二通信装置执行的步骤或功能等。
收发单元10,用于向第一通信装置发送第一消息和第二消息;处理单元20,用于在随机接入时机内检测preamble码。其中,关于第一消息和第二消息的具体说明可以参考上文所示的方法实施例(包括图4和图7),这里不再一一详述。
可选的,收发单元10,还用于在该随机接入时机内检测到preamble码时,向第一通信装置发送随机接入响应消息,该随机接入响应消息包括指示信息,该指示信息用于指示TA的值是正值还是负值。
可选的,收发单元10,还用于在该随机接入时机内检测到preamble码时,向第一通信装置发送第三消息,该第三消息用于通知第一通信装置进行GNSS信号的测量。
可选的,收发单元10,还用于在该随机接入时机内未检测到preamble码,且未接收到来自该第一通信装置的第五消息时,在该测量窗口结束后重新发送用于触发非竞争随机接入的PDCCH,该第五消息用于通知已完成GNSS信号的测量。
可选的,收发单元10,还用于接收来自第一通信装置的第四消息,该第四消息用于指示第一通信装置进行GNSS信号测量所需的测量时长和GNSS信息的有效时长;该测量时长用于确定该测量窗口的长度,该GNSS信息的有效时长用于确定该测量窗口的起始位置。
本申请实施例中,关于第三消息、第四消息、第五消息、以及随机接入响应消息等的具体说明可以参考上文所示的方法实施例(包括图4和图7),这里不再一一详述。
可以理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。
以上介绍了本申请实施例的通信装置,以下介绍通信装置可能的产品形态。应理解,但凡具备上述图9所述的通信装置的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的通信装置的产品形态仅限于此。
在一种可能的实现方式中,图9所示的通信装置中,处理单元20可以是一个或多个处理器,收发单元10可以是收发器,或者收发单元10还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。在执行上述方法的过程中,上述方法中有关发送信息的过程,可以理解为由处理器输出上述信息的过程。在输出上述信息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,上述方法中有关接收信息的过程,可以理解为处理器接收输入的上述信息的过程。处理器接收输入的信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
参见图10,图10是本申请实施例提供的通信装置1000的结构示意图。该通信装置1000可以为第一通信装置或第二通信装置,或其中的芯片。图10仅示出了通信装置1000的主要部件。除处理器1001和收发器1002之外,所述通信装置还可以进一步包括存储器1003、以及输入输出装置(图未示意)。
处理器1001主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1003主要用于存储软件程序和数据。收发器1002可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1001可以读取存储器1003中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1001对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1001,处理器1001将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场 景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
收发器1002可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
其中,处理器1001、收发器1002、以及存储器1003可以通过通信总线连接。
示例性的,当该通信装置用于执行上述第一通信装置执行的步骤或方法或功能时,收发器1002用于接收第一消息和第二消息;处理器1001用于根据该第二消息确定随机接入时机。
示例性的,当该通信装置用于执行上述第二通信装置执行的步骤或方法或功能时,收发器1002用于发送第一消息和第二消息;处理器1001用于在随机接入时机内检测preamble码。
本申请实施例中,关于第一消息、第二消息、随机接入时机、第一通信装置、第二通信装置等的说明可以参考上文方法实施例(包括图4和图7)中的介绍,这里不再一一详述。可理解,对于处理器和收发器的具体说明还可以参考图9所示的处理单元和收发单元的介绍,这里不再赘述。
可选的,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
可选的,处理器1001可以存有指令,该指令可为计算机程序,计算机程序在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、无线射频集成电路(radio frequency integrated circuit,RFIC)、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
可理解,本申请实施例示出的通信装置还可以具有比图10更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参考上文方法实施例的介绍。
在另一种可能的实现方式中,图9所示的通信装置中,处理单元20可以是一个或多个逻辑电路,收发单元10可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元10还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。参见图11,图11是本申请实施例提供的通信装置的另一结构示意图。如图11所示,图11所示的通信装置包括逻辑电路901和接口902。即上述处理单元20可以用逻辑电路901实现,收发单元10可以用接口902实现。其中,该逻辑电路901可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口902可以为通信接口、输入输出接口、管脚等。示例性的,图11是以上述通信装置为芯片为例示出的,该芯片包括逻辑电路901和接口902。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述第一通信装置执行的方法或功能或步骤时,接口902用于输入第一消息和第二消息;逻辑电路901用于根据该第二消息确定随机接入时机。
示例性的,当该通信装置用于执行上述第二通信装置执行的步骤或方法或功能时,接口902用于输出第一消息和第二消息;逻辑电路901用于在随机接入时机内检测preamble码。
本申请实施例中,关于第一消息、第二消息、随机接入时机、第一通信装置、第二通信装置等的说明可以参考上文方法实施例(包括图4和图7)中的介绍,这里不再详述。可理解,对于逻辑电路901和接口902的具体说明还可以参考图9所示的处理单元和收发单元的介绍,这里不再赘述。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
对于图11所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括第一通信装置和第二通信装置,该第一通信装置和该第二通信装置可以用于执行前述任一实施例(图4或图7)中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第一通信装置执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由第二通信装置执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第一通信装置执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由第二通信装置执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置接收来自第二通信装置的第一消息,所述第一消息用于为所述第一通信装置配置全球导航卫星系统GNSS信号的测量窗口,所述测量窗口用于所述第一通信装置进行GNSS信号的测量;
    所述第一通信装置接收来自所述第二通信装置的第二消息,所述第二消息为无线资源控制RRC信令或物理下行控制信道PDCCH;
    所述第一通信装置根据所述第二消息确定随机接入时机;
    其中,所述随机接入时机的起始位置相对于所述测量窗口的起始位置的偏移在预设范围内。
  2. 根据权利要求1所述的方法,其特征在于,所述随机接入时机的起始位置相对于所述测量窗口的起始位置的偏移在预设范围内,包括:所述随机接入时机在所述测量窗口内。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二消息包括随机接入时机。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一通信装置在所述测量窗口内不进行GNSS信号的测量。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一通信装置根据所述第二消息确定随机接入时机之后,所述方法还包括:
    所述第一通信装置在所述随机接入时机内发送前导preamble码。
  6. 根据权利要求5所述的方法,其特征在于,所述第一通信装置在所述随机接入时机内发送前导preamble码之后,所述方法还包括:
    所述第一通信装置接收来自所述第二通信装置的随机接入响应消息,所述随机接入响应消息包括指示信息,所述指示信息用于指示定时提前量TA的值是正值还是负值。
  7. 根据权利要求5所述的方法,其特征在于,所述第一通信装置在所述随机接入时机内发送前导preamble码之后,所述方法还包括:
    所述第一通信装置接收来自所述第二通信装置的第三消息,所述第三消息用于通知所述第一通信装置进行GNSS信号的测量;
    所述第一通信装置在所述测量窗口内进行GNSS信号的测量。
  8. 根据权利要求5所述的方法,其特征在于,所述第一通信装置在所述随机接入时机内发送前导preamble码之后,所述方法还包括:
    所述第一通信装置接收来自所述第二通信装置的第三消息,所述第三消息用于通知所述第一通信装置进行GNSS信号的测量;
    所述第一通信装置重新确定所述测量窗口的起始位置和/或结束位置,并在重新确定的测量窗口内进行GNSS信号的测量。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一通信装置接收来自第二通信装置的第一消息之前,所述方法还包括:
    第一通信装置向第二通信装置发送第四消息,所述第四消息用于指示所述第一通信装置进行GNSS信号测量所需的测量时长和GNSS信息的有效时长;
    所述测量时长用于确定所述测量窗口的长度,所述GNSS信息的有效时长用于确定所述测量窗口的起始位置。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一消息包括以下一项或多项:所述测量窗口的起始位置,所述测量窗口的结束位置,所述测量窗口的长度,或测量周期。
  11. 一种通信方法,其特征在于,包括:
    第二通信装置向第一通信装置发送第一消息,所述第一消息用于为所述第一通信装置配置全球导航卫星系统GNSS信号的测量窗口,所述测量窗口用于所述第一通信装置进行GNSS信号的测量;
    所述第二通信装置向所述第一通信装置发送第二消息,所述第二消息为无线资源控制RRC信令或物理下行控制信道PDCCH,所述第二消息用于确定随机接入时机,所述随机接入时机的起始位置相对于所述测量窗口的起始位置的偏移在预设范围内;
    所述第二通信装置在所述随机接入时机内检测前导preamble码。
  12. 根据权利要求11所述的方法,其特征在于,所述随机接入时机的起始位置相对于所述测量窗口的起始位置的偏移在预设范围内,包括:所述随机接入时机在所述测量窗口内。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二消息包括随机接入时机。
  14. 根据权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二通信装置在所述随机接入时机内检测到preamble码,所述第二通信装置向所述第一通信装置发送随机接入响应消息,所述随机接入响应消息包括指示信息,所述指示信息用于指示定时提前量TA的值是正值还是负值。
  15. 根据权利要求11至13中任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二通信装置在所述随机接入时机内检测到preamble码,所述第二通信装置向所述第一通信装置发送第三消息,所述第三消息用于通知所述第一通信装置进行GNSS信号的测量。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,所述方法还包括:
    若所述第二通信装置在所述随机接入时机内未检测到preamble码,且未接收到来自所述第一通信装置的第五消息,所述第二通信装置在所述测量窗口结束后重新发送用于触发非竞争随机接入的PDCCH,所述第五消息用于通知已完成GNSS信号的测量。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述第二通信装置向第一通信装置发送第一消息之前,所述方法还包括:
    第二通信装置接收来自第一通信装置的第四消息,所述第四消息用于指示所述第一通信装置进行GNSS信号测量所需的测量时长和GNSS信息的有效时长;
    所述测量时长用于确定所述测量窗口的长度,所述GNSS信息的有效时长用于确定所述测量窗口的起始位置。
  18. 根据权利要求11至17中任一项所述的方法,其特征在于,所述第一消息包括以下一项或多项:所述测量窗口的起始位置,所述测量窗口的结束位置,所述测量窗口的长度,或测量周期。
  19. 一种通信装置,其特征在于,包括用于执行权利要求1至18中任一项所述的方法的模块或单元。
  20. 一种通信装置,其特征在于,包括处理器和存储器;
    所述存储器用于存储指令;
    所述处理器用于执行所述指令,以使权利要求1至18中任一项所述的方法被执行。
  21. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和所述接口耦合;
    所述接口用于输入待处理的数据,所述逻辑电路按照如权利要求1至18中任一项所述的方法对所述待处理的数据进行处理,获得处理后的数据,所述接口用于输出所述处理后的数据。
  22. 一种通信系统,其特征在于,包括:用于执行权利要求1至10中任一项所述方法的第一通信装置, 和用于执行权利要求11至18中任一项所述方法的第二通信装置。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1至18中任一项所述的方法被执行。
PCT/CN2023/116754 2022-09-28 2023-09-04 通信方法及装置 WO2024066934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211192764.6A CN117858267A (zh) 2022-09-28 2022-09-28 通信方法及装置
CN202211192764.6 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024066934A1 true WO2024066934A1 (zh) 2024-04-04

Family

ID=90476097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116754 WO2024066934A1 (zh) 2022-09-28 2023-09-04 通信方法及装置

Country Status (2)

Country Link
CN (1) CN117858267A (zh)
WO (1) WO2024066934A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853827A (zh) * 2019-05-13 2021-12-28 松下电器(美国)知识产权公司 发送装置、接收装置、发送方法及接收方法
WO2022079692A1 (en) * 2020-10-15 2022-04-21 Lenovo (Singapore) Pte. Ltd. Random access procedure in a non-terrestrial network
WO2022154456A1 (ko) * 2021-01-14 2022-07-21 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113853827A (zh) * 2019-05-13 2021-12-28 松下电器(美国)知识产权公司 发送装置、接收装置、发送方法及接收方法
WO2022079692A1 (en) * 2020-10-15 2022-04-21 Lenovo (Singapore) Pte. Ltd. Random access procedure in a non-terrestrial network
WO2022154456A1 (ko) * 2021-01-14 2022-07-21 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SPREADTRUM COMMUNICATIONS: "Discussion on Random Access in NTN", 3GPP DRAFT; R2-2100663, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051973784 *

Also Published As

Publication number Publication date
CN117858267A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US11979222B2 (en) Systems and methods for timing adaptation for satellite communications
EP3965315A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
CN115280841A (zh) 一种释放上行资源的方法、终端设备、网络设备
CN116018873A (zh) 信道占用时间共享的方法及设备节点
US20240196348A1 (en) Uplink signal synchronization method and communication apparatus
CN116097899A (zh) 确定上行传输时域资源的方法、终端设备及网络设备
WO2023279308A1 (zh) 确定drx激活期的方法及终端设备
WO2024174143A1 (zh) Gnss测量方法、装置
EP4395429A1 (en) Satellite communication method and apparatus
WO2024066934A1 (zh) 通信方法及装置
WO2023020367A1 (zh) 一种数据传输方法及相关装置
WO2021217615A1 (zh) 无线通信方法、终端设备和网络设备
CN116326189A (zh) 公共信息的广播方法、装置、设备及介质
WO2024199334A1 (zh) 卫星通信方法及装置
WO2023077328A1 (zh) Ntn中终端设备上报定时提前的方法、终端设备及存储介质
US20240356632A1 (en) Electronic apparatus, wireless communication method and computer-readable medium
WO2023130365A1 (zh) 恢复上行同步的方法、终端设备及存储介质
WO2023010586A1 (zh) 无线通信方法、终端设备和网络设备
WO2024027739A1 (zh) 一种通信方法及装置
WO2024174059A1 (zh) 用于侧行通信的方法、终端设备及网络设备
US20240322950A1 (en) Communication method and apparatus, device, chip, storage medium, product and program
WO2024092456A1 (zh) 位置测量方法、定时器维护方法和设备
WO2022205482A1 (zh) 无线通信方法和终端设备
US20230179345A1 (en) Wireless communication method, terminal device, and network device
WO2024153125A1 (zh) 确定终端设备的位置的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870174

Country of ref document: EP

Kind code of ref document: A1