WO2024066671A1 - 摄像头和电子装置 - Google Patents

摄像头和电子装置 Download PDF

Info

Publication number
WO2024066671A1
WO2024066671A1 PCT/CN2023/107314 CN2023107314W WO2024066671A1 WO 2024066671 A1 WO2024066671 A1 WO 2024066671A1 CN 2023107314 W CN2023107314 W CN 2023107314W WO 2024066671 A1 WO2024066671 A1 WO 2024066671A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
filter
light
camera
optical axis
Prior art date
Application number
PCT/CN2023/107314
Other languages
English (en)
French (fr)
Inventor
王文涛
韦怡
陈嘉伟
李响
于盼
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024066671A1 publication Critical patent/WO2024066671A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly

Definitions

  • the present application relates to the technical field of electronic equipment, and in particular to a camera and an electronic device.
  • mobile phones and other electronic devices are equipped with microscopic imaging modules.
  • a uniform light source is emitted as fill light through the light guide column in the microscopic imaging module.
  • the light source reflected by the object passes through the cover glass and enters the lens, and then passes through an infrared filter to filter the infrared light and transmit it to the imaging sensor.
  • the present application provides a camera and an electronic device to improve the imaging spectral range of the camera.
  • an embodiment of the present application provides a camera, comprising a lens, an image sensor, a first filter and a second filter; the image sensor is arranged on the image side of the lens; the first filter is arranged on the optical axis of the lens, and the first filter can allow ultraviolet light and visible light to pass through; the second filter can allow ultraviolet light to pass through, and the second filter can move to be located on the optical axis of the lens or deviate from the optical axis of the lens.
  • an embodiment of the present application provides an electronic device, comprising a camera, wherein the camera comprises a lens, an image sensor, a first filter and a second filter; the image sensor is arranged on the image side of the lens; the first filter is arranged on the optical axis of the lens, and the first filter can allow ultraviolet light and visible light to pass through; the second filter can allow ultraviolet light to pass through, and the second filter can move to a position on the optical axis of the lens or deviate from the optical axis of the lens.
  • FIG1 is a schematic diagram of the structure decomposition of a camera according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the structure of a camera in an embodiment of the present application where the second filter is located on the optical axis of the lens;
  • FIG3 is a schematic diagram of a structure in which a second optical filter of a camera according to an embodiment of the present application deviates from the optical axis of the lens;
  • FIG4 is a schematic diagram of the wavelength and transmittance of light passing through a short-wave infrared cutoff filter in the related art
  • FIG. 5 is a schematic diagram of the wavelength and transmittance of light passing through the first optical filter according to an embodiment of the present application
  • FIG6 is a schematic diagram of the wavelength and transmittance of light passing through the first optical filter using a dual-channel according to an embodiment of the present application
  • FIG7 is a schematic structural diagram of a camera at a certain viewing angle according to an embodiment of the present application.
  • FIG8 is a distribution diagram of image intensity obtained when the camera of the embodiment of the present application turns on the fill light
  • FIG9 is a diagram showing the illumination spectrum of the camera fill light when the visible light and ultraviolet light are turned on in the embodiment of the present application.
  • FIG10 is a diagram showing the illumination spectrum of the camera when the fill light of the camera according to the embodiment of the present application is turned on with ultraviolet light;
  • FIG11 is a plan view of a camera in a first mode according to an embodiment of the present application.
  • FIG12 is a plan view of a camera in a second mode according to an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
  • FIG14 is an image of an electronic device according to an embodiment of the present application performing visible light microscopic photography in a first mode through a camera;
  • FIG15 is an image of an electronic device according to an embodiment of the present application performing a first mode of hyperspectral microscopy photography through a camera;
  • FIG16 is an image of the electronic device according to an embodiment of the present application performing fluorescence microscopy photography in a first mode through a camera;
  • FIG17 is a visible light imaging picture of a human face taken by a camera of an electronic device in a first mode according to an embodiment of the present application;
  • FIG. 18 is an ultraviolet imaging picture of a human face taken by a camera of the electronic device in the first mode according to an embodiment of the present application.
  • Figure 1 is a schematic diagram of the structural decomposition of the camera of the embodiment of the present application.
  • Figure 2 is a schematic diagram of the structure in which the second filter of the camera of the embodiment of the present application is located on the optical axis of the lens.
  • Figure 3 is a schematic diagram of the structure in which the second filter of the camera of the embodiment of the present application deviates from the optical axis of the lens.
  • the camera 100 of the embodiment of the present application includes a lens 10, an image sensor 20, a first filter 30 and a second filter 40; the image sensor 20 is arranged on the image side of the lens 10; the first filter 30 is arranged on the optical axis 101 of the lens 10, and the first filter 30 can allow ultraviolet light and visible light to pass through; the second filter 40 can allow ultraviolet light to pass through, and the second filter 40 can move to be located on the optical axis 101 of the lens 10 or move away from the optical axis 101 of the lens 10.
  • the camera 100 of the embodiment of the present application is provided with a first filter 30 capable of allowing ultraviolet light and visible light to pass through, and a second filter 40 capable of allowing ultraviolet light to pass through.
  • a first filter 30 capable of allowing ultraviolet light and visible light to pass through
  • a second filter 40 capable of allowing ultraviolet light to pass through.
  • the lens 10 may be located on a side of the camera 100 close to the photographed object.
  • the image sensor 20 may be arranged at an end of the lens 10 away from the photographed object and connected to the flexible circuit board, that is, the image sensor 20 is located on the side of the lens 10 for imaging.
  • a lens 11 may be arranged on the lens 10, and the lens 11 may be used to converge the light reflected by the object.
  • the number of lenses 11 may be multiple, and multiple lenses 11 may form a lens group.
  • the first filter 30 may be arranged on the optical axis 101 of the lens 10 and may be located on a side of the lens 10 close to the image sensor 20.
  • the optical axis 101 of the lens 10 may be the central axis of the lens 10 through which the light passes.
  • the first filter 30 may be arranged on a bracket 12 in the lens 10, and the bracket 12 may be close to one side of the image sensor 20.
  • the first filter 30 may be an infrared cutoff filter, which can be used to cut off infrared light reflected by an object and entering the lens 10 , as well as other light except ultraviolet light and visible light.
  • the second filter 40 may also be an infrared cutoff filter, and the second filter 40 may filter the light other than ultraviolet rays reflected by the object and entering the lens 10.
  • the second filter 40 may be located on the optical axis 101 of the lens 10, and may be arranged on the optical axis of the lens 10 between the first filter 30 and the lens 11.
  • the second filter 40 may also move relative to the optical axis 101 of the lens 10 so that the second filter 40 deviates from the optical axis 101 of the lens 10 relative to the lens 10.
  • the first filter 30 and the second filter 40 can work together to make the light reflected by the object enter the lens 10 and be filtered into ultraviolet light before entering the image sensor 20 for imaging.
  • the hyperspectral can be understood as a spectrum larger than the visible light range.
  • the first filter 30 is continuous in both the ultraviolet light bandpass and the visible light bandpass; or,
  • the first optical filter 30 is discontinuous in the ultraviolet light band and continuous in the visible light band.
  • the first optical filter 30 can have an ultraviolet light channel and a visible light channel by using a continuous bandpass band or a discontinuous bandpass band.
  • the first filter 30 can be a filter having a continuous bandpass band of ultraviolet light and visible light formed by improving a short-wave infrared cutoff filter having a filtering range of 400nm-700nm. It can be understood that the first filter 30 can continuously transition between the ultraviolet light and visible light bands, that is, the filtering range is a continuous and uninterrupted band.
  • Figure 4 is a schematic diagram of the wavelength and transmittance of the light passing through the short-wave infrared cutoff filter in the related art
  • Figure 5 is a schematic diagram of the wavelength and transmittance of the light passing through the first filter in the embodiment of the present application.
  • the wavelength and transmittance of the light passing through the short-wave infrared cutoff filter can be shown in Figure 4.
  • the light passing through the first filter 30 can extend the filtering range to the ultra-spectral range, such as 360nm-700nm, and the wavelength and transmittance of the light passing through the first filter 30 can be shown in Figure 5.
  • the first optical filter 30 may also adopt a dual-channel short infrared cutoff filter, which may have an ultraviolet bandpass band and a visible light bandpass band, and the ultraviolet bandpass band is discontinuous.
  • FIG. 6 is a schematic diagram of the wavelength and transmittance of the light passing through the dual-channel first optical filter in the embodiment of the present application. As shown in FIG. 6, the horizontal axis is the wavelength of the light, and the vertical axis is the transmittance of the light.
  • the ultraviolet bandpass band between 300nm-400nm is discontinuous, and it is continuous outside the visible light bandpass band between 400nm-700nm.
  • the first filter 30 allows light to pass through a wavelength range of 360 nm to 700 nm.
  • the wavelength band of light allowed to pass through by the first filter 30 is 360nm-700nm, which can meet the needs of the camera 100 for hyperspectral imaging.
  • the first filter 30 allows visible light with a wavelength of 360nm-700nm in the light reflected by the object to the lens 10 to pass through, while cutting off light with other wavelengths.
  • the second optical filter 40 when the second optical filter 40 is located on the optical axis 101 of the lens 10 , the second optical filter 40 is located on the object side of the lens 10 .
  • the second filter 40 when the second filter 40 is on the optical axis 101 of the lens 10 and located on the object side of the lens 10 , it can filter the light reflected by the object before entering the image sensor 20 of the camera 100 .
  • the second filter 40 can be disposed on the object side of the lens 10, the second filter 40 can be disposed between the lens 11 and the first filter 30, and the second filter 40 is coaxially disposed with the lens 11 and located on the optical axis 101 of the lens 10.
  • the second filter 40 can cover the light-incoming area of the optical axis 101 of the lens 10.
  • the second filter 40 allows light to pass through a wavelength band of 360 nm to 380 nm.
  • the wavelength band of light allowed to pass through by the second filter 40 is 360nm-380nm, which can meet the needs of the camera 100 for ultraviolet imaging.
  • the second filter 40 allows ultraviolet light with a wavelength of 360nm-380nm to pass through, and cuts off light with other wavelengths.
  • the camera 100 includes a driving component 50 connected to the second filter 40, and the driving component 50 is used to drive the second filter 40 to rotate around a rotation axis 511 to move between being on the optical axis 101 of the lens 10 and deviating from the optical axis 101 of the lens 10.
  • the rotation axis 511 is parallel to the optical axis 101 of the lens.
  • the drive component 50 can be used to drive the second filter 40 on the optical axis 101 of the lens 10 or away from the optical axis 101 of the lens 10, so that the camera 100 can adjust and switch the light entering the lens 10 to filter different wavelength bands.
  • the driving component 50 can drive the second optical filter 40 through a piezoelectric motor, an electromagnetic motor or the like.
  • the driving component 50 can also include a rotating member 51, one end of which can be connected to the lens 10, and the other end of which can be connected to the second optical filter 40.
  • a magnet can be arranged on the rotating member 51, and the electromagnetic driver can be arranged on the lens 10.
  • the rotating member 51 can be rotated around a rotation axis 511 by driving the magnet through the electromagnetic driver.
  • the rotation axis 511 can be the center line of the rotation axis of the rotating member 51, and the rotation axis 511 is parallel to the optical axis 101 of the lens 10.
  • the rotation mode can be that the rotating member 51 moves along the rotation axis 511 of the rotating member 51 in parallel to the lens 10, thereby driving the second optical filter 40 to rotate horizontally, so that the second optical filter 40 is on the optical axis 101 of the lens 10, or moves away from the optical axis 101 of the lens 10.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or mutual communication; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or mutual communication; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • the camera 100 includes a fill light 60, which is used to fill light for the camera 100, and the fill light 60 can emit ultraviolet light and visible light.
  • the fill light 60 can improve the imaging effect of the camera 100 on the object by emitting visible light and ultraviolet light to fill in the object being photographed by the camera 100.
  • the fill light 60 can stimulate the object to produce ultraviolet reflection by emitting ultraviolet light in cooperation with the second filter 40, thereby enabling the camera 100 to achieve fluorescent imaging.
  • the fill light 60 can be arranged on the light guide structure 70 of the lens 10 on the camera 100, and the light guide structure 70 can be a ring structure with a through hole in the middle that matches the optical axis 101 of the lens 10.
  • the number of fill lights 60 can be two, and the two fill lights 60 can be arranged at the two side ends of the light guide structure 70.
  • the specifications of the fill lights 60 can be the same, and the type of the fill lights 60 can be a side light LED.
  • the fill light 60 can emit visible light alone or ultraviolet light alone, or it can emit visible light and ultraviolet light at the same time.
  • the function of the light guide structure 70 is to uniformly process the incident light of the fill light 60, so that the light emitted by the fill light 60 can be uniformly illuminated on the surface of the object photographed by the camera 100.
  • Figure 8 is an image intensity distribution diagram obtained by the camera of the embodiment of the present application when the fill light is turned on. It can be seen from Figure 8 that under the uniform fill light of the fill light 60, the intensity of the image captured by the camera 100 is evenly distributed, and the intensity fluctuation is zero. It should be understood that the horizontal axis in FIG. 8 represents pixels, and the vertical axis represents pixel positions.
  • Figure 9 is a diagram of the illumination spectrum when the fill light of the camera in the embodiment of the present application is turned on with visible light and ultraviolet light
  • Figure 10 is a diagram of the illumination spectrum when the fill light of the camera in the embodiment of the present application is turned on with ultraviolet light.
  • the fill light 60 can emit ultraviolet light and visible light at the same time, and the illumination spectrum can be as shown in Figure 9, with intensity distribution only in a specific band and zero in other bands.
  • ultraviolet light is emitted alone, and the illumination spectrum can be as shown in Figure 10, with intensity distribution only in a specific band and zero in other bands.
  • the driving component 50 can drive the second filter 40 to the positive direction of the optical axis 101 of the lens 10 and filter the incident light reflected by the object photographed by the camera 100. Since the lens 10 also has a first filter 30, but the wavelength band of the first filter 30 for passing light is larger than that of the second filter 40, the wavelength band received by the final image sensor 20 is determined by the second filter 40. When the hyperspectral imaging is completed, the driving component 50 will drive the second filter 40 to deviate from the optical axis 101 of the lens 10.
  • the fill light 60 can emit ultraviolet light and visible light at the same time.
  • the illumination spectrum can be shown in FIG9 , with intensity distribution only in a specific band, and zero in other bands.
  • the hyperspectral light source After the hyperspectral light source is projected onto the surface of an object, it will stimulate the object to produce corresponding fluorescence. Due to the Stokes shift, the wavelength of the fluorescence is no longer a hyperspectral but a visible light wavelength.
  • the driving component 50 can drive the second filter 40 to deviate from the optical axis 101 of the lens 10. Since the lens 10 also has a first filter 30, the wavelength band of the first filter 30 for passing light is 360nm-700nm.
  • the final wavelength band received by the image sensor 20 is determined by the convolution of the fluorescent light source (wavelength band of 400-770nm) generated by the object and the light source (360nm-700nm) filtered by the first filter 30.
  • the absorption band is 400-700nm.
  • the image sensor 20 can well receive the ultra-spectral excited fluorescence emitted by the fill light 60 and avoid the influence of ultra-spectral reflected light.
  • the fill light 60 can emit visible light alone. There is an intensity distribution around 400nm-700nm, and the other bands are all zero.
  • the driving component 50 can drive the second filter 40 to deviate from the optical axis 101 of the lens 10. Since the lens 10 also has a first filter 30, the first filter 30 allows the light to pass through the band of 360nm-700nm.
  • the final band received by the image sensor 20 is determined by the convolution of the visible light source (band of 400-700nm) generated by the object and the light source (360nm-700nm) filtered by the first filter 30.
  • the absorption band is 400-700nm.
  • the image sensor 20 can well receive the visible light reflected by the object, thereby achieving clear imaging.
  • Figure 11 is a plan view of the camera in the first mode according to an embodiment of the present application
  • Figure 12 is a plan view of the camera in the second mode according to an embodiment of the present application.
  • the lens 10 has a first mode and a second mode
  • the lens 10 has a first focus object distance when in the first mode, and has a second focus object distance when in the second mode
  • the first focus object distance is smaller than the second focus object distance.
  • the lens 10 can shoot an object at a first focus distance through the first mode, and can shoot an object at a second focus distance through the second mode, which can improve the user's shooting needs when using the camera 100 in different focus distance scenarios.
  • the lens 11 or lens group in the lens 10 can be driven to move by a driving device such as a motor, so that the lens group can enable the lens 10 to switch between a first focus object distance and a second focus object distance, thereby switching the lens 10 between a first mode and a second mode.
  • a driving device such as a motor
  • the first focusing object distance is less than or equal to 10 mm, and/or the second focusing object distance is less than or equal to 50 mm.
  • the first focus object distance being less than or equal to 10 mm can enable the camera 100 to shoot with the object in a microscopic state
  • the second focus object distance being less than or equal to 50 mm can enable the camera 100 to shoot in a macro mode.
  • the first mode may be a first focusing distance D1 between the lens 10 and the object plane that is less than a microscopic distance of 10 mm, for example, D1 may be a microscopic distance of 5 mm, so that the object plane at a microscopic distance from the lens 10 can be clearly imaged on the image sensor 20 through the lens 10.
  • the second mode may be a second focusing distance D2 between the lens 10 and the object plane greater than 10 mm, for example, D2 may be a macro distance of 30 mm, so that an object at a macro distance from the lens 10 can be clearly imaged on the image sensor 20 through the lens 10.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of “plurality” is two or more, unless otherwise clearly and specifically defined.
  • FIG. 13 is a schematic diagram of the structure of an electronic device according to an embodiment of the present application.
  • An electronic device 1000 according to an embodiment of the present application includes a camera 100 according to any of the above embodiments.
  • the electronic device 1000 of the present application uses the camera 100 to acquire ultraviolet images and fluorescent images.
  • the electronic device 1000 can also be used to perform functions such as skin detection and authenticity identification, thereby improving the experience of taking photos with the electronic device 1000.
  • the electronic device 1000 may be a terminal device with a camera function.
  • the electronic device 1000 may include a smart phone, a tablet, a computer, a digital camera, or other terminal devices with a camera function.
  • the camera 100 may be set on the electronic device 1000, for example, a rear camera 100 of a mobile phone, a camera 100 of a digital camera, etc.
  • the camera 100 can realize fluorescence microscopic imaging, hyperspectral microscopic imaging and visible light microscopic imaging of the photographed object.
  • Figure 14 is an image of the electronic device of the embodiment of the present application performing visible light microscopic photography in the first mode through the camera. As shown in Figure 14, when the electronic device 1000 performs visible light microscopic imaging photography in the first mode through the camera 100, since the photographed object has no reflection to visible light, no effective information can be obtained.
  • FIG. 15 is an image of an electronic device according to an embodiment of the present application performing a first mode of hyperspectral microscopy photography through a camera.
  • the fill light 60 can emit visible light and ultraviolet light at the same time
  • the driving component 50 can drive the second filter 40 to be located on the optical axis 101 of the lens 10
  • the image sensor 20 can receive an ultraviolet image excited by the fill light 60 and reflected by an object;
  • FIG. 16 is an image of the electronic device of the embodiment of the present application performing fluorescence microscopy photography in the first mode through the camera.
  • the fill light 60 can emit visible light and ultraviolet light at the same time or emit ultraviolet light alone
  • the driving component 50 can drive the second filter 40 to be located on the optical axis 101 of the lens 10
  • the image sensor 20 can receive the fluorescence image reflected by the object excited by the fill light 60;
  • the electronic device 1000 can also be used to detect the deep layers of the skin through the camera 100. Please refer to Figures 17 and 18, where Figure 17 is a visible light imaging picture of a human face taken by the electronic device 1000 through the camera 100 in the first mode, and Figure 18 is an ultraviolet imaging picture of a human face taken by the electronic device 1000 through the camera 100 in the first mode. By comparison, the water and oil balance of the human face and other skin problems can be detected and analyzed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

一种摄像头和电子装置。摄像头包括镜头、图像传感器、第一滤光片和第二滤光片;图像传感器设置在镜头的像侧;第一滤光片设置在镜头的光轴上,第一滤光片能够使紫外线和可见光通过;第二滤光片能够使紫外线通过,第二滤光片能够运动至位于镜头的光轴上或偏离镜头的光轴。

Description

摄像头和电子装置
本申请要求于2022年9月27日提交中国专利局、申请号为202211185623.1、发明名称为“摄像头和电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种摄像头和电子装置。
背景技术
相关技术中,手机等电子装置搭载有显微成像模组,在显微成像模组靠近要拍摄的物体时,通过显微成像模组内的导光柱发射均匀的光源作为补光,被物体反射的光源经过盖板玻璃后进入镜头,然后经过红外滤光片把红外光进行滤波后传送到成像传感器上。
发明内容
本申请提供一种摄像头和电子装置,以提高摄像头的成像光谱范围。
第一方面,本申请实施例提供一种摄像头,包括镜头、图像传感器、第一滤光片和第二滤光片;所述图像传感器设置在所述镜头的像侧;所述第一滤光片设置在所述镜头的光轴上,所述第一滤光片能够使紫外线和可见光通过;所述第二滤光片能够使紫外线通过,所述第二滤光片能够运动至位于所述镜头的光轴上或偏离所述镜头的光轴之间运动。
第二方面,本申请实施例提供一种电子装置,包括摄像头,所述摄像头包括镜头、图像传感器、第一滤光片和第二滤光片;所述图像传感器设置在所述镜头的像侧;所述第一滤光片设置在所述镜头的光轴上,所述第一滤光片能够使紫外线和可见光通过;所述第二滤光片能够使紫外线通过,所述第二滤光片能够运动至位于所述镜头的光轴上或偏离所述镜头的光轴之间运动。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的摄像头的结构分解示意图;
图2是本申请实施方式的摄像头的第二滤光片位于镜头光轴上的结构示意图;
图3是本申请实施方式的摄像头的第二滤光片偏离镜头光轴的结构示意图;
图4是相关技术中的短波红外截止滤波片通过的光线的波长与透过率的示意图;
图5是本申请实施方式的第一滤光片通过的光线的波长与透过率的示意图;
图6是本申请实施方式的采用双通道的第一滤光片通过的光线的波长与透过率示意图;
图7是本申请实施方式的摄像头的某一视角的结构示意图;
图8是本申请实施方式的摄像头开启补光灯时拍摄得到的图像强度分布图;
图9是本申请实施方式的摄像头的补光灯开启可见光和紫外光时的照明光谱图;
图10是本申请实施方式的摄像头的补光灯开启紫外光时的照明光谱图;
图11是本申请实施方式的摄像头处于第一模式的平面示意图;
图12是本申请实施方式的摄像头处于第二模式的平面示意图;
图13是本申请实施方式的电子装置的结构示意图;
图14是本申请实施方式的电子装置通过摄像头进行第一模式的可见光显微拍摄的成像图;
图15是本申请实施方式的电子装置通过摄像头进行第一模式的超光谱显微拍摄的成像图;
图16是本申请实施方式的电子装置通过摄像头进行第一模式的荧光显微拍摄的成像图;
图17是本申请实施方式的电子装置通过摄像头在第一模式下拍摄的人脸的可见光成像图片;
图18是本申请实施方式的电子装置通过摄像头在第一模式下拍摄的人脸的紫外线成像图片。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1-图3,图1是本申请实施方式的摄像头的结构分解示意图,图2是本申请实施方式的摄像头的第二滤光片位于镜头光轴上的结构示意图,图3是本申请实施方式的摄像头的第二滤光片偏离镜头光轴的结构示意图。
本申请实施方式的摄像头100,包括镜头10、图像传感器20、第一滤光片30和第二滤光片40;图像传感器20设置在镜头10的像侧;第一滤光片30设置在镜头10的光轴101上,第一滤光片30能够使紫外线和可见光通过;第二滤光片40能够使紫外线通过,第二滤光片40能够运动至位于镜头10的光轴101上或偏离镜头10的光轴101之间运动。
本申请实施方式的摄像头100设置有能够使紫外线和可见光通过的第一滤光片30,和能够使紫外线通过的第二滤光片40,第二滤光片40在镜头10的光轴101外时,物体反射的光源中的紫外线与可见光均可经过滤波后进入图像传感器20,第二滤光片40在镜头10的光轴101上时,物体反射的光源中的紫外线可进入图像传感器20,从而提高摄像头100的成像光谱范围,实现超光谱成像。
具体地,在摄像头100中,镜头10可位于摄像头100靠近拍摄物体的一侧。图像传感器20可设置在镜头10远离拍摄物体的一端与柔性电路板连接,即图像传感器20位于镜头10用于成像的一侧。镜头10上可设置有镜片11,镜片11可用于汇聚物体反射的光线,镜片11的数量可以是多个,多个镜片11可以组成镜片组。第一滤光片30可设置在镜头10的光轴101上,并可位于镜头10靠近图像传感器20的一侧。镜头10的光轴101可以是镜头10通过光线的中心轴线。第一滤光片30可设置在镜头10内的支架12上,支架12可靠近图像传感器20一侧。
第一滤光片30可以是红外截止滤波片,可用于截止物体反射进入镜头10中的红外光等除紫外线和可见光之外的其他光线。
第二滤光片40也可以是红外截止滤波片,第二滤光片40可以将物体反射进入镜头10中的除紫外线以外的其他光线进行滤波。第二滤光片40可位于镜头10光轴101上,可设置在第一滤光片30与镜片11之间的镜头10的光路轴线上,第二滤光片40也可以相对镜头10的光轴101进行运动使得第二滤光片40相对镜头10偏离镜头10的光轴101。
可以理解,当第二滤光片40位于镜头10的光轴101上时,第一滤光片30与第二滤光片40可以共同作用使得物体反射的光线进入镜头10滤波为紫外线后进入图像传感器20进行成像。当需要进行超光谱成像时,超光谱可以理解为比可见光范围更大的光谱。调节第二滤光片40偏离镜头10的光轴101,物体反射的光线将被滤波为紫外线和可见光的进入图像传感器20成像。
在某些实施方式中,第一滤光片30在紫外线的带通波段和可见光的带通波段均连续;或,
第一滤光片30在紫外线的带通波段断续,在可见光的带通波段连续。
如此,第一滤光片30中采用连续的带通波段或者断续的带通波段均可使得第一滤光片30具有紫外线通道以及可见光通道。
具体地,第一滤光片30可以是将滤波范围为400nm-700nm的短波红外截止滤波片进行改进形成的具有紫外线与可见光的连续带通波段的滤光片。可以理解,第一滤光片30可以在紫外线与可见光的波段进行连续的过渡,即滤波范围是连续无间断的波段。
请参阅图4和图5,图4是相关技术中的短波红外截止滤波片通过的光线的波长与透过率的示意图,图5是本申请实施方式的第一滤光片通过的光线的波长与透过率的示意图。短波红外截止滤波片通过的光线的波长与透过率可如图4所示。第一滤光片30通过的光线经过多层沉积后可将滤波范围扩展至超光谱范围,例如360nm-700nm,第一滤光片30通过的光线的波长与透过率可如图5所示。
或者,第一滤光片30也可以采用双通道的短红外截止滤波片,双通道的短红外截止滤波片中可具有紫外线带通波段以及可见光带通波段,且紫外线带通波段为断续。请参阅图6,图6是本申请实施方式的采用双通道的第一滤光片通过的光线的波长与透过率示意图。如图6中所示,横坐标为光线波长,纵坐标为光线透过率,在300nm-400nm之间的紫外线带通波段为断续,在400nm-700nm之间的可见光带通波段外连续。
在某些实施方式中,第一滤光片30供通过光线的波段为360nm-700nm。
如此,第一滤光片30供通过光线的波段为360nm-700nm,可以满足摄像头100对超光谱成像的需要。
具体地,第一滤光片30可供物体反射至镜头10的光线中波长为360nm-700nm的可见光光线通过,同时将其他波长的光线进行截止。
请参阅图1-图3,在某些实施方式中,在第二滤光片40能够在位于镜头10的光轴101上的情况下,第二滤光片40位于镜头10的物侧。
如此,第二滤光片40在镜头10光轴101上且位于镜头10的物侧时可以将物体反射的光线在进入摄像头100的图像传感器20之前进行滤光。
具体地,第二滤光片40可设置在镜头10的物侧,第二滤光片40可设置在镜片11与第一滤光片30之间,第二滤光片40与镜片11同轴设置并位于镜头10的光轴101上。第二滤光片40可覆盖住镜头10光轴101的进光区域。
在某些实施方式中,第二滤光片40供通过光线的波段为360nm-380nm。
如此,第二滤光片40供通过光线的波段为360nm-380nm,可以满足摄像头100对紫外线成像的需要。
具体地,当摄像头100拍摄的物体反射的光线进入镜头10时,第二滤光片40可供光线的波长为360nm-380nm的紫外光线通过,并将其他波长的光线进行截止。
请参阅图1-图3,在某些实施方式中,摄像头100包括与第二滤光片40连接的驱动部件50,驱动部件50用于驱动第二滤光片40绕转动轴线511转动以在位于镜头10的光轴101上和偏离镜头10的光轴101之间运动,转动轴线511与镜头的光轴101平行。
如此,驱动部件50的设置可以用来驱动第二滤光片40在镜头10的光轴101上或偏离镜头10光轴101,从而使摄像头100能够实现对进入镜头10的光线进行不同波段过滤的调节切换。
具体地,驱动部件50可以通过压电马达、电磁马达等装置来驱动第二滤光片40,驱动部件50还可以包括转动件51,转动件51一端可连接在镜头10上,一端可连接第二滤光片40。例如,当驱动部件50采用电磁驱动器进行驱动时,磁体可设置在转动件51上,电磁驱动器可设置在镜头10上,通过电磁驱动器驱动磁体可使转动件51绕转动轴线511进行转动,转动轴线511可以是转动件51的转轴中心线,且转动轴线511与镜头10的光轴101呈平行。转动方式可以是转动件51沿转动件51的转动轴线511平行于镜头10的方式进行移动,进而带动第二滤光片40进行平转,使得第二滤光片40处于镜头10光轴101上,或者移动至偏离镜头10的光轴101。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
请参阅图7并结合图1-图3,图7是本申请实施方式的摄像头的某一视角的结构示意图。在某些实施方式中,摄像头100包括补光灯60,补光灯60用于为摄像头100补光,补光灯60能够发出紫外光和可见光。
如此,补光灯60通过发出可见光和紫外光向摄像头100的拍摄的物体进行补光可以提升摄像头100对拍摄物体的成像效果,补光灯60通过发出紫外光配合第二滤光片40可以激发物体产生紫外反射,从而使摄像头100实现荧光成像。
具体地,补光灯60可设置在摄像头100上的镜头10的导光结构70上,导光结构70可以是中间设置有与镜头10的光轴101匹配的通孔的环形结构。补光灯60的数量可以是两个,两个补光灯60可设置在导光结构70的两侧端部。补光灯60的规格可以相同,补光灯60的类型可以是侧方光LED。补光灯60可以单独发出可见光或者单独发出紫外光,也可以同时发出可见光与紫外光的超光谱光。导光结构70的作用是将补光灯60的入射光线进行均匀处理,可以使得补光灯60发出的光线可以在摄像头100拍摄的物体表面上均匀照亮。请参阅图8,图8是本申请实施方式的摄像头开启补光灯时拍摄得到的图像强度分布图。从图8中可以看出,通过补光灯60均匀补光下,摄像头100拍摄得到的图像的强度为均匀分分布,强度涨落为零。需要理解的是,图8中的横坐标表示像素,纵坐标表示像素位置。
请参阅图9和图10,图9是本申请实施方式的摄像头的补光灯开启可见光和紫外光时的照明光谱图,图10是本申请实施方式的摄像头的补光灯开启紫外光时的照明光谱图。当摄像头100进行超光谱成像时,补光灯60可同时发出紫外光和可见光,照明光谱可如图9所示,只有在特定波段具有强度分布,其他波段均为零。或者单独发出紫外光,照明光谱可如图10所示,只有在特定波段具有强度分布,其他波段均为零。此时,驱动部件50可将第二滤光片40驱动至镜头10的光轴101的正向方向上并对摄像头100拍摄物体反射的入射光线进行滤波处理,由于镜头10内还具有第一滤光片30,但第一滤光片30的供通过光线的波段要大于第二滤光片40,因此,最终图像传感器20接收的波段由第二滤光片40所决定,当完成超光谱成像时,驱动部件50将驱动第二滤光片40偏离至镜头10的光轴101外。
当摄像头100进行荧光成像时,补光灯60可同时发出紫外光和可见光,照明光谱可如图9所示,只有在特定波段具有强度分布,其他波段均为零,超光谱光源投射到物体表面后会刺激物体产生相应的荧光,该荧光由于斯托克斯位移,波长不再是超光谱而是可见光波长。此时,驱动部件50可将第二滤光片40驱动偏离至镜头10的光轴101外,由于镜头10内还具有第一滤光片30,第一滤光片30的供通过光线的波段为360nm-700nm。
因此,最终图像传感器20接收的波段由物体产生的荧光光源(波段为400-770nm)以及第一滤光片30过滤的光源(360nm-700nm)的卷积所决定,吸收波段为400-700nm,图像传感器20可以很好的接收由补光灯60发出的超光谱激发的荧光,并且避免了超光谱反射光的影响。
当摄像头100进行可见光成像时,补光灯60可单独发出可见光,可见光的光源只有在 400nm-700nm左右具有强度分布,其他波段均为零。此时,驱动部件50可将第二滤光片40驱动偏离至镜头10的光轴101外,由于镜头10内还具有第一滤光片30,第一滤光片30的供通过光线的波段为360nm-700nm。
因此,最终图像传感器20接收的波段由物体产生的可见光光源(波段为400-700nm)以及第一滤光片30过滤的光源(360nm-700nm)的卷积所决定,吸收波段为400-700nm,图像传感器20可以很好的接收由被物体反射的可见光,从而实现清晰成像。
请参阅图11和图12,图11是本申请实施方式的摄像头处于第一模式的平面示意图,图12是本申请实施方式的摄像头处于第二模式的平面示意图。在某些实施方式中,镜头10具有第一模式和第二模式,镜头10位于第一模式时具有第一对焦物距,镜头10位于第二模式时具有第二对焦物距,第一对焦物距小于第二对焦物距。
如此,镜头10通过第一模式可以对物体进行第一对焦物距的拍摄,通过第二模式可以对物体进行第二对焦物距的拍摄,可以提升用户使用摄像头100在不同对焦物距场景下的拍摄需求。
具体地,镜头10内可通过马达等驱动装置驱动镜头10内的镜片11或镜片组进行移动,使得镜片组可以使镜头10在对焦物距为第一对焦物距和第二对焦物距之间切换,从而使得镜头10在第一模式和第二模式之间切换。
请参阅图11和图12,在某些实施方式中,第一对焦物距小于或等于10mm,和/或,第二对焦物距小于或等于50mm。
如此,第一对焦物距小于或等于10mm可以实现摄像头100与物体处于显微状态下的拍摄,第二对焦物距小于或等于50mm可实现摄像头100在微距模式下的拍摄。
具体地,第一模式可以是镜头10与物体平面之间的第一对焦物距D1小于10mm的显微距离,例如,D1可以是5mm的显微距离。从而使离镜头10显微距离的物体平面透过镜头10在图像传感器20上实现清晰成像。
进一步地,第二模式可以是镜头10与物体平面之间的第二对焦物距D2大于10mm的距离,例如,D2可以是30mm的微距距离。从而使离镜头10微距距离的物体透过镜头10在图像传感器20上实现清晰成像。
需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
请参阅图13,图13是本申请实施方式的电子装置的结构示意图。本申请实施方式的电子装置1000,包括上述任一项实施方式的摄像头100。
本申请的电子装置1000采用摄像头100能够实现进行紫外线图像和荧光图像的获取,电子装置1000也可以用来进行皮肤检测和真伪识别等功能,提升了电子装置1000拍照时的体验。
具体地,电子装置1000可以是具有拍照功能的终端设备。例如,电子装置1000可以包括智能手机、平板、电脑、数码相机或其他具有拍照功能的终端设备。摄像头100可设置在电子装置1000上,例如,手机的后置摄像头100,数码相机的摄像头100等。
综上所述,当电子装置1000通过摄像头100进行第一模式的显微拍摄时,可通过摄像头100实现对拍摄物体的荧光显微成像、超光谱显微成像和可见光显微成像。
请参阅图14,图14是本申请实施方式的电子装置通过摄像头进行第一模式的可见光显微拍摄的成像图。如图14所示,当电子装置1000通过摄像头100进行第一模式的可见光显微成像拍摄时,由于被拍摄物体对可见光无反射,因此不能得到任何有效信息。
请参阅图15并结合图1-图3,以及图7,图15是本申请实施方式的电子装置通过摄像头进行第一模式的超光谱显微拍摄的成像图。当电子装置1000通过摄像头100进行第一模式的超光谱显微成像拍摄时,补光灯60可同时发出可见光与紫外光,驱动部件50可驱动第二滤光片40位于镜头10的光轴101上,图像传感器20可接收由补光灯60激发出来并由物体反射的紫外线图像;
请参阅图16,图16是本申请实施方式的电子装置通过摄像头进行第一模式的荧光显微拍摄的成像图。如图16所示,当电子装置1000通过摄像头100进行第一模式的荧光显微成像拍摄时,补光灯60可同时发出可见光与紫外光或者单独发出紫外光,驱动部件50可驱动第二滤光片40位于镜头10的光轴101上,图像传感器20可接收由补光灯60激发出来的物体反射的荧光图像;
电子装置1000通过摄像头100还可以用于对皮肤深层次的探测。请参阅图17和图18,如图17为电子装置1000通过摄像头100在第一模式下拍摄的人脸的可见光成像图片,图18为电子装置1000通过摄像头100在第一模式下拍摄的人脸的紫外线成像图片,通过对比可以检测分析出人脸面部的水油平衡,和其他皮肤问题。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。 在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施方式,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (20)

  1. 一种摄像头,包括:
    镜头;
    图像传感器,所述图像传感器设置在所述镜头的像侧;
    第一滤光片,所述第一滤光片设置在所述镜头的光轴上,所述第一滤光片能够使紫外线和可见光通过;
    第二滤光片,所述第二滤光片能够使紫外线通过,所述第二滤光片能够运动至位于所述镜头的光轴上或偏离所述镜头的光轴。
  2. 根据权利要求1所述的摄像头,其中,所述第一滤光片在紫外线的带通波段和可见光的带通波段均连续;或
    所述第一滤光片在紫外线的带通波段断续,在可见光的带通波段连续。
  3. 根据权利要求1所述的摄像头,其中,所述第一滤光片供通过光线的波段为360nm-700nm。
  4. 根据权利要求1所述的摄像头,其中,在所述第二滤光片能够在位于所述镜头的光轴上的情况下,所述第二滤光片位于所述镜头的物侧。
  5. 根据权利要求1所述的摄像头,其中,所述第二滤光片供通过光线的波段为360nm-380nm。
  6. 根据权利要求1所述的摄像头,其中,所述摄像头包括与所述第二滤光片连接的驱动部件,所述驱动部件用于驱动所述第二滤光片绕转动轴线转动以在位于所述镜头的光轴上和偏离所述镜头的光轴之间运动,所述转动轴线与所述镜头的光轴平行。
  7. 根据权利要求1所述的摄像头,其中,所述摄像头包括补光灯,所述补光灯用于为所述摄像头补光,所述补光灯能够发出紫外光和可见光。
  8. 根据权利要求7所述的摄像头,其中,所述摄像头包括导光结构,所述导光结构与所述镜头相匹配,所述补光灯设置在所述导光结构上,以对所述补光灯的入射光线进行均匀处理。
  9. 根据权利要求1所述的摄像头,其中,所述镜头具有第一模式和第二模式,所述镜头位于第一模式时具有第一对焦物距,所述镜头位于第二模式时具有第二对焦物距,所述第一对焦物距小于所述第二对焦物距。
  10. 根据权利要求9所述的摄像头,其中,所述第一对焦物距小于或等于10mm,和/或,所述第二对焦物距小于或等于50mm。
  11. 一种电子装置,包括摄像头,所述摄像头包括:
    镜头;
    图像传感器,所述图像传感器设置在所述镜头的像侧;
    第一滤光片,所述第一滤光片设置在所述镜头的光轴上,所述第一滤光片能够使紫外线和可见光通过;
    第二滤光片,所述第二滤光片能够使紫外线通过,所述第二滤光片能够运动至位于所述镜头的光轴上或偏离所述镜头的光轴。
  12. 根据权利要求11所述的电子装置,其中,所述第一滤光片在紫外线的带通波段和可见光的带通波段均连续;或
    所述第一滤光片在紫外线的带通波段断续,在可见光的带通波段连续。
  13. 根据权利要求11所述的电子装置,其中,所述第一滤光片供通过光线的波段为360nm-700nm。
  14. 根据权利要求11所述的电子装置,其中,在所述第二滤光片能够在位于所述镜头的光轴上的情况下,所述第二滤光片位于所述镜头的物侧。
  15. 根据权利要求11所述的电子装置,其中,所述第二滤光片供通过光线的波段为360nm-380nm。
  16. 根据权利要求11所述的电子装置,其中,所述摄像头包括与所述第二滤光片连接的驱动部件,所述驱动部件用于驱动所述第二滤光片绕转动轴线转动以在位于所述镜头的光轴上和偏离所述镜头的光轴之间运动,所述转动轴线与所述镜头的光轴平行。
  17. 根据权利要求11所述的电子装置,其中,所述摄像头包括补光灯,所述补光灯用于为所述摄像头补光,所述补光灯能够发出紫外光和可见光。
  18. 根据权利要求17所述的电子装置,其中,所述摄像头包括导光结构,所述导光结构与所述镜头相匹配,所述补光灯设置在所述导光结构上,以对所述补光灯的入射光线进行均匀处理。
  19. 根据权利要求11所述的电子装置,其中,所述镜头具有第一模式和第二模式,所述镜头位于第一模式时具有第一对焦物距,所述镜头位于第二模式时具有第二对焦物距,所述第一对焦物距小于所述第二对焦物距。
  20. 根据权利要求19所述的摄像头,其中,所述第一对焦物距小于或等于10mm,和/或,所述第二对焦物距小于或等于50mm。
PCT/CN2023/107314 2022-09-27 2023-07-13 摄像头和电子装置 WO2024066671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211185623.1 2022-09-27
CN202211185623.1A CN115567767A (zh) 2022-09-27 2022-09-27 摄像头和电子装置

Publications (1)

Publication Number Publication Date
WO2024066671A1 true WO2024066671A1 (zh) 2024-04-04

Family

ID=84742711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107314 WO2024066671A1 (zh) 2022-09-27 2023-07-13 摄像头和电子装置

Country Status (2)

Country Link
CN (1) CN115567767A (zh)
WO (1) WO2024066671A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115567767A (zh) * 2022-09-27 2023-01-03 Oppo广东移动通信有限公司 摄像头和电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107561684A (zh) * 2017-09-30 2018-01-09 广东欧珀移动通信有限公司 滤光片、镜头模组和成像模组
WO2018166829A1 (en) * 2017-03-13 2018-09-20 Lumileds Holding B.V. Imaging device with an improved autofocusing performance
CN112929536A (zh) * 2021-01-26 2021-06-08 南昌欧菲光电技术有限公司 摄像模组、电子设备和车辆
CN213637940U (zh) * 2020-12-02 2021-07-06 北京小米移动软件有限公司 摄像装置及移动终端
CN115002311A (zh) * 2022-05-16 2022-09-02 Oppo广东移动通信有限公司 显微成像方法、显微成像模组、终端设备及存储介质
CN115567767A (zh) * 2022-09-27 2023-01-03 Oppo广东移动通信有限公司 摄像头和电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018166829A1 (en) * 2017-03-13 2018-09-20 Lumileds Holding B.V. Imaging device with an improved autofocusing performance
CN107561684A (zh) * 2017-09-30 2018-01-09 广东欧珀移动通信有限公司 滤光片、镜头模组和成像模组
CN213637940U (zh) * 2020-12-02 2021-07-06 北京小米移动软件有限公司 摄像装置及移动终端
CN112929536A (zh) * 2021-01-26 2021-06-08 南昌欧菲光电技术有限公司 摄像模组、电子设备和车辆
CN115002311A (zh) * 2022-05-16 2022-09-02 Oppo广东移动通信有限公司 显微成像方法、显微成像模组、终端设备及存储介质
CN115567767A (zh) * 2022-09-27 2023-01-03 Oppo广东移动通信有限公司 摄像头和电子装置

Also Published As

Publication number Publication date
CN115567767A (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
US11017191B2 (en) Accessory having a target generating structure for a mobile device
CN103152517B (zh) 用于移动虹膜识别设备的成像模组及移动设备
US10223563B2 (en) Barcode reading system for a mobile device with a barcode reading enhancement accessory and barcode reading application
CN106454049B (zh) 一种基于分区双通滤光片的虹膜识别及拍照二合一摄像模组
US9858460B2 (en) Barcode-reading system having circuitry for generating a barcode read signal on a microphone input connector of a mobile device
WO2024066671A1 (zh) 摄像头和电子装置
JP6688073B2 (ja) 光学システムおよび光学システムを有する装置
CN108605117A (zh) 带传感器阵列上光阀的相机
TWI751898B (zh) 光學成像鏡頭、取像裝置及電子裝置
US20120194728A1 (en) Image sensor module and camera module including the same
JP2003036434A (ja) 携帯型個人認証装置用光学システム
TWM553534U (zh) 虹膜識別裝置
WO2004057858A1 (en) A color imaging system and a method in a color imaging system
JP2006126652A (ja) 撮像装置
US7665912B2 (en) Image-taking apparatus and control method thereof
CN105049699A (zh) 摄像模组及终端
CN102645832B (zh) 投射型显示装置、便携型电子设备及数字拍摄机
JP2008035199A (ja) 光学フィルター手段を有する撮像装置
JPH08201750A (ja) Lcdパネル画質検査装置用カメラ装置
KR200367917Y1 (ko) 광학적 안정성을 갖는 홍채 인식용 카메라 모듈
US20110234809A1 (en) Dual-lens image capture device
JP2009037180A (ja) 樹脂製光学素子用多層薄膜真空蒸着方法とその樹脂製光学素子を持つ撮影素子
US20190121005A1 (en) Imaging device and filter
US11092491B1 (en) Switchable multi-spectrum optical sensor
JP2003069865A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869918

Country of ref document: EP

Kind code of ref document: A1