WO2024066163A1 - 单体电池及电池包 - Google Patents

单体电池及电池包 Download PDF

Info

Publication number
WO2024066163A1
WO2024066163A1 PCT/CN2023/075532 CN2023075532W WO2024066163A1 WO 2024066163 A1 WO2024066163 A1 WO 2024066163A1 CN 2023075532 W CN2023075532 W CN 2023075532W WO 2024066163 A1 WO2024066163 A1 WO 2024066163A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom wall
wall
shell
single cell
bending portion
Prior art date
Application number
PCT/CN2023/075532
Other languages
English (en)
French (fr)
Inventor
胡春波
戴亨伟
林秀德
张立鹏
杨伟
陈辉
张耀
Original Assignee
欣旺达动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欣旺达动力科技股份有限公司 filed Critical 欣旺达动力科技股份有限公司
Publication of WO2024066163A1 publication Critical patent/WO2024066163A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a single cell and a battery pack.
  • single cells with a long battery structure generally use a double-pass cylindrical shell, that is, openings are set at both ends of the shell, and the bare cell enters the shell from one end.
  • the single cell with this structure has many problems such as high cost, difficulty in shell entry, and cumbersome operation.
  • the double-pass cylindrical shell has a long length, which is extremely difficult to form and has high manufacturing cost. It is also impossible to form ultra-thin walls, and the material utilization rate is low.
  • the bare cell has a long distance to enter the shell from one end of the shell.
  • the double-pass cylindrical shell is changed to a split structure, that is, it is cut into two parts along the length direction of the bare battery cell.
  • the two parts of the shell can be covered on the bare battery cell and welded together, and then the top cover is welded to realize the packaging of the single-cell battery, which significantly reduces the difficulty of putting the bare battery cell into the shell.
  • the present application aims to solve at least one of the technical problems existing in the prior art. To this end, the present application proposes a single cell battery that can effectively solve the problem of difficulty in inserting the single cell battery into the shell.
  • the present application also provides a battery pack having the single cell.
  • a single cell battery comprises a bare cell, a first shell, a second shell and an electrode assembly, wherein the single cell has a length direction and a width direction, and a pole ear extends from the end of the bare cell along the length direction;
  • the first shell comprises a first bottom wall and an end wall, and along the length direction, the two ends of the first bottom wall are respectively connected to the end wall;
  • the second shell comprises a second bottom wall and a side wall, and along the width direction, the two ends of the second bottom wall are respectively connected to the side wall;
  • the second bottom wall and the first bottom wall are arranged opposite to each other, the side wall is connected to the first bottom wall, and the end wall is connected to the second bottom wall, so as to jointly enclose and form an inner cavity, and the bare cell is accommodated in the inner cavity;
  • the electrode assembly is connected to the first shell and/or the second shell, and is electrically connected to the pole ear.
  • the single cell battery of the first embodiment of the present application has at least the following beneficial effects: the bare cell can be accommodated in the inner cavity by splicing and connecting the first shell and the second shell, thereby avoiding a long-stroke shell insertion operation and greatly reducing the risk of scratching the bare cell.
  • the wall and the side wall can be enclosed outside the bare battery cell to form a relatively closed shell, and the electrode assembly can be arranged on the first shell and/or the second shell, without the need to arrange a top cover assembly separately, which can simplify the structure and assembly of the single battery to a certain extent.
  • the first shell and the second shell are easier to manufacture, which facilitates the thinning of the shell, thereby saving manufacturing costs, helping to reduce the weight of the single battery and thus improve the energy density.
  • the electrode tabs include a positive electrode tab and a negative electrode tab, and the positive electrode tab and the negative electrode tab extend out from the same end or opposite ends of the bare battery cell; wherein mounting holes are respectively provided on the first shell at positions corresponding to the positive electrode tab and the negative electrode tab, and the electrode assembly is penetrated by the mounting holes.
  • the first bottom wall or the connection between the first bottom wall and the end wall is recessed toward the interior of the inner cavity to form a groove
  • the groove wall of the groove includes a first groove wall facing the second bottom wall
  • the mounting hole is arranged on the first groove wall
  • the mounting hole is provided on the end wall of the first shell corresponding to the pole lug or the first bottom wall.
  • an edge of the first bottom wall and an edge of the end wall are connected to the side wall, and an edge of one end of the end wall facing away from the first bottom wall is connected to the second bottom wall.
  • the first shell further includes a first bending portion and a second bending portion, and along the width direction, the first bending portion is connected to the edge of the first bottom wall and bent toward the second bottom wall, and the second bending portion is connected to the edge of the end wall and bent toward the length direction; the first bending portion and the second bending portion are connected to the side wall.
  • the first bottom wall and the end wall are located between the two side walls, wherein: the second bottom wall is respectively provided with first limiting portions at both ends corresponding to the end walls, the first limiting portions protrude toward the first bottom wall and abut against the inner side of the end wall; and/or each of the side walls is provided with a second limiting portion protruding toward the other side wall, the second limiting portion is located at one end of the side wall away from the second bottom wall, and the second limiting portion abuts against the side of the first bottom wall facing the second bottom wall.
  • the second shell further includes a third bending portion and a fourth bending portion, and along the length direction, the third bending portion is connected to the edge of the second bottom wall and is bent toward the first bottom wall, and the fourth bending portion is connected to the edge of the side wall and is bent toward the width direction; the third bending portion and the fourth bending portion are connected to the end wall.
  • the second bottom wall and the side wall are located between the two end walls, wherein: third limiting portions are respectively provided on the first bottom wall at both ends corresponding to the side walls, the third limiting portions protrude toward the second bottom wall and abut against the inner side of the side wall; and/or, each end wall is provided with a fourth limiting portion protruding toward the other end wall, the fourth limiting portion is located at one end of the end wall away from the first bottom wall, and the fourth limiting portion abuts against the side of the second bottom wall facing the first bottom wall.
  • the battery pack according to the second aspect of the present application comprises a box and a plurality of single cells according to any one of the first aspects, wherein the single cells are accommodated in the box.
  • the battery pack of the second embodiment of the present application has at least the following beneficial effects: the single battery of the first embodiment is used to The risk of cell scratching is reduced and the structure and assembly of single cells are simplified, thereby improving the overall assembly efficiency and safety of the battery pack, and helping to reduce the weight of single cells, thereby effectively improving the overall energy density of the battery pack.
  • FIG1 is a schematic structural diagram of a single cell according to an embodiment of the present application.
  • FIG2 is a partial structural exploded schematic diagram of the single cell shown in FIG1 ;
  • FIG3 is a schematic structural diagram of a first shell, a second shell and an electrode assembly in one embodiment of the present application
  • FIG4 is a schematic structural diagram of a first housing in an embodiment of the present application.
  • FIG5 is a cross-sectional view of the single cell shown in FIG1 along the A-A section;
  • FIG6 is a cross-sectional view of the single cell shown in FIG1 along the B-B section;
  • FIG7 is a partial enlarged schematic diagram of point C in FIG6;
  • FIG8 is a schematic structural diagram of a first housing in another embodiment of the present application.
  • FIG9 is a schematic structural diagram of a single cell according to another embodiment of the present application.
  • FIG10 is a cross-sectional view of the single cell shown in FIG9 along the D-D section;
  • FIG11 is a partial enlarged schematic diagram of point F in FIG10 ;
  • FIG12 is a cross-sectional view of the single cell shown in FIG9 along the E-E section;
  • FIG13 is a partial enlarged schematic diagram of point G in FIG12;
  • FIG14 is a schematic structural diagram of a first shell, a second shell and an electrode assembly in another embodiment of the present application.
  • FIG15 is a partial enlarged schematic diagram of point H in FIG14;
  • FIG16 is a schematic structural diagram of a first shell, a second shell and an electrode assembly in another embodiment of the present application.
  • FIG17 is a schematic diagram of a partial enlargement of point I in FIG16 .
  • a second housing 300 , a second bottom wall 301 , a side wall 302 , a first limiting portion 303 , a second limiting portion 304 , a third bending portion 305 , and a fourth bending portion 306 ;
  • Electrode assembly 400 pole 401 , riveting block 402 , upper insulating member 403 , lower insulating member 404 , sealing ring 405 .
  • a feature in the description of the embodiments of the present application, if a feature is referred to as being “set”, “fixed”, “connected”, or “installed” on another feature, it may be directly set, fixed, or connected to another feature, or it may be indirectly set, fixed, connected, or installed on another feature.
  • “several” it means more than one, if “multiple” is involved, it means more than two, if “greater than”, “less than”, or “exceeds” is involved, it should be understood as not including the number itself, and if “above”, “below”, or “within” is involved, it should be understood as including the number itself.
  • first or “second” it should be understood as being used to distinguish technical features, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features or implicitly indicating the order of the indicated technical features.
  • a plurality of single cells are generally arranged and integrated in a set manner in the box of a battery pack.
  • Increasing the length and reducing the thickness of the single cells to form a thin long battery structure is an effective way to improve the integration efficiency of the battery pack and improve the volume space utilization rate, thereby effectively improving the volume energy density of the battery pack.
  • the single cells with long battery structures have many problems in the production and manufacturing process, such as high cost, difficulty in shelling, and cumbersome operation.
  • the single cell and battery pack of the embodiment of the present application improve the outer shell of the single cell by making the outer shell of the single cell into a split first shell and a second shell.
  • the two are spliced along the thickness direction of the bare cell, and the bare cell is accommodated in the inner cavity, which reduces the risk of scratching the bare cell, and can omit the top cover, reduce weight, and help reduce costs and improve the energy density of the battery pack.
  • FIG1 is a schematic diagram of the structure of a single cell according to an embodiment of the present application
  • FIG2 is a schematic diagram of the partial structural decomposition of the single cell shown in FIG1
  • FIG3 is a schematic diagram of the structure of a first shell, a second shell and an electrode assembly according to an embodiment of the present application.
  • the first embodiment of the present application provides a single cell, including a bare cell 100, a first shell 200, a second shell 300 and an electrode assembly 400.
  • the single cell has a length direction and a width direction, and the first shell 200 and the second shell 300 are surrounded to form an inner cavity, and the bare cell 100 is accommodated in the inner cavity.
  • a tab 101 extends from the end of the bare cell 100 along the length direction, and the electrode assembly 400 is connected to the first shell 200 and/or the second shell 300, and is electrically connected to the tab 101.
  • the first shell 200 includes a first bottom wall 201 and an end wall 202, and along the length direction, the two ends of the first bottom wall 201 are respectively connected to the end walls 202.
  • the second shell 300 includes a second bottom wall 301 and a side wall 302, and along the width direction, the two ends of the second bottom wall 301 are respectively connected to the side walls 302.
  • the second bottom wall 301 and the first bottom wall 201 are arranged opposite to each other, the side wall 302 is connected to the first bottom wall 201, and the end wall 202 is connected to the second bottom wall 301, so that the first shell 200 and the second shell 300 are jointly enclosed to form an inner cavity, therefore, the first bottom wall 201, the second bottom wall 301, the end wall 202 and the side wall 302 can be enclosed on the outside of the bare battery cell 100 to form a relatively closed shell, and the electrode assembly 400 can be arranged in the first shell 200 and/or the second shell. 300, there is no need to set up a top cover assembly separately, which can simplify the structure and assembly of the single battery to a certain extent.
  • the first shell 200 and the second shell 300 are split structures, which can be processed separately and then spliced and connected to form a shell during assembly. Compared with the cylindrical parts, the manufacturing difficulty is greatly reduced, and it is easy to thin, improve the material utilization rate, thereby saving manufacturing costs, helping to reduce the weight of the single battery and thus improve the energy density.
  • the bare battery cell 100 is accommodated in the inner cavity by splicing and connecting the first shell 200 and the second shell 300, thereby avoiding long-stroke shell entry operations, greatly reducing the risk of scratches on the bare battery cell 100, reducing the difficulty of packaging, and improving the utilization rate of the structural space.
  • FIG4 is a schematic diagram of the structure of the first shell in an embodiment of the present application.
  • the tab 101 includes a positive tab and a negative tab.
  • the positive tab and the negative tab extend at the same end of the bare battery 100, or at opposite ends, to form a single battery structure with a single-side or double-side tab 101, which is suitable for battery packs with different connection structures.
  • the first shell 200 is provided with mounting holes 203 at positions corresponding to the positive tab and the negative tab
  • the electrode assembly 400 is provided with mounting holes 203 to connect the positive tab/negative tab.
  • the first shell 200 is provided with mounting holes 203 at positions corresponding to the positive tab and the negative tab, or, if the positive tab and the negative tab are located at opposite ends of the bare battery 100, the first shell 200 is provided with mounting holes 203 at opposite ends.
  • the electrode assembly 400 of this embodiment is fixed to the first shell 200 through the mounting hole 203, and there is no need to set up a top cover plate separately, thereby simplifying the structure and assembly to a certain extent, which is beneficial to improving the assembly efficiency of the single cell.
  • the mounting hole 203 can be provided on the first shell 200 in a variety of ways to fix the electrode assembly 400.
  • the first bottom wall 201 or the connection between the first bottom wall 201 and the end wall 202 is recessed toward the inside of the inner cavity to form a groove 204, and the groove wall of the groove 204 includes a first groove wall 205 facing the second bottom wall 301, and the mounting hole 203 is provided on the first groove wall 205.
  • the portion of the electrode assembly 400 located outside the first shell 200 can be accommodated in the groove 204 as a whole or in part, thereby reducing or eliminating the height of the electrode assembly 400 protruding from the groove 204.
  • the electrode assembly 400 can be prevented from occupying the space in the thickness direction, which helps to improve the space utilization rate.
  • FIG8 and FIG9 are schematic diagrams of the structure of the single cell of another two embodiments of the present application, wherein the position of the electrode assembly 400 is different from the position in FIG2 and FIG4 above.
  • the groove 204 mentioned above can also be omitted on the first shell 200, that is, the end wall 202 or the first bottom wall 201 on the first shell 200 corresponding to the pole lug 101 is provided with the mounting hole 203 mentioned above.
  • the electrode assembly 400 is passed through the mounting hole 203 so as to be electrically connected to the corresponding pole lug 101 and fixed to the first shell 200.
  • FIG8 and FIG9 are both the case where the pole lugs 101 extend from both ends of the bare cell 100.
  • FIG8 is a schematic diagram of the electrode assembly 400 installed on the first bottom wall 201 corresponding to the position of the pole lug 101
  • FIG9 is a schematic diagram of the electrode assembly 400 installed on the end wall 202 corresponding to the position of the pole lug 101.
  • the first bottom wall 201 or the end wall 202 is provided with a mounting hole 203, and the groove 204 in the above embodiment is omitted, which can simplify the structure and processing of the first shell 200.
  • the hole 203 can also mount the electrode assembly 400 on the end wall 202 to avoid occupying space in the thickness direction.
  • FIG5 is a cross-sectional view of the single cell shown in FIG1 along the A-A section.
  • the electrode assembly 400 includes a pole 401, a rivet block 402, an upper insulator 403, a lower insulator 404 and a sealing ring 405.
  • the pole 401 is inserted into the mounting hole 203, and the sealing ring 405 is pressed between the pole 401 and the hole wall of the mounting hole 203 to seal between the pole 401 and the first shell 200.
  • One end of the pole 401 is located in the inner cavity and is electrically connected to the pole ear 101, and the other end of the pole 401 is located outside the first shell 200 and is connected to the first shell through the rivet block 402, so as to prevent the pole 401 from collapsing inward, ensure the stable installation of the pole 401 and the sealing effectiveness of the sealing ring 405, and omit the top cover plate in the conventional long battery structure.
  • An upper insulating member 403 is also arranged between the riveting block 402 and the side of the first shell 200 facing away from the bare battery cell 100, and a lower insulating member 404 is also arranged between one end of the pole 401 located in the inner cavity and the side of the first shell 200 facing the bare battery cell 100 to achieve insulation between the first shell 200 and the pole 401.
  • the edge of the first bottom wall 201 and the edge of the end wall 202 are connected to the side wall 302, and the edge of the end wall 202 away from the first bottom wall 201 is connected to the second bottom wall 301, which can be connected by welding.
  • a closed square shell structure can be formed outside the bare cell 100.
  • the electrode assembly 400 can be installed on the mounting hole 203 of the first shell 200, and then the first shell 200 can be assembled on one side of the bare cell 100 and the tab 101 is connected to the electrode assembly 400, and then the second shell 300 is assembled and connected to the first shell 200 in the above manner to achieve packaging, and the packaging difficulty is low.
  • FIG6 is a cross-sectional view of the single cell shown in FIG1 along the B-B section
  • FIG7 is a partially enlarged schematic diagram of the C in FIG6.
  • the first bottom wall 201 and the end wall 202 of the first shell 200 can be located between the two side walls 302 of the second shell 300, so that the two side walls 302 of the second shell 300 can limit the first shell 200 in the width direction
  • the second shell 300 can also be provided with a corresponding limiting structure to further limit the first shell 200 for positioning welding, for example: the second shell 300
  • the second bottom wall 301 of the second housing 300 is provided with first limiting portions 303 at both ends corresponding to the end wall 202, the first limiting portions 303 protrude toward the first bottom wall 201 and abut against the inner side of the end wall 202; or, each side wall 302 of the second housing 300 is provided with a second limiting portion 304 protruding toward the other side wall
  • the first limiting portion 303 can limit the movement of the end wall 202 along the length direction on the inner side of the end wall 202, and the second limiting portion 304 can limit the closest distance between the first bottom wall 201 and the second bottom wall 301 along the thickness direction on the inner side of the first bottom wall 201, effectively preventing the first bottom wall 201 from collapsing inwards.
  • FIG9 is a schematic diagram of the structure of a single cell according to another embodiment of the present application
  • FIG10 is a cross-sectional view of the single cell shown in FIG9 along the DD section
  • FIG11 is a partially enlarged schematic diagram of F in FIG10
  • FIG12 is a cross-sectional view of the single cell shown in FIG9 along the EE section
  • FIG13 is a partially enlarged schematic diagram of G in FIG12.
  • the second bottom wall 301 and the side wall 302 of the second shell 300 are located between the two end walls 202 of the first shell 200, so that the first The two end walls 202 of the shell 200 can limit the second shell 300 in the length direction, and the first shell 200 can also be provided with a corresponding limiting structure to further limit the second shell 300 for positioning welding.
  • first bottom wall 201 of the first shell 200 is respectively provided with a third limiting portion 208 at both ends corresponding to the side wall 302, and the third limiting portion 208 protrudes toward the second bottom wall 301 and abuts against the inner side of the side wall 302; or, each end wall 202 of the first shell 200 is provided with a third limiting portion 208.
  • a fourth limiting portion 209 is provided which protrudes toward the other end wall 202, and the fourth limiting portion 209 is located at one end of the end wall 202 away from the first bottom wall 201, and the fourth limiting portion 209 abuts against the side of the second bottom wall 301 facing the first bottom wall 201; or, the third limiting portion 208 and the fourth limiting portion 209 are provided on the first housing 200 in the above manner.
  • the third limiting portion 208 can limit the movement of the side wall 302 along the width direction on the inner side of the side wall 302, and the fourth limiting portion 209 can limit the closest distance between the second bottom wall 301 and the first bottom wall 201 along the thickness direction on the inner side of the second bottom wall 301, so as to effectively prevent the second bottom wall 301 from collapsing inwards.
  • FIG14 is a schematic diagram of the structure of the first shell, the second shell and the electrode assembly in another embodiment of the present application
  • FIG15 is a partially enlarged schematic diagram of the H in FIG14.
  • a corresponding flange or bend can be set at the position of the first shell 200 for connecting the second shell 300, so as to increase the connection area accordingly.
  • the first shell 200 may also include a first bend portion 206 and a second bend portion 207.
  • the first bend portion 206 is connected to the edge of the first bottom wall 201 and bends toward the second bottom wall 301
  • the second bend portion 207 is connected to the edge of the end wall 202 and bends toward the length direction.
  • the first bending portion 206 and the second bending portion 207 are connected to the side wall 302.
  • the first bending portion 206 and the second bending portion 207 increase the connection area between the side wall 302 and the first shell 200, facilitate welding, and can effectively improve the connection strength.
  • FIG. 16 is a schematic diagram of the structure of the first shell, the second shell and the electrode assembly in another embodiment of the present application
  • FIG. 17 is a partially enlarged schematic diagram of location I in FIG. 16.
  • the position on the second shell 300 for connecting the first shell 200 can be provided with a corresponding flange or bend.
  • the second shell 300 also includes a third bend portion 305 and a fourth bend portion 306.
  • the third bend portion 305 is connected to the edge of the second bottom wall 301 and bends toward the first bottom wall 201
  • the fourth bend portion 306 is connected to the edge of the side wall 302 and bends toward the width direction.
  • the third bend portion 305 and the fourth bend portion 306 are connected to the end wall 202.
  • the third bend portion 305 and the fourth bend portion 306 increase the connection area between the end wall 202 and the second shell 300, facilitate welding, and can effectively improve the connection strength.
  • the second aspect embodiment of the present application provides a battery pack, including a case and multiple single cells according to any one of the first aspect embodiments described above, wherein the single cells are housed in the case.
  • the use of the single cells according to the first aspect embodiments described above can reduce the risk of scratches on the bare cell 100 and simplify the structure and assembly of the single cells, thereby improving the overall assembly efficiency and safety of the battery pack, and helping to reduce the weight of the single cells, thereby effectively improving the overall energy density of the battery pack.
  • the single cell and battery pack of the embodiments of the present application can be applied to the power battery system of electric vehicles. They have the advantages of being economical, safe and having high energy density. They can effectively reduce the risk of scratching of bare cells during assembly of single cells, simplify the difficulty of assembly and shell processing, improve assembly efficiency, reduce manufacturing costs, and effectively improve battery energy density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请涉及电池技术领域,公开了一种单体电池及电池包,单体电池包括裸电芯、第一壳体、第二壳体和电极组件,其中,第一壳体包括第一底壁和端壁,沿长度方向,第一底壁的两端分别连接有端壁;第二壳体包括第二底壁和侧壁,沿宽度方向,第二底壁的两端分别连接有侧壁;通过第一壳体和第二壳体的拼合连接可将裸电芯收容于内腔中,从而避免长行程的入壳操作,大大减小了裸电芯刮蹭的风险。第一底壁、第二底壁、端壁和侧壁可合围于裸电芯的外部,形成相对封闭的壳体,电极组件可设置于第一壳体和/或第二壳体上,无需另外设置顶盖组件,能够在一定程度上简化单体电池的结构和装配。电池包包括多个上述的单体电池,因而也具备上述优点。

Description

单体电池及电池包
相关申请的交叉引用
本申请要求于2022年09月30日提交中国专利局、申请号为202222626874.0、发明名称为“单体电池及电池包”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电池技术领域,尤其是涉及一种单体电池及电池包。
背景技术
目前,长电池结构的单体电池普遍采用双通筒状的壳体,即在壳体两端设置开口,裸电芯从一端开口入壳,但该结构的单体电池存在成本高昂、入壳困难、操作繁琐等诸多问题。首先,长电池结构的单体电池中,双通筒状的壳体具有较长的长度,成型难度极高,制造成本高昂,且无法进行超薄壁厚的成型,材料利用率低。其次,装配时,由于壳体的长筒状结构限制,裸电芯从壳体的一端开口入壳的行程大,入壳过程中裸电芯极易被刮蹭,因此装配难度高,效率低。为解决上述问题,一些单体电池中,将双通筒状的壳体改为分体式的结构即沿裸电芯长度方向切分形成两个部分,装配时可以将壳体的两个部分盖合在裸电芯上并焊接连接,然后焊接顶盖实现单体电池的封装,明显降低了裸电芯入壳的难度,但裸电芯入壳后,还需在两端通过顶盖上的端子连接极耳,并将顶盖与壳体密封连接以实现单体电池的封装,使得裸电芯入壳装配与封装操作较为繁琐。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种单体电池,能够有效解决单体电池入壳困难的问题。
本申请还提出一种具有该单体电池的电池包。
根据本申请第一方面实施例的单体电池,包括裸电芯、第一壳体、第二壳体和电极组件,其中,所述单体电池具有长度方向和宽度方向,所述裸电芯沿所述长度方向的端部伸出有极耳;所述第一壳体包括第一底壁和端壁,沿所述长度方向,所述第一底壁的两端分别连接有所述端壁;所述第二壳体包括第二底壁和侧壁,沿所述宽度方向,所述第二底壁的两端分别连接有所述侧壁;所述第二底壁和所述第一底壁相对设置,所述侧壁与所述第一底壁连接,且所述端壁与所述第二底壁连接,以共同合围形成内腔,所述裸电芯收容于所述内腔中;所述电极组件连接于所述第一壳体和/或所述第二壳体,并与所述极耳电连接。
本申请第一方面实施例的单体电池至少具有如下有益效果:可通过第一壳体和第二壳体的拼合连接将裸电芯收容于内腔中,从而避免长行程的入壳操作,大大减小了裸电芯刮蹭的风险。第一底壁、第二底壁、端 壁和侧壁可合围于裸电芯的外部,形成相对封闭的壳体,电极组件可设置于第一壳体和/或第二壳体上,无需另外设置顶盖组件,能够在一定程度上简化单体电池的结构和装配。并且,与双通筒状的壳体相比,第一壳体和第二壳体的制造难度低,便于壳体的减薄,从而节约制造成本,有助于减轻单体电池重量从而提高能量密度。
根据本申请的一些实施例,所述极耳包括正极耳和负极耳,所述正极耳和所述负极耳在所述裸电芯的同一端或者相对两端伸出;其中,所述第一壳体上对应于所述正极耳和所述负极耳的位置分别设置有安装孔,所述电极组件穿设所述安装孔。
根据本申请的一些实施例,对应于所述极耳的位置,所述第一底壁或者所述第一底壁和所述端壁的连接处朝所述内腔的内部凹陷形成有凹槽,所述凹槽的槽壁包括朝向所述第二底壁的第一槽壁,所述安装孔设置于所述第一槽壁上。
根据本申请的一些实施例,所述第一壳体上与所述极耳对应的所述端壁或者所述第一底壁上设置有所述安装孔。
根据本申请的一些实施例,沿所述宽度方向,所述第一底壁的边沿和所述端壁的边沿连接于所述侧壁,所述端壁背离所述第一底壁的一端边沿连接于所述第二底壁。
根据本申请的一些实施例,所述第一壳体还包括第一折弯部和第二折弯部,沿所述宽度方向,所述第一折弯部连接于所述第一底壁的边沿并朝向所述第二底壁弯折,所述第二折弯部连接于所述端壁的边沿并朝所述长度方向折弯;所述第一折弯部和所述第二折弯部连接于所述侧壁。
根据本申请的一些实施例,所述第一底壁和所述端壁位于两个所述侧壁之间,其中:所述第二底壁上对应于所述端壁的两端分别设置有第一限位部,所述第一限位部朝向所述第一底壁凸起并抵持于所述端壁的内侧;和/或者,每一所述侧壁上均设置有朝向另一所述侧壁凸起的第二限位部,所述第二限位部位于所述侧壁远离所述第二底壁的一端,所述第二限位部抵持于所述第一底壁朝向所述第二底壁的一侧。
根据本申请的一些实施例,所述第二壳体还包括第三折弯部和第四折弯部,沿所述长度方向,所述第三折弯部连接于所述第二底壁的边沿并朝向所述第一底壁弯折,所述第四折弯部连接于所述侧壁的边沿并朝所述宽度方向折弯;所述第三折弯部和所述第四折弯部连接于所述端壁。
根据本申请的一些实施例,所述第二底壁和所述侧壁位于两个所述端壁之间,其中:所述第一底壁上对应于所述侧壁的两端上分别设置有第三限位部,所述第三限位部朝向所述第二底壁凸起并抵持于所述侧壁的内侧;和/或者,每一所述端壁上均设置有朝向另一所述端壁凸起的第四限位部,所述第四限位部位于所述端壁远离所述第一底壁的一端,所述第四限位部抵持于所述第二底壁朝向所述第一底壁的一侧。
根据本申请第二方面实施例的电池包,包括箱体和多个上述第一方面任一实施例的单体电池,所述单体电池容置于所述箱体中。
本申请第二方面实施例的电池包至少具有如下有益效果:采用上述第一方面实施例的单体电池,能够裸 电芯刮蹭的风险,并简化单体电池的结构和装配,由此,提高了电池包整体的装配效率及安全性,且有助于减轻单体电池重量从而有效提高电池包整体的能量密度。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1为本申请一实施例的单体电池的结构示意图;
图2为图1示出的单体电池的部分结构分解示意图;
图3为本申请一实施例中第一壳体、第二壳体和电极组件的结构示意图;
图4为本申请一实施例中第一壳体的结构示意图;
图5为图1示出的单体电池沿A-A截面的剖视图;
图6为图1示出的单体电池沿B-B截面的剖视图;
图7为图6中的C处局部放大示意图;
图8为本申请另一实施例中第一壳体的结构示意图;
图9为本申请另一实施例的单体电池的结构示意图;
图10为图9示出的单体电池沿D-D截面的剖视图;
图11为图10中的F处局部放大示意图;
图12为图9示出的单体电池沿E-E截面的剖视图;
图13为图12中的G处局部放大示意图;
图14为本申请另一实施例中第一壳体、第二壳体和电极组件的结构示意图;
图15为图14中的H处局部放大示意图;
图16为本申请另一实施例中第一壳体、第二壳体和电极组件的结构示意图;
图17为图16中的I处局部放大示意图。
附图标记:
裸电芯100,极耳101;
第一壳体200,第一底壁201,端壁202,安装孔203,凹槽204,第一槽壁205,第一折弯部206,第二折弯部207,第三限位部208,第四限位部209;
第二壳体300,第二底壁301,侧壁302,第一限位部303,第二限位部304,第三折弯部305,第四折弯部306;
电极组件400,极柱401,铆接块402,上绝缘件403,下绝缘件404,密封圈405。
具体实施方式
以下将结合实施例对本申请的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本申请的目 的、特征和效果。显然,所描述的实施例只是本申请的一部分实施例,而不是全部实施例,基于本申请的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本申请保护的范围。
在本申请实施例的描述中,如果涉及到方位描述,例如“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或器件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请实施例的描述中,如果某一特征被称为“设置”、“固定”、“连接”、“安装”在另一个特征,它可以直接设置、固定、连接在另一个特征上,也可以间接地设置、固定、连接、安装在另一个特征上。在本申请实施例的描述中,如果涉及到“若干”,其含义是一个以上,如果涉及到“多个”,其含义是两个以上,如果涉及到“大于”、“小于”、“超过”,均应理解为不包括本数,如果涉及到“以上”、“以下”、“以内”,均应理解为包括本数。如果涉及到“第一”、“第二”,应当理解为用于区分技术特征,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
电池包的箱体内一般按设定的方式排布集成有多个单体电池,通过对单体电池增大长度、减小厚度形成薄型的长电池结构,是改进电池包的集成效率,提高体积空间利用率的有效途径,从而能够有效提高电池包的体积能量密度。但长电池结构的单体电池在生产制造过程当中,存在成本高昂、入壳困难、操作繁琐等诸多问题。本申请实施例的单体电池及电池包,通过对单体电池外壳的改进,将单体电池的外壳制成分体式的第一壳体和第二壳体,二者沿裸电芯厚度方向进行拼合,将裸电芯收容于内腔中,减小了裸电芯刮蹭的风险,并能够省去顶盖,减轻重量,有助于降低成本以及提高电池包的能量密度。以下结合图1至图17对本申请实施例进行介绍:
图1为本申请一实施例的单体电池的结构示意图,图2为图1示出的单体电池的部分结构分解示意图,图3为本申请一实施例中第一壳体、第二壳体和电极组件的结构示意图,参考图1至图3,本申请第一方面实施例提供了一种单体电池,包括裸电芯100、第一壳体200、第二壳体300和电极组件400。单体电池具有长度方向和宽度方向,第一壳体200和第二壳体300合围形成内腔,裸电芯100收容于该内腔中。裸电芯100沿长度方向的端部伸出有极耳101,电极组件400连接于第一壳体200和/或第二壳体300,并与极耳101电连接。
其中,第一壳体200包括第一底壁201和端壁202,沿长度方向,第一底壁201的两端分别连接有端壁202。第二壳体300包括第二底壁301和侧壁302,沿宽度方向,第二底壁301的两端分别连接有侧壁302。第二底壁301和第一底壁201相对设置,侧壁302与第一底壁201连接,且端壁202与第二底壁301连接,由此第一壳体200和第二壳体300共同合围形成内腔,因此,第一底壁201、第二底壁301、端壁202和侧壁302可合围于裸电芯100的外部,形成相对封闭的壳体,电极组件400可设置于第一壳体200和/或第二壳体 300上,无需另外设置顶盖组件,能够在一定程度上简化单体电池的结构和装配。
另外,由于长电池结构的需求,若采用双通筒状的外壳结构,则需要加工较长的筒状,可以理解的是,长而扁的筒状件加工难度大,并且难以达到薄且均匀的壁厚,为避免裸电芯100入壳时的刮蹭,还需要预留一定的空间。而本申请实施例的单体电池,第一壳体200和第二壳体300为分体式结构,可以分别加工后,在装配时拼合连接形成外壳,与筒状件相比,大大降低了制造难度低,且易于减薄,提高材料利用率,从而节约制造成本,有助于减轻单体电池重量从而提高能量密度。在装配时,通过第一壳体200和第二壳体300的拼合连接将裸电芯100收容于内腔中,从而避免长行程的入壳操作,大大减小了裸电芯100刮蹭的风险,降低了封装难度,提高结构空间利用率。
图4为本申请一实施例中第一壳体的结构示意图,参考图2和图4,在一些实施例的单体电池中,极耳101包括正极耳和负极耳,正极耳和负极耳在裸电芯100的同一端,或者相对两端伸出,形成单侧或双侧极耳101的单体电池结构,适用于不同连接结构的电池包。其中,第一壳体200上对应于正极耳和负极耳的位置分别设置有安装孔203,电极组件400穿设安装孔203以便连接正极耳/负极耳,例如,若正极耳和负极耳位于裸电芯100的同一端,则第一壳体200上对应于该正极耳和负极耳的位置分别设置安装孔203,或者,若正极耳和负极耳位于裸电芯100的相对的两端,则第一壳体200上相对的两端分别设置安装孔203。与常规单体电池通过顶盖板安装电极组件400并封闭壳体的方案相比,本实施例电极组件400通过安装孔203固定于第一壳体200上,无需另外设置顶盖板,从而能够在一定程度上简化结构和装配,有益于提高单体电池的装配效率。
在上述实施例中,可通过多种方式在第一壳体200上设置安装孔203以固定电极组件400,例如,参考图2和图4,在一些实施例的单体电池中,对应于极耳101的位置,第一底壁201或者第一底壁201和端壁202的连接处朝内腔的内部凹陷形成有凹槽204,凹槽204的槽壁包括朝向第二底壁301的第一槽壁205,安装孔203设置于第一槽壁205上。因而电极组件400穿设该安装孔203安装于该第一槽壁205上后,电极组件400位于第一壳体200外部的部分可整体或部分容置于该凹槽204中,从而减小或消除电极组件400自凹槽204凸起的高度,单体电池沿厚度方向堆叠时,可避免电极组件400占用厚度方向的空间,有助于提高空间利用率。
或者,参考图8和图9,图8和图9为本申请另两种实施例的单体电池的结构示意图,其中电极组件400的位置与上述图2和图4中的位置不同,具体而言,第一壳体200上也可以省去上述的凹槽204,即第一壳体200上与极耳101对应的端壁202或者第一底壁201上设置有上述的安装孔203。电极组件400穿设于该安装孔203从而电连接于对应的极耳101,并固定于第一壳体200上。其中,图8和图9均为裸电芯100两端伸出极耳101的情况,图8为电极组件400安装于第一底壁201上对应于极耳101位置的示意图,图9为电极组件400安装于端壁202上对应于极耳101位置的示意图。其中,在第一底壁201或端壁202设置安装孔203,省去了上述实施例中的凹槽204,能够简化第一壳体200的结构和加工。另外,端壁202上设置安装 孔203还能够将电极组件400安装于端壁202,可避免在厚度方向占用空间。
图5为图1示出的单体电池沿A-A截面的剖视图,参考图5,电极组件400包括极柱401、铆接块402、上绝缘件403、下绝缘件404和密封圈405,极柱401穿设于安装孔203,密封圈405压设于极柱401与安装孔203的孔壁之间,用于极柱401和第一壳体200之间的密封。极柱401的一端位于内腔中并与极耳101电连接,极柱401的另一端位于第一壳体200的外部,并通过铆接块402连接于第一课堂,避免极柱401向内塌陷,保证极柱401稳定安装以及密封圈405的密封有效性,且省去了常规长电池结构中的顶盖板。铆接块402和第一壳体200的背离裸电芯100的一侧之间还设置有上绝缘件403,极柱401位于内腔的一端与第一壳体200的朝向裸电芯100的一侧之间还设置有下绝缘件404,实现第一壳体200和极柱401之间的绝缘。
参考图1至图3,在一些实施例的单体电池中,沿单体电池的宽度方向,第一底壁201的边沿和端壁202的边沿连接于侧壁302,端壁202背离第一底壁201的一端边沿连接于第二底壁301,可通过焊接的方式实现连接。由此,可在裸电芯100外部形成封闭的方形外壳结构,具体的,可以先将电极组件400安装于第一壳体200的安装孔203上,然后将第一壳体200组装于裸电芯100的一侧并将极耳101与电极组件400连接,再将第二壳体300按上述方式拼合并连接于第一壳体200,实现封装,封装难度低。
图6为图1示出的单体电池沿B-B截面的剖视图,图7为图6中的C处局部放大示意图,参考图1至图3以及图6和图7,在上述实施例的单体电池中,第一壳体200的第一底壁201和端壁202可位于第二壳体300的两个侧壁302之间,因此,第二壳体300的两个侧壁302能够在宽度方向对第一壳体200进行限位,并且,第二壳体300上还可设相应的限位结构以对第一壳体200进行进一步的限位,以便定位焊接,例如:第二壳体300的第二底壁301上对应于端壁202的两端分别设置有第一限位部303,第一限位部303朝向第一底壁201凸起并抵持于端壁202的内侧;或者,第二壳体300的每一侧壁302上均设置有朝向另一侧壁302凸起的第二限位部304,第二限位部304位于侧壁302远离第二底壁301的一端,第二限位部304抵持于第一底壁201朝向第二底壁301的一侧;或者,第二壳体300上按上述方式设置第一限位部303和第二限位部304。上述的第一限位部303能够在端壁202的内侧限制端壁202沿长度方向的移动,第二限位部304能够在第一底壁201的内侧限制第一底壁201沿厚度方向与第二底壁301的最近距离,有效防止第一底壁201向内塌陷。
图9为本申请另一实施例的单体电池的结构示意图,图10为图9示出的单体电池沿D-D截面的剖视图,图11为图10中的F处局部放大示意图,图12为图9示出的单体电池沿E-E截面的剖视图,图13为图12中的G处局部放大示意图,参考图9至图13,在另一些实施例的单体电池中,第二壳体300的第二底壁301和侧壁302位于第一壳体200的两个端壁202之间,因此,第一壳体200的两个端壁202能够在长度方向对第二壳体300进行限位,并且,第一壳体200上还可设相应的限位结构以对第二壳体300进行进一步的限位,以便定位焊接,例如:第一壳体200的第一底壁201上对应于侧壁302的两端上分别设置有第三限位部208,第三限位部208朝向第二底壁301凸起并抵持于侧壁302的内侧;或者,第一壳体200的每一端壁202上均 设置有朝向另一端壁202凸起的第四限位部209,第四限位部209位于端壁202远离第一底壁201的一端,第四限位部209抵持于第二底壁301朝向第一底壁201的一侧;或者,第一壳体200上按照上述方式设置第三限位部208和第四限位部209。上述的第三限位部208能够在侧壁302的内侧限制侧壁302沿宽度方向的移动,第四限位部209能够在第二底壁301的内侧限制第二底壁301沿厚度方向与第第一底壁201的最近距离,有效防止第二底壁301向内塌陷。
图14为本申请另一实施例中第一壳体、第二壳体和电极组件的结构示意图,图15为图14中的H处局部放大示意图,参考图14和图15,在上述实施例中,为方便第一壳体200和第二壳体300拼合处的连接,可在第一壳体200用于连接第二壳体300的位置设置相应的翻边或折弯,从而能够相应的增大连接面积。例如,第一壳体200还可包括第一折弯部206和第二折弯部207,沿宽度方向,第一折弯部206连接于第一底壁201的边沿并朝向第二底壁301弯折,第二折弯部207连接于端壁202的边沿并朝长度方向折弯。第一折弯部206和第二折弯部207连接于侧壁302,与通过第一底壁201的边沿和端壁202的边沿与侧壁302直接连接的方案相比,第一折弯部206和第二折弯部207增大了侧壁302与第一壳体200的连接面积,便于焊接,并且能够有效提高连接强度。
或者,参考图16和图17,图16为本申请另一实施例中第一壳体、第二壳体和电极组件的结构示意图,图17为图16中的I处局部放大示意图,第二壳体300上用于连接第一壳体200的位置可设置相应的翻边或折弯,例如,第二壳体300还包括第三折弯部305和第四折弯部306,沿长度方向,第三折弯部305连接于第二底壁301的边沿并朝向第一底壁201弯折,第四折弯部306连接于侧壁302的边沿并朝宽度方向折弯。第三折弯部305和第四折弯部306连接于端壁202,与通过第二底壁301的边沿和侧壁302的边沿与端壁202直接连接的方案相比,第三折弯部305和第四折弯部306增大了端壁202与第二壳体300的连接面积,便于焊接,并且能够有效提高连接强度。
本申请第二方面实施例提供了一种电池包,包括箱体和多个上述第一方面任一实施例的单体电池,单体电池容置于箱体中,采用上述第一方面实施例的单体电池,能够降低裸电芯100刮蹭的风险,并简化单体电池的结构和装配,由此,提高了电池包整体的装配效率及安全性,且有助于减轻单体电池重量从而有效提高电池包整体的能量密度。
本申请实施例的单体电池及电池包可应用于电动汽车的动力电池体系中,具有经济、安全且能量密度高的优点,能够有效降低单体电池组装时裸电芯的刮蹭风险,简化装配和壳体的加工难度,提高装配效率,同时降低制造成本,并能够有效提高电池能量密度。
上面结合附图对本申请实施例作了详细说明,但是本申请不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本申请宗旨的前提下作出各种变化。此外,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。

Claims (14)

  1. 单体电池,所述单体电池具有长度方向和宽度方向,其特征在于,包括:
    裸电芯(100),沿所述长度方向的端部伸出有极耳(101);
    第一壳体(200),包括第一底壁(201)和端壁(202),沿所述长度方向,所述第一底壁(201)的两端分别连接有所述端壁(202);
    第二壳体(300),包括第二底壁(301)和侧壁(302),沿所述宽度方向,所述第二底壁(301)的两端分别连接有所述侧壁(302);所述第二底壁(301)和所述第一底壁(201)相对设置,所述侧壁(302)与所述第一底壁(201)连接,且所述端壁(202)与所述第二底壁(301)连接,以共同合围形成内腔,所述裸电芯(100)收容于所述内腔中;
    电极组件(400),所述电极组件(400)连接于所述第一壳体(200)和/或所述第二壳体(300),并与所述极耳(101)电连接。
  2. 根据权利要求1所述的单体电池,其特征在于,所述极耳(101)包括正极耳和负极耳,所述正极耳和所述负极耳在所述裸电芯(100)的同一端或者相对两端伸出;其中,所述第一壳体(200)上对应于所述正极耳和所述负极耳的位置分别设置有安装孔(203),所述电极组件(400)穿设所述安装孔(203)。
  3. 根据权利要求2所述的单体电池,其特征在于,对应于所述极耳(101)的位置,所述第一底壁(201)或者所述第一底壁(201)和所述端壁(202)的连接处朝所述内腔的内部凹陷形成有凹槽(204),所述凹槽(204)的槽壁包括朝向所述第二底壁(301)的第一槽壁(205),所述安装孔(203)设置于所述第一槽壁(205)上。
  4. 根据权利要求2中所述的单体电池,其特征在于,所述第一壳体(200)上与所述极耳(101)对应的所述端壁(202)或者所述第一底壁(201)上设置有所述安装孔(203)。
  5. 根据权利要求1至4中任一项所述的单体电池,其特征在于,沿所述宽度方向,所述第一底壁(201)的边沿和所述端壁(202)的边沿连接于所述侧壁(302),所述端壁(202)背离所述第一底壁(201)的一端边沿连接于所述第二底壁(301)。
  6. 根据权利要求5所述的单体电池,其特征在于,所述第一壳体(200)还包括第一折弯部(206)和第二折弯部(207),沿所述宽度方向,所述第一折弯部(206)连接于所述第一底壁(201)的边沿并朝向所述第二底壁(301)弯折,所述第二折弯部(207)连接于所述端壁(202)的边沿并朝所述长度方向折弯;所述第一折弯部(206)和所述第二折弯部(207)连接于所述侧壁(302)。
  7. 根据权利要求5所述的单体电池,其特征在于,所述第一底壁(201)和所述端壁(202)位于两个所述侧壁(302)之间,其中:
    所述第二底壁(301)上对应于所述端壁(202)的两端分别设置有第一限位部(303),所述第一限位部 (303)朝向所述第一底壁(201)凸起并抵持于所述端壁(202)的内侧。
  8. 根据权利要求5所述的单体电池,其特征在于,所述第一底壁(201)和所述端壁(202)位于两个所述侧壁(302)之间,其中:
    每一所述侧壁(302)上均设置有朝向另一所述侧壁(302)凸起的第二限位部(304),所述第二限位部(304)位于所述侧壁(302)远离所述第二底壁(301)的一端,所述第二限位部(304)抵持于所述第一底壁(201)朝向所述第二底壁(301)的一侧。
  9. 根据权利要求5所述的单体电池,其特征在于,所述第一底壁(201)和所述端壁(202)位于两个所述侧壁(302)之间,其中:
    所述第二底壁(301)上对应于所述端壁(202)的两端分别设置有第一限位部(303),所述第一限位部(303)朝向所述第一底壁(201)凸起并抵持于所述端壁(202)的内侧;
    每一所述侧壁(302)上均设置有朝向另一所述侧壁(302)凸起的第二限位部(304),所述第二限位部(304)位于所述侧壁(302)远离所述第二底壁(301)的一端,所述第二限位部(304)抵持于所述第一底壁(201)朝向所述第二底壁(301)的一侧。
  10. 根据权利要求5所述的单体电池,其特征在于,所述第二壳体(300)还包括第三折弯部(305)和第四折弯部(306),沿所述长度方向,所述第三折弯部(305)连接于所述第二底壁(301)的边沿并朝向所述第一底壁(201)弯折,所述第四折弯部(306)连接于所述侧壁(302)的边沿并朝所述宽度方向折弯;所述第三折弯部(305)和所述第四折弯部(306)连接于所述端壁(202)。
  11. 根据权利要求5所述的单体电池,其特征在于,所述第二底壁(301)和所述侧壁(302)位于两个所述端壁(202)之间,其中:
    所述第一底壁(201)上对应于所述侧壁(302)的两端上分别设置有第三限位部(208),所述第三限位部(208)朝向所述第二底壁(301)凸起并抵持于所述侧壁(302)的内侧。
  12. 根据权利要求5所述的单体电池,其特征在于,所述第二底壁(301)和所述侧壁(302)位于两个所述端壁(202)之间,其中:
    每一所述端壁(202)上均设置有朝向另一所述端壁(202)凸起的第四限位部(209),所述第四限位部(209)位于所述端壁(202)远离所述第一底壁(201)的一端,所述第四限位部(209)抵持于所述第二底壁(301)朝向所述第一底壁(201)的一侧。
  13. 根据权利要求5所述的单体电池,其特征在于,所述第二底壁(301)和所述侧壁(302)位于两个所述端壁(202)之间,其中:
    所述第一底壁(201)上对应于所述侧壁(302)的两端上分别设置有第三限位部(208),所述第三限位部(208)朝向所述第二底壁(301)凸起并抵持于所述侧壁(302)的内侧;
    每一所述端壁(202)上均设置有朝向另一所述端壁(202)凸起的第四限位部(209),所述第四限位部 (209)位于所述端壁(202)远离所述第一底壁(201)的一端,所述第四限位部(209)抵持于所述第二底壁(301)朝向所述第一底壁(201)的一侧。
  14. 电池包,其特征在于,包括箱体和多个权利要求1至9中任一项所述的单体电池,所述单体电池容置于所述箱体中。
PCT/CN2023/075532 2022-09-30 2023-02-10 单体电池及电池包 WO2024066163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222626874.0 2022-09-30
CN202222626874.0U CN218788427U (zh) 2022-09-30 2022-09-30 单体电池及电池包

Publications (1)

Publication Number Publication Date
WO2024066163A1 true WO2024066163A1 (zh) 2024-04-04

Family

ID=86502693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075532 WO2024066163A1 (zh) 2022-09-30 2023-02-10 单体电池及电池包

Country Status (2)

Country Link
CN (1) CN218788427U (zh)
WO (1) WO2024066163A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213284A (ja) * 1996-02-02 1997-08-15 Sony Corp 電池と電池の製造方法
CN101714616A (zh) * 2009-11-17 2010-05-26 凯迈嘉华(洛阳)新能源有限公司 电极引出结构及采用该结构的储电电气元件
CN212907908U (zh) * 2020-08-26 2021-04-06 上海兰钧新能源科技有限公司 电芯结构和电动车辆
CN114039172A (zh) * 2021-11-12 2022-02-11 欣旺达电动汽车电池有限公司 单体电池及电池包
CN114079104A (zh) * 2020-08-12 2022-02-22 泰星能源解决方案有限公司 方型电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213284A (ja) * 1996-02-02 1997-08-15 Sony Corp 電池と電池の製造方法
CN101714616A (zh) * 2009-11-17 2010-05-26 凯迈嘉华(洛阳)新能源有限公司 电极引出结构及采用该结构的储电电气元件
CN114079104A (zh) * 2020-08-12 2022-02-22 泰星能源解决方案有限公司 方型电池
CN212907908U (zh) * 2020-08-26 2021-04-06 上海兰钧新能源科技有限公司 电芯结构和电动车辆
CN114039172A (zh) * 2021-11-12 2022-02-11 欣旺达电动汽车电池有限公司 单体电池及电池包

Also Published As

Publication number Publication date
CN218788427U (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2019148663A1 (zh) 二次电池
WO2023185283A1 (zh) 电池
US20210376430A1 (en) Rechargeable battery and pack of the same
WO2021179761A1 (zh) 二次电池、电池模块以及使用二次电池作为电源的装置
CN112018277A (zh) 一种电池外壳、二次电池以及电池包
US20110287291A1 (en) Rechargeable battery
KR20120091836A (ko) 배터리 팩
WO2021237944A1 (zh) 二次电池、电池模块以及使用二次电池作为电源的装置
WO2023231283A1 (zh) 电池、电池模组及电池包
JP2018509745A (ja) 電気コネクタ及びそれを含むバッテリ
WO2022134985A1 (zh) 电池单体、电池以及用电装置
WO2024152949A1 (zh) 电极端子、二次电池、电池包及车辆
WO2019159732A1 (ja) 蓄電装置
CN213636154U (zh) 电芯组件和电池
WO2024055978A1 (zh) 电池、电池组及用电设备
WO2024066163A1 (zh) 单体电池及电池包
WO2024119911A1 (zh) 电化学装置以及电子装置
CN112259795B (zh) 电芯的组装方法以及电芯
WO2024045459A1 (zh) 端盖组件、单体电池、电池模组及用电设备
WO2023241015A1 (zh) 单体电池与电池包
CN217507616U (zh) 电池
CN216793900U (zh) 电池组件和用电设备
CN219739142U (zh) 电池及电池装置
CN219086092U (zh) 电池及电池装置
CN219534801U (zh) 电池及电池装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869426

Country of ref document: EP

Kind code of ref document: A1