WO2024066110A1 - 混合动力车辆的热管理系统控制方法及混合动力车辆 - Google Patents

混合动力车辆的热管理系统控制方法及混合动力车辆 Download PDF

Info

Publication number
WO2024066110A1
WO2024066110A1 PCT/CN2022/143609 CN2022143609W WO2024066110A1 WO 2024066110 A1 WO2024066110 A1 WO 2024066110A1 CN 2022143609 W CN2022143609 W CN 2022143609W WO 2024066110 A1 WO2024066110 A1 WO 2024066110A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
coolant
battery
thermal management
management system
Prior art date
Application number
PCT/CN2022/143609
Other languages
English (en)
French (fr)
Inventor
李强
潘振锋
王明利
郑轶钟
张鑫垚
Original Assignee
潍柴动力股份有限公司
潍柴新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司, 潍柴新能源科技有限公司 filed Critical 潍柴动力股份有限公司
Publication of WO2024066110A1 publication Critical patent/WO2024066110A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • B60K11/04Arrangement or mounting of radiators, radiator shutters, or radiator blinds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • the present application relates to the technical field of hybrid vehicle, for example, to a thermal management system control method of a hybrid vehicle and a hybrid vehicle.
  • Hybrid vehicles have many components, inconsistent temperature thresholds, and inconsistent heating and cooling requirements.
  • the coolant pipelines of different components cannot be directly connected in series, and more valves and heat exchangers are required, resulting in higher costs.
  • the present application provides a hybrid vehicle thermal management system control method and a hybrid vehicle, which can not only store the heat of the engine for future use, but also handle the situation where the temperature of the hybrid vehicle exceeds the limit after the engine is suddenly stopped.
  • a method for controlling a thermal management system of a hybrid vehicle comprising:
  • the heat storage mode is as follows: the outlet of the coolant pipeline of the engine is connected to the liquid inlet of the heat accumulator, and the liquid outlet of the heat accumulator is connected to the inlet of the coolant pipeline of the engine, so that the heat accumulator stores heat while reducing the temperature rise of the engine coolant;
  • the engine stop circulation mode is as follows: the engine coolant is driven by the first water pump to circulate between the coolant pipeline of the engine and the engine radiator.
  • the coolant pipeline outlet of the engine is disconnected from the liquid inlet of the heat accumulator
  • the liquid outlet of the heat accumulator is disconnected from the coolant pipeline inlet of the engine
  • the first water pump drives the high-temperature coolant in the heat accumulator to exchange heat with the battery coolant through the plate heat exchanger to heat the battery.
  • a rapid heat-up mode is started; wherein the rapid heat-up mode includes:
  • the battery starts heating the heating film, and the engine enters a hot engine state
  • the motor When the battery has the discharge capacity, the motor enters a creeping inefficient heating mode and simultaneously enters a motor waste heat heating mode;
  • the motor waste heat heating mode is stopped and the engine waste heat heating mode is entered.
  • the motor waste heat heating mode is:
  • the second water pump drives the battery coolant to flow so that the battery coolant enters the coolant pipeline of the motor and the coolant pipeline of the motor controller from the coolant pipeline outlet of the battery, and then enters the battery from the coolant pipeline inlet of the battery; the second set temperature is the highest temperature that the battery can withstand.
  • the engine waste heat heating mode is:
  • the battery enters a battery self-circulation mode, and the engine coolant exchanges heat with the battery coolant through the plate heat exchanger under the drive of a mechanical water pump.
  • the battery self-circulation mode is: the second water pump drives the battery coolant to circulate in the coolant pipeline of the battery.
  • a hybrid vehicle includes a thermal management system, which adopts the thermal management system control method of a hybrid vehicle as described in any of the above schemes, wherein the thermal management system includes a fluid-connected engine thermal management system, wherein the engine thermal management system includes an engine, an engine radiator, a water valve, a first water pump and a heat accumulator, wherein the engine radiator is used to dissipate heat from the engine coolant, and the outlet of the engine coolant pipeline can be connected to the liquid inlet of the heat accumulator; the first water pump is arranged at the outlet of the engine coolant pipeline, and the water valve is arranged on a parallel branch of the engine coolant pipeline inlet and the engine radiator inlet, and the first water pump is used to drive the engine coolant to circulate between the engine coolant pipeline and the engine radiator.
  • the thermal management system includes a fluid-connected engine thermal management system, wherein the engine thermal management system includes an engine, an engine radiator, a water valve, a first water pump and a heat accumulator, wherein the engine radiator is
  • the thermal management system also includes a fluid-connected battery thermal management system, which includes a battery, a plate heat exchanger and a second water pump.
  • the plate heat exchanger is arranged between the battery thermal management system and the engine thermal management system.
  • the heat accumulator can be connected to the coolant pipeline of the battery through the plate heat exchanger, and the second water pump is configured to drive the battery coolant to circulate in the coolant pipeline of the battery.
  • the engine thermal management system also includes a three-way valve, a first valve port of the three-way valve is connected to the coolant pipeline outlet of the engine, a second valve port of the three-way valve is connected to the first end of the hot water side of the plate heat exchanger, the second end of the hot water side of the plate heat exchanger is connected to the liquid outlet of the heat accumulator and the coolant pipeline inlet of the engine, the third end of the cold water side of the plate heat exchanger is connected to the coolant pipeline inlet of the battery, the fourth end of the cold water side of the plate heat exchanger is connected to the coolant pipeline outlet of the battery, and the third valve port of the three-way valve is connected to the liquid inlet of the heat accumulator.
  • the thermal management system also includes an electric drive thermal management system, which includes a charger, a motor, a motor controller, a motor radiator and a third water pump.
  • the coolant pipeline outlet of the motor is connected to the coolant pipeline inlet of the motor controller
  • the coolant pipeline outlet of the motor controller is connected to the coolant pipeline inlet of the charger
  • the coolant pipeline outlet of the charger is connected to the liquid inlet of the motor radiator
  • the liquid outlet of the motor radiator is connected to the coolant pipeline inlet of the motor
  • the third water pump is located at the outlet of the motor controller and is configured to drive the charger coolant, the motor coolant and the motor controller coolant to flow through the motor radiator for heat dissipation.
  • a four-way valve is arranged between the battery thermal management system and the electric drive thermal management system, the first valve port of the four-way valve is connected to the coolant pipeline inlet of the battery, the second valve port of the four-way valve is connected to the coolant pipeline outlet of the battery, the third valve port of the four-way valve is connected to the coolant pipeline inlet of the charger, and the fourth valve port of the four-way valve is connected to the coolant pipeline outlet of the motor controller.
  • the thermal management system further includes an air conditioning system, which includes an air conditioning compressor, a condenser and an evaporator.
  • the air conditioning compressor is connected to the evaporator, and the condenser is connected between the air conditioning compressor and the evaporator.
  • the air-conditioning system and the battery thermal management system are connected through a refrigerator, the hot end channel of the refrigerator is connected to the air-conditioning system, and the cold end channel of the refrigerator is connected to the battery thermal management system; the refrigerator is connected in parallel with the evaporator, the refrigerator is connected to the condenser through a first stop valve, and the evaporator is connected to the condenser through a second stop valve.
  • FIG. 1 is a structural diagram of a thermal management system for a hybrid vehicle provided in an embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, and “fixed” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • a first feature being “above” or “below” a second feature may include the first feature being in direct contact with the second feature, or may include the first feature being in contact with the second feature through another feature between them instead of being in direct contact.
  • a first feature being “above”, “above”, and “above” a second feature may include the first feature being directly above and obliquely above the second feature, or may simply mean that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below”, and “below” a second feature may include the first feature being directly below and obliquely below the second feature, or may simply mean that the first feature is lower in level than the second feature.
  • the present embodiment provides a hybrid vehicle, including a thermal management system as shown in FIG1 , wherein the thermal management system includes an engine thermal management system, a battery thermal management system, an electric drive thermal management system and an air-conditioning system.
  • the temperature thresholds of the four thermal management systems are inconsistent, and the heating and cooling requirements are inconsistent.
  • TRIZ Teoriya Resheniya Izobreatatelskikh Zadatch in Latin, Theory of Inventive Problem Solving in Chinese
  • the engine thermal management system includes an engine 1, an engine radiator 2, an intercooler 3, a fan 7, an APTC (Air Positive Temperature Coefficient, hereinafter referred to as APTC) 8, a water valve 4, a first water pump 5 and a heat accumulator 6.
  • the engine 1, the engine radiator 2, the water valve 4, the first water pump 5 and the heat accumulator 6 can also be configured into a fluid circulation loop, that is, the above five can be connected by fluid. This article defines the connection between the components that can form a fluid circulation loop as a fluid connection.
  • the engine radiator 2 is configured to dissipate heat for the engine coolant.
  • the outlet of the coolant pipeline of the engine 1 is connected to the liquid inlet of the engine radiator 2, and the outlet of the engine radiator 2 is connected to the inlet of the coolant pipeline of the engine 1.
  • the engine coolant is driven to flow through the engine radiator 2 by the mechanical water pump provided by the engine 1 to cool the engine coolant.
  • the engine 1 is connected to the fan 7 and the APTC 8, and the fan 7 and the APTC 8 are used to heat the engine 1 to achieve a cold start of the engine 1.
  • the air intake pipeline of the engine 1 is connected to the intercooler 3, and the air intake of the engine 1 dissipates heat through the intercooler 3. The large and small cycles of the engine 1 are controlled by the thermostat.
  • the coolant pipeline outlet of the engine 1 can also be connected to the liquid inlet of the heat accumulator 6; the first water pump 5 is arranged on the connecting pipeline between the coolant pipeline outlet of the engine 1 and the liquid inlet of the heat accumulator 6, and the water valve 4 is arranged on the parallel branch of the coolant pipeline inlet of the engine 1 and the inlet of the engine radiator 2.
  • the first water pump 5 is configured to drive the engine coolant to circulate between the coolant pipeline of the engine 1 and the engine radiator 2.
  • the water valve 4 is configured to control whether the heat accumulator 6 is connected to the coolant pipeline inlet of the engine 1 and the connecting pipeline between the engine radiator 2.
  • the engine coolant is stored in the heat accumulator 6, and the coolant with a lower temperature in the heat accumulator 6 is mixed into the coolant pipeline of the engine 1 to improve the temperature rise of the engine 1, which can not only prevent the engine 1 from affecting its life due to excessive temperature rise, but also store the heat of the engine coolant for use in other thermal management systems.
  • the first water pump 5 is arranged between the heat accumulator 6 and the water valve 4. After the engine 1 stops suddenly, the first water pump 5 can drive the engine coolant to circulate between the coolant pipeline of the engine 1 and the engine radiator 2 to achieve cooling of the engine 1 and solve the problem of excessive temperature after the engine 1 stops suddenly.
  • the battery thermal management system includes a battery 10, a plate heat exchanger 11 and a second water pump 12.
  • the plate heat exchanger 11 is arranged between the battery thermal management system and the engine thermal management system.
  • the heat accumulator 6 can exchange heat with the battery coolant through the plate heat exchanger 11.
  • the second water pump 12 is arranged to drive the battery coolant to circulate in the coolant pipeline of the battery 10.
  • the battery 10, the plate heat exchanger 11 and the second water pump 12 can form a circulation loop of the battery coolant, that is, the three are fluidly connected.
  • the battery 10 can be heated by its own heating film.
  • a first temperature sensor 13 is provided at the inlet of the coolant pipeline of the battery 10, and the first temperature sensor 13 is configured to detect the water inlet temperature of the battery 10.
  • a second temperature sensor 14 is provided at the outlet of the coolant pipeline of the battery 10, and the second temperature sensor 14 is configured to detect the water outlet temperature of the battery 10. By detecting the water inlet temperature of the battery 10 and the water outlet temperature of the battery 10, the temperature of the battery 10 is monitored to ensure that the battery 10 works at an appropriate temperature.
  • the heat of the engine coolant stored in the heat accumulator 6 is used to heat the battery 10 through the plate heat exchanger 11, so that the heat of the engine coolant is effectively utilized and more energy-saving.
  • the maximum temperature limit of the engine coolant is 95°C, which is much higher than the suitable operating temperature of the battery 10. Therefore, the engine coolant enters the hot water side of the plate heat exchanger 11. After heat exchange through the plate heat exchanger 11, the battery coolant enters the cold water side of the plate heat exchanger 11. The hot water side of the plate heat exchanger 11 and the cold water side of the plate heat exchanger 11 exchange heat to heat the battery 10, thereby avoiding excessively high temperature entering the battery 10 and affecting the life of the battery 10.
  • the battery 10 includes a battery cell.
  • the specific heat capacity of the coolant is about 2.5 times that of the battery cell.
  • the temperature difference of the coolant is 80 degrees Celsius, and the temperature difference of the battery 10 is 5 degrees Celsius, so the temperature difference is about 16 times.
  • heat specific heat capacity * mass * temperature difference, it can be concluded that the weight of the coolant used in the heat accumulator 6 is one fortieth of the mass of the battery cell of the battery 10.
  • the mass of the battery cell is about 102kg, so about 2.55kg of coolant needs to be added.
  • the engine thermal management system also includes a three-way valve 9, a first valve port of the three-way valve 9 is connected to the coolant pipeline outlet of the engine 1, a second valve port of the three-way valve 9 is connected to the first end of the hot water side of the plate heat exchanger 11, a second end of the hot water side of the plate heat exchanger 11 is connected to the liquid outlet of the heat accumulator 6 and the coolant pipeline inlet of the engine 1, a third end of the cold water side of the plate heat exchanger 11 is connected to the coolant pipeline inlet of the battery 10, a fourth end of the cold water side of the plate heat exchanger 11 is connected to the coolant pipeline outlet of the battery 10, and a third valve port of the three-way valve 9 is connected to the liquid inlet of the heat accumulator 6.
  • the heat accumulator 6 When the heat accumulator 6 enters the heat storage mode, the first valve port and the third valve port of the three-way valve 9 are connected, and the higher temperature coolant flowing out of the coolant pipeline outlet of the engine 1 enters the heat accumulator 6 through the first valve port and the third valve port of the three-way valve 9.
  • the water valve 4 is opened, and the lower temperature coolant in the heat accumulator 6 can enter the coolant pipeline of the engine 1, thereby improving the temperature rise of the engine 1.
  • the electric drive thermal management system includes a charger 17, a motor 15, a motor controller 16, a motor radiator 18 and a third water pump 19.
  • the coolant pipeline outlet of the motor 15 is connected to the coolant pipeline inlet of the motor controller 16
  • the coolant pipeline outlet of the motor controller 16 is connected to the coolant pipeline inlet of the charger 17
  • the coolant pipeline outlet of the charger 17 is connected to the liquid inlet of the motor radiator 18,
  • the liquid outlet of the motor radiator 18 is connected to the coolant pipeline inlet of the motor 15, and
  • the third water pump 19 is configured to drive the charger coolant, motor coolant and motor controller coolant to flow through the motor radiator 18 to dissipate heat.
  • the charger 17 is configured to charge the battery 10, which also needs to dissipate heat.
  • the motor radiator 18 has its own electronic fan, and the charger 17, the motor 15 and the motor controller 16 all dissipate heat through the motor radiator 18.
  • a four-way valve 20 is arranged between the battery thermal management system and the electric drive thermal management system.
  • the first valve port of the four-way valve 20 is connected to the coolant pipeline inlet of the battery 10
  • the second valve port of the four-way valve 20 is connected to the coolant pipeline outlet of the battery 10
  • the third valve port of the four-way valve 20 is connected to the coolant pipeline inlet of the charger 17, and the fourth valve port of the four-way valve 20 is connected to the coolant pipeline outlet of the motor controller 16.
  • the third valve port and the fourth valve port of the four-way valve 20 are connected, and the third water pump 19 drives the motor coolant through the charger 17, the motor controller 16 and the motor 15 to reach the motor radiator 18 for heat dissipation.
  • the second valve port of the four-way valve 20 is connected to the first valve port, and the second water pump 12 drives the battery coolant to circulate in the coolant pipeline of the battery 10 .
  • the motor radiator 18 can be used for cooling first.
  • the motor coolant temperature is ⁇ the battery coolant temperature
  • the third valve port of the four-way valve 20 is connected to the first valve port, and the second water pump 12 drives the battery coolant to enter the motor radiator 18 through the first valve port, the third valve port of the four-way valve 20 and the coolant pipeline of the charger 17 to dissipate heat.
  • the battery 10 When the battery 10 needs to be heated, it can be heated by the waste heat of the motor 15 and the waste heat of the engine 1 .
  • the second set temperature is the maximum temperature that the battery 10 can withstand.
  • the third water pump 19 is closed, the first valve port and the fourth valve port of the four-way valve 20 are connected, and the second water pump 12 drives the coolant through the motor 15, the motor controller 16, the third water pump 19, the fourth valve port and the first valve port of the four-way valve 20, and enters the coolant pipeline of the battery 10, so as to heat the battery 10 through the waste heat of the motor 15.
  • the maximum temperature that the battery 10 can withstand is 50°C. Once the temperature of the battery coolant is higher than 50°C, the life of the battery 10 will be affected.
  • the first valve port and the second valve port of the four-way valve 20 are connected, and the battery 10 enters the battery self-circulation mode.
  • the first valve port and the second valve port of the three-way valve 9 are connected, the water valve 4 is opened, and the coolant of the engine 1 is driven by the mechanical water pump, passes through the first valve port and the second valve port of the three-way valve 9, the plate heat exchanger 11 and the water valve 4 and then returns to the coolant pipeline of the engine 1.
  • the engine coolant exchanges heat with the battery coolant through the plate heat exchanger 11, so that the battery 10 is heated.
  • the air conditioning system includes an air conditioning compressor 21 , a condenser 22 and an evaporator 23 .
  • the air conditioning compressor 21 is connected to the evaporator 23
  • the condenser 22 is connected between the air conditioning compressor 21 and the evaporator 23 .
  • the refrigerant in the air conditioning system is compressed by the air conditioning compressor 21 to become a high-temperature and high-pressure gas, and after being condensed by the condenser 22, it enters the evaporator 23, and the evaporator 23 provides cold air to the driving cabin of the hybrid vehicle.
  • the air conditioning system is also provided with a pressure sensor 27 and a three-state pressure switch 28.
  • the pressure sensor 27 is used for pressure detection in the high-pressure circuit, and the three-state pressure switch 28 can prevent the air conditioning compressor 21 from being damaged due to refrigerant leakage; when the refrigerant high pressure in the air conditioning system is abnormal, the air conditioning system is protected from damage.
  • the fan of the condenser 22 runs at a low speed to achieve low noise and save power; when the high pressure in the air conditioning system increases, the fan runs at a high speed to improve the heat dissipation conditions of the condenser 22 and achieve two-stage speed change of the fan.
  • the air conditioning system and the battery thermal management system are connected through the refrigerator 24, the hot end channel of the refrigerator 24 is connected to the air conditioning system, and the cold end channel of the refrigerator 24 is connected to the battery thermal management system; the refrigerator 24 is connected in parallel with the evaporator 23, the refrigerator 24 is connected to the condenser 22 through the first stop valve 25, and the evaporator 23 is connected to the condenser 22 through the second stop valve 26.
  • the first stop valve 25 and the second stop valve 26 By setting the first stop valve 25 and the second stop valve 26, the cold air of the air conditioning system is led to different branches.
  • the first stop valve 25 When the first stop valve 25 is opened and the second stop valve 26 is closed, the first valve port and the second valve port of the four-way valve 20 are connected, and the refrigerant of the air-conditioning compressor 21 is cooled by the condenser 22 and then enters the refrigerator 24 through the first stop valve 25.
  • the second water pump 12 drives the coolant of the battery 10 to flow, and the flow direction is consistent with the battery self-circulation mode.
  • the three-way valve 9 is closed, and the plate heat exchanger 11 does not work, which is used to cool the battery coolant.
  • the refrigerant of the air-conditioning compressor 21 is cooled by the condenser 22 and then enters the evaporator 23 through the second stop valve 26 to provide cool air for the cab.
  • the cab is heated using the coolant from engine 1 or APTC8.
  • the thermal management system of the hybrid vehicle can quickly heat up the vehicle when there is a need for heating the vehicle.
  • the battery 10 first starts heating the heating film, and the engine 1 enters the heating state at the same time.
  • the motor 15 enters the creeping inefficient heating mode, and at the same time turns on the residual heat heating mode of the motor 15 to achieve rapid heating of the battery 10.
  • the coolant temperature of the engine 1 is equal to the first set temperature
  • the residual heat heating mode of the motor 15 is stopped, and the residual heat heating mode of the engine 1 is turned on for heating.
  • the battery 10 achieves rapid heating through three methods: heating film heating, residual heat heating of the motor 15, and residual heat heating of the engine 1.
  • the creeping inefficient heating mode of the motor 15 is: the motor 15 is operated in a low efficiency mode, and the motor 15 is heated after its efficiency becomes low, so as to quickly heat the motor coolant.
  • the first set temperature is 60° C., which can be obtained by those skilled in the art according to the model and parameters of the engine 1 .
  • the thermal management system of the hybrid vehicle provided in this embodiment can realize the interconnection of different temperature ranges, different times, and different heat generation and heat use relationships, thereby improving the comprehensive utilization efficiency; by adding a heat storage device and saving time and energy consumption during cold start, the service life of the battery 10 is extended.
  • the first water pump 5 using the heat storage device 6 can continue to drive the engine coolant after the engine 1 stops, realize the heat dissipation function, and effectively solve the temperature over-limit pain point problem of the hybrid vehicle engine 1 after emergency stop.
  • This embodiment also provides a hybrid vehicle thermal management system control method, which is applied to the above hybrid vehicle thermal management system.
  • the hybrid vehicle thermal management system control method provided in this embodiment aims at solving the problems of multiple thermal management systems of hybrid vehicles, inconsistent temperature ranges of thermal management systems, difficult vehicle layout, high energy consumption during cold start, etc., using TRIZ theory, analyzing the function of each component and using the cutting function to cut the components in the thermal management system, and reallocating their useful functions to other components in the thermal management system, so as to solve the problems and reduce costs.
  • the thermal management system control method for a hybrid vehicle provided in this embodiment can realize twelve different thermal management modes through different combinations.
  • the first thermal management mode is: heat storage and release mode.
  • the heat storage mode is entered; the heat storage mode is: the coolant pipeline outlet of the engine 1 is connected to the liquid inlet of the heat accumulator 6, and the liquid outlet of the heat accumulator 6 is connected to the coolant pipeline inlet of the engine 1, and the heat accumulator 6 stores heat while reducing the temperature rise of the coolant of the engine 1.
  • the coolant of the engine 1 When the coolant temperature of the engine 1 exceeds the maximum temperature limit, the coolant of the engine 1 is stored in the heat accumulator 6, and the coolant with a lower temperature in the heat accumulator 6 is mixed into the coolant pipeline of the engine 1 to improve the temperature rise of the engine 1, which can not only prevent the engine 1 from affecting its life due to excessive temperature rise, but also store the heat of the coolant of the engine 1 for use in other thermal management systems.
  • the heat accumulator 6 enters the heat release mode.
  • the outlet of the coolant pipeline of the engine 1 is disconnected from the inlet of the heat accumulator 6, the water valve 4 is closed, the outlet of the heat accumulator 6 is disconnected from the inlet of the coolant pipeline of the engine 1, and the first water pump 5 drives the high-temperature coolant in the heat accumulator 6 to exchange heat with the battery coolant through the plate heat exchanger 11 to heat the battery 10.
  • the heat of the engine coolant stored in the heat accumulator 6 is fully utilized to heat the battery 10, so that the heat of the engine coolant is effectively utilized, which is more energy-saving.
  • the second thermal management mode is: engine shutdown cycle mode.
  • the engine stop cycle mode is: the engine coolant is driven by the first water pump 5 to circulate between the coolant pipeline of the engine 1 and the engine radiator 2.
  • the problem of temperature exceeding the limit is easy to occur.
  • the temperature is reduced.
  • the first valve port and the third valve port of the three-way valve 9 are connected, the water valve 4 is opened, and the first water pump 5 drives the engine coolant to flow through the heat accumulator 6, the water valve 4, the engine radiator 2, the coolant pipeline of the engine 1, and the water valve 4 back to the heat accumulator 6.
  • the engine radiator 2 is used to achieve natural heat dissipation and reduce the problem of local temperature exceeding the limit.
  • the third thermal management mode is: rapid heat-up mode.
  • the rapid heat-up mode includes the following steps: the battery 10 first starts heating the heating film, and the engine 1 enters the heat-up state.
  • the motor 15 enters the creeping inefficient heating mode and the motor waste heat heating mode.
  • the engine coolant temperature is equal to the first set temperature, the motor waste heat heating mode is stopped and the engine waste heat heating mode is entered.
  • the battery 10 achieves rapid heat-up through three heating methods: heating film heating, motor waste heat heating and engine waste heat heating.
  • the fourth thermal management mode is: motor waste heat heating mode.
  • the second set temperature is the highest temperature that the battery 10 can withstand, the first valve port and the fourth valve port of the four-way valve 20 are connected, the first water pump 5 is closed, and the second water pump 12 drives the battery coolant to flow, and the battery coolant enters the coolant pipeline of the motor 15 and the coolant pipeline of the motor controller 16 from the coolant pipeline outlet of the battery 10, and then enters the battery 10 from the coolant pipeline inlet of the battery 10, so as to achieve motor waste heat heating.
  • the three-way valve 9 and the first stop valve 25 are closed, and the refrigerator 24 and the plate heat exchanger 11 do not work.
  • the fifth thermal management mode is: engine waste heat heating mode.
  • the battery 10 enters the battery self-circulation mode, the first valve port and the second valve port of the three-way valve 9 are connected, the water valve 4 is opened, and the engine coolant exchanges heat with the battery coolant through the plate heat exchanger 11 driven by the mechanical water pump.
  • the sixth thermal management mode is: battery self-circulation mode.
  • the first valve port and the second valve port of the four-way valve 20 are connected, and the second water pump 12 drives the battery coolant to circulate in the coolant pipeline of the battery 10 to achieve temperature balance of the battery 10.
  • the three-way valve 9 and the first stop valve 25 are closed, and the refrigerator 24 and the plate heat exchanger 11 are inoperative.
  • the seventh thermal management mode is: electric drive cooling mode.
  • the third valve port and the fourth valve port of the four-way valve 20 are connected, and the third water pump 19 drives the motor coolant to pass through the charger 17, the motor controller 16 and the motor 15 to reach the motor radiator 18 for heat dissipation, thereby realizing electric drive cooling.
  • the eighth thermal management mode is: motor radiator cooling motor mode.
  • the motor radiator 18 can be used for cooling first.
  • the motor coolant temperature is ⁇ the battery coolant temperature
  • the third valve port of the four-way valve 20 is connected to the first valve port, and the second water pump 12 drives the battery coolant to enter the motor radiator 18 through the first valve port, the third valve port of the four-way valve 20 and the coolant pipeline of the charger 17 for heat dissipation.
  • the three-way valve 9 and the first stop valve 25 are closed, and the refrigerator 24 and the plate heat exchanger 11 are not functional at this time.
  • the ninth thermal management mode is: air conditioning compressor cooling battery mode.
  • the vehicle air conditioning compressor 21 is started. At this time, the first valve port and the second valve port of the four-way valve 20 are connected, the first stop valve 25 is opened, and the second stop valve 26 is closed.
  • the air conditioning compressor 21 compresses the refrigerant and cools it through the condenser 22, then enters the refrigerator 24 through the first stop valve 25, and the second water pump 12 drives the battery coolant.
  • the flow direction of the battery coolant is consistent with the battery self-circulation mode.
  • the three-way valve 9 is closed, and the plate heat exchanger 11 does not work.
  • the tenth thermal management mode is: parking charging cooling mode.
  • the cooling principle is the same as the electric drive cooling mode.
  • the eleventh thermal management mode is: parking charging heating mode.
  • the heating film of the battery 10 is used for heating.
  • the twelfth thermal management mode is: cab cooling and heating.
  • the cab is cooled by the air-conditioning compressor 21.
  • the first stop valve 25 is closed and the second stop valve 26 is opened.
  • the refrigerant of the air-conditioning compressor 21 is cooled by the condenser 22, it enters the evaporator 23 through the second stop valve 26.
  • the evaporator 23 provides cold air for the cab.
  • the cab is heated by the engine 1 coolant or APTC8 with a higher temperature.
  • the thermal management system control method for a hybrid vehicle provided in the present application may include one or a combination of the above twelve management modes.
  • the hybrid vehicle thermal management system control method provided in this embodiment reduces costs and broadens usage modes through functional analysis and tailoring without changing the existing thermal management system structure, realizes more integrated thermal management modes, reduces energy consumption, and improves battery life.
  • the thermal accumulator 6 is used to achieve the rapid heating requirement of the battery 10 at low temperatures, reduce the power loss in the hot engine state, and improve the battery life; accelerate the recovery of the discharge capacity of the battery 10, and extend the service life of the battery 10.
  • the thermal management system control method for hybrid vehicles enters the heat storage mode when the engine coolant temperature is higher than the maximum temperature limit, and the high-temperature coolant in the coolant pipeline of the engine 1 enters the heat accumulator 6 to replace the coolant with a lower temperature inside the heat accumulator 6.
  • the coolant with a lower temperature in the heat accumulator 6 enters the engine cooling pipeline, which can improve the temperature rise of the engine 1 and store the heat of the engine 1 in the heat accumulator 6 for use by other thermal management systems.
  • the engine shutdown circulation mode is entered, and the engine coolant is driven by the first water pump 5 to circulate between the coolant pipeline of the engine 2 and the engine radiator 2 to achieve cooling.
  • the first water pump 5 is used to continue to drive the engine coolant after the engine 1 is shut down, to achieve the heat dissipation function and solve the problem of excessive temperature after the engine 1 is shut down.
  • the hybrid vehicle provided in the present application includes a thermal management system, which adopts the control method of the thermal management system of the hybrid vehicle mentioned above.
  • the coolant temperature of the engine 1 is high, the heat of the engine coolant is stored in the heat accumulator 6 for use by other thermal management systems; and the coolant with a lower temperature in the heat accumulator 6 is mixed into the cooling pipeline of the engine 1 to improve the temperature rise of the engine 1, which has a better energy-saving effect.
  • the engine coolant is driven by the first water pump 5 to circulate between the coolant pipeline of the engine 1 and the engine radiator 2 to achieve cooling, thereby solving the problem of temperature exceeding the limit after the engine 1 stops.

Abstract

混合动力车辆的热管理系统控制方法及混合动力车辆,混合动力车辆的热管理系统控制方法包括:当发动机冷却液温度高于最高温度限值时,进入蓄热模式;其中,蓄热模式为:将发动机(1)的冷却液管路出口与蓄热器(6)的进液口连通,蓄热器(6)的出液口与发动机(1)的冷却液管路进口连通,以使蓄热器(6)蓄热的同时降低发动机冷却液的温升;当发动机(1)停机时,使发动机(1)进入发动机停机循环模式;其中,发动机停机循环模式为:通过第一水泵(5)驱动发动机冷却液在发动机(1)的冷却液管路和发动机散热器(2)之间循环流动。

Description

混合动力车辆的热管理系统控制方法及混合动力车辆
本申请要求2022年09月26日提交中国专利局、申请号为202211173679.5、发明名称为“混合动力车辆的热管理系统控制方法及混合动力车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及混合动力车辆技术领域,例如涉及一种混合动力车辆的热管理系统控制方法及混合动力车辆。
背景技术
混合动力车辆的部件较多,温度阈值不一致,升温降温需求也不一致,不同部件的冷却液管路无法直接串联,所需阀和换热器较多,成本较高。
相关技术中,通过将各个热管理系统集成,以实现节约成本。但是混合动力车辆的发动机在运行较长时间后,发动机的冷却液的温度过高需要及时降温,否则会影响发动机的寿命;相关技术中通过发动机散热器散热,造成热量流失;且在散热过程中会消耗较多的电量,难以实现较好的节能效果。另外,发动机在急停后存在温度超限问题。
发明内容
本申请提供一种混合动力车辆的热管理系统控制方法及混合动力车辆,不仅能够将发动机的热量存储以待利用,而且能处理混合动力车辆的发动机急停后的温度超限的情况。
混合动力车辆的热管理系统控制方法,包括:
当发动机冷却液温度高于最高温度限值时,进入蓄热模式;
其中,所述蓄热模式为:将所述发动机的冷却液管路出口与所述蓄热器的进液口连通,所述蓄热器的出液口与所述发动机的冷却液管路进口连通,以使所述蓄热器蓄热的同时降低发动机冷却液的温升;
当所述发动机停机时,使所述发动机进入发动机停机循环模式;
其中,所述发动机停机循环模式为:通过所述第一水泵驱动发动机冷却液在所述发动机的冷却液管路和发动机散热器之间循环流动。
作为混合动力车辆的热管理系统控制方法的一个可选方案,当电池需 要加热时,所述发动机的冷却液管路出口与所述蓄热器的进液口断开,所述蓄热器的出液口与所述发动机的冷却液管路进口断开,所述第一水泵驱动所述蓄热器内的高温冷却液通过板式换热器与电池冷却液交换热量,以为电池加热。
作为混合动力车辆的热管理系统控制方法的一个可选方案,当混合动力车辆有整机热机需求时,启动快速热机模式;其中,所述快速热机模式包括:
所述电池启动加热膜加热,同时所述发动机进入热机状态;
当所述电池具备放电能力时,电机进入蠕行低效发热模式,同时进入电机余热加热模式;
当发动机冷却液温度等于第一设定温度时,停止所述电机余热加热模式,进入发动机余热加热模式。
作为混合动力车辆的热管理系统控制方法的一个可选方案,所述电机余热加热模式为:
若电池冷却液温度<电机冷却液温度<第二设定温度,第二水泵驱动电池冷却液流动,以使电池冷却液自电池的冷却液管路出口进入电机的冷却液管路和电机控制器的冷却液管路,再自电池的冷却液管路进口进入所述电池;所述第二设定温度为所述电池能承受的最高温度,。
作为混合动力车辆的热管理系统控制方法的一个可选方案,所述发动机余热加热模式为:
若发动机冷却液温度>所述电池冷却液温度,所述电池进入电池自循环模式,所述发动机冷却液在机械水泵的驱动下通过所述板式换热器与所述电池冷却液交换热量。
作为混合动力车辆的热管理系统控制方法的一个可选方案,所述电池自循环模式为:所述第二水泵驱动所述电池冷却液在电池的冷却液管路中循环。
混合动力车辆,包括热管理系统,所述热管理系统采用如以上任一方案所述的混合动力车辆的热管理系统控制方法,所述热管理系统包括流体连接的发动机热管理系统,所述发动机热管理系统包括发动机、发动机散热器、水阀、第一水泵和蓄热器,所述发动机散热器用于发动机冷却液的 散热,发动机的冷却液管路出口能与所述蓄热器的进液口连通;所述第一水泵设置于所述发动机的冷却液管路出口,所述水阀设置于发动机的冷却液管路进口和发动机散热器的进口的并联支路上,所述第一水泵用于驱动所述发动机冷却液在发动机的冷却液管路和所述发动机散热器之间循环。
作为混合动力车辆的一个可选方案,所述热管理系统还包括流体连接的电池热管理系统,所述电池热管理系统包括电池、板式换热器和第二水泵,所述板式换热器设置于所述电池热管理系统和所述发动机热管理系统之间,所述蓄热器能通过所述板式换热器与电池的冷却液管路连接,所述第二水泵设置为驱动电池冷却液在电池的冷却液管路中循环。
作为混合动力车辆的一个可选方案,所述发动机热管理系统还包括三通阀,所述三通阀的第一阀口与所述发动机的冷却液管路出口连接,所述三通阀的第二阀口与所述板式换热器热水侧的第一端部连接,所述板式换热器热水侧的第二端部与所述蓄热器的出液口和所述发动机的冷却液管路进口连接,板式换热器冷水侧的第三端部与电池的冷却液管路进口连接,所述板式换热器冷水侧的第四端部与电池的冷却液管路出口连接,所述三通阀的第三阀口与所述蓄热器的进液口连接。
作为混合动力车辆的一个可选方案,所述热管理系统还包括电驱热管理系统,所述电驱热管理系统包括充电机、电机、电机控制器、电机散热器和第三水泵,电机的冷却液管路出口与电机控制器的冷却液管路进口连接,电机控制器的冷却液管路出口与充电机的冷却液管路进口连接,充电机的冷却液管路出口与电机散热器的进液口连接,电机散热器的出液口与电机的冷却液管路进口连接,所述第三水泵位于所述电机控制器的出口,且设置为驱动充电机冷却液、电机冷却液和电机控制器冷却液流经所述电机散热器散热。
作为混合动力车辆的一个可选方案,所述电池热管理系统和所述电驱热管理系统之间设置有四通阀,所述四通阀的第一阀口与电池的冷却液管路进口连接,所述四通阀的第二阀口与电池的冷却液管路出口连接,所述四通阀的第三阀口与所述充电机的冷却液管路进口连接,所述四通阀的第四阀口与所述电机控制器的冷却液管路出口连接。
作为混合动力车辆的一个可选方案,所述热管理系统还包括空调系统, 所述空调系统包括空调压缩机、冷凝器和蒸发器,所述空调压缩机与所述蒸发器连接,所述冷凝器连接于所述空调压缩机与所述蒸发器之间。
作为混合动力车辆的一个可选方案,所述空调系统和所述电池热管理系统通过制冷器连接,所述制冷器的热端通道与所述空调系统连接,所述制冷器的冷端通道与所述电池热管理系统连接;所述制冷器与所述蒸发器并联,所述制冷器通过第一截止阀与所述冷凝器连接,所述蒸发器通过第二截止阀与所述冷凝器连接。
附图说明
图1是本申请实施例提供的混合动力车辆的热管理系统的结构图。
图中:
1、发动机;2、发动机散热器;3、中冷器;4、水阀;5、第一水泵;6、蓄热器;7、风机;8、APTC;9、三通阀;10、电池;11、板式换热器;12、第二水泵;13、第一温度传感器;14、第二温度传感器;15、电机;16、电机控制器;17、充电机;18、电机散热器;19、第三水泵;20、四通阀;21、空调压缩机;22、冷凝器;23、蒸发器;24、制冷器;25、第一截止阀;26、第二截止阀;27、压力传感器;28、三态压力开关。
具体实施方式
本申请实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域 的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一特征和第二特征直接接触,也可以包括第一特征和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
本实施例提供了一种混合动力车辆,包括如图1所示的热管理系统,热管理系统包括发动机热管理系统、电池热管理系统、电驱热管理系统和空调系统,四个热管理系统的温度阈值不一致,升温降温需求不一致,为了提高混合动力车辆的热管理集成程度,满足集成热管理的需求,通过TRIZ(拉丁文为Teoriya Resheniya Izobreatatelskikh Zadatch,中文为发明问题解决理论)理论分析,对多个系统进行整合,以实现温域之间的相互作用。
发动机热管理系统包括发动机1、发动机散热器2、中冷器3、风机7、APTC(英文全称为Air Positive Temperature Coefficient,以下简称APTC)8、水阀4、第一水泵5和蓄热器6,发动机1、发动机散热器2、水阀4、第一水泵5和蓄热器6也可以配置成流体循环回路,即以上五者可以通过流体连通,本文将能够形成流体循环回路的各部件之间的连接定义为流体连接。发动机散热器2设置为对发动机冷却液进行散热,发动机1的冷却液管路出口与发动机散热器2的进液口连通,发动机散热器2的出液口与发动机1的冷却液管路进口连通,发动机1在正常工作时,通过自带的机械水泵驱动发动机冷却液流过发动机散热器2,以实现对发动机冷却液降温;发动机1连接有风机7和APTC8,通过风机7和APTC8为发动机1加热,以实现发动机1的冷启动。发动机1的进气管路与中冷器3连接,发动机1的进气通过中冷器3散热,发动机1的大小循环由节温器控制。
发动机1的冷却液管路出口还能够与蓄热器6的进液口连通;第一水泵5设置于发动机1的冷却液管路出口和蓄热器6的进液口连通管路,水 阀4设置于发动机1的冷却液管路进口和发动机散热器2的进口的并联支路上,第一水泵5设置为驱动发动机冷却液在发动机1的冷却液管路和发动机散热器2之间循环。
在本实施例中,水阀4设置为控制蓄热器6是否与发动机1的冷却液管路进口和发动机散热器2之间连通管路连通,当发动机1的冷却液温度超过最高温度限值时,将发动机冷却液存储在蓄热器6中,并将蓄热器6内温度较低的冷却液混入发动机1的冷却液管路,改善发动机1的温升,既能避免发动机1因温升过高影响寿命,又能将发动机冷却液的热量存储以备其他热管理系统的使用。第一水泵5设置于蓄热器6和水阀4之间,第一水泵5能在发动机1急停后,驱动发动机冷却液在发动机1的冷却液管路和发动机散热器2之间循环,以实现发动机1降温,解决发动机1急停后温度超限的问题。
电池热管理系统包括电池10、板式换热器11和第二水泵12,板式换热器11设置于电池热管理系统和发动机热管理系统之间,蓄热器6能通过板式换热器11与电池冷却液交换热量,第二水泵12设置为驱动电池冷却液在电池10的冷却液管路中循环。电池10、板式换热器11和第二水泵12能够形成电池冷却液的循环回路,即三者流体连接。
电池10可以通过自身的加热膜进行加热。电池10的冷却液管路进口设置有第一温度传感器13,第一温度传感器13设置为检测电池10的进水温度,电池10的冷却液管路出口设置有第二温度传感器14,第二温度传感器14设置为检测电池10的出水温度。通过检测电池10的进水温度和电池10的出水温度,以监测电池10的温度,保证电池10在适宜的温度下工作。
当电池10的温度较低需要加热时,将蓄热器6内存储的发动机冷却液的热量通过板式换热器11为电池10加热,使得发动机冷却液的热量得到有效利用,更节能。
由于电池10的温度阈值小于发动机冷却液的热量,发动机冷却液的最高温度限值为95℃,远远高于电池10工作的适宜温度,因此,发动机冷却液进入板式换热器11热水侧,通过板式换热器11换热后,电池冷却液进入板式换热器11冷水侧,板式换热器11热水侧和板式换热器11冷水侧 交换热量,以为电池10加热,避免进入电池10的温度过高影响电池10的寿命。
电池10包括电芯,根据计算,冷却液比热容是电芯比热容的2.5倍左右;冷却液温差80度,电池10温差5摄氏度,则温差约为16倍;根据:热量=比热容*质量*温差可以得出,蓄热器6用冷却液重量为电池10的电芯质量的四十分之一。以混合动力车辆的电池10的电芯计算,电芯质量约为102kg,则需要增加约2.55kg冷却液。
为了实现蓄热器6既能通过发动机冷却液蓄热,又能将存储的热量传递给电池10,发动机热管理系统还包括三通阀9,三通阀9的第一阀口与发动机1的冷却液管路出口连接,三通阀9的第二阀口与板式换热器11热水侧的第一端部连接,板式换热器11热水侧的第二端部与蓄热器6的出液口和发动机1的冷却液管路进口连接,板式换热器11冷水侧的第三端部与电池10的冷却液管路进口连接,板式换热器11冷水侧的第四端部与电池10的冷却液管路出口连接,三通阀9的第三阀口与蓄热器6的进液口连接。
当蓄热器6进入蓄热模式时,三通阀9的第一阀口和第三阀口连通,发动机1的冷却液管路出口流出的较高温度的冷却液经三通阀9的第一阀口和第三阀口进入蓄热器6,水阀4打开,蓄热器6内的较低温度的冷却液能进入发动机1的冷却液管路,改善发动机1的温升。
当蓄热器6进入放热模式时,三通阀9的第二阀口和第三阀口连通,水阀4关闭,在第一水泵5的驱动下,蓄热器6内的冷却液经板式换热器11,为电池10加热。
电驱热管理系统包括充电机17、电机15、电机控制器16、电机散热器18和第三水泵19,电机15的冷却液管路出口与电机控制器16的冷却液管路进口连接,电机控制器16的冷却液管路出口与充电机17的冷却液管路进口连接,充电机17的冷却液管路出口与电机散热器18的进液口连接,电机散热器18的出液口与电机15的冷却液管路进口连接,第三水泵19设置为驱动充电机冷却液、电机冷却液和电机控制器冷却液流经电机散热器18散热。充电机17设置为给电池10充电,也需要散热。电机散热器18内自带电子风扇,充电机17、电机15和电机控制器16均通过电机散热 器18散热。
为了实现电机散热器18为电池10提供冷却,以及利用电机15余热为电池10加热,实现不同温域、不同时间、不同产热以及用热关系的联通,提高综合利用效率,电池热管理系统和电驱热管理系统之间设置有四通阀20,四通阀20的第一阀口与电池10的冷却液管路进口连接,四通阀20的第二阀口与电池10的冷却液管路出口连接,四通阀20的第三阀口与充电机17的冷却液管路进口连接,四通阀20的第四阀口与电机控制器16的冷却液管路出口连接。
当电驱热管理系统需要冷却时,四通阀20的第三阀口和第四阀口连通,第三水泵19驱动电机冷却液经过充电机17、电机控制器16和电机15到达电机散热器18散热。
当电池10进入电池自循环模式时,四通阀20的第二阀口和第一阀口连通,第二水泵12驱动电池冷却液在电池10的冷却液管路中循环。
混合动力车辆在非纯电动模式下运行时,若电池10有散热需求,可以优先使用电机散热器18进行冷却。当电机冷却液温度≤电池冷却液温度,四通阀20的第三阀口和第一阀口连通,第二水泵12驱动电池冷却液经四通阀20的第一阀口、第三阀口和充电机17的冷却液管路进入电机散热器18散热。
当电池10需要加热时,可以通过电机15的余热和发动机1的余热进行加热。
若电池冷却液温度<电机冷却液温度<第二设定温度,第二设定温度为电池10能承受的最高温度。第三水泵19关闭,四通阀20的第一阀口和第四阀口连通,第二水泵12驱动冷却液经电机15、电机控制器16、第三水泵19、四通阀20的第四阀口和第一阀口,进入电池10的冷却液管路,实现通过电机15的余热为电池10加热。在本实施例中,电池10能承受的最高温度为50℃。一旦电池冷却液的温度高于50℃,会影响电池10的寿命。
若发动机冷却液温度>电池冷却液温度,四通阀20的第一阀口和第二阀口连通,电池10进入电池自循环模式。三通阀9的第一阀口和第二阀口连通,水阀4打开,发动机1的冷却液在机械水泵的驱动下,经过三通阀 9的第一阀口和第二阀口、板式换热器11和水阀4再回到发动机1的冷却液管路,发动机冷却液通过板式换热器11与电池冷却液交换热量,实现电池10加热。
空调系统包括空调压缩机21、冷凝器22和蒸发器23,空调压缩机21与蒸发器23连接,冷凝器22连接于空调压缩机21与蒸发器23之间。
空调系统中的制冷剂通过空调压缩机21压缩变为高温高压气体,经过冷凝器22冷凝后,进入蒸发器23,蒸发器23给混合动力车辆的驾驶室提供冷风。
空调系统中还设置有压力传感器27和三态压力开关28,压力传感器27用于高压回路中的压力检测,三态压力开关28能够防止因制冷剂泄露而损坏空调压缩机21;当空调系统中的制冷剂高压异常时,保护空调系统不受损坏。在正常工作状况下,冷凝器22风扇低速运转,实现低噪声,节省动力;当空调系统内高压升高时,风扇高速运转,以改善冷凝器22的散热条件,实现风扇的两级变速。
空调系统和电池热管理系统通过制冷器24连接,制冷器24的热端通道与空调系统连接,制冷器24的冷端通道与电池热管理系统连接;制冷器24与蒸发器23并联,制冷器24通过第一截止阀25与冷凝器22连接,蒸发器23通过第二截止阀26与冷凝器22连接。通过设置第一截止阀25和第二截止阀26,使空调系统的冷气通向不同支路。
当第一截止阀25打开,第二截止阀26关闭,四通阀20的第一阀口和第二阀口连通,空调压缩机21的制冷剂通过冷凝器22冷却后,经过第一截止阀25进入制冷器24。第二水泵12驱动电池10的冷却液流动,流向与电池自循环模式一致,三通阀9关闭,板式换热器11不起作用,用于对电池冷却液进行降温。
当第一截止阀25关闭,第二截止阀26打开时,空调压缩机21的制冷剂通过冷凝器22冷却后,经过第二截止阀26进入蒸发器23,为驾驶室提高冷风。
驾驶室的采暖使用发动机1的冷却液或APTC8采暖。
本实施例提供的混合动力车辆的热管理系统,当整车有热机需求时,能够快速热机。电池10首先启动加热膜加热,同时发动机1进入热机状态。 当电池10具备一定放电能力时,电机15进入蠕行低效发热模式,同时打开电机15余热加热模式,实现电池10的快速升温。当发动机1的冷却液温度等于第一设定温度时,停止电机15余热加热模式,打开发动机1余热加热模式进行加热。当混合动力车辆处于低温冷启动的环境中时,电池10通过加热膜加热、电机15余热加热和发动机1余热加热三种方式,实现快速热机。
电机15的蠕行低效发热模式为:使电机15运行在低效率模式,并使电机15效率变低后发热,快速给电机冷却液加热。
在本实施例中,第一设定温度为60℃,本领域技术人员可根据发动机1的型号和参数获取。
本实施例提供的混合动力车辆的热管理系统,能实现不同温域,不同时间、不同产热及用热关系的联通,提高综合利用效率;通过加入蓄热装置,并节省冷启动时的时间和能耗,延长电池10使用寿命。使用蓄热器6的第一水泵5,可以实现发动机1停止后继续驱动发动机冷却液,实现散热功能,有效解决混合动力车辆的发动机1急停后的温度超限痛点问题。
本实施例还提供了一种混合动力车辆的热管理系统控制方法,应用于上述的混合动力车辆的热管理系统。本实施例提供的混合动力车辆的热管理系统控制方法,针对混合动力车辆的热管理系统多,热管理系统温域不一致,整车布置困难,冷启动时能耗较高等问题,使用TRIZ理论,对每个部件的功能进行分析并使用裁剪功能,将热管理系统中的组件裁剪,将其有用功能重新分配至热管理系统内其他组件,实现问题的解决和成本的缩减。
本实施例提供的混合动力车辆的热管理系统控制方法,通过不同的组合形式,可以实现十二种不同的热管理模式。
第一种热管理模式为:蓄热放热模式。
当发动机冷却液温度高于最高温度限值时,进入蓄热模式;蓄热模式为:将发动机1的冷却液管路出口与蓄热器6的进液口连通,蓄热器6的出液口与发动机1的冷却液管路进口连通,蓄热器6蓄热的同时降低发动机1冷却液的温升。当发动机1的冷却液温度超过最高温度限值时,将发动机1的冷却液存储在蓄热器6中,并将蓄热器6内温度较低的冷却液混 入发动机1的冷却液管路,改善发动机1的温升,既能避免发动机1因温升过高影响寿命,又能将发动机1的冷却液的热量存储以备其他热管理系统的使用。
当电池10需要加热时,蓄热器6进入放热模式。发动机1的冷却液管路出口与蓄热器6的进液口断开,水阀4关闭,蓄热器6的出液口与发动机1的冷却液管路进口断开,第一水泵5驱动蓄热器6内的高温冷却液通过板式换热器11与电池冷却液交换热量,为电池10加热。充分利用蓄热器6内存储的发动机冷却液的热量为电池10加热,使得发动机冷却液的热量得到有效利用,更节能。
第二种热管理模式为:发动机停机循环模式。
当发动机1停机时,进入发动机停机循环模式;发动机停机循环模式为:通过第一水泵5驱动发动机冷却液在发动机1的冷却液管路和发动机散热器2之间循环流动。发动机1急停时,容易出现温度超限的问题,通过控制第一水泵5参与发动机冷却液的循环驱动,实现降温。此时三通阀9的第一阀口和第三阀口连通,水阀4打开,第一水泵5驱动发动机冷却液流经蓄热器6、水阀4、发动机散热器2、发动机1的冷却液管路、水阀4回到蓄热器6。利用发动机散热器2实现自然散热,降低局部温度超限问题。
第三种热管理模式为:快速热机模式。
当混合动力车辆有整机热机需求时,启动快速热机模式,快速热机模式包括以下步骤:电池10先启动加热膜加热,同时发动机1进入热机状态。当电池10具备放电能力时,电机15进入蠕行低效发热模式,同时进入电机余热加热模式。当发动机冷却液温度等于第一设定温度时,停止电机余热加热模式,进入发动机余热加热模式。当混合动力车辆处于低温冷启动的环境中时,电池10通过加热膜加热、电机余热加热和发动机余热加热三种加热方式,实现快速热机。
第四种热管理模式为:电机余热加热模式。
若电池冷却液温度<电机冷却液温度<第二设定温度,第二设定温度为电池10能承受的最高温度,四通阀20的第一阀口和第四阀口连通,第一水泵5关闭,第二水泵12驱动电池冷却液流动,电池冷却液自电池10 的冷却液管路出口进入电机15的冷却液管路和电机控制器16的冷却液管路,再自电池10的冷却液管路进口进入电池10,实现电机余热加热。此时,三通阀9和第一截止阀25关闭,制冷器24和板式换热器11不起作用。
第五种热管理模式为:发动机余热加热模式。
若发动机1冷却液温度>电池冷却液温度,电池10进入电池自循环模式,三通阀9的第一阀口和第二阀口连通,水阀4打开,发动机冷却液在机械水泵的驱动下通过板式换热器11与电池冷却液交换热量。
第六种热管理模式为:电池自循环模式。
电池10自循环时,四通阀20的第一阀口和第二阀口连通,第二水泵12驱动电池冷却液在电池10的冷却液管路中循环,实现电池10的温度平衡。此时三通阀9和第一截止阀25关闭,制冷器24和板式换热器11不起作用。
第七种热管理模式为:电驱冷却模式。
将四通阀20的第三阀口和第四阀口连通,第三水泵19驱动电机冷却液经过充电机17、电机控制器16和电机15到达电机散热器18进行散热,实现电驱冷却。
第八种热管理模式为:电机散热器冷却电机模式。
混合动力车辆在非纯电动模式下运行时,若电池10有散热需求,可以优先使用电机散热器18进行冷却。当电机冷却液温度≤电池冷却液温度,四通阀20的第三阀口和第一阀口连通,第二水泵12驱动电池冷却液经四通阀20的第一阀口、第三阀口和充电机17的冷却液管路进入电机散热器18散热。此时,三通阀9和第一截止阀25关闭,制冷器24和板式换热器11此时不起作用。
第九种热管理模式为:空调压缩机冷却电池模式。
若电机散热器18使用或电池10散热需求较高时,则启动整车空调压缩机21。此时,四通阀20的第一阀口和第二阀口连通,第一截止阀25打开,第二截止阀26关闭,空调压缩机21压缩制冷剂通过冷凝器22冷却后,经过第一截止阀25进入制冷器24,第二水泵12驱动电池冷却液,电池冷却液的流向与电池自循环模式一致。此时三通阀9关闭,板式换热器11不起作用。
第十种热管理模式为:驻车充电冷却模式。
当驻车时使用充电机17充电时,冷却原理同电驱冷却模式。
第十一种热管理模式为:驻车充电加热模式。
使用电池10自带的加热膜加热。
第十二种热管理模式为:驾驶室制冷和采暖。
驾驶室使用空调压缩机21制冷,此时,第一截止阀25关闭,第二截止阀26开启。空调压缩机21制冷剂通过冷凝器22冷却后,经过第二截止阀26进入蒸发器23,蒸发器23为驾驶室提供冷风。驾驶室采暖使用温度较高的发动机1冷却液或APTC8采暖。
本申请所提供的混合动力车辆的热管理系统控制方法可以包括以上十二种管理模式的一种或者几种的组合。
本实施例提供的混合动力车辆的热管理系统控制方法,在不改变现有热管理系统结构情况下,通过功能分析和裁剪,降低成本,并拓宽使用模式,实现更多的集成热管理模式,减少能耗,提高续航。利用蓄热器6,实现电池10低温下的快速升温需求,减少热机状态下对电量的损耗,提高续航能力;加快电池10放电能力的恢复,延长电池10的使用寿命。
本申请提供的混合动力车辆的热管理系统控制方法,通过在发动机冷却液温度高于最高温度限值时,进入蓄热模式,发动机1的冷却液管路中的高温冷却液进入蓄热器6中,替换蓄热器6内部温度较低的冷却液,蓄热器6内温度较低的冷却液进入发动机冷却管路中,可以改善发动机1的温升,而且将发动机1的热量存储在蓄热器6中,以备其他热管理系统利用。当发动机1停机时,进入发动机停机循环模式,通过第一水泵5驱动发动机冷却液在发动机2的冷却液管路和发动机散热器2之间循环,实现降温。通过第一水泵5实现发动机1停机后继续驱动发动机冷却液,实现散热功能,解决发动机1停机后的温度超限问题。
本申请提供的混合动力车辆,包括热管理系统,热管理系统采用上述的混合动力车辆的热管理系统的控制方法,当发动机1的冷却液温度较高时,将发动机冷却液的热量存储在蓄热器6中,以备其他热管理系统利用;并将蓄热器6中温度较低的冷却液混入发动机1的冷却管路,改善发动机1的温升,具有更好的节能效果。而且,发动机1急停后,通过第一水泵5 驱动发动机冷却液在发动机1的冷却液管路和发动机散热器2之间循环,实现降温,解决发动机1停机后的温度超限问题。

Claims (13)

  1. 混合动力车辆的热管理系统控制方法,包括:
    当发动机冷却液温度高于最高温度限值时,进入蓄热模式;
    其中,所述蓄热模式为:将所述发动机(1)的冷却液管路出口与所述蓄热器(6)的进液口连通,所述蓄热器(6)的出液口与所述发动机(1)的冷却液管路进口连通,以使所述蓄热器(6)蓄热的同时降低发动机冷却液的温升;
    当所述发动机(1)停机时,使所述发动机(1)进入发动机停机循环模式;
    其中,所述发动机停机循环模式为:通过所述第一水泵(5)驱动发动机冷却液在所述发动机(1)的冷却液管路和发动机散热器(2)之间循环流动。
  2. 根据权利要求1所述的混合动力车辆的热管理系统控制方法,其中,当电池(10)需要加热时,所述发动机(1)的冷却液管路出口与所述蓄热器(6)的进液口断开,所述蓄热器(6)的出液口与所述发动机(1)的冷却液管路进口断开,所述第一水泵(5)驱动所述蓄热器(6)内的高温冷却液通过板式换热器(11)与电池冷却液交换热量,以为电池(10)加热。
  3. 根据权利要求2所述的混合动力车辆的热管理系统控制方法,其中,当混合动力车辆有整机热机需求时,启动快速热机模式;
    其中,所述快速热机模式包括:
    所述电池(10)启动加热膜加热,同时所述发动机(1)进入热机状态;
    当所述电池(10)具备放电能力时,电机(15)进入蠕行低效发热模式,同时进入电机余热加热模式;
    当发动机冷却液温度等于第一设定温度时,停止所述电机余热加热模式,进入发动机余热加热模式。
  4. 根据权利要求3所述的混合动力车辆的热管理系统控制方法,其中,所述电机余热加热模式为:
    若电池冷却液温度<电机冷却液温度<第二设定温度,第二水泵(12)驱动电池冷却液流动,以使电池冷却液自电池(10)的冷却液管路出口进入电机(15)的冷却液管路和电机控制器(16)的冷却液管路,再自电池(10)的冷却液管路进口进入所述电池(10);其中,所述第二设定温度为所述电池(10)能承受的最高温度。
  5. 根据权利要求4所述的混合动力车辆的热管理系统控制方法,其中,所述发动机余热加热模式为:
    若发动机冷却液温度>所述电池冷却液温度,所述电池(10)进入电池自循环模式,所述发动机冷却液在机械水泵的驱动下通过所述板式换热器(11)与所述电池冷却液交换热量。
  6. 根据权利要求5所述的混合动力车辆的热管理系统控制方法,其中,所述电池自循环模式为:所述第二水泵(12)驱动所述电池冷却液在所述电池(10)的冷却液管路中循环。
  7. 混合动力车辆,包括热管理系统,其中,所述热管理系统采用如权利要求1-6任一项所述的混合动力车辆的热管理系统控制方法,所述热管理系统包括发动机热管理系统,所述发动机热管理系统包括流体连接的发动机(1)、发动机散热器(2)、水阀(4)、第一水泵(5)和蓄热器(6),所述发动机散热器(2)用于发动机冷却液的散热,所述发动机(1)的冷却液管路出口能与所述蓄热器(6)的进液口连通;所述第一水泵(5)设置于所述发动机(1)的冷却液管路出口,所述水阀(4)设置于发动机(1)的冷却液管路进口和发动机散热器(2)的进口的并联支路上,所述第一水泵(5)用于驱动所述发动机冷却液在发动机(1)的冷却液管路和所述发动机散热器(2)之间循环。
  8. 根据权利要求7所述的混合动力车辆,其中,所述热管理系统还包括电池热管理系统,所述电池热管理系统包括流体连接的电池(10)、板式换热器(11)和第二水泵(12),所述板式换热器(11)设置于所述电池热管理系统和所述发动机热管理系统之间,所述蓄热器(6)能通过所述板式换热器(11)与电池(10)的冷却液管路连接,所述第二水泵(12)设置为驱动电池冷却液在电池(10)的冷却液管路中循环。
  9. 根据权利要求8所述的混合动力车辆,其中,所述发动机热管理系统还包括三通阀(9),所述三通阀(9)的第一阀口与所述发动机(1)的冷却液管路出口连接,所述三通阀(9)的第二阀口与所述板式换热器(11)热水侧的第一端部连接,所述板式换热器(11)热水侧的第二端部与所述蓄热器(6)的出液口和所述发动机(1)的冷却液管路进口连接,所述板式换热器(11)冷水侧的第三端部与所述电池(10)的冷却液管路进口连接,所述板式换热器(11)冷水侧的第四端部与所述电池(10)的冷却液管路出口连接,所述三 通阀(9)的第三阀口与所述蓄热器(6)的进液口连接。
  10. 根据权利要求8所述的混合动力车辆,其中,所述热管理系统还包括电驱热管理系统,所述电驱热管理系统包括充电机(17)、电机(15)、电机控制器(16)、电机散热器(18)和第三水泵(19),电机(15)的冷却液管路出口与电机控制器(16)的冷却液管路进口连接,电机控制器(16)的冷却液管路出口与充电机(17)的冷却液管路进口连接,充电机(17)的冷却液管路出口与电机散热器(18)的进液口连接,电机散热器(18)的出液口与电机(15)的冷却液管路进口连接,所述第三水泵(19)位于所述电机控制器(16)的出口,且设置为驱动充电机冷却液、电机冷却液和电机控制器冷却液流经所述电机散热器(18)散热。
  11. 根据权利要求10所述的混合动力车辆,其中,所述电池热管理系统和所述电驱热管理系统之间设置有四通阀(20),所述四通阀(20)的第一阀口与所述电池(10)的冷却液管路进口连接,所述四通阀(20)的第二阀口与所述电池(10)的冷却液管路出口连接,所述四通阀(20)的第三阀口与所述充电机(17)的冷却液管路进口连接,所述四通阀(20)的第四阀口与所述电机控制器(16)的冷却液管路出口连接。
  12. 根据权利要求8所述的混合动力车辆,其中,所述热管理系统还包括空调系统,所述空调系统包括空调压缩机(21)、冷凝器(22)和蒸发器(23),所述空调压缩机(21)与所述蒸发器(23)连接,所述冷凝器(22)连接于所述空调压缩机(21)与所述蒸发器(23)之间。
  13. 根据权利要求12所述的混合动力车辆,其中,所述空调系统和所述电池热管理系统通过制冷器(24)连接,所述制冷器(24)的热端通道与所述空调系统连接,所述制冷器(24)的冷端通道与所述电池热管理系统连接;所述制冷器(24)与所述蒸发器(23)并联,所述制冷器(24)通过第一截止阀(25)与所述冷凝器(22)连接,所述蒸发器(23)通过第二截止阀(26)与所述冷凝器(22)连接。
PCT/CN2022/143609 2022-09-26 2022-12-29 混合动力车辆的热管理系统控制方法及混合动力车辆 WO2024066110A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211173679.5 2022-09-26
CN202211173679.5A CN115465089A (zh) 2022-09-26 2022-09-26 混合动力车辆的热管理系统控制方法及混合动力车辆

Publications (1)

Publication Number Publication Date
WO2024066110A1 true WO2024066110A1 (zh) 2024-04-04

Family

ID=84335870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143609 WO2024066110A1 (zh) 2022-09-26 2022-12-29 混合动力车辆的热管理系统控制方法及混合动力车辆

Country Status (2)

Country Link
CN (1) CN115465089A (zh)
WO (1) WO2024066110A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115465089A (zh) * 2022-09-26 2022-12-13 潍柴动力股份有限公司 混合动力车辆的热管理系统控制方法及混合动力车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104653269A (zh) * 2013-11-15 2015-05-27 沃尔沃汽车公司 发动机冷却系统的蓄热装置
DE102017211303A1 (de) * 2017-07-04 2019-01-10 Ford Global Technologies, Llc Wärmespeicheranordnung für eine Fahrzeugbatterie und Verfahren zu deren Betrieb
CN111483306A (zh) * 2019-01-28 2020-08-04 本田技研工业株式会社 混合动力车辆的热分配装置
CN111605438A (zh) * 2019-02-25 2020-09-01 本田技研工业株式会社 混合动力车辆的电池升温装置
CN114046200A (zh) * 2021-11-09 2022-02-15 上海柴油机股份有限公司 混合动力发动机的防过热冷却系统及其控制方法
CN115465089A (zh) * 2022-09-26 2022-12-13 潍柴动力股份有限公司 混合动力车辆的热管理系统控制方法及混合动力车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104653269A (zh) * 2013-11-15 2015-05-27 沃尔沃汽车公司 发动机冷却系统的蓄热装置
DE102017211303A1 (de) * 2017-07-04 2019-01-10 Ford Global Technologies, Llc Wärmespeicheranordnung für eine Fahrzeugbatterie und Verfahren zu deren Betrieb
CN111483306A (zh) * 2019-01-28 2020-08-04 本田技研工业株式会社 混合动力车辆的热分配装置
CN111605438A (zh) * 2019-02-25 2020-09-01 本田技研工业株式会社 混合动力车辆的电池升温装置
CN114046200A (zh) * 2021-11-09 2022-02-15 上海柴油机股份有限公司 混合动力发动机的防过热冷却系统及其控制方法
CN115465089A (zh) * 2022-09-26 2022-12-13 潍柴动力股份有限公司 混合动力车辆的热管理系统控制方法及混合动力车辆

Also Published As

Publication number Publication date
CN115465089A (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
CN108461868B (zh) 汽车热管理系统及汽车
CN103625242B (zh) 一种电动汽车热管理系统
CN110422082B (zh) 一种混合动力汽车集成式热管理系统及其控制方法
CN205395697U (zh) 带电池热管理功能的车辆空调系统
CN208576388U (zh) 集成电池温度控制的电动车热管理系统
CN113335021B (zh) 一种增程式混合动力汽车余热回收式整车热管理系统
CN112455180B (zh) 混合动力汽车热管理系统
CN111361391B (zh) 一种基于汽车集成式热管理机组的热管理控制方法
CN112339614B (zh) 一种适用于燃料电池汽车热系统的协同管理方法
CN203580560U (zh) 一种电动汽车热管理系统
WO2024066110A1 (zh) 混合动力车辆的热管理系统控制方法及混合动力车辆
CN111934056A (zh) 一种汽车起重机电池热管理系统及其热管理方法
CN210478446U (zh) 一种混合动力汽车集成式热管理系统
CN209119272U (zh) 一种热管理系统及其所应用的汽车
CN111993884B (zh) 一种混合动力车辆热管理系统及混合动力车辆热管理方法
CN113997753A (zh) 一种新能源汽车热管理系统
CN212171867U (zh) 一种新能源汽车集成式热管理机组
CN218400117U (zh) 车辆热管理系统及车辆
CN114683808B (zh) 一种含相变储热的纯电动汽车耦合热管理系统
CN215850843U (zh) 一种p1+p3构架suv电池冷却及加热水路结构
CN212289436U (zh) 热管理系统、电动汽车
CN209418728U (zh) 一种动力电池温度管理装置及动力电池系统
CN113665318A (zh) 插电式混动车动力电池的控制系统及方法
CN112046242A (zh) 热管理系统、电动汽车
CN220429801U (zh) 汽车及其热泵系统