WO2024066009A1 - 区块链系统中的状态验证方法、装置、节点和区块链 - Google Patents

区块链系统中的状态验证方法、装置、节点和区块链 Download PDF

Info

Publication number
WO2024066009A1
WO2024066009A1 PCT/CN2022/135281 CN2022135281W WO2024066009A1 WO 2024066009 A1 WO2024066009 A1 WO 2024066009A1 CN 2022135281 W CN2022135281 W CN 2022135281W WO 2024066009 A1 WO2024066009 A1 WO 2024066009A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
tree
hash value
state
states
Prior art date
Application number
PCT/CN2022/135281
Other languages
English (en)
French (fr)
Inventor
卓海振
Original Assignee
蚂蚁区块链科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蚂蚁区块链科技(上海)有限公司 filed Critical 蚂蚁区块链科技(上海)有限公司
Publication of WO2024066009A1 publication Critical patent/WO2024066009A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/10Payment architectures specially adapted for electronic funds transfer [EFT] systems; specially adapted for home banking systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/22Payment schemes or models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/38Payment protocols; Details thereof
    • G06Q20/40Authorisation, e.g. identification of payer or payee, verification of customer or shop credentials; Review and approval of payers, e.g. check credit lines or negative lists

Definitions

  • the embodiments of this specification belong to the field of blockchain technology, and in particular, relate to a state verification method, device, node and blockchain system in a blockchain system.
  • Blockchain is a new application model of computer technologies such as distributed data storage, peer-to-peer transmission, consensus mechanism, encryption algorithm, etc.
  • data blocks are combined into a chain data structure in a sequential manner according to time order, and a distributed ledger that cannot be tampered with or forged is guaranteed by cryptography. Due to the characteristics of decentralization, information cannot be tampered with, and autonomy, blockchain has also received more and more attention and application.
  • the full node is generally used as the minimum facility to participate in the consensus. The full node needs to include the full amount of data to support the consensus function.
  • the purpose of the present invention is to provide a state verification method, device, node and blockchain system in a blockchain system, which can complete the verification of multiple states more quickly to improve the performance of the blockchain system.
  • a state verification method in a blockchain system includes a first node and a second node, wherein the first node stores tree state data, wherein the leaf nodes of the tree state data include states, wherein the nodes on the path from the root node to the leaf node in the tree state data include the key of the state, and the parent node in the tree state data includes a hash value calculated based on the data in its child node, and the method is executed by the second node.
  • the method includes: receiving a plurality of first states from the first node; determining a common prefix of the keys of the plurality of first states; calculating a target hash value of an intermediate node in the tree state data corresponding to the common prefix based on the plurality of first states; and verifying the target hash value to verify the plurality of first states.
  • a state verification device in a blockchain system includes a first node and a second node, the first node stores tree state data, the leaf nodes of the tree state data include states, the nodes on the path from the root node to the leaf node in the tree state data include the key of the state, the parent node in the tree state data includes a hash value calculated based on the data in its child node, and the device is deployed in the second node.
  • the device includes: a communication processing unit for receiving multiple first states from the first node; a prefix processing unit for determining a common prefix of the keys of the multiple first states; a hash calculation unit for calculating a target hash value of an intermediate node corresponding to the common prefix in the tree state data according to the multiple first states; and a verification processing unit for verifying the target hash value to verify the multiple first states.
  • a node in a blockchain system includes a first node and a second node, the first node stores tree state data, the leaf nodes of the tree state data include states, the nodes on the path from the root node to the leaf node in the tree state data include the key of the state, and the parent node in the tree state data includes a hash value calculated based on the data in its child node.
  • the second node includes: a communication processing unit for receiving multiple first states from the first node; a prefix processing unit for determining a common prefix of the keys of the multiple first states; a hash calculation unit for calculating a target hash value of an intermediate node in the tree state data corresponding to the common prefix based on the multiple first states; and a verification processing unit for verifying the target hash value to verify the multiple first states.
  • a blockchain system comprising a first node and a second node, the first node storing tree state data, the leaf nodes of the tree state data comprising states, the nodes on the path from the root node to the leaf node in the tree state data comprising the key of the state, and the parent node in the tree state data comprising a hash value calculated based on the data in its child node.
  • the second node is used to receive multiple first states from the first node; determine the common prefix of the keys of the multiple first states; calculate the target hash value of the intermediate node corresponding to the common prefix in the tree state data according to the multiple first states; verify the target hash value to verify the multiple first states.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed in a computer, the computer is caused to execute the method described in the first aspect.
  • a computing device comprising a memory and a processor, wherein the memory stores executable code, and when the processor executes the executable code, the method described in the first aspect is implemented.
  • the light node when the light node determines that the keys of the multiple states have a common prefix, it can calculate the target hash value of the intermediate node corresponding to the common prefix in the tree state data based on the multiple states, and then verify the target hash value to complete the verification of the multiple states. There is no need to verify the multiple states one by one, and the verification of the multiple states can be completed more quickly, which is beneficial to improving the performance of the blockchain system.
  • FIG1 shows a diagram of a blockchain architecture in one embodiment
  • FIG. 2 is a schematic diagram of the consensus process in the PBFT consensus algorithm
  • FIG3 is a schematic diagram of the structure of blockchain data storage of consensus nodes in the related art
  • FIG4 is a schematic diagram of the structure of an MPT tree
  • FIG5 is a flow chart of a state verification method provided in an embodiment of this specification.
  • FIG6 is a schematic diagram of a state hash value tree and a storage hash value tree provided in an embodiment of this specification;
  • FIG7 is a schematic diagram of a state hash value tree provided in an embodiment of this specification.
  • FIG8 is a schematic diagram of a process of verifying multiple states based on tree-like verification data provided in an embodiment of this specification
  • FIG9 is a flow chart of a consensus method provided in an embodiment of this specification.
  • FIG10 is a schematic diagram of the structure of a state verification device provided in an embodiment of this specification.
  • FIG11 is a structural diagram of a node in a blockchain system provided in an embodiment of this specification.
  • FIG1 shows a diagram of a blockchain architecture in an embodiment.
  • a blockchain 100 includes N nodes, and FIG1 schematically shows nodes 1 to 8.
  • the lines between the nodes schematically represent a P2P (Peer to Peer) connection, and the connection may be, for example, a TCP connection, etc., for transmitting data between nodes.
  • P2P Peer to Peer
  • Transactions in the blockchain field can refer to task units executed and recorded in the blockchain.
  • Transactions usually include a send field (From), a receive field (To), and a data field (Data).
  • the From field indicates the account address that initiates the transaction (i.e., initiates a transfer task to another account)
  • the To field indicates the account address that receives the transaction (i.e., receives the transfer)
  • the Data field includes the transfer amount.
  • the blockchain can provide the function of smart contracts.
  • Smart contracts on the blockchain are contracts that can be triggered and executed by transactions on the blockchain system.
  • Smart contracts can be defined in the form of code. Calling a smart contract in the blockchain is to initiate a transaction pointing to the smart contract address, so that each node in the blockchain can run the smart contract code in a distributed manner.
  • Bob sends a transaction containing information about creating a smart contract (i.e., deploying a contract) to the blockchain shown in Figure 1.
  • the data field of the transaction includes the code of the contract to be created (such as bytecode or machine code), and the to field of the transaction is empty to indicate that the transaction is used to deploy a contract.
  • the contract address "0x6f8ae93" of the contract is determined.
  • Each node adds a contract account corresponding to the contract address of the smart contract to the state database, allocates the state storage corresponding to the contract account, and stores the contract code.
  • the hash value of the contract code is saved in the state storage of the contract, so that the contract is successfully created.
  • Bob sends a transaction for calling a smart contract to the blockchain shown in Figure 1.
  • the from field of the transaction is the address of the account of the transaction initiator (i.e. Bob), and the to field is, for example, the above-mentioned "0x6f8ae93", i.e. the address of the smart contract being called.
  • the data field of the transaction includes the method and parameters for calling the smart contract.
  • the consensus mechanism in the blockchain is a mechanism for blockchain nodes to reach the same consensus on block information (or block data) across the entire network, which can ensure that the latest block is accurately added to the blockchain.
  • the current mainstream consensus mechanisms include: Proof of Work (POW), Proof of Stake (POS), Delegated Proof of Stake (DPOS), Practical Byzantine Fault Tolerance (PBFT) algorithm, etc.
  • PW Proof of Work
  • POS Proof of Stake
  • DPOS Delegated Proof of Stake
  • PBFT Practical Byzantine Fault Tolerance
  • each node in the blockchain can generate the same state in the blockchain by executing the same transaction, so that each node in the blockchain stores the same state database.
  • FIG2 is a schematic diagram of the consensus process in the PBFT consensus algorithm.
  • the consensus process can be divided into four stages: request, pre-prepare (PP), prepare (P) and commit (C).
  • a blockchain includes four consensus nodes, node n1-node n4, wherein node n1 is, for example, a master node, and node n2-node n4 are, for example, slave nodes.
  • f 1 malicious nodes can be tolerated in node n1-node n4.
  • a user of the blockchain can send a request to node n1 through his user device, and the request is, for example, in the form of a blockchain transaction.
  • node n1 can package the multiple transactions into a consensus proposal, and send the consensus proposal and the signature of node n1 on the consensus proposal to other consensus nodes (i.e., node n2-node n4) for generating blocks.
  • the consensus proposal may include information such as the transaction body of the multiple transactions and the submission order of the multiple transactions.
  • each slave node can sign the consensus proposal and send it to each other node.
  • each consensus node signs the consensus proposal in the submission phase and sends it to other consensus nodes.
  • each consensus node can determine that the submission phase is completed and the consensus is successful. For example, after receiving and verifying the signatures of the submission phase of nodes n2 and n3, node n1 determines that the submission phase is completed, so that node n1 can execute the multiple transactions according to the consensus proposal, generate and store blocks (such as block N) including the multiple transactions, update the world state according to the execution results of the multiple transactions, and return the execution results of the multiple transactions to the user device.
  • blocks such as block N
  • nodes n2 and n3 execute the multiple transactions, update the world state according to the execution results of the multiple transactions, and generate and store block N.
  • the storage identity of nodes n1, n2, and n3 is achieved.
  • nodes n1-n4 can still achieve consensus on the consensus proposal successfully and complete the execution of the block in the presence of a malicious node.
  • FIG3 is a schematic diagram of the structure of the blockchain data storage of the consensus node in the related art.
  • the block header of each block includes several fields, such as the previous block hash previous_Hash (Prev Hash in the figure), the random number Nonce (in some blockchain systems, this Nonce is not a random number, or in some blockchain systems, the Nonce in the block header is not enabled), the timestamp Timestamp, the block number Block Num, the state tree root hash State_Root, the transaction tree root hash Transaction_Root, the receipt tree root hash Receipt_Root, etc.
  • the previous block hash previous_Hash Prev Hash in the figure
  • the random number Nonce in some blockchain systems, this Nonce is not a random number, or in some blockchain systems, the Nonce in the block header is not enabled
  • the timestamp Timestamp the block number Block Num
  • the state tree root hash State_Root the transaction tree root hash Transaction_Root
  • the Prev Hash in the block header of the next block points to the previous block (such as block N), which is the block hash value of the previous block (i.e., the hash value of the block header).
  • the next block on the blockchain is locked to the previous block through the block header.
  • state_root is the hash value of the root of the state trie consisting of the states of all accounts in the current block, such as the Merkle Patricia Tree (MPT Tree).
  • the MPT tree is a tree structure that combines the Merkle tree and the Patricia tree (a compressed prefix tree, a more space-saving Trie tree, a dictionary tree).
  • the Merkle Tree algorithm calculates a hash value for each leaf node, and then connects two nodes to calculate the hash again until the top Merkle root.
  • Ethereum uses an improved MPT tree, which is a 16-way tree structure.
  • the state tree contains key-value pairs (key and value pairs) of the storage content corresponding to each account in the Ethereum network.
  • the "key" in the state tree can be a 160-bit identifier (the address of the Ethereum account), and the characters contained in this account address are distributed in each node in the path from the root node of the state tree to the leaf node.
  • the leaf nodes of the MPT state tree (such as node t4 and node t5) also include the Value of each account.
  • the account is a user account (also known as an external account), such as account A in FIG3, the Value of the account includes a counter (Nonce) and a balance (Balance).
  • the Value of the account includes a counter (Nonce), a balance (Balance), a contract code hash value (CodeHash) and a storage tree root hash value (Storage_root).
  • the counter for an external account, represents the number of transactions sent from the account address; for a contract account, it is the number of contracts created by the account.
  • FIG. 4 is a schematic diagram of the structure of the MPT tree. Assume that node t2 in Figure 4 corresponds to node t2 in the state tree in Figure 3, and node t4 corresponds to leaf node t4 in the state tree in Figure 3. As shown in Figure 4, the states included in each leaf node in Figure 4 are respectively represented as state1, state2, state3, and state4, and each state is also the Value of each account.
  • each node between the leaf node where state1 is located and the root node includes the characters "f", "5" and "324", so that the account address corresponding to state1 can be obtained as "f5324".
  • the child nodes of the node including “5” include leaf nodes.
  • the following formula 1 can be used for calculation:
  • hash(324,74) hash(hash(324,hash(state1)),hash(74,hash(a,c))) (1)
  • the hash value of the node in the state tree is a hash value calculated based on all the data of the node, and the hash value included in the node that is not a leaf node and a non-root node in the state tree is a hash value obtained by concatenating the hash values of all its child nodes and hashing them.
  • the hash value included in each node between the leaf node and the root node can be calculated from bottom to top in the state tree, so that the calculated hash value of node t2 in Figure 3 can be concatenated with the hash value of node t3, and the concatenated data is hashed to generate the hash value of node t1.
  • the hash value of node t1 is the state root of the state tree, which is recorded in the State_Root field of block N.
  • a branch node may be included, and the branch node may be connected to multiple child nodes, and the branch node includes a hash value of the data in each child node connected to it, that is, the branch node includes multiple hash values corresponding to multiple main nodes, and the leaf node is connected after the branch node.
  • This variation also includes an extension node, which may be connected before or after the branch node, and the extension node has a child node, and the extension node includes the hash value of all data in the child nodes connected to it.
  • the hash value of the root node can also be recursively obtained based on the nodes of each layer. The embodiment of this specification is also applicable to this MPT tree variation.
  • This contract account generally has some states, which are defined by the state variables in the smart contract and generate new values when the smart contract is created and executed.
  • the relevant states of the contract are stored in the storage trie
  • Figure 3 schematically shows the storage trie of the contract corresponding to account B.
  • the hash value of the root node st1 of the storage tree is stored in the above storage_root, so that all states of the contract are locked to the Value (i.e., account status) of the contract account in the state tree through the root hash.
  • the storage tree can also have an MPT tree structure.
  • each node in the path from the root node to the leaf node can include characters for addressing the variable name, and the leaf node stores the Value of the variable, thereby storing the key-value mapping from the variable name (also called the state address) to the state value.
  • the leaf nodes st2 and st3 of the storage tree include the Value of variable a, the Value of variable b, etc.
  • the characters included in each node in the node path from the root node to the leaf node st2 in the storage tree constitute the variable name of variable a, and the variable name can similarly be composed of hexadecimal characters.
  • the calculation of the hash value of each node in the storage tree can refer to the method for calculating the hash value of the node in the state tree. Specifically, when calculating the hash value of a leaf node in the storage tree, the hash value of the partial key included in the leaf node and the state in the leaf node are spliced, and then the hash value of the spliced data is calculated to obtain the hash value of the leaf node.
  • the data in the node is directly spliced, and then the hash value of the spliced data is calculated to obtain the hash value of the node.
  • the state tree and storage tree described in the previous example can both be expressed as tree-like state data.
  • Nodes in a blockchain system can be divided into two types: full nodes and light nodes.
  • a full node can store tree-like state data
  • the leaf nodes of the tree-like state data include the state of a user account or a variable belonging to a contract account.
  • Each node in the path from the root node to the leaf node in the tree-like state data includes the key of the state
  • the parent node in the tree-like state data includes a hash value calculated based on the data in its child nodes.
  • a light node may not store the aforementioned tree-like state data, for example, only a block header, or only a block header and a relatively small amount of data that can be used to verify the state from a full node.
  • the structure of the tree-like verification data will be described in detail below.
  • light nodes may need to verify multiple states from full nodes. If light nodes verify multiple states from full nodes one by one, it will undoubtedly take a lot of time and affect the performance of the blockchain system.
  • the embodiments of this specification at least provide a state verification method, device, node and blockchain system in a blockchain system.
  • the light node can calculate the target hash value of the intermediate node corresponding to the common prefix in the tree state data according to the multiple states, and then verify the target hash value to complete the verification of the multiple states. Since there is no need to verify the multiple states one by one, the verification of the multiple states can be completed more quickly, which is conducive to improving the performance of the blockchain system.
  • Fig. 5 is a flow chart of a state verification method provided in an embodiment of this specification. Referring to Fig. 5, the method may include but is not limited to part or all of the following steps S501 to S507.
  • Step S501 The light node receives multiple states from the full node.
  • the multiple states from the full node may be part of the tree state data stored by the full node.
  • the aforementioned state may be the state of a user account or the value of a variable belonging to a contract account.
  • a light node may serve as a consensus node that participates in consensus on a consensus proposal initiated by a full node.
  • the aforementioned multiple states and the keys of the multiple states may be located in the consensus proposal from the full node. More specifically, the multiple states and the keys of the multiple states belong to the read set included in the consensus proposal, and may be presented as multiple key-value pairs in the read set.
  • Step S503 The light node determines a common prefix of the keys of the multiple states.
  • the common prefix of the keys of state1 and state2 is f5.
  • Step S505 calculating target hash values of intermediate nodes corresponding to the common prefix in the tree state data or the tree verification data according to the multiple states.
  • the path from the leaf nodes to the intermediate nodes of the multiple states can be queried from the tree state data according to the common prefix and the keys of the multiple states, and the brother nodes of other nodes on the path except the intermediate node will participate in calculating the target hash value of the intermediate node.
  • the intermediate node corresponding to the common prefix "f5" in the tree state data is node t11
  • the path from the leaf nodes t4 and t6 to the intermediate node t11 belonging to state1 and state2 includes nodes t4, t6, t8 and t11.
  • node t6 has a brother node, and the brother node includes node t7; in this way, for example, the target hash value included in node t11 is calculated by the expression hash(hash(324, hash(state1)), hash(hash(a, hash(state2)), hash(c, hash(state3)))).
  • the light node may store tree-like verification data corresponding to the tree-like state data, and the tree-like verification data mainly includes two types: a state hash value tree and a storage hash value tree.
  • FIG. 6 is a schematic diagram of a state hash value tree and a storage hash value tree stored by a light node in an embodiment of this specification. Referring to FIG. 6, in the state hash value tree and the storage hash value tree, compared with the state tree and the storage tree in FIG.
  • FIG. 7 is a schematic diagram of the state hash value tree in FIG. 6. As shown in FIG. 7, in the state hash value tree, the leaf node includes the last character of the account address and the state hash value of the corresponding leaf node in the state tree.
  • the leaf node t4 in the state hash value tree includes the hash (state1) of "state1" in the leaf node t4 in the state tree.
  • the hash values included in each node in the state hash value tree except the leaf nodes and the root node can be generated using the same calculation method as in the state tree.
  • the hash (324, 74) in the node including "5" in Figure 7 can be calculated by the above formula (1).
  • the storage hash value tree can also have a structure similar to the structure shown in Figure 7.
  • the data included in the state hash value tree and the storage hash value tree except the leaf nodes in Figure 6 are the same as the corresponding nodes in the state tree and the storage tree in Figure 3, so the root hash value of the node t1 in Figure 6 is the same as the root hash value of the node t1 in Figure 3.
  • the tree-like verification data may not be limited to the structure shown in Figure 6 or Figure 7.
  • the hash value tree after the deletion can be used as the tree-like verification data stored in the light node.
  • the light node can query the path from the leaf node to the intermediate node of the multiple states according to the common prefix and the key of the multiple states from the tree-like verification data, and the brother nodes of other nodes on the path except the intermediate node will participate in calculating the target hash value of the intermediate node.
  • the process of calculating the target hash value based on the tree-like verification data is basically similar to the process of calculating the target hash value based on the tree-like state data.
  • the hash value of the corresponding state can be directly obtained from the brother node without recalculating the hash value of the corresponding state.
  • hash(state3) in the expression can be obtained from the node t7 in Figure 7 without performing a hash operation on state3.
  • the light node stores the tree-like verification data exemplarily provided in FIG. 8, and the light node receives multiple state keys from the full node including AcountID010086, AcountID130086, AcountID140086, and AcountID150086.
  • the light node can determine that the intermediate node for which the target hash value needs to be calculated is "countID" through the common prefix "AcountID" of the aforementioned four keys, determine that the nodes corresponding to the hash values of the states of the aforementioned four keys are "10086", "30086", "40086", and "50086” respectively, and determine that the tree nodes required to calculate the target hash value included in the intermediate node include "20086".
  • the hash values of the states of the above-mentioned four keys can be calculated, and based on the character string and hash value included in "20086", the hash values of the states of the above-mentioned four keys, and the character strings included in the nodes "10086", “30086", “40086” and "50086", the hash value included in the node “0” and the hash value included in the node “1” are calculated layer by layer, and finally the target hash value that the intermediate node "countID" should include is calculated.
  • Step S507 verifying the target hash value to verify multiple states.
  • the light node can verify whether the target hash value included in the intermediate node is the same as the current hash value included in the intermediate node. If they are the same, it means that the multiple states have passed the verification. For example, please continue to refer to Figure 4 or Figure 7.
  • the states from the full node include state1 and state2.
  • the intermediate node is t11. If the current hash value included in node t11 is the same as the calculated target hash value, the target hash value has passed the verification, which means that state1 and state2 have passed the verification.
  • the light node can verify the target hash value based on the tree state tree. For example, the light node can obtain the first hash value of the root node and the hash values of several tree nodes in the tree state data, calculate the second hash value of the root node according to the hash values of several tree nodes and the target hash value, and verify whether the second hash value is the same as the first hash value. More specifically, the path from the intermediate node to the root node can be queried from the tree state data, and the sibling nodes of the nodes on the path will participate in calculating the target hash value of the intermediate node. In other words, the aforementioned several tree nodes refer to the sibling nodes of the nodes on the path.
  • the path between the intermediate node t11 and the root node t1 includes node t11, node t2 and node t1.
  • the sibling nodes of node t11 include node t10, and the sibling nodes of node t2 include node t3.
  • the hash values included in the tree nodes such as node t10 and node t3 will be used to calculate the second hash value of the root node t1; for example, the second hash value of the root node t1 can be calculated by the expression hash(hash(hash(5,hash(327,74)), hash(d,hash(886,%))), hash(t3)), where hash(5,hash(327,74) in the expression represents the target hash value, and hash(t3) represents the hash value calculated by concatenating the key components included in node t3 and the hash value included in node t3.
  • the light node can query the tree-like verification data stored in the intermediate node "countID" to determine that the tree nodes needed to calculate the second hash value corresponding to the root node “Root” specifically include the node “sset” and the node “Dept”, and calculate the hash value that the node "A” should include based on the string included in the intermediate node "Dept", the target hash value, the string included in the node “sset”, and the hash value, and then calculate the second hash value corresponding to the root node “Root” based on the string included in the node "A", the hash value that the node "A” should include, the string included in the node "Dept", and the hash value, and determine whether the calculated second hash value is the same as the first hash value stored in the root node "Root”.
  • the light node when the light node stores tree-like verification data, the light node can verify the target hash value based on the tree-like verification certificate. For example, the light node can obtain the first hash value of the root node and the hash values of several tree nodes in the tree-like verification data, calculate the second hash value of the root node according to the hash values of several tree nodes and the target hash value, and verify whether the second hash value is the same as the first hash value.
  • the process of verifying the target hash value based on the tree-like verification data is basically similar to the process of verifying the target hash value based on the tree-like state data.
  • the hash value of the corresponding state can be obtained directly from the tree node/brother node without recalculating the hash value of the corresponding state, so it will not be described in detail.
  • the light node mentioned above can participate in the consensus proposal node initiated by the full node as a consensus node.
  • the full node that initiates the consensus proposal is described as a full consensus node (Full Validating Peer, FVP) and the light node that receives the consensus proposal is described as a light consensus node (Light Validating Peer, LVP).
  • the light consensus node usually stores the tree-like verification data mentioned above.
  • Figure 9 is a flow chart of a consensus method provided in an embodiment of this specification. Referring to Figure 9, the method may include but is not limited to part or all of the following steps S901 to S915.
  • Step S901 FVP obtains read sets corresponding to multiple transactions.
  • FVP1 in the blockchain system is the master node
  • FVP1 can receive transactions sent by users from user clients or other FVPs.
  • the transaction can be a transfer transaction, or a transaction that calls a contract, etc.
  • FVP1 can select multiple transactions from the received transactions for consensus to generate new blocks.
  • FVP1 obtains the read sets corresponding to the multiple transactions.
  • the read set includes the status of accounts and/or contract variables read from the tree state data according to the read operations included in the multiple transactions.
  • the read set is also the status of accounts and/or contract variables that need to be read from the tree state data when the multiple transactions are executed, wherein the tree state data, for example, includes the state tree and storage tree shown in Figure 3.
  • FVP1 can obtain the read sets of multiple transactions, and then merge the read sets of each transaction, that is, select the key-value pairs of the variables read from the tree state data when each variable (including account and contract variables) is read for the first time from the read sets of multiple transactions, so as to obtain the read sets corresponding to multiple transactions.
  • one of the multiple transactions includes an update to the balance of account A (for example, reducing a preset amount)
  • the transaction needs to first read the value of account A (that is, including Nonce and Balance) when it is executed, and then obtain the new value of account A according to the read value of account A.
  • the Nonce value is added by 1, and the Balance value is reduced by a preset amount to obtain the updated Nonce value and Balance value of account A, which constitute the updated Value of account A. Therefore, the read set of the transaction includes the key-value pairs of account A read, and the write set of the transaction includes the key-value pairs of account A written.
  • the read set of the multiple transactions includes the Key-Value pair of account A read from the tree state data, where the Key is the account address of account A, and the Value is the state of account A, which includes the Nonce value and Balance value in the leaf node corresponding to account A.
  • one of the multiple transactions includes an update operation on variable a in the contract corresponding to account B. Since writing to variable a will result in an update to Storage_root in account B, the transaction also includes a write operation on account B.
  • the read set of the transaction needs to include the Key-Value pair of account B and the key-value pair of variable a. Assuming that the reading of account B and variable a by the transaction is the first reading from the tree state data, the read sets of multiple transactions also include the key-value pair of account B and the key-value pair of variable a read from the tree state data based on the transaction.
  • the key in the Key-Value pair of account B is the account address of account B, and the Value is the state of account B, which includes the values of the Nonce, Balance, CodeHash and Storage_root fields in the leaf node corresponding to account B.
  • the key in the Key-Value pair of variable a is the variable name of variable a, and the Value is the state value of variable a.
  • the updated Storage_root can be calculated according to the updated value of variable a and merged with the Nonce, Balance, and CodeHash of account B in the read set to obtain the updated value of account B.
  • the updated value of variable a and the updated value of account B will be recorded in the write set of the transaction to update the tree state data.
  • FVP1 can perform static analysis on each transaction, analyze the transaction body of the transaction and the contract code of the contract called in the transaction, so as to determine the account and/or variable name, i.e., key, that each transaction needs to read when executing, and read the value corresponding to the key from the tree state data through the obtained key, so as to generate the read set corresponding to the multiple transactions.
  • FVP1 can pre-execute the multiple transactions, FVP1 can pre-execute the multiple transactions according to the preset arrangement order of the multiple transactions, or FVP1 can pre-execute the multiple transactions according to the order in which the transactions are received, and determine the arrangement order of the multiple transactions in the consensus proposal according to the pre-execution order of the transactions.
  • FVP1 When FVP1 reads the value of an account or contract variable for the first time during the pre-execution of multiple transactions, it reads it from the tree state data and generates a read set of the multiple transactions based on the value of the account or contract variable read for the first time.
  • FVP1 caches the value of the account or contract variable read for the first time, and when the value of the account or contract variable read for the first time is updated during the pre-execution of the multiple transactions, the value of the account or contract variable is updated in the cache, and when the value of the account or contract variable is read again during the pre-execution of the multiple transactions, the value of the account or contract variable in the cache is read, wherein the values of the user accounts or variables belonging to the contract account read again do not need to be written into the read set of the multiple transactions.
  • a read set may include the states of multiple user accounts or variables belonging to contract accounts.
  • a read set may also include keys of multiple states in the read set, and the key is used to represent the corresponding user account or variable belonging to the contract account. More specifically, the read set obtained by FVP may actually include multiple key-value pairs.
  • step S903 the FVP sends a consensus proposal to the LVP, where the consensus proposal includes the read sets of the multiple transactions.
  • FVP1 may generate a consensus proposal for reaching consensus on the order of arrangement of the multiple transactions.
  • the consensus proposal may also include a transaction list of the multiple transactions, which includes transaction bodies of the multiple transactions arranged in sequence.
  • the consensus proposal may also include transaction identifiers of the multiple transactions arranged in sequence (such as hash values of each transaction); at the same time, FVP1 or other FVPs that receive transactions from user devices may broadcast the transaction bodies of the multiple transactions to other consensus nodes through broadcasting, thereby reducing the amount of data in the consensus proposal and saving the amount of computation used for signatures during the consensus process.
  • the read set can be verified in the PP stage, that is, it can be determined in the PP stage whether FVP1 is malicious. If it is determined in the PP stage that FVP1 is malicious, the consensus process can be terminated in advance without the need for subsequent preparation and submission stages, which saves computing resources and improves the system efficiency in the blockchain.
  • step S905 LVP divides the multiple states into several state groups according to the keys of the multiple states included in the read set.
  • the keys of states in the same state group have a common prefix, while the keys in different state groups do not have a common prefix.
  • the key of state1 is f5324
  • the key of state2 is f574a
  • the key of state6 is mnf25.
  • f5324 and f574a have a common prefix f5, so state1 and state2 need to be divided into the same state group 1.
  • mnf25 does not have a common prefix with f5324 and f574a, so state6 needs to be divided into a state group 2 that is different from state group 1.
  • step S907 the LVP verifies whether the states in the several state groups are correct.
  • a single state group may include multiple states.
  • the verification of the multiple states can be completed by using the method described in the method embodiment shown in FIG5 . More specifically, the verification of multiple states in a single state group can be completed by the process shown in steps 503 to 507 in the method embodiment shown in FIG5 , so as to more quickly complete the verification of all states included in the read set.
  • LVP also does not need to group the states in the read set, but instead verifies each state one by one based on tree-like verification data such as the state hash value tree and the storage hash value tree. For example, if the read set includes the Value of account A, LVP can calculate the hash value of the Value of account A in the read set (e.g., hash1), and calculate the hash values of each node layer by layer based on the values of other leaf nodes in the state hash value tree (i.e., the state hash value) and hash1, until the root hash value of the state hash value tree (e.g., root1) is calculated, and it is determined whether root1 is the same as the root hash value of the state hash value tree stored in LVP.
  • the hash value of the Value of account A in the read set e.g., hash1
  • the root hash value of the state hash value tree e.g., root1
  • LVP can similarly perform SPV verification on the Value of account B and the Value of variable a based on the state hash value tree and the storage hash value tree.
  • step S909 can be executed, and the consensus nodes (including FVP and LVP) complete the consensus process for multiple transactions.
  • LVP When LVP confirms that the read set is correct, it can perform node functions similar to FVP based on the read set in the subsequent process, such as executing transactions, generating blocks, etc. In addition, when LVP confirms that the read set is correct, it can complete the consensus process for multiple transactions, including completing the PP stage, P stage, and C stage as shown in Figure 2. If the read set fails to pass the verification, it can be determined that the master node may be malicious. LVP can end the consensus process as soon as possible and start the process of replacing the master node, thereby improving the efficiency of the blockchain system.
  • step S911 the LVP executes multiple transactions according to the read set.
  • LVP can execute multiple transactions in the consensus proposal based on the status in the read set. Specifically, when LVP needs to read the status of an account or variable in the process of executing a transaction, if it is the first read of the account or variable, the status of the account or variable can be found from the read set, and the transaction is executed based on the status of the account or variable. According to the write operation on the account or contract variable in the transaction, the write set of the transaction is obtained, and the write set includes the key-value pair of the account or the key-value pair of the contract account and the contract variable, which is used to update the status in the status data.
  • LVP can cache the status, and when executing the write to the account or contract variable, update the status of the account or contract variable in the cache for subsequent reading of the status of the account or contract variable in the process of executing the transaction.
  • the status of the account or variable in the read set has been verified, that is, it is the current correct status of the account or variable. Therefore, the execution result obtained by executing the transaction based on the status in the read set is the same as the execution result obtained by FVP executing the transaction based on the status in the status data.
  • LVP first reads the value of account A from the read set of multiple transactions (assuming the read value is V1) and stores it in the cache, and updates V1 according to the transaction to obtain the updated value of account A (assuming the value is V2), where V2 includes the updated Nonce value and the updated Balance value, so that the updated key-value pair of account A can be written in the write set of the transaction, and the value of account A in the cache is updated.
  • LVP first reads the value of account B (assumed to be V3) and the value of variable a (assumed to be V4) from the read set of multiple transactions, processes V4 according to the transaction, obtains the updated value of variable a (assumed to be V5), calculates the hash value of V5, substitutes it into the storage hash value tree in Figure 5, calculates the hash value of the root node st1, and uses the hash value of the root node st1 as the updated storage_root of account B.
  • the updated value of account B (assumed to be V6) is calculated, so that the updated key-value pair of account B and the updated key-value pair of variable a can be included in the write set of the transaction.
  • step S913 the consensus nodes (including FVP and LVP) reach consensus on the execution results of multiple transactions.
  • the consensus nodes can similarly reach consensus on the execution results of multiple transactions through the consensus process shown in FIG2. Specifically, after executing multiple transactions and obtaining the write sets and receipts of each transaction, each consensus node can calculate the state tree root hash values, transaction tree root hash values, and receipt tree root hash values corresponding to the multiple transactions based on the transaction bodies, write sets, and receipts of the multiple transactions.
  • the block hash i.e., the block header hash value of block B1 corresponding to the multiple transactions is calculated based on the state tree root hash values, transaction tree root hash values, receipt tree root hash values, and the block hash of the previous block (i.e., the block header hash value, as shown in Prev Hash in FIG3).
  • FVP1 can send a consensus proposal to other consensus nodes in the PP phase, and the consensus proposal includes the block hash of block B1.
  • LVP can compare whether the block hash received from FVP1 is the same as the block hash of block B1 calculated by itself. If they are the same, the block hash is signed and sent to other consensus nodes.
  • the consensus on the block hash is completed.
  • the consensus nodes complete the consensus on the block hash, it can be ensured that the execution results of multiple transactions by each consensus node are the same, so that each node can update the storage according to the execution results of multiple transactions.
  • step S915 LVP updates the tree-like verification data according to the write sets of multiple transactions.
  • LVP obtains the write sets corresponding to the multiple transactions (e.g., wset1) according to the write sets of each transaction, and the write set wset1 includes the key-value pairs of accounts or the key-value pairs of contract accounts and contract variables that will be used to update the tree state data according to the write operations of the multiple transactions.
  • LVP can update the tree verification data in LVP based on the hash values of each state in wset1.
  • the tree-like verification data in LVP includes the hash value of the state of each account and each contract variable. Assuming that the write set wset1 includes the key-value pair of account A to be written, LVP can find the storage location of the hash value of the value corresponding to the key in the tree-like verification data based on the key of account A in wset1, and write the hash value of the state corresponding to the key in wset1 to the storage location.
  • LVP first calculates the updated state hash value according to the updated value of variable a, and updates the state hash value of variable a in the tree-like verification data. Then LVP calculates the updated state hash value according to the updated value of account B, and updates the state hash value of account B in the tree-like verification data.
  • the tree-like verification data stored by LVP includes a state hash value tree and a storage hash value tree as shown in FIG5 , and LVP may first update the state hash values in the leaf nodes corresponding to the multiple states in the write set in the state hash value tree and the storage hash value tree as described in the previous embodiment. Then, based on the updated leaf nodes, the hash values included in the nodes at each level in the state hash value tree and the storage hash value tree may be updated upward until the hash values of the root nodes of the state hash value tree and the storage hash value tree are updated.
  • LVP after LVP reaches consensus on the block hash, it can store the block header of the generated block for SPV verification and for generating the next block.
  • FVP1 While LVP is updating the storage, FVP1 is also updating the storage according to the execution results of multiple transactions. Specifically, FVP1 updates the state tree and storage tree shown in FIG3 according to the write sets of multiple transactions, and stores the block B1 corresponding to the multiple transactions, which includes a block header and a block body.
  • the block body includes, for example, transaction bodies, receipts and other data of multiple transactions.
  • a state verification device in a blockchain system is provided in the embodiment of this specification, wherein the blockchain system includes a first node and a second node, the first node stores tree state data, the leaf nodes of the tree state data include states, the nodes on the path from the root node to the leaf nodes in the tree state data include the key of the state, the parent node in the tree state data includes a hash value calculated based on the data in its child nodes, and the device is deployed in the second node.
  • the device includes: a communication processing unit 1001, for receiving a plurality of first states from the first node; a prefix processing unit 1003, for determining a common prefix of the keys of the plurality of first states; a hash calculation unit 1005, for calculating a target hash value of an intermediate node corresponding to the common prefix in the tree state data according to the plurality of first states; and a verification processing unit 1007, for verifying the target hash value to verify the plurality of first states.
  • a communication processing unit 1001 for receiving a plurality of first states from the first node
  • a prefix processing unit 1003 for determining a common prefix of the keys of the plurality of first states
  • a hash calculation unit 1005 for calculating a target hash value of an intermediate node corresponding to the common prefix in the tree state data according to the plurality of first states
  • a verification processing unit 1007 for verifying the target hash value to verify the plurality of first states.
  • a node in a blockchain system includes a first node and a second node, the first node stores tree state data, the leaf nodes of the tree state data include states, the nodes on the path from the root node to the leaf node in the tree state data include the key of the state, and the parent node in the tree state data includes a hash value calculated based on the data in its child node.
  • the second node includes: a communication processing unit 1101, which is used to receive multiple first states from the first node; a prefix processing unit 1103, which is used to determine the common prefix of the key of the multiple first states; a hash calculation unit 1105, which is used to calculate the target hash value of the intermediate node corresponding to the common prefix in the tree state data according to the multiple first states; and a verification processing unit 1107, which is used to verify the target hash value to verify the multiple first states.
  • a communication processing unit 1101 which is used to receive multiple first states from the first node
  • a prefix processing unit 1103 which is used to determine the common prefix of the key of the multiple first states
  • a hash calculation unit 1105 which is used to calculate the target hash value of the intermediate node corresponding to the common prefix in the tree state data according to the multiple first states
  • a verification processing unit 1107 which is used to verify the target hash value to verify the multiple first states.
  • a blockchain system is provided in an embodiment of the present specification, wherein the blockchain system includes a first node and a second node, the first node stores tree state data, the leaf nodes of the tree state data include states, the nodes on the path from the root node to the leaf nodes in the tree state data include the key of the state, and the parent node in the tree state data includes a hash value calculated based on the data in its child nodes, wherein: the second node is used to receive multiple first states from the first node; determine a common prefix of the keys of the multiple first states; calculate a target hash value of an intermediate node in the tree state data corresponding to the common prefix based on the multiple first states; and verify the target hash value to verify the multiple first states.
  • a computer-readable storage medium is also provided in an embodiment of the present specification, on which a computer program is stored.
  • the computer program is executed in a computer, the computer is caused to execute the method performed by the full node, light node, LVP node or FVP node in the aforementioned method embodiment.
  • a computing device including a memory and a processor, wherein the memory stores executable code, and when the processor executes the executable code, the method executed by the full node, light node, LVP node or FVP node in the aforementioned method embodiment is implemented.
  • a programmable logic device such as a field programmable gate array (FPGA)
  • FPGA field programmable gate array
  • HDL Hardware Description Language
  • HDL Very-High-Speed Integrated Circuit Hardware Description Language
  • ABEL Advanced Boolean Expression Language
  • AHDL Altera Hardware Description Language
  • HDCal Joint CHDL
  • JHDL Java Hardware Description Language
  • Lava Lava
  • Lola MyHDL
  • PALASM RHDL
  • VHDL Very-High-Speed Integrated Circuit Hardware Description Language
  • Verilog Verilog
  • the controller may be implemented in any suitable manner, for example, the controller may take the form of a microprocessor or processor and a computer readable medium storing a computer readable program code (e.g., software or firmware) executable by the (micro)processor, a logic gate, a switch, an application specific integrated circuit (ASIC), a programmable logic controller, and an embedded microcontroller, examples of which include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20, and Silicone Labs C8051F320, and the memory controller may also be implemented as part of the control logic of the memory.
  • a computer readable program code e.g., software or firmware
  • the controller may be implemented in the form of a logic gate, a switch, an application specific integrated circuit, a programmable logic controller, and an embedded microcontroller by logically programming the method steps. Therefore, such a controller may be considered as a hardware component, and the means for implementing various functions included therein may also be considered as a structure within the hardware component. Or even, the means for implementing various functions may be considered as both a software module for implementing the method and a structure within the hardware component.
  • the systems, devices, modules or units described in the above embodiments may be implemented by computer chips or entities, or by products with certain functions.
  • a typical implementation device is a server system.
  • the computer that implements the functions of the above embodiments may be, for example, a personal computer, a laptop computer, a vehicle-mounted human-computer interaction device, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or a combination of any of these devices.
  • one or more embodiments of the present specification provide method operation steps as described in the embodiments or flow charts, more or less operation steps may be included based on conventional or non-creative means.
  • the order of steps listed in the embodiments is only one way of executing the order of many steps, and does not represent the only execution order.
  • the device or terminal product in practice is executed, it can be executed in sequence or in parallel according to the method shown in the embodiments or the drawings (for example, a parallel processor or a multi-threaded processing environment, or even a distributed data processing environment).
  • each module can be implemented in the same or more software and/or hardware, or the module implementing the same function can be implemented by a combination of multiple sub-modules or sub-units, etc.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
  • processors CPU
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in a computer-readable medium, in the form of random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information.
  • Information can be computer readable instructions, data structures, program modules or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic disk storage, graphene storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device.
  • computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
  • one or more embodiments of the present specification may be provided as a method, system or computer program product. Therefore, one or more embodiments of the present specification may take the form of a complete hardware embodiment, a complete software embodiment or an embodiment combining software and hardware. Moreover, one or more embodiments of the present specification may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • One or more embodiments of the present specification may be described in the general context of computer-executable instructions executed by a computer, such as program modules.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • One or more embodiments of the present specification may also be practiced in distributed computing environments where tasks are performed by remote processing devices connected through a communication network.
  • program modules may be located in local and remote computer storage media, including storage devices.

Abstract

一种区块链系统中的状态验证方法、装置、节点和区块链系统,区块链系统包括第一节点和第二节点,第一节点存储有树状状态数据,树状状态数据的叶子节点中包括状态,树状状态数据的从根节点到叶子节点的路径中的节点包括状态的key,树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值,该方法由第二节点执行。该方法包括:从第一节点接收多个状态;确定多个状态的key的公共前缀;根据多个状态计算树状状态数据中与公共前缀相对应的中间节点的目标哈希值;对目标哈希值进行验证以对多个状态进行验证。

Description

区块链系统中的状态验证方法、装置、节点和区块链
本申请要求于2022年9月30日提交中国国家知识产权局、申请号为202211213673.6、申请名称为“区块链系统中的状态验证方法、装置、节点和区块链”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本说明书实施例属于区块链技术领域,尤其涉及一种区块链系统中的状态验证方法、装置、节点和区块链系统。
背景技术
区块链(Blockchain)是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。区块链系统中按照时间顺序将数据区块以顺序相连的方式组合成链式数据结构,并以密码学方式保证的不可篡改和不可伪造的分布式账本。由于区块链具有去中心化、信息不可篡改、自治性等特性,区块链也受到人们越来越多的重视和应用。区块链系统中,一般通过全节点作为参与共识的最小设施,全节点需要包括全量数据,以支持共识功能。
发明内容
本发明的目的在于提供一种区块链系统中的状态验证方法、装置、节点和区块链系统,可以更为快速的完成对多个状态进行验证,以利提高区块链系统的性能。
第一方面,提供了一种区块链系统中的状态验证方法,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值,所述方法由所述第二节点执行。所述方法包括:从所述第一节点接收多个第一状态;确定所述多个第一状态的key的公共前缀;根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
第二方面,提供了一种区块链系统中的状态验证装置,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值,所述装置部署在所述第二节点中。所述装置包括:通信处理单元,用于从所述第一节点接收多个第一状态;前缀处理单元,用于确定所述多个第一状态的key的公共前缀;哈希计算单元,用于根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;验证处理单元,用于对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
第三方面,提供了一种区块链系统中的节点,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值。所述第二节点包括:通信处理单元,用于从所述第一节点接收多个第一状态;前缀处理单元,用于确定所述多个第一状态的key的公共前缀;哈希计算单元,用于根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;验证处理单元,用于对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
第四方面,提供了一种区块链系统,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值。其中:所述第二节点用于从所述第一节点接收多个第一状态;确定所述多个第一状态的key的公共前缀;根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
第五方面,提供了一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序在计算机中执行时,令计算机执行第一方面中所述的方法。
第六方面,提供一种计算设备,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现第一方面所述的方法。
在本说明书实施例的方案中,对于来自全量节点的多个状态,轻节点在确定多个状态的key具有公共前缀的情况下,可以根据该多个状态计算树状状态数据中与该公共前缀相对应的中间节点的目标哈希值,进而对目标哈希值进行验证以完成对该多个状态的验证,无需逐一验证该多个状态,可以更为快速的完成对该多个状态的验证,有利于提高区块链系统的性能。
附图说明
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了一实施例中的区块链架构图;
图2为PBFT共识算法中的共识过程示意图;
图3是相关技术中的共识节点的区块链数据存储的结构示意图;
图4为MPT树的结构示意图;
图5为本说明书实施例中提供的一种状态验证方法的流程图;
图6为本说明书实施例中提供的状态哈希值树和存储哈希值树的示意图;
图7是本说明书实施例中提供的状态哈希值树的示意图;
图8为本说明书实施例中提供的基于树状验证数据验证多个状态的过程示意图;
图9为本说明书实施例中提供的一种共识方法的流程图;
图10为本说明书实施例中提供的一种状态验证装置的结构示意图;
图11为本说明书实施例中提供一种区块链系统中的节点的结构图。
具体实施方式
为了使本技术领域的人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本说明书一部分实施例,而不是全部的实施例。基于本说明书中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本说明书保护的范围。
图1示出了一实施例中的区块链架构图。在图1所示的区块链架构图中,区块链100中包括N个节点,图1中示意示出节点1-节点8。节点之间的连线示意性的表示P2P(Peer to Peer,点对点)连接,所述连接例如可以为TCP连接等,用于在节点之间传输数据。
区块链领域中的交易可以指在区块链中执行并记录在区块链中的任务单元。交易中通常包括发送字段(From)、接收字段(To)和数据字段(Data)。其中,在交易为转账交易的情况中,From字段表示发起该交易(即发起对另一个账户的转账任务)的账户地址,To字段表示接收该交易(即接收转账)的账户地址,Data字段中包括转账金额。
区块链中可提供智能合约的功能。区块链上的智能合约是在区块链系统上可以被交易触发执行的合约。智能合约可以通过代码的形式定义。在区块链中调用智能合约,是发起一笔指向智能合约地址的交易,使得区块链中每个节点分布式地运行智能合约代码。
在部署合约的场景中,例如,Bob将一个包含创建智能合约信息(即部署合约)的交易发送到如图1所示的区块链中,该交易的data字段包括待创建的合约的代码(如字节码或者机器码),交易的to字段为空,以表示该交易用于部署合约。节点间通过共识机制达成相同后,确定合约的合约地址“0x6f8ae93…”,各个节点在状态数据库中添加与该智能合约的合约地址对应的合约账户,分配与该合约账户对应的状态存储,并存储合约代码,将合约代码的哈希值保存在该合约的状态存储中,从而合约创建成功。
在调用合约的场景中,例如,Bob将一个用于调用智能合约的交易发送到如图1所示的区块链中,该交易的from字段是交易发起方(即Bob)的账户的地址,to字段例如为上述“0x6f8ae93…”,即被调用的智能合约的地址,交易的data字段包括调用智能合约的方法和参数。在区块链中对该交易进行共识之后,区块链中的各个节点可分别执行该交易,从而分别执行该合约,基于该合约的执行更新状态数据库。
区块链中的共识机制是区块链节点就区块信息(或称区块数据)达成全网相同共识的机制,可以保证最新区块被准确添加至区块链。当前主流的共识机制包括:工作量证明(Proof of Work,POW)、股权证明(Proof of Stake,POS)、委任权益证明(Delegated Proof of Stake,DPOS)、实用拜占庭容错(Practical Byzantine Fault Tolerance,PBFT)算法等。其中,在各种共识算法中,通常在预设数目的共识节点对待共识的数据(即共识提议)达成相同之后,从而确定对该共识提议的共识成功。具 体是,在PBFT算法中,对于N≥3f+1个共识节点,可容忍f个恶意节点,也就是说,当N个共识节点中2f+1个节点达成相同时,可确定共识成功。在相关技术中,为了实现共识功能,在共识节点上存储全量的账本,即存储全部区块和全部账户的状态。从而,区块链中的每个节点可通过执行相同的交易而产生区块链中的相同的状态,以使得区块链中的每个节点存储相同的状态数据库。
图2为PBFT共识算法中的共识过程示意图。如图2所示,根据PBFT共识算法,可将共识过程划分为请求(Request)、预备(Pre-Prepare,PP)、准备(Prepare,P)和提交(Commit,C)四个阶段。假设一区块链中包括节点n1-节点n4四个共识节点,其中,节点n1例如为主节点,节点n2-节点n4例如为从节点,根据PBFT算法,在节点n1-节点n4中可容忍f=1个恶意节点。具体是,在请求阶段,区块链的用户可通过其用户设备向节点n1发送请求,该请求例如为区块链交易的形式。在预备阶段,节点n1在从一个或多个用户设备接收到多个交易之后,可将该多个交易打包为共识提议,将该共识提议及节点n1对该共识提议的签名发送给其他共识节点(即节点n2-节点n4),以用于生成区块,该共识提议中可包括该多个交易的交易体和该多个交易的提交顺序等信息。在准备阶段,各个从节点可对共识提议进行签名并发送给其他各个节点。假设节点n4为恶意节点,节点n1、节点n2和节点n3在分别接收到2f=2个其他共识节点的对共识提议的签名之后,可确定准备阶段完成,可进入提交阶段。例如,如图2中所示,节点n1在接收到节点n2和节点n3的签名之后,验证节点n2和节点n3的签名都是正确的对共识提议的签名,则确定准备阶段完成,节点n2在接收到节点n3的签名和预备阶段节点n1的签名并验证通过之后,确定准备阶段完成。在提交阶段,各个共识节点对共识提议进行提交阶段的签名并发送给其他各个共识节点,各个共识节点在接收到2f=2个其他共识节点的提交阶段的签名之后,可确定提交阶段完成,共识成功。例如,节点n1在接收到节点n2和节点n3的提交阶段的签名并验证之后,确定提交阶段完成,从而,节点n1可根据共识提议执行所述多个交易,生成并存储包括所述多个交易的区块(例如区块N),根据多个交易的执行结果更新世界状态,并将多个交易的执行结果返回给用户设备。类似地,节点n2和节点n3在确定提交阶段完成之后,执行所述多个交易,根据多个交易的执行结果更新世界状态,并生成并存储区块N。通过上述过程,实现了节点n1、节点n2和节点n3的存储相同性。也就是说,节点n1-节点n4在存在一个恶意节点的情况下仍可以实现对共识提议的共识成功,完成对区块的执行。
图3是相关技术中的共识节点的区块链数据存储的结构示意图。在图3所示的区块链数据存储中,每一区块的区块头包括若干字段,例如上一区块哈希previous_Hash(图中的Prev Hash),随机数Nonce(在一些区块链系统中这个Nonce不是随机数,或者在一些区块链系统中不启用区块头中的Nonce),时间戳Timestamp,区块号Block Num,状态树根哈希State_Root,交易树根哈希Transaction_Root,收据树根哈希Receipt_Root等。其中,下一区块(如区块N+1)的区块头中的Prev Hash指向上一区块(如区块N),即为上一区块的区块hash值(即区块头的哈希值)。通过这种方式,区块链上通过区块头实现了下一区块对上一区块的锁定。特别的,如前所述,state_root是当前区块中所有账户的状态组成的状态树(state trie)的根的哈希值,该状态树例如为MPT树(Merkle Patricia Tree)。
MPT树是结合了Merkle Tree(默克尔树)和Patricia Tree(压缩前缀树,一种更节省空间的Trie树,字典树)的一种树形结构。Merkle Tree算法对每个叶子节点都计算一个Hash(哈希)值,然后两两连接再次计算Hash,一直到最顶层的Merkle根。以太坊中采用改进的MPT树,MPT树例如是16叉树的结构。
状态树中包含以太坊网络中每个账户所对应的存储内容的键值对(key and value pair)。状态树中的“键”可以是一个160位的标识符(以太坊账户的地址),这个账户地址中包含的字符分布于从状态树的根节点到叶子节点的路径中的各个节点中。参考图3中所示,MPT状态树的叶子节点(例如节点t4和节点t5)还包括各个账户的Value。其中,当账户为用户账户(又称为外部账户)时,例如图3中的账户A,账户的Value中包括计数器(Nonce)和余额(Balance)。当账户为合约账户时,例如图3中的账户B,账户的Value中包括计数器(Nonce)、余额(Balance)、合约代码哈希值(CodeHash)和存储树根哈希值(Storage_root)。其中,所述计数器,对于外部账户代表从账户地址发送的交易数量;对于合约账户,是账户创建的合约数量。
状态树中的节点通过哈希进行连接,具体是,可以基于父节点的子节点中的数据生成哈希值,将该生成的哈希值存储在父节点中。图4为MPT树的结构示意图。假设图4中的节点t2对应于图3中的状态树中的节点t2,节点t4对应于图3中的状态树中的叶子节点t4。如图4所示,图4中的各个叶子节点中包括的状态分别表示为state1、state2、state3、state4,各个状态也即为各个账户的Value。图4中各个节点中的左侧框中的字符用于对账户进行索引,叶子节点到根节点之间的路径中的各个节点中包括的字符拼接起来即为该叶子节点对应的账户地址。例如,state1所在叶子节点到根节点之间的各个节点包括字符“f”、“5”和“324”,从而可以得到state1对应的账户地址为“f5324”。
在图4中,包括“5”的节点的子节点中包括叶子节点,在计算该节点中包括的hash(324,74)时,可通过如下的公式1计算:
hash(324,74)=hash(hash(324,hash(state1)),hash(74,hash(a,c)))     (1)
也就是说,在计算图4中的叶子节点t4的哈希值hash(324,hash(state1)时,对节点t4中的“324”和state1的哈希值hash(state1)进行拼接,然后对拼接的数据计算哈希值,得到叶子节点的哈希值。在计算图4中的非叶子节点(例如包括“74”的节点)的哈希值hash(74,hash(a,c))时,对该节点中的数据直接拼接,然后对拼接得到的数据计算哈希值。可以理解,状态树中的节点的哈希值为基于节点的全部数据计算得到的哈希值,状态树中的非叶子节点、且非根节点的节点中包括的哈希值是对其全部子节点的哈希值拼接之后取哈希得到的哈希值。
如此可在状态树中从下至上计算叶子节点与根节点之间的每个节点中包括的哈希值,从而最后可将计算得到的图3中的节点t2的哈希值与节点t3的哈希值拼接,并对拼接得到的数据取哈希,从而生成节点t1的哈希值。该节点t1的哈希值即为该状态树的状态根,记录在区块N的State_Root字段中。
在MPT树的一种变型中,可以包括分支节点,分支节点可以连接多个子节点,且分支节点中包括其连接的每个子节点中的数据的哈希值,即,分支节点中包括与多个主节点分别对应的多个哈希值,叶子节点连接在分支节点之后。该变型中还包括扩展节点,扩展节点可连接于分支节点之前或之后,扩展节点具有一个子节点,扩展节点 中包括与其连接的子节点中的全部数据的哈希值。在该MPT树变型中,同样地可基于各层节点递归得到根节点的哈希值。本说明书实施例方案也同样适用于该种MPT树变型。
智能合约在区块链上完成部署后,会产生一个对应的合约账户。这个合约账户一般会具有一些状态,这些状态由智能合约中的状态变量所定义、并在智能合约创建、执行时产生新的值。如图3所示,合约的相关状态保存在存储树(storage trie)中,图3中示意示出了账户B对应的合约的存储树。存储树根节点st1的hash值即存储于上述storage_root中,从而将该合约的所有状态通过根hash锁定到状态树中该合约账户的Value(即账户状态)下。存储树也可以具有MPT树形结构,与图4所示状态树类似地,从根节点到叶子节点的路径中的每个节点可包括用于寻址变量名的字符,叶子节点中存储有变量的Value,从而存储了变量名(也可以称为状态地址)到状态值的key-value映射。例如,参考图3中的存储树,该存储树的叶子节点st2、st3例如包括变量a的Value、变量b的Value等,以变量a为例,在存储树中的根节点到叶子节点st2的节点路径中的各个节点包括的字符构成变量a的变量名称,该变量名称可以类似地由16进制字符构成。
其中,对存储树中的各个节点的哈希值的计算可参考对状态树中的节点的哈希值计算方法。具体是,在计算存储树中的叶子节点的哈希值时,对该叶子节点中包括的部分key和叶子节点中的状态的哈希值进行拼接,然后对拼接的数据计算哈希值,得到叶子节点的哈希值。在计算存储树中的非叶子节点且非根节点的节点的哈希值时,对该节点中的数据直接拼接,然后对拼接得到的数据计算哈希值,得到该节点的哈希值。
前文示例性描述的状态树和存储树均可以被表述为树状状态数据。区块链系统中的节点可以划分为全量节点(full node)和轻节点(light node)两种。概括地说,全量节点中可以存储树状状态数据,树状状态数据的叶子节点中包括用户账户或属于合约账户的变量的状态,树状状态数据中的从根节点到叶子节点的路径中的各个节点包括状态的key,树状状态数据中的父节点中包括基于其子节点中的数据计算得到的哈希值。轻节点中可能并不存储前述树状状态数据,例如仅存储区块头,或者仅存储区块头以及数据量相对较小且能够用于对来自全量节点的状态进行验证的树状验证数据,树状验证数据的结构将在下文中进行详细描述。
部分技术场景中,轻节点可能需要对来自全量节点的多个状态进行验证。如果轻节点对来自全量节点的多个状态逐一进行验证,无疑会花费较多的时间,影响区块链系统的性能。
本说明书实施例中至少提供了一种区块链系统中的状态验证方法、装置、节点和区块链系统。对于轻节点从全量节点接收的多个状态,轻节点在确定该多个状态的key具有公共前缀的情况下,可以根据该多个状态计算树状状态数据中与该公共前缀相对应的中间节点的目标哈希值,进而对目标哈希值进行验证以完成对该多个状态的验证,因无需逐一验证该多个状态,可以更为快速的完成对该多个状态的验证,有利于提高区块链系统的性能。
图5为本说明书实施例中提供的一种状态验证方法的流程图。参见图5所示,该方法可以包括但不限于如下步骤S501~步骤S507中的部分或全部。
步骤S501,轻节点从全量节点接收多个状态。
来自全量节点的多个状态可以是全量节点所存储树状状态数据中的部分状态。前述状态可以是用户账户的状态,也可以是属于合约账户的变量的值。轻节点可能作为参与对全量节点发起的共识提议进行共识的共识节点,此种情况下前述多个状态以及该多个状态的key可能位于来自全量节点的共识提议中,更具体地说是该多个状态以及该多个状态的key属于共识提议所包括的读集,在读集中可能呈现为多个key-value对。
步骤S503,轻节点确定该多个状态的key的公共前缀。
参见图4所示,假设来自全量节点的多个状态包括state1和state2,state1和state2的key分别是f5324和f574a,则state1和state2的key的公共前缀是f5。
步骤S505,根据多个状态计算树状状态数据或树状验证数据中与公共前缀相对应的中间节点的目标哈希值。
在一种可能的实施方式中,可以根据公共前缀和该多个状态的key从树状状态数据中,查询到多个状态所属叶子节点到中间节点的路径,位于该路径上并且除该中间节点以外的其它节点的兄弟节点将会参与计算该中间节点的目标哈希值。例如请继续参见图4,树状状态数据中与公共前缀“f5”对应的中间节点是节点t11,state1和state2所属叶子节点t4和叶子节点t6到中间节点t11的路径上包括节点t4、节点t6、节点t8和节点t11,该路径中除中间节点t11以外的其它各个节点中,节点t6存在兄弟节点,该兄弟节点包括节点t7;如此,例如通过表达式hash(hash(324,hash(state1)),hash(hash(a,hash(state2)),hash(c,hash(state3))))计算得到节点t11所包括的目标哈希值。
在一种可能的实施方式中,轻节点中可以存储与树状状态数据相对应的树状验证数据,树状验证数据主要包括状态哈希值树和存储哈希值树两种类型。图6为本说明书实施例中由轻节点存储的状态哈希值树和存储哈希值树的示意图。参见图6所示,状态哈希值树和存储哈希值树中,与图3中的状态树和存储树相比,将状态树和存储树中的叶子节点中的状态替换为了该状态的哈希值,例如,将状态树中的节点t4中的state1替换为状态哈希值树的节点t4中的hash(state1),将存储树中的节点st2中的state5替换为了存储哈希值树中所示节点st2中的hash(state5)。图7为图6中的状态哈希值树的示意图。如图7中所示,在状态哈希值树中,叶子节点中包括账户地址的末尾字符、以及状态树中的对应的叶子节点的状态哈希值。如,状态哈希值树中的叶子节点t4中包括状态树中的叶子节点t4中“state1”的hash(state1)。状态哈希值树中的除叶子节点和根节点之外的各个节点中包括的哈希值可使用与状态树中相同的计算方法生成。例如,图7中的包括“5”的节点中的hash(324,74)可通过上述公式(1)计算得到。存储哈希值树也可以具有与图7所示的结构类似的结构。如此,图6中的状态哈希值树和存储哈希值树中除了叶子节点以外的其他节点包括的数据与图3中的状态树和存储树中的对应节点是相同的,因此图6中的节点t1的根哈希值与图3中的节点t1的根哈希值相同。
需要特别说明的是,树状验证数据可以不限于包括如图6或图7所示的结构。对于前文所述的MPT树的变型,仅需要将MPT树变型中的叶子节点中的状态删除,即可以将经过该删除后的哈希值树用作为轻节点中存储的树状验证数据。
轻节点存储树状验证数据的基础上,可以根据公共前缀和该多个状态的key从树状验证数据中,查询到该多个状态所属叶子节点到中间节点的路径,位于该路径上并 且除该中间节点以外的其它节点的兄弟节点将会参与计算该中间节点的目标哈希值。基于树状验证数据计算目标哈希值的过程基本相似于基于树状状态数数据计算目标哈希值的过程,区别仅仅在于如果参与计算目标哈希值的某个兄弟节点是叶子节点,则可以直接从该兄弟节点中获得相应状态的哈希值而无需重新计算相应状态的哈希值。继续以通过前述表达式hash(hash(324,hash(state1)),hash(hash(a,hash(state2)),hash(c,hash(state3))))计算得到节点t11所包括的目标哈希值为例,基于树状验证数据计算目标哈希值的过程中,该表达式中的hash(state3)可以从图7中的节点t7中获取而无需对state3执行哈希运算。
示例性的,轻节点中例如存储有图8中示例性提供的树状验证数据,而且轻节点接收到来自全量节点的多个状态的key包括AcountID010086、AcountID130086、AcountID140086、AcountID150086,则轻节点可以通过前述4个key的公共前缀“AcountID”确定需要计算目标哈希值的中间节点是“countID”,确定前述4个key的状态的哈希值各自对应的节点依次是“10086”、“30086”、“40086”和“50086”,以及确定需要用于计算该中间节点所包括的目标哈希值的树节点包括“20086”。进而,可以计算前述四个key的状态的哈希值,并根据“20086”中包括的字符串和哈希值、前述四个key的状态的哈希值,以及节点“10086”、“30086”、“40086”和“50086”中包括的字符串,层层向上计算节点“0”所包括的哈希值、节点“1”所包括的哈希值,最终计算出中间节点“countID”应当包括的目标哈希值。
步骤S507,对目标哈希值进行验证,以对多个状态进行验证。
在一种可能的实施方式中,轻节点可以验证中间节点所包括的目标哈希值与中间节点所包括的当前哈希值是否相同,相同则说明该多个状态通过验证。例如请继续参见图4或图7,来自全量节点的状态包括state1和state2,中间节点是t11,如果节点t11所包括的当前哈希值与计算得到的目标哈希值相同,则目标哈希值通过验证,同时意味着state1和state2通过验证。
在一种可能的实施方式中,轻节点可以基于树状状态树验证目标哈希值。例如轻节点可以获取树状状态数据中根节点的第一哈希值和若干树节点的哈希值,根据若干树节点的哈希值与目标哈希值计算根节点的第二哈希值,验证第二哈希值与第一哈希值是否相同。更具体地,可以从树状状态数据中查询中间节点到根节点的路径,位于该路径上的节点的兄弟节点将会参与计算该中间节点的目标哈希值,换而言之即前述若干树节点是指位于该路径上的节点的兄弟节点。例如请继续参见图6和图7,中间节点t11与根节点t1之间的路径上包括节点t11、节点t2和节点t1,节点t11的兄弟节点包括节点t10,节点t2的兄弟节点包括节点t3,则节点t10以及节点t3等树节点各自包括的哈希值将会用于计算根节点t1的第二哈希值;例如可以通过表达式hash(hash(hash(5,hash(327,74)),hash(d,hash(886,…))),hash(t3))计算根节点t1的第二哈希值,其中该表达式中hash(5,hash(327,74)表征目标哈希值,hash(t3)表征对节点t3包括的key的组成部分以及节点t3包括的哈希值的拼接结果计算哈希值。
继续参见图8,轻节点可以根据中间节点“countID”查询其存储的树状验证数据,确定需要用于计算根节点“Root”对应的第二哈希值的树节点具体包括节点“sset”和节点“Dept”,并根据中间节点“Dept”中包括的字符串、目标哈希值、节点“sset”所包括的 字符串和哈希值计算节点“A”应当包括的哈希值,进而根据节点“A”所包括的字符串、节点“A”应当包括的哈希值、节点“Dept”所包括的字符串和哈希值,计算出根节点“Root”对应的第二哈希值,并确定计算得到的第二哈希值与根节点“Root”中存储的第一哈希值是否相同。
在一种可能的实施方式中,在轻节点存储树状验证数据的情况下,轻节点可以基于树状验证书验证目标哈希值。例如轻节点可以获取树状验证数据中根节点的第一哈希值和若干树节点的哈希值,根据若干树节点的哈希值与目标哈希值计算根节点的第二哈希值,验证第二哈希值与第一哈希值是否相同。基于树状验证数据验证目标哈希值的过程基本相似于基于树状状态数数据验证目标哈希值的过程,区别仅仅在于如果参与验证目标哈希值的树节点/兄弟节点是叶子节点,则可以直接从该树节点/兄弟节点中获得相应状态的哈希值而无需重新计算相应状态的哈希值,因此不再详细赘述。
前文所述的轻节点可以作为共识节点参与对全量节点发起的共识提议节点进行共识。此种情况下为了方便描述本说明书实施例中提供的技术方案,下文将发起共识提议的全量节点表述为全共识节点(Full Validating Peer,FVP),将接收共识提议的轻节点表述为轻共识节点(Light Validating Peer,LVP),轻共识节点中通常存储有前文所述的树状验证数据。
图9为本说明书实施例中提供的一种共识方法的流程图。参见图9所示,该方法可以包括但不限于如下步骤S901~步骤S915中的部分或全部。
步骤S901,FVP获取多个交易对应的读集。
假设区块链系统中的FVP1为主节点,下文中以FVP1作为示例进行描述。FVP1可以从用户客户端或者其他FVP接收用户发送的交易。该交易可以为转账交易,或者可以为调用合约的交易等。FVP1在接收到一定量的交易之后,可以在接收到的交易中选出多个交易进行共识,以用于生成新的区块。FVP1在选出多个交易之后,获取该多个交易对应的读集。该读集包括根据该多个交易包括的读操作从树状状态数据中读取的账户和/或合约变量的状态,该读集也即为该多个交易在被执行时需要从树状状态数据中读取的账户和/或合约变量的状态,其中,树状状态数据例如包括图3中所示的状态树和存储树。
具体是,FVP1可以获取多个交易各自的读集,然后可以对各个交易的读集进行合并,也即从多个交易各自的读集中选取在首次读取各个变量(包括账户和合约变量)时从树状状态数据中读取的该变量的键值对,从而得到多个交易对应的读集。假设所述多个交易中的一个交易包括对账户A的余额的更新(例如减少预设金额),该交易在执行时需要首先读取账户A的value(即包括Nonce和Balance),然后根据读取的账户A的value获取账户A的新的value,例如,根据该交易对Nonce值加1,对Balance值减少预设金额,得到账户A的更新的Nonce值和Balance值,其构成了账户A的更新的Value。从而,该交易的读集包括读取的账户A的键值对,该交易的写集包括写入的账户A的键值对。则该多个交易的读集中包括从树状状态数据读取的账户A的Key-Value键值对,其中Key为账户A的账户地址,Value为账户A的状态,该状态中包括账户A对应的叶子节点中的Nonce值和Balance值。
假设该多个交易中的一个交易包括对账户B对应的合约中的变量a的更新操作,由 于对变量a的写入会导致对账户B中的Storage_root的更新,因此,该交易也包括对账户B的写入操作。为了对账户B和变量a进行写入,该交易的读集中需要包括账户B的Key-Value键值对和变量a的键值对。假设该交易对账户B和变量a的读取为首次从树状状态数据读取的情况,则多个交易的读集中也包括基于该交易从树状状态数据中读取的账户B的该键值对和变量a的键值对。其中,账户B的Key-Value键值对中的key为账户B的账户地址,Value为账户B的状态,该状态中包括账户B对应的叶子节点中的Nonce、Balance、CodeHash和Storage_root各个字段的值。变量a的Key-Value键值对中的key为变量a的变量名称,Value为变量a的状态值。根据该多个交易的读集,当在执行该交易中对账户B进行写入时,可以根据变量a的更新的value计算更新的Storage_root,并与读集中的账户B的Nonce、Balance、CodeHash合并,得到账户B的更新的value,该变量a的更新的value和账户B的更新的value将记录在该交易的写集中,以更新树状状态数据。
在一种实施方式中,FVP1可以对各个交易进行静态分析,分析交易的交易体以及交易中调用的合约的合约代码,从而确定各个交易在执行时需要读取的账户和/或变量名称,即key,通过所得到的key从树状状态数据中读取到key对应的value,从而生成该多个交易对应的读集。在另一种实施方式中,FVP1可预执行所述多个交易,FVP1可按照多个交易的预设的排列顺序预执行多个交易,或者FVP1可根据各个交易的接收顺序预执行多个交易,并根据各个交易的预执行顺序确定共识提议中的该多个交易的排列顺序。
FVP1在预执行多个交易时,当首次读取账户或合约变量的value时,从树状状态数据中进行读取,并根据该首次读取账户或合约变量的value生成该多个交易的读集。同时,FVP1缓存首次读取的账户或合约变量的value,当在预执行该多个交易中对这些首次读取账户或合约变量的value进行更新时,在缓存中更新这些账户或合约变量的value,当在预执行该多个交易中再次读取这些账户或合约变量的value时,则读取缓存中的这些账户或合约变量的value,其中,再次读取的这些用户账户或属于合约账户的变量的value不需要写入该多个交易的读集。
结合以上内容可见,读集中可以包括多个用户账户或属于合约账户的变量的状态。此外读集中还可以包括位于读集中的多个状态的key,key用于表征相应的用户账户或属于合约账户的变量。更具体地说,FVP获取的读集中实质上可以包括多个key-value对。
在步骤S903,FVP向LVP发送共识提议,该共识提议中包括该多个交易的读集。
FVP1可生成共识提议,以用于对该多个交易的排列顺序进行共识。
共识提议中还可以包括所述多个交易的交易列表,该交易列表中包括顺序排列的多个交易的交易体。或者,共识提议中还可以包括顺序排列的多个交易的交易标识(如各个交易的哈希值);同时,FVP1或者其他从用户设备接收交易的FVP可通过广播将该多个交易的交易体广播给其他共识节点,从而减小共识提议的数据量,节省共识过程中用于签名的计算量。
通过在共识提议中包括读集,参考图2所示的共识过程,可以在PP阶段就进行对读集的验证,即在PP阶段就确定FVP1是否作恶,如果在PP阶段确定FVP1作恶,可以提前结束共识过程,无需进行后续的准备阶段和提交阶段,节省了计算资源,提高了区 块链中的系统效率。
在步骤S905,LVP根据读集中包括的多个状态的key,将多个状态划分为若干状态分组。
位于相同状态分组中的状态的key具有公共前缀,位于不同状态分组中的key不具有公共前缀。举例来说,state1的key是f5324、state2的key是f574a、state6的key是mnf25,f5324和f574a具有公共前缀f5,因此state1和state2需要被划分到相同的状态分组1,mnf25与f5324、f574a并不具有公共前缀,因此state6需要被划分到不同于状态分组1的状态分组2。
在步骤S907,LVP分别验证若干状态分组中的状态是否正确。
单个状态分组中可能包括多个状态,对于位于相同分组中的多个状态,可以采用与前述图5所示方法实施例中所述的方法完成对该多个状态的验证。更具体地说,可以通过前述图5所示方法实施例中步骤503~步骤507所示的过程完成对单个状态分组中的多个状态进行验证,以利更加快速的完成对读集中所包括的全部状态进行验证。
LVP也可无需对读集中的状态进行分组,而是基于状态哈希值树和存储哈希值树等树状验证数据逐一执行对各个状态进行验证。例如,读集中包括账户A的Value,LVP可计算读集中的账户A的Value的哈希值(例如hash1),基于状态哈希值树中的其他叶子节点的值(即状态哈希值)与hash1向上层层计算各个节点的哈希值,直到计算状态哈希值树的根哈希值(例如root1),确定root1与LVP中存储的状态哈希值树的根哈希值是否相同,如果相同,则认为该读集中的账户A的Value为正确的。读集中包括账户B的Value和变量a的Value的情况下,LVP可类似地基于状态哈希值树和存储哈希值树对账户B的Value和变量a的Value进行spv验证。
在读集中的状态全部通过验证的情况下,也即LVP确认读集正确的情况下,可以执行如下步骤S909,共识节点(包括FVP和LVP)完成对多个交易的共识过程。
LVP在确认读集正确的情况下,可以在后续过程中基于该读集与FVP类似地执行节点功能,例如执行交易、生成区块等功能。此外LVP在确认读集正确的情况下,可以完成对多个交易的共识过程,包括完成如图2所示的PP阶段、P阶段和C阶段。如果读集未通过验证,则可确定主节点存在作恶的可能,LVP可以尽早结束该共识过程,并开始更换主节点的流程,从而提高了区块链系统的效率。
在步骤S911,LVP根据读集执行多个交易。
LVP可基于读集中的状态执行共识提议中的多个交易。具体是,LVP在执行交易的过程中需要读取账户或变量的状态时,如果是对该账户或变量的首次读取,可从该读集中找到账户或变量的状态,基于该账户或变量的状态进行对该交易的执行,根据该交易中的对账户或合约变量的写操作,得到该交易的写集,该写集中包括账户的键值对或合约账户和合约变量的key-value对,用于更新状态数据中的状态。LVP在从读集中读取账户或合约变量的状态之后,可以缓存该状态,并在执行对该账户或合约变量的写入时,在缓存中更新该账户或合约变量的状态,以用于后续在执行交易过程中的对该账户或合约变量的状态的读取。该读集中的账户或变量的状态已经通过验证,即为该账户或变量当前的正确状态,因此,基于读集中的状态执行交易得到的执行结果与FVP基于状态数据中的状态执行交易得到的执行结果相同。
具体是,假设如上文所述多个交易中的一个交易包括对账户A的余额的更新,LVP首先从多个交易的读集中读取账户A的value(假设读取的value为V1)并存储在缓存中,根据该交易对V1进行更新,从而得到账户A的更新的value(假设该value为V2),其中V2中包括更新的Nonce值和更新的Balance值,从而可在该交易的写集中写入账户A的更新的键值对,并更新缓存中的账户A的值。
假设多个交易中的一个交易包括对账户B对应的合约的变量a的写入,LVP首先从多个交易的读集中读取账户B的value(假设为V3)和变量a的value(假设为V4),根据该交易对V4进行处理,得到变量a的更新的value(假设为V5),计算V5的哈希值,代入图5中的存储哈希值树,计算根节点st1的哈希值,以根节点st1的哈希值作为账户B的更新的storage_root,结合该交易的读集中的账户B的Nonce、Balance和CodeHash,计算出账户B的更新的value(假设为V6),从而可在该交易的写集中包括账户B的更新的键值对和变量a的更新的键值对。
在LVP根据读集执行多个交易的同时,FVP1如果在先前已经预执行多个交易,由于如前文所述,FVP1预执行该多个交易的顺序与共识提议中的多个交易的排列顺序对应,因此FVP1在预执行多个交易时对状态的读取、更新和写入与执行多个交易时相同,从而,可以将预执行多个交易得到的写集用作为执行所述多个交易的写集,并根据该写集得到多个交易的收据。FVP1如果在先前未预执行多个交易,则可以根据所述读集、或者通过从状态数据中读取状态,而按照共识提议中的多个交易的排列顺序来执行该多个交易。上述两种方式中,FVP1中得到的多个交易的写集和收据与LVP执行多个交易的写集和收据是相同的。
在步骤S913,共识节点(包括FVP和LVP)对多个交易的执行结果进行共识。
共识节点可类似地通过图2所示的共识过程进行对多个交易的执行结果的共识。具体是,各个共识节点在执行多个交易得到各个交易的写集和收据之后,可根据多个交易的交易体、各个交易的写集和收据计算该多个交易对应的状态树根哈希值、交易树根哈希值和收据树根哈希值。基于该多个交易对应的状态树根哈希值、交易树根哈希值、收据树根哈希值、以及上一个区块的区块哈希(即区块头哈希值,如图3中的Prev Hash所示)计算该多个交易对应的区块(区块B1)的区块哈希(即区块B1的区块头哈希值)。FVP1可在PP阶段向其他共识节点发送共识提议,该共识提议中包括区块B1的区块哈希。LVP在接收到该共识提议之后,可比较从FVP1接收的区块哈希与自己计算的区块B1的区块哈希是否相同,如果相同,则对该区块哈希进行签名并发送给其他各个共识节点。如此在完成图2中的PP阶段、P阶段和C阶段之后,完成对区块哈希的共识。在共识节点完成对区块哈希的共识之后,从而可保证各个共识节点对多个交易的执行结果相同,从而各个节点可根据多个交易的执行结果更新存储。
在步骤S915,LVP根据多个交易的写集更新树状验证数据。
具体是,LVP在得到各个交易的写集之后,根据各个交易的写集得到该多个交易对应的写集(例如wset1),该写集wset1中包括根据所述多个交易的写操作而将用于更新树状状态数据的账户的key-value对或合约账户和合约变量的key-value对。在对多个交易的执行结果成功共识之后,LVP可基于wset1中各个状态的哈希值更新LVP中的树状验证数据。
在一种实施方式中,LVP中的树状验证数据包括各个账户和各个合约变量的状态的哈希值。假设写集wset1中包括将写入的账户A的键值对,LVP可基于wset1中的账户A的key找到树状验证数据中该key对应的value的哈希值的存储位置,将wset1中的key对应的状态的哈希值写入到该存储位置处。
假设写集wset1中包括将写入的账户B的键值对和变量a的键值对,LVP首先根据变量a的更新的value,计算更新的状态哈希值,在树状验证数据中更新变量a的状态哈希值。之后LVP根据账户B的更新value,计算更新的状态哈希值,在树状验证数据中更账户B的状态哈希值。
在另一种实施方式中,LVP存储的树状验证数据包括如图5所示的状态哈希值树和存储哈希值树,LVP可首先如在上一种实施方式中所述更新状态哈希值树和存储哈希值树中的与写集中多个状态对应的叶子节点中的状态哈希值。然后可基于更新的叶子节点,向上更新状态哈希值树和存储哈希值树中的各层节点中包括的哈希值,直到更新状态哈希值树和存储哈希值树的根节点的哈希值。
另外,LVP在对区块哈希完成共识之后,可存储所生成的区块的区块头,以用于进行SPV验证,以及用于进行对下一个区块的生成。
在LVP更新存储的同时,FVP1也根据多个交易的执行结果更新存储,具体是,FVP1根据多个交易的写集更新如图3所示的状态树和存储树,以及存储该多个交易对应的区块B1,该区块包括区块头和区块体,区块体中例如包括多个交易的交易体、收据等数据。在区块链系统中的LVP和FVP都根据多个交易的执行结果更新存储之后,LVP中的树状验证数据仍与FVP中的树状状态数据相对应,以用于继续对下一批多个交易进行共识。
与前述方法实施例基于相同的构思,本说明书实施例中提供了一种区块链系统中的状态验证装置,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值,所述装置部署在所述第二节点中。如图10所示,所述装置包括:通信处理单元1001,用于从所述第一节点接收多个第一状态;前缀处理单元1003,用于确定所述多个第一状态的key的公共前缀;哈希计算单元1005,用于根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;验证处理单元1007,用于对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
与前述方法实施例基于相同的构思,本说明书实施例中提供了一种区块链系统中的节点,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值。如图11所示,所述第二节点包括:通信处理单元1101,用于从所述第一节点接收多个第一状态;前缀处理单元1103,用于确定所述多个第一状态的key的公共前缀;哈希计算单元1105,用于根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;验证处理单 元1107,用于对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
与前述方法实施例基于相同的构思,本说明书实施例中提供了一种区块链系统,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值,其中:所述第二节点用于从所述第一节点接收多个第一状态;确定所述多个第一状态的key的公共前缀;根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
本说明书实施例中还提供了一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序在计算机中执行时,令计算机执行前述方法实施例中由全量节点、轻节点、LVP节点或FVP节点执行的方法。
本说明书实施例中还提供一种计算设备,包括存储器和处理器,所述存储器中存储有可执行代码,所述处理器执行所述可执行代码时,实现前述方法实施例中由全量节点、轻节点、LVP节点或FVP节点执行的方法。
在20世纪90年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL(Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下 微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为服务器系统。当然,本申请不排除随着未来计算机技术的发展,实现上述实施例功能的计算机例如可以为个人计算机、膝上型计算机、车载人机交互设备、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
虽然本说明书一个或多个实施例提供了如实施例或流程图所述的方法操作步骤,但基于常规或者无创造性的手段可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的装置或终端产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境,甚至为分布式数据处理环境)。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、产品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、产品或者设备所固有的要素。在没有更多限制的情况下,并不排除在包括所述要素的过程、方法、产品或者设备中还存在另外的相同或等同要素。例如若使用到第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本说明书一个或多个时可以把各模块的功能在同一个或多个软件和/或硬件中实现,也可以将实现同一功能的模块由多个子模块或子单元的组合实现等。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本发明是参照根据本发明实施例的方法、装置(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或 多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储、石墨烯存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
本领域技术人员应明白,本说明书一个或多个实施例可提供为方法、系统或计算机程序产品。因此,本说明书一个或多个实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本说明书一个或多个实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书一个或多个实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书一个或多个实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述 的具体特征、结构、材料或者特点包含于本说明书的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本说明书一个或多个实施例的实施例而已,并不用于限制本说明书一个或多个实施例。对于本领域技术人员来说,本说明书一个或多个实施例可以有各种更改和变化。凡在本说明书的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在权利要求范围之内。

Claims (15)

  1. 一种区块链系统中的状态验证方法,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值,所述方法由所述第二节点执行,包括:
    从所述第一节点接收多个第一状态;
    确定所述多个第一状态的key的公共前缀;
    根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;
    对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
  2. 根据权利要求1所述的方法,所述对所述目标哈希值进行验证包括:获取所述树状状态数据中根节点的第一哈希值和若干树节点的哈希值,根据所述若干树节点的哈希值与所述目标哈希值计算所述根节点的第二哈希值,验证所述第二哈希值与所述第一哈希值是否相同。
  3. 根据权利要求1所述的方法,所述第二节点中存储有与所述树状状态数据对应的树状验证数据,所述树状验证数据的叶子节点中包括所述状态的哈希值,所述树状验证数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状验证数据中的父节点包括基于其子节点中的数据计算得到的哈希值;
    所述对所述目标哈希值进行验证,包括:获取所述树状验证数据中根节点的第一哈希值和若干树节点的哈希值,根据所述若干树节点的哈希值与所述目标哈希值计算所述根节点的第二哈希值,验证所述第二哈希值与所述第一哈希值是否相同。
  4. 根据权利要求2或3所述的方法,所述树节点是,所述根节点到所述中间节点的路径上的节点的兄弟节点。
  5. 根据权利要求1所述的方法,所述对所述目标哈希值进行验证,包括:确定所述中间节点的当前哈希值与所述目标哈希值是否相同。
  6. 根据权利要求1所述的方法,所述第一状态的key表征注册在所述区块链系统中的用户账户;或者,所述第一状态的key表征属于注册在所述区块链系统中的合约账户的变量。
  7. 根据权利要求1所述的方法,所述父节点的子节点是叶子节点的情况下,所述父节点包括的哈希值,基于所述父节点的子节点所包括的状态的哈希值,以及所述父节点的子节点所包括的状态的key的组成部分计算得到。
  8. 根据权利要求1所述的方法,所述从所述第一节点接收多个第一状态,包括:从所述第一节点接收共识提议,所述共识提议包括待执行的多个交易的读集,所述读集包括所述第一节点根据所述多个交易从所述树状状态数据中读取的所述多个第一状态;其中,所述方法还包括:根据所述多个第一状态的验证结果与所述第一节点、所述区块链系统中的其它共识节点对所述共识提议进行共识。
  9. 根据权利要求8所述的方法,所述共识提议中还包括所述多个交易的排列顺序,所述方法还包括:在对所述共识提议达成共识的情况下,根据所述排列顺序和所述读 集执行所述多个交易以得到写集,所述写集用于更新若干第二状态。
  10. 根据权利9所述的方法,所述第二节点中存储有与所述树状状态数据对应的树状验证数据,所述树状验证数据的叶子节点中包括所述状态的哈希值,所述树状验证数据中从根节点到叶子节点的路径中的节点包括所述状态的key,所述树状验证数据中的父节点包括基于其子节点中的数据计算得到的哈希值;
    所述方法还包括:根据所述写集更新所述树状验证数据。
  11. 根据权利要求10所述的方法,所述方法还包括:根据所述写集和更新后的所述树状验证数据生成区块头,所述区块头中包括更新后的所述树状验证数据中根节点的哈希值。
  12. 一种区块链系统中的状态验证装置,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值,所述装置部署在所述第二节点中,包括:
    通信处理单元,用于从所述第一节点接收多个第一状态;
    前缀处理单元,用于确定所述多个第一状态的key的公共前缀;
    哈希计算单元,用于根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;
    验证处理单元,用于对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
  13. 一种区块链系统中的节点,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值,所述第二节点包括:
    通信处理单元,用于从所述第一节点接收多个第一状态;
    前缀处理单元,用于确定所述多个第一状态的key的公共前缀;
    哈希计算单元,用于根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;
    验证处理单元,用于对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
  14. 一种区块链系统,所述区块链系统包括第一节点和第二节点,所述第一节点存储有树状状态数据,所述树状状态数据的叶子节点中包括状态,所述树状状态数据中从根节点到叶子节点的路径上的节点包括所述状态的key,所述树状状态数据中的父节点包括基于其子节点中的数据计算得到的哈希值;其中:所述第二节点用于从所述第一节点接收多个第一状态;确定所述多个第一状态的key的公共前缀;根据所述多个第一状态,计算所述树状状态数据中与所述公共前缀相对应的中间节点的目标哈希值;对所述目标哈希值进行验证,以对所述多个第一状态进行验证。
  15. 一种计算机可读存储介质,其上存储有计算机程序,当所述计算机程序在计算机中执行时,令计算机执行权利要求1-11中任一项所述的方法。
PCT/CN2022/135281 2022-09-30 2022-11-30 区块链系统中的状态验证方法、装置、节点和区块链 WO2024066009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211213673.6A CN115641141A (zh) 2022-09-30 2022-09-30 区块链系统中的状态验证方法、装置、节点和区块链系统
CN202211213673.6 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066009A1 true WO2024066009A1 (zh) 2024-04-04

Family

ID=84941442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135281 WO2024066009A1 (zh) 2022-09-30 2022-11-30 区块链系统中的状态验证方法、装置、节点和区块链

Country Status (2)

Country Link
CN (1) CN115641141A (zh)
WO (1) WO2024066009A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106126722A (zh) * 2016-06-30 2016-11-16 中国科学院计算技术研究所 一种基于验证的前缀混合树及设计方法
KR20170091248A (ko) * 2016-01-29 2017-08-09 한국과학기술원 머클 트리 기반 메모리 무결성 검증 방법 및 장치
CN108039943A (zh) * 2017-12-06 2018-05-15 清华大学深圳研究生院 一种可验证的加密搜索方法
CN111488608A (zh) * 2020-04-08 2020-08-04 北京瑞策科技有限公司 业务数据区块链的数据验证方法及装置
US20210067321A1 (en) * 2019-08-30 2021-03-04 Alibaba Group Holding Limited Updating a state merkle tree

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170091248A (ko) * 2016-01-29 2017-08-09 한국과학기술원 머클 트리 기반 메모리 무결성 검증 방법 및 장치
CN106126722A (zh) * 2016-06-30 2016-11-16 中国科学院计算技术研究所 一种基于验证的前缀混合树及设计方法
CN108039943A (zh) * 2017-12-06 2018-05-15 清华大学深圳研究生院 一种可验证的加密搜索方法
US20210067321A1 (en) * 2019-08-30 2021-03-04 Alibaba Group Holding Limited Updating a state merkle tree
CN111488608A (zh) * 2020-04-08 2020-08-04 北京瑞策科技有限公司 业务数据区块链的数据验证方法及装置

Also Published As

Publication number Publication date
CN115641141A (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN107577427B (zh) 用于区块链系统的数据迁移方法、设备和存储介质
CN107562775B (zh) 一种基于区块链的数据处理方法及设备
JP6875557B2 (ja) サービス・データをブロックチェーン・システムに書き込むための方法およびデバイス
TW201823988A (zh) 區塊資料校驗方法和裝置
WO2023231336A1 (zh) 执行交易的方法和区块链节点
EP3963452A1 (en) In-script functions within a blockchain transaction
WO2023231337A1 (zh) 在区块链中执行交易的方法、区块链的主节点和从节点
WO2023231335A1 (zh) 在区块链中执行交易的方法及区块链的主节点
WO2024066007A1 (zh) 区块链系统中的交易执行方法、共识节点和区块链系统
WO2023109270A1 (zh) 智能合约部署方法、交易方法、装置及电子设备
TW202226019A (zh) 區塊鏈交易產生及驗證技術
WO2024066009A1 (zh) 区块链系统中的状态验证方法、装置、节点和区块链
WO2024066014A1 (zh) 区块链系统中的交易执行方法和节点
WO2024066006A1 (zh) 区块链系统中的共识方法、共识节点和区块链系统
WO2024066019A1 (zh) 区块链系统中的交易执行方法、共识节点和区块链系统
WO2024066011A1 (zh) 一种共识节点类型的转换方法和共识节点
WO2024001032A1 (zh) 在区块链系统中执行交易的方法、区块链系统和节点
WO2024066012A1 (zh) 区块链系统中节点类型的转换方法、装置及区块链系统
WO2024066010A1 (zh) 区块链系统中的交易处理方法、装置及区块链系统
CN114785800A (zh) 跨链通信方法及装置
CN117056342B (zh) 一种基于区块链的数据处理方法及相关设备
WO2024092930A1 (zh) 区块链系统中的交易执行方法和节点
WO2024092932A1 (zh) 交易执行方法和区块链节点
CN116881361A (zh) 交易的执行方法、节点和区块链系统
CN115982781A (zh) 一种在区块链中创建账户的方法和区块链节点