WO2024066004A1 - 一种铝电解槽对地绝缘故障的检测方法 - Google Patents

一种铝电解槽对地绝缘故障的检测方法 Download PDF

Info

Publication number
WO2024066004A1
WO2024066004A1 PCT/CN2022/135202 CN2022135202W WO2024066004A1 WO 2024066004 A1 WO2024066004 A1 WO 2024066004A1 CN 2022135202 W CN2022135202 W CN 2022135202W WO 2024066004 A1 WO2024066004 A1 WO 2024066004A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
electrolytic cell
potential
cell
aluminum
Prior art date
Application number
PCT/CN2022/135202
Other languages
English (en)
French (fr)
Inventor
王铁军
葛贵君
曲士民
惠憬明
周明珠
那生巴图
郑伟
Original Assignee
内蒙古霍煤鸿骏铝电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古霍煤鸿骏铝电有限责任公司 filed Critical 内蒙古霍煤鸿骏铝电有限责任公司
Publication of WO2024066004A1 publication Critical patent/WO2024066004A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/56Testing of electric apparatus

Definitions

  • the present invention relates to the technical field of aluminum electrolysis cells, and in particular to a method for detecting insulation faults of aluminum electrolysis cells to the ground based on cell-to-ground AC potential detection.
  • Aluminum electrolytic cells are important equipment for electrolytic aluminum production, and their working conditions have a direct impact on aluminum production and quality. At present, the production capacity of my country's electrolytic aluminum industry is unevenly distributed, and the power consumption is large, resulting in high costs. In electrolytic aluminum plants, the electrolytic cell system has the characteristics of multiple industries, special production environments, multiple types of equipment, and great safety hazards.
  • the power supply method of aluminum electrolytic cells is a special ungrounded DC power supply system, which forms a circuit through a series of busbar electrolytic cells. Its insulation condition is crucial to the electrolytic series.
  • the ground insulation measures of aluminum electrolytic cells are as follows: (1) Insulation is set between the cathode busbar and the busbar pier, the tank shell and the pillar, etc. to prevent the aluminum electrolytic cell from being grounded; (2) The current flowing through the mechanical equipment may be AC or DC. An insulating plate is inserted between the AC equipment and the DC equipment to prevent AC and DC from cross-current; (3) Insulation is set on the bracket, various parts of the tank cover plate, the cylinder base, etc. to prevent unnecessary electrolytic reactions in the current branch; (4) Insulation materials such as insulating plugs and sleeves are used to insulate the column busbar and short-circuit.
  • Aluminum electrolytic cell grounding fault is one of the most common faults in aluminum electrolysis enterprises.
  • the insulation of the electrolytic cell to the ground is directly related to the normal power supply, personal and equipment safety.
  • the insulation of the electrolytic cell to the ground directly reflects the zero drift, which means that the zero potential of the series deviates from the geometric center of the series; under normal circumstances, there is a difference in the insulation resistance to the ground on both sides of the geometric center of the series, so the zero potential of the system is often offset from the geometric center of the system, but the deviation will not be too large. However, if the deviation value is too large, it will cause hidden dangers to the normal power supply, series, personal and equipment safety.
  • the grounding fault of the electrolytic cell will cause leakage of the DC bus, reduce the aluminum production of the cell, and reduce the economic benefits of the enterprise.
  • the ground insulation strength detection method which determines the location of the grounding fault of the aluminum electrolytic cell by measuring the insulation strength of the electrolytic cell to the ground at different points; however, the ground insulation strength detection method cannot eliminate the influence of the difference in insulation strength of different cells themselves, which may cause misjudgment of the location of the fault point.
  • the second is the insulation resistance detection method, which detects the insulation resistance of the electrolytic cell to the ground through a megohmmeter or an external signal, and determines whether there is a grounding fault in the aluminum electrolytic cell by the size of the insulation resistance to the ground, but the insulation resistance detection method is difficult to determine the location of the fault.
  • the third is the zero drift detection method, which calculates the location of the grounding fault of the aluminum electrolytic cell by detecting the size of the grounding voltage at different points, but the zero drift detection method is prone to errors and cannot determine the situation of multiple-point faults, which has a certain impact on the fault location.
  • the above methods generally have the problems of complex operation and limitations.
  • the present invention provides a method for detecting insulation failure of an aluminum reduction cell to the ground, so as to solve the technical problems that the existing detection methods for detecting insulation failure of an aluminum reduction cell to the ground have complex operations and limitations.
  • the technical solution proposed by the present invention is:
  • a method for detecting insulation failure of an aluminum electrolysis cell to ground comprises the following steps:
  • the distribution and variation law of the AC ground potential amplitude of each electrolytic cell in the aluminum electrolytic cell series are analyzed and calculated, including:
  • the calculation formula of the ground potential change curve f(m) is as follows:
  • R0 is the resistance of the electrolytic cell
  • is the angular frequency
  • Re and Ce are the parallel equivalent resistance and equivalent capacitance of the #m electrolytic cell and all subsequent electrolytic cells, respectively
  • R is the insulation resistance of the cell to the ground
  • Rm is the resistance of the #m electrolytic cell to the ground
  • Ce C ⁇ (N-m+1); wherein, C is the capacitance of the #m electrolytic cell to the ground.
  • the method further comprises locating the fault slot according to a sudden change in a curve of the alternating current potential amplitude to ground, comprising:
  • the method further comprises analyzing and calculating the distribution and variation law of the AC potential phase to ground of each electrolytic cell in the aluminum electrolytic cell series, and judging whether there is a ground fault according to the sudden change of the change curve of the potential phase to ground.
  • analyzing and calculating the distribution and variation law of the phase of the AC potential to ground of each electrolytic cell in the aluminum electrolytic cell series includes:
  • the calculation formula of the ground potential phase change curve ⁇ is as follows:
  • R0 is the resistance of the electrolytic cell
  • is the angular frequency
  • Re and Ce are the parallel equivalent resistance and equivalent capacitance of the #m electrolytic cell and all subsequent electrolytic cells, respectively
  • R is the insulation resistance of the cell to the ground
  • Rm is the resistance of the #m electrolytic cell to the ground
  • Ce C ⁇ (N-m+1); wherein, C is the capacitance of the #m electrolytic cell to the ground.
  • the method further comprises locating the fault slot according to the sudden change of the ground potential phase change curve, including:
  • the derivative modulus maximum of the ground potential phase change curve ⁇ is solved, and the position corresponding to the modulus maximum point is the ground fault slot position.
  • the AC component of the voltage to ground of each electrolytic cell in the aluminum electrolytic cell series is detected in the following manner:
  • An AC signal voltage with a set frequency and voltage value is injected at the head end or zero point of the aluminum electrolytic cell series, and a wireless potential sensor is installed on the cathode at the bottom of each electrolytic cell to detect the AC component of the voltage to ground of each electrolytic cell.
  • the detection method of the aluminum electrolytic cell insulation fault of the present invention can determine whether there is a ground fault by only analyzing and calculating the distribution and change law of the ground potential amplitude and phase of each electrolytic cell in the electrolytic cell series.
  • the method is simple to operate, has high measurement accuracy, and small error; the algorithm is simple and the calculation amount is small.
  • the method for detecting the insulation fault of the aluminum electrolytic cell to the ground of the present invention can quickly determine the location of the fault through the modulus maximum of the derivative function of the ground potential change curve f(m) and ⁇ or the modulus maximum of the derivative of the ground potential phase change curve ⁇ ; the fault location is accurate. It can also be used to determine the situation of multi-point faults. Compared with the ground insulation strength detection method, this method does not need to detect the insulation strength of each cell, avoiding the error caused by the insulation strength itself; compared with the insulation resistance detection method, this method can accurately determine the location of the fault; compared with the zero drift detection method, this method can more effectively identify the location of the fault.
  • FIG1 is a schematic flow chart of a method for detecting insulation failure of an aluminum electrolysis cell to the ground according to a preferred embodiment of the present invention
  • FIG2 is a schematic diagram of an equivalent circuit of an aluminum electrolysis cell series according to a preferred embodiment of the present invention.
  • FIG3 is a schematic diagram of an equivalent circuit of the #m electrolytic cell of the aluminum electrolytic cell series according to a preferred embodiment of the present invention.
  • FIG4 is a schematic diagram of a process simulation of a method for detecting insulation faults of aluminum electrolytic cells to the ground according to a preferred embodiment of the present invention; wherein: (a) the potential amplitude of the cell to the ground; (b) the potential ratio of adjacent cells; (c) the derivative of the ratio curve; and (d) the derivative of the ratio curve after enlargement.
  • FIG. 5 is a schematic diagram of a process simulation of another method for detecting insulation failure of an aluminum electrolysis cell to the ground according to a preferred embodiment of the present invention; wherein: (a) a phase difference distribution function; and (b) a derivative function of the phase difference distribution function.
  • the AC component of the voltage to ground of each cell in the aluminum electrolytic cell series is detected, and the distribution and change law of the AC potential amplitude to ground of each cell in the aluminum electrolytic cell series is analyzed and calculated based on the AC voltage component to ground, and whether there is a ground fault is determined based on the sudden change of the change curve of the AC potential amplitude to ground.
  • the auxiliary method also includes analyzing and calculating the distribution and change law of the AC potential phase to ground of each cell in the aluminum electrolytic cell series, and judging whether there is a ground fault based on the sudden change of the change curve of the AC potential phase to ground. And locate the fault.
  • the distribution and change law of the AC potential amplitude and phase of each electrolytic cell in the aluminum electrolytic cell series are analyzed and calculated to determine whether there is a ground fault and locate the faulty cell.
  • R is the insulation resistance of the cell to the ground, generally above 5M ⁇
  • R0 is the resistance of the electrolytic cell, generally less than 10-4 ⁇
  • R0 ⁇ R is the capacitance of the electrolytic cell to the ground, and is 5 ⁇ F.
  • the resistance to the ground is Rm
  • the capacitance to the ground is C
  • the voltage of the cell to the ground is Um . See Figures 2 and 3 for the equivalent circuits of the aluminum electrolytic cell series and each electrolytic cell.
  • Re and Ce are the parallel equivalent resistance and equivalent capacitance of the #m electrolytic cell and all subsequent electrolytic cells, respectively.
  • the ratio curve is used as the ground potential change curve f(m), and the phase difference distribution function is used as the ground potential phase change curve ⁇ .
  • the curve f(m) and the curve ⁇ should change relatively smoothly, but after a ground fault occurs, the two characteristic curves near the fault point will change suddenly.
  • the AC component of the potential of each electrolytic cell to the ground under AC excitation is obtained by recursive calculation according to formula (1), but it is closely related to the distributed capacitance of the cell to the ground, which can be measured or estimated on site.
  • the ground fault detection method of the slot potential phase is used as an auxiliary means of the ground fault detection method of the slot potential amplitude.
  • the algorithm of finding the derivative modulus maximum of the ratio curve is used to detect the mutation point of the curve f(m), that is, the ground fault slot number.
  • the slot-to-ground potential amplitude has almost no change, as shown in Figures 4(a) and 4(b) for slot #50.
  • Finding the modulus maximum after local amplification can effectively detect the ground fault in slot #50.
  • the simulation results show that the modulus maximum point corresponds to the fault location one by one, and the modulus maximum point corresponds to the ground fault slot location very accurately.
  • the phase difference of the voltage of adjacent slots is calculated.
  • the slot potential is synchronously sampled to obtain its waveform of 2-3 cycles, and the phase difference of the AC component of the potential of adjacent slots to the ground is calculated.
  • the phase difference can be obtained from formula (1): ATPDraw is used for simulation calculation.
  • the ground faults are slots #6 and #17 respectively.
  • the ground resistance is set to 1 ⁇ .
  • the phase difference distribution function and its derivative function results are shown in Figure 5.
  • the maximum value of the derivative function modulus accurately reflects the slot number (position) of the ground fault.
  • the present invention detects the AC component of the voltage to ground of each cell, analyzes and calculates the distribution and change law of the AC potential amplitude and phase of each cell in the electrolytic cell series, and determines whether there is a ground fault and locates the faulty cell. It can quickly determine the location of the fault and accurately locate the fault. It can also be used to determine the situation of multiple point faults.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Abstract

一种铝电解槽对地绝缘故障的检测方法,包括步骤:检测铝电解槽系列中每个电解槽的对地电压交流分量,根据对地电压交流分量分析计算铝电解槽系列中各电解槽的交流的对地电位幅值的分布及变化规律,根据交流电位幅值的变化曲线的突变,判断有否接地故障。检测方法还包括分析计算铝电解槽系列中各电解槽的交流的对地电位相位的分布及变化规律,根据对地电位相位的变化曲线的突变,判断有否接地故障。

Description

一种铝电解槽对地绝缘故障的检测方法 技术领域
本发明涉及铝电解槽技术领域,尤其涉及一种基于槽对地交流电位检测的铝电解槽对地绝缘故障的检测方法。
背景技术
铝电解槽是电解铝生产的重要设备,其工作状态对于铝产量和产铝质量有着直接影响。目前我国电解铝产业的产能分布不均,且电力消耗较大,花费的成本较高。在电解铝厂中,电解槽系统具有产业面多、生产环境特殊、设备种类多、安全隐患大等特点。
铝电解槽供电方式是一种特殊的不接地直流供电系统,通过系列母线电解槽构成回路,其绝缘状况对于电解系列至关重要。铝电解槽的对地绝缘措施有:(1)在阴极母线与母线墩、槽壳与支柱等处设置绝缘,防止铝电解槽接地;(2)机械设备中流过的电流可能为交流或直流,在交流设备与直流设备之间安插绝缘板,防止交直流出现窜流;(3)在支架、槽罩板的各部分、汽缸底座等处设置绝缘,防止电流支路发生不必要的电解反应;(4)使用绝缘插板、套筒等绝缘材料对立柱母线和短路口进行绝缘处理。
铝电解槽接地故障是铝电解企业最常见的故障之一。电解槽对地绝缘直接关系到正常供电、人身和设备安全。电解槽对地绝缘直接反映的是零点漂移,零点漂移是指系列的零点电位偏离了系列的几何中心;一般情况下,系列的几何中心两边的对地绝缘电阻是存在差异的,所以,系统的零点电位往往偏移于系统的几何中心,但偏离不会太大。但如果偏离值过大,就会对正常供电、系列、人身及设备安全产生隐患。电解槽接地故障会引起直流母线漏电,使槽产铝量减小,降低企业经济效益。为了提高铝电解企业经济效益,有必要及时检测出铝电解槽接地的故障位置,以便快速排除铝电解槽接地故障。
通过相关学者的软件仿真研究与实际测量计算表明,对于铝电解槽的接地 绝缘故障的检测,主要为测量电解槽对地的电压、电阻和绝缘强度等数据,通过对数据的分析,来判断故障是否发生以及故障发生的位置。
目前,应对铝电解槽接地绝缘故障问题主要采用三种检测方法。第一种是对地绝缘强度检测法,通过不同点所测的电解槽对地绝缘强度来判断铝电解槽接地故障位置;但对地绝缘强度检测法无法消除不同槽本身绝缘强度的差异带来的影响,可能对故障点的定位产生误判。第二种是绝缘电阻检测法,通过兆欧表或外加信号检测电解槽对地绝缘电阻,由对地绝缘电阻大小来判定铝电解槽是否存在接地故障,但绝缘电阻检测法很难确定故障发生的位置。第三种是零点漂移检测法,通过检测不同点接地电压的大小来计算铝电解槽接地故障的位置,但零点漂移检测法容易产生误差,且无法判断多点故障的情况,对于故障定位带来一定的影响。以上几种方法,普遍存在着操作复杂、具有局限性的问题。
发明内容
本发明提供了一种铝电解槽对地绝缘故障的检测方法,用以解决现有的应对铝电解槽接地绝缘故障问题的检测方法存在操作复杂、具有局限性的技术问题。
为解决上述技术问题,本发明提出的技术方案为:
一种铝电解槽对地绝缘故障的检测方法,包括以下步骤:
检测铝电解槽系列中每个电解槽的对地电压交流分量,根据对地电压交流分量分析计算铝电解槽系列中各电解槽的交流的对地电位幅值的分布及变化规律,根据交流的对地电位幅值的变化曲线的突变,判断有否接地故障。
优选地,分析计算铝电解槽系列中各电解槽的交流的对地电位幅值的分布及变化规律,包括:
检测铝电解槽系列中每个电解槽阴极的对地电位幅值U m以及相邻的上一个电解槽阴极的对地电位幅值U m-1,其中m=1,2,……,N;N为铝电解槽系列中电解槽的数量;计算对地电位变化曲线f(m)=U m-1/U m,对地电位变化曲线如果有突变,则判定为有接地故障。
优选地,对地电位变化曲线f(m)的计算式如下:
Figure PCTCN2022135202-appb-000001
其中,R 0为电解槽电阻,ω为角频率,R e和C e分别为#m电解槽与之后所有电解槽的并联等效电阻和等效电容;且
Figure PCTCN2022135202-appb-000002
其中,R为槽对地绝缘电阻,R m为#m电解槽的对地电阻;C e=C·(N-m+1);其中,C为#m电解槽的对地电容。
优选地,方法还包括根据交流的对地电位幅值的变化曲线的突变,进行故障槽定位,包括:
求对地电位变化曲线f(m)的导函数的模极大值,模极大值点对应的位置即为接地故障槽位置。
优选地,方法还包括分析计算铝电解槽系列中各电解槽的交流的对地电位相位的分布及变化规律,根据对地电位相位的变化曲线的突变,判断有否接地故障。
优选地,分析计算铝电解槽系列中各电解槽的交流的对地电位相位的分布及变化规律,包括:
检测铝电解槽系列中每个电解槽的对地电位相位φ m以及相邻的上一个电解槽的对地电位相位φ m-1,其中m=1,2,……,N;N为铝电解槽系列中电解槽的数量;计算对地电位相位变化曲线Δφ=φ mm-1,对地电位相位变化曲线如果有突变,则判定为有接地故障。
优选地,对地电位相位变化曲线Δφ的计算式如下:
Figure PCTCN2022135202-appb-000003
其中,R 0为电解槽电阻,ω为角频率,R e和C e分别为#m电解槽与之后所 有电解槽的并联等效电阻和等效电容;且
Figure PCTCN2022135202-appb-000004
其中,R为槽对地绝缘电阻,R m为#m电解槽的对地电阻;C e=C·(N-m+1);其中,C为#m电解槽的对地电容。
优选地,方法还包括根据对地电位相位变化曲线的突变,进行故障槽定位,包括:
求解对地电位相位变化曲线Δφ的导数模极大值,模极大值点对应的位置即为接地故障槽位置。
优选地,检测铝电解槽系列中每个电解槽的对地电压交流分量,采用如下方式:
选择在铝电解槽系列的首端或零点处注入设定频率以及电压值的交流信号电压,在每个电解槽底阴极上安装无线电位传感器,以检测每个电解槽的对地电压交流分量。
本发明具有以下有益效果:
本发明的铝电解槽对地绝缘故障的检测方法,只需要通过分析计算电解槽系列各电解槽交流的对地电位幅值和相位的分布及变化规律,即可以判断有否接地故障。该方法操作简单,测量精度高,误差小;算法简单,计算量小。
在优选方案中,本发明的铝电解槽对地绝缘故障的检测方法,通过对地电位变化曲线f(m)的导函数的模极大值和\或对地电位相位变化曲线Δφ的导数模极大值,能快速确定故障发生的位置;故障定位准确。也可以用于判断多点故障的情形。对比对地绝缘强度检测法,该方法无需检测每个槽的绝缘强度,避免本身绝缘强度带来的误差;对比绝缘电阻检测法,该方法可以精确地判断出故障发生的位置;对比零点漂移检测法,该方法可以更为有效地识别故障发生的位置。
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照附图,对本发明作进一步详细的说明。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明优选实施例的铝电解槽对地绝缘故障的检测方法的流程示意图;
图2是本发明优选实施例的铝电解槽系列的等值电路示意图;
图3是本发明优选实施例的铝电解槽系列的#m电解槽的等值电路示意图;
图4是本发明优选实施例的铝电解槽对地绝缘故障的检测方法的过程仿真示意图;其中,(a)槽对地电位幅值;(b)相邻槽电位比值;(c)比值曲线导数;(d)放大后的比值曲线导数;
图5是本发明优选实施例的另一铝电解槽对地绝缘故障的检测方法的过程仿真示意图;其中,(a)相差分布函数;(b)相差分布函数的导函数。
具体实施方式
以下结合附图对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。
本实施例中所称的铝电解槽对地绝缘故障的检测方法,包括以下步骤:
参见图1,检测铝电解槽系列中每个电解槽的对地电压交流分量,根据对地电压交流分量分析计算铝电解槽系列中各电解槽的交流的对地电位幅值的分布及变化规律,根据交流的对地电位幅值的变化曲线的突变,判断有否接地故障。辅助方法还包括分析计算铝电解槽系列中各电解槽的交流的对地电位相位的分布及变化规律,根据对地电位相位的变化曲线的突变,判断有否接地故障。并进行故障的定位。
实施时,选择在铝电解槽系列的首端或零点处注入f=1kHz、U=30V的交流信号电压,在每个电解槽底阴极上安装无线电位传感器,检测每个电解槽的对地电压交流分量,分析计算铝电解槽系列各电解槽的交流的对地电位幅值和 相位的分布及变化规律,判断是否有接地故障和故障槽定位。
设铝电解槽系列有N个电解槽,R为槽对地绝缘电阻,一般5MΩ以上,R 0为电解槽电阻,一般小于10 -4Ω,R 0<<R,C为电解槽对地电容,取5μF。对于#m电解槽,对地电阻为R m,对地电容为C,槽对地电压为U m。铝电解槽系列以及各电解槽的等值电路参见图2和图3。
则#m电解槽阴极的对地电位幅值U m以及相邻的上一个#m-1电解槽阴极的对地电位幅值U m-1的关系,以及每个电解槽的对地电位相位φ m以及相邻的上一个电解槽的对地电位相位φ m-1的关系,表达如下:
Figure PCTCN2022135202-appb-000005
C e=C·(N-m+1)
(1)
Figure PCTCN2022135202-appb-000006
Figure PCTCN2022135202-appb-000007
其中,R e和C e分别为#m电解槽与之后所有电解槽的并联等效电阻和等效电容。
本实施例中,用比值曲线作为对地电位变化曲线f(m),用相差分布函数作为对地电位相位变化曲线Δφ。来表述各电解槽的交流的对地电位幅值以及相位的分布及变化规律。正常情况下,曲线f(m)和曲线Δφ均应变化得较为平滑,但接地故障发生后,故障点附近的两条特征曲线会发生突变,通过对发生突变点的分析可得突变点(导函数模极大值点)与故障发生点一一对应。
正常情况下:R m=R,
Figure PCTCN2022135202-appb-000008
仍为10kΩ以上;
Figure PCTCN2022135202-appb-000009
参见图1,依据式(1)递推计算得到交流激励下各电解槽对地电位交流分量,但与槽对地分布电容密切相关,可通过现场实测或估算槽对地电容。
若#m电解槽有接地故障,R m小,R e≈R m,曲线f(m)=U m-1/U m在#m处有突变,求f(m)导函数的模极大值,模极大值点对应的位置即为接地故障槽位置。检测灵敏度取决于R 0/R m,采用函数模极大值法可以检测出R 0/R m=10 -6,即R m=100Ω。
正常情况下,Δφ≈-arctg(ωC eR 0);若#m电解槽有接地故障,R e≈R m,R 0/R e不可忽略,Δφ较正常情况变小,求解系列相差分布函数的导数模极大值,模极大值点对应的位置即为接地故障槽位置。
一般来说,在接地故障发生的时候,曲线f(m)的突变的程度较曲线Δφ更明显,因此,将槽电位相位的接地故障检测方法作为槽电位幅值的接地故障检测方法的辅助手段。
仿真分析:
考虑系列中有60个槽,多点接地故障情况,设有槽#10、#17、#30、#40、#50存在接地故障,对地电阻分别为0.1Ω、0.01Ω、0.01Ω、0.1Ω、1Ω;交流电压幅值U=10V,频率f=500Hz,采用ATPDraw软件进行仿真计算,结果如图4所示。
采用比值曲线求导数模极大值算法,检测出曲线f(m)突变点,即接地故障槽序号。对于接地电阻较大的接地故障,槽对地电位幅值几乎没有变化,如图4(a)、4(b)中#50槽情况,采取求局部放大后的模极大值可有效检出#50槽存在接地故障,该仿真结果说明了模极大值点与故障发生位置一一对应,模极大值点对应接地故障槽位置十分精确。
同时,对相邻槽电压相位差进行计算。对槽电位进行同步采样,获取其2-3个周波的波形,计算相邻槽对地电位交流分量的相差,由式(1)可得相差
Figure PCTCN2022135202-appb-000010
采用ATPDraw进行仿真计算,接地故障分别为#6、#17槽,接地电阻设为1Ω,相差分布函数及其导函数结果如图5所示,其导函数模极 大值准确反映接地故障槽序号(位置)。
为提高检测灵敏度,需要提高槽电位的数据采样频率,取100kSa/s,相邻槽电位应同步采样,可分时两两同步即可。该仿真结果说明了模极大值点与故障发生位置一一对应。相差大小受激励源频率、传感器对地分布电容及接地故障类型影响,因此,基于槽电位相位的接地故障检测方法可作为接地定位辅助算法。
综上可知,本发明通过检测每个槽的对地电压交流分量,分析计算电解槽系列各槽交流电位幅值和相位的分布及变化规律,判断有否接地故障和故障槽定位。能够能快速确定故障发生的位置;故障定位准确。也可以用于判断多点故障的情形。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种铝电解槽对地绝缘故障的检测方法,其特征在于,包括以下步骤:
    检测铝电解槽系列中每个电解槽的对地电压交流分量,根据对地电压交流分量分析计算铝电解槽系列中各电解槽的交流的对地电位幅值的分布及变化规律,根据交流的对地电位幅值的变化曲线的突变,判断有否接地故障。
  2. 根据权利要求1所述的铝电解槽对地绝缘故障的检测方法,其特征在于,所述分析计算铝电解槽系列中各电解槽的交流的对地电位幅值的分布及变化规律,包括:
    检测铝电解槽系列中每个电解槽阴极的对地电位幅值U m以及相邻的上一个电解槽阴极的对地电位幅值U m-1,其中m=1,2,……,N;N为铝电解槽系列中电解槽的数量;计算对地电位变化曲线f(m)=U m-1/U m,对地电位变化曲线如果有突变,则判定为有接地故障。
  3. 根据权利要求2所述的铝电解槽对地绝缘故障的检测方法,其特征在于,所述对地电位变化曲线f(m)的计算式如下:
    Figure PCTCN2022135202-appb-100001
    其中,R 0为电解槽电阻,ω为角频率,R e和C e分别为#m电解槽与之后所有电解槽的并联等效电阻和等效电容;且
    Figure PCTCN2022135202-appb-100002
    其中,R为槽对地绝缘电阻,R m为#m电解槽的对地电阻;C e=C·(N-m+1);其中,C为#m电解槽的对地电容。
  4. 根据权利要求2所述的铝电解槽对地绝缘故障的检测方法,其特征在于,所述方法还包括根据交流的对地电位幅值的变化曲线的突变,进行故障槽定位,包括:
    求对地电位变化曲线f(m)的导函数的模极大值,模极大值点对应的位置即 为接地故障槽位置。
  5. 根据权利要求1-4中任一项所述的铝电解槽对地绝缘故障的检测方法,其特征在于,所述方法还包括分析计算铝电解槽系列中各电解槽的交流的对地电位相位的分布及变化规律,根据对地电位相位的变化曲线的突变,判断有否接地故障。
  6. 根据权利要求5所述的铝电解槽对地绝缘故障的检测方法,其特征在于,所述分析计算铝电解槽系列中各电解槽的交流的对地电位相位的分布及变化规律,包括:
    检测铝电解槽系列中每个电解槽的对地电位相位φ m以及相邻的上一个电解槽的对地电位相位φ m-1,其中m=1,2,……,N;N为铝电解槽系列中电解槽的数量;计算对地电位相位变化曲线Δφ=φ mm-1,对地电位相位变化曲线如果有突变,则判定为有接地故障。
  7. 根据权利要求5所述的铝电解槽对地绝缘故障的检测方法,其特征在于,所述对地电位相位变化曲线Δφ的计算式如下:
    Figure PCTCN2022135202-appb-100003
    其中,R 0为电解槽电阻,ω为角频率,R e和C e分别为#m电解槽与之后所有电解槽的并联等效电阻和等效电容;且
    Figure PCTCN2022135202-appb-100004
    其中,R为槽对地绝缘电阻,R m为#m电解槽的对地电阻;C e=C·(N-m+1);其中,C为#m电解槽的对地电容。
  8. 根据权利要求6所述的铝电解槽对地绝缘故障的检测方法,其特征在于,所述方法还包括根据对地电位相位变化曲线的突变,进行故障槽定位,包括:
    求解对地电位相位变化曲线Δφ的导数模极大值,模极大值点对应的位置即为接地故障槽位置。
  9. 根据权利要求1-4中任一项所述的铝电解槽对地绝缘故障的检测方法,其特征在于,所述检测铝电解槽系列中每个电解槽的对地电压交流分量,采用如下方式:
    选择在铝电解槽系列的首端或零点处注入设定频率以及电压值的交流信号电压,在每个电解槽底阴极上安装无线电位传感器,以检测每个电解槽的对地电压交流分量。
PCT/CN2022/135202 2022-09-26 2022-11-30 一种铝电解槽对地绝缘故障的检测方法 WO2024066004A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211176706.4A CN115494427B (zh) 2022-09-26 2022-09-26 一种铝电解槽对地绝缘故障的检测方法
CN202211176706.4 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024066004A1 true WO2024066004A1 (zh) 2024-04-04

Family

ID=84472620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135202 WO2024066004A1 (zh) 2022-09-26 2022-11-30 一种铝电解槽对地绝缘故障的检测方法

Country Status (2)

Country Link
CN (1) CN115494427B (zh)
WO (1) WO2024066004A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116106697B (zh) * 2022-12-26 2024-06-11 深圳新立图智能科技有限公司 基于电压相位的电解槽对地绝缘故障检测方法及系统
CN116298722B (zh) * 2023-02-07 2024-07-12 深圳新立图智能科技有限公司 基于局放信号的铝电解槽短路口绝缘在线监测方法及系统
CN116008755B (zh) * 2023-02-07 2024-07-02 深圳新立图智能科技有限公司 基于注入信号电压响应的电解槽多点接地检测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948975A (zh) * 2006-11-14 2007-04-18 沈阳铝镁设计研究院 一种电解槽系列的对地绝缘电阻检测装置及方法
EP2450715A1 (de) * 2010-11-08 2012-05-09 ABB Technology AG Vorrichtung und Verfahren zum ermitteln des Erdwiderstands eines Gleichstromsystems
WO2014103613A1 (ja) * 2012-12-27 2014-07-03 日立ビークルエナジー株式会社 地絡検知装置
CN111413639A (zh) * 2020-02-24 2020-07-14 国网浙江省电力有限公司湖州供电公司 一种直流系统绝缘接地故障在线监测定位装置及方法
CN112034283A (zh) * 2020-08-19 2020-12-04 重庆尚翔电气技术有限公司 检测和定位铝电解槽接地故障的装置及其系统和工艺
CN112345968A (zh) * 2020-11-10 2021-02-09 国网江苏省电力有限公司盐城供电分公司 一种直流系统接地故障综合检测方法
CN113049985A (zh) * 2021-04-27 2021-06-29 重庆大学 铝电解槽系列对地漏电故障定位、预警检测系统和方法
CN114545146A (zh) * 2021-12-30 2022-05-27 贵阳新光电气有限公司 电解槽系统接地检测定位方法及检测装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925983B2 (ja) * 1997-03-04 2007-06-06 日鉱金属株式会社 電解製錬の異常検出方法及びそれを実施する異常検出システム
FR2927908B1 (fr) * 2008-02-25 2010-02-26 Ecl Controle de l'isolement des unites d'intervention utilisees dans une salle d'electrolyse pour la production d'aluminium par electrolyse ignee.
CN105510773B (zh) * 2016-01-28 2018-09-21 广州优维电子科技有限公司 一种直流系统接地故障检测装置
CN106093576B (zh) * 2016-06-02 2019-01-15 谢林 一种电解槽组对地绝缘电阻检测方法和装置
GB2571737A (en) * 2018-03-07 2019-09-11 Dubai Aluminium Pjsc Method for early detection of certain abnormal operating conditions in hall-hèroult electrolysis cells
CN109507546B (zh) * 2018-11-06 2021-03-05 云南云铝涌鑫铝业有限公司 铝电解槽打壳气缸的检测电路和基于压差的绝缘检测方法
CN114062970B (zh) * 2021-12-09 2024-03-15 安徽三联学院 一种基于二次变电系统小电流接地故障选线方法及其装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948975A (zh) * 2006-11-14 2007-04-18 沈阳铝镁设计研究院 一种电解槽系列的对地绝缘电阻检测装置及方法
EP2450715A1 (de) * 2010-11-08 2012-05-09 ABB Technology AG Vorrichtung und Verfahren zum ermitteln des Erdwiderstands eines Gleichstromsystems
WO2014103613A1 (ja) * 2012-12-27 2014-07-03 日立ビークルエナジー株式会社 地絡検知装置
CN111413639A (zh) * 2020-02-24 2020-07-14 国网浙江省电力有限公司湖州供电公司 一种直流系统绝缘接地故障在线监测定位装置及方法
CN112034283A (zh) * 2020-08-19 2020-12-04 重庆尚翔电气技术有限公司 检测和定位铝电解槽接地故障的装置及其系统和工艺
CN112345968A (zh) * 2020-11-10 2021-02-09 国网江苏省电力有限公司盐城供电分公司 一种直流系统接地故障综合检测方法
CN113049985A (zh) * 2021-04-27 2021-06-29 重庆大学 铝电解槽系列对地漏电故障定位、预警检测系统和方法
CN114545146A (zh) * 2021-12-30 2022-05-27 贵阳新光电气有限公司 电解槽系统接地检测定位方法及检测装置

Also Published As

Publication number Publication date
CN115494427B (zh) 2024-07-26
CN115494427A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2024066004A1 (zh) 一种铝电解槽对地绝缘故障的检测方法
EP1072897B1 (en) Method and apparatus for searching electromagnetic disturbing source and noncontact voltage probe therefor
CN105974264B (zh) 一种基于相电流暂态特征的故障选线方法
CN106443313B (zh) 高压三相三线电能计量装置错误接线快速检测方法
US6636823B1 (en) Method and apparatus for motor fault diagnosis
EP3321698B1 (en) Non-contact voltage measurement system using multiple capacitors
US20120221269A1 (en) Method and system for determining dc bus leakage
EP3443368A1 (en) Method, system and apparatus for fault detection in line protection for power transmission system
CN104316822A (zh) 一种快速准确判断计量装置错误接线的方法
KR20030069379A (ko) 전력 계통의 1선 지락 고장 지점 검출 방법
CN107710008A (zh) 调试用于支路监测系统的电压传感器和支路电流传感器的方法和设备
WO2007088913A1 (ja) 損傷検出装置及び損傷検出方法
CN107643321A (zh) 基于相位识别的多频交流场指纹法金属管道腐蚀检测技术
JP2006258485A (ja) 地絡区間標定システム
CN103149499A (zh) 变电站接地网的检测方法
CN105486927A (zh) 一种固体绝缘材料体积电阻率的测量方法
Cano et al. Improving distribution system state estimation with synthetic measurements
EP3869208A1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP4865436B2 (ja) 地絡点標定方法および装置
CN109283423A (zh) 三相三线电能计量装置tv单相极性反接错误接线判断方法
CN113671315A (zh) 基于比例差动原理的ITn供电绝缘故障定位方法
Su et al. A theoretical study on resistance of electrolytic solution: Measurement of electrolytic conductivity
CN1797014A (zh) 避雷器阻性电流测试的检测方法
CN205103317U (zh) 一种固体绝缘材料体积电阻率的测量装置
CN114460360A (zh) 一种基于电表测量电流时间积分的检测方法、系统及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960600

Country of ref document: EP

Kind code of ref document: A1