WO2024065886A1 - 消防无人机集群 - Google Patents

消防无人机集群 Download PDF

Info

Publication number
WO2024065886A1
WO2024065886A1 PCT/CN2022/125236 CN2022125236W WO2024065886A1 WO 2024065886 A1 WO2024065886 A1 WO 2024065886A1 CN 2022125236 W CN2022125236 W CN 2022125236W WO 2024065886 A1 WO2024065886 A1 WO 2024065886A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
fire
firefighting
water pump
fighting
Prior art date
Application number
PCT/CN2022/125236
Other languages
English (en)
French (fr)
Inventor
蹇林旎
王永志
赵青宇
牛松岩
喻航
Original Assignee
南方科技大学嘉兴研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211192378.7A external-priority patent/CN115432182A/zh
Priority claimed from CN202211192530.1A external-priority patent/CN115432183A/zh
Application filed by 南方科技大学嘉兴研究院 filed Critical 南方科技大学嘉兴研究院
Publication of WO2024065886A1 publication Critical patent/WO2024065886A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Definitions

  • the present application relates to the field of drone technology, and in particular to a firefighting drone cluster.
  • a firefighting drone cluster comprising: a ground platform and N drones spaced apart in a height direction of the ground platform;
  • the ground platform includes a main water pump
  • Each of the drones comprises a drone body and an auxiliary water pump disposed on the drone body;
  • the Nth drone also includes a water spray unit
  • the outlet of the main water pump is connected to the inlet of the auxiliary water pump of the first drone;
  • the outlet of the auxiliary water pump of the n-1th drone is connected to the inlet of the auxiliary water pump of the nth drone;
  • the outlet of the auxiliary water pump of the Nth drone is connected to the water spraying part;
  • n is less than or equal to N, and n and N are both integers greater than or equal to 2.
  • each of the drones further comprises a firefighting assembly disposed below the drone body, the firefighting assembly comprising the auxiliary water pump and a firefighting water pipe;
  • the opposite ends of the fire water pipe are respectively connected to the outlet of the auxiliary water pump of the n-1th drone and the inlet of the auxiliary water pump of the nth drone.
  • the ground platform further includes a control console, which is electrically connected to the drone bodies and the auxiliary water pumps of the plurality of drones respectively.
  • each of the drones further comprises a tethered cable and a main controller disposed on the drone body, wherein the main controller is electrically connected to the drone body and the auxiliary water pump of the drone respectively;
  • the console is electrically connected to the main controller of the first drone via a tethered cable of the first drone;
  • the main controller of the n-1th drone body is electrically connected to the auxiliary water pump of the nth drone through the tethered cable of the nth drone.
  • each of the drones further includes a sensor component disposed on the drone body, the sensor component being electrically connected to a main controller of the drone in which it is located, and being used to obtain fire scene information of the fire scene in which the drone body is located.
  • the ground platform further includes a display electrically connected to the control console, and the display is used to display the posture information of the UAV and the fire scene information of the fire scene where the UAV is located.
  • the ground platform further includes a storage box having storage space for storing a plurality of the drones.
  • the drone further comprises:
  • a plurality of telescopic members wherein the telescopic members are disposed below the drone body; opposite ends of each of the telescopic members are respectively hinged to the drone body and the firefighting assembly; and
  • a detection element which is disposed on the fire-fighting component and is electrically connected to the main controller, and is used to detect position information of the fire-fighting component;
  • the main controller is electrically connected to the telescopic member, and the main controller is used to control the length of the telescopic member in real time according to the position information of the fire-fighting component, so as to adjust the posture of the fire-fighting component to make the fire-fighting component in a horizontal state.
  • the drone body includes a fuselage, a rotor arm assembly connected to the fuselage, and a plurality of first rotor assemblies disposed on the rotor arm assembly and corresponding one-to-one to the telescopic members;
  • each telescopic member is respectively hinged to the corresponding first rotor assembly and the fire-fighting assembly.
  • the rotor arm assembly includes two first arms located on opposite sides of the fuselage along the first direction and extending along the second direction, and two second arms extending along the first direction;
  • Two ends of the longitudinal length of one of the second arms are respectively connected to one side of the two first arms along the second direction, and two ends of the longitudinal length of the other second arm are respectively connected to the other side of the two first arms along the second direction;
  • the fire fighting component extends along the second direction and is located below the fuselage; the first direction and the second direction intersect.
  • the first rotor assembly and the telescopic member are each provided with four;
  • the first rotor assembly is provided at the connection between the first arm and the second arm.
  • the first rotor assembly includes a connection seat provided at the connection between the first arm and the second arm and at least one first electric blade located outside the connection seat;
  • each telescopic member away from the fire-fighting assembly is hinged to the bottom of the connecting seat of the corresponding first rotor assembly.
  • a secondary controller is provided on the connection socket
  • the secondary controller corresponds to the first rotor assembly one by one, and is electrically connected to the main controller and the corresponding first rotor assembly respectively.
  • the rotor arm assembly further includes two third arms, each of the first arms is connected to a third arm, and a second rotor assembly is disposed at one end of the third arm away from the corresponding first arm.
  • a plane parallel to the first direction and the second direction is defined as a first plane
  • the third arm forms a preset angle with the first plane.
  • FIG1 is a diagram of an application environment of a firefighting drone cluster provided according to one or more embodiments.
  • FIG2 is a schematic diagram of a structure of multiple drones connected in series according to one or more embodiments.
  • FIG3 is a schematic diagram of the structure of a single drone provided according to one or more embodiments.
  • FIG. 4 is a schematic diagram of the structure of a ground platform provided according to one or more embodiments.
  • FIG5 is a schematic diagram of a drone body provided according to one or more embodiments when the drone body is horizontal in front and back directions.
  • FIG6 is a schematic diagram of a drone body tilted forward and backward according to one or more embodiments.
  • FIG. 7 is a schematic diagram of a drone body provided according to one or more embodiments when the drone body is horizontal.
  • FIG8 is a schematic diagram of a drone body tilted left or right according to one or more embodiments.
  • FIG. 9 is a schematic structural diagram of a drone from another perspective according to one or more embodiments.
  • FIG10 is a schematic diagram of a control flow of a firefighting drone cluster provided according to one or more embodiments.
  • Firefighting drone cluster 100. drone; 10. drone body; 11. fuselage; 111. fuselage body; 112. outrigger; 12. rotor arm assembly; 121. first arm; 122. second arm; 123. third arm; 13. first rotor assembly; 131. connecting seat; 132. first electric blade; 14. second rotor assembly; 141. driving member; 142. second electric blade.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or that the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • the height reached by the mainstream high-rise fire trucks is about 50-60m.
  • the spray height of fire hoses and water cannons is also about 50m.
  • Traditional firefighting drones have insufficient flight height and firefighting performance, making it difficult to meet the needs of firefighting in super-high-rise buildings.
  • Some high-rise fire-fighting equipment is restricted by ground fire trucks and cannot flexibly select aerial fire-fighting locations, so they can only carry out fire-fighting operations at fixed locations.
  • Some high-rise fire-fighting equipment is limited by the drone's own carrying capacity and cannot provide high-pressure fire-fighting water spray.
  • Some high-altitude tethered unmanned firefighting systems propose to combine drones and fire-extinguishing bombs, and the device includes a flight platform, a fire-extinguishing device, a tethered cable, a ground power supply, and a ground station system.
  • the system proposes a small and effective drone firefighting method, compared with traditional firefighting water guns, fire-extinguishing bombs cannot be effectively used for a long time in large fires.
  • Some firefighting systems have proposed a system that uses drones and fire trucks to support water hoses.
  • the device includes: drones, fire extinguishing equipment, water hoses, energy supply chain, fire trucks, first winches, second winches, and control equipment.
  • This system effectively utilizes the existing fire trucks, but is limited by the load capacity of drones and fixed mechanical devices, and cannot flexibly complete high-rise firefighting tasks.
  • the present application designs a firefighting drone cluster that can solve at least one of the above problems.
  • FIG1 is an application environment diagram of a firefighting drone cluster provided according to one or more embodiments
  • FIG2 is a structural schematic diagram of a plurality of drones connected in series provided according to one or more embodiments.
  • An embodiment of the present application provides a firefighting drone cluster 1, comprising a ground platform 200 and N drones 100 arranged at intervals along the height direction of the ground platform 200.
  • the ground platform 200 comprises a main water pump (not shown), each drone 100 comprises a drone body 10 and a secondary water pump 21 arranged on the drone body 10, and the Nth drone 100 further comprises a water spraying part 23.
  • the outlet of the main water pump is connected to the inlet of the secondary water pump 21 of the first drone 100, and among two adjacent drones 100, the outlet of the secondary water pump 21 of the n-1th drone 100 is connected to the inlet of the secondary water pump 21 of the nth drone 100, and the outlet of the secondary water pump 21 of the Nth drone 100 is connected to the water spraying part 23, wherein n is less than or equal to N, and n and N are integers greater than or equal to 2.
  • the fire-fighting water is pumped by the main water pump of the ground platform 200, and the fire-fighting water is transported from the ground to the inlet of the auxiliary water pump 21 of the first drone 100.
  • the auxiliary water pump 21 of the first fire-fighting drone 100 pressurizes the fire-fighting water and then transports it to the inlet of the auxiliary water pump 21 of the second drone 100 through the outlet of the auxiliary water pump 21.
  • the auxiliary water pump 21 of the n-1th fire-fighting drone 100 pressurizes the fire-fighting water and then transports it to the inlet of the auxiliary water pump 21 of the nth drone 100 through the outlet of the auxiliary water pump 21.
  • the fire-fighting water is pressurized multiple times by the auxiliary water pumps 21 of N drones 100 in sequence, and finally, it is sprayed out through the water spray part 23 of the Nth drone 100, thereby overcoming the problem that the traditional fire-fighting drone 100 has insufficient flight altitude and insufficient fire-fighting performance, and is difficult to meet the fire-fighting needs of super-high-rise buildings.
  • each drone 100 also includes a fire-fighting component 20 arranged below the drone body 10, and the fire-fighting component 20 includes an auxiliary water pump 21 and a fire-fighting water pipe 24.
  • the opposite ends of the fire-fighting water pipe 24 are respectively connected to the outlet of the auxiliary water pump 21 of the n-1th drone 100 and the inlet of the auxiliary water pump 21 of the nth drone 100.
  • the drone body 10 can provide flight power for the drone 100, and the fire-fighting component 20 provides lifting power for the fire-fighting water to reach the fire-fighting point of the high-rise or super-high-rise building.
  • Figure 3 is a schematic diagram of the structure of a single drone provided according to one or more embodiments, please combine Figures 2 and 3 together.
  • the fire-fighting component 20 includes an auxiliary water pump 21, an auxiliary water pump motor 22 and a fire-fighting water pipe 24.
  • the auxiliary water pump 21 is connected to the auxiliary water pump motor 22, and the auxiliary water pump 21 is provided with an auxiliary water pump 21 outlet and an auxiliary water pump 21 inlet.
  • the outlet of the auxiliary water pump 21 of the n-1th drone 100 is connected to the inlet of the auxiliary water pump 21 of the nth drone 100 through the fire-fighting water pipe 24.
  • the Nth drone 100 also includes a water spraying part 23, and the water spraying part 23 includes a water spraying faucet, and the water spraying faucet is connected to the outlet of the auxiliary water pump 21 of the drone 100.
  • the firefighting drone cluster 1 of the present application can realize the joint firefighting operation of multiple firefighting drones 100 and ground platforms 200 to solve the problem of height restriction of high-rise firefighting.
  • the auxiliary water pumps 21 of multiple drones 100 are respectively connected through firefighting water pipes 24, that is, the outlet of the auxiliary water pump 21 of the n-1th drone 100 is connected to the inlet of the auxiliary water pump 21 of the n-th drone 100 through the firefighting water pipe 24 to realize the step-by-step pressurization and continuous lifting of firefighting water.
  • the water pump adopts a high-pressure water pump, which is used for continuous pressurization in the air.
  • the high-pressure water pump of the n-1th drone 100 is supplied with water by the high-pressure water pump of the n-1th drone 100 and the firefighting water pipe 24, and finally the pressurized firefighting water is sprayed out through the water spraying faucet of the N-th drone 100 for firefighting operations at designated high-rise firefighting points.
  • the firefighting drone cluster 1 of the present application is no longer subject to the height restriction of high-rise firefighting operations by stacking multiple drones 100 in the height direction.
  • firefighting operators no longer need to get close to the fire scene, thus avoiding casualties of firefighting operators and improving the safety of firefighting and rescue.
  • Figure 4 is a structural schematic diagram of a ground platform provided according to one or more embodiments, and the ground platform 200 also includes a control console 220, which is electrically connected to the drone bodies 10 and auxiliary water pumps 21 of multiple drones 100 respectively.
  • the ground platform 200 can be towed by an existing vehicle or the ground platform 200 can be equipped with a cab and mobile wheels. Ground firefighters can perform more refined operations on high-rise fires through the control console 220.
  • the control console 220 can control the flight of multiple drones 100. When the nth drone 100 takes off and reaches a preset height difference with the n-1th drone 100, the n-1th platform takes off and moves with the nth drone 100.
  • the drone 100 cluster remains synchronized as a whole to ensure that it is on the same vertical line.
  • the multiple drones 100 of the present application use the ground platform 200 for water and power supply, which can achieve uninterrupted and long-term continuous operation, and no longer need to land for the replenishment of fire-fighting consumables.
  • the vertical spacing between adjacent drones 100 is about 15 to 20 meters, and the vertical spacing between the first drone 100 and the ground platform 200 is about 60 to 80 meters.
  • users can select a suitable number of drones 100 to work in series according to the height of the fire scene. Assuming that a 50-story building is on fire, and the height of each floor is calculated as 3 meters, the height of the fire point is about 150 meters, the vertical spacing between the first drone 100 and the ground platform 200 is about 60 meters, and the vertical spacing between adjacent drones 100 is 20 meters, then at least 6 drones 100 need to be selected to work in series to achieve the fire extinguishing operation of the designated fire scene.
  • each drone 100 further includes a tether cable 70 and a main controller disposed on the drone body 10, and the main controller is electrically connected to the drone body 10 and the auxiliary water pump 21 of the drone 100.
  • the console 220 is electrically connected to the main controller of the first drone 100 through the tether cable 70 of the first drone 100.
  • the main controller of the n-1th drone body 10 is electrically connected to the auxiliary water pump 21 of the nth drone 100 through the tether cable 70 of the nth drone 100.
  • the mooring cable 70 is a wiring harness, which includes not only a power line but also a signal transmission cable.
  • the ground platform 200 provides power to all drones 100 through the power line of the mooring cable 70, and the signal transmission cable is used to transmit signals and implement control functions.
  • a transformer is also provided on the auxiliary water pump 21.
  • the main controller of the drone body 10 is electrically connected to the transformer provided on the auxiliary water pump 21 through the mooring cable 70. The transformer can automatically adjust the voltage to adapt to the different voltage requirements required by the auxiliary water pump 21 and the main controller.
  • the main controller of the n-1 drone body 10 is electrically connected to the transformer of the auxiliary water pump 21 of the n drone 100 through the mooring cable 70 of the n drone 100, which is used to provide power transmission and information transmission to the n drone 100. In this way, continuous power supply and information transmission of multiple drones 100 can be achieved through the mooring cable 70, so as to achieve uninterrupted firefighting operations in high-rise buildings.
  • each drone 100 further includes a sensor assembly 40 disposed on the drone body 10 .
  • the sensor assembly 40 is electrically connected to the main controller of the drone 100 in which it is located, and is used to obtain fire scene information of the fire scene in which the drone body 10 is located.
  • the drone body 10 is also provided with a sensor assembly 40, which includes a laser detector, an ultrasonic detector, a high-definition camera, an infrared detector, etc.
  • the main controller receives and processes the fire scene data signals recorded in real time by the laser detector, the ultrasonic detector, the high-definition camera, and the infrared detector, and transmits them back to the main console of the ground platform 200 through the tethered cable 70.
  • the ground firefighting operators After the ground firefighting operators understand the fire situation, they can flexibly choose a more suitable operation method according to the on-site situation and issue operation instructions. The responsiveness of firefighting and rescue is improved, and firefighting or rescue operations are carried out in a timely and reliable manner, realizing more accurate, efficient and flexible high-rise firefighting operations.
  • the ground platform 200 further includes a display 230 electrically connected to the console 220 , and the display 230 is used to display the posture information of the drone 100 and the fire scene information of the fire scene where the drone 100 is located.
  • the ground platform 200 further includes a dashboard 250.
  • the dashboard 250 can display the attitude information of the drone 100 and the fire scene information of the fire scene where the drone 100 is located for the operator in real time.
  • the ground platform 200 further includes a storage box 240 , and the storage box 240 has a storage space for storing a plurality of drones 100 .
  • the ground platform 200 includes an operation compartment and a storage box 240, wherein the operation compartment is located on a side away from the cab, and the storage box 240 is located in the middle of the ground platform 200.
  • the operation compartment includes a console 220, a display 230, a dashboard 250, and a seat 260.
  • the storage box 240 can store up to 11 drones 100.
  • the user can adjust the space size of the storage box 240 as needed to store more drones 100.
  • the drone 100 further includes a plurality of telescopic members 30 and a detection member, wherein the telescopic members 30 are disposed below the drone body 10, and the opposite ends of each telescopic member 30 are respectively hinged to the drone body 10 and the firefighting assembly 20.
  • the detection member is disposed on the firefighting assembly 20 and is electrically connected to the main controller, and the detection member is used to detect the position information of the firefighting assembly 20.
  • the main controller is electrically connected to the telescopic member 30, and the main controller is used to control the length of the telescopic member 30 in real time according to the position information of the firefighting assembly 20, so as to adjust the posture of the firefighting assembly 20 so that the firefighting assembly 20 is in a horizontal state.
  • Figure 5 is a schematic diagram of a drone body provided according to one or more embodiments when it is horizontal front and back;
  • Figure 6 is a schematic diagram of a drone body provided according to one or more embodiments when it is tilted front and back;
  • Figure 7 is a schematic diagram of a drone body provided according to one or more embodiments when it is horizontal left and right;
  • Figure 8 is a schematic diagram of a drone body provided according to one or more embodiments when it is tilted left and right;
  • Figure 9 is a structural schematic diagram of a drone provided according to one or more embodiments from another perspective.
  • the first direction F1 is temporarily defined as the left-right direction
  • the second direction F2 is the front-back direction
  • the third direction F3 is the up-down direction.
  • the water spraying part 23 of the Nth drone 100 sprays water forward
  • the drone 100 tilts backward due to the recoil.
  • a plurality of telescopic parts 30 are arranged between the drone body 10 and the firefighting component 20 located below the drone body 10, and the opposite ends of the telescopic parts 30 are respectively hinged to the drone body 10 and the firefighting component 20.
  • the main controller on the drone body 10 receives the detection signal of the detection part on the fire-fighting component 20 in real time, and determines whether the fire-fighting component 20 is in a horizontal and stable state. If it is unstable, the mathematical model required to stabilize the fire-fighting component 20 is calculated, and the length of the telescopic part 30 is adjusted, so that the drone body 10 tilts forward to generate a horizontal forward component force to resist the recoil force generated by the fire-fighting component 20 due to the forward water spraying, so as to adjust the posture of the fire-fighting component 20 so that the fire-fighting component 20 is always in a horizontal state, thereby avoiding the fire-fighting operation being affected due to the tilt of the fire-fighting component 20.
  • the detection component includes a gyroscope, an acceleration sensor, etc., and no specific restrictions are made here.
  • the telescopic component 30 includes an air cylinder, an oil cylinder, an electric push rod, a telescopic truss, etc., and no specific restrictions are made here.
  • the telescopic component 30 is an electric push rod.
  • the electric push rod has high precision and large load, can realize synchronous automatic control, does not require an air source and an oil circuit, and is light in weight.
  • the two ends of the electric push rod are respectively connected to the drone body 10 and the firefighting component 20 through a universal joint.
  • the length of the electric push rod can be electronically adjusted by the main controller.
  • the drone body 10 includes a fuselage 11, a rotor arm assembly 12 connected to the fuselage 11, and a plurality of first rotor assemblies 13 disposed on the rotor arm assembly 12 and corresponding to the telescopic members 30.
  • the opposite ends of each telescopic member 30 are respectively hinged to the corresponding first rotor assembly 13 and the firefighting assembly 20.
  • the fuselage 11 includes a fuselage body 111 and four legs 112 disposed outside the fuselage body 111 , and the four legs 112 are respectively connected to the rotor arm assembly 12 .
  • the rotor arm assembly 12 includes two first arms 121 located on opposite sides of the fuselage 11 along the first direction F1 and extending along the second direction F2, and two second arms 122 extending along the first direction F1.
  • the two ends of the longitudinal length of one of the second arms 122 are respectively connected to one side of the two first arms 121 along the second direction F2, and the two ends of the longitudinal length of the other second arm 122 are respectively connected to the other side of the two first arms 121 along the second direction F2.
  • the firefighting assembly 20 extends along the second direction F2 and is located below the fuselage 11; the first direction F1 and the second direction F2 intersect.
  • the first direction F1 and the second direction F2 are perpendicular to each other, the fuselage body 111 is located in the middle of the drone body 10, the rotor arm assembly 12 is arranged around the outer side of the fuselage 11, and the rotor arm assembly 12 includes two first arms 121 and two second arms 122, the two first arms 121 and the two second arms 122 form a square frame, in actual application, the length of the first arm 121 is greater than the length of the second arm 122, the two first arms 121 and the two second arms 122 form a rectangular frame, and a plurality of legs 112 extend from the fuselage body 111 and are connected to the first arm 121 and/or the second arm 122.
  • the number of the legs 112 is four, and the four legs 112 are connected to the corresponding first arms 121 in pairs.
  • the firefighting assembly 20 extends along the second direction F2 and is located below the fuselage 11, wherein the auxiliary water pump 21 and the auxiliary water pump motor 22 are coaxial and extend along the second direction F2.
  • the drone body 10 of the present application is in a square layout. In this way, the layout of the drone body 10 of the present application is more compatible with the layout of the fire-fighting component 20, and the drone body 10 of the present application occupies less space, which is convenient for flexible passage through alleys or implementation of fire-fighting operations in old residential areas.
  • first rotor assemblies 13 and four telescopic members 30 are provided, and a first rotor assembly 13 is provided at the connection between the first arm 121 and the second arm 122 .
  • the first rotor assembly 13 provides the power for lifting and horizontal movement of the firefighting drone 100.
  • the first rotor assembly 13 includes four relatively small rotors. In this embodiment, the diameter of the rotor is 5 inches.
  • the four rotors are located at the connection between the first arm 121 and the second arm 122. The four rotors are fixedly connected to the first arm 121 and the second arm 122 through mounting seats.
  • first arm 121 and the second arm 122 are fixedly connected to the connecting seat 131, and the ends of the first arm 121 and the second arm 122 are cross-intersected, and the connecting seat 131 is located at the intersection of the first arm 121 and the second arm 122.
  • Four small rotors are arranged around the connecting seat 131 and are respectively fixedly connected to the first arm 121 and the second arm 122 through the mounting seat, wherein the small rotors include a first electric blade 132 and a motor, and the motor is used to drive the first electric blade 132 to rotate.
  • each telescopic member 30 away from the fire-fighting assembly 20 is hinged to the bottom of the connecting seat 131 of the corresponding first rotor assembly 13, and one end of each telescopic member 30 close to the fire-fighting assembly 20 is hinged to the auxiliary water pump 21 or the auxiliary water pump motor 22 through a universal joint.
  • the first arm 121, the second arm 122, the four telescopic rods, the eight universal joints, the water pump and the water pump motor together form an inverted trapezoidal structure, which can ensure that the layout of the fire-fighting drone 100 is more reasonable, the center of gravity is reasonably distributed, and the stability and reliability are better.
  • a secondary controller 50 is disposed on the connection socket 131 , and the secondary controller 50 corresponds one-to-one to the first rotor assembly 13 , and is electrically connected to the main controller and the corresponding first rotor assembly 13 , respectively.
  • a speed adjusting member 60 is further disposed on the connection seat 131 .
  • the speed adjusting member 60 is used to adjust the rotation speed of the first electric blade 132 and is electrically connected to the adjacent sub-controller 50 .
  • the speed adjustment member 60 includes a small rotor electric adjustment, and the small rotor electric adjustment and the secondary controller 50 are arranged in the connection seat 131 to complete the control and adjustment of each group of small rotors.
  • the main controller is provided with a mainboard circuit, a super capacitor, a large rotor electric adjustment, a heat dissipation system, a flight control system, etc. to complete the movement of the drone body 10. It can be understood that the secondary controller 50 is controlled by the main controller, and the main controller is controlled by the main console.
  • the rotor arm assembly 12 further includes two third arms 123 , each first arm 121 is connected to a third arm 123 , and a second rotor assembly 14 is disposed at one end of the third arm 123 away from the corresponding first arm 121 .
  • a plane parallel to the first direction F1 and the second direction F2 is defined as the first plane M1.
  • the third arm 123 forms a preset angle with the first plane M1.
  • the third arm 123 is vertically connected to the first arm 121 through a connecting seat 131, and the connecting seat 131 of the third arm 123 is located between the two legs 112 and deflected downward by a preset angle.
  • the second rotor assembly 14 has a certain height difference with the first rotor, which can ensure that the drone body 10 has a greater load-bearing capacity while reducing its occupied space, making it easier to flexibly pass through alleys or carry out firefighting operations in old residential areas.
  • each second rotor assembly 14 includes a driving member 141 disposed on the corresponding third arm 123, and two second electric blades 142 spaced apart along the third direction F3.
  • the two second electric blades 142 are coaxially disposed at the output end of the driving member 141 to rotate under the drive of the driving member 141.
  • the second rotor assembly 14 includes two coaxially arranged large rotors, the large rotor includes a second electric blade 142 and a motor, the motor is used to drive the second electric blade 142 to rotate, and the diameter of the large rotor is 10 inches.
  • the drone 100 of the present application adopts a combination of a large rotor and a small rotor, and there is a height difference between the large rotor and the small rotor. Through a reasonable spatial layout, the drone body 10 has a larger load capacity and can withstand the auxiliary water pump 21 with a larger mass, the auxiliary water pump motor 22, and the longer fire water pipe 24 and fire water located below the drone body 10.
  • the structural material of the drone body 10 is carbon fiber, thereby ensuring that the drone body 10 has a light weight while carrying a large load, making it easier to carry a larger mass firefighting component 20 and transport a longer firefighting hose 24 and a tethered cable 70 .
  • FIG10 is a schematic diagram of the control flow of a firefighting drone cluster provided according to one or more embodiments.
  • the firefighters quickly drive the ground platform 200 carrying the drone 100 to the vicinity of the burning high-rise building.
  • the firefighters determine the specific height and size of the fire, and select a location suitable for the drone 100 to take off and make relevant firefighting preparations.
  • the firefighters provide firefighting water to the inlet of the auxiliary water pump 21 of the first drone 100 through the existing fire hose 24 on the ground or the water supply of the fire truck, and use the ground power supply to power the tethered cable 70 of the first drone 100.
  • the multiple drones 100 After connecting multiple drones 100 that meet the height requirements in series with fire hoses and tether cables 70, the multiple drones 100 take off in sequence.
  • the multiple drones 100 autonomously fly to the fire location of the high-rise building using the flight parameters preset by the ground platform 200.
  • ground firefighters can receive and process the specific fire scene data sent back by laser detectors, ultrasonic detectors, high-definition cameras, infrared detectors, and detectors through the console 220, as well as the fire scene data displayed in real time on the display screen and instrument panel 250 to perform more refined operations on the high-altitude fire situation.
  • the main controller receives the real-time status of the firefighting component 20 and determines whether the firefighting component 20 is stable. If it is not stable, the mathematical model required to stabilize the firefighting component 20 is calculated, and the telescopic member 30 is electrically controlled to achieve horizontal stability of the auxiliary water pump 21 and the auxiliary water pump motor 22. At the same time, the sub-controller 50 adjusts the rotation speed of the first electric blade 132 to complete the horizontal movement of the drone 100.
  • the universal joint and the electric telescopic rod continue to work to ensure that the auxiliary water pump 21 and the auxiliary water pump motor 22 always maintain horizontal stability.
  • the ground firefighters stop the drones 100 from supplying water, and multiple drones 100 land in the storage box 240 of the ground platform 200 in order of height.
  • the ground firefighters organize the drones 100 and drive the ground platform 200 back.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

一种消防无人机集群(1),包括地面平台(200)和间隔设置的N个无人机(100),地面平台(200)包括主水泵,每一无人机(100)包括无人机本体(10)和设于无人机本体(10)上的副水泵(21),第N个无人机(100)还包括喷水部(23),主水泵的出口与第一个无人机(100)的副水泵(21)的进口相连通,相邻的两个无人机(100)中,第n-1个无人机(100)的副水泵(21)的出口与第n个无人机(100)的副水泵(21)的进口相连通,第N个无人机(100)的副水泵(21)的出口与喷水部(23)相连通,其中,n小于或等于N,n和N均为大于或等于2的整数。

Description

消防无人机集群
相关申请
本申请要求于2022年9月28日申请的,申请号为202211192378.7,名称为“消防无人机”的中国专利申请及申请号为202211192530.1,名称为“消防无人机集群”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及无人机技术领域,特别是涉及一种消防无人机集群。
背景技术
伴随着中国城市高楼数量急剧增加,高层建筑与超高层建筑高空消防问题日益突出,高层建筑往往地处城市繁华地带,存在人员密集,周边交通拥挤、道路狭窄等现象,还存在极易立体燃烧、疏散逃生困难等问题。
然而,传统的消防装置难以满足超高层建筑的灭火需求。
发明内容
根据本申请的各种实施例,提供一种消防无人机集群,包括:地面平台和沿所述地面平台的高度方向间隔设置的N个无人机;
所述地面平台包括主水泵;
每一所述无人机包括无人机本体和设于所述无人机本体上的副水泵;
第N个所述无人机还包括喷水部;
所述主水泵的出口与第一个所述无人机的所述副水泵的进口相连通;
相邻的两个所述无人机中,第n-1个所述无人机的所述副水泵的出口与第n个所述无人机的所述副水泵的进口相连通;
第N个所述无人机的所述副水泵的出口与所述喷水部相连通;
其中,n小于或等于N,n和N均为大于或等于2的整数。
在其中一个实施例中,每一所述无人机还包括设置于所述无人机本体下方的消防组件,所述消防组件包括所述副水泵和消防水管;
相邻的两个所述无人机中,所述消防水管的相对两端分别连通于第n-1个所述无人机的所述副水泵的出口与第n个所述无人机的所述副水泵的进口。
在其中一个实施例中,所述地面平台还包括控制台,所述控制台分别与多个所述无人机的所述无人机本体和所述副水泵电连接。
在其中一个实施例中,每一所述无人机还包括系留电缆与设置于所述无人机本体上的主控制器,所述主控制器分别与所在所述无人机的所述无人机本体和所述副水泵电连接;
所述控制台通过第一个所述无人机的系留电缆与第一个所述无人机的所述主控制器电连接;
相邻的两个所述无人机中,第n-1个所述无人机本体的所述主控制器通过第n个所述无人机的所述系留电缆与第n个所述无人机的所述副水泵电连接。
在其中一个实施例中,每一所述无人机还包括设于所述无人机本体上的传感器组件,所述传感器组件与其所处所述无人机的主控制器电连接,且用于获取所述无人机本体所处火场的火场信息。
在其中一个实施例中,所述地面平台还包括与所述控制台电连接的显示器,所述显示器用于显示所述无人机的姿态信息和所述无人机所处火场的火场信息。
在其中一个实施例中,所述地面平台还包括收纳箱,所述收纳箱具有用于存放多个所述无人机的存储空间。
在其中一个实施例中,所述无人机还包括:
多个伸缩件,所述伸缩件设置于所述无人机本体的下方;每一所述伸缩件的相对两端分别铰接于所述无人机本体及所述消防组件;以及
检测件,设于所述消防组件上且电连接于所述主控制器,所述检测件用于检测所述消防组件的位置信息;
其中,所述主控制器与所述伸缩件电连接,所述主控制器用于实时根据所述消防组件的位置信息控制所述伸缩件的长度,以调整所述消防组件的位姿而使所述消防组件处于水平状态。
在其中一个实施例中,所述无人机本体包括机身、连接于所述机身的旋翼臂组件,以及设置于所述旋翼臂组件且与所述伸缩件一一对应的多个第一旋翼组件;
每一所述伸缩件的相对两端分别铰接于对应的所述第一旋翼组件及所述消防组件。
在其中一个实施例中,所述旋翼臂组件包括位于所述机身沿第一方向的相对两侧且沿第二方向延伸的两个第一臂,以及沿第一方向延伸的两个第二臂;
其中一所述第二臂的纵长两端分别连接于两个所述第一臂沿所述第二方向的一侧,另一所述第二臂的纵长两端分别连接于两个所述第一臂沿所述第二方向的另一侧;所述消防组件沿所述第二方向延伸,且位于所述机身的下方;所述第一方向和所述第二方向相交。
在其中一个实施例中,所述第一旋翼组件和所述伸缩件均设置有四个;
所述第一臂和所述第二臂的连接处设有一所述第一旋翼组件。
在其中一个实施例中,所述第一旋翼组件包括设于所述第一臂和所述第二臂的连接处的连接座以及位于所述连接座的外侧的至少一第一电动桨叶;
每一所述伸缩件远离所述消防组件的一端铰接于对应的所述第一旋翼组件的所述连接座的底部。
在其中一个实施例中,所述连接座上设置有次控制器;
所述次控制器与所述第一旋翼组件一一对应,且分别与所述主控制器和对应的所述第一旋翼组件电连接。
在其中一个实施例中,所述旋翼臂组件还包括两个第三臂,每一所述第一臂上连接有一所述第三臂,所述第三臂远离对应的所述第一臂的一端设有第二旋翼组件。
在其中一个实施例中,定义平行于所述第一方向且平行所述第二方向的平面为第一平面;
所述第三臂与所述第一平面呈预设夹角。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。同时,为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围限制。
图1为根据一个或多个实施例提供的消防无人机集群的应用环境图。
图2为根据一个或多个实施例提供的多个无人机串联的结构示意图。
图3为根据一个或多个实施例提供的单个无人机的结构示意图。
图4为根据一个或多个实施例提供的地面平台的结构示意图。
图5为根据一个或多个实施例提供的无人机本体在前后水平时的示意图。
图6为根据一个或多个实施例提供的无人机本体在前后倾斜时的示意图。
图7为根据一个或多个实施例提供的无人机本体在左右水平时的示意图。
图8为根据一个或多个实施例提供的无人机本体在左右倾斜时的示意图。
图9为根据一个或多个实施例提供的无人机另一视角的结构示意图。
图10为根据一个或多个实施例提供的消防无人机集群的控制流程示意图。
图中:1、消防无人机集群;100、无人机;10、无人机本体;11、机身;111、机身本体;112、支腿;12、旋翼臂组件;121、第一臂;122、第二臂;123、第三臂;13、第一旋翼组件;131、连接座;132、第一电动桨叶;14、第二旋翼组件;141、驱动件;142、第二电动桨叶。20、消防组件;21、副水泵;22、副水泵电机;23、喷水部;24、消防水管;30、伸缩件;40、传感器组件;50、次控制器;60、速度调节件;70、系留电缆;F1、第一方向;F2、第二方向;F3、第三方向;M1、第一平面;200、地面平台;220、控制台;230、显示器;240、收纳箱;250、仪表盘;260、座椅。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
伴随着中国城市高楼数量急剧增加,高层建筑与超高层建筑高空消防问题日益突出,高层建筑往往地处城市繁华地带,存在人员密集,周边交通拥挤、道路狭窄等现象,还存在极易立体燃烧、疏散逃生困难等问题。
相关技术中,主流配备的举高类消防车所达到的高度在50-60m左右。消防水枪、水炮的喷射高度也在50m左右。传统的消防无人机飞行高度不足,灭火性能不足,难以满足超高层建筑灭火的需求。
此外,现有的新型消防灭火装置还存在诸多不足,如:
一些高层消防装置受限于地面消防车,无法灵活的选取空中灭火位置,只能实现固定地点灭火作业。
一些高层消防装置受限于无人机自身运载能力,无法提供较大压力的消防用水喷射。
一些高层消防装置实际的建造和推广成本较高,无法用于消防支队日常灭火行动中。
一些高空系留式无人灭火系统,提出了将无人机和灭火弹相结合,装置包括飞行平台、灭火装置、 系留电缆、地面供电电源、地面站系统。虽然该系统提出了一种小型有效的无人机灭火方式,但相比于传统的消防水枪灭火,灭火弹无法长时间有效用于大型火场。
一些灭火系统提出了用无人机和消防水车共同支撑输水软管的系统,装置包括:无人机、消防灭火装置、输水软管、能源供应链、消防车、第一卷扬机、第二卷扬机以及控制设备。该系统有效的利用了现有的消防水车,但是受限于无人机的载重和固定的机械装置,无法灵活地完成高层消防灭火的任务。
鉴于现有消防无人机存在以上诸多问题,本申请设计了一种消防无人机集群,能够至少解决以上问题之一。
图1为根据一个或多个实施例提供的消防无人机集群的应用环境图,图2为根据一个或多个实施例提供的多个无人机串联的结构示意图。
请一并参阅图1和图2,本申请一实施例提供了的一种消防无人机集群1,包括地面平台200和沿所述地面平台200的高度方向间隔设置的N个无人机100。地面平台200包括主水泵(图未示),每一无人机100包括无人机本体10和设于无人机本体10上的副水泵21,第N个无人机100还包括喷水部23。主水泵的出口与第一个无人机100的副水泵21的进口相连通,相邻的两个无人机100中,第n-1个无人机100的副水泵21的出口与第n个无人机100的副水泵21的进口相连通,第N个无人机100的副水泵21的出口与喷水部23相连通,其中,n小于或等于N,n和N为大于或等于2的整数。
上述一种消防无人机集群1,消防用水经过地面平台200的主水泵的抽吸,将消防用水从地面输送至第一个无人机100的副水泵21的进口,第一个消防无人机100的副水泵21将消防用水增压后,通过副水泵21的出口再输送至第二个无人机100的副水泵21的进口,以此类推,第n-1个消防无人机100的副水泵21将消防用水增压后,通过副水泵21的出口再输送至第n个无人机100的副水泵21的进口,如此,消防用水依次经过N个无人机100的副水泵21的多次增压,最终,通过第N个无人机100的喷水部23喷出,得以克服传统消防无人机100飞行高度不足,灭火性能不足,难以满足超高层建筑灭火需求的难题。
在一些实施例中,如图2所示,每一无人机100还包括设置于无人机本体10下方的消防组件20,消防组件20包括副水泵21和消防水管24,相邻的两个无人机100中,消防水管24的相对两端分别连通于第n-1个无人机100的副水泵21的出口与第n个无人机100的副水泵21的进口。
需要说明的是,无人机本体10能够为无人机100提供飞行动力,消防组件20为消防用水到达高层或超高层建筑的灭火点提供抬升动力。图3为根据一个或多个实施例提供的单个无人机的结构示意图,请一并结合图2和图3,在一个实施例中,消防组件20包括副水泵21、副水泵电机22及消防水管24。副水泵21和副水泵电机22相连接,副水泵21上设置有副水泵21出口和副水泵21入口,第n-1个无人机100的副水泵21出口与第n个无人机100的副水泵21进口通过消防水管24相连通。第N个无人机100还包括喷水部23,喷水部23包括喷水龙头,喷水龙头与所在无人机100的副水泵21出口连通。
本申请的消防无人机集群1可以实现多个消防无人机100和地面平台200的联合灭火作业,以解决高层灭火的作业高度限制问题。多个无人机100的副水泵21之间分别通过消防水管24相连通,即第n-1个无人机100的副水泵21的出口与第n个无人机100的副水泵21的进口通过消防水管24相连通,以实现消防水的逐级增压和连续抬升。在一个实施例中,水泵采用高压水泵,高压水泵用于空中连续加压,第n个无人机100的高压水泵由第n-1个无人机100的高压水泵与消防水管24供水,最终通过第N个无人机100的喷水龙头将加压后的消防水喷射出用于高层指定灭火点的灭火作业。如此,本申请的消防无人机集群1通过多个无人机100在高度方向上叠加的方式,不再受到高层灭火作业的高度限制,同时消防作业人员无需再近距离靠近火场,避免消防作业人员伤亡,提高消防救援的安全性。
在一些实施例中,结合图1和图4所示,图4为根据一个或多个实施例提供的地面平台的结构示意图,地面平台200还包括控制台220,控制台220分别与多个无人机100的无人机本体10和副水泵21电连接。
需要说明的是,地面平台200可由现有车辆拖曳或者地面平台200自带驾驶室和移动轮,地面消防员可以通过控制台220对高层火场进行更加精细化的作业。控制台220可以控制多个无人机100的飞行,当第n个无人机100起飞并与第n-1个无人机100达到预设高度差后,第n-1级平台起飞,并跟随第n个无人机100移动。无人机100集群整体保持同步,确保位于同一垂线上。当第N个无人机100 飞行到指定位置后,位于其下方的多个无人机100悬停,地面消防员打开地面供水开关,第N个无人机100的喷水龙头开始持续喷水进行不间断消防灭火作业。本申请的多个无人机100采用地面平台200供水供电,可以实现不间断长时间持续作业,不再需要降落进行灭火耗材的补给。
在一些实施例中,如图1和图2所示,相邻无人机100垂直间距约为15至20米,第一个无人机100与地面平台200垂直间距约为60至80米。实际应用中,使用者可以根据火场的高度,选用适合数量的无人机100串联作业。假设50层楼着火,每层楼层高按照3米计算,则着火点的高度在150米左右,第一个无人机100与地面平台200垂直间距约为60米,相邻无人机100垂直间距为20米,则至少需要选用6个无人机100串联作业才能实现指定火场的灭火作业。
在一些实施例中,如图2所示,每一无人机100还包括系留电缆70与设置于无人机本体10上的主控制器,主控制器分别与所在无人机100的无人机本体10和副水泵21电连接。控制台220通过第一个无人机100的系留电缆70与第一个无人机100的主控制器电连接。相邻的两个无人机100中,第n-1个无人机本体10的主控制器通过第n个无人机100的系留电缆70与第n个无人机100的副水泵21电连接。
需要说明的是,系留电缆70为线束,其不仅包括电源线,还包括信号传输线缆。地面平台200通过系留电缆70的电源线为所有无人机100提供电力,信号传输线缆用以传输信号,实施控制功能。副水泵21上还设置有变压器,无人机本体10的主控制器通过系留电缆70与设置于副水泵21之上的变压器电相连,变压器能够实现自动调节电压,用以适应副水泵21与主控制器所需的不同电压需求。第n-1个无人机本体10的主控制器通过第n个无人机100的系留电缆70与第n个无人机100的副水泵21的变压器电连接,用于向第n个无人机100提供电力传输与信息传递。如此,通过系留电缆70能够实现多个无人机100的连续供电与信息传递,以实现高层建筑不间断消防作业。
在一些实施例中,如图3所示,每一无人机100还包括设于无人机本体10上的传感器组件40,传感器组件40与其所处无人机100的主控制器电连接,且用于获取无人机本体10所处火场的火场信息。
需要说明的是,无人机本体10上还设置有传感器组件40,传感器组件40包括激光探测器、超声波探测器、高清摄像头、红外探测器等。主控制器对激光探测器、超声波探测器、高清摄像头、红外探测器实时记录的火场数据信号进行接收与处理,并通过系留电缆70传回地面平台200的主控台。地面消防作业人员掌握火情后,根据现场情况灵活选择更适合的作业方式,下达作业指令。提高了消防救援的响应度,及时可靠地进行消防灭火或者救援作业,实现更精准、更高效、更灵活的高层消防作业。
在一些实施例中,如图4所示,地面平台200还包括与控制台220电连接的显示器230,显示器230用于显示无人机100的姿态信息和无人机100所处火场的火场信息。
在一些实施例中,地面平台200还包括仪表盘250。仪表盘250可以为操作人员实时显示无人机100的姿态信息和无人机100所处火场的火场信息。
在一些实施例中,如图4所示,地面平台200还包括收纳箱240,收纳箱240具有用于存放多个无人机100的存储空间。
在一个实施例中,如图4所示,地面平台200包括操作仓与收纳箱240,其中操作仓位于远离驾驶室的一侧,收纳箱240位于地面平台200的中部。操作仓包括控制台220、显示器230、仪表盘250和座椅260等。本实例中,收纳箱240可以收纳高达11个无人机100。当然,使用者可以根据需要调整收纳箱240的空间大小,以收纳更多数量的无人机100。
在一些实施例中,如图3所示,无人机100还包括多个伸缩件30以及检测件,伸缩件30设置于无人机本体10的下方,每一伸缩件30的相对两端分别铰接于无人机本体10及消防组件20。检测件设于消防组件20上且电连接于主控制器,检测件用于检测消防组件20的位置信息。其中,主控制器与伸缩件30电连接,主控制器用于实时根据消防组件20的位置信息控制伸缩件30的长度,以调整消防组件20的位姿而使消防组件20处于水平状态。
图5为根据一个或多个实施例提供的无人机本体在前后水平时的示意图;图6为根据一个或多个实施例提供的无人机本体在前后倾斜时的示意图;图7为根据一个或多个实施例提供的无人机本体在左右水平时的示意图;图8为根据一个或多个实施例提供的无人机本体在左右倾斜时的示意图;图9为根据一个或多个实施例提供的无人机另一视角的结构示意图。
请一并结合图5-图9,为了便于说明,暂且定义第一方向F1为左右方向,第二方向F2为前后方向,第三方向F3为上下方向。上述无人机100集群,在消防作业时,第N个无人机100的喷水部23向前喷水,无人机100由于后坐力向后倾斜。为了保持消防组件20的水平稳定,在无人机本体10与位于无人机本体10下方的消防组件20之间设置多个伸缩件30,且伸缩件30的相对两端分别铰接于无人机本体10和消防组件20。无人机本体10上的主控制器实时接收消防组件20上的检测件的检测信号,判断消防组件20是否处于水平稳定状态,如果不稳定,则计算出使消防组件20稳定所需的数学模型,并调节伸缩件30的长度,使得无人机本体10向前倾斜以产生水平向前的分力来抵御消防组件20因向前喷水而产生的后坐力,来调整消防组件20的位姿而使消防组件20始终处于水平状态,避免由于消防组件20倾斜而导致的消防作业受到影响。
可以理解的是,检测件包括陀螺仪、加速度传感器等,在此,不做具体的限制。伸缩件30包括气缸、油缸、电动推杆、伸缩桁架等,在此,不做具体的限制。在如图3所示的实施例中,伸缩件30为电动推杆。电动推杆的精度高,负载大,可以实现同步自动控制,无需气源和油路,重量较轻。电动推杆的两端分别通过万向节与无人机本体10及消防组件20相连。电动推杆的长度可由主控制器电控调节。
在一些实施例中,如图3所示,无人机本体10包括机身11、连接于机身11的旋翼臂组件12,以及设置于旋翼臂组件12且与伸缩件30一一对应的多个第一旋翼组件13。每一伸缩件30的相对两端分别铰接于对应的第一旋翼组件13及消防组件20。
在如图3所示的实施例中,机身11包括机身本体111以及设置于机身本体111外侧的四个支腿112,四个支腿112分别连接于旋翼臂组件12。
在一些实施例中,旋翼臂组件12包括位于机身11沿第一方向F1的相对两侧且沿第二方向F2延伸的两个第一臂121,以及沿第一方向F1延伸的两个第二臂122。其中一第二臂122的纵长两端分别连接于两个第一臂121沿第二方向F2的一侧,另一第二臂122的纵长两端分别连接于两个第一臂121沿第二方向F2的另一侧。消防组件20沿第二方向F2延伸,且位于机身11的下方;第一方向F1和第二方向F2相交。
如图3所示,第一方向F1和第二方向F2相互垂直,机身本体111位于无人机本体10的中部,旋翼臂组件12围绕机身11的外侧设置,旋翼臂组件12包括两个第一臂121和两个第二臂122,两个第一臂121和两个第二臂122组成方形框架,在实际应用中,第一臂121的长度大于第二臂122的长度,两个第一臂121和两个第二臂122组成矩形框架,多个支腿112自机身本体111延伸出去并连接于第一臂121和/或第二臂122上,在本实施例中,支腿112的数量为四个,四个支腿112两两一组分别连接于对应的第一臂121上。消防组件20沿第二方向F2延伸且位于机身11的下方,其中,副水泵21和副水泵电机22同轴且沿第二方向F2延伸。相较于现有的消防无人机100的无人机本体10呈圆形的布局方式,本申请的无人机本体10呈方形的布局的方式,如此,本申请的无人机本体10的布局和消防组件20的布局更加适配,且本申请的无人机本体10占用空间更小,便于在老旧小区内灵活穿巷或实施消防作业。
在一些实施例中,结合图3所示,第一旋翼组件13和伸缩件30均设置有四个,第一臂121和第二臂122的连接处设有一第一旋翼组件13。
可以理解的是,第一旋翼组件13提供消防无人机100升降和水平移动的动力。在一个实施例中,第一旋翼组件13包括尺寸相对小的四个小旋翼,在本实施例中,小旋翼的直径为5英寸,四个小旋翼位于第一臂121和第二臂122的连接处,四个小旋翼通过安装座分别固定连接于第一臂121及第二臂122上。
需要说明的是,第一臂121和第二臂122固定连接于连接座131,且第一臂121和第二臂122的端部呈十字交叉,连接座131位于第一臂121和第二臂122的交叉处。四个小旋翼围绕连接座131设置并通过安装座分别固定连接于第一臂121及第二臂122上,其中,小旋翼包括第一电动桨叶132和电机,电机用来驱动第一电动桨叶132转动。每一伸缩件30远离消防组件20的一端铰接于对应的第一旋翼组件13的连接座131的底部,且每一伸缩件30靠近消防组件20的一端通过万向节铰接于副水泵21或者副水泵电机22上。在实际应用中,如图3所示,从消防无人机100的侧面看去,第一臂121、第 二臂122、四个伸缩杆、八个万向节、水泵及水泵电机共同组成了倒梯形的结构,如此,能够保证消防无人机100的布局更加合理,重心分布合理,稳定性和可靠性更好。
在一些实施例中,如图3所示,连接座131上设置有次控制器50,次控制器50与第一旋翼组件13一一对应,且分别与主控制器和对应的第一旋翼组件13电连接。
在一些实施例中,如图1所示,连接座131上还设置有速度调节件60,速度调节件60用于调节第一电动桨叶132的转速,且与相邻的次控制器50电连接。
在一个实施例中,速度调节件60包括小旋翼电调,连接座131内设置有小旋翼电调与次控制器50等,用以完成对每一组小旋翼的控制及调节。主控制器内设有主板电路、超级电容、大旋翼电调、散热系统、飞行控制系统等完成无人机本体10的移动。可以理解的是,次控制器50受主控制器的控制,主控制器受主控台的控制。
在一些实施例中,如图3所示,旋翼臂组件12还包括两个第三臂123,每一第一臂121上连接有一第三臂123,第三臂123远离对应的第一臂121的一端设有第二旋翼组件14。
在一些实施例中,如图3所示,定义平行于第一方向F1且平行第二方向F2的平面为第一平面M1。第三臂123与第一平面M1呈预设夹角。
在一个实施例中,第三臂123通过连接座131垂直连接于第一臂121,且第三臂123的连接座131位于两个支腿112之间,并向下偏转一个预设角度。如此,第二旋翼组件14与第一旋翼有一定的高度差,能够保证无人机本体10承重更大的同时减小其占用空间,便于在老旧小区内灵活穿巷或实施消防作业。
在一些实施例中,如图3所示,每一第二旋翼组件14包括设于对应的第三臂123的驱动件141,以及沿第三方向F3间隔设置的两个第二电动桨叶142。两个第二电动桨叶142同轴设于驱动件141的输出端,以在驱动件141的驱动下转动。
在一个实施例中,第二旋翼组件14包括两个同轴设置的大旋翼,大旋翼包括第二电动桨叶142和电机,电机用来驱动第二电动桨叶142转动,大旋翼的直径为10英寸。本申请的无人机100采用了大旋翼和小旋翼的组合,且大旋翼和小旋翼存在高度差的方式,通过合理的空间布局使得无人机本体10的载重更大,能够承受位于无人机本体10下方的质量更大的副水泵21、副水泵电机22及更长的消防水管24及消防水。
在一些实施例中,如图3所示,无人机本体10的结构材料采用碳纤维,如此,保证无人机本体10在大载重的同时自重较轻,便于负载更大质量的消防组件20,运载更长的消防水管24与系留电缆70。
图10为根据一个或多个实施例提供的消防无人机集群的控制流程示意图,如图6所示,当消防人员接到火灾报警后,迅速驾驶携带有无人机100的地面平台200到达着火高楼附近。到达现场后,消防人员判断火场的具体高度和火势大小,选择适合无人机100起飞的地点进行相关灭火准备。准备工作完成后,消防人员通过地面现有的消防水管24或者消防车供水,为第一个无人机100的副水泵21入口提供消防水,并用地面电源为第一个无人机100的系留电缆70供电。
当用消防软管和系留电缆70串联起能满足高度需求的多个无人机100后,多个无人机100顺次起飞。多个无人机100使用地面平台200预设的飞行参数自主飞行至高楼着火位置。到达所需高度之后,地面消防员可以通过控制台220接收、处理激光探测器、超声波探测器、高清摄像头、红外探测器、检测器传回的具体火场数据及显示屏、仪表盘250实时显示的火场数据对高空火情进行更加精细化的作业。
当地面消防人员根据现场火情,控制无人机100进行移动时,主控制器接收消防组件20的实时状态,判断消防组件20是否稳定。如果不稳定,则计算出使消防组件20稳定所需的数学模型,对伸缩件30进行电控调节,实现副水泵21和副水泵电机22的水平稳定。同时,次控制器50调整第一电动桨叶132的转速完成无人机100的水平移动。
当位于最顶端的第N个无人机100喷水实施消防作业时,为了抵消无人机100喷水时的后坐力,以及稳定无人机100在飞行方向调整时和姿态控制时的摆动,万向节和电动伸缩杆持续工作,保证副水泵21和副水泵电机22一直维持水平稳定。
当消防无人机集群1完成既定消防任务之后,地面消防人员停止无人机100供水,多个无人机100 按照高度顺序依次降落至地面平台200的收纳箱240中,地面消防人员整理无人机100,并驾驶地面平台200返回。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种消防无人机集群(1),包括:地面平台(200)和沿所述地面平台(200)的高度方向间隔设置的N个无人机(100);
    所述地面平台(200)包括主水泵;
    每一所述无人机(100)包括无人机本体(10)和设于所述无人机本体(10)上的副水泵(21);
    第N个所述无人机(100)还包括喷水部(23);
    所述主水泵的出口与第一个所述无人机(100)的所述副水泵(21)的进口相连通;
    相邻的两个所述无人机(100)中,第n-1个所述无人机(100)的所述副水泵(21)的出口与第n个所述无人机(100)的所述副水泵(21)的进口相连通;
    第N个所述无人机(100)的所述副水泵(21)的出口与所述喷水部(23)相连通;
    其中,n小于或等于N,n和N均为大于或等于2的整数。
  2. 根据权利要求1所述的消防无人机集群(1),其中,每一所述无人机(100)还包括设置于所述无人机本体(10)下方的消防组件(20),所述消防组件(20)包括所述副水泵(21)和消防水管(24);
    相邻的两个所述无人机(100)中,所述消防水管(24)的相对两端分别连通于第n-1个所述无人机(100)的所述副水泵(21)的出口与第n个所述无人机(100)的所述副水泵(21)的进口。
  3. 根据权利要求1或2所述的消防无人机集群(1),其中,所述地面平台(200)还包括控制台(220),所述控制台(220)分别与多个所述无人机(100)的所述无人机本体(10)和所述副水泵(21)电连接。
  4. 根据权利要求3所述的消防无人机集群(1),其中,每一所述无人机(100)还包括系留电缆(70)与设置于所述无人机本体(10)上的主控制器,所述主控制器分别与所在所述无人机(100)的所述无人机本体(10)和所述副水泵(21)电连接;
    所述控制台(220)通过第一个所述无人机(100)的系留电缆(70)与第一个所述无人机(100)的所述主控制器电连接;
    相邻的两个所述无人机(100)中,第n-1个所述无人机本体(10)的所述主控制器通过第n个所述无人机(100)的所述系留电缆(70)与第n个所述无人机(100)的所述副水泵(21)电连接。
  5. 根据权利要求4所述的消防无人机集群(1),其中,每一所述无人机(100)还包括设于所述无人机本体(10)上的传感器组件(40),所述传感器组件(40)与其所处所述无人机(100)的主控制器电连接,且用于获取所述无人机本体(10)所处火场的火场信息。
  6. 根据权利要求5所述的消防无人机集群(1),其中,所述地面平台(200)还包括与所述控制台(220)电连接的显示器(230),所述显示器(230)用于显示所述无人机(100)的姿态信息和所述无人机(100)所处火场的火场信息。
  7. 根据权利要求3-6任一项所述的消防无人机集群(1),其中,所述地面平台(200)还包括收纳箱(240),所述收纳箱(240)具有用于存放多个所述无人机(100)的存储空间。
  8. 根据权利要求4-7任一项所述的消防无人机集群(1),其中,所述无人机(100)还包括:
    多个伸缩件(30),所述伸缩件(30)设置于所述无人机本体(10)的下方;每一所述伸缩件(30)的相对两端分别铰接于所述无人机本体(10)及所述消防组件(20);以及
    检测件,设于所述消防组件(20)上且电连接于所述主控制器,所述检测件用于检测所述消防组件(20)的位置信息;
    其中,所述主控制器与所述伸缩件(30)电连接,所述主控制器用于实时根据所述消防组件(20)的位置信息控制所述伸缩件(30)的长度,以调整所述消防组件(20)的位姿而使所述消防组件(20)处于水平状态。
  9. 根据权利要求8所述的消防无人机集群(1),其中,所述无人机本体(10)包括机身(11)、连接于所述机身(11)的旋翼臂组件(12),以及设置于所述旋翼臂组件(12)且与所述伸缩件(30)一一对应的多个第一旋翼组件(13);
    每一所述伸缩件(30)的相对两端分别铰接于对应的所述第一旋翼组件(13)及所述消防组件(20)。
  10. 根据权利要求9所述的消防无人机集群(1),其中,所述旋翼臂组件(12)包括位于所述机身(11)沿第一方向(F1)的相对两侧且沿第二方向(F2)延伸的两个第一臂(121),以及沿第一方向(F1)延伸的两个第二臂(122);
    其中一所述第二臂(122)的纵长两端分别连接于两个所述第一臂(121)沿所述第二方向(F2)的一侧,另一所述第二臂(122)的纵长两端分别连接于两个所述第一臂(121)沿所述第二方向(F2)的另一侧;所述消防组件(20)沿所述第二方向(F2)延伸,且位于所述机身(11)的下方;所述第一方向(F1)和所述第二方向(F2)相交。
  11. 根据权利要求10所述的消防无人机集群(1),其中,所述第一旋翼组件(13)和所述伸缩件(30)均设置有四个;
    所述第一臂(121)和所述第二臂(122)的连接处设有一所述第一旋翼组件(13)。
  12. 根据权利要求11所述的消防无人机集群(1),其中,所述第一旋翼组件(13)包括设于所述第一臂(121)和所述第二臂(122)的连接处的连接座(131)以及位于所述连接座(131)的外侧的至少一第一电动桨叶(132);
    每一所述伸缩件(30)远离所述消防组件(20)的一端铰接于对应的所述第一旋翼组件(13)的所述连接座(131)的底部。
  13. 根据权利要求12所述的消防无人机集群(1),其中,所述连接座(131)上设置有次控制器(50);
    所述次控制器(50)与所述第一旋翼组件(13)一一对应,且分别与所述主控制器和对应的所述第一旋翼组件(13)电连接。
  14. 根据权利要求10-13任一项所述的消防无人机集群(1),其中,所述旋翼臂组件(12)还包括两个第三臂(123),每一所述第一臂(121)上连接有一所述第三臂(123),所述第三臂(123)远离对应的所述第一臂(121)的一端设有第二旋翼组件(14)。
  15. 根据权利要求14所述的消防无人机集群(1),其中,定义平行于所述第一方向(F1)且平行所述第二方向(F2)的平面为第一平面(M1);
    所述第三臂(123)与所述第一平面(M1)呈预设夹角。
PCT/CN2022/125236 2022-09-28 2022-10-14 消防无人机集群 WO2024065886A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211192378.7 2022-09-28
CN202211192530.1 2022-09-28
CN202211192378.7A CN115432182A (zh) 2022-09-28 2022-09-28 消防无人机
CN202211192530.1A CN115432183A (zh) 2022-09-28 2022-09-28 消防无人机集群

Publications (1)

Publication Number Publication Date
WO2024065886A1 true WO2024065886A1 (zh) 2024-04-04

Family

ID=90475703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125236 WO2024065886A1 (zh) 2022-09-28 2022-10-14 消防无人机集群

Country Status (1)

Country Link
WO (1) WO2024065886A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217486A1 (en) * 2007-03-05 2008-09-11 Lockheed Martin Corporation Small unmanned airborne vehicle airframe
CN110947135A (zh) * 2019-10-31 2020-04-03 彩虹无人机科技有限公司 一种基于涵道无人机的超高层建筑灭火系统
CN111840857A (zh) * 2020-07-21 2020-10-30 长沙市云智航科技有限公司 一种集装箱式系留消防灭火救援装备及方法
US20200386882A1 (en) * 2019-06-10 2020-12-10 International Business Machines Corporation Remote tracking of progress at construction sites
CN214550743U (zh) * 2020-11-12 2021-11-02 余姚市规划测绘设计院 一种无人机灭火装置
CN114788936A (zh) * 2022-06-23 2022-07-26 吉林大学 一种复杂空间内无人机集群协作接力灭火系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080217486A1 (en) * 2007-03-05 2008-09-11 Lockheed Martin Corporation Small unmanned airborne vehicle airframe
US20200386882A1 (en) * 2019-06-10 2020-12-10 International Business Machines Corporation Remote tracking of progress at construction sites
CN110947135A (zh) * 2019-10-31 2020-04-03 彩虹无人机科技有限公司 一种基于涵道无人机的超高层建筑灭火系统
CN111840857A (zh) * 2020-07-21 2020-10-30 长沙市云智航科技有限公司 一种集装箱式系留消防灭火救援装备及方法
CN214550743U (zh) * 2020-11-12 2021-11-02 余姚市规划测绘设计院 一种无人机灭火装置
CN114788936A (zh) * 2022-06-23 2022-07-26 吉林大学 一种复杂空间内无人机集群协作接力灭火系统

Similar Documents

Publication Publication Date Title
JP7214501B2 (ja) ドローンシステム
KR102209056B1 (ko) 드론을 이용한 산불 진화 시스템 및 그 방법
US10723456B2 (en) Unmanned aerial vehicle system having multi-rotor type rotary wing
JP2019177869A (ja) 飛行体及び飛行体の制御方法
US20100096490A1 (en) Remote engine/electric helicopter industrial plat form
US20090078434A1 (en) Helicopter supported system for fire fighting including high elevation located fires
WO2009054937A2 (en) Remote engine/electric helicopter industrial platform
KR102264602B1 (ko) 무인 비행체를 이용한 화재 진화 시스템
WO2020052100A1 (zh) 一种消防无人机发射消防炮的触发方法
US20220080237A1 (en) An Apparatus and Method for Firefighting
DE102021004294B4 (de) Feuerlösch-Drohne
US11420742B2 (en) Unmanned aerial vehicle driven by pressurized content
WO2024065886A1 (zh) 消防无人机集群
CN109178309A (zh) 一种紧凑型消防无人机
DE102021004295B4 (de) Feuerlösch-Drohne
DE102021004272B4 (de) Feuerlösch-Drohne
CN212235696U (zh) 一种基于无人机的消防装置
CN115432183A (zh) 消防无人机集群
KR20230102020A (ko) 다기능 소방드론
KR102266910B1 (ko) 고정익 항공기를 이용한 살포 시스템 및 살포 시스템의 제어방법
CN115432182A (zh) 消防无人机
RU137542U1 (ru) Гидравлическое реактивное устройство для тушения пожаров
WO2024161409A1 (en) Autonomous aerial robot system (aars) for extinguishing fire at high-rise buildings
SE2151140A1 (en) A fire extinguishing arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960489

Country of ref document: EP

Kind code of ref document: A1