WO2024065489A1 - 无线通信方法、装置、设备、存储介质及程序产品 - Google Patents

无线通信方法、装置、设备、存储介质及程序产品 Download PDF

Info

Publication number
WO2024065489A1
WO2024065489A1 PCT/CN2022/122851 CN2022122851W WO2024065489A1 WO 2024065489 A1 WO2024065489 A1 WO 2024065489A1 CN 2022122851 W CN2022122851 W CN 2022122851W WO 2024065489 A1 WO2024065489 A1 WO 2024065489A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
time period
signal
network device
resource
Prior art date
Application number
PCT/CN2022/122851
Other languages
English (en)
French (fr)
Inventor
吴作敏
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/122851 priority Critical patent/WO2024065489A1/zh
Publication of WO2024065489A1 publication Critical patent/WO2024065489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a wireless communication method, apparatus, device, storage medium, and program product.
  • the embodiments of the present application provide a wireless communication method, apparatus, device, storage medium and program product.
  • the technical solution is as follows:
  • a wireless communication method comprising:
  • the terminal device monitors and/or receives a first downlink channel or signal within a first time period.
  • a wireless communication method comprising:
  • the network device sends first configuration information to the terminal device, where the first configuration information is used to determine a first time period for monitoring and/or receiving a first downlink channel or signal.
  • a wireless communication device comprising:
  • the receiving module is used to monitor and/or receive a first downlink channel or signal within a first time period.
  • a wireless communication method comprising:
  • the sending module is used to send first configuration information to the terminal device, where the first configuration information is used to determine a first time period for monitoring and/or receiving a first downlink channel or signal.
  • a terminal device comprising a processor and a memory, the memory storing a computer program, the processor executing the computer program to implement the method executed by the above-mentioned terminal device.
  • a network device comprising a processor and a memory, the memory storing a computer program, the processor executing the computer program to implement the method executed by the above network device.
  • a computer-readable storage medium in which a computer program is stored.
  • the computer program is used to be executed by a processor to implement the method executed by the above-mentioned terminal device, or to implement the method executed by the above-mentioned network device.
  • a chip which includes a programmable logic circuit and/or program instructions.
  • the chip When the chip is running, it is used to implement the method executed by the above-mentioned terminal device, or to implement the method executed by the above-mentioned network device.
  • a computer program product which includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • a processor reads and executes the computer instructions from the computer-readable storage medium to implement the method executed by the above-mentioned terminal device, or implements the method executed by the above-mentioned network device.
  • a wireless communication system comprising a terminal device and a network device, the terminal device being used to execute the method executed by the terminal device as above, and/or the network device being used to execute the method executed by the network device as above.
  • the terminal device can determine the appropriate time period and monitor and/or receive the downlink channel or signal of the network device during this time period, thereby avoiding the disadvantage that the network device cannot serve the terminal device for a long time in sleep mode, resulting in too large communication transmission delay of the terminal device, thereby improving the transmission performance between the terminal device and the network device.
  • FIG1 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG2 is a flow chart of a wireless communication method provided by an embodiment of the present application.
  • FIG3 is a flow chart of a wireless communication method provided by another embodiment of the present application.
  • FIG4 is a schematic diagram of a monitoring process in which a terminal device is configured with gNB-WUS resources according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a monitoring process in which a terminal device is configured with UE-WUS resources according to an embodiment of the present application
  • FIG6 is a schematic diagram of a monitoring process in which a terminal device is configured with gNB-WUS resources and UE-WUS resources according to an embodiment of the present application;
  • FIG7 is a schematic diagram of a monitoring process in which a terminal device is configured with gNB-WUS resources and UE-WUS resources according to another embodiment of the present application;
  • FIG8 is a schematic diagram of a monitoring process in which a terminal device is configured with gNB-WUS resources and UE-WUS resources according to another embodiment of the present application;
  • FIG9 is a block diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG10 is a block diagram of a wireless communication device provided by another embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of a network device provided in one embodiment of the present application.
  • the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
  • a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced long term evolution
  • NR New Radio
  • LTE-based access to unlicensed spectrum (LTE-U) systems LTE-based access to unlicensed spectrum (LTE-U) systems
  • NR-based access to unlicensed spectrum (NR-U) systems NTN-based access to unlicensed spectrum (NR-U) systems
  • NTN non-terrestrial communication networks
  • UMTS universal mobile telecommunication systems
  • WLAN wireless local area networks
  • WiFi wireless fidelity
  • 5G fifth-generation communication
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V vehicle to vehicle
  • V2X vehicle to everything
  • CA carrier aggregation
  • DC dual connectivity
  • SA standalone
  • the communication system in the embodiment of the present application can be applied to an unlicensed spectrum, where the unlicensed spectrum can also be considered as a shared spectrum; or, the communication system in the embodiment of the present application can also be applied to an authorized spectrum, where the authorized spectrum can also be considered as an unshared spectrum or an exclusive spectrum.
  • the embodiments of the present application can be applied to terrestrial communication networks (Terrestrial Networks, TN) systems, and can also be applied to non-terrestrial communication networks (Non-Terrestrial Networks, NTN) systems.
  • Terrestrial Networks TN
  • NTN non-terrestrial Networks
  • a cell and a carrier may be equivalent.
  • downlink cell may be replaced by “downlink carrier”
  • uplink cell may be replaced by “uplink carrier”, and so on.
  • FIG1 shows a schematic diagram of a network architecture 100 provided by an embodiment of the present application.
  • the network architecture 100 may include: a terminal device 10 , an access network device 20 , and a core network device 30 .
  • the terminal device 10 may refer to a UE (User Equipment), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a user agent or a user device.
  • UE User Equipment
  • the terminal device 10 may also be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), a handheld device with wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a wearable device, a terminal device in a 5GS (5th Generation System) or a terminal device in a future evolved PLMN (Public Land Mobile Network), etc., and the embodiments of the present application are not limited thereto.
  • the above-mentioned devices are collectively referred to as terminal devices.
  • the number of terminal devices 10 is usually multiple, and one or more terminal devices 10 may be distributed in a cell managed by each access network device 20 .
  • the access network device 20 is a device deployed in the access network to provide wireless communication functions for the terminal device 10.
  • the access network device 20 may include various forms of macro base stations, micro base stations, relay stations, access points, etc.
  • the names of devices with access network device functions may be different.
  • gNodeB or gNB With the evolution of communication technology, the name "access network device" may change.
  • access network devices For the convenience of description, in the embodiments of the present application, the above-mentioned devices that provide wireless communication functions for the terminal device 10 are collectively referred to as access network devices.
  • a communication relationship can be established between the terminal device 10 and the core network device 30 through the access network device 20.
  • the access network device 20 may be an EUTRAN (Evolved Universal Terrestrial Radio Access Network) or one or more eNodeBs in the EUTRAN; in a 5G NR system, the access network device 20 may be a RAN (Radio Access Network) or one or more gNBs in the RAN.
  • EUTRAN Evolved Universal Terrestrial Radio Access Network
  • RAN Radio Access Network
  • the "network device” refers to the access network device 20, such as a base station, unless otherwise specified.
  • the core network device 30 is a device deployed in the core network.
  • the functions of the core network device 30 are mainly to provide user connection, user management and service bearing, and to provide an interface to the external network as a bearer network.
  • the core network device in the 5G NR system may include devices such as AMF (Access and Mobility Management Function) entity, UPF (User Plane Function) entity and SMF (Session Management Function) entity.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • SMF Session Management Function
  • the access network device 20 and the core network device 30 communicate with each other through some air interface technology, such as the NG interface in the 5G NR system.
  • the access network device 20 and the terminal device 10 communicate with each other through some air interface technology, such as the Uu interface.
  • the "5G NR system" in the embodiments of the present application may also be referred to as a 5G system or an NR system, but those skilled in the art may understand its meaning.
  • the technical solution described in the embodiments of the present application may be applicable to an LTE system, a 5G NR system, a subsequent evolution system of the 5G NR system, or other communication systems such as an NB-IoT (Narrow Band Internet of Things) system, and the present application does not limit this.
  • NB-IoT Narrow Band Internet of Things
  • a network device can provide services for a cell, and a terminal device communicates with the network device through transmission resources (e.g., frequency domain resources, or spectrum resources) on a carrier used by the cell.
  • the cell can be a cell corresponding to a network device (e.g., a base station), and the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here may include: metro cells, micro cells, pico cells, femto cells, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • Network energy saving is of great significance to environmental sustainability, reducing environmental impact (reducing greenhouse gas emissions), and saving operating costs.
  • 5G becomes more popular in various industries and geographical areas, it is necessary to support very high data transmission rates to handle more advanced services and applications (such as XR (Extended Reality)), and network deployment becomes denser, using more antennas, larger bandwidth and more frequency bands.
  • XR Extended Reality
  • the power consumption of a wireless access can be divided into two parts: the dynamic part only includes the power consumption when data is being sent or received; the static part includes the power consumption for the necessary operation of the wireless access equipment at all times, including the power consumption when no data is being sent or received.
  • the power consumption model on the terminal device side that has been defined can be used as a reference.
  • the research should focus on how to achieve more efficient dynamic operation and/or semi-static operation, and consider one or more network energy-saving technologies applied in the time domain, frequency domain, spatial domain, and power domain, combined with potential terminal device feedback support, potential terminal device auxiliary information, and information exchange or coordination between network interfaces to achieve more fine-grained data transmission and/or reception adaptation.
  • the study not only evaluates the potential network energy-saving gains, but also needs to evaluate and balance the impact on network and user performance by observing KPIs such as spectrum efficiency, capacity, user perceived throughput (UPT), latency, terminal equipment power consumption (UE power consumption), complexity, handover performance, call drop rate, initial access performance, SLA security-related KPIs, etc.
  • KPIs such as spectrum efficiency, capacity, user perceived throughput (UPT), latency, terminal equipment power consumption (UE power consumption), complexity, handover performance, call drop rate, initial access performance, SLA security-related KPIs, etc.
  • the study should avoid having a significant impact on the above KPIs.
  • the network device in order to save energy, can enter a sleep mode state (or the network device enters an energy-saving mode) when the service load is relatively light or there is no service load.
  • Table 1 shows a schematic diagram of a network device energy consumption model.
  • the network device configures a base station wake-up signal (gNBwakeupsignal, gNB-WUS) resource for the terminal device. Even if the network device enters or is in the sleep mode state, it may detect whether the terminal device has sent a wake-up request on this resource. When the terminal device has business arriving, a wake-up request can be sent to the network device through the gNB-WUS resource, so that the network device can be aware of the transmission requirements of the terminal device.
  • gNBwakeupsignal gNB-WUS
  • the "sleep mode” involved is also referred to as “energy-saving mode”, “energy-saving state”, “sleep state”, “sleep mode state”, “sleep energy-saving mode” or “sleep energy-saving state” and other names, but those skilled in the art can understand its meaning.
  • Figure 2 shows a flow chart of a wireless communication method provided by an embodiment of the present application.
  • the method can be performed by a terminal device.
  • the method may include at least one of the following steps:
  • Step 210 The terminal device monitors and/or receives a first downlink channel or signal within a first time period.
  • the terminal device determines a first time period, and monitors and/or receives a first downlink channel or signal in the first time period.
  • the terminal device determines the first time period please refer to the description in the following embodiments.
  • the first downlink channel or signal includes at least one of the following: PDCCH (Physical Downlink Control Channel), SSB (Synchronization Signal/PBCH block), CSI-RS (Channel State Information Reference Signal), downlink PRS (Positioning Reference Signal), TRS (Tracking Reference Signal), UE-WUS (UE wakeup signal), and PDSCH (Physical Downlink Shared Channel).
  • the UE-WUS includes: a signal sent by the network device to the terminal device for waking up the terminal device. For example, when the terminal device monitors the UE-WUS on the UE-WUS resource, it can monitor the PDCCH on the PDCCH search space associated with the UE-WUS.
  • the above-mentioned PDCCH includes at least one of the following: a terminal device-specific PDCCH and a public PDCCH.
  • the PDCCH includes: a PDCCH carrying HARQ-ACK (Hybrid Automatic Repeat request-Acknowledgement) information.
  • HARQ-ACK Hybrid Automatic Repeat request-Acknowledgement
  • the HARQ-ACK information is ACK (Acknowledgement) information.
  • the PDSCH includes: a PDSCH carrying HARQ-ACK information.
  • MACCE MAC Control Element, media access layer control unit
  • the HARQ-ACK information is ACK information.
  • the above-mentioned HARQ-ACK information is HARQ feedback information for the first uplink channel or signal sent by the terminal device.
  • the first downlink channel or signal includes a PDCCH
  • the terminal device monitors and/or receives the first downlink channel or signal within a first time period, including: the terminal device monitors a PDCCH candidate within the first time period.
  • the method further includes: the terminal device sends the first uplink channel or signal in the first time period.
  • the terminal device monitors and/or receives the first downlink channel or signal in the first time period.
  • the first uplink channel or signal includes at least one of the following: PUCCH (Physical Uplink Control Channel), SRS (Sounding Reference Signal) (for example, SRS used for MIMO (Multiple Input Multiple Output) measurement and/or SRS for uplink positioning), PUSCH (Physical Uplink Shared Channel), and PRACH (Physical Random Access Channel).
  • PUCCH Physical Uplink Control Channel
  • SRS Sounding Reference Signal
  • MIMO Multiple Input Multiple Output
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • the first uplink channel or signal includes: a network device wake-up signal (also known as a base station wake-up signal, gNB-WUS).
  • a network device wake-up signal also known as a base station wake-up signal, gNB-WUS.
  • the gNB-WUS includes: a signal sent by the terminal device to the network device for waking up the network device.
  • the terminal device sends the gNB-WUS to the network device through an uplink resource configured by the network device for the terminal device to send the gNB-WUS. Thereafter, the terminal device monitors and/or receives the first downlink channel or signal within the first time period.
  • the above-mentioned PUSCH includes at least one of the following: pre-configured CG-PUSCH (Configured grant-PUSCH, configured grant-PUSCH), DCI (Downlink Control Information, downlink control information) scheduled PUSCH.
  • the terminal device monitors and/or receives a first downlink channel or signal in a first time period, including: the terminal device monitors and/or receives a first downlink channel or signal on a first cell in the first time period; or the terminal device monitors and/or receives a first downlink channel or signal corresponding to the first cell in the first time period.
  • the first cell is a serving cell of the terminal device.
  • the first cell includes one cell, or the first cell includes multiple cells.
  • the technical solution provided in the embodiment of the present application enables the terminal device to determine an appropriate time period for a network device that can be configured with a sleep mode, and to monitor and/or receive a downlink channel or signal of the network device during the time period, thereby avoiding the disadvantage that the network device cannot serve the terminal device for a long time in the sleep mode, resulting in too large a communication transmission delay of the terminal device, thereby improving the transmission performance between the terminal device and the network device.
  • the determination of the first time period includes at least one of the following situations.
  • the first time period is determined according to the time domain position of the first uplink resource.
  • the starting position of the first time period is determined according to the time domain position of the first uplink resource.
  • the first uplink resource includes: a network device wake-up signal resource used by the terminal device to send a network device wake-up signal.
  • the first uplink resource includes an uplink resource configured by the network device for the terminal device to send a gNB-WUS.
  • the method further includes: the terminal device sends the first uplink channel or signal through the first uplink resource.
  • the terminal device sends the first uplink channel or signal to the network device through the first uplink resource.
  • the first uplink channel or signal includes: a network device wake-up signal.
  • the terminal device sends a gNB-WUS to the network device through an uplink resource configured by the network device for the terminal device to send a gNB-WUS.
  • the method further includes: the terminal device determines the starting position of the first time period according to the time domain position of the first uplink resource.
  • the starting position of the first time period is the ending position of the first uplink resource.
  • the starting position of the first time period is the ending position of the time unit where the first uplink resource is located.
  • the start position of the first time period is the time domain position after the end position of the first uplink resource is offset backward by the first offset value.
  • the start position of the first time period is the time domain position after the end position of the time unit where the first uplink resource is located is offset backward by the first offset value.
  • the starting position of the first time period is the starting position of the first downlink resource after the first uplink resource.
  • the starting position of the first time period is the starting position of the first downlink resource after the first uplink resource.
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource after the first uplink resource is located.
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource after the first uplink resource is located.
  • the starting position of the first time period is the starting position of the first downlink resource after the first uplink resource and after the first offset value.
  • the starting position of the first time period is the starting position of the first downlink resource after the first uplink resource is offset backward by the first offset value.
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource is located after the first uplink resource and after the first offset value.
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource is located after the first uplink resource is offset backward by the first offset value.
  • the first downlink resource includes a resource corresponding to a PDCCH search space and/or a terminal device wake-up signal resource (such as a UE-WUS resource).
  • the terminal device wake-up signal resource includes at least one of the following: a terminal device wake-up signal resource exclusive to the terminal device, and a public terminal device wake-up signal resource.
  • the first downlink resource is a resource corresponding to the first PDCCH search space after the first uplink resource, or the first downlink resource is the first UE-WUS resource after the first uplink resource.
  • the time unit includes at least one of a time slot, a subframe, a symbol or a sub-time slot.
  • the sub-time slot includes an integer number of symbols.
  • the above-mentioned symbol includes an OFDM (Orthogonal Frequency Division Multiplexing) symbol determined based on the subcarrier spacing, where the subcarrier spacing can be predefined or configured by the network device.
  • the first offset value is predefined.
  • the first offset value is predefined by a protocol, or the first offset value is determined based on a parameter predefined by the protocol.
  • the first offset value is determined based on a processing time of the network device.
  • the first offset value is configured by the network device, or the first offset value is determined based on a configuration parameter of the network device.
  • the first offset value is a positive number, or in other words, the first offset value is a positive offset value.
  • the first offset value may be 0.
  • the first uplink resource is associated with a sleep mode of the network device.
  • the first uplink resource includes a gNB-WUS resource corresponding to the sleep mode of the network device.
  • the first downlink resource is a downlink resource in a third time period corresponding to the sleep mode of the network device.
  • the third time period includes: a time period when the network device is in sleep mode.
  • the time period when the network device is in sleep mode includes: a time period corresponding to sleep after the network device enters sleep mode.
  • the time period when the network device is in sleep mode includes: a time period corresponding to the transition time when the network device enters sleep mode, and a time period corresponding to the transition time when the network device leaves sleep mode, and a time period corresponding to sleep after the network device enters sleep mode.
  • the third time period includes: a time period corresponding to a transition time when the network device is in a sleep mode.
  • the time period corresponding to a transition time when the network device is in a sleep mode includes: a time period corresponding to a transition time when the network device enters the sleep mode, and/or a time period corresponding to a transition time when the network device leaves the sleep mode.
  • the terminal device is configured with a network device wake-up signal resource (such as a gNB-WUS resource), and the terminal device can determine the first time period for monitoring and/or receiving the first downlink channel or signal, or determine the starting position of the first time period, according to the time domain position of the network device wake-up signal resource.
  • a network device wake-up signal resource such as a gNB-WUS resource
  • the terminal device can use gNB-WUS resources to send a gNB-WUS signal to the network device.
  • the terminal device monitors and/or receives a first downlink channel or signal, thereby waking up the network device when the terminal device has a transmission demand.
  • the network device After being awakened, the network device provides services for the terminal device, thereby avoiding the network device being unable to serve the terminal device for a long time in sleep mode, resulting in too large a communication transmission delay of the terminal device, and improving the transmission performance between the terminal device and the network device.
  • the time domain resources of the first time period are determined according to the time domain position of the first uplink resource.
  • the starting position and the ending position of the first time period are determined according to the time domain position of the first uplink resource, and the position of the first time period in the time domain can be known according to the starting position and the ending position of the first time period.
  • the starting position and the duration of the first time period are determined according to the time domain position of the first uplink resource, and the position of the first time period in the time domain can also be known according to the starting position and the duration of the first time period.
  • the first time period is determined according to the time domain position of the first downlink resource.
  • the starting position of the first time period is determined according to the time domain position of the first downlink resource.
  • the first downlink resource is a downlink resource in a third time period corresponding to the sleep mode of the network device.
  • the first downlink resource is the first downlink resource in the third time period corresponding to the sleep mode of the network device.
  • the third time period includes: a time period when the network device is in sleep mode.
  • the time period when the network device is in sleep mode includes: a time period corresponding to sleep after the network device enters sleep mode.
  • the time period when the network device is in sleep mode includes: a time period corresponding to the transition time when the network device enters sleep mode, and a time period corresponding to the transition time when the network device leaves sleep mode, and a time period corresponding to sleep after the network device enters sleep mode.
  • the third time period includes: a time period corresponding to a transition time when the network device is in a sleep mode.
  • the time period corresponding to a transition time when the network device is in a sleep mode includes: a time period corresponding to a transition time when the network device enters the sleep mode, and/or a time period corresponding to a transition time when the network device leaves the sleep mode.
  • the starting position of the first time period is determined based on the time domain position of the first downlink resource within the time period when the network device is in sleep mode; or, the starting position of the first time period is determined based on the time domain position of the first downlink resource within the time period corresponding to the transition time when the network device is in sleep mode; or, the starting position of the first time period is determined based on the time domain position of the first downlink resource within the time period corresponding to the transition time when the network device enters sleep mode.
  • the first downlink resource is the first downlink resource in the time period when the network device is in the sleep mode; or, the first downlink resource is the first downlink resource in the time period corresponding to the transition time when the network device is in the sleep mode.
  • the method before the terminal device monitors and/or receives the first downlink channel or signal in the first time period, the method further includes: the terminal device determines the starting position of the first time period. For example, the terminal device determines the starting position of the first time period according to the starting position of the first downlink resource.
  • the starting position of the first time period is the starting position of the first downlink resource.
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource is located.
  • the starting position of the first time period is the starting position of the first downlink resource after the starting position of the third time period is shifted by the second offset value.
  • the starting position of the first time period is the starting position of the first downlink resource after the starting position of the third time period is shifted backward by the second offset value.
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource is located after the starting position of the third time period is shifted by the second offset value.
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource is located after the starting position of the third time period is shifted backward by the second offset value.
  • the second offset value is predefined.
  • the second offset value is predefined by a protocol, or the second offset value is determined based on a parameter predefined by the protocol.
  • the second offset value is determined based on a processing time of the network device.
  • the second offset value is configured by the network device, or the second offset value is determined based on a configuration parameter of the network device.
  • the second offset value is a positive number, or in other words, the second offset value is a positive offset value.
  • the second offset value may be 0.
  • the first downlink resource includes a resource corresponding to a PDCCH search space and/or a terminal device wake-up signal resource (such as a UE-WUS resource).
  • the terminal device wake-up signal resource includes at least one of the following: a terminal device wake-up signal resource exclusive to the terminal device, and a public terminal device wake-up signal resource.
  • the first time period for monitoring and/or receiving the first downlink channel or signal is determined according to the time domain position of the first downlink resource, or the starting position of the first time period is determined. In this way, it is possible to ensure that the terminal device successfully receives the first downlink channel or signal sent by the network device using the first downlink resource, thereby improving the success rate and reliability of downlink reception.
  • the first downlink resource may include the downlink resource in the third time period corresponding to the sleep mode of the network device, so that the terminal device can receive the downlink channel or signal sent by the network device after waking up from the sleep mode as much as possible.
  • the time domain resources of the first time period are determined according to the time domain position of the first downlink resource.
  • the starting position and the ending position of the first time period are determined according to the time domain position of the first downlink resource, and the position of the first time period in the time domain can be known according to the starting position and the ending position of the first time period.
  • the starting position and the duration of the first time period are determined according to the time domain position of the first downlink resource, and the position of the first time period in the time domain can also be known according to the starting position and the duration of the first time period.
  • the first time period is determined according to a third time period corresponding to a sleep mode of the network device.
  • the third time period includes: a time period when the network device is in sleep mode.
  • the time period when the network device is in sleep mode includes: a time period corresponding to sleep after the network device enters sleep mode.
  • the time period when the network device is in sleep mode includes: a time period corresponding to the transition time when the network device enters sleep mode, and a time period corresponding to the transition time when the network device leaves sleep mode, and a time period corresponding to sleep after the network device enters sleep mode.
  • the third time period includes: a time period corresponding to a transition time when the network device is in a sleep mode.
  • the time period corresponding to a transition time when the network device is in a sleep mode includes: a time period corresponding to a transition time when the network device enters the sleep mode, and/or a time period corresponding to a transition time when the network device leaves the sleep mode.
  • the starting position of the first time period is the starting position of the third time period; or, there is a second offset value between the starting position of the first time period and the starting position of the third time period.
  • the third time period includes the time period corresponding to the transition time of the network device entering the sleep mode; the starting position of the first time period is the starting position of the time period corresponding to the transition time of the network device entering the sleep mode; or, there is a second offset value between the starting position of the first time period and the starting position of the time period corresponding to the transition time of the network device entering the sleep mode.
  • the method before the terminal device monitors and/or receives the first downlink channel or signal within the first time period, the method further includes: the terminal device determines the starting position of the first time period. For example, the terminal device determines the starting position of the first time period according to the third time period corresponding to the sleep mode of the network device. For example, the terminal device determines the starting position of the third time period as the starting position of the first time period. Alternatively, the terminal device shifts the starting position of the third time period backward by the time domain position of the second offset value, and determines it as the starting position of the first time period.
  • the second offset value is predefined.
  • the second offset value is predefined by a protocol, or the second offset value is determined based on a parameter predefined by the protocol.
  • the second offset value is determined based on a processing time of the network device.
  • the second offset value is configured by the network device, or the second offset value is determined based on a configuration parameter of the network device.
  • the second offset value is a positive number, or in other words, the second offset value is a positive offset value.
  • the second offset value may be 0.
  • the first time period for monitoring and/or receiving the first downlink channel or signal is determined, or the starting position of the first time period is determined.
  • the terminal device can receive the downlink channel or signal sent by the network device after waking up from the sleep mode as much as possible.
  • the length of the third time period is determined according to at least one of the following: configuration parameters of the network device, communication transmission requirements of the network device, and communication transmission requirements of the terminal device.
  • the network device preconfigures the length of the third time period, and when the network device or the terminal device has a communication transmission requirement, the length of the third time period can be extended or shortened based on the communication transmission requirement.
  • the communication transmission requirements of the network device include at least one of the following: downlink service transmission of the network device to at least one terminal device, uplink service transmission of the network device to at least one terminal device, paging message transmission of the network device, system message transmission of the network device, SSB transmission of the network device, downlink reference signal transmission of the network device, PRACH detection of the network device, and uplink reference signal transmission of the network device.
  • the communication transmission requirements of the terminal device include at least one of the following: downlink service transmission of the terminal device, uplink service transmission of the terminal device, paging message transmission of the terminal device, system message transmission requested by the terminal device, SSB transmission requested by the terminal device, downlink reference signal transmission of the terminal device, PRACH transmission of the terminal device, and uplink reference signal transmission of the terminal device.
  • the length of the first time period may be determined as follows.
  • the length of the first time period is determined according to the length of the first timer, wherein the start or restart time of the first timer is the time corresponding to the starting position of the first time period.
  • the length of the above-mentioned first timer and/or the first time period can be configured by the network device.
  • the length of the first timer is configured by at least one of a system message, an RRC signaling, and a MACCE.
  • the terminal device is configured with a first timer and/or the length of the first timer.
  • the terminal device After the terminal device sends a gNB-WUS to the network device on the first uplink resource, the terminal device starts the first timer from the starting position of the first downlink resource after the first uplink resource, and monitors and/or receives the first downlink channel or signal during the running time of the first timer, wherein the running time of the first timer is the length of the first timer.
  • the length of the first time period is determined according to the length of the first window, wherein the starting position of the first window is the starting position of the first time period.
  • the above-mentioned first window and/or the length of the first window can be configured by the network device.
  • the length of the first window is configured by at least one of a system message, an RRC signaling, and a MACCE.
  • the terminal device is configured with the length of the first window and/or the first window.
  • the terminal device After the terminal device sends a gNB-WUS to the network device on the first uplink resource, the terminal device starts the first window from the starting position of the first downlink resource after the first uplink resource, and monitors and/or receives the first downlink channel or signal within the length of the first window.
  • the length of the first time period is determined based on a configuration parameter of the network device.
  • the length of the first time period may be explicitly or implicitly indicated in the configuration parameter sent by the network device to the terminal device.
  • the length of the first time period is configured by at least one of a system message, an RRC signaling, and a MACCE.
  • the network device configures the length of a third time period corresponding to the network device entering the first sleep mode for the terminal device, and the length of the first time period is determined according to the length of the third time period.
  • the length of the first time period is predefined or determined based on predefined parameters.
  • the method also includes: the terminal device receives indication information that the network device is operating in sleep mode; or, the terminal device is configured with the first cell operating in sleep mode; or, the network device operates in sleep mode.
  • the following is an exemplary description of the behavior of the terminal device.
  • the first downlink channel or signal includes: a terminal device wake-up signal, and/or a PDCCH candidate corresponding to the PDCCH search space.
  • the terminal device monitors and/or receives a first downlink channel or signal within a first time period, including: within the first time period, the terminal device monitors a terminal device wake-up signal, and/or a PDCCH candidate corresponding to a PDCCH search space.
  • the terminal device monitors the PDCCH candidates corresponding to the PDCCH search space.
  • the terminal device can communicate with the network device, for example, receive downlink data and/or send uplink data; or, the terminal device can assume that the network device enters a downlink activated state working mode and/or enters an uplink activated state working mode.
  • the terminal device does not monitor the terminal device wake-up signal, and/or the terminal device does not monitor the PDCCH candidates corresponding to the PDCCH search space.
  • the terminal device if the terminal device is configured with a terminal device wake-up signal resource, the terminal device monitors the terminal device wake-up signal in the first time period. For example, if the terminal device is configured with a UE-WUS resource, the terminal device monitors the UE-WUS in the first time period.
  • the terminal device wake-up signal resource includes at least one of the following: a terminal device wake-up signal resource exclusive to the terminal device, and a public terminal device wake-up signal resource.
  • a terminal device wake-up signal resource is associated with one or a group of PDCCH search spaces.
  • a PDCCH search space can be considered as a PDCCH search space set, and a group of PDCCH search spaces can be considered as multiple PDCCH search space sets.
  • the terminal device monitors the terminal device wake-up signal, including:
  • the terminal device monitors the terminal device wake-up signal, the terminal device monitors the PDCCH candidate corresponding to the PDCCH search space associated with the terminal device wake-up signal; or,
  • the terminal device does not monitor the terminal device wake-up signal, the terminal device does not monitor the PDCCH candidate corresponding to the PDCCH search space associated with the terminal device wake-up signal.
  • the terminal device when the terminal device detects PDCCH in the PDCCH search space, the terminal device can communicate with the network device, for example, receive downlink data and/or send uplink data; or, the terminal device can assume that the network device enters a downlink activated state working mode and/or enters an uplink activated state working mode.
  • the terminal device does not monitor the terminal device wake-up signal, and/or the terminal device does not monitor the PDCCH candidates corresponding to the PDCCH search space.
  • the terminal device when the terminal device is configured with UE-WUS resources, the terminal device monitors UE-WUS within a first time period, thereby obtaining downlink transmission requirements of the network device.
  • the terminal device monitors the PDCCH candidates corresponding to the PDCCH search space in the first time period. For example, if the terminal device is not configured with a UE-WUS resource, the terminal device monitors the PDCCH candidates corresponding to the PDCCH search space in the first time period.
  • the terminal device monitors the PDCCH candidates corresponding to the PDCCH search space, including: when the terminal device detects the PDCCH in the PDCCH search space, the terminal device can communicate with the network device, such as receiving downlink data and/or sending uplink data; or, the terminal device can assume that the network device enters a downlink activated state working mode and/or enters an uplink activated state working mode.
  • the terminal device does not monitor the PDCCH candidates in the PDCCH search space.
  • the terminal device does not monitor the PDCCH candidates corresponding to the PDCCH search space.
  • the terminal device when the terminal device is not configured with UE-WUS resources and is configured with a PDCCH search space, the terminal device monitors the PDCCH candidates corresponding to the PDCCH search space within a first time period, thereby obtaining the downlink transmission requirements of the network device.
  • the terminal device monitors a terminal device wake-up signal and a resource that appears earlier in a time domain position in a PDCCH candidate corresponding to a PDCCH search space.
  • the terminal device monitors the terminal device wake-up signal.
  • the terminal device monitors the terminal device wake-up signal. For example, in the first time period, when the first UE-WUS resource is located before the first PDCCH search space in the time domain, the terminal device monitors the UE-WUS resource.
  • the terminal device monitors the terminal device wake-up signal, including:
  • the terminal device monitors the terminal device wake-up signal, the terminal device monitors the PDCCH candidate corresponding to the PDCCH search space associated with the terminal device wake-up signal; or,
  • the terminal device does not monitor the terminal device wake-up signal, the terminal device does not monitor the PDCCH candidate corresponding to the PDCCH search space associated with the terminal device wake-up signal.
  • the terminal device when the terminal device detects PDCCH in the PDCCH search space, the terminal device can communicate with the network device, for example, receive downlink data and/or send uplink data; or, the terminal device can assume that the network device enters a downlink activated state working mode and/or enters an uplink activated state working mode.
  • the terminal device does not monitor the terminal device wake-up signal, and/or the terminal device does not monitor the PDCCH candidates corresponding to the PDCCH search space.
  • the terminal device monitors the PDCCH candidate corresponding to the PDCCH search space.
  • the terminal device in a first time period, if the time domain position of the resource corresponding to the first PDCCH search space is before the time domain position of the first terminal device wake-up signal resource, the terminal device monitors the PDCCH candidate corresponding to the PDCCH search space. For example, in a first time period, when the first PDCCH search space is before the first UE-WUS resource in the time domain, the terminal device monitors the PDCCH search space before the first UE-WUS resource.
  • the terminal device monitors the PDCCH candidates corresponding to the PDCCH search space.
  • the terminal device monitors the terminal device wake-up signal.
  • the terminal device monitors the terminal device wake-up signal, including:
  • the terminal device monitors the terminal device wake-up signal, the terminal device monitors the PDCCH candidate corresponding to the PDCCH search space associated with the terminal device wake-up signal; or,
  • the terminal device does not monitor the terminal device wake-up signal, the terminal device does not monitor the PDCCH candidate corresponding to the PDCCH search space associated with the terminal device wake-up signal.
  • the terminal device when the terminal device detects PDCCH in the PDCCH search space, the terminal device can communicate with the network device, for example, receive downlink data and/or send uplink data; or, the terminal device can assume that the network device enters a downlink activated state working mode and/or enters an uplink activated state working mode.
  • the terminal device does not monitor the terminal device wake-up signal, and/or the terminal device does not monitor the PDCCH candidates corresponding to the PDCCH search space.
  • the terminal device when the terminal device is configured with UE-WUS resources and PDCCH search space, the terminal device listens to the terminal device wake-up signal and the resources that appear earlier in the time domain position in the PDCCH candidates corresponding to the PDCCH search space, so as to obtain the downlink transmission requirements of the network device as early as possible and reduce transmission delay.
  • the PDCCH search space is associated with a terminal device wake-up signal.
  • the terminal device is configured with a terminal device wake-up signal resource
  • the PDCCH search space is associated with the terminal device wake-up signal.
  • the PDCCH search space is associated with a network device wake-up signal.
  • the PDCCH search space is associated with a network device wake-up signal.
  • the PDCCH search space is associated with a network device wake-up signal and a terminal device wake-up signal.
  • the terminal device is configured with a terminal device wake-up signal resource and a network device wake-up signal resource
  • the PDCCH search space is associated with both the terminal device wake-up signal and the network device wake-up signal.
  • the transmission of the first uplink channel or signal is subject to certain restrictions.
  • the uplink resources in the first time period are not used to send the first uplink channel or signal.
  • the uplink resources in the second time period are not used to send the first uplink channel or signal; wherein the second time period is located after the time domain position of the first uplink resource and is different from the first time period.
  • the uplink resources in the first time period are not valid resources for sending the first uplink signal or signal; or, the uplink resources in the second time period are not valid resources for sending the first uplink signal or signal.
  • the first uplink channel or signal includes: a network device wake-up signal (or gNB-WUS).
  • the first uplink resource includes a PUCCH resource or an SRS resource.
  • the terminal device sends a gNB-WUS to the network device via the PUCCH resource or the SRS resource.
  • the terminal device after sending the gNB-WUS, the terminal device does not send the gNB-WUS within a first time period; or, after sending the gNB-WUS, the terminal device does not send the gNB-WUS within a second time period.
  • the gNB-WUS resources within the first time period are invalid gNB-WUS resources; or, the gNB-WUS resources within the second time period are invalid gNB-WUS resources.
  • the starting position of the second time period is the same as the starting position of the first time period, and/or the length of the second time period is the same as the length of the first time period.
  • the second time period is determined in the same or similar manner as the first time period, which will not be described in detail here.
  • the terminal device if the terminal device does not monitor and/or receive the first downlink channel or signal within the first time period, the terminal device sends the first uplink channel or signal again after the first time period. Alternatively, in some embodiments, if the terminal device does not monitor and/or receive the first downlink channel or signal within the first time period, the terminal device sends the first uplink channel or signal again after the second time period.
  • the terminal device may send a gNB-WUS on a gNB-WUS resource after the first time period.
  • the terminal device may send a gNB-WUS on the first gNB-WUS resource after the first time period.
  • the terminal device may send a gNB-WUS on a gNB-WUS resource after the second time period.
  • the terminal device may send a gNB-WUS on the first gNB-WUS resource after the second time period.
  • the method further comprises:
  • the terminal device receives first configuration information sent by the network device, where the first configuration information is used to determine the first time period;
  • the terminal device determines the first time period according to the first configuration information.
  • the first configuration information is used to determine a length of the first time period.
  • the first configuration information is used to determine the length of the first time period, including: the first configuration information is used to determine the length of the first timer; or the first configuration information is used to determine the length of the first window.
  • the first configuration information is used to determine a first uplink resource and/or a first downlink resource.
  • the first configuration information is used to determine a network device wake-up signal resource and/or a terminal device wake-up signal resource.
  • the first configuration information is used to determine a third time period corresponding to the sleep mode of the network device.
  • the first configuration information is used to determine the first offset value and/or the second offset value.
  • the first configuration information includes one or more configuration information.
  • the first configuration information includes at least one of a system message, an RRC signaling, a MACCE, and a DCI.
  • the first uplink channel or signal including but not limited to gNB-WUS, which can avoid the terminal device from performing some unnecessary uplink transmissions and save transmission resources.
  • FIG. 3 shows a flow chart of a wireless communication method provided by another embodiment of the present application.
  • the method can be performed by a network device.
  • the method can include at least one of the following steps:
  • Step 310 The network device sends first configuration information to the terminal device, where the first configuration information is used to determine a first time period for monitoring and/or receiving a first downlink channel or signal.
  • the first configuration information is used to determine a length of the first time period.
  • the first configuration information is used to determine the length of the first time period, including: the first configuration information is used to determine the length of the first timer, and the length of the first time period is the length of the first timer; or, the first configuration information is used to determine the length of the first window, and the length of the first time period is the length of the first window.
  • the first configuration information is used to determine the first uplink resource.
  • the first time period is determined according to the time domain position of the first uplink resource; or, the starting position of the first time period is determined according to the time domain position of the first uplink resource.
  • the first uplink resource includes a network device wake-up signal resource
  • the first configuration information is used to determine the network device wake-up signal resource
  • the method further includes: the network device listening for a network device wake-up signal on a network device wake-up signal resource.
  • the method also includes: if the network device detects a network device wake-up signal, the network device sends PDCCH to the terminal device through the PDCCH search space; or, if the network device does not detect a network device wake-up signal, the network device does not send PDCCH to the terminal device through the PDCCH search space.
  • the first configuration information is used to determine the first downlink resource.
  • the first time period is determined according to the time domain position of the first downlink resource; or, the starting position of the first time period is determined according to the time domain position of the first downlink resource.
  • the first downlink resource includes a terminal device wake-up signal resource
  • the first configuration information is used to determine the terminal device wake-up signal resource
  • the method further includes: within a third time period corresponding to the sleep mode of the network device, the network device sends a terminal device wake-up signal to the terminal device through a terminal device wake-up signal resource.
  • the first configuration information is used to determine network device wake-up signal resources and terminal device wake-up signal resources.
  • the method further includes: if the network device monitors a network device wake-up signal, the network device sends a terminal device wake-up signal to the terminal device through a terminal device wake-up signal resource.
  • the method further includes: if the network device monitors the network device wake-up signal, and the time domain position of the terminal device wake-up signal resource is before the time domain position of the resource corresponding to the PDCCH search space, the network device sends the terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource;
  • the network device monitors the network device wake-up signal, and the time domain position of the resource corresponding to the PDCCH search space is before the time domain position of the terminal device wake-up signal resource, the network device sends the PDCCH to the terminal device through the PDCCH search space;
  • the network device does not monitor the network device wake-up signal, the network device does not send the terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource, and the network device does not send the PDCCH to the terminal device through the PDCCH search space.
  • the network device if the network device monitors the network device wake-up signal, and the time domain position of the first terminal device wake-up signal resource is before the time domain position of the resource corresponding to the first PDCCH search space, the network device sends the terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource;
  • the network device monitors the network device wake-up signal, and the time domain position of the resources corresponding to the first PDCCH search space is before the time domain position of the first terminal device wake-up signal resources, the network device sends PDCCH to the terminal device through the PDCCH search space.
  • the method further includes: before the time domain position of the first terminal device wake-up signal resource, the network device sends the PDCCH to the terminal device through the PDCCH search space;
  • the network device sends a terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource.
  • the method further includes: the network device sends a PDCCH to the terminal device through a PDCCH search space associated with the terminal device wake-up signal.
  • the PDCCH search space is a PDCCH search space associated with a network device wake-up signal.
  • the first configuration information is used to determine a third time period corresponding to the sleep mode of the network device, and the first time period is determined based on the third time period.
  • the third time period includes: a time period when the network device is in sleep mode.
  • the third time period includes: a time period corresponding to a transition time when the network device enters sleep mode, and/or a time period corresponding to a transition time when the network device leaves sleep mode.
  • the first configuration information is used to determine a first offset value and/or a second offset value, and the first offset value and/or the second offset value are used to determine a first time period.
  • the first configuration information includes one or more configuration information.
  • the first configuration information includes at least one of a system message, an RRC signaling, a MACCE, and a DCI.
  • the terminal device is configured with a gNB-WUS resource for the terminal device to send a gNB-WUS to the network device.
  • this embodiment takes the FDD (Frequency Division Duplexing) system as an example (i.e., the terminal device is configured with an uplink carrier and a downlink carrier). It should be understood that this embodiment can also be applied to the TDD (Time Division Duplexing) system, and this application is not limited to this.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the terminal device is configured with a gNB-WUS resource on the uplink carrier and a PDCCH search space on the downlink carrier.
  • the terminal device sends a gNB-WUS on a gNB-WUS resource (for example, when the terminal device has a downlink synchronization requirement or an uplink service transmission requirement, the terminal device can send a gNB-WUS on the gNB-WUS to wake up the network device), the terminal device can start the first timer from the starting position of the first PDCCH search space after sending the gNB-WUS. During the running time of the first timer, the terminal device monitors the PDCCH search space.
  • the gNB-WUS resource that the terminal device sends the gNB-WUS is a valid gNB-WUS resource.
  • the gNB-WUS resource is a gNB-WUS resource when the network device is in sleep mode.
  • the PDCCH search space includes a terminal device-specific PDCCH search space and/or a public PDCCH search space.
  • the PDCCH search space includes a search space associated with a specific RNTI (Radio Network Temporary Identifier).
  • RNTI Radio Network Temporary Identifier
  • the PDCCH search space includes a search space associated with a C-RNTI (Cell-Radio Network Temporary Identifier) or a CS-RNTI (Configured Scheduling Radio Network Temporary Identifier) or a MCSC-RNTI (Modulation and Coding Scheme Cell-Radio Network Temporary Identifier).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling Radio Network Temporary Identifier
  • MCSC-RNTI Modulation and Coding Scheme Cell-Radio Network Temporary Identifier
  • the terminal device can communicate with the network device, such as receiving downlink data and/or sending uplink data; or, the terminal device can assume that the network device enters a downlink activated state working mode and/or enters an uplink activated state working mode.
  • the terminal device receives a PDCCH sent by the network device in the PDCCH search space within the running time of the first timer, the first timer may be restarted or the running time of the first timer may be extended.
  • the terminal device can send the gNB-WUS again through the gNB-WUS resources after the running time of the first timer ends.
  • the terminal device no longer monitors the PDCCH search space.
  • the gNB-WUS resources within the first timer running time are invalid gNB-WUS resources; or, the terminal device cannot send gNB-WUS through the gNB-WUS resources within the first timer running time.
  • the terminal device when the network device is in sleep mode, the terminal device can send a wake-up signal to the network device through the gNB-WUS resource, so that the network device can learn the transmission requirements of the terminal device, thereby avoiding the network device being unable to serve the terminal device for a long time in sleep mode, resulting in too large a communication transmission delay for the terminal device.
  • the terminal device is configured with UE-WUS resources for the network device to send UE-WUS to the terminal device.
  • this embodiment takes the FDD system as an example (i.e., the terminal device is configured with an uplink carrier and a downlink carrier), and it should be understood that this embodiment can also be applied to the TDD system, and this application is not limited to this.
  • the terminal device is configured with UE-WUS resources and PDCCH search space on the downlink carrier.
  • the terminal device obtains the first time period information (in this example, the first time period information can be the first window information, for example, the first window can be the time window for the network device to decide to enter the sleep mode state, and the terminal device can obtain the first window information according to the configuration information of the network device).
  • the terminal device listens to the UE-WUS on the UE-WUS resource (in this example, if the network device wakes up from the sleep mode state, the terminal device can be awakened by sending the UE-WUS on the UE-WUS resource).
  • the UE-WUS resource is a public UE-WUS resource.
  • the network device can wake up a group of terminal devices or wake up all terminal devices in the cell by sending a UE-WUS on the UE-WUS resource.
  • the UE-WUS resource is a UE-WUS resource dedicated to the terminal device.
  • the network device can wake up the terminal device by sending a UE-WUS on the UE-WUS resource.
  • the terminal device if the terminal device detects UE-WUS on the UE-WUS resources within the first window, then the terminal device monitors the PDCCH search space associated with the UE-WUS resources; and/or, if the terminal device does not detect UE-WUS on the UE-WUS resources within the first window, then the terminal device does not monitor the PDCCH search space associated with the UE-WUS resources.
  • the terminal device can communicate with the network device, for example, receive downlink data and/or send uplink data, etc.; or, the terminal device can assume that the network device enters a downlink activated state working mode and/or enters an uplink activated state working mode.
  • the PDCCH search space includes a terminal device-specific PDCCH search space and/or a public PDCCH search space.
  • the PDCCH search space includes a search space associated with a specific RNTI.
  • the PDCCH search space includes a search space associated with a C-RNTI, a CS-RNTI, or a MCSC-RNTI.
  • the length of the first window may be extended.
  • the terminal device no longer monitors the UE-WUS resource.
  • the UE-WUS resources used by the network device to send the UE-WUS are valid UE-WUS resources; or, the UE-WUS resources within the first window are valid UE-WUS resources.
  • UE-WUS resources outside the first window are invalid UE-WUS resources; or, the terminal device does not monitor the UE-WUS resources after the end of the first window.
  • the network device when the network device wakes up from the sleep mode, the network device can wake up the terminal device by sending UE-WUS on the UE-WUS resource, so that the terminal device can perform downlink and/or uplink transmission with the network device, thereby avoiding the network device being unable to serve the terminal device for a long time in the sleep mode, resulting in too large a communication transmission delay for the terminal device.
  • the terminal device is configured with gNB-WUS resources and UE-WUS resources, wherein the gNB-WUS resources are used by the terminal device to send gNB-WUS to the network device, and the UE-WUS resources are used by the network device to send UE-WUS to the terminal device.
  • this embodiment takes the FDD system as an example (i.e., the terminal device is configured with an uplink carrier and a downlink carrier), and it should be understood that this embodiment can also be applied to the TDD system, and this application is not limited to this.
  • the terminal device is configured with gNB-WUS resources on the uplink carrier and UE-WUS resources and PDCCH search space on the downlink carrier.
  • the terminal device sends a gNB-WUS on a gNB-WUS resource (for example, when the terminal device has a downlink synchronization requirement or an uplink service transmission requirement, the terminal device can send a gNB-WUS on the gNB-WUS to wake up the network device), the terminal device can start a first timer, and during the running time of the first timer, the terminal device monitors the downlink channel or signal.
  • the terminal device may start a first timer from the starting position of the first UE-WUS resource after sending the gNB-WUS. During the running time of the first timer, the terminal device monitors the UE-WUS resource, as shown in Figure 6.
  • the terminal device monitors the PDCCH search space associated with the UE-WUS resources; and/or, if the terminal device does not detect UE-WUS on the UE-WUS resources within the running time of the first timer, then the terminal device does not monitor the PDCCH search space associated with the UE-WUS resources.
  • the terminal device may start a first timer from the starting position of the UE-WUS resource or PDCCH search space that appears first after sending the gNB-WUS. During the running time of the first timer, the terminal device monitors the UE-WUS resource or PDCCH candidate, for example, the terminal device monitors the UE-WUS resource and the resource that appears first in the PDCCH search space.
  • the start time of the first timer is the start time of the first UE-WUS resource, and the terminal device preferentially listens to the UE-WUS resource during the running time of the first timer.
  • the terminal device monitors the PDCCH search space associated with the UE-WUS resources; and/or, if the terminal device does not detect UE-WUS on the UE-WUS resources within the running time of the first timer, then the terminal device does not monitor the PDCCH search space associated with the UE-WUS resources.
  • the start time of the first timer is the start time of the first PDCCH search space
  • the terminal device first monitors the PDCCH candidate within the running time of the first timer.
  • the terminal device monitors the PDCCH search space within a time period from the running time of the first timer to the starting position of the first UE-WUS resource.
  • the terminal device starts from the first UE-WUS resource and preferentially monitors the UE-WUS resource during the running time of the first timer.
  • the terminal device monitors the PDCCH search space associated with the UE-WUS resources; and/or, if the terminal device does not detect UE-WUS on the UE-WUS resources within the running time of the first timer, then the terminal device does not monitor the PDCCH search space associated with the UE-WUS resources.
  • the gNB-WUS resource that the terminal device sends the gNB-WUS is a valid gNB-WUS resource.
  • the gNB-WUS resource is a gNB-WUS resource when the network device is in sleep mode.
  • the PDCCH search space includes a terminal device-specific PDCCH search space and/or a public PDCCH search space.
  • the PDCCH search space includes a search space associated with a specific RNTI.
  • the PDCCH search space includes a search space associated with a C-RNTI, a CS-RNTI, or a MCSC-RNTI.
  • the terminal device can communicate with the network device, such as receiving downlink data and/or sending uplink data; or, the terminal device can assume that the network device enters a downlink activated state working mode and/or enters an uplink activated state working mode.
  • the terminal device receives a PDCCH sent by the network device in the PDCCH search space within the running time of the first timer, the first timer may be restarted or the running time of the first timer may be extended.
  • the terminal device can send the gNB-WUS again through the gNB-WUS resources after the running time of the first timer ends.
  • the terminal device no longer monitors the UE-WUS resource, and/or the terminal device no longer monitors the PDCCH search space.
  • the gNB-WUS resources within the first timer running time are invalid gNB-WUS resources; or, the terminal device cannot send gNB-WUS through the gNB-WUS resources within the first timer running time.
  • the UE-WUS resources used by the network device to send the UE-WUS are valid UE-WUS resources; or, the UE-WUS resources within the running time of the first timer are valid UE-WUS resources.
  • the UE-WUS resources after the first timer running time ends are invalid UE-WUS resources; or, the terminal device does not monitor the UE-WUS resources after the first timer running time ends.
  • the network device when the terminal device is configured with gNB-WUS resources and UE-WUS resources, the network device can enter an activated state based on the gNB-WUS of at least one terminal device, and can then provide services for terminal devices with business needs in the system including the at least one terminal device, thereby avoiding the disadvantage that the network device cannot serve the terminal device for a long time in the sleep mode, resulting in too large a communication transmission delay for the terminal device.
  • the above-mentioned steps executed by the terminal device can be independently implemented as a wireless communication method on the terminal device side; the above-mentioned steps executed by the network device can be independently implemented as a wireless communication method on the network device side.
  • FIG 9 shows a block diagram of a wireless communication device provided by an embodiment of the present application.
  • the device has the function of implementing the method example on the terminal device side, and the function can be implemented by hardware, or by hardware executing corresponding software.
  • the device can be the terminal device introduced above, or it can be set in the terminal device.
  • the device 900 may include: a receiving module 910.
  • the receiving module 910 is configured to monitor and/or receive a first downlink channel or signal within a first time period.
  • the first time period is determined according to the time domain position of the first uplink resource.
  • the first time period is determined based on the time domain position of the first uplink resource, including: the time domain resources of the first time period are determined based on the time domain position of the first uplink resource; or, the starting position of the first time period is determined based on the time domain position of the first uplink resource.
  • the starting position of the first time period is determined according to the time domain position of the first uplink resource, including:
  • the starting position of the first time period is the ending position of the first uplink resource; or,
  • the starting position of the first time period is the ending position of the time unit where the first uplink resource is located; or,
  • the starting position of the first time period is the starting position of the first downlink resource after the first uplink resource; or,
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource after the first uplink resource is located; or,
  • the starting position of the first time period is the starting position of the first downlink resource after the first uplink resource and after a first offset value; or,
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource is located after the first uplink resource and after a first offset value.
  • the first offset value is determined based on parameters predefined by a protocol; or, the first offset value is determined based on configuration parameters of a network device.
  • the apparatus 900 further includes a sending module 920 configured to send a first uplink channel or signal through the first uplink resource.
  • the apparatus 900 further includes a processing module 930 configured to determine a starting position of the first time period according to a time domain position of the first uplink resource.
  • the uplink resources in the first time period are not used to send the first uplink channel or signal; or, the uplink resources in the second time period are not used to send the first uplink channel or signal; wherein the second time period is located after the time domain position of the first uplink resources and is different from the first time period.
  • the apparatus 900 also includes a sending module 920, which is used to send the first uplink channel or signal again after the first time period if the terminal device does not monitor and/or receive the first downlink channel or signal within the first time period; or, if the terminal device does not monitor and/or receive the first downlink channel or signal within the first time period, send the first uplink channel or signal again after a second time period; wherein the second time period is located after the time domain position of the first uplink resource and is different from the first time period.
  • a sending module 920 which is used to send the first uplink channel or signal again after the first time period if the terminal device does not monitor and/or receive the first downlink channel or signal within the first time period; or, if the terminal device does not monitor and/or receive the first downlink channel or signal within the first time period, send the first uplink channel or signal again after a second time period; wherein the second time period is located after the time domain position of the first uplink resource and is different from the first time period.
  • the first uplink resource includes: a network device wake-up signal resource used for the terminal device to send a network device wake-up signal; and/or, the first uplink channel or signal includes: a network device wake-up signal.
  • the first time period is determined according to the time domain position of the first downlink resource.
  • the first time period is determined based on the time domain position of the first downlink resource, including: the time domain resources of the first time period are determined based on the time domain position of the first downlink resource; or, the starting position of the first time period is determined based on the time domain position of the first downlink resource.
  • the first downlink resource is a downlink resource in a third time period corresponding to the sleep mode of the network device.
  • the starting position of the first time period is determined according to the time domain position of the first downlink resource, including:
  • the starting position of the first time period is the starting position of the first downlink resource; or,
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource is located; or,
  • the starting position of the first time period is the starting position of the first downlink resource after the starting position of the third time period is shifted by the second offset value; or,
  • the starting position of the first time period is the starting position of the time unit where the first downlink resource is located after the starting position of the third time period is shifted by the second offset value.
  • the first time period is determined according to a third time period corresponding to a sleep mode of the network device.
  • the third time period includes: the time period in which the network device is in the sleep mode; or, the time period corresponding to the transition time for the network device to enter the sleep mode, and/or, the time period corresponding to the transition time for the network device to leave the sleep mode.
  • the third time period includes a time period corresponding to the transition time of the network device entering the sleep mode; wherein the starting position of the first time period is the starting position of the third time period; or, there is a second offset value between the starting position of the first time period and the starting position of the third time period.
  • the second offset value is determined based on parameters predefined by a protocol; or, the second offset value is determined based on configuration parameters of a network device.
  • the length of the third time period is determined according to at least one of the following: configuration parameters of the network device, communication transmission requirements of the network device, and communication transmission requirements of the terminal device; wherein,
  • the communication transmission requirements of the network device include at least one of the following: downlink service transmission of the network device to at least one terminal device, uplink service transmission of the network device to at least one terminal device, paging message transmission of the network device, system message transmission of the network device, SSB transmission of the network device, downlink reference signal transmission of the network device, PRACH detection of the network device, and uplink reference signal transmission of the network device;
  • the communication transmission requirements of the terminal device include at least one of the following: downlink service transmission of the terminal device, uplink service transmission of the terminal device, paging message transmission of the terminal device, system message transmission requested by the terminal device, SSB transmission requested by the terminal device, downlink reference signal transmission of the terminal device, PRACH transmission of the terminal device, and uplink reference signal transmission of the terminal device.
  • the apparatus 900 further includes a processing module 930 for determining a starting position of the first time period.
  • the length of the first time period is determined according to the length of a first timer, wherein the start or restart moment of the first timer is the moment corresponding to the starting position of the first time period; or, the length of the first time period is determined according to the length of a first window, wherein the starting position of the first window is the starting position of the first time period.
  • the length of the first time period is determined based on a configuration parameter of the network device.
  • the first downlink resource is a terminal device wake-up signal resource configured for the terminal device; or, the first downlink resource is a resource corresponding to a PDCCH search space configured for the terminal device.
  • the receiving module 910 is used to monitor the terminal device wake-up signal and/or the PDCCH candidates corresponding to the PDCCH search space within the first time period.
  • the receiving module 910 is used to monitor the terminal device wake-up signal within the first time period if the terminal device is configured with a terminal device wake-up signal resource; or, if the terminal device is not configured with a terminal device wake-up signal resource, monitor the PDCCH candidate corresponding to the PDCCH search space within the first time period.
  • the receiving module 910 is used to monitor the wake-up signal of the terminal device if the time domain position of the wake-up signal resource of the terminal device is before the time domain position of the resource corresponding to the PDCCH search space during the first time period; or, monitor the PDCCH candidate corresponding to the PDCCH search space if the time domain position of the resource corresponding to the PDCCH search space is before the time domain position of the wake-up signal resource of the terminal device during the first time period.
  • the receiving module 910 is used to monitor the wake-up signal of the terminal device if the time domain position of the first terminal device wake-up signal resource is before the time domain position of the resource corresponding to the first PDCCH search space during the first time period; or, monitor the PDCCH candidate corresponding to the PDCCH search space if the time domain position of the resource corresponding to the first PDCCH search space is before the time domain position of the first terminal device wake-up signal resource during the first time period.
  • the receiving module 910 is used to monitor the PDCCH candidates corresponding to the PDCCH search space before the time domain position of the first terminal device wake-up signal resource; or, starting from the time domain position of the first terminal device wake-up signal resource, monitor the terminal device wake-up signal.
  • the receiving module 910 is used to monitor the PDCCH candidates corresponding to the PDCCH search space associated with the terminal device wake-up signal if the terminal device monitors the terminal device wake-up signal; or, if the terminal device does not monitor the terminal device wake-up signal, not monitor the PDCCH candidates corresponding to the PDCCH search space associated with the terminal device wake-up signal.
  • the terminal device does not listen to the terminal device wake-up signal and/or the PDCCH candidates corresponding to the PDCCH search space.
  • Figure 10 shows a block diagram of a wireless communication device provided by another embodiment of the present application.
  • the device has the function of implementing the method example on the network device side described above, and the function can be implemented by hardware, or by hardware executing corresponding software.
  • the device can be the network device described above, or it can be set in the network device.
  • the device 1000 may include: a sending module 1010.
  • the sending module 1010 is used to send first configuration information to the terminal device, where the first configuration information is used to determine a first time period for monitoring and/or receiving a first downlink channel or signal.
  • the first configuration information is used to determine a length of the first time period.
  • the first configuration information is used to determine the length of the first time period, including: the first configuration information is used to determine the length of a first timer, and the length of the first time period is the length of the first timer; or, the first configuration information is used to determine the length of a first window, and the length of the first time period is the length of the first window.
  • the first configuration information is used to determine a first uplink resource; and the first time period is determined according to a time domain position of the first uplink resource.
  • the time domain resources of the first time period are determined according to the time domain position of the first uplink resources; or, the starting position of the first time period is determined according to the time domain position of the first uplink resources.
  • the first uplink resource includes a network device wake-up signal resource
  • the first configuration information is used to determine the network device wake-up signal resource
  • the apparatus 1000 further includes a receiving module 1020 configured to monitor a network device wake-up signal on the network device wake-up signal resource.
  • the apparatus 1000 further includes a processing module 1030.
  • the sending module 1010 is further configured to send a PDCCH to the terminal device through a PDCCH search space if the network device monitors the network device wake-up signal.
  • the processing module 1030 is configured to not send a PDCCH to the terminal device through a PDCCH search space if the network device does not monitor the network device wake-up signal.
  • the first configuration information is used to determine a first downlink resource; and the first time period is determined according to a time domain position of the first downlink resource.
  • the time domain resources of the first time period are determined according to the time domain position of the first downlink resources; or, the starting position of the first time period is determined according to the time domain position of the first downlink resources.
  • the first downlink resource includes a terminal device wake-up signal resource
  • the first configuration information is used to determine the terminal device wake-up signal resource
  • the sending module 1010 is further used to send a terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource within a third time period corresponding to the sleep mode of the network device.
  • the first configuration information is used to determine a network device wake-up signal resource and a terminal device wake-up signal resource.
  • the sending module 1010 is further used to send a terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource if the network device monitors a network device wake-up signal.
  • the apparatus 1000 further includes a processing module 1030.
  • the sending module 1010 is also used for sending a terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource if the network device monitors a network device wake-up signal and the time domain position of the terminal device wake-up signal resource is before the time domain position of the resource corresponding to the PDCCH search space.
  • the sending module 1010 is also used for sending a PDCCH to the terminal device through the PDCCH search space if the network device monitors a network device wake-up signal and the time domain position of the resource corresponding to the PDCCH search space is before the time domain position of the terminal device wake-up signal resource.
  • the processing module 1030 is used for not sending a terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource and not sending a PDCCH to the terminal device through the PDCCH search space if the network device does not monitor a network device wake-up signal.
  • the sending module 1010 is also used to, if the network device monitors the network device wake-up signal, and the time domain position of the first terminal device wake-up signal resource is before the time domain position of the resource corresponding to the first PDCCH search space, then send the terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource; or, if the network device monitors the network device wake-up signal, and the time domain position of the resource corresponding to the first PDCCH search space is before the time domain position of the first terminal device wake-up signal resource, then send PDCCH to the terminal device through the PDCCH search space.
  • the sending module 1010 is also used to send PDCCH to the terminal device through the PDCCH search space before the time domain position of the first terminal device wake-up signal resource; or, starting from the time domain position of the first terminal device wake-up signal resource, send a terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource.
  • the sending module 1010 is further used to send a PDCCH to the terminal device through a PDCCH search space associated with the terminal device wake-up signal after sending a terminal device wake-up signal to the terminal device through the terminal device wake-up signal resource.
  • the PDCCH search space is a PDCCH search space associated with the network device wake-up signal.
  • the first configuration information is used to determine a third time period corresponding to the sleep mode of the network device, and the first time period is determined based on the third time period.
  • the third time period includes: the time period in which the network device is in the sleep mode; or, the time period corresponding to the transition time for the network device to enter the sleep mode, and/or, the time period corresponding to the transition time for the network device to leave the sleep mode.
  • the first configuration information is used to determine a first offset value and/or a second offset value, and the first offset value and/or the second offset value are used to determine the first time period.
  • the first configuration information includes one or more configuration information.
  • the first configuration information includes at least one of a system message, an RRC signaling, a MACCE, and a DCI.
  • the device provided in the above embodiment realizes its function, it only uses the division of the above-mentioned functional modules as an example.
  • the above-mentioned functions can be assigned to different functional modules according to actual needs, that is, the content structure of the device can be divided into different functional modules to complete all or part of the functions described above.
  • FIG. 11 shows a schematic diagram of the structure of a terminal device 1100 provided in an embodiment of the present application.
  • the terminal device 1100 can be used to execute the method steps performed by the terminal device in the above embodiment.
  • the terminal device 1100 may include: a processor 1101, a transceiver 1102 and a memory 1103. Among them, the processor 1101 is used to implement the functions of the above processing module 930, and the transceiver 1102 is used to implement the functions of the above receiving module 910 and/or the sending module 920.
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and information processing by running software programs and modules.
  • the processor 1101 is used to execute other steps except the receiving and sending steps executed by the terminal device in the above method embodiment.
  • the transceiver 1102 may include a receiver and a transmitter.
  • the receiver and the transmitter may be implemented as the same wireless communication component, and the wireless communication component may include a wireless communication chip and a radio frequency antenna.
  • the transceiver 1102 is used to perform the receiving and/or sending steps performed by the terminal device in the above method embodiment.
  • the memory 1103 may be connected to the processor 1101 and the transceiver 1102 .
  • the memory 1103 may be used to store a computer program executed by the processor, and the processor 1101 is used to execute the computer program to implement each step performed by the terminal device in the above method embodiment.
  • memory 1103 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, and volatile or non-volatile storage devices include but are not limited to: magnetic disks or optical disks, electrically erasable programmable read-only memory, erasable programmable read-only memory, static access memory, read-only memory, magnetic memory, flash memory, and programmable read-only memory.
  • the transceiver 1102 is configured to monitor and/or receive a first downlink channel or signal within a first time period.
  • FIG 12 shows a schematic diagram of the structure of a network device 1200 provided in an embodiment of the present application.
  • the network device 1200 can be used to execute the method steps performed by the network device in the above embodiment.
  • the network device 1200 may include: a processor 1201, a transceiver 1202 and a memory 1203. Among them, the processor 1201 is used to implement the functions of the above processing module 1030, and the transceiver 1202 is used to implement the functions of the above receiving module 1020 and/or the sending module 1010.
  • the processor 1201 includes one or more processing cores, and the processor 1201 executes various functional applications and information processing by running software programs and modules.
  • the processor 1201 is used to execute other steps except the receiving and sending steps executed by the network device in the above method embodiment.
  • the transceiver 1202 may include a receiver and a transmitter.
  • the transceiver 1202 may include a wired communication component, which may include a wired communication chip and a wired interface (such as an optical fiber interface).
  • the transceiver 1202 may also include a wireless communication component, which may include a wireless communication chip and a radio frequency antenna. The transceiver 1202 is used to perform the receiving and/or sending steps performed by the network device in the above method embodiment.
  • the memory 1203 may be connected to the processor 1201 and the transceiver 1202 .
  • the memory 1203 may be used to store a computer program executed by the processor, and the processor 1201 is used to execute the computer program to implement each step performed by the network device in the above method embodiment.
  • memory 1203 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, and volatile or non-volatile storage devices include but are not limited to: magnetic disks or optical disks, electrically erasable programmable read-only memory, erasable programmable read-only memory, static access memory, read-only memory, magnetic memory, flash memory, and programmable read-only memory.
  • the transceiver 1202 is used to send first configuration information to a terminal device, where the first configuration information is used to determine a first time period for monitoring and/or receiving a first downlink channel or signal.
  • An embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program is used to be executed by a processor of a terminal device to implement the wireless communication method on the terminal device side.
  • An embodiment of the present application further provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program is used to be executed by a processor of a network device to implement the wireless communication method on the network device side.
  • the computer readable storage medium may include: ROM (Read-Only Memory), RAM (Random-Access Memory), SSD (Solid State Drives) or optical disks, etc.
  • the random access memory may include ReRAM (Resistance Random Access Memory) and DRAM (Dynamic Random Access Memory).
  • An embodiment of the present application further provides a chip, which includes a programmable logic circuit and/or program instructions.
  • the chip runs on a terminal device, it is used to implement the wireless communication method on the terminal device side.
  • An embodiment of the present application further provides a chip, which includes a programmable logic circuit and/or program instructions.
  • the chip runs on a network device, it is used to implement the wireless communication method on the network device side.
  • An embodiment of the present application also provides a computer program product or a computer program, wherein the computer program product or the computer program includes computer instructions, wherein the computer instructions are stored in a computer-readable storage medium, and the processor of the terminal device reads and executes the computer instructions from the computer-readable storage medium to implement the wireless communication method on the above-mentioned terminal device side.
  • An embodiment of the present application also provides a computer program product or a computer program, wherein the computer program product or the computer program includes computer instructions, wherein the computer instructions are stored in a computer-readable storage medium, and the processor of the network device reads and executes the computer instructions from the computer-readable storage medium to implement the wireless communication method on the above-mentioned network device side.
  • the "indication" mentioned in the embodiments of the present application can be a direct indication, an indirect indication, or an indication of an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association relationship between A and B.
  • corresponding may indicate a direct or indirect correspondence between two items, or an association relationship between the two items, or a relationship of indication and being indicated, configuration and being configured, etc.
  • predefined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in a device (for example, including a terminal device and a network device), and the present application does not limit the specific implementation method.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, it may include an LTE protocol, an NR protocol, and related protocols used in future communication systems, which is not limited in the present application.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the related objects are in an "or” relationship.
  • step numbers described in this document only illustrate a possible execution order between the steps.
  • the above steps may not be executed in the order of the numbers, such as two steps with different numbers are executed at the same time, or two steps with different numbers are executed in the opposite order to that shown in the figure.
  • the embodiments of the present application are not limited to this.
  • Computer-readable media include computer storage media and communication media, wherein the communication media include any media that facilitates the transmission of a computer program from one place to another.
  • the storage medium can be any available medium that a general or special-purpose computer can access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种无线通信方法、装置、设备、存储介质及程序产品,涉及通信技术领域。该方法包括:终端设备在第一时间段内监听和/或接收第一下行信道或信号(210)。对于可以配置睡眠模式的网络设备,终端设备能够确定合适的时间段,并在该时间段监听和/或接收网络设备的下行信道或信号,从而避免网络设备在睡眠模式下,长时间不能为终端设备服务,导致终端设备的通信传输时延太大的缺点,提升了终端设备和网络设备之间的传输性能。

Description

无线通信方法、装置、设备、存储介质及程序产品 技术领域
本申请实施例涉及通信技术领域,特别涉及一种无线通信方法、装置、设备、存储介质及程序产品。
背景技术
在无线通信系统中,引入了网络节能的相关技术,网络设备可以在一些时间内处于睡眠模式,从而达到节能的目的。基于此,终端设备和网络设备之间如何进行通信,还需进一步研究。
发明内容
本申请实施例提供了一种无线通信方法、装置、设备、存储介质及程序产品。所述技术方案如下:
根据本申请实施例的一个方面,提供了一种无线通信方法,所述方法包括:
终端设备在第一时间段内监听和/或接收第一下行信道或信号。
根据本申请实施例的一个方面,提供了一种无线通信方法,所述方法包括:
网络设备向终端设备发送第一配置信息,所述第一配置信息用于确定监听和/或接收第一下行信道或信号的第一时间段。
根据本申请实施例的一个方面,提供了一种无线通信装置,所述装置包括:
接收模块,用于在第一时间段内监听和/或接收第一下行信道或信号。
根据本申请实施例的一个方面,提供了一种无线通信方法,所述装置包括:
发送模块,用于向终端设备发送第一配置信息,所述第一配置信息用于确定监听和/或接收第一下行信道或信号的第一时间段。
根据本申请实施例的一个方面,提供了一种终端设备,所述终端设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述终端设备执行的方法。
根据本申请实施例的一个方面,提供了一种网络设备,所述网络设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现上述网络设备执行的方法。
根据本申请实施例的一个方面,提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现上述终端设备执行的方法,或者实现上述网络设备执行的方法。
根据本申请实施例的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现上述终端设备执行的方法,或者实现上述网络设备执行的方法。
根据本申请实施例的一个方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述终端设备执行的方法,或者实现上述网络设备执行的方法。
根据本申请实施例的一个方面,提供了一种无线通信系统,所述系统包括终端设备和网络设备,所述终端设备用于执行如上终端设备执行的方法,和/或,所述网络设备用于执行如上网络设备执行的方法。
本申请实施例提供的技术方案可以包括如下有益效果:
对于可以配置睡眠模式的网络设备,终端设备能够确定合适的时间段,并在该时间段监听和/或接收网络设备的下行信道或信号,从而避免网络设备在睡眠模式下,长时间不能为终端设备服务,导致终端设备的通信传输时延太大的缺点,提升了终端设备和网络设备之间的传输性能。
附图说明
图1是本申请一个实施例提供的网络架构的示意图;
图2是本申请一个实施例提供的无线通信方法的流程图;
图3是本申请另一个实施例提供的无线通信方法的流程图;
图4是本申请一个实施例提供的终端设备被配置gNB-WUS资源下的监听流程的示意图;
图5是本申请一个实施例提供的终端设备被配置UE-WUS资源下的监听流程的示意图;
图6是本申请一个实施例提供的终端设备被配置gNB-WUS资源和UE-WUS资源下的监听流程的示意图;
图7是本申请另一个实施例提供的终端设备被配置gNB-WUS资源和UE-WUS资源下的监听流程的示 意图;
图8是本申请另一个实施例提供的终端设备被配置gNB-WUS资源和UE-WUS资源下的监听流程的示意图;
图9是本申请一个实施例提供的无线通信装置的框图;
图10是本申请另一个实施例提供的无线通信装置的框图;
图11是本申请一个实施例提供的终端设备的结构示意图;
图12是本申请一个实施例提供的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚地说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、非授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、非授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、非地面通信网络(Non-Terrestrial Networks,NTN)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、第五代通信(5th-Generation,5G)系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),车辆间(Vehicle to Vehicle,V2V)通信,或车联网(Vehicle to everything,V2X)通信等,本申请实施例也可以应用于这些通信系统。
本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
本申请实施例中的通信系统可以应用于非授权频谱,其中,非授权频谱也可以认为是共享频谱;或者,本申请实施例中的通信系统也可以应用于授权频谱,其中,授权频谱也可以认为是非共享频谱或者专属频谱。
本申请实施例可应用于地面通信网络(Terrestrial Networks,TN)系统,也可应用于非地面通信网络(Non-Terrestrial Networks,NTN)系统。
在本申请的一些实施例中,小区和载波可以等同。例如,“下行小区”可以替换为“下行载波”,“上行小区”可以替换为“上行载波”,等等。
请参考图1,其示出了本申请一个实施例提供的网络架构100的示意图。该网络架构100可以包括:终端设备10、接入网设备20和核心网设备30。
终端设备10可以指UE(User Equipment,用户设备)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、用户代理或用户装置。可选地,终端设备10还可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digita1 Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5GS(5th Generation System,第五代移动通信系统)中的终端设备或者未来演进的PLMN(Pub1ic Land Mobi1e Network,公用陆地移动通信网络)中的终端设备等,本申请实施例对此并不限定。为方便描述,上面提到的设备统称为终端设备。终端设备10的数量通常为多个,每一个接入网设备20所管理的小区内可以分布一个或多个终端设备10。
接入网设备20是一种部署在接入网中用以为终端设备10提供无线通信功能的设备。接入网设备20可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备接入网设备功能的设备的名称可能会有所不同,例如在5G NR系统中,称为gNodeB或者gNB。随着通信技术的演进,“接入网设备”这一名称可能会变化。为方便描述,本申请实施例中,上述为终端设备10提供无线通信功能的装置统称为接入网设备。可选地,通过接入网设备20,终端设备10和核心网设备30之间可以建立通信关系。示例性地,在LTE(Long Term Evolution,长期演进)系统中,接入网设备20可以是 EUTRAN(Evolved Universal Terrestrial Radio Access Network,演进的通用陆地无线网)或者EUTRAN中的一个或者多个eNodeB;在5G NR系统中,接入网设备20可以是RAN(Radio Access Network,无线接入网)或者RAN中的一个或者多个gNB。在本申请实施例中,所述的“网络设备”除特别说明之外,是指接入网设备20,如基站。
核心网设备30是部署在核心网中的设备,核心网设备30的功能主要是提供用户连接、对用户的管理以及对业务完成承载,作为承载网络提供到外部网络的接口。例如,5G NR系统中的核心网设备可以包括AMF(Access and Mobility Management Function,接入和移动性管理功能)实体、UPF(User Plane Function,用户平面功能)实体和SMF(Session Management Function,会话管理功能)实体等设备。
在一些实施例中,接入网设备20与核心网设备30之间通过某种空口技术互相通信,例如5G NR系统中的NG接口。接入网设备20与终端设备10之间通过某种空口技术互相通信,例如Uu接口。
本申请实施例中的“5G NR系统”也可以称为5G系统或者NR系统,但本领域技术人员可以理解其含义。本申请实施例描述的技术方案可以适用于LTE系统,也可以适用于5G NR系统,也可以适用于5G NR系统后续的演进系统,还可以适用于诸如NB-IoT(Narrow Band Internet of Things,窄带物联网)系统等其他通信系统,本申请对此不作限定。
在本申请实施例中,网络设备可以为小区提供服务,终端设备通过该小区使用的载波上的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在介绍本申请技术方案之前,先对本申请涉及的一些背景技术知识进行介绍说明。以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。本申请实施例包括以下内容中的至少部分内容。
1.网络节能背景
网络节能(Network energy saving)对环境可持续性、减少对环境的影响(减少温室气体排放)、以及节省运营成本有重大意义。随着5G在各个工业和地理区域的逐渐普及,需要支持非常高的数据传输速率来处理更高级的服务和应用(例如XR(Extended Reality,扩展现实)),网络部署变得更密、使用更多天线、更大带宽和更多的频带。考虑到5G对环境的影响,需要开发受控的、新的解决方案来增强网络节能。
能源消耗已经成为运营商的运营成本(operational expenditure,OPEX)的一个关键部分。根据GSMA(Global System for Mobile communications Association,全球移动通信系统协会)的报告,移动网络的能源成本占用总运营成本的份额大约为23%。大多数的能源消耗来自于无线接入网络,更具体地,来自于激活天线单元(Active Antenna Unit,AAU),其中,数据中心和光纤传输所占份额较小。一次无线接入的功率消耗可以被分为两部分:动态部分仅包括当数据正在进行发送或接收时的功率消耗;静态部分包括在所有时间情况下,为了维护无线接入设备的必要运营的功率消耗,包括没有进行发送或接收数据时的功率消耗。
因此,基于上述目的,需要研究和开发网络设备侧的网络能源消耗模型、KPI(Key Performance Indicator,关键绩效指标)、评估方法等,来确定和研究目标部署场景中的网络节能技术。其中,已经定义的终端设备侧的功率消耗模型可以作为参考。该研究应集中在如何实现更有效的动态运营和/或半静态运营,以及考虑应用于时域、频域、空域和功率域的一种或多种网络节能技术,联合潜在的终端设备反馈支持,潜在的终端设备辅助信息,以及网络接口之间的信息交换或协调等技术,以实现更细粒度的数据发送和/或接收自适应。
值得注意的是,该研究不仅评估潜在的网络节能增益,而且也需要通过观察KPI例如频谱效率、能力、用户感知吞吐量(user perceived throughput,UPT)、时延、终端设备功率消耗(UE power consumption)、复杂度、切换性能、掉话率(call drop rate)、初始接入性能、SLA安全相关的KPI等等,来评估和平衡对网络和用户性能的影响。该研究应避免对上述KPI产生较大的影响。
2.网络节能技术
在网络节能的系统中,网络设备为了节能,在业务负载比较轻或者无业务负载的情况下,可以进入睡眠模式状态(或者说,网络设备进入节能模式)。表1给出了一种网络设备能耗模型的示意图。
表1网络设备能耗模型参考
Figure PCTCN2022122851-appb-000001
Figure PCTCN2022122851-appb-000002
然而,当网络设备进入睡眠模式状态后,如果终端设备有业务到达,则无法及时与网络设备进行通信,因此可能出现终端设备的业务长时间无法传输的情况。为了解决这个问题,一种可能的实现方式是网络设备为终端设备配置基站唤醒信号(gNBwakeupsignal,gNB-WUS)资源,网络设备即使进入或处于睡眠模式状态,也可能在该资源上检测终端设备是否发送了唤醒请求。当终端设备有业务到达时,可以通过该gNB-WUS资源向网络设备发送唤醒请求,从而使网络设备能获知终端设备的传输需求。
在本申请中,涉及的“睡眠模式”也称为“节能模式”、“节能状态”、“睡眠状态”、“睡眠模式状态”、“睡眠节能模式”或者“睡眠节能状态”等其他名称,但本领域技术人员可以理解其含义。
请参考图2,其示出了本申请一个实施例提供的无线通信方法的流程图。该方法可以由终端设备执行。该方法可以包括如下步骤中的至少之一:
步骤210,终端设备在第一时间段内监听和/或接收第一下行信道或信号。
在一些实施例中,终端设备确定第一时间段,在第一时间段内监听和/或接收第一下行信道或信号。有关终端设备确定第一时间段的方式,可参见下文实施例中的介绍说明。
在一些实施例中,第一下行信道或信号包括以下至少一种:PDCCH(Physical Downlink Control Channel,物理下行控制信道)、SSB(Synchronization Signal/PBCH block,同步信号块或同步信号/广播信道块)、CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)、下行PRS(Positioning Reference Signal,定位参考信号)、TRS(Tracking Reference Signal,跟踪参考信号)、UE-WUS(UE wakeupsignal,终端设备唤醒信号)、PDSCH(Physical Downlink Shared Channel,物理下行共享信道)。
在一些实施例中,上述UE-WUS包括:网络设备向终端设备发送的用于唤醒终端设备的信号。例如,当终端设备在UE-WUS资源上监听到UE-WUS后,可以在该UE-WUS关联的PDCCH搜索空间上监听PDCCH。
在一些实施例中,上述PDCCH包括以下至少一种:终端设备专属PDCCH、公共PDCCH。
在一些实施例中,上述PDCCH包括:携带HARQ-ACK(Hybrid Automatic Repeat request-Acknowledgement,混合自动重传请求-肯定确认)信息的PDCCH。可选地,该HARQ-ACK信息为ACK(Acknowledgement,肯定确认)信息。
在一些实施例中,上述PDSCH包括:携带HARQ-ACK信息的PDSCH。例如,该PDSCH中携带的MACCE(MAC Control Element,媒体接入层控制单元)信息用于指示HARQ-ACK信息。可选地,该HARQ-ACK信息为ACK信息。
可选地,上述HARQ-ACK信息是针对终端设备发送的第一上行信道或信号的HARQ反馈信息。
在一些实施例中,上述第一下行信道或信号包括PDCCH,终端设备在第一时间段内监听和/或接收第一下行信道或信号,包括:终端设备在第一时间段内监听PDCCH候选。
在一些实施例中,所述方法还包括:终端设备在第一时间段内发送第一上行信道或信号。可选地,终端设备在第一时间段内发送第一上行信道或信号之后,终端设备在第一时间段内监听和/或接收第一下行信道或信号。
在一些实施例中,第一上行信道或信号包括以下至少一种:PUCCH(Physical Uplink Control Channel,物理上行控制信道)、SRS(Sounding Reference Signal,探测参考信号)(例如用于MIMO(Multiple Input Multiple Output,多入多出)测量的SRS和/或用于上行定位的SRS)、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)、PRACH(Physical Random Access Channel,物理随机接入信道)。
在一些实施例中,第一上行信道或信号包括:网络设备唤醒信号(也称为基站唤醒信号,gNB-WUS)。
可选地,上述gNB-WUS包括:终端设备向网络设备发送的用于唤醒网络设备的信号。例如,终端设备通过网络设备配置的用于终端设备发送gNB-WUS的上行资源,向网络设备发送gNB-WUS。之后,终端设备在第一时间段内监听和/或接收第一下行信道或信号。
在一些实施例中,上述PUSCH包括以下至少一种:预配置CG-PUSCH(Configured grant-PUSCH,配置授权的PUSCH)、DCI(Downlink Control Information,下行控制信息)调度的PUSCH。
在一些实施例中,终端设备在第一时间段内监听和/或接收第一下行信道或信号,包括:终端设备在第一时间段内监听和/或接收第一小区上的第一下行信道或信号;或者,终端设备在第一时间段内监听和/或接收所述第一小区对应的第一下行信道或信号。其中,该第一小区为该终端设备的服务小区。可选地,第一小区包括一个小区,或该第一小区包括多个小区。
本申请实施例提供的技术方案,对于可以配置睡眠模式的网络设备,终端设备能够确定合适的时间段,并在该时间段监听和/或接收网络设备的下行信道或信号,从而避免网络设备在睡眠模式下,长时间不能为终端设备服务,导致终端设备的通信传输时延太大的缺点,提升了终端设备和网络设备之间的传输性能。
第一时间段的确定包括如下几种情况中的至少一种。
情况1:
在一些实施例中,第一时间段是根据第一上行资源的时域位置确定的。
在一些实施例中,第一时间段的起始位置是根据第一上行资源的时域位置确定的。
在一些实施例中,第一上行资源包括:用于终端设备发送网络设备唤醒信号的网络设备唤醒信号资源。例如,第一上行资源包括网络设备配置的用于终端设备发送gNB-WUS的上行资源。
在一些实施例中,终端设备在第一时间段内监听和/或接收第一下行信道或信号之前,或者终端设备在确定第一时间段之前,所述方法还包括:终端设备通过第一上行资源,发送第一上行信道或信号。例如,终端设备通过第一上行资源,向网络设备发送第一上行信道或信号。
在一些实施例中,第一上行信道或信号包括:网络设备唤醒信号。例如,终端设备通过网络设备配置的用于终端设备发送gNB-WUS的上行资源,向网络设备发送gNB-WUS。
在一些实施例中,终端设备通过第一上行资源发送第一上行信道或信号之后,所述方法还包括:终端设备根据第一上行资源的时域位置确定第一时间段的起始位置。
示例性地,第一时间段的起始位置为第一上行资源的结束位置。
示例性地,第一时间段的起始位置为第一上行资源所在时间单元的结束位置。
示例性地,第一时间段的起始位置与第一上行资源的结束位置之间具有第一偏移值。例如,第一时间段的起始位置,是第一上行资源的结束位置向后偏移第一偏移值之后的时域位置。
示例性地,第一时间段的起始位置与第一上行资源所在时间单元的结束位置之间具有第一偏移值。例如,第一时间段的起始位置,是第一上行资源所在时间单元的结束位置向后偏移第一偏移值之后的时域位置。
示例性地,第一时间段的起始位置为第一上行资源后的第一下行资源的起始位置。例如,第一时间段的起始位置,是第一上行资源后的第一个下行资源的起始位置。
示例性地,第一时间段的起始位置为第一上行资源后的第一下行资源所在时间单元的起始位置。例如,第一时间段的起始位置,是第一上行资源后的第一个下行资源所在时间单元的起始位置。
示例性地,第一时间段的起始位置为第一上行资源后且经过第一偏移值后的第一下行资源的起始位置。例如,第一时间段的起始位置,是第一上行资源向后偏移第一偏移值之后的第一个下行资源的起始位置。
示例性地,第一时间段的起始位置为第一上行资源后且经过第一偏移值后的第一下行资源所在时间单元的起始位置。例如,第一时间段的起始位置,是第一上行资源向后偏移第一偏移值之后的第一个下行资源所在时间单元的起始位置。
在一些实施例中,第一下行资源包括PDCCH搜索空间对应的资源,和/或,终端设备唤醒信号资源(如UE-WUS资源)。可选地,终端设备唤醒信号资源包括以下至少一种:终端设备专属的终端设备唤醒信号资源、公共的终端设备唤醒信号资源。
作为示例而非限定,第一下行资源为第一上行资源后的第一个PDCCH搜索空间对应的资源,或者,第一下行资源为第一上行资源后的第一个UE-WUS资源。
另外,在本申请实施例中,时间单元包括时隙、子帧、符号或子时隙中的至少一种。其中,子时隙包括整数个符号。可选地,上述符号包括基于子载波间隔确定的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,其中,子载波间隔可以是预定义的,或者网络设备配置的。
在一些实施例中,第一偏移值是预定义的。例如,第一偏移值是协议预定义的,或者,第一偏移值是基于协议预定义的参数确定的。又例如,第一偏移值是基于网络设备的处理时间确定的。
在一些实施例中,第一偏移值是网络设备配置的,或者,第一偏移值是基于网络设备的配置参数确定的。
在一些实施例中,第一偏移值为正数,或者说,第一偏移值为正向偏移值。
在一些实施例中,第一偏移值取值可以为0。
在一些实施例中,第一上行资源与网络设备的睡眠模式具有关联关系。例如,第一上行资源包括网络设备的睡眠模式对应的gNB-WUS资源。
在一些实施例中,第一下行资源为网络设备的睡眠模式对应的第三时间段中的下行资源。
在一些实施例中,第三时间段包括:网络设备处于睡眠模式的时间段。可选地,网络设备处于睡眠模式的时间段,包括:网络设备进入睡眠模式后睡眠对应的时间段。可选地,网络设备处于睡眠模式的时间段,包括:网络设备进入睡眠模式的过渡时间对应的时间段,和,网络设备离开睡眠模式的过渡时间对应的时间段,和,网络设备进入睡眠模式后睡眠对应的时间段。
在一些实施例中,第三时间段包括:网络设备处于睡眠模式的过渡时间对应的时间段。可选地,网络设备处于睡眠模式的过渡时间对应的时间段,包括:网络设备进入睡眠模式的过渡时间对应的时间段,和/或,网络设备离开睡眠模式的过渡时间对应的时间段。
对于该情况1,实现了根据第一上行资源的时域位置,确定监听和/或接收第一下行信道或信号的第一时间段,或者确定该第一时间段的起始位置。例如,对于具有睡眠模式的网络设备,终端设备被配置有网络设备唤醒信号资源(如gNB-WUS资源),终端设备可以根据网络设备唤醒信号资源的时域位置,确定监听和/或接收第一下行信道或信号的第一时间段,或者确定该第一时间段的起始位置。
示例性地,终端设备可以使用gNB-WUS资源向网络设备发送gNB-WUS信号,终端设备在发送gNB-WUS信号之后的第一时间段内,监听和/或接收第一下行信道或信号,实现了在终端设备有传输需求的时候能够唤醒网络设备,网络设备被唤醒后为终端设备提供服务,从而避免网络设备在睡眠模式下,长时间不能为终端设备服务,导致终端设备的通信传输时延太大的缺点,提升了终端设备和网络设备之间的传输性能。
在一些实施例中,第一时间段的时域资源是根据第一上行资源的时域位置确定的。例如,第一时间段的起始位置和结束位置是根据第一上行资源的时域位置确定的,根据第一时间段的起始位置和结束位置,便可知道第一时间段在时域上占据的位置。或者,第一时间段的起始位置和时长是根据第一上行资源的时域位置确定的,根据第一时间段的起始位置和时长,也能够知道第一时间段在时域上占据的位置。
情况2:
在一些实施例中,第一时间段是根据第一下行资源的时域位置确定的。
在一些实施例中,第一时间段的起始位置是根据第一下行资源的时域位置确定的。
在一些实施例中,第一下行资源为网络设备的睡眠模式对应的第三时间段中的下行资源。
例如,第一下行资源为网络设备的睡眠模式对应的第三时间段内的第一个下行资源。
在一些实施例中,第三时间段包括:网络设备处于睡眠模式的时间段。可选地,网络设备处于睡眠模式的时间段,包括:网络设备进入睡眠模式后睡眠对应的时间段。可选地,网络设备处于睡眠模式的时间段,包括:网络设备进入睡眠模式的过渡时间对应的时间段,和,网络设备离开睡眠模式的过渡时间对应的时间段,和,网络设备进入睡眠模式后睡眠对应的时间段。
在一些实施例中,第三时间段包括:网络设备处于睡眠模式的过渡时间对应的时间段。可选地,网络设备处于睡眠模式的过渡时间对应的时间段,包括:网络设备进入睡眠模式的过渡时间对应的时间段,和/或,网络设备离开睡眠模式的过渡时间对应的时间段。
在一些实施例中,第一时间段的起始位置是根据网络设备处于睡眠模式的时间段内的第一下行资源的时域位置确定的;或者,第一时间段的起始位置是根据网络设备处于睡眠模式的过渡时间对应的时间段内的第一下行资源的时域位置确定的;或者,第一时间段的起始位置是根据网络设备进入睡眠模式的过渡时间对应的时间段内的第一下行资源的时域位置确定的。
例如,第一下行资源为网络设备处于睡眠模式的时间段内的第一个下行资源;或者,第一下行资源为网络设备处于睡眠模式的过渡时间对应的时间段内的第一个下行资源。
在一些实施例中,终端设备在第一时间段内监听和/或接收第一下行信道或信号之前,所述方法还包括:终端设备确定第一时间段的起始位置。例如,终端设备根据第一下行资源的起始位置,确定第一时间段的起始位置。
示例性地,第一时间段的起始位置为第一下行资源的起始位置。
示例性地,第一时间段的起始位置为第一下行资源所在时间单元的起始位置。
示例性地,第一时间段的起始位置为第三时间段的起始位置经过第二偏移值后的第一下行资源的起始位置。例如,第一时间段的起始位置为,第三时间段的起始位置向后偏移第二偏移值后的第一个下行资源的起始位置。
示例性地,第一时间段的起始位置为第三时间段的起始位置经过第二偏移值后的第一下行资源所在时 间单元的起始位置。例如,第一时间段的起始位置为,第三时间段的起始位置向后偏移第二偏移值后的第一个下行资源所在时间单元的起始位置。
在一些实施例中,第二偏移值是预定义的。例如,第二偏移值是协议预定义的,或者,第二偏移值是基于协议预定义的参数确定的。又例如,第二偏移值是基于网络设备的处理时间确定的。
在一些实施例中,第二偏移值是网络设备配置的,或者,第二偏移值是基于网络设备的配置参数确定的。
在一些实施例中,第二偏移值为正数,或者说,第二偏移值为正向偏移值。
在一些实施例中,第二偏移值取值可以为0。
在一些实施例中,第一下行资源包括PDCCH搜索空间对应的资源,和/或,终端设备唤醒信号资源(如UE-WUS资源)。可选地,终端设备唤醒信号资源包括以下至少一种:终端设备专属的终端设备唤醒信号资源、公共的终端设备唤醒信号资源。
对于该情况2,实现了根据第一下行资源的时域位置,确定监听和/或接收第一下行信道或信号的第一时间段,或者确定该第一时间段的起始位置。这样,能够尽可能地保证终端设备成功接收到网络设备使用第一下行资源发送的第一下行信道或信号,提升了下行接收的成功率和可靠性。
例如,对于具有睡眠模式的网络设备,第一下行资源可以包括网络设备的睡眠模式对应的第三时间段中的下行资源,这样就可以使得终端设备能够尽可能地接收到网络设备在从睡眠模式醒来之后发送的下行信道或信号。
在一些实施例中,第一时间段的时域资源是根据第一下行资源的时域位置确定的。例如,第一时间段的起始位置和结束位置是根据第一下行资源的时域位置确定的,根据第一时间段的起始位置和结束位置,便可知道第一时间段在时域上占据的位置。或者,第一时间段的起始位置和时长是根据第一下行资源的时域位置确定的,根据第一时间段的起始位置和时长,也能够知道第一时间段在时域上占据的位置。
情况3:
在一些实施例中,第一时间段是根据网络设备的睡眠模式对应的第三时间段确定的。
在一些实施例中,第三时间段包括:网络设备处于睡眠模式的时间段。可选地,网络设备处于睡眠模式的时间段,包括:网络设备进入睡眠模式后睡眠对应的时间段。可选地,网络设备处于睡眠模式的时间段,包括:网络设备进入睡眠模式的过渡时间对应的时间段,和,网络设备离开睡眠模式的过渡时间对应的时间段,和,网络设备进入睡眠模式后睡眠对应的时间段。
在一些实施例中,第三时间段包括:网络设备处于睡眠模式的过渡时间对应的时间段。可选地,网络设备处于睡眠模式的过渡时间对应的时间段,包括:网络设备进入睡眠模式的过渡时间对应的时间段,和/或,网络设备离开睡眠模式的过渡时间对应的时间段。
在一些实施例中,第一时间段的起始位置为第三时间段的起始位置;或者,第一时间段的起始位置与第三时间段的起始位置之间具有第二偏移值。
例如,第三时间段包括网络设备进入睡眠模式的过渡时间对应的时间段;第一时间段的起始位置为网络设备进入睡眠模式的过渡时间对应的时间段的起始位置;或者,第一时间段的起始位置与网络设备进入睡眠模式的过渡时间对应的时间段的起始位置之间具有第二偏移值。
在一些实施例中,终端设备在第一时间段内监听和/或接收第一下行信道或信号之前,所述方法还包括:终端设备确定第一时间段的起始位置。例如,终端设备根据网络设备的睡眠模式对应的第三时间段,确定第一时间段的起始位置。例如,终端设备将第三时间段的起始位置,确定为第一时间段的起始位置。或者,终端设备将第三时间段的起始位置向后偏移第二偏移值的时域位置,确定为第一时间段的起始位置。
在一些实施例中,第二偏移值是预定义的。例如,第二偏移值是协议预定义的,或者,第二偏移值是基于协议预定义的参数确定的。又例如,第二偏移值是基于网络设备的处理时间确定的。
在一些实施例中,第二偏移值是网络设备配置的,或者,第二偏移值是基于网络设备的配置参数确定的。
在一些实施例中,第二偏移值为正数,或者说,第二偏移值为正向偏移值。
在一些实施例中,第二偏移值取值可以为0。
对于该情况3,实现了根据网络设备的睡眠模式对应的第三时间段,确定监听和/或接收第一下行信道或信号的第一时间段,或者确定该第一时间段的起始位置。这样,对于具有睡眠模式的网络设备,终端设备能够尽可能地接收到网络设备在从睡眠模式醒来之后发送的下行信道或信号。
对于上述情况1、情况2和情况3中的至少一种中提及的第三时间段,该第三时间段的长度根据以下至少之一确定:网络设备的配置参数、网络设备的通信传输需求、终端设备的通信传输需求。例如,网络 设备预配置第三时间段的长度,当网络设备或终端设备有通信传输需求时,第三时间段的长度可以基于通信传输需求进行延长或缩短。
在一些实施例中,网络设备的通信传输需求包括以下至少之一:网络设备对至少一个终端设备的下行业务传输、网络设备对至少一个终端设备的上行业务传输、网络设备的寻呼消息传输、网络设备的系统消息传输、网络设备的SSB传输、网络设备的下行参考信号传输、网络设备的PRACH检测、网络设备的上行参考信号传输。
在一些实施例中,终端设备的通信传输需求包括以下至少之一:终端设备的下行业务传输、终端设备的上行业务传输、终端设备的寻呼消息传输、终端设备请求的系统消息传输、终端设备请求的SSB传输、终端设备的下行参考信号传输、终端设备的PRACH发送、终端设备的上行参考信号传输。
对于上述情况1、情况2和情况3中的至少一种中提及的第一时间段,该第一时间段的长度可以由如下方式确定。
在一些实施例中,第一时间段的长度根据第一定时器的长度确定,其中,第一定时器的启动或重启时刻为第一时间段的起始位置对应的时刻。可选地,上述第一定时器和/或第一时间段的长度可以由网络设备配置。可选地,第一定时器的长度是通过系统消息、RRC信令和MACCE中的至少一种配置的。作为示例而非限定,终端设备被配置第一定时器和/或第一定时器的长度。当终端设备在第一上行资源上向网络设备发送gNB-WUS后,终端设备从第一上行资源后的第一下行资源的起始位置开始启动第一定时器,并在该第一定时器运行的时间内监听和/或接收第一下行信道或信号,其中,该第一定时器运行的时间为第一定时器的长度。
在一些实施例中,第一时间段的长度根据第一窗口的长度确定,其中,第一窗口的起始位置为第一时间段的起始位置。可选地,上述第一窗口和/或第一窗口的长度可以由网络设备配置。可选地,第一窗口的长度是通过系统消息、RRC信令和MACCE中的至少一种配置的。作为示例而非限定,终端设备被配置第一窗口和/或第一窗口的长度。当终端设备在第一上行资源上向网络设备发送gNB-WUS后,终端设备从第一上行资源后的第一下行资源的起始位置开始启动第一窗口,并在该第一窗口的长度内监听和/或接收第一下行信道或信号。
在一些实施例中,第一时间段的长度是基于网络设备的配置参数确定的。例如,网络设备向终端设备发送的配置参数中,可以显式或者隐式地指示第一时间段的长度。可选地,第一时间段的长度是通过系统消息、RRC信令和MACCE中的至少一种配置的。作为示例而非限定,网络设备为终端设备配置该网络设备进入第一睡眠模式对应的第三时间段的长度,第一时间段的长度根据该第三时间段的长度确定。
在一些实施例中,第一时间段的长度是预定义的或者基于预定义的参数确定的。
在一些实施例中,对于上述情况1、情况2和情况3中的至少一种,所述方法还包括:终端设备接收网络设备工作在睡眠模式的指示信息;或者,终端设备被配置第一小区工作在睡眠模式;或者,网络设备工作在睡眠模式。
下面,对终端设备的行为进行示例性说明。
在一些实施例中,第一下行信道或信号包括:终端设备唤醒信号,和/或,PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,终端设备在第一时间段内监听和/或接收第一下行信道或信号,包括:在第一时间段内,终端设备监听终端设备唤醒信号,和/或,PDCCH搜索空间对应的PDCCH候选。
例如,在第一时间段内,终端设备监听PDCCH搜索空间对应的PDCCH候选。当终端设备在PDCCH搜索空间上检测到PDCCH,终端设备可以与网络设备进行通信,例如进行下行数据接收和/或进行上行数据发送;或者,终端设备可以假设网络设备进入下行激活态的工作模式和/或进入上行激活态的工作模式。
可选地,在第一时间段结束后,终端设备不监听终端设备唤醒信号,和/或,终端设备不监听PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,若终端设备被配置终端设备唤醒信号资源,则在第一时间段内,终端设备监听终端设备唤醒信号。例如,若终端设备被配置UE-WUS资源,则在第一时间段内,终端设备监听UE-WUS。
可选地,终端设备唤醒信号资源包括以下至少一种:终端设备专属的终端设备唤醒信号资源、公共的终端设备唤醒信号资源。
可选地,一个终端设备唤醒信号资源关联一个或一组PDCCH搜索空间。应理解,一个PDCCH搜索空间可以认为是一个PDCCH搜索空间集合,一组PDCCH搜索空间可以认为是多个PDCCH搜索空间集 合。
在一些实施例中,终端设备监听终端设备唤醒信号,包括:
若终端设备监听到终端设备唤醒信号,则终端设备监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选;或者,
若终端设备未监听到终端设备唤醒信号,则终端设备不监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选。
可选地,对于终端设备监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选的情况,当终端设备在PDCCH搜索空间上检测到PDCCH,终端设备可以与网络设备进行通信,例如进行下行数据接收和/或进行上行数据发送;或者,终端设备可以假设网络设备进入下行激活态的工作模式和/或进入上行激活态的工作模式。
可选地,在第一时间段结束后,终端设备不监听终端设备唤醒信号,和/或,终端设备不监听PDCCH搜索空间对应的PDCCH候选。
在本实施例中,在终端设备被配置UE-WUS资源的情况下,终端设备在第一时间段内监听UE-WUS,从而获知网络设备的下行传输需求。
在一些实施例中,若终端设备没有被配置终端设备唤醒信号资源,则在第一时间段内,终端设备监听PDCCH搜索空间对应的PDCCH候选。例如,若终端设备没有被配置UE-WUS资源,则在第一时间段内,终端设备监听PDCCH搜索空间对应的PDCCH候选。
可选地,在第一时间段内,终端设备监听PDCCH搜索空间对应的PDCCH候选,包括:当终端设备在PDCCH搜索空间上检测到PDCCH,终端设备可以与网络设备进行通信,例如进行下行数据接收和/或进行上行数据发送;或者,终端设备可以假设网络设备进入下行激活态的工作模式和/或进入上行激活态的工作模式。可选地,在第一时间段结束后,终端设备不在PDCCH搜索空间上监听PDCCH候选。
可选地,在第一时间段结束后,终端设备不监听PDCCH搜索空间对应的PDCCH候选。
在本实施例中,在终端设备没有被配置UE-WUS资源,且被配置PDCCH搜索空间的情况下,终端设备在第一时间段内监听PDCCH搜索空间对应的PDCCH候选,从而获知网络设备的下行传输需求。
在一些实施例中,在第一时间段内,终端设备监听终端设备唤醒信号和PDCCH搜索空间对应的PDCCH候选中时域位置较早出现的资源。
在一些实施例中,在第一时间段内,若终端设备唤醒信号资源的时域位置,在PDCCH搜索空间对应的资源的时域位置之前,则终端设备监听终端设备唤醒信号。
在一些实施例中,在第一时间段内,若第一个所述终端设备唤醒信号资源的时域位置,在第一个PDCCH搜索空间对应的资源的时域位置之前,则终端设备监听终端设备唤醒信号。例如,在第一时间段内,当第一个UE-WUS资源在时域上位于第一个PDCCH搜索空间之前时,终端设备监听UE-WUS资源。
在一些实施例中,终端设备监听终端设备唤醒信号,包括:
若终端设备监听到终端设备唤醒信号,则终端设备监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选;或者,
若终端设备未监听到终端设备唤醒信号,则终端设备不监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选。
可选地,对于终端设备监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选的情况,当终端设备在PDCCH搜索空间上检测到PDCCH,终端设备可以与网络设备进行通信,例如进行下行数据接收和/或进行上行数据发送;或者,终端设备可以假设网络设备进入下行激活态的工作模式和/或进入上行激活态的工作模式。
可选地,在第一时间段结束后,终端设备不监听终端设备唤醒信号,和/或,终端设备不监听PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,在第一时间段内,若PDCCH搜索空间对应的资源的时域位置,在终端设备唤醒信号资源的时域位置之前,则终端设备监听PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,在第一时间段内,若第一个PDCCH搜索空间对应的资源的时域位置,在第一个终端设备唤醒信号资源的时域位置之前,则终端设备监听PDCCH搜索空间对应的PDCCH候选。例如,在第一时间段内,当第一个PDCCH搜索空间在时域上位于第一个UE-WUS资源之前时,终端设备监听位于该第一个UE-WUS资源之前的PDCCH搜索空间。
可选地,在第一时间段内,在第一个终端设备唤醒信号资源的时域位置之前,终端设备监听PDCCH搜索空间对应的PDCCH候选。
可选地,在第一时间段内,从第一个终端设备唤醒信号资源的时域位置开始,终端设备监听终端设备唤醒信号。
在一些实施例中,在第一时间段内,从第一个终端设备唤醒信号资源的时域位置开始,终端设备监听终端设备唤醒信号,包括:
若终端设备监听到终端设备唤醒信号,则终端设备监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选;或者,
若终端设备未监听到终端设备唤醒信号,则终端设备不监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选。
可选地,对于终端设备监听与终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选的情况,当终端设备在PDCCH搜索空间上检测到PDCCH,终端设备可以与网络设备进行通信,例如进行下行数据接收和/或进行上行数据发送;或者,终端设备可以假设网络设备进入下行激活态的工作模式和/或进入上行激活态的工作模式。
可选地,在第一时间段结束后,终端设备不监听终端设备唤醒信号,和/或,终端设备不监听PDCCH搜索空间对应的PDCCH候选。
在本实施例中,在终端设备有被配置UE-WUS资源和PDCCH搜索空间的情况下,终端设备监听终端设备唤醒信号和PDCCH搜索空间对应的PDCCH候选中时域位置较早出现的资源,从而能够尽早获知网络设备的下行传输需求,减少传输时延。
在一些实施例中,PDCCH搜索空间关联终端设备唤醒信号。例如,当终端设备被配置终端设备唤醒信号资源时,上述PDCCH搜索空间关联终端设备唤醒信号。
在一些实施例中,PDCCH搜索空间关联网络设备唤醒信号。例如,当终端设备被配置网络设备唤醒信号资源时,上述PDCCH搜索空间关联网络设备唤醒信号。
在一些实施例中,PDCCH搜索空间关联网络设备唤醒信号且关联终端设备唤醒信号。例如,当终端设备被配置终端设备唤醒信号资源和网络设备唤醒信号资源时,上述PDCCH搜索空间同时关联终端设备唤醒信号和网络设备唤醒信号。
在一些实施例中,第一上行信道或信号的发送遵循一些限制规定。
在一些实施例中,第一时间段中的上行资源不用于发送第一上行信道或信号。或者,在一些实施例中,第二时间段中的上行资源不用于发送第一上行信道或信号;其中,第二时间段位于第一上行资源的时域位置之后且不同于第一时间段。
可选地,第一时间段中的上行资源不是有效的用于发送第一上行信号或信号的资源;或者,第二时间段中的上行资源不是有效的用于发送第一上行信号或信号的资源。
在一些实施例中,第一上行信道或信号包括:网络设备唤醒信号(或者说gNB-WUS)。可选地,第一上行资源包括PUCCH资源或SRS资源。例如,终端设备通过PUCCH资源或SRS资源向网络设备发送gNB-WUS。
在一些实施例中,终端设备在发送gNB-WUS后,在第一时间段内不发送gNB-WUS;或者,终端设备在发送gNB-WUS后,在第二时间段内不发送gNB-WUS。
可选地,第一时间段内的gNB-WUS资源为无效gNB-WUS资源;或者,第二时间段内的gNB-WUS资源为无效gNB-WUS资源。
可选地,第二时间段的起始位置和第一时间段的起始位置相同,和/或,第二时间段的长度和第一时间段的长度相同。可选地,第二时间段的确定方式和第一时间段的确定方式相同或类似,此处不再赘述。
在一些实施例中,若终端设备在第一时间段内未监听和/或未接收到第一下行信道或信号,则终端设备在第一时间段后,再次发送第一上行信道或信号。或者,在一些实施例中,若终端设备在第一时间段内未监听和/或未接收到第一下行信道或信号,则终端设备在第二时间段后,再次发送第一上行信道或信号。
可选地,终端设备在第一时间段后的gNB-WUS资源上可以发送gNB-WUS。例如,终端设备在第一时间段后的第一个gNB-WUS资源上可以发送gNB-WUS。
可选地,终端设备在第二时间段后的gNB-WUS资源上可以发送gNB-WUS。例如,终端设备在第二时间段后的第一个gNB-WUS资源上可以发送gNB-WUS。
在一些实施例中,所述方法还包括:
所述终端设备接收网络设备发送的第一配置信息,所述第一配置信息用于确定所述第一时间段;
所述终端设备根据所述第一配置信息确定所述第一时间段。
在一些实施例中,第一配置信息用于确定第一时间段的长度。
在一些实施例中,第一配置信息用于确定第一时间段的长度,包括:第一配置信息用于确定第一定时器的长度;或者,第一配置信息用于确定第一窗口的长度。
在一些实施例中,第一配置信息用于确定第一上行资源,和/或,第一下行资源。
在一些实施例中,第一配置信息用于确定网络设备唤醒信号资源,和/或,终端设备唤醒信号资源。
在一些实施例中,第一配置信息用于确定网络设备的睡眠模式对应的第三时间段。
在一些实施例中,第一配置信息用于确定第一偏移值,和/或,第二偏移值。
在一些实施例中,第一配置信息包括一个或多个配置信息。
在一些实施例中,第一配置信息包括系统消息、RRC信令、MACCE和DCI中的至少一种。
通过上述方式,对第一上行信道或信号(包括但不限于gNB-WUS)进行一些发送限制,能够避免终端设备执行一些不必要的上行发送,节省传输资源。
请参考图3,其示出了本申请另一个实施例提供的无线通信方法的流程图。该方法可以由网络设备执行。该方法可以包括如下步骤中的至少之一:
步骤310,网络设备向终端设备发送第一配置信息,该第一配置信息用于确定监听和/或接收第一下行信道或信号的第一时间段。
在一些实施例中,第一配置信息用于确定第一时间段的长度。
在一些实施例中,第一配置信息用于确定第一时间段的长度,包括:第一配置信息用于确定第一定时器的长度,第一时间段的长度为第一定时器的长度;或者,第一配置信息用于确定第一窗口的长度,第一时间段的长度为所述第一窗口的长度。
在一些实施例中,第一配置信息用于确定第一上行资源。第一时间段是根据第一上行资源的时域位置确定的;或者,第一时间段的起始位置是根据第一上行资源的时域位置确定的。
在一些实施例中,第一上行资源包括网络设备唤醒信号资源,第一配置信息用于确定网络设备唤醒信号资源。
在一些实施例中,所述方法还包括:网络设备在网络设备唤醒信号资源上监听网络设备唤醒信号。
在一些实施例中,所述方法还包括:若网络设备监听到网络设备唤醒信号,则网络设备通过PDCCH搜索空间向终端设备发送PDCCH;或者,若网络设备未监听到网络设备唤醒信号,则网络设备不通过PDCCH搜索空间向终端设备发送PDCCH。
在一些实施例中,第一配置信息用于确定第一下行资源。第一时间段是根据第一下行资源的时域位置确定的;或者,第一时间段的起始位置是根据第一下行资源的时域位置确定的。
在一些实施例中,第一下行资源包括终端设备唤醒信号资源,第一配置信息用于确定终端设备唤醒信号资源。
在一些实施例中,所述方法还包括:在网络设备的睡眠模式对应的第三时间段内,网络设备通过终端设备唤醒信号资源向终端设备发送终端设备唤醒信号。
在一些实施例中,第一配置信息用于确定网络设备唤醒信号资源和终端设备唤醒信号资源。
在一些实施例中,所述方法还包括:若网络设备监听到网络设备唤醒信号,则网络设备通过终端设备唤醒信号资源向终端设备发送终端设备唤醒信号。
在一些实施例中,所述方法还包括:若网络设备监听到网络设备唤醒信号,且终端设备唤醒信号资源的时域位置,在PDCCH搜索空间对应的资源的时域位置之前,则网络设备通过终端设备唤醒信号资源向终端设备发送终端设备唤醒信号;
或者,若网络设备监听到网络设备唤醒信号,且PDCCH搜索空间对应的资源的时域位置,在终端设备唤醒信号资源的时域位置之前,则网络设备通过PDCCH搜索空间向终端设备发送PDCCH;
或者,若网络设备未监听到网络设备唤醒信号,则网络设备不通过终端设备唤醒信号资源向终端设备发送终端设备唤醒信号,且网络设备不通过PDCCH搜索空间向终端设备发送PDCCH。
在一些实施例中,若网络设备监听到所述网络设备唤醒信号,且第一个终端设备唤醒信号资源的时域位置,在第一个PDCCH搜索空间对应的资源的时域位置之前,则网络设备通过终端设备唤醒信号资源向终端设备发送终端设备唤醒信号;
或者,若网络设备监听到网络设备唤醒信号,且第一个PDCCH搜索空间对应的资源的时域位置,在第一个终端设备唤醒信号资源的时域位置之前,则网络设备通过PDCCH搜索空间向终端设备发送PDCCH。
在一些实施例中,所述方法还包括:在第一个终端设备唤醒信号资源的时域位置之前,网络设备通过PDCCH搜索空间向终端设备发送PDCCH;
或者,从第一个终端设备唤醒信号资源的时域位置开始,网络设备通过终端设备唤醒信号资源向终端设备发送终端设备唤醒信号。
在一些实施例中,网络设备通过终端设备唤醒信号资源向终端设备发送终端设备唤醒信号后,所述方法还包括:网络设备通过与终端设备唤醒信号关联的PDCCH搜索空间向终端设备发送PDCCH。
在一些实施例中,PDCCH搜索空间为与网络设备唤醒信号关联的PDCCH搜索空间。
在一些实施例中,第一配置信息用于确定网络设备的睡眠模式对应的第三时间段,第一时间段是根据第三时间段确定的。
在一些实施例中,第三时间段包括:网络设备处于睡眠模式的时间段。或者,第三时间段包括:网络设备进入睡眠模式的过渡时间对应的时间段,和/或,网络设备离开睡眠模式的过渡时间对应的时间段。
在一些实施例中,第一配置信息用于确定第一偏移值和/或第二偏移值,第一偏移值和/或第二偏移值用于确定第一时间段。
在一些实施例中,第一配置信息包括一个或多个配置信息。
在一些实施例中,第一配置信息包括系统消息、RRC信令、MACCE和DCI中的至少一种。
对于网络设备侧实施例中未详细说明的细节,可参见上文终端设备侧的方法实施例。
下面,通过几个示例性实施例,对本申请技术方案进行介绍说明。
在一示例性实施例中,终端设备被配置gNB-WUS资源,用于终端设备向网络设备发送gNB-WUS。为了便于描述,该实施例以FDD(Frequency Division Duplexing,频分双工)系统为例(即终端设备被配置上行载波和下行载波),应理解,本实施例也可以应用于TDD(Time Division Duplexing,时分双工)系统,本申请对此并不限定。
如图4所示,终端设备被配置在上行载波上的gNB-WUS资源和在下行载波上的PDCCH搜索空间。当终端设备在一个gNB-WUS资源上发送gNB-WUS(例如当终端设备有下行同步的需求或有上行业务传输的需求时,终端设备可以在gNB-WUS上发送gNB-WUS,以唤醒网络设备)后,终端设备可以从发送该gNB-WUS后的第一个PDCCH搜索空间的起始位置开始启动第一定时器,在第一定时器的运行时间内,该终端设备监听该PDCCH搜索空间。
可选地,该终端设备发送gNB-WUS的gNB-WUS资源为有效gNB-WUS资源。例如,该gNB-WUS资源为网络设备处于睡眠模式状态下的gNB-WUS资源。
可选地,该PDCCH搜索空间包括终端设备专属PDCCH搜索空间,和/或,公共PDCCH搜索空间。
可选地,该PDCCH搜索空间包括关联特定RNTI(Radio Network Temporary Identifier,无线网络临时标识)的搜索空间。例如,该PDCCH搜索空间包括关联C-RNTI(Cell-Radio Network Temporary Identifier,小区-无线网络临时标识)或CS-RNTI(Configured Scheduling Radio Network Temporary Identifier,配置调度-无线网络临时标识)或MCSC-RNTI(Modulation and Coding Scheme Cell-Radio Network Temporary Identifier,调制编码方式-小区-无线网络临时标识)的搜索空间。
在一些情况中,如果终端设备在第一定时器的运行时间内的该PDCCH搜索空间内收到网络设备发送的PDCCH,那么该终端设备可以与该网络设备进行通信,例如进行下行数据接收和/或进行上行数据发送等;或者,该终端设备可以假设该网络设备进入下行激活态的工作模式和/或进入上行激活态的工作模式。
可选地,如果终端设备在第一定时器的运行时间内的该PDCCH搜索空间内收到网络设备发送的PDCCH,那么第一定时器可以重启或第一定时器的运行时间可以延长。
在一些情况中,如果终端设备在第一定时器的运行时间内的该PDCCH搜索空间内没有收到网络设备发送的PDCCH,那么该终端设备可以通过第一定时器的运行时间结束后的gNB-WUS资源再次发送gNB-WUS。
可选地,在第一定时器的运行时间结束后,终端设备不再监听该PDCCH搜索空间。
可选地,在第一定时器运行时间内的gNB-WUS资源为无效gNB-WUS资源;或者,终端设备不能通过第一定时器运行时间内的gNB-WUS资源发送gNB-WUS。
在本实施例中,当网络设备处于睡眠模式时,终端设备可以通过gNB-WUS资源向网络设备发送唤醒信号,使网络设备能获知该终端设备的传输需求,从而避免网络设备在睡眠模式状态下,长时间不能为终端设备服务,导致终端设备的通信传输时延太大的缺点。
在另一示例性实施例中,终端设备被配置UE-WUS资源,用于网络设备向终端设备发送UE-WUS。为了便于描述,该实施例以FDD系统为例(即终端设备被配置上行载波和下行载波),应理解,本实施例也可以应用于TDD系统,本申请对此并不限定。
如图5所示,终端设备在下行载波上被配置UE-WUS资源和PDCCH搜索空间。终端设备获取第一时间段信息(在该示例中,第一时间段信息可以为第一窗口信息,例如该第一窗口可以为网络设备决定进入睡眠模式状态的时间窗口,终端设备可以根据网络设备的配置信息获取该第一窗口信息)。在该第一时间 段内,终端设备在UE-WUS资源上监听UE-WUS(在该示例中,如果网络设备从睡眠模式状态中醒过来,可以通过在该UE-WUS资源上发送UE-WUS来唤醒终端设备)。
可选地,该UE-WUS资源为公共的UE-WUS资源。例如,网络设备可以通过在该UE-WUS资源上发送UE-WUS来唤醒一组终端设备或唤醒该小区中的所有终端设备。
可选地,该UE-WUS资源为终端设备专属的UE-WUS资源。例如,网络设备可以通过在该UE-WUS资源上发送UE-WUS来唤醒该终端设备。
在一些情况中,如果终端设备在第一窗口内的UE-WUS资源上监听到UE-WUS,那么该终端设备监听与该UE-WUS资源关联的PDCCH搜索空间;和/或,如果终端设备在第一窗口内的UE-WUS资源上没有监听到UE-WUS,那么该终端设备不监听与该UE-WUS资源关联的PDCCH搜索空间。
进一步可选地,如果终端设备在PDCCH搜索空间内收到网络设备发送的PDCCH,那么该终端设备可以与该网络设备进行通信,例如进行下行数据接收和/或进行上行数据发送等;或者,该终端设备可以假设该网络设备进入下行激活态的工作模式和/或进入上行激活态的工作模式。
可选地,该PDCCH搜索空间包括终端设备专属PDCCH搜索空间,和/或,公共PDCCH搜索空间。
可选地,该PDCCH搜索空间包括关联特定RNTI的搜索空间。例如,该PDCCH搜索空间包括关联C-RNTI或CS-RNTI或MCSC-RNTI的搜索空间。
可选地,如果终端设备在第一窗口内的该PDCCH搜索空间内收到网络设备发送的PDCCH,那么第一窗口的长度可以延长。
可选地,在第一窗口结束后,终端设备不再监听该UE-WUS资源。
可选地,该网络设备发送UE-WUS的UE-WUS资源为有效UE-WUS资源;或者,第一窗口内的UE-WUS资源为有效UE-WUS资源。
可选地,在第一窗口外的UE-WUS资源为无效UE-WUS资源;或者,终端设备不监听第一窗口结束后的UE-WUS资源。
在本实施例中,当网络设备从睡眠模式状态中醒过来时,网络设备可以通过在UE-WUS资源上发送UE-WUS来唤醒终端设备,使得终端设备能够与网络设备进行下行和/或上行的传输,从而避免网络设备在睡眠模式状态下,长时间不能为终端设备服务,导致终端设备的通信传输时延太大的缺点。
在另一示例性实施例中,终端设备被配置gNB-WUS资源和UE-WUS资源,其中,gNB-WUS资源用于终端设备向网络设备发送gNB-WUS,UE-WUS资源用于网络设备向终端设备发送UE-WUS。为了便于描述,该实施例以FDD系统为例(即终端设备被配置上行载波和下行载波),应理解,本实施例也可以应用于TDD系统,本申请对此并不限定。
如图6所示,终端设备被配置在上行载波上的gNB-WUS资源和在下行载波上的UE-WUS资源和PDCCH搜索空间。当终端设备在一个gNB-WUS资源上发送gNB-WUS(例如当终端设备有下行同步的需求或有上行业务传输的需求时,终端设备可以在gNB-WUS上发送gNB-WUS,以唤醒网络设备)后,终端设备可以启动第一定时器,在第一定时器的运行时间内,该终端设备监听下行信道或信号。
在一些情况中,终端设备可以从发送该gNB-WUS后的第一个UE-WUS资源的起始位置开始启动第一定时器,在第一定时器的运行时间内,该终端设备监听该UE-WUS资源,如图6所示。
可选地,如果终端设备在第一定时器的运行时间内的UE-WUS资源上监听到UE-WUS,那么该终端设备监听与该UE-WUS资源关联的PDCCH搜索空间;和/或,如果终端设备在第一定时器的运行时间内的UE-WUS资源上没有监听到UE-WUS,那么该终端设备不监听与该UE-WUS资源关联的PDCCH搜索空间。
在一些情况中,终端设备可以从发送该gNB-WUS后的先出现的UE-WUS资源或PDCCH搜索空间的起始位置开始启动第一定时器,在第一定时器的运行时间内,该终端设备监听该UE-WUS资源或PDCCH候选,例如,该终端设备监听UE-WUS资源和PDCCH搜索空间中先出现的资源。
作为示例而非限定,如图7所示,如果第一个UE-WUS资源位于第一个PDCCH搜索空间之前,则第一定时器的启动时刻为该第一个UE-WUS资源的起始时刻,终端设备在该第一定时器的运行时间内优先监听UE-WUS资源。
可选地,如果终端设备在第一定时器的运行时间内的UE-WUS资源上监听到UE-WUS,那么该终端设备监听与该UE-WUS资源关联的PDCCH搜索空间;和/或,如果终端设备在第一定时器的运行时间内的UE-WUS资源上没有监听到UE-WUS,那么该终端设备不监听与该UE-WUS资源关联的PDCCH搜索空间。
作为示例而非限定,如图8所示,如果第一个PDCCH搜索空间位于第一个UE-WUS资源之前,则第一定时器的启动时刻为该第一个PDCCH搜索空间的起始时刻,终端设备在该第一定时器的运行时间内先 监听该PDCCH候选。可选地,终端设备在从第一定时器的运行时刻开始到第一个UE-WUS资源的起始位置为止的时间段内,监听PDCCH搜索空间。
可选地,终端设备从第一个UE-WUS资源开始,在该第一定时器的运行时间内优先监听UE-WUS资源。
可选地,如果终端设备在第一定时器的运行时间内的UE-WUS资源上监听到UE-WUS,那么该终端设备监听与该UE-WUS资源关联的PDCCH搜索空间;和/或,如果终端设备在第一定时器的运行时间内的UE-WUS资源上没有监听到UE-WUS,那么该终端设备不监听与该UE-WUS资源关联的PDCCH搜索空间。
可选地,该终端设备发送gNB-WUS的gNB-WUS资源为有效gNB-WUS资源。例如,该gNB-WUS资源为网络设备处于睡眠模式状态下的gNB-WUS资源。
可选地,该PDCCH搜索空间包括终端设备专属PDCCH搜索空间,和/或,公共PDCCH搜索空间。
可选地,该PDCCH搜索空间包括关联特定RNTI的搜索空间。例如,该PDCCH搜索空间包括关联C-RNTI或CS-RNTI或MCSC-RNTI的搜索空间。
在一些情况中,如果终端设备在第一定时器的运行时间内的该PDCCH搜索空间内收到网络设备发送的PDCCH,那么该终端设备可以与该网络设备进行通信,例如进行下行数据接收和/或进行上行数据发送等;或者,该终端设备可以假设该网络设备进入下行激活态的工作模式和/或进入上行激活态的工作模式。
可选地,如果终端设备在第一定时器的运行时间内的该PDCCH搜索空间内收到网络设备发送的PDCCH,那么第一定时器可以重启或第一定时器的运行时间可以延长。
在一些情况中,如果终端设备在第一定时器的运行时间内的该PDCCH搜索空间内没有收到网络设备发送的PDCCH,或者,终端设备在第一定时器的运行时间内的UE-WUS资源上没有收到网络设备发送的UE-WUS,那么该终端设备可以通过第一定时器的运行时间结束后的gNB-WUS资源再次发送gNB-WUS。
可选地,在第一定时器的运行时间结束后,终端设备不再监听该UE-WUS资源,和/或,终端设备不再监听该PDCCH搜索空间。
可选地,在第一定时器运行时间内的gNB-WUS资源为无效gNB-WUS资源;或者,终端设备不能通过第一定时器运行时间内的gNB-WUS资源发送gNB-WUS。
可选地,该网络设备发送UE-WUS的UE-WUS资源为有效UE-WUS资源;或者,第一定时器运行时间内的UE-WUS资源为有效UE-WUS资源。
可选地,在第一定时器运行时间结束后的UE-WUS资源为无效UE-WUS资源;或者,终端设备不监听第一定时器运行时间结束后的UE-WUS资源。
在本实施例中,在终端设备被配置gNB-WUS资源和UE-WUS资源的情况下,网络设备可以基于至少一个终端设备的gNB-WUS进入激活态,进而可以为系统中包括该至少一个终端设备的有业务需求的终端设备进行服务,从而避免网络设备在睡眠模式状态下,长时间不能为终端设备服务,导致终端设备的通信传输时延太大的缺点。
需要说明的是,上述有关终端设备执行的步骤,可以单独实现成为终端设备侧的无线通信方法;上述有关网络设备执行的步骤,可以单独实现成为网络设备侧的无线通信方法。
下述为本申请装置实施例,可以用于执行本申请方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
请参考图9,其示出了本申请一个实施例提供的无线通信装置的框图。该装置具有实现上述终端设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的终端设备,也可以设置在终端设备中。如图9所示,该装置900可以包括:接收模块910。
接收模块910,用于在第一时间段内监听和/或接收第一下行信道或信号。
在一些实施例中,所述第一时间段是根据第一上行资源的时域位置确定的。
在一些实施例中,所述第一时间段是根据第一上行资源的时域位置确定的,包括:所述第一时间段的时域资源是根据第一上行资源的时域位置确定的;或者,所述第一时间段的起始位置是根据第一上行资源的时域位置确定的。
在一些实施例中,所述第一时间段的起始位置是根据第一上行资源的时域位置确定的,包括:
所述第一时间段的起始位置为所述第一上行资源的结束位置;或者,
所述第一时间段的起始位置为所述第一上行资源所在时间单元的结束位置;或者,
所述第一时间段的起始位置与所述第一上行资源的结束位置之间具有第一偏移值;或者,
所述第一时间段的起始位置与所述第一上行资源所在时间单元的结束位置之间具有第一偏移值;或者,
所述第一时间段的起始位置为所述第一上行资源后的第一下行资源的起始位置;或者,
所述第一时间段的起始位置为所述第一上行资源后的第一下行资源所在时间单元的起始位置;或者,
所述第一时间段的起始位置为所述第一上行资源后且经过第一偏移值后的第一下行资源的起始位置;或者,
所述第一时间段的起始位置为所述第一上行资源后且经过第一偏移值后的第一下行资源所在时间单元的起始位置。
在一些实施例中,所述第一偏移值是基于协议预定义的参数确定的;或者,所述第一偏移值是基于网络设备的配置参数确定的。
在一些实施例中,如图9所示,所述装置900还包括发送模块920,用于通过所述第一上行资源,发送第一上行信道或信号。
在一些实施例中,如图9所示,所述装置900还包括处理模块930,用于根据所述第一上行资源的时域位置确定所述第一时间段的起始位置。
在一些实施例中,所述第一时间段中的上行资源不用于发送所述第一上行信道或信号;或者,第二时间段中的上行资源不用于发送所述第一上行信道或信号;其中,所述第二时间段位于所述第一上行资源的时域位置之后且不同于所述第一时间段。
在一些实施例中,如图9所示,所述装置900还包括发送模块920,用于若所述终端设备在所述第一时间段内未监听和/或未接收到所述第一下行信道或信号,则在所述第一时间段后,再次发送所述第一上行信道或信号;或者,若所述终端设备在所述第一时间段内未监听和/或未接收到所述第一下行信道或信号,则在第二时间段后,再次发送所述第一上行信道或信号;其中,所述第二时间段位于所述第一上行资源的时域位置之后且不同于所述第一时间段。
在一些实施例中,所述第一上行资源包括:用于所述终端设备发送网络设备唤醒信号的网络设备唤醒信号资源;和/或,所述第一上行信道或信号包括:网络设备唤醒信号。
在一些实施例中,所述第一时间段是根据第一下行资源的时域位置确定的。
在一些实施例中,所述第一时间段是根据第一下行资源的时域位置确定的,包括:所述第一时间段的时域资源是根据第一下行资源的时域位置确定的;或者,所述第一时间段的起始位置是根据第一下行资源的时域位置确定的。
在一些实施例中,所述第一下行资源为网络设备的睡眠模式对应的第三时间段中的下行资源。
在一些实施例中,所述第一时间段的起始位置是根据第一下行资源的时域位置确定的,包括:
所述第一时间段的起始位置为所述第一下行资源的起始位置;或者,
所述第一时间段的起始位置为所述第一下行资源所在时间单元的起始位置;或者,
所述第一时间段的起始位置为所述第三时间段的起始位置经过第二偏移值后的第一下行资源的起始位置;或者,
所述第一时间段的起始位置为所述第三时间段的起始位置经过第二偏移值后的第一下行资源所在时间单元的起始位置。
在一些实施例中,所述第一时间段是根据网络设备的睡眠模式对应的第三时间段确定的。
在一些实施例中,所述第三时间段包括:所述网络设备处于所述睡眠模式的时间段;或者,所述网络设备进入所述睡眠模式的过渡时间对应的时间段,和/或,所述网络设备离开所述睡眠模式的过渡时间对应的时间段。
在一些实施例中,所述第三时间段包括所述网络设备进入所述睡眠模式的过渡时间对应的时间段;其中,所述第一时间段的起始位置为所述第三时间段的起始位置;或者,所述第一时间段的起始位置与所述第三时间段的起始位置之间具有第二偏移值。
在一些实施例中,所述第二偏移值是基于协议预定义的参数确定的;或者,所述第二偏移值是基于网络设备的配置参数确定的。
在一些实施例中,所述第三时间段的长度根据以下至少之一确定:所述网络设备的配置参数、所述网络设备的通信传输需求、所述终端设备的通信传输需求;其中,
所述网络设备的通信传输需求包括以下至少之一:所述网络设备对至少一个终端设备的下行业务传输、所述网络设备对至少一个终端设备的上行业务传输、所述网络设备的寻呼消息传输、所述网络设备的系统消息传输、所述网络设备的SSB传输、所述网络设备的下行参考信号传输、所述网络设备的PRACH检测、所述网络设备的上行参考信号传输;
所述终端设备的通信传输需求包括以下至少之一:所述终端设备的下行业务传输、所述终端设备的上行业务传输、所述终端设备的寻呼消息传输、所述终端设备请求的系统消息传输、所述终端设备请求的SSB传输、所述终端设备的下行参考信号传输、所述终端设备的PRACH发送、所述终端设备的上行参考信号 传输。
在一些实施例中,如图9所示,所述装置900还包括处理模块930,用于确定所述第一时间段的起始位置。
在一些实施例中,所述第一时间段的长度根据第一定时器的长度确定,其中,所述第一定时器的启动或重启时刻为所述第一时间段的起始位置对应的时刻;或者,所述第一时间段的长度根据第一窗口的长度确定,其中,所述第一窗口的起始位置为所述第一时间段的起始位置。
在一些实施例中,所述第一时间段的长度是基于网络设备的配置参数确定的。
在一些实施例中,所述第一下行资源为所述终端设备被配置的终端设备唤醒信号资源;或者,所述第一下行资源为所述终端设备被配置的PDCCH搜索空间对应的资源。
在一些实施例中,所述接收模块910用于在所述第一时间段内,监听终端设备唤醒信号,和/或,PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,所述接收模块910用于若所述终端设备被配置终端设备唤醒信号资源,则在所述第一时间段内,监听所述终端设备唤醒信号;或者,若所述终端设备没有被配置终端设备唤醒信号资源,则在所述第一时间段内,监听所述PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,所述接收模块910用于在所述第一时间段内,若所述终端设备唤醒信号资源的时域位置,在所述PDCCH搜索空间对应的资源的时域位置之前,则监听所述终端设备唤醒信号;或者,在所述第一时间段内,若所述PDCCH搜索空间对应的资源的时域位置,在所述终端设备唤醒信号资源的时域位置之前,则监听所述PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,所述接收模块910用于在所述第一时间段内,若第一个所述终端设备唤醒信号资源的时域位置,在第一个所述PDCCH搜索空间对应的资源的时域位置之前,则监听所述终端设备唤醒信号;或者,在所述第一时间段内,若第一个所述PDCCH搜索空间对应的资源的时域位置,在第一个所述终端设备唤醒信号资源的时域位置之前,则监听所述PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,所述接收模块910用于在所述第一个所述终端设备唤醒信号资源的时域位置之前,监听所述PDCCH搜索空间对应的PDCCH候选;或者,从所述第一个所述终端设备唤醒信号资源的时域位置开始,监听所述终端设备唤醒信号。
在一些实施例中,所述接收模块910用于若所述终端设备监听到所述终端设备唤醒信号,则监听与所述终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选;或者,若所述终端设备未监听到所述终端设备唤醒信号,则不监听与所述终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选。
在一些实施例中,在所述第一时间段结束后,所述终端设备不监听所述终端设备唤醒信号,和/或,所述PDCCH搜索空间对应的PDCCH候选。
请参考图10,其示出了本申请另一个实施例提供的无线通信装置的框图。该装置具有实现上述网络设备侧的方法示例的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该装置可以是上文介绍的网络设备,也可以设置在网络设备中。如图10所示,该装置1000可以包括:发送模块1010。
发送模块1010,用于向终端设备发送第一配置信息,所述第一配置信息用于确定监听和/或接收第一下行信道或信号的第一时间段。
在一些实施例中,所述第一配置信息用于确定所述第一时间段的长度。
在一些实施例中,所述第一配置信息用于确定所述第一时间段的长度,包括:所述第一配置信息用于确定第一定时器的长度,所述第一时间段的长度为所述第一定时器的长度;或者,所述第一配置信息用于确定第一窗口的长度,所述第一时间段的长度为所述第一窗口的长度。
在一些实施例中,所述第一配置信息用于确定第一上行资源;所述第一时间段是根据所述第一上行资源的时域位置确定的。
在一些实施例中,所述第一时间段的时域资源是根据第一上行资源的时域位置确定的;或者,所述第一时间段的起始位置是根据所述第一上行资源的时域位置确定的。
在一些实施例中,所述第一上行资源包括网络设备唤醒信号资源,所述第一配置信息用于确定所述网络设备唤醒信号资源。
在一些实施例中,如图10所示,所述装置1000还包括接收模块1020,用于在所述网络设备唤醒信号资源上监听网络设备唤醒信号。
在一些实施例中,如图10所示,所述装置1000还包括处理模块1030。所述发送模块1010还用于若所述网络设备监听到所述网络设备唤醒信号,则通过PDCCH搜索空间向所述终端设备发送PDCCH。所述处理模块1030,用于若所述网络设备未监听到所述网络设备唤醒信号,则不通过PDCCH搜索空间向所述终端设备发送PDCCH。
在一些实施例中,所述第一配置信息用于确定第一下行资源;所述第一时间段是根据所述第一下行资源的时域位置确定的。
在一些实施例中,所述第一时间段的时域资源是根据第一下行资源的时域位置确定的;或者,所述第一时间段的起始位置是根据所述第一下行资源的时域位置确定的。
在一些实施例中,所述第一下行资源包括终端设备唤醒信号资源,所述第一配置信息用于确定所述终端设备唤醒信号资源。
在一些实施例中,所述发送模块1010还用于在所述网络设备的睡眠模式对应的第三时间段内,通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号。
在一些实施例中,所述第一配置信息用于确定网络设备唤醒信号资源和终端设备唤醒信号资源。
在一些实施例中,所述发送模块1010还用于若所述网络设备监听到网络设备唤醒信号,则通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号。
在一些实施例中,如图10所示,所述装置1000还包括处理模块1030。所述发送模块1010还用于若所述网络设备监听到网络设备唤醒信号,且所述终端设备唤醒信号资源的时域位置,在所述PDCCH搜索空间对应的资源的时域位置之前,则通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号。或者,所述发送模块1010还用于若所述网络设备监听到网络设备唤醒信号,且所述PDCCH搜索空间对应的资源的时域位置,在所述终端设备唤醒信号资源的时域位置之前,则通过所述PDCCH搜索空间向所述终端设备发送PDCCH。或者,所述处理模块1030,用于若所述网络设备未监听到网络设备唤醒信号,则不通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号,且不通过所述PDCCH搜索空间向所述终端设备发送PDCCH。
在一些实施例中,所述发送模块1010还用于,若所述网络设备监听到所述网络设备唤醒信号,且第一个所述终端设备唤醒信号资源的时域位置,在第一个所述PDCCH搜索空间对应的资源的时域位置之前,则通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号;或者,若所述网络设备监听到所述网络设备唤醒信号,且第一个所述PDCCH搜索空间对应的资源的时域位置,在第一个所述终端设备唤醒信号资源的时域位置之前,则通过所述PDCCH搜索空间向所述终端设备发送PDCCH。
在一些实施例中,所述发送模块1010还用于在所述第一个所述终端设备唤醒信号资源的时域位置之前,通过所述PDCCH搜索空间向所述终端设备发送PDCCH;或者,从所述第一个所述终端设备唤醒信号资源的时域位置开始,通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号。
在一些实施例中,所述发送模块1010还用于在通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号后,通过与所述终端设备唤醒信号关联的PDCCH搜索空间向所述终端设备发送PDCCH。
在一些实施例中,所述PDCCH搜索空间为与所述网络设备唤醒信号关联的PDCCH搜索空间。
在一些实施例中,所述第一配置信息用于确定所述网络设备的睡眠模式对应的第三时间段,所述第一时间段是根据所述第三时间段确定的。
在一些实施例中,所述第三时间段包括:所述网络设备处于所述睡眠模式的时间段;或者,所述网络设备进入所述睡眠模式的过渡时间对应的时间段,和/或,所述网络设备离开所述睡眠模式的过渡时间对应的时间段。
在一些实施例中,所述第一配置信息用于确定第一偏移值和/或第二偏移值,所述第一偏移值和/或所述第二偏移值用于确定所述第一时间段。
在一些实施例中,所述第一配置信息包括一个或多个配置信息。
在一些实施例中,所述第一配置信息包括系统消息、RRC信令、MACCE和DCI中的至少一种。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参考图11,其示出了本申请一个实施例提供的终端设备1100的结构示意图。该终端设备1100可用于执行上述实施例中由终端设备执行的方法步骤。该终端设备1100可以包括:处理器1101、收发器1102以及存储器1103。其中,处理器1101用于实现上述处理模块930的功能,收发器1102用于实现上述接收模块910和/或发送模块920的功能。
处理器1101包括一个或者一个以上处理核心,处理器1101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。处理器1101用于执行上述方法实施例中由终端设备执行的除接收和发送步骤 之外的其他步骤。
收发器1102可以包括接收器和发射器,比如,该接收器和发射器可以实现为同一个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。收发器1102用于执行上述方法实施例中由终端设备执行的接收和/或发送步骤。
存储器1103可以与处理器1101以及收发器1102相连。
存储器1103可用于存储处理器执行的计算机程序,处理器1101用于执行该计算机程序,以实现上述方法实施例中的终端设备执行的各个步骤。
此外,存储器1103可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在一些实施例中,所述收发器1102用于在第一时间段内监听和/或接收第一下行信道或信号。
对于上述实施例中未详细说明的细节,可参见上文方法实施例中的介绍说明,此处不再赘述。
请参考图12,其示出了本申请一个实施例提供的网络设备1200的结构示意图。该网络设备1200可用于执行上述实施例中由网络设备执行的方法步骤。该网络设备1200可以包括:处理器1201、收发器1202以及存储器1203。其中,处理器1201用于实现上述处理模块1030的功能,收发器1202用于实现上述接收模块1020和/或发送模块1010的功能。
处理器1201包括一个或者一个以上处理核心,处理器1201通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。处理器1201用于执行上述方法实施例中由网络设备执行的除接收和发送步骤之外的其他步骤。
收发器1202可以包括接收器和发射器。比如,该收发器1202可以包括一个有线通信组件,该有线通信组件可以包括一块有线通信芯片以及有线接口(比如光纤接口)。可选地,该收发器1202还可以包括一个无线通信组件,该无线通信组件可以包括一块无线通信芯片以及射频天线。收发器1202用于执行上述方法实施例中由网络设备执行的接收和/或发送步骤。
存储器1203可以与处理器1201以及收发器1202相连。
存储器1203可用于存储处理器执行的计算机程序,处理器1201用于执行该计算机程序,以实现上述方法实施例中的网络设备执行的各个步骤。
此外,存储器1203可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器,可擦除可编程只读存储器,静态随时存取存储器,只读存储器,磁存储器,快闪存储器,可编程只读存储器。
在一些实施例中,所述收发器1202用于向终端设备发送第一配置信息,所述第一配置信息用于确定监听和/或接收第一下行信道或信号的第一时间段。
对于本实施例中未详细说明的细节,可参见上文实施例,此处不再一一赘述。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被终端设备的处理器执行,以实现上述终端设备侧的无线通信方法。
本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有计算机程序,所述计算机程序用于被网络设备的处理器执行,以实现上述网络设备侧的无线通信方法。
可选地,该计算机可读存储介质可以包括:ROM(Read-Only Memory,只读存储器)、RAM(Random-Access Memory,随机存储器)、SSD(Solid State Drives,固态硬盘)或光盘等。其中,随机存取记忆体可以包括ReRAM(Resistance Random Access Memory,电阻式随机存取记忆体)和DRAM(Dynamic Random Access Memory,动态随机存取存储器)。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在终端设备上运行时,用于实现上述终端设备侧的无线通信方法。
本申请实施例还提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在网络设备上运行时,用于实现上述网络设备侧的无线通信方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,终端设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述终端设备侧的无线通信方法。
本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中,网络设备的处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现上述网络设备侧的无线通信方法。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
在本申请一些实施例中,“预定义的”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不作限定。比如预定义的可以是指协议中定义的。
在本申请一些实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不作限定。
在本文中提及的“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本文中描述的步骤编号,仅示例性示出了步骤间的一种可能的执行先后顺序,在一些其它实施例中,上述步骤也可以不按照编号顺序来执行,如两个不同编号的步骤同时执行,或者两个不同编号的步骤按照与图示相反的顺序执行,本申请实施例对此不作限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (60)

  1. 一种无线通信方法,其特征在于,所述方法包括:
    终端设备在第一时间段内监听和/或接收第一下行信道或信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一时间段是根据第一上行资源的时域位置确定的。
  3. 根据权利要求2所述的方法,其特征在于,所述第一时间段是根据第一上行资源的时域位置确定的,包括:
    所述第一时间段的时域资源是根据第一上行资源的时域位置确定的;
    或者,
    所述第一时间段的起始位置是根据第一上行资源的时域位置确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述第一时间段的起始位置是根据第一上行资源的时域位置确定的,包括:
    所述第一时间段的起始位置为所述第一上行资源的结束位置;或者,
    所述第一时间段的起始位置为所述第一上行资源所在时间单元的结束位置;或者,
    所述第一时间段的起始位置与所述第一上行资源的结束位置之间具有第一偏移值;或者,
    所述第一时间段的起始位置与所述第一上行资源所在时间单元的结束位置之间具有第一偏移值;或者,
    所述第一时间段的起始位置为所述第一上行资源后的第一下行资源的起始位置;或者,
    所述第一时间段的起始位置为所述第一上行资源后的第一下行资源所在时间单元的起始位置;或者,
    所述第一时间段的起始位置为所述第一上行资源后且经过第一偏移值后的第一下行资源的起始位置;或者,
    所述第一时间段的起始位置为所述第一上行资源后且经过第一偏移值后的第一下行资源所在时间单元的起始位置。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第一偏移值是基于协议预定义的参数确定的;
    或者,
    所述第一偏移值是基于网络设备的配置参数确定的。
  6. 根据权利要求2至5任一项所述的方法,其特征在于,所述终端设备在第一时间段内监听和/或接收第一下行信道或信号之前,所述方法还包括:
    所述终端设备通过所述第一上行资源,发送第一上行信道或信号。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备通过所述第一上行资源发送所述第一上行信道或信号之后,所述方法还包括:
    所述终端设备根据所述第一上行资源的时域位置确定所述第一时间段的起始位置。
  8. 根据权利要求6或7所述的方法,其特征在于,
    所述第一时间段中的上行资源不用于发送所述第一上行信道或信号;
    或者,
    第二时间段中的上行资源不用于发送所述第一上行信道或信号;其中,所述第二时间段位于所述第一上行资源的时域位置之后且不同于所述第一时间段。
  9. 根据权利要求6至8任一项所述的方法,其特征在于,所述方法还包括:
    若所述终端设备在所述第一时间段内未监听和/或未接收到所述第一下行信道或信号,则所述终端设备在所述第一时间段后,再次发送所述第一上行信道或信号;
    或者,
    若所述终端设备在所述第一时间段内未监听和/或未接收到所述第一下行信道或信号,则所述终端设备在第二时间段后,再次发送所述第一上行信道或信号;其中,所述第二时间段位于所述第一上行资源的时域位置之后且不同于所述第一时间段。
  10. 根据权利要求2至9任一项所述的方法,其特征在于,
    所述第一上行资源包括:用于所述终端设备发送网络设备唤醒信号的网络设备唤醒信号资源;
    和/或,
    所述第一上行信道或信号包括:网络设备唤醒信号。
  11. 根据权利要求1所述的方法,其特征在于,所述第一时间段是根据第一下行资源的时域位置确定的。
  12. 根据权利要求11所述的方法,其特征在于,所述第一时间段是根据第一下行资源的时域位置确定的,包括:
    所述第一时间段的时域资源是根据第一下行资源的时域位置确定的;
    或者,
    所述第一时间段的起始位置是根据第一下行资源的时域位置确定的。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一下行资源为网络设备的睡眠模式对应的第三时间段中的下行资源。
  14. 根据权利要求11至13任一项所述的方法,其特征在于,所述第一时间段的起始位置是根据第一下行资源的时域位置确定的,包括:
    所述第一时间段的起始位置为所述第一下行资源的起始位置;或者,
    所述第一时间段的起始位置为所述第一下行资源所在时间单元的起始位置;或者,
    所述第一时间段的起始位置为所述第三时间段的起始位置经过第二偏移值后的第一下行资源的起始位置;或者,
    所述第一时间段的起始位置为所述第三时间段的起始位置经过第二偏移值后的第一下行资源所在时间单元的起始位置。
  15. 根据权利要求1所述的方法,其特征在于,所述第一时间段是根据网络设备的睡眠模式对应的第三时间段确定的。
  16. 根据权利要求15所述的方法,其特征在于,所述第三时间段包括:
    所述网络设备处于所述睡眠模式的时间段;
    或者,
    所述网络设备进入所述睡眠模式的过渡时间对应的时间段,和/或,所述网络设备离开所述睡眠模式的过渡时间对应的时间段。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第三时间段包括所述网络设备进入所述睡眠模式的过渡时间对应的时间段;其中,
    所述第一时间段的起始位置为所述第三时间段的起始位置;
    或者,
    所述第一时间段的起始位置与所述第三时间段的起始位置之间具有第二偏移值。
  18. 根据权利要求17所述的方法,其特征在于,
    所述第二偏移值是基于协议预定义的参数确定的;
    或者,
    所述第二偏移值是基于网络设备的配置参数确定的。
  19. 根据权利要求13至18任一项所述的方法,其特征在于,所述第三时间段的长度根据以下至少之一确定:所述网络设备的配置参数、所述网络设备的通信传输需求、所述终端设备的通信传输需求;其中,
    所述网络设备的通信传输需求包括以下至少之一:所述网络设备对至少一个终端设备的下行业务传输、所述网络设备对至少一个终端设备的上行业务传输、所述网络设备的寻呼消息传输、所述网络设备的系统消息传输、所述网络设备的同步信号块SSB传输、所述网络设备的下行参考信号传输、所述网络设备的物理随机接入信道PRACH检测、所述网络设备的上行参考信号传输;
    所述终端设备的通信传输需求包括以下至少之一:所述终端设备的下行业务传输、所述终端设备的上行业务传输、所述终端设备的寻呼消息传输、所述终端设备请求的系统消息传输、所述终端设备请求的SSB传输、所述终端设备的下行参考信号传输、所述终端设备的PRACH发送、所述终端设备的上行参考信号传输。
  20. 根据权利要求11至19任一项所述的方法,其特征在于,所述终端设备在第一时间段内监听和/或接收第一下行信道或信号之前,所述方法还包括:
    所述终端设备确定所述第一时间段的起始位置。
  21. 根据权利要求1至20任一项所述的方法,其特征在于,
    所述第一时间段的长度根据第一定时器的长度确定,其中,所述第一定时器的启动或重启时刻为所述第一时间段的起始位置对应的时刻;
    或者,
    所述第一时间段的长度根据第一窗口的长度确定,其中,所述第一窗口的起始位置为所述第一时间段的起始位置。
  22. 根据权利要求1至21任一项所述的方法,其特征在于,所述第一时间段的长度是基于网络设备的配置参数确定的。
  23. 根据权利要求4或11所述的方法,其特征在于,
    所述第一下行资源为所述终端设备被配置的终端设备唤醒信号资源;
    或者,
    所述第一下行资源为所述终端设备被配置的物理下行控制信道PDCCH搜索空间对应的资源。
  24. 根据权利要求1至23任一项所述的方法,其特征在于,所述终端设备在第一时间段内监听和/或接收第一下行信道或信号,包括:
    在所述第一时间段内,所述终端设备监听终端设备唤醒信号,和/或,PDCCH搜索空间对应的PDCCH候选。
  25. 根据权利要求24所述的方法,其特征在于,所述在所述第一时间段内,所述终端设备监听终端设备唤醒信号,和/或,PDCCH搜索空间对应的PDCCH候选,包括:
    若所述终端设备被配置终端设备唤醒信号资源,则在所述第一时间段内,所述终端设备监听所述终端设备唤醒信号;
    或者,
    若所述终端设备没有被配置终端设备唤醒信号资源,则在所述第一时间段内,所述终端设备监听所述PDCCH搜索空间对应的PDCCH候选。
  26. 根据权利要求24所述的方法,其特征在于,所述在所述第一时间段内,所述终端设备监听终端设备唤醒信号,和/或,PDCCH搜索空间对应的PDCCH候选,包括:
    在所述第一时间段内,若所述终端设备唤醒信号资源的时域位置,在所述PDCCH搜索空间对应的资源的时域位置之前,则所述终端设备监听所述终端设备唤醒信号;
    或者,
    在所述第一时间段内,若所述PDCCH搜索空间对应的资源的时域位置,在所述终端设备唤醒信号资源的时域位置之前,则所述终端设备监听所述PDCCH搜索空间对应的PDCCH候选。
  27. 根据权利要求26所述的方法,其特征在于,
    在所述第一时间段内,若第一个所述终端设备唤醒信号资源的时域位置,在第一个所述PDCCH搜索空间对应的资源的时域位置之前,则所述终端设备监听所述终端设备唤醒信号;
    或者,
    在所述第一时间段内,若第一个所述PDCCH搜索空间对应的资源的时域位置,在第一个所述终端设备唤醒信号资源的时域位置之前,则所述终端设备监听所述PDCCH搜索空间对应的PDCCH候选。
  28. 根据权利要求27所述的方法,其特征在于,若第一个所述PDCCH搜索空间对应的资源的时域位置,在第一个所述终端设备唤醒信号资源的时域位置之前,所述终端设备监听所述PDCCH搜索空间对应的PDCCH候选,包括:
    在所述第一个所述终端设备唤醒信号资源的时域位置之前,所述终端设备监听所述PDCCH搜索空间对应的PDCCH候选;
    或者,
    从所述第一个所述终端设备唤醒信号资源的时域位置开始,所述终端设备监听所述终端设备唤醒信号。
  29. 根据权利要求24至28任一项所述的方法,其特征在于,所述终端设备监听终端设备唤醒信号,包括:
    若所述终端设备监听到所述终端设备唤醒信号,则所述终端设备监听与所述终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选;
    或者,
    若所述终端设备未监听到所述终端设备唤醒信号,则所述终端设备不监听与所述终端设备唤醒信号关联的PDCCH搜索空间对应的PDCCH候选。
  30. 根据权利要求1至29任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一时间段结束后,所述终端设备不监听所述终端设备唤醒信号,和/或,所述PDCCH搜索空间对应的PDCCH候选。
  31. 一种无线通信方法,其特征在于,所述方法包括:
    网络设备向终端设备发送第一配置信息,所述第一配置信息用于确定监听和/或接收第一下行信道或信号的第一时间段。
  32. 根据权利要求31所述的方法,其特征在于,所述第一配置信息用于确定所述第一时间段的长度。
  33. 根据权利要求32所述的方法,其特征在于,所述第一配置信息用于确定所述第一时间段的长度,包括:
    所述第一配置信息用于确定第一定时器的长度,所述第一时间段的长度为所述第一定时器的长度;
    或者,
    所述第一配置信息用于确定第一窗口的长度,所述第一时间段的长度为所述第一窗口的长度。
  34. 根据权利要求31至33任一项所述的方法,其特征在于,所述第一配置信息用于确定第一上行资源,所述第一时间段是根据所述第一上行资源的时域位置确定的。
  35. 根据权利要求34所述的方法,其特征在于,所述第一上行资源包括网络设备唤醒信号资源,所述第一配置信息用于确定所述网络设备唤醒信号资源。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述网络设备唤醒信号资源上监听网络设备唤醒信号。
  37. 根据权利要求36所述的方法,其特征在于,所述方法还包括:
    若所述网络设备监听到所述网络设备唤醒信号,则所述网络设备通过物理下行控制信道PDCCH搜索空间向所述终端设备发送PDCCH;
    或者,
    若所述网络设备未监听到所述网络设备唤醒信号,则所述网络设备不通过PDCCH搜索空间向所述终端设备发送PDCCH。
  38. 根据权利要求31至33任一项所述的方法,其特征在于,所述第一配置信息用于确定第一下行资源,所述第一时间段是根据所述第一下行资源的时域位置确定的。
  39. 根据权利要求38所述的方法,其特征在于,所述第一下行资源包括终端设备唤醒信号资源,所述第一配置信息用于确定所述终端设备唤醒信号资源。
  40. 根据权利要求39所述的方法,其特征在于,所述方法还包括:
    在所述网络设备的睡眠模式对应的第三时间段内,所述网络设备通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号。
  41. 根据权利要求31至33任一项所述的方法,其特征在于,所述第一配置信息用于确定网络设备唤醒信号资源和终端设备唤醒信号资源。
  42. 根据权利要求41所述的方法,其特征在于,所述方法还包括:
    若所述网络设备监听到网络设备唤醒信号,则所述网络设备通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号。
  43. 根据权利要求41所述的方法,其特征在于,所述方法还包括:
    若所述网络设备监听到网络设备唤醒信号,且所述终端设备唤醒信号资源的时域位置,在所述PDCCH搜索空间对应的资源的时域位置之前,则所述网络设备通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号;
    或者,
    若所述网络设备监听到网络设备唤醒信号,且所述PDCCH搜索空间对应的资源的时域位置,在所述终端设备唤醒信号资源的时域位置之前,则所述网络设备通过所述PDCCH搜索空间向所述终端设备发送PDCCH;
    或者,
    若所述网络设备未监听到网络设备唤醒信号,则所述网络设备不通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号,且所述网络设备不通过所述PDCCH搜索空间向所述终端设备发送PDCCH。
  44. 根据权利要求43所述的方法,其特征在于,
    若所述网络设备监听到所述网络设备唤醒信号,且第一个所述终端设备唤醒信号资源的时域位置,在第一个所述PDCCH搜索空间对应的资源的时域位置之前,则所述网络设备通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号;
    或者,
    若所述网络设备监听到所述网络设备唤醒信号,且第一个所述PDCCH搜索空间对应的资源的时域位置,在第一个所述终端设备唤醒信号资源的时域位置之前,则所述网络设备通过所述PDCCH搜索空间向所述终端设备发送PDCCH。
  45. 根据权利要求44所述的方法,其特征在于,所述方法还包括:
    在所述第一个所述终端设备唤醒信号资源的时域位置之前,所述网络设备通过所述PDCCH搜索空间向所述终端设备发送PDCCH;
    或者,
    从所述第一个所述终端设备唤醒信号资源的时域位置开始,所述网络设备通过所述终端设备唤醒信号资源向所述终端设备发送终端设备唤醒信号。
  46. 根据权利要求40、42至45任一项所述的方法,其特征在于,所述网络设备通过所述终端设备唤醒 信号资源向所述终端设备发送终端设备唤醒信号后,所述方法还包括:
    所述网络设备通过与所述终端设备唤醒信号关联的PDCCH搜索空间向所述终端设备发送PDCCH。
  47. 根据权利要求37或43所述的方法,其特征在于,所述PDCCH搜索空间为与所述网络设备唤醒信号关联的PDCCH搜索空间。
  48. 根据权利要求31至47任一项所述的方法,其特征在于,所述第一配置信息用于确定所述网络设备的睡眠模式对应的第三时间段,所述第一时间段是根据所述第三时间段确定的。
  49. 根据权利要求48所述的方法,其特征在于,所述第三时间段包括:
    所述网络设备处于所述睡眠模式的时间段;
    或者,
    所述网络设备进入所述睡眠模式的过渡时间对应的时间段,和/或,所述网络设备离开所述睡眠模式的过渡时间对应的时间段。
  50. 根据权利要求31至49任一项所述的方法,其特征在于,所述第一配置信息用于确定第一偏移值和/或第二偏移值,所述第一偏移值和/或所述第二偏移值用于确定所述第一时间段。
  51. 根据权利要求31至50任一项所述的方法,其特征在于,所述第一配置信息包括一个或多个配置信息。
  52. 根据权利要求31至51任一项所述的方法,其特征在于,所述第一配置信息包括系统消息、无线资源控制RRC信令、媒体接入层控制单元MACCE和下行控制信息DCI中的至少一种。
  53. 一种无线通信装置,其特征在于,所述装置包括:
    接收模块,用于在第一时间段内监听和/或接收第一下行信道或信号。
  54. 一种无线通信方法,其特征在于,所述装置包括:
    发送模块,用于向终端设备发送第一配置信息,所述第一配置信息用于确定监听和/或接收第一下行信道或信号的第一时间段。
  55. 一种终端设备,其特征在于,所述终端设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如权利要求1至30任一项所述的方法。
  56. 一种网络设备,其特征在于,所述网络设备包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序以实现如权利要求31至52任一项所述的方法。
  57. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,所述计算机程序用于被处理器执行,以实现如权利要求1至30任一项所述的方法,或者如权利要求31至52任一项所述的方法。
  58. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现如权利要求1至30任一项所述的方法,或者如权利要求31至52任一项所述的方法。
  59. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质读取并执行所述计算机指令,以实现如权利要求1至30任一项所述的方法,或者如权利要求31至52任一项所述的方法。
  60. 一种无线通信系统,其特征在于,所述系统包括终端设备和网络设备,所述终端设备用于执行如权利要求1至30任一项所述的方法,和/或,所述网络设备用于执行权利要求31至52任一项所述的方法。
PCT/CN2022/122851 2022-09-29 2022-09-29 无线通信方法、装置、设备、存储介质及程序产品 WO2024065489A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122851 WO2024065489A1 (zh) 2022-09-29 2022-09-29 无线通信方法、装置、设备、存储介质及程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122851 WO2024065489A1 (zh) 2022-09-29 2022-09-29 无线通信方法、装置、设备、存储介质及程序产品

Publications (1)

Publication Number Publication Date
WO2024065489A1 true WO2024065489A1 (zh) 2024-04-04

Family

ID=90475428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122851 WO2024065489A1 (zh) 2022-09-29 2022-09-29 无线通信方法、装置、设备、存储介质及程序产品

Country Status (1)

Country Link
WO (1) WO2024065489A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200145921A1 (en) * 2017-05-04 2020-05-07 Convida Wireless, Llc Wake up signals operation
US20210099954A1 (en) * 2019-10-01 2021-04-01 Samsung Electronics Co., Ltd. Method and apparatus for monitoring wake up signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200145921A1 (en) * 2017-05-04 2020-05-07 Convida Wireless, Llc Wake up signals operation
US20210099954A1 (en) * 2019-10-01 2021-04-01 Samsung Electronics Co., Ltd. Method and apparatus for monitoring wake up signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MODERATOR (INTEL CORPORATION): "Summary #1 for email discussion on energy saving techniques of NW energy saving SI", 3GPP DRAFT; R1-2205141, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 20 May 2022 (2022-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052191786 *
SAMSUNG: "Network energy saving techniques", 3GPP DRAFT; R1-2203920, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153258 *

Similar Documents

Publication Publication Date Title
US20190149275A1 (en) Resource set configurations using automatic repeat request information
US10623981B2 (en) Information transmission method, apparatus, and system
WO2020030085A1 (zh) 一种通信方法及设备
WO2020029890A1 (zh) 接收参考信号的方法和通信设备
EP3905796B1 (en) Method for receiving reference signal, method for transmitting reference signal, and apparatus
RU2669784C1 (ru) Инициирование pdcch, подходящее для устройств мтс
JP2016220242A (ja) ワイヤレス通信ネットワークの無線リソース管理エンティティに対するモバイル端末についての情報の提供
US20230026953A1 (en) Drx control method and apparatus
US20220394664A1 (en) Paging method and apparatus
US20160219518A1 (en) Apparatus, System and Method for Optimizing Power Conservation
TW202021391A (zh) 非連續傳輸的方法和設備
CN111405642B (zh) 一种消息发送方法、接收方法、装置和设备
US20160014691A1 (en) Method for discontinuous reception (drx) in dual connectivity
JP2023106571A (ja) Pdcchの監視方法、端末装置及びネットワーク装置
WO2020181441A1 (zh) 通信方法、装置及系统
CN112312589B (zh) 一种节能信号的传输方法、基站及终端设备
WO2018188481A1 (en) Dynamic low latency configuration
US10873430B2 (en) Signal sending method and apparatus
CA3047487C (en) Communication method, terminal device and network device
WO2018106658A1 (en) Systems and methods for channel access in a multefire environment
EP3042539A1 (en) Radio base station and method therein
WO2024082813A1 (zh) Harq进程的分配方法、装置、基站及存储介质
KR102313704B1 (ko) 불연속 수신을 위한 방법과 장치
WO2024065489A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品
WO2024065487A1 (zh) 无线通信方法、装置、设备、存储介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960125

Country of ref document: EP

Kind code of ref document: A1