WO2018188481A1 - Dynamic low latency configuration - Google Patents

Dynamic low latency configuration Download PDF

Info

Publication number
WO2018188481A1
WO2018188481A1 PCT/CN2018/080818 CN2018080818W WO2018188481A1 WO 2018188481 A1 WO2018188481 A1 WO 2018188481A1 CN 2018080818 W CN2018080818 W CN 2018080818W WO 2018188481 A1 WO2018188481 A1 WO 2018188481A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating mode
latency
request
operate
configuring
Prior art date
Application number
PCT/CN2018/080818
Other languages
French (fr)
Inventor
Arnaud Meylan
Can ZHAO
Suli Zhao
Jiming Guo
Zhanyi Liu
Jie Mao
Lizhong TENG
Shyamal Ramachandran
Uppinder Babbar
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Publication of WO2018188481A1 publication Critical patent/WO2018188481A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following relates generally to wireless communication and more specifically to dynamic low latency configurations.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., a Long Term Evolution (LTE) system, or a New Radio (NR) system) .
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • LTE Long Term Evolution
  • NR New Radio
  • a wireless multiple-access communications system may include a number of base stations or access network nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may support applications, such as multiplayer gaming applications, social gaming applications, etc., whose quality depends on the latency associated with communications with a base station. In such cases, high latency may result in poor quality for certain applications and low customer satisfaction.
  • the described techniques relate to improved methods, systems, devices, or apparatuses that support dynamic low latency configurations.
  • the examples described herein provide a procedure enabling a UE to operate in a low latency mode to improve the quality or functionality of an application operating on the UE.
  • a user equipment UE may communicate with a base station using various techniques designed to limit power consumption and improve throughput at the UE.
  • a user of a UE may request to operate in a low latency mode, and a hardware or software component of the UE may receive the request and configure various other components of the UE to operate in the low latency mode.
  • the UE may configure one or more parameters associated with a power state of a device within the UE.
  • a method for wireless communication at a UE may include receiving, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode, configuring a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based on receiving the request, and communicating according to the first operating mode and the one or more parameters associated with the power state.
  • the apparatus may include means for receiving, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode, means for configuring a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based on receiving the request, and means for communicating according to the first operating mode and the one or more parameters associated with the power state.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be operable to cause the processor to receive, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode, configure a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based on receiving the request, and communicate according to the first operating mode and the one or more parameters associated with the power state.
  • a non-transitory computer readable medium for wireless communication at a UE is described.
  • the non-transitory computer-readable medium may include instructions operable to cause a processor to receive, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode, configure a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based on receiving the request, and communicate according to the first operating mode and the one or more parameters associated with the power state.
  • configuring the one or more parameters associated with the power state of the device includes reconfiguring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
  • receiving the request to operate in the first operating mode includes receiving the request to operate in the first operating mode from an upper layer at the UE.
  • receiving the request to operate in the first operating mode includes determining that an application associated with the first latency constraint may be scheduled for foreground processing.
  • configuring the device to operate in the first operating mode may be based on determining that the application associated with the first latency constraint may be scheduled for foreground processing.
  • the first latency constraint may be selected from a plurality of latency constraints that includes the first latency constraint, the second latency constraint, and a third latency constraint that may be less than the first latency constraint.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for selecting a serving data network based on receiving the request, where the serving data network includes a wireless wide area network (WWAN) or a wireless local area network (WLAN) .
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for determining a first latency value associated with the WWAN and a second latency value associated with the WLAN.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for comparing the first latency value and the second latency value.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for selecting the serving data network based on the comparison.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for identifying a destination address associated with traffic having the first latency constraint. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a first signal to the destination address via the WWAN and a second signal to the destination address via the WLAN. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for determining the first latency value based on a latency associated with the transmission of the first signal and the second latency value based on a latency associated with the transmission of the second signal.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a request for a first paging cycle based on receiving the request to operate in the first operating mode, where a first duration of the first paging cycle may be less than a second duration of a second paging cycle configured for the second operating mode.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a request for a first discontinuous reception (DRX) cycle based on receiving the request to operate in the first operating mode, where a first duration of the first DRX cycle may be less than a second duration of a second DRX cycle configured for the second operating mode.
  • DRX discontinuous reception
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a request for a first scheduling request (SR) interval based on receiving the request to operate in the first operating mode, where a first duration of the first SR interval may be less than a second duration of a second SR interval configured for the second operating mode.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for selecting a first radio access technology (RAT) based on receiving the request, where the first RAT supports the first latency constraint.
  • RAT radio access technology
  • configuring the device to operate in the first operating mode includes configuring the device to transmit signaling or data periodically to a network.
  • a periodicity of the signaling or data may be based on a duration of a radio resource control (RRC) inactivity timer.
  • RRC radio resource control
  • a periodicity of the signaling or data may be based on a duration of a DRX cycle inactivity timer.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for selecting a subscriber identification module (SIM) from a set of SIMs based on receiving the request, where the communicating may be based on a subscription associated with the selected SIM.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for identifying a collision between communications with a first subscription associated with a first SIM in the first operating mode having the first latency constraint and communications with a second subscription associated with a second SIM in the second operating mode having the second latency constraint, where the first SIM may be selected based on a comparison of the first latency constraint to the second latency constraint.
  • SIM subscriber identification module
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for configuring the device to prioritize communications with a first subscription associated with a first SIM in the first operating mode over other communications with a second subscription associated with a second SIM in the second operating mode.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting, to the device, an indication of a first traffic flow having the first latency constraint.
  • the indication includes at least one of an internet protocol (IP) filter, an in-band marker or header, an indication of a packet data network (PDN) or network slice associated with the first latency constraint, or an IP packet header marking, or any combination thereof.
  • IP internet protocol
  • PDN packet data network
  • the request may be received at an application processor, and the indication may be transmitted from the application processor to the device.
  • configuring the device to operate in the first operating mode includes configuring the device to prioritize the first traffic flow having the first latency constraint relative to a second traffic flow.
  • Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for receiving a plurality of beacons comprising a plurality of traffic indication maps (TIMs) . Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transitioning to a wake-up mode after receiving each TIM of the plurality of TIMs.
  • TIMs traffic indication maps
  • configuring the device to operate in the first operating mode includes configuring the device with a first inactivity timer, where a first duration of the first inactivity timer may be greater than a second duration of a second inactivity timer configured for the second operating mode.
  • configuring the device to operate in the first operating mode includes configuring a graphics scheme for the device based on the first latency constraint. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring a power manager or a clock manager, or both, to prioritize latency reduction over power management. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring one or more processors or operating systems to reprioritize a scheduled task based on the first latency constraint. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring the device to avoid performing at least one process.
  • FIGs. 1-3 illustrate examples of wireless communications systems that support a dynamic low latency configuration in accordance with various aspects of the present disclosure
  • FIG. 4 illustrates an example of a process flow that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure
  • FIGs. 5-7 show diagrams of a device or devices that support a dynamic low latency configuration in accordance with various aspects of the present disclosure
  • FIG. 8 illustrates a diagram of a system including a device that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure
  • FIGs. 9-10 illustrate methods that support a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • the described techniques relate to improved methods, systems, devices, or apparatuses that support dynamic low latency configurations.
  • the examples described herein provide a procedure enabling a UE to operate in a low latency mode to improve the quality or functionality of an application operating on the UE.
  • a user equipment UE may communicate with a base station using various techniques designed to limit power consumption and improve throughput at the UE.
  • a user of a UE may request to operate in a low latency mode, and a hardware or software component of the UE may receive the request and configure various other components of the UE to operate in the low latency mode.
  • the UE may configure one or more parameters associated with a power state of a device within the UE.
  • a user equipment may support various applications whose quality depends on the latency of communications between the UE and a network device.
  • the UE may be configured to prioritize power efficiency and throughput over latency. For example, the UE may be configured to frequently transition to an idle mode or a sleep mode to save power. In such cases, in order to receive downlink transmissions from a network device or transmit uplink transmissions to a network device, the UE may transition out of idle mode or sleep mode, which may take a relatively long time resulting in high latency.
  • wireless communications systems may support techniques for dynamically configuring a low latency mode of operation when low latency is desired.
  • a UE may include hardware or software components, or both, that may receive a request to operate in a low latency mode (e.g., from a user or an application) and configure the low latency mode of operation for the UE.
  • the UE may be configured with a shorter paging cycle or a shorter discontinuous reception (DRX) cycle to allow the UE to transition out of an idle or sleep mode to a connected or awake mode more frequently, which may, in turn, provide more opportunities for the UE to communicate with a network device.
  • DRX discontinuous reception
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • the wireless communications system 100 may include wireless local area networks (WLANs) and wireless wide area networks (WWANs) .
  • the wireless communications system 100 includes base stations 105, UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • NR New Radio
  • wireless communications system 100 may support enhanced broadband communications, ultra-reliable (i.e., mission critical) communications, low latency communications, and communications with low-cost and low-complexity devices.
  • ultra-reliable i.e., mission critical
  • Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Each base station 105 may provide communication coverage for a respective geographic coverage area 110.
  • Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105 or downlink transmissions from a base station 105 to a UE 115.
  • Control information and data may be multiplexed on an uplink or downlink channel according to various techniques. Control information and data may be multiplexed on a downlink channel, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • TDM transmission time interval
  • FDM frequency division multiplexing
  • hybrid TDM-FDM techniques hybrid TDM-FDM techniques.
  • the control information transmitted during a transmission time interval (TTI) of a downlink channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region and one or
  • UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile.
  • a UE 115 may also be referred to as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • a UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a personal electronic device, a handheld device, a personal computer, a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, a machine type communication (MTC) device, an appliance, an automobile, an automobile component, a train, a train component, or the like.
  • PDA personal digital assistant
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communication
  • a mobile device may be variously referred to as a UE and/or a station (STA) ; for example, the device may be capable of communicating according to various radio access technologies (RATs) or protocols and may thus be appropriately described as either a UE or STA as may relate to a particular RAT or protocol being employed.
  • RATs radio access technologies
  • Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., S1, etc. ) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., X2, etc. ) either directly or indirectly (e.g., through core network 130) . Base stations 105 may perform radio configuration and scheduling for communication with UEs 115, or may operate under the control of a base station controller (not shown) . In some examples, base stations 105 may be macro cells, small cells, hot spots, or the like. Base stations 105 may also be referred to as evolved NodeBs (eNBs) 105.
  • eNBs evolved NodeBs
  • a base station 105 may be connected by an S1 interface to the core network 130.
  • the core network may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) .
  • the MME may be the control node that processes the signaling between the UE 115 and the EPC. All user Internet Protocol (IP) packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operators IP services.
  • the operators IP services may include the Internet, the Intranet, an IP Multimedia Subsystem (IMS) , and a Packet-Switched (PS) Streaming Service.
  • IMS IP Multimedia Subsystem
  • PS Packet-Switched
  • wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • PDCP Packet Data Convergence Protocol
  • a Radio Link Control (RLC) layer may in some cases perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency.
  • HARQ hybrid automatic repeat request
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network device 105, or core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • PHY Physical
  • a TTI may be defined as the smallest unit of time in which a base station 105 may schedule a UE 115 for uplink or downlink transmissions.
  • a base station 105 may allocate one or more TTIs for downlink communication with a UE 115.
  • the UE 115 may then monitor the one or more TTIs to receive downlink signals from the base station 105.
  • a subframe may be the basic unit of scheduling or TTI.
  • a different, reduced-duration TTI e.g., a short TTI
  • Wireless communications system 100 may employ various TTI durations, including those that facilitate ultra-reliable low latency communications (URLLC) and mobile broadband (MBB) communications, in addition to other types of communication associated with LTE and NR.
  • URLLC ultra-reliable low latency communications
  • MBB mobile broadband
  • a resource element may consist of one symbol period and one subcarrier (e.g., a 15 kHz frequency range) .
  • the numerology employed within a system i.e., subcarrier size, symbol-period duration, and/or TTI duration
  • the numerology may be selected or determined in view of an inherent tradeoff between latency for low latency applications and efficiency for other applications, for example.
  • the duration of time slots allocated for MBB communications may be greater than the duration of time slots allocated for URLLC. Time slots allocated for URLLC may be referred to as mini-slots.
  • a UE 115 may store information regarding a subscriber identity associated with wireless communications system 100 on a subscriber identification module (SIM) .
  • SIM may be an integrated circuit that securely stores the international mobile subscriber identity (IMSI) and the related key used to identify and authenticate UE 115.
  • the IMSI may also include an ID for the network operator of wireless communications system 100.
  • the SIM may also contain a unique serial number (e.g., an integrated circuit card ID (ICCID) ) , security authentication and ciphering information, temporary information related to the local network, a list of the services, a personal identification number (PIN) , and a personal unblocking key (PUK) for PIN unlocking.
  • the SIM may be a circuit embedded in a removable plastic card.
  • a UE 115 may be configured with a single SIM or with multiple SIMs (e.g., dual SIMs) in various examples.
  • Wireless communications system 100 may include UEs 115 that support applications such as multiplayer gaming, social gaming, social media applications, etc.
  • the quality of these applications may depend on the latency (e.g., IP latency) associated with wireless communications with a serving base station 105. This dependency on latency may be seen in, for example, a game where a user posts a packet to a group and challenges other users to “grab” the packet as quickly as possible.
  • a UE 115 may be notified that the packet was posted (e.g., via a mobile terminated (MT) message) , and the UE 115 may transmit signaling to a base station 105 to “grab” the packet (e.g., via a mobile originated (MO) message) .
  • MT mobile terminated
  • MO mobile originated
  • a user’s ability to compete with other users may depend on the latency associated with receiving the notification that the packet was posted and transmitting the signaling to “grab” the packet.
  • low latency services at a UE 115 may be desirable in wireless communications system 100.
  • Wireless communications system 100 may support low latency communications between a UE 115 and a base station 105 to improve the quality of applications 175 running on a UE 115, such as on application processor (AP) 180.
  • AP 180 may include or run a high level operating system (HLOS) , which may support other components.
  • HLOS high level operating system
  • API application programming interface
  • SDK software development kit
  • the API 185 or SDK 190 may receive a request to operate in a low latency mode from, for example, an application 175 (e.g., an upper layer) or a user, and the API 185 or SDK 190 (or an AP 180 hosting the SDK) may configure the low latency mode of operation based on receiving the request.
  • an AP 180, an API 185, or an SDK 190 may configure a device, such as a modem processor (MP) 196, at UE 115 to prioritize low latency over throughput or power efficiency.
  • MP modem processor
  • the AP 180, API 185, or SDK 190 may configure a graphics 197 processor or card to render graphics in a manner that promotes lower latency (e.g., low-resolution rendering) .
  • the AP 180, API 185, or SDK 190 may configure a power manager 198 to maintain a sleep cycle or operating condition that supports low latency.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • Wireless communications system 200 includes base station 105-a and UE 115-a, which may be examples of a base station 105 and a UE 115 described with reference to FIG. 1.
  • Base station 105-a may provide communication coverage for a coverage area 110-a.
  • UE 115-a may include an AP 210 and an MP 215.
  • Wireless communications system 200 may support low latency communications between base station 105-a and UE 115-a on resources of a carrier 205.
  • UE 115-a may support a power saving mode which may allow UE 115-a to save power by entering an idle mode.
  • base station 105-a may transmit a downlink transmission (e.g., an MT message) to UE 115-a when UE 115-a is in the idle mode.
  • UE 115-a may transition to a connected mode to receive the downlink message.
  • UE 115-a may transition to the connected mode after receiving a paging message from base station 105-a.
  • UE 115-a may have to wait a relatively significant amount of time before receiving the paging message (e.g., a few seconds) .
  • transitioning to the connected mode after receiving the paging message may also take a significant amount of time (e.g., hundreds of milliseconds) .
  • the latency associated with transitioning from an idle mode to a connected mode may be high.
  • a UE 115-a may support a DRX cycle which may also allow UE 115-a to save power by entering a sleep mode.
  • UE 115-a may have data to transmit to base station 105-a (e.g., MO messages) or base station 105-a may have data to transmit to UE 115-a (e.g., MT messages) , and UE 115-a may be in a sleep mode.
  • UE 115-a may have to transition out of the sleep mode (e.g., wake up) before it can transmit or receive the data.
  • the time taken to transition out of the sleep mode may depend on the duration of a DRX cycle supported by UE 115-a, and, in some cases, it may take a significant amount of time for UE 115-a to wake up and communicate with base station 105-a (e.g., hundreds of milliseconds) . Thus, the latency associated with transitioning out of a sleep mode may be high.
  • Wireless communications system 200 may support efficient techniques for reducing the latency associated with communications between UE 115-a and base station 105-a.
  • AP 210 at UE 115-a may include an API or SDK used to configure a low latency mode of operation to improve a user’s experience for an application running on UE 115-a.
  • the AP 210 may configure the low latency mode upon receiving a request from an application running on UE 115-a (e.g., an upper layer) or from a user interacting with UE 115-a.
  • AP 210 may detect when certain applications are being processed in the foreground, and AP 210 may determine to configure the low latency mode based on determining that a certain application is being processed in the foreground.
  • the AP 210 may configure the low latency mode for a user at a specific time of day (e.g., evenings) , on specific days (e.g., holidays) , or when a specific uniform resource locator (URL) is requested by the user.
  • a specific time of day e.g., evenings
  • specific days e.g., holidays
  • URL uniform resource locator
  • AP 210 may determine if the low latency mode is supported by UE 115-a. In some cases, certain applications may be associated with the low latency mode (or a certain low latency constraint) , and when any of these applications are running on the UE 115-a, AP 210 may determine that the low latency mode is supported. In some cases, AP 210 may receive a message from an operator that indicates that the low latency mode is supported by UE 115-a. In any case, when AP 210 identifies the request and determines that the low latency mode is supported, AP 210 may configure the low latency mode of operation for UE 115-a. Specifically, AP 210 may configure specific subsystems of UE 115-a to operate in a low latency mode.
  • AP 210 may transmit a request to base station 105-a for a shorter paging cycle, or AP 210 may configure MP 215 to transmit the request to base station 105-a for the shorter paging cycle.
  • UE 115-a When UE 115-a is configured with the shorter paging cycle, UE 115-a may monitor for paging messages from base station 105-a more frequently. The shorter paging cycle may thus reduce the latency associated with receiving an MT message from base station 105-a since UE 115-a may spend less time in an idle mode before transitioning to a connected mode to receive the MT message.
  • AP 210 may request a shorter DRX cycle (e.g., in a connected radio state) .
  • the shorter DRX cycle may also reduce the latency associated with receiving an MT message from base station 105-a since UE 115-a may spend less time in a sleep mode before waking up to receive the MT message.
  • AP 210 may request a shorter scheduling request (SR) interval which may provide more opportunities for UE 115-a to request resources for uplink communication. Accordingly, UE 115-a may be able to transmit MO messages to base station 105-a within less time which may reduce the latency at UE 115-a.
  • SR scheduling request
  • AP 210 may configure UE 115-a to transmit signals periodically to keep UE 115-a awake or in a connected mode.
  • UE 115-a may be configured to transition from a connected mode to an idle mode after an inactivity timer has expired (e.g., 10 -15 seconds) .
  • AP 210 may configure UE 115-a to transmit signals (e.g., pings) or data periodically based on the duration of the inactivity timer or an estimation of the duration of the inactivity timer (e.g., immediately or shortly before the timer expires) so that UE 115-a remains in a connected mode.
  • UE 115-a may transmit the signals to an unreachable IP address or with incorrect properties (e.g., incorrect headers, incorrect redundancy check bits, or with an IP time-to-live field set to zero) to avoid receiving a response from a network (e.g., to save network resources) .
  • UE 115-a may determine the duration of the inactivity timer used by a wireless network (e.g., wireless network 200) by determining the time between a most recent exchange (e.g., traffic exchange) with a base station within the wireless network (e.g., base station 105-a) and a connection release message received from the base station.
  • a wireless network e.g., wireless network 200
  • UE 115-a may be configured to transition from an on-duration to an off-duration after a DRX inactivity timer has expired (e.g., 100-300ms) .
  • AP 210 may configure UE 115-a to transmit signals or data periodically based on the duration of the DRX inactivity cycle or an estimation of the duration of the DRX inactivity timer (e.g., immediately or shortly before the timer expires) so that UE 115-a remains awake.
  • UE 115-a may transmit normal uplink signals or some dummy layer 2 (L2) signals generated by MP 215 to allow AP 210 to remain in a low power state.
  • the dummy signals may be an SR transmission from UE 115-a followed by MAC padding (e.g., UE 115-a may avoid transmitting a buffer status report (BSR) to request uplink resources) .
  • BSR buffer status report
  • AP 210 may configure one or more parameters associated with a power mode of MP 215 (e.g., configure or reconfigure one or more parameters associated with a power state of MP 215) .
  • the AP 210 may configure one or more parameters associated with the MP 215 so that the MP 215 is not operating in a low power state (e.g., low-power mode) , and instead the MP 215 is configured to operate in a high or relatively higher power state as compared to the low power state.
  • a low power state e.g., low-power mode
  • AP 210 may reduce or eliminate the wakeup time of MP 215 (e.g., the time taken by MP 215 or components of MP 215 to wakeup) by modifying sleep rules for various components of MP 215 (e.g., by shortening the sleep cycles of various components of MP 215) .
  • AP 210 may configure a peripheral component interconnect (PCI) link or network on chip (NOC) link between MP 215 and AP 210 to remain in a higher power state to avoid wakeup latency.
  • AP 210 may also configure MP 215 with a shorter data aggregation timer for transfer of data between AP 210 and MP 215 and/or for transfer between MP 215 and AP 210.
  • PCI peripheral component interconnect
  • NOC network on chip
  • AP 210 may configure a digital signal processor (DSP) at MP 215 to avoid power collapsing, configure various clocks at MP 215 to keep running, configure radio frequency (RF) components to stay awake, configure firmware components to keep running, configure channel estimation, time tracking, and frequency tracking loops to keep running, or any combination thereof, or the like.
  • DSP digital signal processor
  • RF radio frequency
  • MP 215 may be able to reduce the latency associated with transitioning out of a low power state, such as a sleep mode (e.g., from approximately 20ms to a few milliseconds or less) .
  • AP 210 may configure parameters associated with other subsystems to reduce the latency experienced by a user.
  • AP 210 may enable a simpler graphics scheme at UE 115-a to focus on quick rendering rather than beautification.
  • AP 210 may disable animations within an application running on UE 115-a.
  • AP 210 may transmit an indication to a power manager and/or a clock manager to prioritize latency over power consumption. As such, the power manager or clock manager may keep components of a UE 115-a running to reduce latency at UE 115-a.
  • AP 210 may increase the priority of selected tasks at UE 115-a (e.g., application requesting) so that these tasks are performed with limited latency.
  • AP 210 may consider a battery charge level of UE 115-a, whether the UE 115-a is charging as well as thermal inputs, or the like, when making the decision to configure parameters for enabling or disabling low latency for various subsystems.
  • FIG. 2 describes that the above techniques are performed by an API or SDK stored in AP 210, the above techniques may be performed by any software stored in any component of UE 115-a.
  • FIG. 3 illustrates an example of a wireless communications system 300 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • Wireless communications system 300 includes access point 105-b and STA 115-b, which may be examples of an access point or base station 105 and a STA or UE 115 described with reference to FIG. 1.
  • Access point 105-b may provide communication coverage for a coverage area 110-b.
  • STA 115-b may include an AP 310 and an MP 315.
  • Wireless communications system 300 may support low latency communications between access point 105-b and STA 115-b on resources of a carrier 305.
  • STA 115-b may support a power saving mode to utilize power efficiently.
  • STA 115-b may control when to enter or leave the power saving mode and may transmit signaling to access point 105-b to indicate when it is entering or leaving the power saving mode.
  • access point 105-b may buffer downlink traffic for STA 115-b. If access point 105-b identifies downlink traffic for STA 115-b, access point 105-b may transmit a beacon with a traffic indication map (TIM) that indicates the presence of downlink traffic buffered for STA 115-b.
  • TIM traffic indication map
  • STA 115-b may receive multiple TIMs that indicate the presence of downlink traffic, and STA 115-b may keep track of the number of TIMs received that indicate the presence of downlink traffic. Once STA 115-b has received a threshold number of TIMs, STA 115-b may transition out of the power saving mode to receive the downlink traffic from access point 105-b.
  • STA 115-b may determine to prioritize latency over power efficiencies (e.g., power consumption) to improve the quality of an application running on STA 115-b.
  • an API or SDK at AP 310 may configure STA 115-b to operate in a low latency mode.
  • STA 115-b may leave a power saving mode and proceed to receive a beacon each time the beacon with a TIM is scheduled for transmission by access point 105-b.
  • the beacon with the TIM may indicate the presence of downlink traffic for STA 115-b.
  • STA 115-b may skip reception of some beacons that include TIM (e.g., but skip less than is configured in another mode of operation) . Accordingly, STA 115-b may be able to receive indication of the presence of MT messages, and initiate retrieval from access point 105-b with less latency.
  • AP 310 may configure STA 115-b to operate using an inactivity timer with a longer duration in a low latency mode so that STA 115-b may remain awake (e.g., avoid transitioning to the power saving mode) for a longer period of time. In other cases, AP 310 may configure STA 115-b to operate without a power saving mode such that STA 115-b may be available to receive downlink traffic from access point 105-b at any time.
  • the above techniques may reduce latency associated with accessing a channel for MT or MO messages since, at a given time, STA 115-b may be more likely to be available to communicate with access point 105-b.
  • FIG. 3 describes that the above techniques are performed by an API or SDK stored in AP 310, the above techniques may be performed by any software stored in any component of STA 115-b.
  • FIG. 4 illustrates an example of a process flow 400 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • Process flow 400 illustrates aspects of techniques performed by a network device 105, which may be an example of a base station 105 or an access point 105 described with reference to FIGs. 1-3.
  • Process flow 400 also illustrates aspects of techniques performed by a UE 115-c, which may be an example of a UE 115 or STA 115 described with reference to FIGs. 1-3.
  • UE 115-c may include an AP 405, first SIM 410-a, second SIM 410-b, and MP 415. Although multiple SIMs 410 are depicted, those skilled in the art will appreciate that the various techniques may apply to UEs 115 with a single SIM or multiple SIMs.
  • AP 405 may identify a low latency request for UE 115-c to operate in a low latency mode.
  • the low latency request may include a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode.
  • AP 405 may receive an indication from network device 105 (e.g., a policy controller) that indicates that a network subscription at UE 115-a supports the first latency constraint (e.g., at first SIM 410-a or second SIM 410-b, or both) .
  • the request to operate in the first operating mode may include determining that an application associated with the first latency constraint is scheduled for foreground processing.
  • the first latency constraint may be selected from a plurality of latency constraints that includes the first latency constraint, the second latency constraint, and a third latency constraint that is less than the first latency constraint.
  • the request may be received at an SDK or API from an application (e.g., an upper layer) , and the SDK or API and the application may be components of AP 405, as described and depicted with reference to FIG. 1.
  • AP 405 or MP 415 may communicate with network device 105 to establish a configuration for the first operating mode (e.g., the low latency mode) .
  • AP 405 or MP 415 may cause UE 115-c to transmit a request for a first paging cycle based on receiving the low latency request to operate in the first operating mode, where a first duration of the first paging cycle is less than a second duration of a second paging cycle configured for the second operating mode.
  • AP 405 or MP 415 may cause UE 115-c to transmit a request for a first DRX cycle based on receiving the low latency request to operate in the first operating mode, where a first duration of the first DRX cycle is less than a second duration of a second DRX cycle configured for the second operating mode. Additionally or alternatively, AP 405 or MP 415 may cause UE 115-c to transmit a request for a first SR interval based on receiving the low latency request to operate in the first operating mode, where a first duration of the first SR interval is less than a second duration of a second SR interval configured for the second operating mode.
  • UE 115-c when UE 115-c is reconfigured to operate in the first operating mode (e.g., the low latency mode) , UE 115-c may avoid having the AP 405 and/or MP 415 perform at least one other process (e.g., one or more UE-only techniques substantially unrelated to executing the low latency communications) and instead have the AP 405 and/or MP 415 allocate an increased portion of their respective processing power to lowering latency associated with communications with access point 105-c or base station 105-d.
  • the first operating mode e.g., the low latency mode
  • AP 405 or MP 415 may transmit a request to access point 105-c or base station 105-d for access point 105-c or base station 105-d to reconfigure its operations to support the low latency mode at UE 115-c.
  • Access point 105-c or base station 105-d may receive the request and reconfigure its operations based on its capabilities.
  • AP 405 may cause UE 115-c to select a serving data network to provide data services to UE 115-c for low latency traffic based on a latency associated with communications with each of the available data networks.
  • AP 405 may cause UE 115-c to measure or identify the latency associated with communications with each data network, and AP 405 may cause UE 115-c to select the data network with the lower latency constraint.
  • AP 405 may determine a first latency value associated with access point 105-c and a second latency value associated with base station 105-d. AP 405 may then compare the first latency value and the second latency value and may select a data network based on the comparison.
  • the latency value for each network device may correspond to a round trip time of a signal (e.g., ping) transmitted to a server via each network device.
  • the name, URL, or IP address of the server may be specified by an application, and may be, for example, the name, URL, or IP address of the server with which the application will communicate.
  • AP 405 may identify the IP address (or destination address) , transmit a first signal to the destination address via the WWAN and a second signal to the destination address via the WLAN, and determine the first latency value based on a latency associated with the transmission of the first signal and the second latency value based on a latency associated with the transmission of the second signal.
  • AP 405 may then select the data network associated with the lower latency value.
  • AP 405 may be able to identify an interface for reaching an IP address with limited latency in accordance with specific use cases.
  • AP 405 may determine the latency values associated with transmitting signals to the WWAN and WLAN based on the request for the low latency mode of operation (e.g., whether the request is for initial low latency (e.g., for call setup) or for repeated low latency (e.g., for gaming) ) .
  • AP 405 may determine the latency value associated with a network based on the latency associated with a signal transmitted to the network when a radio at UE 115-c is initially in an idle state, and, for a request for repeated low latency, AP 405 may determine the latency associated with a network based on the latency associated with a signal transmitted to the network when a radio at UE 115-c is initially in a connected state. Since different wireless networks may be associated with different latencies for different types of communications, AP 405 may use these techniques to identify a suitable network for a particular type of communications. For example, AP 405 may determine to communicate with a WLAN for a call setup, and AP 405 may determine to communicate with a WWAN for gaming.
  • a WLAN may not be available or AP 405 may determine that a WWAN is associated with a lower latency constraint than a WLAN.
  • UE 115-c may communicate with base station 105-d, and AP 405 may select a RAT for communication with base station 105-d (e.g., based on identifying the request at 420) .
  • AP 405 may configure UE 115-c to transmit an indication of a preferred RAT to base station 105-d.
  • AP 405 may select the RAT with the shortest TTI length, shortest paging cycle, shortest DRX cycle, shortest SR interval, or lowest backhaul latency.
  • AP 405 may configure MP 415 to modify measurement results (e.g., included in a measurement report) to rank RATs with shorter TTIs higher to increase the chances of a handover towards these RATs.
  • AP 405 may configure MP 415 to avoid including RATs with long TTIs, long paging cycles, etc. in a measurement report transmitted to base station 105-d.
  • AP 405 may also rank RATs that support lower latency higher for UE driven mobility to increase the chances of a handover towards these RATs.
  • AP 405 may configure MP 415 for the first mode of operation (e.g., a low latency mode of operation) .
  • AP 405 may configure UE 115-c to operate in the first operating mode based on receiving the low latency request at 420. Additionally or alternatively, AP 405 may configure UE 115-c to operate in the first operating mode based on determining that an application associated with the first latency constraint is scheduled for foreground processing. Further, AP 405 may configure UE 115-c to operate in the first operating mode based on determining that a network subscription at UE 115-c supports the first latency constraint.
  • AP 405 may configure UE 115-c for operation using the paging cycle, DRX cycle, and the SR interval requested at 425. Additionally or alternatively, AP 405 may configure UE 115-c to transmit signaling or data periodically. A periodicity of the signaling or data may be based on a duration of an RRC inactivity timer to keep UE 115-c in a connected mode or a DRX cycle inactivity timer to keep UE 115-c awake.
  • AP 405 may also configure UE 115-c with a first inactivity timer (e.g., for a power saving mode) , where a first duration of the first inactivity timer is greater than a second duration of a second inactivity timer configured for the second mode of operation.
  • a first inactivity timer e.g., for a power saving mode
  • AP 405 may configure one or more parameters associated with a power state of UE 115-c (e.g., sleep rules associated with components of MP 415) .
  • AP 405 may also configure other subsystems for operating in the first mode of operation (e.g., a low latency mode of operation) .
  • AP 405 may configure a graphics scheme for UE 115-c based on the first latency constraint, configure a power manager or a clock manager, or both, to prioritize latency reduction over power management, or configure one or more processors or operating systems to reprioritize a scheduled task based on the first latency constraint.
  • AP 210 may determine whether to enable or disable a low latency mode for certain subsystems based on a battery level of UE 115-c, whether UE 115-c is charging, thermal inputs at UE 115-c. or any combination thereof.
  • UE 115-c may include multiple SIMs (e.g., a first SIM 410-a and a second SIM 410-b) and a single modem (e.g., MP 415) .
  • Each SIM may contain subscriptions for accessing a different network.
  • UE 115-c may communicate with multiple networks using the multiple SIMs by sharing a single modem dynamically.
  • first SIM 410-a may be in an idle mode and second SIM 410-b may be in a connected mode.
  • any paging received by MP 415 may apply to the first SIM 410-a in the idle mode.
  • each SIM may be in communication with a network, and each SIM may request modem resources to support communications with a corresponding network.
  • the MP 415 may support an algorithm for designating the modem resources for communication with one of the SIMs, and the algorithm may prevent deadlocks using various techniques to ensure that each SIM is given equal opportunities to communicate with a network device 105.
  • AP 405 may configure MP 415 to prioritize communications with a SIM transmitting or receiving low latency traffic. For instance, AP 405 may configure MP 415 to prioritize communications transporting low latency data. In some examples, this may involve AP 405 configuring MP 415 to prioritize a default data subscription (DDS) over another subscription. In some cases, AP 405 may select a SIM from a set of SIMs to be given priority to use modem resources based on receiving the low latency request at 420.
  • DDS data subscription
  • the first SIM 410-a may be selected for communications using the modem resources based on a comparison of the first latency constraint to the second latency constraint.
  • the API component e.g., API 185) on AP 405 may indicate one or more selected flows of traffic that require prioritized handling within their radio bearer relative to one or more other flows of traffic.
  • AP 405 and MP 415 may prioritize the traffic of these one or more selected flows (e.g., move traffic to the head of a transmit queue) relative to the one or more other flows of traffic.
  • AP 405 may identify this traffic via 5-tuple or IP type of service header marks.
  • UE 115-c may communicate with network device 105 based on the first mode of operation (e.g., the low latency mode of operation) .
  • the first mode of operation e.g., the low latency mode of operation
  • AP 405 may transmit an indication of low latency traffic transferred to MP 415 to allow MP 415 to map the low latency traffic to a low latency bearer. That is, AP 405 may transmit an indication of traffic having the first latency constraint to MP 415.
  • the indication may include an IP filter (e.g., a source/destination address and port) , an in-band marker (e.g., indicating an IP type of service) or header, an indication of a PDN or network slice associated with the first latency constraint (e.g., a low latency service) , or an IP packet header marking (e.g., a specific differentiated services code point (DSCP) ) , or any combination thereof.
  • IP filter e.g., a source/destination address and port
  • an in-band marker e.g., indicating an IP type of service
  • an indication of a PDN or network slice associated with the first latency constraint e.g., a low latency service
  • an IP packet header marking e.g., a specific differentiated services code point (DSCP)
  • MP 415 may map the traffic to an ultra-low latency (ULL) carrier, and, for communication with a WLAN, MP 415 may map the traffic to a quality of service (QoS) access class such as AC_VO (voice) rather than AC_BE or AC_BK (background) .
  • QoS quality of service
  • FIG. 5 shows a diagram 500 of a wireless device 505 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • Wireless device 505 may be an example of aspects of a UE 115 as described herein.
  • Wireless device 505 may include receiver 510, communications manager 515, and transmitter 520.
  • Wireless device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a dynamic low latency configuration, etc. ) . Information may be passed on to other components of the device.
  • the receiver 510 may be an example of aspects of the transceiver 835 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • Communications manager 515 may be an example of aspects of the communications manager 815 described with reference to FIG. 8. Communications manager 515 or at least some of its various sub-components may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions of the communications manager 515 or at least some of its various sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 515 or at least some of its various sub-components may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical devices.
  • communications manager 515 or at least some of its various sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • communications manager 515 or at least some of its various sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • Communications manager 515 may be an application processor or may illustrate aspects of an application processor at wireless device 505, and it may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode. Communications manager 515 may configure a device within wireless device 505 and one or more parameters associated with a power state of the device based on receiving the request. Communications manager 515 may then coordinate with receiver 510 and transmitter 520 to communicate according to the first operating mode and the one or more parameters associated with the power state.
  • Transmitter 520 may transmit signals generated by other components of the device.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 835 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a diagram 600 of a wireless device 605 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • Wireless device 605 may be an example of aspects of a wireless device 505 or a UE 115 as described with reference to FIG. 5.
  • Wireless device 605 may include receiver 610, communications manager 615, and transmitter 620.
  • Communications manager 615 may be an example of aspects of the communications manager 815 described with reference to FIG. 8.
  • Communications manager 615 may include latency request manager 625 and latency configuration manager 630.
  • Wireless device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • Receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a dynamic low latency configuration, etc. ) . Information may be passed on to other components of the device.
  • the receiver 610 may be an example of aspects of the transceiver 835 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • Latency request manager 625 may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode.
  • receiving the request to operate in the first operating mode comprises receiving the request to operate in the first operating mode from an upper layer at wireless device 605.
  • the first latency constraint is selected from a set of latency constraints that includes the first latency constraint, the second latency constraint, and a third latency constraint that is less than the first latency constraint.
  • Latency configuration manager 630 may configure a device within wireless device 605 to operate in the first operating mode based on receiving the request.
  • configuring the device to operate in the first operating mode includes configuring one or more parameters associated with a power state of the device.
  • configuring the one or more parameters associated with the power state of the device comprises configuring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
  • latency configuration manager 630 may transmit a request for a first paging cycle based on receiving the request to operate in the first operating mode, where a first duration of the first paging cycle is less than a second duration of a second paging cycle configured for the second operating mode. In some cases, latency configuration manager 630 may transmit a request for a first DRX cycle based on receiving the request to operate in the first operating mode, where a first duration of the first DRX cycle is less than a second duration of a second DRX cycle configured for the second operating mode.
  • latency configuration manager 630 may transmit a request for a first SR interval based on receiving the request to operate in the first operating mode, where a first duration of the first SR interval is less than a second duration of a second SR interval configured for the second operating mode.
  • latency configuration manager 630 may configure the device to operate in the first operating mode based on determining that the application associated with the first latency constraint is scheduled for foreground processing. In some cases, configuring the device to operate in the first operating mode includes configuring one or more processors or operating systems to reprioritize a scheduled task based on the first latency constraint. In some cases, configuring the device to operate in the first operating mode includes configuring the device to transmit signaling or data periodically to a network. In some cases, a periodicity of the signaling or data is based on a duration of a DRX cycle inactivity timer. In other cases, a periodicity of the signaling or data is based on a duration of an RRC inactivity timer.
  • configuring the device to operate in the first operating mode includes configuring the device with a first inactivity timer, where a first duration of the first inactivity timer is greater than a second duration of a second inactivity timer configured for the second operating mode.
  • configuring the device to operate in the first operating mode includes configuring a graphics scheme for the device based on the first latency constraint.
  • configuring the device to operate in the first operating mode includes configuring a power manager or a clock manager, or both, to prioritize latency reduction over power management.
  • configuring the device to operate in the first operating mode includes configuring the device to avoid performing at least one process.
  • Transmitter 620 may transmit signals generated by other components of the device.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 620 may be an example of aspects of the transceiver 835 described with reference to FIG. 8.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a diagram 700 of a communications manager 715 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • the communications manager 715 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 815 described with reference to FIGs. 5, 6, and 8.
  • the communications manager 715 may include latency request manager 720, latency configuration manager 725, foreground processor 730, subscription manager 735, data network selector 740, RAT selector 745, latency traffic manager 750, and power saving mode manager 755.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) . Further, each of these modules may support an API or SDK as described above.
  • Latency request manager 720 may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode. In some cases, receiving the request to operate in the first operating mode comprises receiving the request to operate in the first operating mode from an upper layer at a wireless device. In some cases, the first latency constraint is selected from a set of latency constraints that includes the first latency constraint, the second latency constraint, and a third latency constraint that is less than the first latency constraint. In some cases, latency request manager 720 may support an API to lower MT message latency relative to MO message latency, and may configure a device within the UE 115 to operate in the first operating mode and one or more parameters associated with a power state of the device.
  • Latency configuration manager 725 may configure a device within a wireless device to operate in the first operating mode based on receiving the request.
  • configuring the device to operate in the first operating mode includes configuring one or more parameters associated with a power state of the device.
  • reconfiguring the one or more parameters associated with the power state of the device comprises reconfiguring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
  • latency configuration manager 725 may transmit a request for a first paging cycle based on receiving the request to operate in the first operating mode, where a first duration of the first paging cycle is less than a second duration of a second paging cycle configured for the second operating mode. In some cases, latency configuration manager 725 may transmit a request for a first DRX cycle based on receiving the request to operate in the first operating mode, where a first duration of the first DRX cycle is less than a second duration of a second DRX cycle configured for the second operating mode.
  • latency configuration manager 725 may transmit a request for a first SR interval based on receiving the request to operate in the first operating mode, where a first duration of the first SR interval is less than a second duration of a second SR interval configured for the second operating mode.
  • Foreground processor 730 may determine that an application associated with the first latency constraint is scheduled for foreground processing, and latency configuration manager 725 may configure the device to operate in the first operating mode based on determining that the application associated with the first latency constraint is scheduled for foreground processing (or is running in the background) .
  • configuring the device to operate in the first operating mode includes configuring one or more processors or operating systems to reprioritize a scheduled task based on the first latency constraint.
  • configuring the device to operate in the first operating mode includes configuring the device to transmit signaling or data periodically to a network.
  • a periodicity of the signaling or data is based on a duration of a DRX cycle inactivity timer.
  • a periodicity of the signaling or data is based on a duration of an RRC inactivity timer.
  • configuring the device to operate in the first operating mode includes configuring the device with a first inactivity timer, where a first duration of the first inactivity timer is greater than a second duration of a second inactivity timer configured for the second operating mode.
  • configuring the device to operate in the first operating mode includes configuring a graphics scheme for the device based on the first latency constraint.
  • configuring the device to operate in the first operating mode includes configuring a power manager or a clock manager, or both, to prioritize latency reduction over power management.
  • configuring the device to operate in the first operating mode includes configuring the device to avoid performing at least one process.
  • Subscription manager 735 may determine that a network subscription supports the first latency constraint, where the device is configured to operate in the first operating mode based on the determination. In some cases, subscription manager 735 may receive an indication from a policy controller that indicates that the network subscription supports the first latency constraint. In some cases, subscription manager 735 may select a SIM from a set of SIMs based on receiving the request, where the communicating is based on a subscription associated with the selected SIM.
  • subscription manager 735 may identify a collision between communications with a first subscription associated with a first SIM in the first operating mode having the first latency constraint and communications with a second subscription associated with a second SIM in the second operating mode having the second latency constraint, where the first SIM is selected based on a comparison of the first latency constraint to the second latency constraint.
  • subscription manager 735 may configure a device, such as a modem, to prioritize communications with a first subscription associated with a first SIM in the first operating mode over other communications with a second subscription associated with a second SIM in the second operating mode.
  • Data network selector 740 may select a serving data network based on receiving the request, where the serving data network includes a WWAN or a WLAN. In some cases, data network selector 740 may determine a first latency value associated with the WWAN and a second latency value associated with the WLAN, compare the first latency value and the second latency value, and select the serving data network based on the comparison. In some cases, data network selector 740 may identify a destination address associated with traffic having the first latency constraint, transmit a first signal to the destination address via the WWAN and a second signal to the destination address via the WLAN, and determine the first latency value based on a latency associated with the transmission of the first signal and the second latency value based on a latency associated with the transmission of the second signal.
  • RAT selector 745 may select a first RAT based on receiving the request, where the first RAT supports the first latency constraint.
  • Latency traffic manager 750 may transmit, to an MP, an indication of a first traffic flow having the first latency constraint.
  • the indication includes at least one of an IP filter, an in-band marker or header, an indication of a PDN or network slice associated with the first latency constraint, or an IP packet header marking, or any combination thereof.
  • the request is received at an AP, and the indication is transmitted from the AP to the MP.
  • configuring the device to operate in the first operating mode includes configuring the device to prioritize the first traffic flow having the first latency constraint relative to a second traffic flow.
  • Power saving mode manager 755 may receive a set of beacons including a set of TIMs and transition to a wake-up mode after receiving each TIM of the set of TIMs.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • Device 805 may be an example of or include the components of wireless device 505, wireless device 605, or a UE 115 as described above, e.g., with reference to FIGs. 5 and 6.
  • Device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including communications manager 815, processor (s) 820, memory 825, software 830, transceiver 835, antenna 840, and I/O controller 845. These components may be in electronic communication via one or more buses (e.g., bus 810) .
  • Device 805 may communicate wirelessly with one or more base stations 105.
  • Processor (s) 820 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • processor 820 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor (s) 820.
  • Processor (s) 820 may be configured to execute computer-readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting dynamic low latency configuration) .
  • Processor (s) 820 may represent or include an application processor or a modem processor, or both.
  • Memory 825 may include random access memory (RAM) and read only memory (ROM) .
  • the memory 825 may store computer-readable, computer-executable software 830 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 825 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • Software 830 may include code to implement aspects of the present disclosure, including code to support dynamic low latency configuration.
  • Software 830 may be stored in a non-transitory computer-readable medium such as system memory or other memory. In some cases, the software 830 may not be directly executable by the processor but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • Transceiver 835 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 835 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 835 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 840. However, in some cases the device may have more than one antenna 840, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • I/O controller 845 may manage input and output signals for device 805. I/O controller 845 may also manage peripherals not integrated into device 805. In some cases, I/O controller 845 may represent a physical connection or port to an external peripheral. In some cases, I/O controller 845 may utilize an operating system such as or another known operating system. In other cases, I/O controller 845 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, I/O controller 845 may be implemented as part of a processor. In some cases, a user may interact with device 805 via I/O controller 845 or via hardware components controlled by I/O controller 845.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • the operations of method 900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
  • a component of UE 115 may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode.
  • the operations of block 905 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 905 may be performed by a latency request manager as described with reference to FIGs. 5 through 8.
  • a component of UE 115 may configure a device within UE 115 to operate in the first operating mode and one or more parameters associated with a power state of the device based at least in part on receiving the request.
  • configuring the one or more parameters associated with the power state of the device includes reconfiguring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
  • the operations of block 910 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 910 may be performed by a latency configuration manager as described with reference to FIGs. 5 through 8.
  • the UE 115 may communicate according to the first operating mode. In some cases, the UE 115 may communicate according to the one or more parameters associated with the power state.
  • the operations of block 915 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 915 may be performed by a transmitter as described with reference to FIGs. 5 through 8.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
  • a component of UE 115 may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode.
  • the operations of block 1005 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 1005 may be performed by a latency request manager as described with reference to FIGs. 5 through 8.
  • the UE 115 may determine that a network subscription supports the first latency constraint.
  • the operations of block 1010 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 1010 may be performed by a subscription manager as described with reference to FIGs. 5 through 8.
  • a component of UE 115 may configure a device within UE 115 to operate in the first operating mode based at least in part on receiving the request and on the determination at 1010, where configuring the device to operate in the first operating mode includes configuring one or more parameters associated with a power state of the device.
  • configuring the one or more parameters associated with the power state of the device includes reconfiguring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
  • the operations of block 1015 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 1015 may be performed by a latency configuration manager as described with reference to FIGs. 5 through 8.
  • the UE 115 may communicate according to the first operating mode. In some cases, the UE 115 may also communicate according to the one or more parameters associated with the power state.
  • the operations of block 1020 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 1020 may be performed by a transmitter as described with reference to FIGs. 5 through 8.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • WCDMA Wideband CDMA
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) .
  • LTE and LTE-A are releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) .
  • 3GPP 3rd Generation
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects of an LTE or an NR system may be described for purposes of example, and LTE or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE or NR applications.
  • the term evolved node B may be generally used to describe the base stations.
  • the wireless communications system or systems described herein may include a heterogeneous LTE/LTE-A or NR network in which different types of eNBs provide coverage for various geographical regions.
  • each eNB, next generation NodeB (gNB) , or base station may provide communication coverage for a macro cell, a small cell, or other types of cell.
  • the term “cell” may be used to describe a base station, a carrier or component carrier associated with a base station, or a coverage area (e.g., sector, etc. ) of a carrier or base station, depending on context.
  • Base stations may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, eNodeB (eNB) , gNB, Home NodeB, a Home eNodeB, or some other suitable terminology.
  • the geographic coverage area for a base station may be divided into sectors making up only a portion of the coverage area.
  • the wireless communications system or systems described herein may include base stations of different types (e.g., macro or small cell base stations) .
  • the UEs described herein may be able to communicate with various types of base stations and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like. There may be overlapping geographic coverage areas for different technologies.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a small cell is a lower-powered base station, as compared with a macro cell, that may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells.
  • Small cells may include pico cells, femto cells, and micro cells according to various examples.
  • a pico cell for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider.
  • a femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) .
  • An eNB for a macro cell may be referred to as a macro eNB.
  • An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB.
  • An eNB may support one or multiple (e.g., two, three, four, and the like) cells (e.g., component carriers) .
  • the wireless communications system or systems described herein may support synchronous or asynchronous operation.
  • the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time.
  • the base stations may have different frame timing, and transmissions from different base stations may not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Each communication link described herein-including, for example, wireless communications system 100 and 200 of FIGs. 1 and 2- may include one or more carriers, where each carrier may be a signal made up of multiple sub-carriers (e.g., waveform signals of different frequencies) .
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • the term “and/or, ” when used in a list of two or more items means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed.
  • the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
  • “or” as used in a list of items indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • non-transitory computer-readable media may comprise RAM, ROM, electrically erasable programmable read only memory (EEPROM) , compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communication are described. In some wireless communications systems, a user equipment (UE) may communicate with a base station using various techniques designed to limit power consumption and improve throughput at the UE. In some instances, it may be appropriate for a UE to operate in a low latency mode in which reducing latency is prioritized over providing other efficiencies in order to improve the quality or functionality of an application. As described herein, in such instances, a user of a UE, or an application running on the UE, may request to operate in a low latency mode, and a hardware or software component of the UE may receive the request and configure various other components of the UE to operate in the low latency mode.

Description

DYNAMIC LOW LATENCY CONFIGURATION
CROSS REFERENCES
The present Application for Patent claims priority to International Patent Application No. PCT/CN2017/080249 by Meylan et al., entitled “DYNAMIC LOW LATENCY CONFIGURATION, ” filed April 12, 2017, assigned to the assignee hereof, which is hereby incorporated by reference in its entirety.
BACKGROUND
The following relates generally to wireless communication and more specifically to dynamic low latency configurations.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, and orthogonal frequency division multiple access (OFDMA) systems, (e.g., a Long Term Evolution (LTE) system, or a New Radio (NR) system) .
A wireless multiple-access communications system may include a number of base stations or access network nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) . In some cases, a UE may support applications, such as multiplayer gaming applications, social gaming applications, etc., whose quality depends on the latency associated with communications with a base station. In such cases, high latency may result in poor quality for certain applications and low customer satisfaction.
SUMMARY
The described techniques relate to improved methods, systems, devices, or apparatuses that support dynamic low latency configurations. The examples described herein provide a procedure enabling a UE to operate in a low latency mode to improve the quality or functionality of an application operating on the UE. In some wireless communications  systems, a user equipment (UE) may communicate with a base station using various techniques designed to limit power consumption and improve throughput at the UE. In some instances, it may be appropriate for a UE to operate in a low latency mode in which reducing latency is prioritized over providing other efficiencies to improve the quality or functionality of the application operating on the UE. As described herein, a user of a UE, or an application running on the UE, may request to operate in a low latency mode, and a hardware or software component of the UE may receive the request and configure various other components of the UE to operate in the low latency mode. In some cases, the UE may configure one or more parameters associated with a power state of a device within the UE.
A method for wireless communication at a UE is described. The method may include receiving, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode, configuring a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based on receiving the request, and communicating according to the first operating mode and the one or more parameters associated with the power state.
An apparatus for wireless communication at a UE is described. The apparatus may include means for receiving, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode, means for configuring a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based on receiving the request, and means for communicating according to the first operating mode and the one or more parameters associated with the power state.
Another apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be operable to cause the processor to receive, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode, configure a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based on receiving the request, and communicate according to the first operating mode and the one or more parameters associated with the power state.
A non-transitory computer readable medium for wireless communication at a UE is described. The non-transitory computer-readable medium may include instructions operable to cause a processor to receive, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode, configure a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based on receiving the request, and communicate according to the first operating mode and the one or more parameters associated with the power state.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the one or more parameters associated with the power state of the device includes reconfiguring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, receiving the request to operate in the first operating mode includes receiving the request to operate in the first operating mode from an upper layer at the UE.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, receiving the request to operate in the first operating mode includes determining that an application associated with the first latency constraint may be scheduled for foreground processing. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode may be based on determining that the application associated with the first latency constraint may be scheduled for foreground processing.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for determining that a network subscription supports the first latency constraint, where the device may be configured to operate in the first operating mode based on the determination. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for receiving an indication from a policy controller that indicates that the network subscription supports the first latency constraint. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, the first latency constraint may be selected from  a plurality of latency constraints that includes the first latency constraint, the second latency constraint, and a third latency constraint that may be less than the first latency constraint.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for selecting a serving data network based on receiving the request, where the serving data network includes a wireless wide area network (WWAN) or a wireless local area network (WLAN) . Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for determining a first latency value associated with the WWAN and a second latency value associated with the WLAN. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for comparing the first latency value and the second latency value. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for selecting the serving data network based on the comparison.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for identifying a destination address associated with traffic having the first latency constraint. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a first signal to the destination address via the WWAN and a second signal to the destination address via the WLAN. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for determining the first latency value based on a latency associated with the transmission of the first signal and the second latency value based on a latency associated with the transmission of the second signal.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a request for a first paging cycle based on receiving the request to operate in the first operating mode, where a first duration of the first paging cycle may be less than a second duration of a second paging cycle configured for the second operating mode. Some examples of the method, apparatus, and non-transitory computer-readable medium described above  may further include processes, features, means, or instructions for transmitting a request for a first discontinuous reception (DRX) cycle based on receiving the request to operate in the first operating mode, where a first duration of the first DRX cycle may be less than a second duration of a second DRX cycle configured for the second operating mode.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting a request for a first scheduling request (SR) interval based on receiving the request to operate in the first operating mode, where a first duration of the first SR interval may be less than a second duration of a second SR interval configured for the second operating mode. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for selecting a first radio access technology (RAT) based on receiving the request, where the first RAT supports the first latency constraint.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring the device to transmit signaling or data periodically to a network. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, a periodicity of the signaling or data may be based on a duration of a radio resource control (RRC) inactivity timer. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, a periodicity of the signaling or data may be based on a duration of a DRX cycle inactivity timer.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for selecting a subscriber identification module (SIM) from a set of SIMs based on receiving the request, where the communicating may be based on a subscription associated with the selected SIM. Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for identifying a collision between communications with a first subscription associated with a first SIM in the first operating mode having the first latency constraint and communications with a second subscription associated with a second SIM in the second operating mode having the second latency constraint, where the first SIM may be selected based on a comparison of the first latency constraint to the second latency constraint. Some  examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for configuring the device to prioritize communications with a first subscription associated with a first SIM in the first operating mode over other communications with a second subscription associated with a second SIM in the second operating mode.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transmitting, to the device, an indication of a first traffic flow having the first latency constraint. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, the indication includes at least one of an internet protocol (IP) filter, an in-band marker or header, an indication of a packet data network (PDN) or network slice associated with the first latency constraint, or an IP packet header marking, or any combination thereof. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, the request may be received at an application processor, and the indication may be transmitted from the application processor to the device. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring the device to prioritize the first traffic flow having the first latency constraint relative to a second traffic flow.
Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for receiving a plurality of beacons comprising a plurality of traffic indication maps (TIMs) . Some examples of the method, apparatus, and non-transitory computer-readable medium described above may further include processes, features, means, or instructions for transitioning to a wake-up mode after receiving each TIM of the plurality of TIMs. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring the device with a first inactivity timer, where a first duration of the first inactivity timer may be greater than a second duration of a second inactivity timer configured for the second operating mode.
In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode  includes configuring a graphics scheme for the device based on the first latency constraint. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring a power manager or a clock manager, or both, to prioritize latency reduction over power management. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring one or more processors or operating systems to reprioritize a scheduled task based on the first latency constraint. In some examples of the method, apparatus, and non-transitory computer-readable medium described above, configuring the device to operate in the first operating mode includes configuring the device to avoid performing at least one process.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1-3 illustrate examples of wireless communications systems that support a dynamic low latency configuration in accordance with various aspects of the present disclosure;
FIG. 4 illustrates an example of a process flow that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure;
FIGs. 5-7 show diagrams of a device or devices that support a dynamic low latency configuration in accordance with various aspects of the present disclosure;
FIG. 8 illustrates a diagram of a system including a device that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure;
FIGs. 9-10 illustrate methods that support a dynamic low latency configuration in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
The described techniques relate to improved methods, systems, devices, or apparatuses that support dynamic low latency configurations. The examples described herein provide a procedure enabling a UE to operate in a low latency mode to improve the quality or functionality of an application operating on the UE. In some wireless communications systems, a user equipment (UE) may communicate with a base station using various  techniques designed to limit power consumption and improve throughput at the UE. In some instances, it may be appropriate for a UE to operate in a low latency mode in which reducing latency is prioritized over providing other efficiencies to improve the quality or functionality of the application operating on the UE. As described herein, a user of a UE, or an application running on the UE, may request to operate in a low latency mode, and a hardware or software component of the UE may receive the request and configure various other components of the UE to operate in the low latency mode. In some cases, the UE may configure one or more parameters associated with a power state of a device within the UE.
In some wireless communications systems, a user equipment (UE) may support various applications whose quality depends on the latency of communications between the UE and a network device. In some cases, the UE may be configured to prioritize power efficiency and throughput over latency. For example, the UE may be configured to frequently transition to an idle mode or a sleep mode to save power. In such cases, in order to receive downlink transmissions from a network device or transmit uplink transmissions to a network device, the UE may transition out of idle mode or sleep mode, which may take a relatively long time resulting in high latency.
As described herein, wireless communications systems may support techniques for dynamically configuring a low latency mode of operation when low latency is desired. A UE may include hardware or software components, or both, that may receive a request to operate in a low latency mode (e.g., from a user or an application) and configure the low latency mode of operation for the UE. As an example, the UE may be configured with a shorter paging cycle or a shorter discontinuous reception (DRX) cycle to allow the UE to transition out of an idle or sleep mode to a connected or awake mode more frequently, which may, in turn, provide more opportunities for the UE to communicate with a network device.
Aspects of the disclosure introduced above are described below in the context of a wireless communications system. Examples of processes and signaling exchanges that support a dynamic low latency configuration are then described. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to dynamic low latency configurations.
FIG. 1 illustrates an example of a wireless communications system 100 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. The wireless communications system 100 may include wireless local area  networks (WLANs) and wireless wide area networks (WWANs) . The wireless communications system 100 includes base stations 105, UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, or a New Radio (NR) network. In some cases, wireless communications system 100 may support enhanced broadband communications, ultra-reliable (i.e., mission critical) communications, low latency communications, and communications with low-cost and low-complexity devices.
Base stations 105 may wirelessly communicate with UEs 115 via one or more base station antennas. Each base station 105 may provide communication coverage for a respective geographic coverage area 110. Communication links 125 shown in wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105 or downlink transmissions from a base station 105 to a UE 115. Control information and data may be multiplexed on an uplink or downlink channel according to various techniques. Control information and data may be multiplexed on a downlink channel, for example, using time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. In some examples, the control information transmitted during a transmission time interval (TTI) of a downlink channel may be distributed between different control regions in a cascaded manner (e.g., between a common control region and one or more UE-specific control regions) .
UEs 115 may be dispersed throughout the wireless communications system 100, and each UE 115 may be stationary or mobile. A UE 115 may also be referred to as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology. A UE 115 may be a cellular phone, a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, a personal electronic device, a handheld device, a personal computer, a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, a machine type communication (MTC) device, an appliance, an automobile, an automobile component, a train, a train component, or the like. In some examples described herein, a mobile device may be variously referred to as a UE and/or a station (STA) ; for example, the device may be capable of communicating according to  various radio access technologies (RATs) or protocols and may thus be appropriately described as either a UE or STA as may relate to a particular RAT or protocol being employed.
Base stations 105 may communicate with the core network 130 and with one another. For example, base stations 105 may interface with the core network 130 through backhaul links 132 (e.g., S1, etc. ) . Base stations 105 may communicate with one another over backhaul links 134 (e.g., X2, etc. ) either directly or indirectly (e.g., through core network 130) . Base stations 105 may perform radio configuration and scheduling for communication with UEs 115, or may operate under the control of a base station controller (not shown) . In some examples, base stations 105 may be macro cells, small cells, hot spots, or the like. Base stations 105 may also be referred to as evolved NodeBs (eNBs) 105.
base station 105 may be connected by an S1 interface to the core network 130. The core network may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one Packet Data Network (PDN) gateway (P-GW) . The MME may be the control node that processes the signaling between the UE 115 and the EPC. All user Internet Protocol (IP) packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operators IP services. The operators IP services may include the Internet, the Intranet, an IP Multimedia Subsystem (IMS) , and a Packet-Switched (PS) Streaming Service.
In some cases, wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may in some cases perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use hybrid automatic repeat request (HARQ) to provide retransmission at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a network device 105, or core  network 130 supporting radio bearers for user plane data. At the Physical (PHY) layer, transport channels may be mapped to physical channels.
In wireless communications system 100, a TTI may be defined as the smallest unit of time in which a base station 105 may schedule a UE 115 for uplink or downlink transmissions. As an example, a base station 105 may allocate one or more TTIs for downlink communication with a UE 115. The UE 115 may then monitor the one or more TTIs to receive downlink signals from the base station 105. In some wireless communications systems (e.g., LTE) , a subframe may be the basic unit of scheduling or TTI. In other cases, such as with low latency operation, a different, reduced-duration TTI (e.g., a short TTI) may be used (e.g., a mini-slot) . Wireless communications system 100 may employ various TTI durations, including those that facilitate ultra-reliable low latency communications (URLLC) and mobile broadband (MBB) communications, in addition to other types of communication associated with LTE and NR.
A resource element may consist of one symbol period and one subcarrier (e.g., a 15 kHz frequency range) . In some cases, the numerology employed within a system (i.e., subcarrier size, symbol-period duration, and/or TTI duration) may be selected or determined based on a type of communication. The numerology may be selected or determined in view of an inherent tradeoff between latency for low latency applications and efficiency for other applications, for example. In some cases, the duration of time slots allocated for MBB communications may be greater than the duration of time slots allocated for URLLC. Time slots allocated for URLLC may be referred to as mini-slots.
UE 115 may store information regarding a subscriber identity associated with wireless communications system 100 on a subscriber identification module (SIM) . A SIM may be an integrated circuit that securely stores the international mobile subscriber identity (IMSI) and the related key used to identify and authenticate UE 115. The IMSI may also include an ID for the network operator of wireless communications system 100. The SIM may also contain a unique serial number (e.g., an integrated circuit card ID (ICCID) ) , security authentication and ciphering information, temporary information related to the local network, a list of the services, a personal identification number (PIN) , and a personal unblocking key (PUK) for PIN unlocking. In some cases, the SIM may be a circuit embedded in a removable plastic card. A UE 115 may be configured with a single SIM or with multiple SIMs (e.g., dual SIMs) in various examples.
Wireless communications system 100 may include UEs 115 that support applications such as multiplayer gaming, social gaming, social media applications, etc. The quality of these applications (and others) may depend on the latency (e.g., IP latency) associated with wireless communications with a serving base station 105. This dependency on latency may be seen in, for example, a game where a user posts a packet to a group and challenges other users to “grab” the packet as quickly as possible. In order to “grab” the packet, a UE 115 may be notified that the packet was posted (e.g., via a mobile terminated (MT) message) , and the UE 115 may transmit signaling to a base station 105 to “grab” the packet (e.g., via a mobile originated (MO) message) . In this example, a user’s ability to compete with other users may depend on the latency associated with receiving the notification that the packet was posted and transmitting the signaling to “grab” the packet. Thus, as can be understood from this example, low latency services at a UE 115 may be desirable in wireless communications system 100.
Wireless communications system 100 may support low latency communications between a UE 115 and a base station 105 to improve the quality of applications 175 running on a UE 115, such as on application processor (AP) 180. AP 180 may include or run a high level operating system (HLOS) , which may support other components. For instance, an application programming interface (API) 185 or software development kit (SDK) 190 may run on AP 180 and support tools for interacting with a user and other components of a UE 115 to support low latency services. In some cases, the API 185 or SDK 190 may receive a request to operate in a low latency mode from, for example, an application 175 (e.g., an upper layer) or a user, and the API 185 or SDK 190 (or an AP 180 hosting the SDK) may configure the low latency mode of operation based on receiving the request. As an example, in order to support the low latency mode of operation (e.g., for an application 175) , an AP 180, an API 185, or an SDK 190 may configure a device, such as a modem processor (MP) 196, at UE 115 to prioritize low latency over throughput or power efficiency. Or the AP 180, API 185, or SDK 190 may configure a graphics 197 processor or card to render graphics in a manner that promotes lower latency (e.g., low-resolution rendering) . Or the AP 180, API 185, or SDK 190 may configure a power manager 198 to maintain a sleep cycle or operating condition that supports low latency. These and other examples are explained further below.
FIG. 2 illustrates an example of a wireless communications system 200 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. Wireless communications system 200 includes base station 105-a and UE  115-a, which may be examples of a base station 105 and a UE 115 described with reference to FIG. 1. Base station 105-a may provide communication coverage for a coverage area 110-a. UE 115-a may include an AP 210 and an MP 215. Wireless communications system 200 may support low latency communications between base station 105-a and UE 115-a on resources of a carrier 205.
UE 115-a may support a power saving mode which may allow UE 115-a to save power by entering an idle mode. In some cases, base station 105-a may transmit a downlink transmission (e.g., an MT message) to UE 115-a when UE 115-a is in the idle mode. In such cases, UE 115-a may transition to a connected mode to receive the downlink message. Specifically, UE 115-a may transition to the connected mode after receiving a paging message from base station 105-a. However, in some cases, UE 115-a may have to wait a relatively significant amount of time before receiving the paging message (e.g., a few seconds) . In addition, transitioning to the connected mode after receiving the paging message (e.g., establishing a connection with base station 105-a) may also take a significant amount of time (e.g., hundreds of milliseconds) . Thus, the latency associated with transitioning from an idle mode to a connected mode may be high.
Further, a UE 115-a may support a DRX cycle which may also allow UE 115-a to save power by entering a sleep mode. In some cases, UE 115-a may have data to transmit to base station 105-a (e.g., MO messages) or base station 105-a may have data to transmit to UE 115-a (e.g., MT messages) , and UE 115-a may be in a sleep mode. In such cases, UE 115-a may have to transition out of the sleep mode (e.g., wake up) before it can transmit or receive the data. The time taken to transition out of the sleep mode may depend on the duration of a DRX cycle supported by UE 115-a, and, in some cases, it may take a significant amount of time for UE 115-a to wake up and communicate with base station 105-a (e.g., hundreds of milliseconds) . Thus, the latency associated with transitioning out of a sleep mode may be high.
Wireless communications system 200 may support efficient techniques for reducing the latency associated with communications between UE 115-a and base station 105-a. Specifically, AP 210 at UE 115-a may include an API or SDK used to configure a low latency mode of operation to improve a user’s experience for an application running on UE 115-a. The AP 210 may configure the low latency mode upon receiving a request from an application running on UE 115-a (e.g., an upper layer) or from a user interacting with UE  115-a. In some examples, AP 210 may detect when certain applications are being processed in the foreground, and AP 210 may determine to configure the low latency mode based on determining that a certain application is being processed in the foreground. In some examples, the AP 210 may configure the low latency mode for a user at a specific time of day (e.g., evenings) , on specific days (e.g., holidays) , or when a specific uniform resource locator (URL) is requested by the user.
Once AP 210 identifies the request for the low latency mode of operation, AP 210 may determine if the low latency mode is supported by UE 115-a. In some cases, certain applications may be associated with the low latency mode (or a certain low latency constraint) , and when any of these applications are running on the UE 115-a, AP 210 may determine that the low latency mode is supported. In some cases, AP 210 may receive a message from an operator that indicates that the low latency mode is supported by UE 115-a. In any case, when AP 210 identifies the request and determines that the low latency mode is supported, AP 210 may configure the low latency mode of operation for UE 115-a. Specifically, AP 210 may configure specific subsystems of UE 115-a to operate in a low latency mode.
In one example, AP 210 may transmit a request to base station 105-a for a shorter paging cycle, or AP 210 may configure MP 215 to transmit the request to base station 105-a for the shorter paging cycle. When UE 115-a is configured with the shorter paging cycle, UE 115-a may monitor for paging messages from base station 105-a more frequently. The shorter paging cycle may thus reduce the latency associated with receiving an MT message from base station 105-a since UE 115-a may spend less time in an idle mode before transitioning to a connected mode to receive the MT message. Additionally or alternatively, AP 210 may request a shorter DRX cycle (e.g., in a connected radio state) . The shorter DRX cycle may also reduce the latency associated with receiving an MT message from base station 105-a since UE 115-a may spend less time in a sleep mode before waking up to receive the MT message. Further, AP 210 may request a shorter scheduling request (SR) interval which may provide more opportunities for UE 115-a to request resources for uplink communication. Accordingly, UE 115-a may be able to transmit MO messages to base station 105-a within less time which may reduce the latency at UE 115-a.
In another example, AP 210 may configure UE 115-a to transmit signals periodically to keep UE 115-a awake or in a connected mode. For instance, UE 115-a may be  configured to transition from a connected mode to an idle mode after an inactivity timer has expired (e.g., 10 -15 seconds) . Accordingly, AP 210 may configure UE 115-a to transmit signals (e.g., pings) or data periodically based on the duration of the inactivity timer or an estimation of the duration of the inactivity timer (e.g., immediately or shortly before the timer expires) so that UE 115-a remains in a connected mode. In some cases, UE 115-a may transmit the signals to an unreachable IP address or with incorrect properties (e.g., incorrect headers, incorrect redundancy check bits, or with an IP time-to-live field set to zero) to avoid receiving a response from a network (e.g., to save network resources) . UE 115-a may determine the duration of the inactivity timer used by a wireless network (e.g., wireless network 200) by determining the time between a most recent exchange (e.g., traffic exchange) with a base station within the wireless network (e.g., base station 105-a) and a connection release message received from the base station.
Further, in addition to being configured to transition from a connected mode to an idle mode, UE 115-a may be configured to transition from an on-duration to an off-duration after a DRX inactivity timer has expired (e.g., 100-300ms) . Accordingly, AP 210 may configure UE 115-a to transmit signals or data periodically based on the duration of the DRX inactivity cycle or an estimation of the duration of the DRX inactivity timer (e.g., immediately or shortly before the timer expires) so that UE 115-a remains awake. UE 115-a may transmit normal uplink signals or some dummy layer 2 (L2) signals generated by MP 215 to allow AP 210 to remain in a low power state. The dummy signals may be an SR transmission from UE 115-a followed by MAC padding (e.g., UE 115-a may avoid transmitting a buffer status report (BSR) to request uplink resources) .
In yet another example, AP 210 may configure one or more parameters associated with a power mode of MP 215 (e.g., configure or reconfigure one or more parameters associated with a power state of MP 215) . For example, the AP 210 may configure one or more parameters associated with the MP 215 so that the MP 215 is not operating in a low power state (e.g., low-power mode) , and instead the MP 215 is configured to operate in a high or relatively higher power state as compared to the low power state. Specifically, AP 210 may reduce or eliminate the wakeup time of MP 215 (e.g., the time taken by MP 215 or components of MP 215 to wakeup) by modifying sleep rules for various components of MP 215 (e.g., by shortening the sleep cycles of various components of MP 215) . In some cases, AP 210 may configure a peripheral component interconnect (PCI) link or network on chip (NOC) link between MP 215 and AP 210 to remain in a higher power state to avoid wakeup  latency. AP 210 may also configure MP 215 with a shorter data aggregation timer for transfer of data between AP 210 and MP 215 and/or for transfer between MP 215 and AP 210. Further, AP 210 may configure a digital signal processor (DSP) at MP 215 to avoid power collapsing, configure various clocks at MP 215 to keep running, configure radio frequency (RF) components to stay awake, configure firmware components to keep running, configure channel estimation, time tracking, and frequency tracking loops to keep running, or any combination thereof, or the like. By implementing some or all of the techniques above (e.g., by configuring one or more of these parameters associated with the power state of MP 215) , MP 215 may be able to reduce the latency associated with transitioning out of a low power state, such as a sleep mode (e.g., from approximately 20ms to a few milliseconds or less) .
In yet another example, AP 210 may configure parameters associated with other subsystems to reduce the latency experienced by a user. In some cases, AP 210 may enable a simpler graphics scheme at UE 115-a to focus on quick rendering rather than beautification. For example, AP 210 may disable animations within an application running on UE 115-a. In some cases, AP 210 may transmit an indication to a power manager and/or a clock manager to prioritize latency over power consumption. As such, the power manager or clock manager may keep components of a UE 115-a running to reduce latency at UE 115-a. In yet other cases, AP 210 may increase the priority of selected tasks at UE 115-a (e.g., application requesting) so that these tasks are performed with limited latency. In some examples, AP 210 may consider a battery charge level of UE 115-a, whether the UE 115-a is charging as well as thermal inputs, or the like, when making the decision to configure parameters for enabling or disabling low latency for various subsystems. Although the example of FIG. 2 describes that the above techniques are performed by an API or SDK stored in AP 210, the above techniques may be performed by any software stored in any component of UE 115-a.
FIG. 3 illustrates an example of a wireless communications system 300 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. Wireless communications system 300 includes access point 105-b and STA 115-b, which may be examples of an access point or base station 105 and a STA or UE 115 described with reference to FIG. 1. Access point 105-b may provide communication coverage for a coverage area 110-b. STA 115-b may include an AP 310 and an MP 315. Wireless communications system 300 may support low latency communications between access point 105-b and STA 115-b on resources of a carrier 305.
STA 115-b may support a power saving mode to utilize power efficiently. STA 115-b may control when to enter or leave the power saving mode and may transmit signaling to access point 105-b to indicate when it is entering or leaving the power saving mode. When STA 115-b enters a power saving mode, access point 105-b may buffer downlink traffic for STA 115-b. If access point 105-b identifies downlink traffic for STA 115-b, access point 105-b may transmit a beacon with a traffic indication map (TIM) that indicates the presence of downlink traffic buffered for STA 115-b. In some cases, STA 115-b may receive multiple TIMs that indicate the presence of downlink traffic, and STA 115-b may keep track of the number of TIMs received that indicate the presence of downlink traffic. Once STA 115-b has received a threshold number of TIMs, STA 115-b may transition out of the power saving mode to receive the downlink traffic from access point 105-b.
In some cases, STA 115-b may determine to prioritize latency over power efficiencies (e.g., power consumption) to improve the quality of an application running on STA 115-b. In such cases, an API or SDK at AP 310 may configure STA 115-b to operate in a low latency mode. In the low latency mode, STA 115-b may leave a power saving mode and proceed to receive a beacon each time the beacon with a TIM is scheduled for transmission by access point 105-b. The beacon with the TIM may indicate the presence of downlink traffic for STA 115-b. In some cases, STA 115-b may skip reception of some beacons that include TIM (e.g., but skip less than is configured in another mode of operation) . Accordingly, STA 115-b may be able to receive indication of the presence of MT messages, and initiate retrieval from access point 105-b with less latency.
In addition, AP 310 may configure STA 115-b to operate using an inactivity timer with a longer duration in a low latency mode so that STA 115-b may remain awake (e.g., avoid transitioning to the power saving mode) for a longer period of time. In other cases, AP 310 may configure STA 115-b to operate without a power saving mode such that STA 115-b may be available to receive downlink traffic from access point 105-b at any time. The above techniques may reduce latency associated with accessing a channel for MT or MO messages since, at a given time, STA 115-b may be more likely to be available to communicate with access point 105-b. Although the example of FIG. 3 describes that the above techniques are performed by an API or SDK stored in AP 310, the above techniques may be performed by any software stored in any component of STA 115-b.
FIG. 4 illustrates an example of a process flow 400 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. Process flow 400 illustrates aspects of techniques performed by a network device 105, which may be an example of a base station 105 or an access point 105 described with reference to FIGs. 1-3. Process flow 400 also illustrates aspects of techniques performed by a UE 115-c, which may be an example of a UE 115 or STA 115 described with reference to FIGs. 1-3. As illustrated, UE 115-c may include an AP 405, first SIM 410-a, second SIM 410-b, and MP 415. Although multiple SIMs 410 are depicted, those skilled in the art will appreciate that the various techniques may apply to UEs 115 with a single SIM or multiple SIMs.
At 420, AP 405 may identify a low latency request for UE 115-c to operate in a low latency mode. The low latency request may include a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode. In some cases, AP 405 may receive an indication from network device 105 (e.g., a policy controller) that indicates that a network subscription at UE 115-a supports the first latency constraint (e.g., at first SIM 410-a or second SIM 410-b, or both) . The request to operate in the first operating mode may include determining that an application associated with the first latency constraint is scheduled for foreground processing. In some cases, the first latency constraint may be selected from a plurality of latency constraints that includes the first latency constraint, the second latency constraint, and a third latency constraint that is less than the first latency constraint. In some examples, the request may be received at an SDK or API from an application (e.g., an upper layer) , and the SDK or API and the application may be components of AP 405, as described and depicted with reference to FIG. 1.
At 425, AP 405 or MP 415 may communicate with network device 105 to establish a configuration for the first operating mode (e.g., the low latency mode) . In some examples, AP 405 or MP 415 may cause UE 115-c to transmit a request for a first paging cycle based on receiving the low latency request to operate in the first operating mode, where a first duration of the first paging cycle is less than a second duration of a second paging cycle configured for the second operating mode. Additionally or alternatively, AP 405 or MP 415 may cause UE 115-c to transmit a request for a first DRX cycle based on receiving the low latency request to operate in the first operating mode, where a first duration of the first DRX cycle is less than a second duration of a second DRX cycle configured for the second operating mode. Additionally or alternatively, AP 405 or MP 415 may cause UE 115-c to  transmit a request for a first SR interval based on receiving the low latency request to operate in the first operating mode, where a first duration of the first SR interval is less than a second duration of a second SR interval configured for the second operating mode. Further, when UE 115-c is reconfigured to operate in the first operating mode (e.g., the low latency mode) , UE 115-c may avoid having the AP 405 and/or MP 415 perform at least one other process (e.g., one or more UE-only techniques substantially unrelated to executing the low latency communications) and instead have the AP 405 and/or MP 415 allocate an increased portion of their respective processing power to lowering latency associated with communications with access point 105-c or base station 105-d. In some cases, AP 405 or MP 415 may transmit a request to access point 105-c or base station 105-d for access point 105-c or base station 105-d to reconfigure its operations to support the low latency mode at UE 115-c. Access point 105-c or base station 105-d may receive the request and reconfigure its operations based on its capabilities.
If multiple data networks are available to serve UE 115-c (e.g., a WWAN and a WLAN) , AP 405 may cause UE 115-c to select a serving data network to provide data services to UE 115-c for low latency traffic based on a latency associated with communications with each of the available data networks. In some cases, AP 405 may cause UE 115-c to measure or identify the latency associated with communications with each data network, and AP 405 may cause UE 115-c to select the data network with the lower latency constraint. As an example, AP 405 may determine a first latency value associated with access point 105-c and a second latency value associated with base station 105-d. AP 405 may then compare the first latency value and the second latency value and may select a data network based on the comparison.
The latency value for each network device may correspond to a round trip time of a signal (e.g., ping) transmitted to a server via each network device. The name, URL, or IP address of the server may be specified by an application, and may be, for example, the name, URL, or IP address of the server with which the application will communicate. AP 405 may identify the IP address (or destination address) , transmit a first signal to the destination address via the WWAN and a second signal to the destination address via the WLAN, and determine the first latency value based on a latency associated with the transmission of the first signal and the second latency value based on a latency associated with the transmission of the second signal. AP 405 may then select the data network associated with the lower  latency value. As a result, AP 405 may be able to identify an interface for reaching an IP address with limited latency in accordance with specific use cases.
In some cases, AP 405 may determine the latency values associated with transmitting signals to the WWAN and WLAN based on the request for the low latency mode of operation (e.g., whether the request is for initial low latency (e.g., for call setup) or for repeated low latency (e.g., for gaming) ) . As an example, for a request for initial low latency, AP 405 may determine the latency value associated with a network based on the latency associated with a signal transmitted to the network when a radio at UE 115-c is initially in an idle state, and, for a request for repeated low latency, AP 405 may determine the latency associated with a network based on the latency associated with a signal transmitted to the network when a radio at UE 115-c is initially in a connected state. Since different wireless networks may be associated with different latencies for different types of communications, AP 405 may use these techniques to identify a suitable network for a particular type of communications. For example, AP 405 may determine to communicate with a WLAN for a call setup, and AP 405 may determine to communicate with a WWAN for gaming.
In some cases, a WLAN may not be available or AP 405 may determine that a WWAN is associated with a lower latency constraint than a WLAN. In such cases, UE 115-c may communicate with base station 105-d, and AP 405 may select a RAT for communication with base station 105-d (e.g., based on identifying the request at 420) . Specifically, AP 405 may configure UE 115-c to transmit an indication of a preferred RAT to base station 105-d. In order to reduce latency, AP 405 may select the RAT with the shortest TTI length, shortest paging cycle, shortest DRX cycle, shortest SR interval, or lowest backhaul latency. In cases where mobility is network driven, AP 405 may configure MP 415 to modify measurement results (e.g., included in a measurement report) to rank RATs with shorter TTIs higher to increase the chances of a handover towards these RATs. In addition, AP 405 may configure MP 415 to avoid including RATs with long TTIs, long paging cycles, etc. in a measurement report transmitted to base station 105-d. AP 405 may also rank RATs that support lower latency higher for UE driven mobility to increase the chances of a handover towards these RATs.
At 430, AP 405 may configure MP 415 for the first mode of operation (e.g., a low latency mode of operation) . AP 405 may configure UE 115-c to operate in the first operating mode based on receiving the low latency request at 420. Additionally or alternatively, AP 405  may configure UE 115-c to operate in the first operating mode based on determining that an application associated with the first latency constraint is scheduled for foreground processing. Further, AP 405 may configure UE 115-c to operate in the first operating mode based on determining that a network subscription at UE 115-c supports the first latency constraint. In some cases, AP 405 may configure UE 115-c for operation using the paging cycle, DRX cycle, and the SR interval requested at 425. Additionally or alternatively, AP 405 may configure UE 115-c to transmit signaling or data periodically. A periodicity of the signaling or data may be based on a duration of an RRC inactivity timer to keep UE 115-c in a connected mode or a DRX cycle inactivity timer to keep UE 115-c awake. In some cases, AP 405 may also configure UE 115-c with a first inactivity timer (e.g., for a power saving mode) , where a first duration of the first inactivity timer is greater than a second duration of a second inactivity timer configured for the second mode of operation.
Further, AP 405 may configure one or more parameters associated with a power state of UE 115-c (e.g., sleep rules associated with components of MP 415) . AP 405 may also configure other subsystems for operating in the first mode of operation (e.g., a low latency mode of operation) . For example, AP 405 may configure a graphics scheme for UE 115-c based on the first latency constraint, configure a power manager or a clock manager, or both, to prioritize latency reduction over power management, or configure one or more processors or operating systems to reprioritize a scheduled task based on the first latency constraint. In some cases, AP 210 may determine whether to enable or disable a low latency mode for certain subsystems based on a battery level of UE 115-c, whether UE 115-c is charging, thermal inputs at UE 115-c. or any combination thereof.
In some cases, UE 115-c may include multiple SIMs (e.g., a first SIM 410-a and a second SIM 410-b) and a single modem (e.g., MP 415) . Each SIM may contain subscriptions for accessing a different network. Thus, UE 115-c may communicate with multiple networks using the multiple SIMs by sharing a single modem dynamically. In some examples, first SIM 410-a may be in an idle mode and second SIM 410-b may be in a connected mode. As such, any paging received by MP 415 may apply to the first SIM 410-a in the idle mode. In some cases, each SIM may be in communication with a network, and each SIM may request modem resources to support communications with a corresponding network. In such cases, the MP 415 may support an algorithm for designating the modem resources for communication with one of the SIMs, and the algorithm may prevent deadlocks using various  techniques to ensure that each SIM is given equal opportunities to communicate with a network device 105.
In some cases, it may be appropriate to prioritize low latency communications over other communications. Thus, in the example of FIG. 4, AP 405 may configure MP 415 to prioritize communications with a SIM transmitting or receiving low latency traffic. For instance, AP 405 may configure MP 415 to prioritize communications transporting low latency data. In some examples, this may involve AP 405 configuring MP 415 to prioritize a default data subscription (DDS) over another subscription. In some cases, AP 405 may select a SIM from a set of SIMs to be given priority to use modem resources based on receiving the low latency request at 420. Accordingly, when AP 405 identifies a collision between communications with a first SIM 410-a in the first operating mode having the first latency constraint and communications with a second SIM 410-b in the second operating mode having the second latency constraint, the first SIM 410-a may be selected for communications using the modem resources based on a comparison of the first latency constraint to the second latency constraint. Additionally or alternatively, the API component (e.g., API 185) on AP 405 may indicate one or more selected flows of traffic that require prioritized handling within their radio bearer relative to one or more other flows of traffic. AP 405 and MP 415 may prioritize the traffic of these one or more selected flows (e.g., move traffic to the head of a transmit queue) relative to the one or more other flows of traffic. AP 405 may identify this traffic via 5-tuple or IP type of service header marks.
At 435, UE 115-c may communicate with network device 105 based on the first mode of operation (e.g., the low latency mode of operation) . In some cases, for uplink transmissions from a UE 115-c to network device 105, AP 405 may transmit an indication of low latency traffic transferred to MP 415 to allow MP 415 to map the low latency traffic to a low latency bearer. That is, AP 405 may transmit an indication of traffic having the first latency constraint to MP 415. The indication may include an IP filter (e.g., a source/destination address and port) , an in-band marker (e.g., indicating an IP type of service) or header, an indication of a PDN or network slice associated with the first latency constraint (e.g., a low latency service) , or an IP packet header marking (e.g., a specific differentiated services code point (DSCP) ) , or any combination thereof. Upon identifying the low latency traffic, MP 415 may map the traffic to a low latency carrier. As an example, for communication with a WWAN, MP 415 may map the traffic to an ultra-low latency (ULL) carrier, and, for communication with a WLAN, MP 415 may map the traffic to a quality of  service (QoS) access class such as AC_VO (voice) rather than AC_BE or AC_BK (background) .
FIG. 5 shows a diagram 500 of a wireless device 505 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. Wireless device 505 may be an example of aspects of a UE 115 as described herein. Wireless device 505 may include receiver 510, communications manager 515, and transmitter 520. Wireless device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a dynamic low latency configuration, etc. ) . Information may be passed on to other components of the device. The receiver 510 may be an example of aspects of the transceiver 835 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
Communications manager 515 may be an example of aspects of the communications manager 815 described with reference to FIG. 8. Communications manager 515 or at least some of its various sub-components may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions of the communications manager 515 or at least some of its various sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515 or at least some of its various sub-components may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical devices. In some examples, communications manager 515 or at least some of its various sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure. In other examples, communications manager 515 or at least some of its various sub-components may be combined with one or more other hardware components, including but not limited to an I/O component, a transceiver, a network server, another  computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
Communications manager 515 may be an application processor or may illustrate aspects of an application processor at wireless device 505, and it may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode. Communications manager 515 may configure a device within wireless device 505 and one or more parameters associated with a power state of the device based on receiving the request. Communications manager 515 may then coordinate with receiver 510 and transmitter 520 to communicate according to the first operating mode and the one or more parameters associated with the power state.
Transmitter 520 may transmit signals generated by other components of the device. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 835 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a diagram 600 of a wireless device 605 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. Wireless device 605 may be an example of aspects of a wireless device 505 or a UE 115 as described with reference to FIG. 5. Wireless device 605 may include receiver 610, communications manager 615, and transmitter 620. Communications manager 615 may be an example of aspects of the communications manager 815 described with reference to FIG. 8. Communications manager 615 may include latency request manager 625 and latency configuration manager 630. Wireless device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
Receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to a dynamic low latency configuration, etc. ) . Information may be passed on to other components of the device. The receiver 610 may be an example of aspects of the transceiver 835 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
Latency request manager 625 may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second  operating mode. In some cases, receiving the request to operate in the first operating mode comprises receiving the request to operate in the first operating mode from an upper layer at wireless device 605. In some cases, the first latency constraint is selected from a set of latency constraints that includes the first latency constraint, the second latency constraint, and a third latency constraint that is less than the first latency constraint.
Latency configuration manager 630 may configure a device within wireless device 605 to operate in the first operating mode based on receiving the request. In some cases, configuring the device to operate in the first operating mode includes configuring one or more parameters associated with a power state of the device. In some cases, configuring the one or more parameters associated with the power state of the device comprises configuring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
In some cases, latency configuration manager 630 may transmit a request for a first paging cycle based on receiving the request to operate in the first operating mode, where a first duration of the first paging cycle is less than a second duration of a second paging cycle configured for the second operating mode. In some cases, latency configuration manager 630 may transmit a request for a first DRX cycle based on receiving the request to operate in the first operating mode, where a first duration of the first DRX cycle is less than a second duration of a second DRX cycle configured for the second operating mode. In some cases, latency configuration manager 630 may transmit a request for a first SR interval based on receiving the request to operate in the first operating mode, where a first duration of the first SR interval is less than a second duration of a second SR interval configured for the second operating mode.
In some cases, latency configuration manager 630 may configure the device to operate in the first operating mode based on determining that the application associated with the first latency constraint is scheduled for foreground processing. In some cases, configuring the device to operate in the first operating mode includes configuring one or more processors or operating systems to reprioritize a scheduled task based on the first latency constraint. In some cases, configuring the device to operate in the first operating mode includes configuring the device to transmit signaling or data periodically to a network. In some cases, a periodicity  of the signaling or data is based on a duration of a DRX cycle inactivity timer. In other cases, a periodicity of the signaling or data is based on a duration of an RRC inactivity timer.
In some cases, configuring the device to operate in the first operating mode includes configuring the device with a first inactivity timer, where a first duration of the first inactivity timer is greater than a second duration of a second inactivity timer configured for the second operating mode. In some cases, configuring the device to operate in the first operating mode includes configuring a graphics scheme for the device based on the first latency constraint. In some cases, configuring the device to operate in the first operating mode includes configuring a power manager or a clock manager, or both, to prioritize latency reduction over power management. In some cases, configuring the device to operate in the first operating mode includes configuring the device to avoid performing at least one process.
Transmitter 620 may transmit signals generated by other components of the device. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 620 may be an example of aspects of the transceiver 835 described with reference to FIG. 8. The transmitter 620 may utilize a single antenna or a set of antennas.
FIG. 7 shows a diagram 700 of a communications manager 715 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. The communications manager 715 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 815 described with reference to FIGs. 5, 6, and 8. The communications manager 715 may include latency request manager 720, latency configuration manager 725, foreground processor 730, subscription manager 735, data network selector 740, RAT selector 745, latency traffic manager 750, and power saving mode manager 755. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) . Further, each of these modules may support an API or SDK as described above.
Latency request manager 720 may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode. In some cases, receiving the request to operate in the first operating mode comprises receiving the request to operate in the first operating mode from an upper layer at a wireless device. In some cases, the first latency constraint is selected from a set of latency constraints that includes the first latency constraint, the second latency constraint, and a third  latency constraint that is less than the first latency constraint. In some cases, latency request manager 720 may support an API to lower MT message latency relative to MO message latency, and may configure a device within the UE 115 to operate in the first operating mode and one or more parameters associated with a power state of the device.
Latency configuration manager 725 may configure a device within a wireless device to operate in the first operating mode based on receiving the request. In some cases, configuring the device to operate in the first operating mode includes configuring one or more parameters associated with a power state of the device. In some cases, reconfiguring the one or more parameters associated with the power state of the device comprises reconfiguring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
In some cases, latency configuration manager 725 may transmit a request for a first paging cycle based on receiving the request to operate in the first operating mode, where a first duration of the first paging cycle is less than a second duration of a second paging cycle configured for the second operating mode. In some cases, latency configuration manager 725 may transmit a request for a first DRX cycle based on receiving the request to operate in the first operating mode, where a first duration of the first DRX cycle is less than a second duration of a second DRX cycle configured for the second operating mode. In some cases, latency configuration manager 725 may transmit a request for a first SR interval based on receiving the request to operate in the first operating mode, where a first duration of the first SR interval is less than a second duration of a second SR interval configured for the second operating mode.
Foreground processor 730 may determine that an application associated with the first latency constraint is scheduled for foreground processing, and latency configuration manager 725 may configure the device to operate in the first operating mode based on determining that the application associated with the first latency constraint is scheduled for foreground processing (or is running in the background) . In some cases, configuring the device to operate in the first operating mode includes configuring one or more processors or operating systems to reprioritize a scheduled task based on the first latency constraint. In some cases, configuring the device to operate in the first operating mode includes configuring the device to transmit signaling or data periodically to a network. In some cases, a periodicity  of the signaling or data is based on a duration of a DRX cycle inactivity timer. In some cases, a periodicity of the signaling or data is based on a duration of an RRC inactivity timer.
In some cases, configuring the device to operate in the first operating mode includes configuring the device with a first inactivity timer, where a first duration of the first inactivity timer is greater than a second duration of a second inactivity timer configured for the second operating mode. In some cases, configuring the device to operate in the first operating mode includes configuring a graphics scheme for the device based on the first latency constraint. In some cases, configuring the device to operate in the first operating mode includes configuring a power manager or a clock manager, or both, to prioritize latency reduction over power management. In some cases, configuring the device to operate in the first operating mode includes configuring the device to avoid performing at least one process.
Subscription manager 735 may determine that a network subscription supports the first latency constraint, where the device is configured to operate in the first operating mode based on the determination. In some cases, subscription manager 735 may receive an indication from a policy controller that indicates that the network subscription supports the first latency constraint. In some cases, subscription manager 735 may select a SIM from a set of SIMs based on receiving the request, where the communicating is based on a subscription associated with the selected SIM.
In some cases, subscription manager 735 may identify a collision between communications with a first subscription associated with a first SIM in the first operating mode having the first latency constraint and communications with a second subscription associated with a second SIM in the second operating mode having the second latency constraint, where the first SIM is selected based on a comparison of the first latency constraint to the second latency constraint. In some cases, subscription manager 735 may configure a device, such as a modem, to prioritize communications with a first subscription associated with a first SIM in the first operating mode over other communications with a second subscription associated with a second SIM in the second operating mode.
Data network selector 740 may select a serving data network based on receiving the request, where the serving data network includes a WWAN or a WLAN. In some cases, data network selector 740 may determine a first latency value associated with the WWAN and a second latency value associated with the WLAN, compare the first latency value and the second latency value, and select the serving data network based on the comparison. In  some cases, data network selector 740 may identify a destination address associated with traffic having the first latency constraint, transmit a first signal to the destination address via the WWAN and a second signal to the destination address via the WLAN, and determine the first latency value based on a latency associated with the transmission of the first signal and the second latency value based on a latency associated with the transmission of the second signal.
RAT selector 745 may select a first RAT based on receiving the request, where the first RAT supports the first latency constraint. Latency traffic manager 750 may transmit, to an MP, an indication of a first traffic flow having the first latency constraint. In some cases, the indication includes at least one of an IP filter, an in-band marker or header, an indication of a PDN or network slice associated with the first latency constraint, or an IP packet header marking, or any combination thereof. In some cases, the request is received at an AP, and the indication is transmitted from the AP to the MP. In some cases, configuring the device to operate in the first operating mode includes configuring the device to prioritize the first traffic flow having the first latency constraint relative to a second traffic flow. Power saving mode manager 755 may receive a set of beacons including a set of TIMs and transition to a wake-up mode after receiving each TIM of the set of TIMs.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports dynamic low latency configuration in accordance with various aspects of the present disclosure. Device 805 may be an example of or include the components of wireless device 505, wireless device 605, or a UE 115 as described above, e.g., with reference to FIGs. 5 and 6. Device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including communications manager 815, processor (s) 820, memory 825, software 830, transceiver 835, antenna 840, and I/O controller 845. These components may be in electronic communication via one or more buses (e.g., bus 810) . Device 805 may communicate wirelessly with one or more base stations 105.
Processor (s) 820 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, processor 820 may be configured to operate a memory array using a memory controller. In other cases, a memory  controller may be integrated into processor (s) 820. Processor (s) 820 may be configured to execute computer-readable instructions stored in a memory to perform various functions (e.g., functions or tasks supporting dynamic low latency configuration) . Processor (s) 820 may represent or include an application processor or a modem processor, or both.
Memory 825 may include random access memory (RAM) and read only memory (ROM) . The memory 825 may store computer-readable, computer-executable software 830 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 825 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
Software 830 may include code to implement aspects of the present disclosure, including code to support dynamic low latency configuration. Software 830 may be stored in a non-transitory computer-readable medium such as system memory or other memory. In some cases, the software 830 may not be directly executable by the processor but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
Transceiver 835 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 835 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 835 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 840. However, in some cases the device may have more than one antenna 840, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
I/O controller 845 may manage input and output signals for device 805. I/O controller 845 may also manage peripherals not integrated into device 805. In some cases, I/O controller 845 may represent a physical connection or port to an external peripheral. In some cases, I/O controller 845 may utilize an operating system such as
Figure PCTCN2018080818-appb-000001
Figure PCTCN2018080818-appb-000002
or another known operating system. In other cases, I/O controller 845 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, I/O controller 845 may be  implemented as part of a processor. In some cases, a user may interact with device 805 via I/O controller 845 or via hardware components controlled by I/O controller 845.
FIG. 9 shows a flowchart illustrating a method 900 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. The operations of method 900 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
At block 905, a component of UE 115 may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode. The operations of block 905 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 905 may be performed by a latency request manager as described with reference to FIGs. 5 through 8.
At block 910, a component of UE 115 may configure a device within UE 115 to operate in the first operating mode and one or more parameters associated with a power state of the device based at least in part on receiving the request. In some cases, configuring the one or more parameters associated with the power state of the device includes reconfiguring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode. The operations of block 910 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 910 may be performed by a latency configuration manager as described with reference to FIGs. 5 through 8.
At block 915, the UE 115 may communicate according to the first operating mode. In some cases, the UE 115 may communicate according to the one or more parameters associated with the power state. The operations of block 915 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 915 may be performed by a transmitter as described with reference to FIGs. 5 through 8.
FIG. 10 shows a flowchart illustrating a method 1000 that supports a dynamic low latency configuration in accordance with various aspects of the present disclosure. The  operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE 115 may execute a set of codes to control the functional elements of the device to perform the functions described below. Additionally or alternatively, the UE 115 may perform aspects of the functions described below using special-purpose hardware.
At block 1005, a component of UE 115 may receive a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode. The operations of block 1005 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 1005 may be performed by a latency request manager as described with reference to FIGs. 5 through 8.
At block 1010, the UE 115 may determine that a network subscription supports the first latency constraint. The operations of block 1010 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 1010 may be performed by a subscription manager as described with reference to FIGs. 5 through 8.
At block 1015, a component of UE 115 may configure a device within UE 115 to operate in the first operating mode based at least in part on receiving the request and on the determination at 1010, where configuring the device to operate in the first operating mode includes configuring one or more parameters associated with a power state of the device. In some cases, configuring the one or more parameters associated with the power state of the device includes reconfiguring one or more parameters associated with a sleep state of the device, where a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode. The operations of block 1015 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 1015 may be performed by a latency configuration manager as described with reference to FIGs. 5 through 8.
At block 1020, the UE 115 may communicate according to the first operating mode. In some cases, the UE 115 may also communicate according to the one or more parameters associated with the power state. The operations of block 1020 may be performed according to the methods described herein. In certain examples, aspects of the operations of block 1020 may be performed by a transmitter as described with reference to FIGs. 5 through 8.
It should be noted that the methods described above describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Furthermore, aspects from two or more of the methods may be combined.
Techniques described herein may be used for various wireless communications systems such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , single carrier frequency division multiple access (SC-FDMA) , and other systems. The terms “system” and “network” are often used interchangeably. A code division multiple access (CDMA) system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases may be commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS) . LTE and LTE-A are releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, NR, and GSM are described in documents from the organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies. While aspects of an LTE or an NR system may be described for purposes of example, and LTE or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE or NR applications.
In LTE/LTE-A networks, including such networks described herein, the term evolved node B (eNB) may be generally used to describe the base stations. The wireless communications system or systems described herein may include a heterogeneous LTE/LTE-A or NR network in which different types of eNBs provide coverage for various geographical  regions. For example, each eNB, next generation NodeB (gNB) , or base station may provide communication coverage for a macro cell, a small cell, or other types of cell. The term “cell” may be used to describe a base station, a carrier or component carrier associated with a base station, or a coverage area (e.g., sector, etc. ) of a carrier or base station, depending on context.
Base stations may include or may be referred to by those skilled in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, eNodeB (eNB) , gNB, Home NodeB, a Home eNodeB, or some other suitable terminology. The geographic coverage area for a base station may be divided into sectors making up only a portion of the coverage area. The wireless communications system or systems described herein may include base stations of different types (e.g., macro or small cell base stations) . The UEs described herein may be able to communicate with various types of base stations and network equipment including macro eNBs, small cell eNBs, gNBs, relay base stations, and the like. There may be overlapping geographic coverage areas for different technologies.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscriptions with the network provider. A small cell is a lower-powered base station, as compared with a macro cell, that may operate in the same or different (e.g., licensed, unlicensed, etc. ) frequency bands as macro cells. Small cells may include pico cells, femto cells, and micro cells according to various examples. A pico cell, for example, may cover a small geographic area and may allow unrestricted access by UEs with service subscriptions with the network provider. A femto cell may also cover a small geographic area (e.g., a home) and may provide restricted access by UEs having an association with the femto cell (e.g., UEs in a closed subscriber group (CSG) , UEs for users in the home, and the like) . An eNB for a macro cell may be referred to as a macro eNB. An eNB for a small cell may be referred to as a small cell eNB, a pico eNB, a femto eNB, or a home eNB. An eNB may support one or multiple (e.g., two, three, four, and the like) cells (e.g., component carriers) .
The wireless communications system or systems described herein may support synchronous or asynchronous operation. For synchronous operation, the base stations may have similar frame timing, and transmissions from different base stations may be approximately aligned in time. For asynchronous operation, the base stations may have different frame timing, and transmissions from different base stations may not be aligned in  time. The techniques described herein may be used for either synchronous or asynchronous operations.
The downlink transmissions described herein may also be called forward link transmissions while the uplink transmissions may also be called reverse link transmissions. Each communication link described herein-including, for example,  wireless communications system  100 and 200 of FIGs. 1 and 2-may include one or more carriers, where each carrier may be a signal made up of multiple sub-carriers (e.g., waveform signals of different frequencies) .
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “exemplary” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and modules described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the  functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. As used herein, including in the claims, the term “and/or, ” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination. Also, as used herein, including in the claims, “or” as used in a list of items (for example, a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may comprise RAM, ROM, electrically erasable programmable read only memory (EEPROM) , compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.  Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
The description herein is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    receiving, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode;
    configuring a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based at least in part on receiving the request; and
    communicating according to the first operating mode and the one or more parameters associated with the power state.
  2. The method of claim 1, wherein configuring the one or more parameters associated with the power state of the device comprises:
    reconfiguring one or more parameters associated with a sleep state of the device, wherein a first duration of a sleep cycle at the device in the first operating mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
  3. The method of claim 1, wherein receiving the request to operate in the first operating mode comprises:
    receiving the request to operate in the first operating mode from an upper layer at the UE.
  4. The method of claim 1, further comprising:
    selecting a serving data network based at least in part on receiving the request, wherein the serving data network comprises a wireless wide area network (WWAN) or a wireless local area network (WLAN) .
  5. The method of claim 4, further comprising:
    determining a first latency value associated with the WWAN and a second latency value associated with the WLAN;
    comparing the first latency value and the second latency value; and
    selecting the serving data network based at least in part on the comparison.
  6. The method of claim 1, further comprising:
    transmitting a request for a first paging cycle based at least in part on receiving the request to operate in the first operating mode, wherein a first duration of the first paging cycle is less than a second duration of a second paging cycle configured for the second operating mode.
  7. The method of claim 1, further comprising:
    selecting a first radio access technology (RAT) based at least in part on receiving the request, wherein the first RAT supports the first latency constraint.
  8. The method of claim 1, wherein configuring the device to operate in the first operating mode further comprises:
    configuring the device to transmit signaling or data periodically to a network.
  9. The method of claim 8, wherein a periodicity of the signaling or data is based at least in part on a duration of a radio resource control (RRC) inactivity timer or a discontinuous reception (DRX) cycle inactivity timer.
  10. The method of claim 1, further comprising:
    selecting a subscriber identification module (SIM) from a set of SIMs based at least in part on receiving the request, wherein the communicating is based at least in part on a subscription associated with the selected SIM.
  11. The method of claim 10, further comprising:
    identifying a collision between communications with a first subscription associated with a first SIM in the first operating mode having the first latency constraint and communications with a second subscription associated with a second SIM in the second operating mode having the second latency constraint, wherein the first SIM is selected based at least in part on a comparison of the first latency constraint to the second latency constraint.
  12. The method of claim 10, further comprising:
    configuring the device to prioritize communications with a first subscription associated with a first SIM in the first operating mode over other communications with a second subscription associated with a second SIM in the second operating mode.
  13. The method of claim 1, further comprising:
    transmitting, to the device, an indication of a first traffic flow having the first latency constraint, wherein the indication comprises at least one of an internet protocol (IP) filter, an in-band marker or header, an indication of a packet data network (PDN) or network slice associated with the first latency constraint, or an IP packet header marking, or any combination thereof.
  14. The method of claim 13, wherein configuring the device to operate in the first operating mode further comprises:
    configuring the device to prioritize the first traffic flow having the first latency constraint relative to a second traffic flow.
  15. The method of claim 1, wherein configuring the device to operate in the first operating mode further comprises:
    configuring a power manager or a clock manager, or both, to prioritize latency reduction over power management.
  16. The method of claim 1, wherein configuring the device to operate in the first operating mode further comprises:
    configuring the device to avoid performing at least one process.
  17. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for receiving, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode;
    means for configuring a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based at least in part on receiving the request; and
    means for communicating according to the first operating mode and the one or more parameters associated with the power state.
  18. The apparatus of claim 17, wherein the means for configuring further comprises:
    means for reconfiguring one or more parameters associated with a sleep state of the device, wherein a first duration of a sleep cycle at the device in the first operating  mode is shorter than a second duration of a sleep cycle at the device in the second operating mode.
  19. The apparatus of claim 17, wherein the means for receiving the request to operate in the first operating mode comprises:
    means for receiving the request to operate in the first operating mode from an upper layer at the UE.
  20. The apparatus of claim 17, further comprising:
    means for selecting a serving data network based at least in part on receiving the request, wherein the serving data network comprises a wireless wide area network (WWAN) or a wireless local area network (WLAN) .
  21. The apparatus of claim 20, further comprising:
    means for determining a first latency value associated with the WWAN and a second latency value associated with the WLAN;
    means for comparing the first latency value and the second latency value; and
    means for selecting the serving data network based at least in part on the comparison.
  22. The apparatus of claim 17, further comprising:
    means for transmitting a request for a first paging cycle based at least in part on receiving the request to operate in the first operating mode, wherein a first duration of the first paging cycle is less than a second duration of a second paging cycle configured for the second operating mode.
  23. The apparatus of claim 17, further comprising:
    means for selecting a first radio access technology (RAT) based at least in part on receiving the request, wherein the first RAT supports the first latency constraint.
  24. The apparatus of claim 17, wherein the means for configuring the device further comprises:
    means for configuring the device to transmit signaling or data periodically to a network.
  25. The apparatus of claim 24, wherein a periodicity of the signaling or data is based at least in part on a duration of a radio resource control (RRC) inactivity timer or a discontinuous reception (DRX) cycle.
  26. The apparatus of claim 17, further comprising:
    means for selecting a subscriber identification module (SIM) from a set of SIMs based at least in part on receiving the request, wherein the communicating is based at least in part on a subscription associated with the selected SIM.
  27. The apparatus of claim 26, further comprising:
    means for identifying a collision between communications with a first subscription associated with a first SIM in the first operating mode having the first latency constraint and communications with a second subscription associated with a second SIM in the second operating mode having the second latency constraint, wherein the first SIM is selected based at least in part on a comparison of the first latency constraint to the second latency constraint.
  28. The apparatus of claim 26, further comprising:
    means for configuring the device to prioritize communications with a first subscription associated with a first SIM in the first operating mode over other communications with a second subscription associated with a second SIM in the second operating mode.
  29. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor;
    memory in electronic communication with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the apparatus to:
    receive, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode;
    configure a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based at least in part on receiving the request; and
    communicate according to the first operating mode and the one or more parameters associated with the power state.
  30. A non-transitory computer readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable to:
    receive, at the UE, a request to operate in a first operating mode having a first latency constraint that is less than a second latency constraint of a second operating mode;
    configure a device within the UE to operate in the first operating mode and one or more parameters associated with a power state of the device based at least in part on receiving the request; and
    communicate according to the first operating mode and the one or more parameters associated with the power state.
PCT/CN2018/080818 2017-04-12 2018-03-28 Dynamic low latency configuration WO2018188481A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2017/080249 2017-04-12
PCT/CN2017/080249 WO2018187969A1 (en) 2017-04-12 2017-04-12 Dynamic low latency configuration

Publications (1)

Publication Number Publication Date
WO2018188481A1 true WO2018188481A1 (en) 2018-10-18

Family

ID=63792174

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/080249 WO2018187969A1 (en) 2017-04-12 2017-04-12 Dynamic low latency configuration
PCT/CN2018/080818 WO2018188481A1 (en) 2017-04-12 2018-03-28 Dynamic low latency configuration

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080249 WO2018187969A1 (en) 2017-04-12 2017-04-12 Dynamic low latency configuration

Country Status (1)

Country Link
WO (2) WO2018187969A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3668259A1 (en) * 2018-12-12 2020-06-17 Samsung Electronics Co., Ltd. Apparatus and method for providing service network in wireless communication system
GB2599924A (en) * 2020-10-14 2022-04-20 Canon Kk Declaration of low latency reliable service capabilities to join a BSS
US20220191050A1 (en) * 2020-12-14 2022-06-16 Qualcomm Incorporated Application Based Dynamic Control of Modem Datapath Behavior
EP4135428A4 (en) * 2020-04-07 2024-05-29 Jrd Communication (Shenzhen) Ltd. Paging period adjusting method, storage medium, and electronic terminal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020087292A1 (en) * 2018-10-30 2020-05-07 Oppo广东移动通信有限公司 Wireless communication method, terminal device, and network device
CN112533232B (en) * 2019-09-19 2022-06-10 维沃移动通信有限公司 Method for determining energy-saving signal monitoring time, configuration method and related equipment
EP3913991A1 (en) 2020-05-22 2021-11-24 Google LLC Wi-fi adaptive beacon skipping for battery-powered devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120263051A1 (en) * 2011-04-13 2012-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Terminal-based selection of radio parameters among a parameter subset offered by the network
CN103402245A (en) * 2013-07-24 2013-11-20 中国联合网络通信集团有限公司 Configuration method, equipment and system for DRX (discontinuity reception) cycle
CN105376765A (en) * 2015-12-02 2016-03-02 中国联合网络通信集团有限公司 Method and device for reducing CSFB delay
US20160286599A1 (en) * 2015-03-27 2016-09-29 Intel Corporation Device and method for processing audio data
CN106255210A (en) * 2015-06-12 2016-12-21 华硕电脑股份有限公司 The method and apparatus using configuration resource in a wireless communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7756141B1 (en) * 2007-09-20 2010-07-13 Nortel Networks Limited Bimodal burst switching
JP5251776B2 (en) * 2009-07-27 2013-07-31 ソニー株式会社 Base station, communication system, mobile terminal and relay device
EP3657866A1 (en) * 2014-09-29 2020-05-27 Convida Wireless, LLC Service capability server / epc coordination for power savings mode and paging
CN105554689B (en) * 2015-12-14 2019-10-11 东莞酷派软件技术有限公司 A kind of business transmitting method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120263051A1 (en) * 2011-04-13 2012-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Terminal-based selection of radio parameters among a parameter subset offered by the network
CN103402245A (en) * 2013-07-24 2013-11-20 中国联合网络通信集团有限公司 Configuration method, equipment and system for DRX (discontinuity reception) cycle
US20160286599A1 (en) * 2015-03-27 2016-09-29 Intel Corporation Device and method for processing audio data
CN106255210A (en) * 2015-06-12 2016-12-21 华硕电脑股份有限公司 The method and apparatus using configuration resource in a wireless communication system
CN105376765A (en) * 2015-12-02 2016-03-02 中国联合网络通信集团有限公司 Method and device for reducing CSFB delay

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3668259A1 (en) * 2018-12-12 2020-06-17 Samsung Electronics Co., Ltd. Apparatus and method for providing service network in wireless communication system
CN111314956A (en) * 2018-12-12 2020-06-19 三星电子株式会社 Apparatus and method for providing service network in wireless communication system
US11006313B2 (en) 2018-12-12 2021-05-11 Samsung Electronics Co., Ltd. Apparatus and method for providing service network in wireless communication system
EP4135428A4 (en) * 2020-04-07 2024-05-29 Jrd Communication (Shenzhen) Ltd. Paging period adjusting method, storage medium, and electronic terminal
GB2599924A (en) * 2020-10-14 2022-04-20 Canon Kk Declaration of low latency reliable service capabilities to join a BSS
GB2599924B (en) * 2020-10-14 2023-11-01 Canon Kk Declaration of low latency reliable service capabilities to join a BSS
US20220191050A1 (en) * 2020-12-14 2022-06-16 Qualcomm Incorporated Application Based Dynamic Control of Modem Datapath Behavior
US11716212B2 (en) 2020-12-14 2023-08-01 Qualcomm Incorporated Application based dynamic control of modem datapath behavior

Also Published As

Publication number Publication date
WO2018187969A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
CN110476442B (en) Coverage enhancement mode switching for wireless communications
JP7433488B2 (en) Method and apparatus for handling configuration upon refusal of radio access network notification area (RNA) updates
WO2018188481A1 (en) Dynamic low latency configuration
CN109923936B (en) Wake-up technique for improved connected mode discontinuous reception
KR102489465B1 (en) low cost paging
US10973053B2 (en) Listen-before-talk procedure with priority and interference addition awareness
JP6408128B2 (en) Improved idle mode for extended idle intermittent reception
JP6707552B2 (en) Additional transmission of system information
CN107079517B (en) Enhanced connection management for multiple access networks
CN106664673B (en) Techniques for transmitting and receiving synchronization signals over unlicensed radio frequency spectrum bands
CN105940734B (en) Method and apparatus for uplink transmit power allocation and power headroom reporting
CN106576235B (en) Method, apparatus and computer readable medium for device-to-device capability signaling
US10631221B2 (en) Direct communication by use of frequency of neighboring cell
JP2018129829A (en) Techniques for transmitting and receiving paging messages over unlicensed radio frequency spectrum band
US12010718B2 (en) Quality of service configurations for radio bearers with multiple data flows
JP2018504858A (en) Updating system information
KR102241163B1 (en) Device-capacity-based and independent paging in the new wireless unlicensed band
CN109923832B (en) Energy efficient discovery and traffic management in a mesh WAN with IoE to wake receiver
JP7478161B2 (en) PDCCH monitoring method and device
AU2017246121A1 (en) Method and apparatuses for selecting an air interface for relaying a message
US20170295598A1 (en) Relaying based on service-type indicator and network availability
US20230217529A1 (en) Methods and apparatus for inactive state initial uplink transmission using pre-configured grant at a user equipment in wireless communication
US12010628B2 (en) Power-efficient measurement reporting for multi/dual connectivity in cellular communication networks
KR20230165281A (en) Method and apparatus for sidelink communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784218

Country of ref document: EP

Kind code of ref document: A1