WO2024065423A1 - 通信方法、通信装置、通信系统、计算设备和存储介质 - Google Patents

通信方法、通信装置、通信系统、计算设备和存储介质 Download PDF

Info

Publication number
WO2024065423A1
WO2024065423A1 PCT/CN2022/122724 CN2022122724W WO2024065423A1 WO 2024065423 A1 WO2024065423 A1 WO 2024065423A1 CN 2022122724 W CN2022122724 W CN 2022122724W WO 2024065423 A1 WO2024065423 A1 WO 2024065423A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
client
access point
redundant
clients
Prior art date
Application number
PCT/CN2022/122724
Other languages
English (en)
French (fr)
Inventor
马万里
张洁
兰普马蒂亚斯
谭爽
王力
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to PCT/CN2022/122724 priority Critical patent/WO2024065423A1/zh
Publication of WO2024065423A1 publication Critical patent/WO2024065423A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure generally relates to the field of communication technology, and more specifically, to a communication method, a communication apparatus, a communication system, a computing device, and a storage medium.
  • iWLAN Industrial Wireless LAN
  • iPRP Industrial Parallel Redundancy Protocol
  • iPCF Industrial Point Coordination Function
  • iPRP is an extension of PRP (Parallel Redundancy Protocol) for wireless data transmission via IWLAN.
  • PRP Parallel Redundancy Protocol
  • iPRP enables high-availability, redundant, uninterrupted connections in wireless networks. It is based on duplicating layer 2 frames on two independent (redundant) wireless links.
  • iPCF technology is another important technology for wireless transmission of PROFINET services.
  • iPCF replaces the random channel access scheme (DCF) of traditional WLAN systems with a polling channel access scheme, that is, the client sends uplink data only at the request (polling) of the AP.
  • DCF random channel access scheme
  • iPRP and iPCF have their own specific application scenarios in industry and can provide corresponding technical advantages.
  • the present disclosure proposes a communication method that can combine the technical advantages of both redundancy technology (such as iPRP) and scheduling access technology (such as iPCF).
  • redundancy technology such as iPRP
  • iPCF scheduling access technology
  • a communication method of an industrial wireless communication system includes a first terminal device, a second terminal device, multiple access points, and multiple clients, wherein the first terminal device is associated with the multiple access points, each of the second terminal devices is associated with at least two of the multiple clients, at least two of the associated clients are redundant client pairs, all access points are time synchronized, and the access point implements communication between the first terminal device and the second terminal device by scheduling the client, and the method includes:
  • a scheduling strategy determination step determining a scheduling strategy of the access point to the client according to a predetermined communication optimization target
  • a scheduling plan determination step determining a scheduling plan based on the scheduling strategy, wherein the scheduling plan at least includes which client each access point is to schedule in the current scheduling time slot;
  • a scheduling instruction step sending the scheduling plan to an access point, instructing the access point to schedule the corresponding client to communicate according to the scheduling plan;
  • a scheduling status determination step collecting scheduling status information from the access point, the scheduling status information including whether the scheduling is successful;
  • control step determine the scheduling plan for the next scheduling time slot based on the scheduling status information and the predetermined decision algorithm, and return to the scheduling indication step to execute the method.
  • the scheduling strategy includes any one of the following:
  • the access point schedules only one client in a redundant client pair at a time
  • the access point schedules both clients in a redundant client pair simultaneously.
  • the communication optimization target includes any one of the following:
  • the scheduling plan further includes at least one of the following:
  • the expected uplink data type and the predetermined timeout if no response is received from the client are the expected uplink data type and the predetermined timeout if no response is received from the client.
  • the decision factors of the predetermined decision algorithm include:
  • Each client is scheduled at least once in a cycle. If no response is received from the client, it is decided when to schedule again based on the availability of scheduling slots and the number of available scheduling slots.
  • a communication method of an industrial wireless communication system includes a first terminal device, a second terminal device, a plurality of access points and a plurality of clients, wherein the first terminal device is associated with the plurality of access points, all access points are time synchronized, each of the second terminal devices is associated with at least two of the plurality of clients, at least two of the associated clients are redundant client pairs, one client in the redundant client pair is marked with a first feature, and the other client is marked with a second feature, all access points are time synchronized, each access point maintains two lists for the clients associated with it, wherein the first list includes clients with the first feature in the redundant client pair, and the second list includes another client with the second feature in the redundant client pair, the access point knows the redundant client partner of each client associated with it, and the redundant access point partner associated with the redundant client partner, and the method includes:
  • Each access point schedules the corresponding client in its first list in turn;
  • the access point notifies its corresponding redundant access point partner whether the scheduling is successful
  • the redundant access point partner will no longer schedule the corresponding redundant client partner in the current scheduling period. If the scheduling fails, the redundant access point partner will schedule the corresponding redundant client partner if the redundant client partner has not been called.
  • access points can exchange information with each other, coordinate client scheduling, reduce unnecessary redundant transmission, save network resources, and thus improve data throughput.
  • the method further includes:
  • the corresponding access point When a client leaves its associated access point, the corresponding access point deletes the client from the list it maintains; if a new client is associated with the access point, the access point adds the client to the corresponding list based on the client.
  • a communication device in an industrial wireless communication system comprising a first terminal device, a second terminal device, a plurality of access points and a plurality of clients, wherein the first terminal device is associated with the plurality of access points, each of the second terminal devices is associated with at least two of the plurality of clients, at least two of the associated clients are redundant client pairs, all access points are time synchronized, the access point implements communication between the first terminal device and the second terminal device by scheduling the client, and the communication device comprises:
  • a scheduling strategy determination unit configured to determine a scheduling strategy of the access point to the client according to a predetermined communication optimization target
  • a scheduling plan determining unit configured to determine a scheduling plan based on the scheduling strategy, wherein the scheduling plan at least includes which client each access point is to schedule in a current scheduling time slot;
  • a scheduling instruction unit configured to send the scheduling plan to an access point, and instruct the access point to schedule the corresponding client to communicate according to the scheduling plan;
  • a scheduling state determination unit configured to collect scheduling state information from the access point, the scheduling state information including whether the scheduling is successful;
  • the repetitive control unit is configured to determine a scheduling plan for a next scheduling time slot based on the scheduling state information and a predetermined decision algorithm.
  • an industrial wireless communication system comprising a first terminal device, a second terminal device, multiple access points and multiple clients, and a communication device according to the above, wherein the communication device controls the scheduling of the access point to the client to achieve communication between the first terminal device and the second terminal device.
  • a computing device comprising: at least one processor; and a memory coupled to the at least one processor, the memory being used to store instructions, which, when executed by the at least one processor, enable the processor to execute the method described above.
  • a non-transitory machine-readable storage medium which stores executable instructions. When the instructions are executed, the machine performs the method as described above.
  • a computer program comprising computer executable instructions, which, when executed, cause at least one processor to perform the method described above.
  • a computer program product which is tangibly stored on a computer-readable medium and includes computer-executable instructions, which when executed cause at least one processor to perform the method as described above.
  • two solutions centralized and decentralized, are provided, which can be applicable to a variety of different industrial scenarios; by adopting different scheduling mechanisms, different communication performance optimization goals can be achieved very flexibly, such as improving data throughput.
  • FIG1 is a simplified schematic diagram of an industrial wireless communication system that can adopt the communication method of the present invention
  • FIG2 is another schematic diagram of an industrial wireless communication system that can adopt the communication method of the present invention.
  • FIG3 is a flowchart of an exemplary process of a communication method according to an embodiment of the present disclosure
  • FIG4 is a flowchart of an exemplary process of a communication method according to another embodiment of the present disclosure.
  • FIG5 is a block diagram showing an exemplary configuration of a communication device for executing the communication method shown in FIG2 ;
  • FIG. 6 shows a block diagram of a computing device for implementing a communication method according to an embodiment of the present disclosure.
  • AP1, AP2, AP3 Access points 102, 202: First terminal device
  • the term “including” and its variations are open terms, meaning “including but not limited to”.
  • the term “based on” means “based at least in part on”.
  • the terms “one embodiment” and “an embodiment” mean “at least one embodiment”.
  • the term “another embodiment” means “at least one other embodiment”.
  • the terms “first”, “second”, etc. may refer to different or the same objects. Other definitions may be included below, whether explicit or implicit. Unless the context clearly indicates otherwise, the definition of a term is consistent throughout the specification.
  • the present invention proposes a communication solution that can combine the technical advantages of iPRP and iPCF.
  • FIG. 1 is a simplified schematic diagram of an industrial wireless communication system that can employ the communication method of the present invention.
  • the industrial wireless communication system 100 shown in FIG. 1 includes a first terminal device 102 , second terminal devices 104 - 1 and 104 - 2 , access points AP1 and AP2 , clients STA1 , STA2 , STA3 , and STA4 , and redundant boxes 106 - 1 , 106 - 2 , and 108 .
  • All access points (AP) and clients (STA) can support iPRP and iPCF functions at the same time, or can implement similar functional features of redundant and scheduled access modes.
  • the first terminal device may be, for example, a server, a cloud, a computer, etc.
  • the second terminal device may be, for example, a PLC, an AGV, a gateway, etc.
  • the redundancy box is used to convert one path into two paths or to merge two paths into one path.
  • FIG. 1 shows a first terminal device and two second terminal devices as an example for illustration. It can be understood that the number of devices in the communication system can be any number as needed and is not limited to that shown in FIG. 1 .
  • STA1 and STA3 are a pair of redundant WLAN client devices, connected to the same terminal device 104-1 (e.g., a typical Profinet IO (PNIO) device) via a "redundancy box 106-1", and therefore send/receive the same layer 2 traffic to/from their respective access points (AP1 and AP2).
  • PNIO Profinet IO
  • STA2 and STA4 which are connected to the terminal device 104-2 via a redundancy box 106-2.
  • FIG1 assumes that two pairs of redundant clients are served by the same pair of access points, namely AP1 and AP2 (in practice, since clients can roam freely in a larger wireless network, the mapping between clients and access points may be more complex and may change over time).
  • all traffic is periodic PNIO traffic and that all data frames have the same duration.
  • multiple APs may belong to different LAN networks, each terminal device may deploy one or two WLAN clients, and there will be a more complex mapping relationship between APs and clients.
  • the purpose of these simplifications is only to more clearly describe the problem and solution, and the scope of protection of the present invention is not limited to this.
  • iPRP In the traditional iPRP communication mode of WLAN, a basic feature of iPRP is that the redundant box can copy the data frame, and the two data frames have the same source MAC address and different destination MAC addresses. Then the access points send them to the corresponding clients respectively. When an access point receives the confirmation of the successful transmission of the downlink data packet from the client, it will notify the redundant access point of the successful transmission. The redundant access point can delete the corresponding data packet from its transmission queue to avoid wasting time and radio resources due to repeated transmission.
  • the above description only illustrates the downlink data, and the same principle applies to the uplink data. However, by default, there is no coordination mechanism between access points and no time synchronization. Therefore, when two access points send/receive data to/from the client (STA), the following scheduling modes may occur.
  • Scheduling mode 1 At the same time, access point AP1 schedules client STA1, AP2 schedules STA3, or AP1 schedules STA2, AP2 schedules STA4.
  • the characteristic of this mode is that two clients as redundant client pairs are scheduled simultaneously by their corresponding access points.
  • one client in a redundant client pair is referred to as a redundant client partner of the other client
  • the access points corresponding to the two clients in the redundant client pair are referred to as a redundant access point pair
  • one of the access points is referred to as a redundant access point partner of the other access point.
  • Scheduling mode 2 At the same time, access point AP1 schedules client STA1, AP2 schedules STA4, or AP1 schedules STA2, AP2 schedules STA3. This mode is characterized in that two clients as a redundant client pair are scheduled at different times (no time overlap).
  • Scheduling mode 3 Access point AP1 schedules client STA1, AP2 schedules STA4, or AP1 schedules STA2, AP2 schedules STA3, or AP1 schedules STA2, AP2 schedules STA4, or other scheduling methods.
  • the characteristic of this mode is that the scheduling times of the two clients as a redundant client pair overlap with each other by a random amount.
  • scheduling mode 2 the transmission of two copies of the same data packet does not overlap in time. This feature will cause the data to be successfully transmitted by access point AP1 and then discarded by access point AP2. In this way, access point AP2 can use this idle time slot to transmit another data.
  • the same effect is also applied to the client: the data is successfully transmitted by client STA1 and then discarded by client STA3. In this way, there is no need for AP1 to schedule STA2, and AP2 schedules STA3. Then AP1 and AP2 can use this idle time slot to transmit another data at the same time.
  • Scheduling mode 1 and scheduling mode 3 are the cases where the transmission of two copies of the same data packet overlaps in time.
  • scheduling mode 1 and scheduling mode 3 can ensure the real-time and redundancy requirements of data transmission.
  • scheduling mode can be controlled, for example, only scheduling mode 2 is used to coordinate the data transmission behavior of the access point, unnecessary scheduling of the access point can be avoided. For example, if data has been successfully received from one client in the redundant client pair, there is no need to schedule its redundant client partner. In the case of very good wireless connectivity, many available idle time slots can be generated. If these time slots are used to call the client, more data can be transmitted, thereby improving data throughput.
  • scheduling mode 1 takes improving data throughput as an example to illustrate a typical scenario of applying the technical solution of the present disclosure. If other scheduling modes are designed, such as using scheduling mode 1, it is possible to reduce the communication time limit of certain devices.
  • the present invention proposes a comprehensive solution, which can coordinate the scheduling of the access point to the client, and adopt different client scheduling schemes according to the demand for communication performance to achieve the optimization of the target communication performance.
  • the "communication performance” here is a general concept, covering a wide range, such as high throughput, low latency, etc.
  • the technical solution of the present invention is not aimed at a specific communication performance, but a general solution that can meet different communication performance requirements.
  • the present invention proposes two implementation modes, and the specific implementation modes of the present invention will be described in detail below with reference to the accompanying drawings.
  • the access point and the client meet the following basic requirements.
  • Both the access point and the client support iPRP and iPCF, or similar features that enable redundant and scheduled access modes.
  • NTP NTP
  • PTP PTP
  • gPTP time sensitive network
  • FIG. 2 is another schematic diagram of an industrial wireless communication system that can adopt the communication method of the present invention.
  • the industrial wireless communication system includes a first terminal device 202, a second terminal device 204-1, 204-2, 204-3, 204-4, 204-5, access points AP1, AP2, AP3, clients STA1a, STA1b, STA2a, STA2b, STA3a, STA3b, STA4a, STA4b, STA5a, STA5b.
  • the first terminal device may be, for example, a server, a cloud, a computer, etc.
  • the second terminal device may be, for example, a PLC, an AGV, a gateway, etc.
  • the redundant box is omitted in FIG. 2.
  • Block 500 in FIG. 2 is a communication device for coordinating scheduling of an access point to a client according to an embodiment of the present disclosure, which will be described in detail later.
  • FIG2 is taken as an example of communication between one first terminal device and five second terminal devices. It can be understood that the number of devices in the communication system can be any number as needed and is not limited to that shown in FIG2 .
  • the first terminal device is associated with three access points, and each of the second terminal devices is associated with two clients, which are a redundant client pair.
  • STA1a and STA1b are a redundant client pair.
  • the communication between the first terminal device and the second terminal device is achieved through the communication between the access point and the client.
  • all access points are time synchronized.
  • a second terminal device is associated with two clients, and the two clients are used as a redundant client pair. It is understood by those skilled in the art that a terminal device can also be associated with more clients, and there can be more than two clients as redundant clients, which will not be described in detail in this specification.
  • Fig. 3 is a flow chart of an exemplary process of a communication method 300 according to an embodiment of the present disclosure. The execution steps of the communication method 300 according to an embodiment of the present disclosure are described in detail below in conjunction with Fig. 3 and Fig. 2 .
  • the communication method 300 is a communication method adopted in the industrial wireless communication system 200 .
  • a scheduling strategy determination step is performed to determine a scheduling strategy of an access point for a client according to a predetermined communication optimization target.
  • the communication optimization goal here can be to improve data throughput, reduce communication delay, reduce packet loss rate, etc. Users can set appropriate communication optimization goals according to the needs of specific application scenarios, thereby determining different scheduling strategies.
  • the scheduling strategy may be that the access point schedules only one client in a redundant client pair at a time, or the access point schedules two clients in a redundant client pair at the same time, etc.
  • the user may also design other scheduling strategies as needed.
  • a scheduling plan determination step is performed to determine a scheduling plan based on the scheduling strategy, wherein the scheduling plan at least includes which client each access point is to schedule in the current scheduling time slot.
  • the scheduling of all clients is planned based on the scheduling policy.
  • the scheduling plan may also include information such as the expected uplink data type, the predetermined timeout period if no response from the client is received, etc. It can be understood that the information included in the scheduling plan is not limited to this, and can be set as needed, which will not be described in detail here.
  • a scheduling instruction step is performed to send the scheduling plan determined in the above steps to the access point to instruct the access point to schedule the corresponding client to communicate according to the scheduling plan.
  • a scheduling state determination step is performed to collect scheduling state information from the access point, where the scheduling state information includes whether the scheduling is successful.
  • This step is used to check whether the call of each access point to the client is successful, for example, it can be checked whether the access point receives the response message of the client.
  • box S310 based on the scheduling status information and the predetermined decision algorithm, the scheduling plan for the next scheduling time slot is determined, and the process returns to box S306 to continue executing the scheduling indication step.
  • the decision algorithm can be predetermined based on actual user needs and communication optimization goals. For example, if PROFINET service data is to be sent and data throughput is to be increased, the decision algorithm can at least consider the following factors:
  • Each client is scheduled at least once in a cycle
  • step S310 the scheduling plan for the next scheduling is determined based on whether the last scheduling is successful and a predetermined decision algorithm, and then the process returns to step S306 to instruct the access point to schedule the corresponding client according to the scheduling plan.
  • the communication method 300 described above with reference to FIG. 3 is a centralized solution, in which the overview of the entire communication system can be generally understood and controlled, such as the network structure, the relationship between different devices, the working status of each device, the mapping relationship between access points and clients, etc.
  • the scheduling of access points to clients can be coordinated according to actual user needs and communication optimization goals, thereby providing an overall optimized scheduling mechanism for the entire communication system.
  • the present invention also proposes a decentralized solution, in which there is no overall overview of the entire system and no global scheduling mechanism, but access points can exchange information with each other and coordinate the scheduling of clients, thereby avoiding unnecessary transmission of redundant data packets.
  • a terminal device is associated with two clients, which is called a redundant client pair, and is pre-labeled with an odd or even label.
  • a redundant client pair is pre-labeled with an odd or even label.
  • an example of a terminal device being associated with two clients is used for explanation, but more clients can also be associated, and there can be more than two redundant clients.
  • Each access point maintains two client lists, an odd-numbered client list and an even-numbered client list, for all clients associated with it.
  • Each client can tell the access point whether it is marked as odd or even during the association process, and the access point will then put the client into the corresponding list.
  • Each access point knows the redundant client partner of each client associated with it (i.e., the two clients in a redundant client pair are each other's redundant client partners), and knows which access point the redundant client partner is associated with. In this way, each access point knows which access point to exchange information with, and the access points associated with the redundant client partners are each other's redundant access point partners.
  • All access points share a time synchronization scheduling period (ie, time synchronization).
  • time synchronization scheduling period ie, time synchronization.
  • NTP, PTP, or gPTP protocol may be used between access points to achieve time synchronization.
  • the clients are divided into two groups by marking the two clients in the redundant client pair as odd clients and even clients, and each access point maintains lists of the two groups of clients. It can be understood that other methods can also be used to group the clients, such as marking the two clients in the redundant client pair as high priority and low priority, or randomly adding a first tag and a second tag to the two clients in the redundant client pair, etc.
  • the present invention does not limit the specific method of grouping the clients.
  • Figure 4 is a flowchart of an exemplary process of a communication method 400 according to another embodiment of the present disclosure.
  • each access point first schedules the corresponding clients in its first list in turn.
  • the access point notifies its corresponding redundant access point partner whether the scheduling is successful.
  • access points can exchange information with each other, coordinate client scheduling, reduce unnecessary redundant transmission, save network resources, and thus improve data throughput.
  • both the redundant access point partner and the redundant client partner can be used to transmit other data.
  • the method of the present invention mainly solves the coordination scheduling problem of the access point to the client, and does not explain how to use the idle redundant access point to communicate with the client.
  • the method 400 may further include step S408, where if a client leaves its associated access point, the corresponding access point deletes the client from the list it maintains; if a new client is associated with the access point, the access point adds the client to the corresponding list.
  • two solutions centralized and decentralized, are provided, which can be applicable to a variety of different industrial scenarios; by adopting different scheduling mechanisms, different communication performance optimization goals can be achieved very flexibly, such as improving data throughput.
  • Fig. 5 is a block diagram showing an exemplary configuration of a communication device 500 for executing the communication method shown in Fig. 2.
  • the communication device 500 includes: a scheduling strategy determination unit 502, a scheduling plan determination unit 504, a scheduling indication unit 506, a scheduling state determination unit 508 and a repetition control unit 510.
  • the scheduling strategy determining unit 502 is configured to determine a scheduling strategy of the access point to the client according to a predetermined communication optimization target.
  • the scheduling plan determining unit 504 is configured to determine a scheduling plan based on the scheduling strategy, where the scheduling plan at least includes which client each access point is to schedule in the current scheduling time slot.
  • the scheduling instruction unit 506 is configured to send the scheduling plan to the access point, and instruct the access point to schedule the corresponding client to communicate according to the scheduling plan.
  • the scheduling state determination unit 508 is configured to collect scheduling state information from the access point, where the scheduling state information includes whether the scheduling is successful.
  • the repetition control unit 510 is configured to determine a scheduling plan for the next scheduling time slot based on the scheduling state information and a predetermined decision algorithm.
  • the details of the operations and functions of the various parts of the communication device 500 may be the same as or similar to the relevant parts of the embodiment of the communication method of the present disclosure described with reference to FIGS. 1-3 , and will not be described in detail here.
  • each step of the above communication method and each component module and/or unit of the above communication device can be implemented as software, firmware, hardware or a combination thereof.
  • a program constituting the software for implementing the above method can be installed from a storage medium or a network to a computing device with a dedicated hardware structure, and the computing device can perform various functions when various programs are installed.
  • the computing device 600 may include at least one processor 602, which executes at least one computer-readable instruction (i.e., the above-mentioned elements implemented in software form) stored or encoded in a computer-readable storage medium (i.e., memory 604).
  • processor 602 which executes at least one computer-readable instruction (i.e., the above-mentioned elements implemented in software form) stored or encoded in a computer-readable storage medium (i.e., memory 604).
  • computer executable instructions are stored in the memory 604, and when the computer executable instructions are executed, the at least one processor 602 can complete the operations performed by the data relay device.
  • the memory 604 can also store computer executable instructions that can enable the processor 602 to complete the operations performed by the container management device.
  • a non-transitory machine-readable medium may have machine-executable instructions (i.e., the above-mentioned elements implemented in software form), which, when executed by a machine, causes the machine to perform the various operations and functions described above in conjunction with Figures 1-5 in various embodiments of the present disclosure.
  • a computer program including computer executable instructions, which, when executed, enable at least one processor to perform various operations and functions described above in conjunction with FIGS. 1-5 in various embodiments of the present disclosure.
  • a computer program product including computer executable instructions, which, when executed, enable at least one processor to perform various operations and functions described above in conjunction with FIGS. 1-5 in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了通信方法、通信装置、通信系统、计算设备和存储介质。该通信方法包括调度策略确定步骤,根据预定的通信优化目标确定接入点对客户端的调度策略;调度计划确定步骤,基于调度策略确定调度计划,调度计划至少包括在当前调度时隙每个接入点分别要调度哪个客户端;调度指示步骤,将调度计划发送给接入点,指示接入点按照调度计划调度相应的客户端进行通信;调度状态判断步骤,从接入点采集调度状态信息,调度状态信息包括调度是否成功;以及重复控制步骤,基于调度状态信息和预定决策算法,确定下一个调度时隙的调度计划,并回到调度指示步骤执行方法。

Description

通信方法、通信装置、通信系统、计算设备和存储介质 技术领域
本公开通常涉及通信技术领域,更具体地,通信方法、通信装置、通信系统、计算设备和存储介质。
背景技术
如果没有现代通信技术,工业领域正在进行的数字化转型就不可能实现。为了给企业提供交换各类数据的最佳基础设施,目前已经开发了一系列特殊的工业无线局域网(iWLAN)产品,这些产品具有独特的增强功能,可以满足控制柜内、室内和室外的工业Wi-Fi的具体要求,例如iPRP(Industrial Parallel Redundancy Protocol,工业并行冗余协议)、iPCF(工业点协调功能)等。
iPRP是通过IWLAN进行无线数据传输的PRP(Parallel Redundancy Protocol,并行冗余协议)的扩展。通过iPRP,可以在无线网络中实现可用性高、冗余的、不间断的连接。它是基于在两个独立(冗余)的无线链路上复制层二的帧来实现的。
iPCF技术是用于PROFINET业务的无线传输的另一项重要技术。iPCF用轮询信道接入方案取代了传统WLAN系统的随机信道接入方案(DCF),即客户端仅在AP的请求(轮询)下发送上行数据。
iPRP和iPCF在工业上有各自专门的应用场景,可以提供相应的技术优势。
但如果只是简单地把它们结合在一起,AP和客户端在设置上不协调,这可能会导致一些无线性能问题。
发明内容
在下文中给出关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
有鉴于此,本公开提出了一种通信方法,可以结合冗余技术(例如iPRP)和调度接 入技术(例如iPCF)二者的技术优势。
根据本公开的一个方面,提供一种工业无线通信系统的通信方法,所述工业无线通信系统包括第一终端设备、第二终端设备、多个接入点和多个客户端,其中,所述第一终端设备关联所述多个接入点,所述第二终端设备中的每一个至少关联所述多个客户端中的两个客户端,所关联的客户端中的至少两个客户端是冗余客户端对,所有接入点时间同步,所述接入点通过调度客户端来实现所述第一终端设备和所述第二终端设备之间的通信,所述方法包括:
调度策略确定步骤,根据预定的通信优化目标确定接入点对客户端的调度策略;
调度计划确定步骤,基于所述调度策略确定调度计划,所述调度计划至少包括在当前调度时隙每个接入点分别要调度哪个客户端;
调度指示步骤,将所述调度计划发送给接入点,指示所述接入点按照所述调度计划调度相应的客户端进行通信;
调度状态判断步骤,从所述接入点采集调度状态信息,所述调度状态信息包括调度是否成功;以及
重复控制步骤,基于所述调度状态信息和预定决策算法,确定下一个调度时隙的调度计划,并回到所述调度指示步骤执行所述方法。
通过这样的方式,提供了一种综合解决方案,可以协调接入点对客户端的调度,根据对于通信性能的需求,采用不同的客户端调度方案,来满足针对不同通信性能需求的优化。
可选地,在上述方面的一个示例中,所述调度策略包括以下中的任意一项:
接入点一次只调度冗余客户端对中的一个客户端;
接入点同时调度一个冗余客户端对中的两个客户端。
可选地,在上述方面的一个示例中,所述通信优化目标包括以下中的任意一项:
提高数据吞吐量、减小通信延迟、减小丢包率。
可选地,在上述方面的一个示例中,所述调度计划进一步包括以下中的至少一项:
期望的上行链路数据类型、如果没有收到客户端的响应的预定超时时间。
可选地,在上述方面的一个示例中,所述预定决策算法的决策因素包括:
每个客户端在一个周期中至少被调度一次、如果没有从客户端接收到响应,基于调度时隙的可用性来决定什么时候再次调度、可用调度时隙的数量。
根据本公开的另一方面,提供了一种工业无线通信系统的通信方法,所述工业无线通信系统包括第一终端设备、第二终端设备、多个接入点和多个客户端,其中,所述第一终端设备关联所述多个接入点,所有接入点时间同步,所述第二终端设备中的每一个至少关联所述多个客户端中的两个客户端,所关联的客户端中的至少两个客户端是冗余客户端对,所述冗余客户端对中的一个客户端被标记第一特征,另一个客户端被标记第二特征,所有接入点时间同步,每个接入点针对其所关联的客户端维护两个列表,其中第一列表中包括冗余客户端对中具有第一特征的客户端,第二列表中包括冗余客户端对中具有第二特征的另一个客户端,接入点知道与其关联的每一个客户端的冗余客户端伙伴,以及该冗余客户端伙伴所关联的冗余接入点伙伴,所述方法包括:
每一个接入点依次调度其第一列表中对应的客户端;
所述接入点向其对应的冗余接入点伙伴通知调度是否成功;以及
如果调度成功,则所述冗余接入点伙伴在当前调度周期将不再调度对应的冗余客户端伙伴,如果调度失败,则在所述冗余客户端伙伴还没有被调用的情况下,所述冗余接入点伙伴将调度对应的冗余客户端伙伴。
通过这样的方式,接入点之间可以互相交换信息,协调客户端的调度,减少不必要的冗余传输,节约了网络资源,从而可以提高数据吞吐量。
可选地,在上述方面的一个示例中,所述方法还包括:
当有客户端离开其关联的接入点,则对应的接入点从其维护的列表中删除该客户端;如果有新的客户端与接入点关联,则接入点根据该客户端将该客户端加入对应的列表。
通过这样的方式,可以方便地实现对客户端加入和离开的管理。
根据本公开的另一方面,提供了一种工业无线通信系统中的通信装置,所述工业无线通信系统包括第一终端设备、第二终端设备、多个接入点和多个客户端,其中,所述第一终端设备关联所述多个接入点,所述第二终端设备中的每一个至少关联所述多个客户端中的两个客户端,所关联的客户端中的至少两个客户端是冗余客户端对,所有接入点时间同步,所述接入点通过调度客户端来实现所述第一终端设备和所述第二终端设备之间的通信,所述通信装置包括:
调度策略确定单元,被配置为根据预定的通信优化目标确定接入点对客户端的调度策略;
调度计划确定单元,被配置为基于所述调度策略确定调度计划,所述调度计划至少包括在当前调度时隙每个接入点分别要调度哪个客户端;
调度指示单元,被配置为将所述调度计划发送给接入点,指示所述接入点按照所述调度计划调度相应的客户端进行通信;
调度状态判断单元,被配置为从所述接入点采集调度状态信息,所述调度状态信息包括调度是否成功;以及
重复控制单元,被配置为基于所述调度状态信息和预定决策算法,确定下一个调度时隙的调度计划。
根据本公开的另一方面,提供了一种工业无线通信系统,包括包括第一终端设备、第二终端设备、多个接入点和多个客户端以及根据以上所述的通信装置,其中,所述通信装置控制所述接入点对所述客户端的调度,来实现第一终端设备和第二终端设备之间的通信。
根据本公开的另一方面,提供了一种计算设备,包括:至少一个处理器;以及与所述至少一个处理器耦合的一个存储器,所述存储器用于存储指令,当所述指令被所述至少一个处理器执行时,使得所述处理器执行如上所述的方法。
根据本公开的另一方面,提供了一种非暂时性机器可读存储介质,其存储有可执行指令,所述指令当被执行时使得所述机器执行如上所述的方法。
根据本公开的另一方面,提供了一种计算机程序,包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行如上所述的方法。
根据本公开的另一方面,提供了一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行如上所述的方法。
根据本公开的通信方法和通信装置,提供了集中式和分散式两种解决方案,可以适用于多种不同的工业场景;通过采用不同的调度机制,非常灵活地实现不同的通信性能优化目标,例如提高数据吞吐量。
附图说明
参照下面结合附图对本发明实施例的说明,会更加容易地理解本发明的以上和其它目的、特点和优点。附图中的部件只是为了示出本发明的原理。在附图中,相同的或类似的技术特征或部件将采用相同或类似的附图标记来表示。附图中:
图1是可以采用本发明的通信方法的工业无线通信系统的一个简化示意图;
图2是可以采用本发明的通信方法的工业无线通信系统的另一个示意图;
图3为根据本公开实施例的通信方法的示例性过程的流程图;
图4为根据本公开另一实施例的通信方法的示例性过程的流程图;
图5示出了用于执行图2所示的通信方法的通信装置的示例性配置的框图;以及
图6示出了根据本公开实施例的用于实现通信方法的计算设备的方框图。
其中,附图标记如下:
AP1、AP2、AP3:接入点              102、202:第一终端设备
STA1、STA2、STA3、STA4、           106-1、106-2、108:冗余盒
STA1a、STA1b、STA2a、STA2b、
STA3a、STA3b、STA4a、STA4b、
STA5a、STA5b:客户端
104-1、104-2、204-1、204-2、204-3、100、200:工业无线通信系统
204-4、204-5:第二终端设备
300:通信方法                       S302、S304、S306、S308、S310:步骤
400:通信方法                       S402、S404、S406、S408:步骤
500:通信装置                       502:调度策略确定单元
504:调度计划确定单元               506:调度指示单元
508:调度状态判断单元               510:重复控制单元
600:计算设备                       602:处理器
604:存储器
具体实施方式
现在将参考示例实施方式讨论本文描述的主题。应该理解,讨论这些实施方式只是为了使得本领域技术人员能够更好地理解从而实现本文描述的主题,并非是对权利要求书中所阐述的保护范围、适用性或者示例的限制。可以在不脱离本公开内容的保护范围的情况下,对所讨论的元素的功能和排列进行改变。各个示例可以根据需要,省略、替代或者添加各种过程或组件。例如,所描述的方法可以按照与所描述的顺序不同的顺序来执行,以及各个步骤可以被添加、省略或者组合。另外,相对一些示例所描述的特征在其它例子中也可以进行组合。
如本文中使用的,术语“包括”及其变型表示开放的术语,含义是“包括但不限于”。术语“基于”表示“至少部分地基于”。术语“一个实施例”和“一实施例”表示 “至少一个实施例”。术语“另一个实施例”表示“至少一个其他实施例”。术语“第一”、“第二”等可以指代不同的或相同的对象。下面可以包括其他的定义,无论是明确的还是隐含的。除非上下文中明确地指明,否则一个术语的定义在整个说明书中是一致的。
有鉴于此,本发明提出了一种可以结合iPRP和iPCF的技术优势的通信解决方案。
图1是可以采用本发明的通信方法的工业无线通信系统的一个简化示意图。
图1所示的工业无线通信系统100包括第一终端设备102、第二终端设备104-1和104-2、接入点AP1、AP2和客户端STA1、STA2、STA3、STA4,冗余盒106-1、106-2、108。
其中所有的接入点(Access Point,AP)和客户端(STA)都可以同时支持iPRP和iPCF功能,或者可以实现冗余和调度接入模式的类似功能的特征。
这里第一终端设备例如可以是服务器、云、计算机等设备,第二终端设备例如可以是PLC、AGV、网关等设备。冗余盒用于将一个通路变成两路或者将两个通路合并为一路。
图1中示出了一个第一终端设备和两个第二终端设备作为示例进行说明,可以理解,在该通信系统中的设备的数量可以根据需要为任意多个,而不限于图1中所示。
假设STA1和STA3是一对冗余的WLAN客户端设备,通过“冗余盒106-1”连接到同一个终端设备104-1(例如,典型的Profinet IO(PNIO)设备),因此要向/从它们各自的接入点(AP1和AP2)发送/接收相同的层二业务。对于STA2和STA4来说也是如此,通过冗余盒106-2连接到终端设备104-2。
为了简单起见,图1中假设两对冗余客户端对分别都由同一对接入点,即AP1和AP2提供服务(在实践中,由于客户端可以在更大的无线网络中自由漫游,客户端与接入点的映射可能更复杂,并会随时间发生改变)。作为进一步的简化,可以假设所有的流量都是周期性的PNIO流量,并且假设所有的数据帧都有相同的持续时间。在一个实际的IWLAN网络中,多个AP可能属于不同的LAN网络,每个终端设备可以部署一个或两个WLAN客户端,AP和客户端之间也会有更复杂的映射关系。这些简化的目的只是为了更清楚地描述问题和解决方案,而本发明的保护范围并不限于此。
在WLAN的传统iPRP通信方式中,iPRP的一个基本特征是,冗余盒可以复制数据帧,这两个数据帧具有相同的源MAC地址,不同的目标MAC地址。然后由接入点分别发送到对应的客户端,当一个接入点收到来自客户端的下行链路数据包发送成功的确认后,会通知冗余接入点发送成功,冗余接入点可以从其发送队列中删除相应的数据包,避 免由于重复传输而浪费时间和无线电资源。上面的描述仅仅说明了下行数据,对于上行数据也是相同的原理。然而,默认情况下,接入点之间没有协调机制,也没有时间同步。因此,当两个接入点向/从客户端(STA)发送/接收数据时,可能会出现以下几种调度模式。
调度模式1:在同一时刻,接入点AP1调度客户端STA1,AP2调度STA3,或者AP1调度STA2,AP2调度STA4。这种模式的特点是,作为冗余客户端对的两个客户端被各自对应的接入点同时调度。
在本公开中,将冗余客户端对中的一个客户端称为另一个客户端的冗余客户端伙伴,将冗余客户端对中的两个客户端各自分别对应的接入点称为冗余接入点对,并将其中一个接入点称为另一个接入点的冗余接入点伙伴。
调度模式2:在同一时刻,接入点AP1调度客户端STA1,AP2调度STA4,或者AP1调度STA2,AP2调度STA3。这种模式的特点是,作为冗余客户端对的两个客户端在不同时间被调度(没有时间重叠)。
调度模式3:接入点AP1调度客户端STA1,AP2调度STA4,或者AP1调度STA2,AP2调度STA3,或者AP1调度STA2,AP2调度STA4,或者其他调度方式。这种模式的特点是,作为冗余客户端对的两个客户端的调度时间互相重合一个随机量。
由于在接入点侧没有协调调度,所以在接入点调度客户端时,这几种调度模式可能同时存在,或者混合出现。
可以看到,调度模式2是同一数据包的两个拷贝的发送没有时间重合的情况,这种特征会使得数据被接入点AP1成功传输,从而被接入点AP2丢弃,这样接入点AP2可以利用这个空闲时隙传输另一个数据,对客户端也是相同的作用:数据被客户端STA1成功传输,从而被客户端STA3丢弃,这样AP1没有必要再去调度STA2,AP2调度STA3。那么AP1和AP2可以同时利用这个空闲间隙传输另一个数据。而调度模式1和调度模式3是同一数据包的两个拷贝的发送有时间重合,在这两种情况下,无法实现AP2利用空闲时隙传输其它数据,这是因为在第一条链路上的传输完成之前,同一数据包的另一个拷贝已经在冗余的链路上进行传输了,但是调度模式1和调度模式3这两种调度模式可以保证数据传输实时性和冗余性需求。
那么,如果能够控制调度模式,例如只采用调度模式2,协调接入点的数据发送行为,就可以避免对接入点不必要的调度,例如对于已经从冗余客户端对中的一个客户端成功接收到数据的情况,就无需对其冗余客户端伙伴再进行调度。在无线连接性非常好的情 况下,可以产生很多可用的空闲时隙,如果利用这些时隙来调用客户端就可以传送更多的数据,从而提高数据吞吐量。
以上以提高数据吞吐量为例说明应用本公开的技术方案的一个典型场景,如果设计其它调度模式,例如采用调度模式1,则有可能减小某些设备的通信时限。
基于以上分析,本发明提出了一种综合解决方案,可以协调接入点对客户端的调度,根据对于通信性能的需求,采用不同的客户端调度方案,来实现目标通信性能的优化。
这里的“通信性能”是一个概括的概念,涵盖的范围很广,比如高吞吐量、低延迟等等。本发明的技术方案不是针对特定的通信性能,而是一个可以满足不同通信性能需求的通用解决方案。
具体地,本发明提出了两种实现方式,下面将参考附图详细说明本发明的具体实施方式。
在本公开的技术方案中,接入点和客户端满足以下基本要求。
1.接入点和客户端都同时支持iPRP和iPCF,或能够实现冗余和调度接入模式的类似特征。
2.为了协调接入点的调度行为,需要建立全部接入点之间的时间同步,例如可以采用NTP、PTP或gPTP等在TSN(时间敏感网络)中通常采用的机制来实现这样的时间同步。要指出的是,无需对客户端进行同步,并且对于同步的精确度的要求也不是很高。此外,对于接入点的信标定时或物理层定时也不需要同步,因为同步的目的只是要协调轮询调度。
图2是可以采用本发明的通信方法的工业无线通信系统的另一个示意图。
工业无线通信系统包括第一终端设备202、第二终端设备204-1、204-2、204-3、204-4、204-5、接入点AP1、AP2、AP3、客户端STA1a、STA1b、STA2a、STA2b、STA3a、STA3b、STA4a、STA4b、STA5a、STA5b。这里第一终端设备例如可以是服务器、云、计算机等设备,第二终端设备例如可以是PLC、AGV、网关等设备。为了简单起见,在图2中省略了冗余盒。
图2中的方框500是根据本公开实施例的用于协调接入点对客户端的调度的通信装置,将在后面具体说明。
图2中以1个第一终端设备和5个第二终端设备通信为例进行说明,可以理解,在该通信系统中的设备的数量可以根据需要为任意多个,而不限于图2中所示。
在图2中,第一终端设备关联3个接入点,第二终端设备中的每一个关联两个客户端,这两个客户端是冗余客户端对,例如STA1a和STA1b是冗余客户端对,第一终端设备和第二终端设备之间的通信是通过接入点和客户端之间的通信来实现的。这里,所有的接入点时间同步。在根据本发明实施例的通信系统中,以一个第二终端设备关联两个客户端,这两个客户端作为冗余客户端对为例进行说明,本领域技术人员可以理解,一个终端设备也可以关联更多个客户端,并且也可以有不止两个客户端作为冗余客户端,在本说明书中不做详述。
图3为根据本公开实施例的通信方法300的示例性过程的流程图。下面结合图3和图2详细说明根据本公开实施例的通信方法300的执行步骤。
通信方法300是在工业无线通信系统200中所采用的通信方法。
在图3中,首先,在方框S302中,执行调度策略确定步骤,根据预定的通信优化目标确定接入点对客户端的调度策略。
这里通信优化目标可以是提高数据吞吐量、减小通信延迟、减小丢包率等,用户可以根据具体的应用场景的需要来设定合适的通信优化目标,从而确定不同的调度策略。
调度策略例如可以是接入点一次只调度冗余客户端对中的一个客户端、接入点同时调度一个冗余客户端对中的两个客户端等,用户也可以根据需要设计其它调度策略。
接着,在方框S304中,执行调度计划确定步骤,基于所述调度策略确定调度计划,所述调度计划至少包括在当前调度时隙每个接入点分别要调度哪个客户端。
在这个步骤中,要基于调度策略对所有客户端的调度进行计划,调度计划中除了接入点要调度的客户端之外,还可以包括期望的上行链路数据类型、如果没有收到客户端的响应的预定超时时间等信息。可以理解,调度计划中所包括的信息不限于此,可以根据需要来设置,在此不再详述。
接着,在方框S306中,执行调度指示步骤,将在以上步骤中所确定的调度计划发送给接入点,来指示所述接入点按照所述调度计划调度相应的客户端进行通信。
接着,在方框S308中,执行调度状态判断步骤,从接入点采集调度状态信息,所述调度状态信息包括调度是否成功。
这个步骤是用于检查每一个接入点对客户端的调用是否成功,例如可以检查接入点是否接收到客户端的响应消息。
在方框S310中,基于所述调度状态信息和预定决策算法,确定下一个调度时隙的调 度计划,并回到方框S306中继续执行调度指示步骤。
决策算法可以根据实际的用户需求和通信优化目标来预先确定,例如如果要发送PROFINET业务数据,并且想要提高数据吞吐量,则决策算法至少可以考虑以下因素:
1.每个客户端在一个周期中至少被调度一次
2.如果没有从客户端接收到响应,基于调度时隙的可用性来决定什么时候再次调度
3.可用调度时隙的数量。
在步骤S310中,是根据上次调度是否成功以及预先确定的决策算法,来确定下一次调度的调度计划,然后再回到步骤S306中,按照该调度计划指示接入点调度相应的客户端。
以上参照图3所描述的通信方法300是一种集中式的解决方案,在这种解决方案中,可以对整个通信系统的概况有总体了解和控制,例如网络结构、不同设备之间的关系、每个设备的工作状态、接入点和客户端之间的映射关系等。可以根据实际的用户需求和通信优化目标来协调接入点对客户端的调度,从而为整个通信系统提供整体优化的调度机制。
本发明还提出了一种分散式的解决方案,在这种解决方案中,对于整个系统没有整体概况的了解和全局的调度机制,但是接入点之间可以互相交换信息,协调对客户端的调度,从而避免不必要的冗余数据包的传输。
下面说明分散式解决方案的一个具体实例。
首先要说明工业无线通信系统采用分散式解决方案时要满足的一些初始设置条件。
一个终端设备关联两个客户端,称为冗余客户端对,预先分别被标记上奇数或偶数标签。这里以一个终端设备关联两个客户端为例进行说明,也可以关联更多个客户端,并且冗余客户端也可以不止两个。
每个接入点对于与它关联的所有客户端维护两个客户端列表,即奇数客户端列表和偶数客户端列表。
每个客户端可以在和接入点关联的过程中告诉接入点它被标记为奇数还是偶数,然后接入点将该客户端放入对应的列表中。
每个接入点知道其关联的每个客户端的冗余客户端伙伴(即冗余客户端对中的两个客户端互为冗余客户端伙伴),并且知道该冗余客户端伙伴与哪个接入点关联,这样每个接入点就知道要和哪个接入点交换信息,冗余客户端伙伴各自所关联的接入点互为冗余接入 点伙伴。
所有接入点共享时间同步调度周期(即时间同步),如上所述,可以在接入点之间采用NTP、PTP或gPTP协议来实现时间同步。
仍然参考图2中的通信系统,其中用虚线连接了相关联的接入点和客户端。基于图2,可以得到如下面的表1所示的每个接入点的奇数客户端列表和偶数客户端列表。
  奇数客户端列表 偶数客户端列表
AP1 {STA1a,STA 3a,…} {STA2a,STA5a,…}
AP2 {STA2b,STA4a,…} {STA1b,STA3b,…}
AP3 {STA5b,…} {STA4b,…}
表1
在该具体示例中,通过将冗余客户端对中的两个客户端分别标记为奇数客户端和偶数客户端而将客户端分为两组,每个接入点维护两组客户端的列表。可以理解,也可以采用其他方式来将客户端分组,例如将冗余客户端对中的两个客户端分别标记为高优先级和低优先级、或者给冗余客户端对中的两个客户端随机添加第一标签和第二标签等方式,本发明对于对客户端进行分组的具体方式不做限定。
在上述无线通信系统的条件下,可以执行如图4所示的通信方法。图4为根据本公开另一实施例的通信方法400的示例性过程的流程图。
首先,在方框S402中,每一个接入点首先依次调度其第一列表中对应的客户端。
在方框S404中,接入点向其对应的冗余接入点伙伴通知调度是否成功。
在方框S406中,如果调度成功,则冗余接入点伙伴在当前调度周期将不再调度对应的冗余客户端伙伴;如果调度失败,则在所述冗余客户端伙伴还没有被调用的情况下,所述冗余接入点伙伴将调度对应的冗余客户端伙伴。
通过这样的方式,接入点之间可以互相交换信息,协调客户端的调度,减少不必要的冗余传输,节约了网络资源,从而可以提高数据吞吐量。
在调度成功的情况下,冗余接入点伙伴和冗余客户端伙伴都可以用于传输其它数据,本发明的方法主要解决接入点对客户端的协调调度问题,对于如何利用空闲出来的冗余接入点和客户端进行通信不作说明。
此外,方法400还可以包括步骤S408,如果有客户端离开其关联的接入点,则对应的接入点从其维护的列表中删除该客户端;如果有新的客户端与接入点关联,则接入点将该客户端加入对应的列表。
通过这样的方式,可以方便地实现对客户端加入和离开的管理。
根据本公开的通信方法和通信装置,提供了集中式和分散式两种解决方案,可以适用于多种不同的工业场景;通过采用不同的调度机制,非常灵活地实现不同的通信性能优化目标,例如提高数据吞吐量。
图5示出了用于执行图2所示的通信方法的通信装置500的示例性配置的框图。在图5中,通信设备500包括:调度策略确定单元502、调度计划确定单元504、调度指示单元506、调度状态判断单元508和重复控制单元510。
调度策略确定单元502被配置为根据预定的通信优化目标确定接入点对客户端的调度策略。
调度计划确定单元504被配置为基于所述调度策略确定调度计划,所述调度计划至少包括在当前调度时隙每个接入点分别要调度哪个客户端。
调度指示单元506被配置为将所述调度计划发送给接入点,指示所述接入点按照所述调度计划调度相应的客户端进行通信。
调度状态判断单元508被配置为从所述接入点采集调度状态信息,所述调度状态信息包括调度是否成功。
重复控制单元510被配置为基于所述调度状态信息和预定决策算法,确定下一个调度时隙的调度计划。
需要说明的是,图5所示的通信设备500及其组成单元的结构仅仅是示例性的,本领域技术人员可以根据需要对图5所示的结构框图进行修改。
通信装置500的各个部分的操作和功能的细节例如可以与参照结合图1-3描述的本公开的通信方法的实施例的相关部分相同或类似,这里不再详细描述。
如上参照图1至图5,对根据本公开的实施例的通信方法以及通信装置的实施例进行了描述。
作为一个示例,上述通信方法的各个步骤以及上述通信装置的各个组成模块和/或单元可以实施为软件、固件、硬件或其组合。在通过软件或固件实现的情况下,可以从存储介质或网络向具有专用硬件结构的计算设备安装构成用于实施上述方法的软件的程序,该计算设备在安装有各种程序时,能够执行各种功能等。
图6示出了根据本公开实施例的用于实现通信方法的计算设备600的方框图。根据一个实施例,计算设备600可以包括至少一个处理器602,处理器602执行在计算机可读存 储介质(即,存储器604)中存储或编码的至少一个计算机可读指令(即,上述以软件形式实现的元素)。
在一个实施例中,在存储器604中存储计算机可执行指令,该计算机可执行指令在被执行时使得至少一个处理器602可以完成数据中继装置所执行的操作。此外,存储器604中还可以存储可以使得处理器602完成容器管理装置所执行的操作的计算机可执行指令。
应该理解,在存储器604中存储的计算机可执行指令当执行时使得至少一个处理器602进行本公开的各个实施例中以上结合图1-5描述的各种操作和功能。
根据一个实施例,提供了一种非暂时性机器可读介质。该非暂时性机器可读介质可以具有机器可执行指令(即,上述以软件形式实现的元素),该指令当被机器执行时,使得机器执行本公开的各个实施例中以上结合图1-5描述的各种操作和功能。
根据一个实施例,提供了一种计算机程序,包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行本公开的各个实施例中以上结合图1-5描述的各种操作和功能。
根据一个实施例,提供了一种计算机程序产品,包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行本公开的各个实施例中以上结合图1-5描述的各种操作和功能。
上面结合附图阐述的具体实施方式描述了示例性实施例,但并不表示可以实现的或者落入权利要求书的保护范围的所有实施例。在整个本说明书中使用的术语“示例性”意味着“用作示例、实例或例示”,并不意味着比其它实施例“优选”或“具有优势”。出于提供对所描述技术的理解的目的,具体实施方式包括具体细节。然而,可以在没有这些具体细节的情况下实施这些技术。在一些实例中,为了避免对所描述的实施例的概念造成难以理解,公知的结构和装置以框图形式示出。
本公开内容的上述描述被提供来使得本领域任何普通技术人员能够实现或者使用本公开内容。对于本领域普通技术人员来说,对本公开内容进行的各种修改是显而易见的,并且,也可以在不脱离本公开内容的保护范围的情况下,将本文所定义的一般性原理应用于其它变型。因此,本公开内容并不限于本文所描述的示例和设计,而是与符合本文公开的原理和新颖性特征的最广范围相一致。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种工业无线通信系统的通信方法(300),所述工业无线通信系统包括第一终端设备、第二终端设备、多个接入点和多个客户端,其中,所述第一终端设备关联所述多个接入点,所述第二终端设备中的每一个至少关联所述多个客户端中的两个客户端,所关联的客户端中的至少两个客户端是冗余客户端对,所有接入点时间同步,所述接入点通过调度客户端来实现所述第一终端设备和所述第二终端设备之间的通信,所述方法(300)包括:
    调度策略确定步骤(S302),根据预定的通信优化目标确定接入点对客户端的调度策略;
    调度计划确定步骤(S304),基于所述调度策略确定调度计划,所述调度计划至少包括在当前调度时隙每个接入点分别要调度哪个客户端;
    调度指示步骤(S306),将所述调度计划发送给接入点,指示所述接入点按照所述调度计划调度相应的客户端进行通信;
    调度状态判断步骤(S308),从所述接入点采集调度状态信息,所述调度状态信息包括调度是否成功;以及
    重复控制步骤(S310),基于所述调度状态信息和预定决策算法,确定下一个调度时隙的调度计划,并回到所述调度指示步骤执行所述方法。
  2. 如权利要求1所述的方法(300),其中,所述调度策略包括以下中的任意一项:
    接入点一次只调度冗余客户端对中的一个客户端;
    接入点同时调度一个冗余客户端对中的两个客户端。
  3. 如权利要求1所述的方法(300),其中,所述通信优化目标包括以下中的任意一项:
    提高数据吞吐量、减小通信延迟、减小丢包率。
  4. 如权利要求1所述的方法(300),其中,所述调度计划进一步包括以下中的至少一项:
    期望的上行链路数据类型、如果没有收到客户端的响应的预定超时时间。
  5. 如权利要求1-4中任意一项所述的方法(300),其中,所述预定决策算法的决策因素包括:
    每个客户端在一个周期中至少被调度一次、如果没有从客户端接收到响应,基于调度时隙的可用性来决定什么时候再次调度、可用调度时隙的数量。
  6. 一种工业无线通信系统的通信方法(400),所述工业无线通信系统包括第一终端设备、第二终端设备、多个接入点和多个客户端,其中,所述第一终端设备关联所述多个接入点,所有接入点时间同步,所述第二终端设备中的每一个至少关联所述多个客户端中的两个客户端,所关联的客户端中的至少两个客户端是冗余客户端对,所述冗余客户端对中的一个客户端被标记第一特征,另一个客户端被标记第二特征,所有接入点时间同步,每个接入点针对其所关联的客户端维护两个列表,其中第一列表中包括冗余客户端对中具有第一特征的客户端,第二列表中包括冗余客户端对中具有第二特征的另一个客户端,接入点知道与其关联的每一个客户端的冗余客户端伙伴,以及该冗余客户端伙伴所关联的冗余接入点伙伴,所述方法(400)包括:
    每一个接入点依次调度其第一列表中对应的客户端(S402);
    所述接入点向其对应的冗余接入点伙伴通知调度是否成功(S404);以及
    如果调度成功,则所述冗余接入点伙伴在当前调度周期将不再调度对应的冗余客户端伙伴,如果调度失败,则在所述冗余客户端伙伴还没有被调用的情况下,所述冗余接入点伙伴将调度对应的冗余客户端伙伴(S406)。
  7. 如权利要求6所述的通信方法(400),还包括:
    当有客户端离开其关联的接入点,则对应的接入点从其维护的列表中删除该客户端;如果有新的客户端与接入点关联,则接入点根据该客户端将该客户端加入对应的列表(S408)。
  8. 一种工业无线通信系统中的通信装置(500),所述工业无线通信系统包括第一终端设备、第二终端设备、多个接入点和多个客户端,其中,所述第一终端设备关联所述多个接入点,所述第二终端设备中的每一个至少关联所述多个客户端中的两个客户端,所关联的客户端中的至少两个客户端是冗余客户端对,所有接入点时间同步,所述接入点通过 调度客户端来实现所述第一终端设备和所述第二终端设备之间的通信,所述通信装置(500)包括:
    调度策略确定单元(502),被配置为根据预定的通信优化目标确定接入点对客户端的调度策略;
    调度计划确定单元(504),被配置为基于所述调度策略确定调度计划,所述调度计划至少包括在当前调度时隙每个接入点分别要调度哪个客户端;
    调度指示单元(506),被配置为将所述调度计划发送给接入点,指示所述接入点按照所述调度计划调度相应的客户端进行通信;
    调度状态判断单元(508),被配置为从所述接入点采集调度状态信息,所述调度状态信息包括调度是否成功;以及
    重复控制单元(510),被配置为基于所述调度状态信息和预定决策算法,确定下一个调度时隙的调度计划。
  9. 一种工业无线通信系统(200),包括包括第一终端设备(202)、第二终端设备(204-1、204-2、204-3、204-4、204-5)、多个接入点(AP1、AP2、AP3)和多个客户端(STA1a、STA1b、STA2a、STA2b、STA3a、STA3b、STA4a、STA4b、STA5a、STA5b)以及根据权利要求8所述的通信装置(500),其中,所述通信装置(500)控制所述接入点对所述客户端的调度,来实现第一终端设备和第二终端设备之间的通信。
  10. 计算设备(600),包括:
    至少一个处理器(602);以及
    与所述至少一个处理器(602)耦合的一个存储器(604),所述存储器(604)用于存储指令,当所述指令被所述至少一个处理器(602)执行时,使得所述处理器(602)执行如权利要求1-5中任一项所述的方法。
  11. 一种非暂时性机器可读存储介质,其存储有可执行指令,所述指令当被执行时使得所述机器执行如权利要求1-5中任一项所述的方法。
  12. 一种计算机程序产品,所述计算机程序产品被有形地存储在计算机可读介质上并 且包括计算机可执行指令,所述计算机可执行指令在被执行时使至少一个处理器执行根据权利要求1-5中任一项所述的方法。
PCT/CN2022/122724 2022-09-29 2022-09-29 通信方法、通信装置、通信系统、计算设备和存储介质 WO2024065423A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122724 WO2024065423A1 (zh) 2022-09-29 2022-09-29 通信方法、通信装置、通信系统、计算设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122724 WO2024065423A1 (zh) 2022-09-29 2022-09-29 通信方法、通信装置、通信系统、计算设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024065423A1 true WO2024065423A1 (zh) 2024-04-04

Family

ID=90475413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122724 WO2024065423A1 (zh) 2022-09-29 2022-09-29 通信方法、通信装置、通信系统、计算设备和存储介质

Country Status (1)

Country Link
WO (1) WO2024065423A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453618A (zh) * 2014-02-26 2016-03-30 华为技术有限公司 上行资源分配方法、接入终端及接入点
US20180270849A1 (en) * 2017-03-15 2018-09-20 Nec Laboratories America, Inc. Speculative scheduling in mobile networks
CN109156024A (zh) * 2016-05-20 2019-01-04 高通股份有限公司 使用混合信令技术的传送调度
US20210068137A1 (en) * 2019-09-04 2021-03-04 Cisco Technology, Inc. System and method for scheduling for redundant layer 2 control messages
CN113747589A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 数据传输方法、装置及系统、计算机可读存储介质
CN114173418A (zh) * 2021-11-10 2022-03-11 中国科学院计算技术研究所 基于深度强化学习的实时分布式无线网络调度方法和系统
CN114189937A (zh) * 2021-11-10 2022-03-15 中国科学院计算技术研究所 基于深度强化学习的实时集中式无线网络调度方法和设备
WO2022118135A1 (en) * 2020-12-01 2022-06-09 Sony Group Corporation Coordinated wifi stations with shared txop among dl and ul over time domain
CN115022978A (zh) * 2022-05-18 2022-09-06 同济大学 基于自适应分组与强化学习的无线网络上行链路调度方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453618A (zh) * 2014-02-26 2016-03-30 华为技术有限公司 上行资源分配方法、接入终端及接入点
CN109156024A (zh) * 2016-05-20 2019-01-04 高通股份有限公司 使用混合信令技术的传送调度
US20180270849A1 (en) * 2017-03-15 2018-09-20 Nec Laboratories America, Inc. Speculative scheduling in mobile networks
US20210068137A1 (en) * 2019-09-04 2021-03-04 Cisco Technology, Inc. System and method for scheduling for redundant layer 2 control messages
CN113747589A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 数据传输方法、装置及系统、计算机可读存储介质
WO2022118135A1 (en) * 2020-12-01 2022-06-09 Sony Group Corporation Coordinated wifi stations with shared txop among dl and ul over time domain
CN114173418A (zh) * 2021-11-10 2022-03-11 中国科学院计算技术研究所 基于深度强化学习的实时分布式无线网络调度方法和系统
CN114189937A (zh) * 2021-11-10 2022-03-15 中国科学院计算技术研究所 基于深度强化学习的实时集中式无线网络调度方法和设备
CN115022978A (zh) * 2022-05-18 2022-09-06 同济大学 基于自适应分组与强化学习的无线网络上行链路调度方法

Similar Documents

Publication Publication Date Title
US11903043B2 (en) Method for implementing data transmission of time sensitive network, related device and medium
US8842629B2 (en) Scheduling method, device and system based on quality of service
JP6816791B2 (ja) 基地局及びユーザ機器
Ma et al. A QoS oriented vertical handoff scheme for WiMAX/WLAN overlay networks
US10462043B2 (en) Method and apparatus for applying nested network cording in multipath protocol
JP3771883B2 (ja) 一対多データ通信網におけるデータの伝送方法および伝播遅延の補完方法
US20210306901A1 (en) Mutual 3gpp-tsn qos adaption and shaping
JP2012514959A (ja) マルチホップリレーシステムにおける基地局とリレー局との間の専用管理接続
JP5183190B2 (ja) 少なくとも1つの加入者局と少なくとも2つの基地局との間の通信方法
JP2022532307A (ja) マルチapジョイント再送のための通信装置及び通信方法
CN108028801A (zh) 一种基于sdn的arp实现方法及装置
JP2010500848A (ja) 連携された通信サービスをサポートする方法
US11258888B2 (en) Parallel redundancy protocol (PRP) using non-overlapping resource unit (RU) groupings on a radio
WO2018099290A1 (zh) 报文传输方法及装置
CN111556137A (zh) 一种自组织异构网络中分布式系统的数据同步方法及系统
CN109510769B (zh) 一种适合于宽窄结合网络的融合路由系统及其方法
WO2024065423A1 (zh) 通信方法、通信装置、通信系统、计算设备和存储介质
US9503995B2 (en) Method and system for synchronous service-flow transmission in heterogeneous network
Nardini et al. Modeling X2 backhauling for LTE-Advanced and assessing its effect on CoMP Coordinated Scheduling
CN114650566A (zh) 一种提供确定性服务质量的边缘计算网络架构
JP6562574B2 (ja) データ伝送方法および装置
Kim et al. Super-MAC design for tightly coupled multi-RAT networks
US20230189246A1 (en) Orthogonal frequency-division multiple access (ofdma) schedule alignment for mesh networking
CN112367669A (zh) 一种飞行器链式组网信道接入方法及系统
WO2011044726A1 (zh) 用于分布式网络的频谱共享方法及设备