WO2024065330A1 - 一种上行解调参考信号端口的指示方法, 装置及存储介质 - Google Patents

一种上行解调参考信号端口的指示方法, 装置及存储介质 Download PDF

Info

Publication number
WO2024065330A1
WO2024065330A1 PCT/CN2022/122318 CN2022122318W WO2024065330A1 WO 2024065330 A1 WO2024065330 A1 WO 2024065330A1 CN 2022122318 W CN2022122318 W CN 2022122318W WO 2024065330 A1 WO2024065330 A1 WO 2024065330A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
panel
different
dmrs
transmission layer
Prior art date
Application number
PCT/CN2022/122318
Other languages
English (en)
French (fr)
Inventor
高雪媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/122318 priority Critical patent/WO2024065330A1/zh
Publication of WO2024065330A1 publication Critical patent/WO2024065330A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, device and storage medium for indicating an uplink demodulation reference signal (DMRS) port.
  • DMRS uplink demodulation reference signal
  • the uplink enhancement supports the repeated transmission of the physical uplink shared channel (PUSCH)/physical uplink control channel (PUCCH) by using time division multiplexing (TDM) multiplexing to send uplink channels to different transmission and reception points (TRP) in different uplink beam directions.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • TDM time division multiplexing
  • the bottleneck of the communication system is still the uplink transmission rate and coverage. Therefore, the system enhancement direction of the R18 standard mainly considers the use of multi-antenna panel terminals for simultaneous uplink transmission in the Multi-TRP (also known as mTRP or M-TRP) scenario to increase the uplink rate and further improve the reliability of transmission.
  • M-TRP multi-transmission and reception point
  • PT-RS is configured by the network to the terminal as a UE-specific reference signal.
  • PT-RS is used to track the phase noise introduced by the local oscillator in the network equipment and the terminal and is used to estimate the common phase error (CPE).
  • CPE common phase error
  • PT-RS can be regarded as an extension of the demodulation reference signal (DMRS) and has a close relationship, such as using the same precoding, port correlation, orthogonal sequence generation, quasi co-location (QCL) relationship, etc.
  • uplink enhancement in order to support the simultaneous transmission via multi-panel (STxMP) scheme based on single-DCI (single downlink control information, S-DCI, also known as single DCI), it is necessary to consider an enhanced scheme for flexible allocation indication of DMRS ports that can support SU-MIMO and MU-MIMO under the spatial division multiplexing SDM transmission multiplexing scheme.
  • STxMP single downlink control information
  • the present disclosure provides a method, device and storage medium for indicating an uplink demodulation reference signal DMRS port.
  • a method for indicating an uplink demodulation reference signal DMRS port is provided, which is applied to a network device, and the method includes:
  • the antenna port DMRS indication field in the DCI is used to indicate the total number of all allocated DMRS ports for the terminal;
  • the first indication information is used to indicate the DMRS ports corresponding to the allocation when a transmission block of the PUSCH is sent on the same time-frequency resources through different Panels to different transmission receiving points TRP, different TRP/Panel/transmission configuration indicator TCI/transmission opportunity TO are respectively associated with different beams/TCI, and there is a corresponding relationship between the DMRS port and the Panel.
  • the first indication information is used to indicate the correspondence between the number of transmission layers used for the PUSCH transmission sent through different TRP/Panel/TCI/TO and the DMRS port.
  • the first indication information is carried on a single downlink control information S-DCI;
  • the SRS resource set indication field in the DCI signaling based on single DCI scheduling is used to indicate the correspondence between the number of transmission layers and DMRS ports respectively used for the PUSCH transmission on different panels.
  • the SRS resource set indication indication field includes a redefined code point or a newly added reserved code point
  • the redefined code point or the newly added reserved code point is used to indicate the number of transmission layers and the combination of transmission layers corresponding to different CW/Panel/TRP/beam;
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each panel is at most 2, and different panels in the transmission layer number combination use different numbers of transmission layers, the SRS resource set indication field includes a redefined code point.
  • different code points correspond to different combinations of transmission layer numbers.
  • the multiple panels include a first panel and a second panel
  • the code points include a first code point and a second code point
  • the transmission layer number combination includes a combination of a transmission layer number of 1 and a transmission layer number of 2;
  • the different code points correspond to different combinations of transmission layer numbers, including:
  • the first code point corresponds to a first transmission layer number combination, where the first transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1;
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the first code point corresponds to a first transmission layer combination, where the first transmission layer combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the second code point corresponds to a second transmission layer combination, where the second transmission layer combination is that the number of transmission layers allocated to the first Panel is 2, and the number of transmission layers allocated to the second Panel is 1.
  • the first code point and the second code point are respectively used to indicate different correspondences between an SRS resource set and an SRS resource set indication field/precoding indication field in a multi-TRP transmission mode.
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each Panel is at most 3, includes a newly added reserved code point.
  • each transmission layer number, Panel, and DMRS port included in the transmission layer number combination there is a predefined correspondence between each transmission layer number, Panel, and DMRS port included in the transmission layer number combination;
  • Different numbers of transmission layers correspond to different Panels, and the different Panels correspond to different DMRS ports.
  • a method for indicating an uplink demodulation reference signal DMRS port is provided, which is applied to a terminal, and the method includes:
  • the antenna port DMRS indication field in the DCI is used to indicate the total number of all allocated DMRS ports for the terminal;
  • the first indication information is used to indicate the DMRS ports corresponding to the allocation when a transmission block of the PUSCH is sent on the same time-frequency resources through different Panels to different transmission receiving points TRP, different TRP/Panel/transmission configuration indicator TCI/transmission opportunity TO are respectively associated with different beams/TCI, and there is a corresponding relationship between the DMRS port and the Panel.
  • the first indication information is used to indicate the correspondence between the number of transmission layers used for the PUSCH transmission sent through different TRP/Panel/TCI/TO and the DMRS port.
  • the first indication information is carried on a single downlink control information S-DCI;
  • the SRS resource set indication field in the DCI signaling based on single DCI scheduling is used to indicate the correspondence between the number of transmission layers and DMRS ports respectively used for the PUSCH transmission on different panels.
  • the SRS resource set indication indication field includes a redefined code point or a newly added reserved code point
  • the redefined code point or the newly added reserved code point is used to indicate the number of transmission layers and the combination of transmission layers corresponding to different CW/Panel/TRP/beam;
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each panel is at most 2, and different panels in the transmission layer number combination use different numbers of transmission layers, the SRS resource set indication field includes a redefined code point.
  • different code points correspond to different combinations of transmission layer numbers.
  • the multiple panels include a first panel and a second panel
  • the code points include a first code point and a second code point
  • the transmission layer number combination includes a combination of a transmission layer number of 1 and a transmission layer number of 2;
  • the different code points correspond to different combinations of transmission layer numbers, including:
  • the first code point corresponds to a first transmission layer number combination, where the first transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1;
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the first code point corresponds to a first transmission layer combination, where the first transmission layer combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1.
  • the first code point and the second code point are respectively used to indicate different correspondences between an SRS resource set and an SRS resource set indication field/precoding indication field in a multi-TRP transmission mode.
  • the SRS resource set indication field in response to the number of transmission layers allocated to each Panel being at most 3, includes a newly added reserved code point.
  • each transmission layer number, Panel, and DMRS port included in the transmission layer number combination there is a predefined correspondence between each transmission layer number, Panel, and DMRS port included in the transmission layer number combination;
  • Different numbers of transmission layers correspond to different Panels, and the different Panels correspond to different DMRS ports.
  • a device for indicating an uplink demodulation reference signal DMRS port is provided, which is applied to a network device, and the device includes:
  • a sending module configured to send first indication information in response to the terminal performing simultaneous transmission of STxMP by multiple antenna panels Panel of a physical uplink shared channel PUSCH in a space division multiplexing SDM multiplexing mode based on a single downlink control information DCI scheduling mode;
  • the antenna port DMRS indication field in the DCI is used to indicate the total number of all allocated DMRS ports for the terminal;
  • the first indication information is used to indicate the DMRS ports corresponding to the allocation when a transmission block of the PUSCH is sent on the same time-frequency resources through different Panels to different transmission receiving points TRP, different TRP/Panel/transmission configuration indicator TCI/transmission opportunity TO are respectively associated with different beams/TCI, and there is a corresponding relationship between the DMRS port and the Panel.
  • the first indication information is used to indicate the correspondence between the number of transmission layers used for the PUSCH transmission sent through different TRP/Panel/TCI/TO and the DMRS port.
  • the first indication information is carried on a single downlink control information S-DCI;
  • the SRS resource set indication field in the DCI signaling based on single DCI scheduling is used to indicate the correspondence between the number of transmission layers and DMRS ports respectively used for the PUSCH transmission on different panels.
  • the SRS resource set indication indication field includes a redefined code point or a newly added reserved code point
  • the redefined code point or the newly added reserved code point is used to indicate the number of transmission layers and the combination of transmission layers corresponding to different CW/Panel/TRP/beam;
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each panel is at most 2, and different panels in the transmission layer number combination use different numbers of transmission layers, the SRS resource set indication field includes a redefined code point.
  • different code points correspond to different combinations of transmission layer numbers.
  • the multiple panels include a first panel and a second panel
  • the code points include a first code point and a second code point
  • the transmission layer number combination includes a combination of a transmission layer number of 1 and a transmission layer number of 2;
  • the different code points correspond to different combinations of transmission layer numbers, including:
  • the first code point corresponds to a first transmission layer number combination, where the first transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1;
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the first code point corresponds to a first transmission layer combination, where the first transmission layer combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1.
  • the first code point and the second code point are respectively used to indicate different correspondences between an SRS resource set and an SRS resource set indication field/precoding indication field in a multi-TRP transmission mode.
  • the SRS resource set indication field in response to the number of transmission layers allocated to each Panel being at most 3, includes a newly added reserved code point.
  • each transmission layer number, Panel, and DMRS port included in the transmission layer number combination there is a predefined correspondence between each transmission layer number, Panel, and DMRS port included in the transmission layer number combination;
  • Different numbers of transmission layers correspond to different Panels, and the different Panels correspond to different DMRS ports.
  • a device for indicating an uplink demodulation reference signal DMRS port is provided, which is applied to a terminal, and the device includes:
  • a receiving module configured to receive first indication information in response to the terminal performing simultaneous transmission of STxMP by multiple antenna panels Panel of a physical uplink shared channel PUSCH in a space division multiplexing SDM multiplexing manner based on a single downlink control information DCI scheduling mode;
  • the antenna port DMRS indication field in the DCI is used to indicate the total number of all allocated DMRS ports for the terminal;
  • the first indication information is used to indicate the DMRS ports corresponding to the allocation when a transmission block of the PUSCH is sent on the same time-frequency resources through different Panels to different transmission receiving points TRP, different TRP/Panel/transmission configuration indicator TCI/transmission opportunity TO are respectively associated with different beams/TCI, and there is a corresponding relationship between the DMRS port and the Panel.
  • a sending module configured to send first indication information in response to the terminal performing simultaneous transmission of STxMP by multiple antenna panels Panel of a physical uplink shared channel PUSCH in a space division multiplexing SDM multiplexing mode based on a single downlink control information DCI scheduling mode;
  • the antenna port DMRS indication field in the DCI is used to indicate the total number of all allocated DMRS ports for the terminal;
  • the first indication information is used to indicate the DMRS ports corresponding to the allocation when a transmission block of the PUSCH is sent on the same time-frequency resources through different Panels to different transmission receiving points TRP, different TRP/Panel/transmission configuration indicator TCI/transmission opportunity TO are respectively associated with different beams/TCI, and there is a corresponding relationship between the DMRS port and the Panel.
  • the first indication information is used to indicate the correspondence between the number of transmission layers used for the PUSCH transmission sent via TRP/Panel/TCI/TO and the DMRS port.
  • the first indication information is carried on a single downlink control information S-DCI;
  • the SRS resource set indication field in the DCI signaling based on single DCI scheduling is used to indicate the correspondence between the number of transmission layers and DMRS ports respectively used for the PUSCH transmission on different panels.
  • the SRS resource set indication indication field includes a redefined code point or a newly added reserved code point
  • the redefined code point or the newly added reserved code point is used to indicate the number of transmission layers and the combination of transmission layers corresponding to different CW/Panel/TRP/beam;
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each panel is at most 2, and different panels in the transmission layer number combination use different numbers of transmission layers, the SRS resource set indication field includes a redefined code point.
  • different code points correspond to different combinations of transmission layer numbers.
  • the multiple panels include a first panel and a second panel
  • the code points include a first code point and a second code point
  • the transmission layer number combination includes a combination of a transmission layer number of 1 and a transmission layer number of 2;
  • the different code points correspond to different combinations of transmission layer numbers, including:
  • the first code point corresponds to a first transmission layer number combination, where the first transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1;
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the first code point corresponds to a first transmission layer combination, where the first transmission layer combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1.
  • the first code point and the second code point are respectively used to indicate different correspondences between an SRS resource set and an SRS resource set indication field/precoding indication field in a multi-TRP transmission mode.
  • the SRS resource set indication field in response to the number of transmission layers allocated to each Panel being at most 3, includes a newly added reserved code point.
  • each transmission layer number, Panel, and DMRS port included in the transmission layer number combination there is a predefined correspondence between each transmission layer number, Panel, and DMRS port included in the transmission layer number combination;
  • Different numbers of transmission layers correspond to different Panels, and the different Panels correspond to different DMRS ports.
  • a device for indicating an uplink demodulation reference signal DMRS port comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute the method described in the above-mentioned first aspect and one of its embodiments.
  • a device for indicating an uplink demodulation reference signal DMRS port comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute the method described in the above second aspect and one of its embodiments.
  • a storage medium in which instructions are stored.
  • the instructions in the storage medium are executed by a processor of a network device, the network device is enabled to execute the method described in the above-mentioned first aspect and one of its embodiments.
  • a storage medium in which instructions are stored.
  • the instructions in the storage medium are executed by a processor of a network device, the network device is enabled to execute the method described in the above-mentioned second aspect and one of its embodiments.
  • the network device In response to the terminal performing STxMP of PUSCH through SDM multiplexing in a single DCI scheduling mode, the network device sends a first indication message to the terminal. Since the antenna port DMRS indication field in the DCI is used to indicate the total number of all DMRS ports allocated to the terminal, the first indication message is used to indicate the DMRS ports corresponding to the allocation when a transmission block of PUSCH is sent on the same time-frequency resources through different Panels to different TRPs, different TRP/Panel/TCI/TO are respectively associated with different beams/TCIs, and there is a corresponding relationship between the DMRS port and the Panel, so the terminal can obtain different DMRS ports corresponding to multi-Panel transmission under S-DCI through the first indication message.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • FIGS. 2A, 2B, 2C and 2D are schematic diagrams showing the structure of a DMRS according to an exemplary embodiment.
  • Fig. 3 is a logic diagram showing multi-panel transmission of S-DCI according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for indicating an uplink DMRS port according to an exemplary embodiment.
  • Fig. 5 is a flowchart showing a method for indicating an uplink DMRS port according to an exemplary embodiment.
  • Fig. 6 is a block diagram showing a device for indicating an uplink DMRS port according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing a device for indicating an uplink DMRS port according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a device for indicating an uplink DMRS port according to an exemplary embodiment.
  • Fig. 9 is a block diagram showing a device for indicating an uplink DMRS port according to an exemplary embodiment.
  • the uplink DMRS port indication method provided in the embodiment of the present disclosure can be applied to the wireless communication system shown in Figure 1.
  • the wireless communication system includes a network device and a terminal.
  • the terminal is connected to the network device through wireless resources and performs data transmission.
  • the wireless communication system shown in FIG1 is only for schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, which are not shown in FIG1.
  • the embodiment of the present disclosure does not limit the number of network devices and terminals included in the wireless communication system.
  • the wireless communication system of the embodiment of the present disclosure is a network that provides wireless communication functions.
  • the wireless communication system can adopt different communication technologies, such as code division multiple access (code division multiple access, CDMA), wideband code division multiple access (wideband code division multiple access, WCDMA), time division multiple access (time division multiple access, TDMA), frequency division multiple access (frequency division multiple access, FDMA), orthogonal frequency division multiple access (orthogonal frequency-division multiple access, OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA), carrier sense multiple access/collision avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • code division multiple access code division multiple access
  • CDMA code division multiple access
  • wideband code division multiple access wideband code division multiple access
  • WCDMA wideband code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called new wireless network (New Radio, NR).
  • 2G English: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called new wireless network (New Radio, NR).
  • NR New Radio
  • the present disclosure sometimes simply refers to a wireless communication network as a network.
  • the wireless access network equipment may also be referred to as a wireless access network equipment.
  • the wireless access network equipment may be: a base station, an evolved node B (base station), a home base station, an access point (AP) in a wireless fidelity (WIFI) system, a wireless relay node, a wireless backhaul node, a transmission point (TP) or a transmission and reception point (TRP), etc. It may also be a gNB in an NR system, or it may also be a component or a part of a base station. It should be understood that in the embodiments of the present disclosure, the specific technology and specific device form adopted by the network equipment are not limited.
  • the network equipment may provide communication coverage for a specific geographical area, and may communicate with a terminal located in the coverage area (cell).
  • the network equipment may also be a vehicle-mounted device.
  • the terminal involved in the present disclosure may also be referred to as a terminal device, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), etc., which is a device that provides voice and/or data connectivity to users.
  • the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • some examples of terminals are: a smart phone (Mobile Phone), a customer premises equipment (Customer Premise Equipment, CPE), a pocket computer (Pocket Personal Computer, PPC), a handheld computer, a personal digital assistant (Personal Digital Assistant, PDA), a laptop computer, a tablet computer, a wearable device, or a vehicle-mounted device, etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • the uplink enhancement supports the repeated transmission of the physical uplink shared channel (PUSCH)/physical uplink control channel (PUCCH) by using time division multiplexing (TDM) to send the uplink channel to different transmission and reception points (TRP) in different uplink beam directions.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • TDM time division multiplexing
  • the bottleneck of the communication system is still the uplink transmission rate and coverage. Therefore, the system enhancement direction of the R18 standard mainly considers the use of multi-antenna panel terminals for simultaneous uplink transmission in the Multi-TRP (also known as mTRP or M-TRP) scenario to increase the uplink rate and further improve the reliability of transmission.
  • M-TRP multi-transmission and reception point
  • PT-RS is configured by the network to the terminal as a UE-specific reference signal.
  • PT-RS is used to track the phase noise introduced by the local oscillator in the network equipment and the terminal and is used to estimate the common phase error (CPE).
  • CPE common phase error
  • PT-RS can be regarded as an extension of the demodulation reference signal (DMRS) and has a close relationship, such as using the same precoding, port correlation, orthogonal sequence generation, quasi co-location (QCL) relationship, etc.
  • uplink enhancement in order to support the simultaneous transmission via multi-panel (STxMP) scheme based on single-DCI (single downlink control information, S-DCI, also known as single DCI), it is necessary to consider an enhanced scheme for flexible allocation indication of DMRS ports that can support SU-MIMO and MU-MIMO under the spatial division multiplexing SDM transmission multiplexing scheme.
  • STxMP single downlink control information
  • a network device such as a base station
  • M-TRP/multi-panel to provide services to the terminal
  • CoMP technology to enable the network device to provide a more balanced service quality within the service area
  • multi-point cooperative transmission refers to multiple TRPs (Multi-TRP, mTRP)/Panels providing data services for one user.
  • the antenna array of each TRP can be divided into several relatively independent antenna panels, so the shape and number of ports of the entire array can be flexibly adjusted according to the deployment scenario and business needs.
  • the antenna panels or TRPs can also be connected by optical fiber for more flexible distributed deployment. In the millimeter wave band, as the wavelength decreases, the blocking effect caused by obstacles such as human bodies or vehicles will be more significant.
  • the collaboration between multiple TRPs or panels can be used to transmit/receive from multiple beams at multiple angles, thereby reducing the adverse effects of the blocking effect.
  • TRP Transmission Configuration Indication
  • TO transmission occasion
  • TRP/Panel/TCI/TO or multiple TRP/Panel/TCI/TO are used in this disclosure.
  • “/” means “or”.
  • the multiple sites involved in the CoMP transmission process may correspond to multiple sites with different geographical locations or multiple sectors with different antenna panel orientations.
  • the spatial differences between the sites will lead to differences in the large-scale channel parameters of the receiving links from different sites, such as Doppler frequency offset, delay spread, etc.
  • the large-scale parameters of the channel will directly affect the adjustment and optimization of the filter coefficients during channel estimation.
  • Different channel estimation filter parameters should be used for signals sent from different sites to adapt to the corresponding channel propagation characteristics.
  • QCL quasi-co-location
  • the so-called QCL of two antenna ports in the sense of certain large-scale parameters means that these large-scale parameters of the two ports are the same. In other words, as long as some large-scale parameters of the two ports are consistent, regardless of whether their actual physical locations or corresponding antenna panel orientations are different, the terminal can consider that the two ports are emitted from the same location (i.e., quasi-co-sited).
  • NR divides several channel large-scale parameters into the following four types to facilitate system configuration/indication according to different scenarios:
  • ⁇ QCL-TypeA ⁇ Doppler frequency shift, Doppler spread, average delay, delay spread ⁇
  • spatial reception parameters may not be required.
  • this parameter is mainly for frequency bands above 6 GHz, it is treated as a separate QCL type.
  • the application of multiple TRP/Panel/TCI/TO is mainly to improve the coverage at the edge of the cell, provide a more balanced service quality in the service area, and use different methods to collaborate to transmit data between multiple TRP/Panel/TCI/TO.
  • network deployment with a large number of distributed access points plus baseband centralized processing will be more conducive to providing a balanced user experience rate and significantly reduce the delay and signaling overhead caused by inter-zone switching.
  • various occlusion/blocking effects can be better overcome, ensuring the robustness of link connections, which is suitable for URLLC services to improve transmission quality and meet reliability requirements.
  • PDSCH transmission was enhanced. Since data transmission includes scheduling feedback of uplink and downlink channels, in the URLLC research, only enhancing the downlink data channel cannot guarantee the overall service performance. Therefore, in the R17 research, PDCCH, PUCCH and PUSCH will continue to be enhanced.
  • the network device and the terminal can enhance the PUSCH uplink transmission based on multiple TRP/Panel/TCI/TO.
  • the PUSCH uplink transmission scheme includes a codebook-based uplink transmission scheme and a non-codebook-based uplink transmission scheme.
  • the data layer of data transmission corresponds to the DMRS port used for demodulation.
  • the DMRS design of the data channel (PDSCH/PUSCH) in the NR system mainly includes the front-load DMRS (Front-load DMRS) and the additional DMRS (Additional DMRS).
  • Front-load DMRS For Front-load DMRS, the first appearance of DMRS should be as close to the starting point of scheduling as possible in each scheduling time unit.
  • the use of Front-load DMRS helps the receiving side to quickly estimate the channel and perform reception detection, which plays an important role in reducing latency and supporting the so-called self-contained structure.
  • front-load DMRS can occupy up to two consecutive Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the design ideas of Front-load DMRS are divided into two categories.
  • the first category (type 1) adopts the COMB+OCC structure
  • the second category (type 2) adopts the FDM+OCC structure.
  • Figures 2A to 2D show schematic diagrams of front-load DMRS pattern designs for two configuration types.
  • Figures 2A and 2B show schematic diagrams of DMRS pattern mapping for one OFDM symbol and two OFDM symbols corresponding to configuration type 1.
  • Figures 2C and 2D show schematic diagrams of DMRS pattern mapping for one OFDM symbol and two OFDM symbols corresponding to configuration type 2.
  • the number of DMRS ports depends on the number of orthogonal ports used for transmission, and the front-load DMRS can be configured as two OFDM symbols at most.
  • the power efficiency factor when using two-symbol front-load DMRS, TD-OCC is used in the time domain on the basis of CS or OCC in the frequency domain.
  • front-load DMRS can achieve channel estimation performance that meets demodulation requirements with low overhead.
  • the mobile speed considered by the NR system can reach up to 500km/h.
  • front-load DMRS in addition to front-load DMRS, in medium/high speed scenarios, in addition to front-load DMRS, more DMRS symbols need to be inserted within the scheduling duration to meet the estimation accuracy of channel time variability.
  • the NR system adopts a DMRS structure that combines front-load DMRS with additional DMRS with configurable time domain density. The pattern of each group of additional DMRS is a repetition of the front-load DMRS.
  • each group of additional DMRS can also occupy up to two consecutive DMRS symbols.
  • up to three groups of additional DMRS can be configured in each scheduling.
  • the number of Additional DMRS depends on the high-level parameter configuration and the specific scheduling duration.
  • the relevant protocols provide DMRS port allocation methods with different parameter configurations under the uplink cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM) waveform.
  • CP-OFDM orthogonal frequency-division multiplexing
  • the following table shows the DMRS port allocation for different parameter configurations.
  • Value represents the code point
  • Number of DMRS CDM group(s)without data represents the number of DMRS CDM groups when there is no data transmission
  • DMRS port represents the DMRS port
  • Number of front-load symbols represents the number of front-load symbols.
  • the R17 standard supports the repeated transmission of PUSCH/PUCCH channels in uplink enhancement.
  • the uplink channels can be sent to different TRPs in different uplink beam directions by using time-division multiplexing (TDM) multiplexing.
  • TDM time-division multiplexing
  • the bottleneck of the communication system is still the rate and coverage of uplink transmission. Therefore, for the system enhancement direction of the R18 standard, the main consideration is that in the Multi-TRP scenario, the terminal uses multiple TRP/Panel/TCI/TO for uplink simultaneous transmission (STxMP) to increase the uplink rate and further improve the reliability of transmission, and perform PUSCH enhancement based on Multi-TRP.
  • STxMP uplink simultaneous transmission
  • the PUSCH enhancement based on Multi-TRP can be scheduled based on a downlink control information (DCI) carried by a physical downlink control channel (Physical Downlink Control Channel, PDCCH), such as a single downlink control signaling (single downlink control information, S-DCI) scheduling multiple TRP/Panel/TCI transmissions. It is also possible to consider scheduling different DCIs carried by different PDCCHs separately.
  • Figure 3 is a logical diagram of the multi-panel transmission implementation based on single DCI (S-DCI). As shown in FIG3 , the terminal (UE) transmits PUSCH1 and PUSCH2 through Panel1 and Panel2 based on transport layer (Layer) 1 and Layer 2, facing TRP1 and TRP2 respectively.
  • Layer transport layer
  • the multi-panel implementation of the terminal generally configures multiple physical panels, and the capabilities of different panels may also be different. For example, with different numbers of sounding reference signal (SRS) ports, the maximum number of data transmission layers supported may not be the same. For example, one panel supports a maximum of 2 layers of transmission, and the other panel supports a maximum of 4 layers of transmission.
  • the scheduler of the network device will determine whether the terminal is currently suitable for simultaneous uplink transmission of multiple panels. If the terminal is currently suitable for simultaneous uplink transmission of multiple panels and is scheduled at the same time, the network device will directly or indirectly indicate the relevant transmission parameters, including the terminal's specific beam indication information, the number of data layers used for transmission, and the allocation of DMRS ports used, as well as precoding indication information, etc.
  • the method provided by the embodiment of the present disclosure is applicable to the DMRS port indication problem under S-DCI scheduling, that is, how to determine which DMRS ports are used to send PUSCH on different panels.
  • codeword 0 is mapped to layer 0 (CW#0in Layer0), and codeword 1 is mapped to layer 1 (CW#1in Layer1) for uplink transmission for TRP0 and TRP1.
  • CW#0in Layer0 codeword 1 is mapped to layer 1 (CW#1in Layer1) for uplink transmission for TRP0 and TRP1.
  • network devices can fully perform scheduling according to inter-layer channel conditions. For example, for Layer 3 transmission, if the difference between channel layers is large, two CWs can be used for scheduling, one CW for Layer 1 data transmission and the other CW for Layer 2 data transmission. This also facilitates data retransmission scheduling and helps improve system throughput.
  • the system mainly transmits below Layer 4, so it is also beneficial for overall performance optimization.
  • the collaborative transmission scheduling of one TB of PUSCH based on a single DCI may support one or more of the space division multiplexing (SDM) scheme, frequency division multiplexing (FDM) scheme and single frequency network (SFN) scheme.
  • SDM space division multiplexing
  • FDM frequency division multiplexing
  • SFN single frequency network
  • the SDM space division multiplexing scheme is mainly that a transport block (TB) of PUSCH is sent to two different TRPs on the same time-frequency resources through the corresponding DMRS ports or port combinations allocated on different Panels.
  • TB transport block
  • Different TRP/Panel/TCI/TO are associated with different TCI states (i.e. beams).
  • the SDM space division multiplexing scheme includes two schemes: SDM-A and SDM-B.
  • different parts of a TB of SDM-A:PUSCH are sent to two different TRPs on the same time-frequency resources through their corresponding DMRS ports or port combinations allocated on different Panels, and different TRP/Panel/TCI/TO are associated with different TCI states (i.e. beams).
  • the repetitions of the same TB corresponding to different RV versions of SDM-B:PUSCH are sent to two different TRPs on the same time-frequency resources through the corresponding DMRS ports or port combinations allocated on different Panels.
  • Different TRP/Panel/TCI/TO are associated with different TCI states (i.e. beams).
  • one TB of PUSCH is sent on non-overlapping frequency domain resources on the same time domain resources to two different TRPs through the same DMRS port or port combination allocated on different Panels.
  • Different TRP/Panel/TCI/TO are associated with different TCI states (i.e. beams).
  • FDM-A has two possible solutions: FDM-A and FDM-B:
  • FDM-A Different parts of a TB of PUSCH are sent on non-overlapping frequency domain resources on the same time domain resources to two different TRPs through the same DMRS port or port combination allocated on different Panels. Different TRP/Panel/TCI/TO are associated with different TCI states (i.e. beams).
  • FDM-B The repetitions of the same TB of PUSCH corresponding to different RV versions are sent on non-overlapping frequency domain resources on the same time domain resources to two different TRPs through the same DMRS port or port combination allocated on different Panels.
  • Different TRP/Panel/TCI/TO are associated with different TCI states (i.e. beams).
  • a TB of PUSCH is sent on the same time-frequency resources to two different TRPs through the same DMRS port or port combination allocated on different Panels.
  • Different TRP/Panel/TCI/TO are associated with different TCI states (i.e., beams).
  • the SRI field in the DCI indicates the SRS resources in the SRS resource set. Since R17 supports two SRS resource sets, in the non-codebook based M-TRP PUSCH repeated transmission, the DCI format 0_1/0_2 contains two SRI fields associated with the two SRS resource sets. Each SRI field indicates SRI for a TRP. The design of the first SRI field is based on the R15/16 framework, and all repeated transmissions use the same number of layers.
  • the first SRI field is used to determine the elements in the second SRI field, and the second SRI field only contains the SRI combinations associated with the number of layers indicated by the first SRI field.
  • the number of bits N2 of the second SRI field is determined by the maximum number of code points per rank among all ranks associated with the first SRI field.
  • two TPMI fields are indicated in DCI format 0_1/0_2, where the first TPMI field is designed the same as the TPMI field in R15/16 (including TPMI index and number of layers), and the second TPMI field only contains the second TPMI index, and the number of layers is the same as the number of layers indicated by the first TPMI field [15].
  • the first TPMI field is used to determine the elements in the second TPMI field, and the second TPMI field only contains the TPMI associated with the number of layers indicated by the first TPMI field.
  • the number of bits M2 of the second TPMI field is determined by the maximum number of code points per rank among all ranks associated with the first TPMI field.
  • the terminal under S-DCI scheduling is supported to use different beams in different TRP sending directions, that is, the TDM (time-division multiplexing) time-sharing transmission scheme corresponding to the TCI state (transmission configuration indication state) to perform PUSCH channel repeated transmission.
  • TDM time-division multiplexing
  • the present disclosure needs to consider an enhanced solution of flexible allocation indication of DMRS ports that can support SU-MIMO and MU-MIMO under the SDM transmission multiplexing solution.
  • FIG4 is a flow chart showing a method for indicating an uplink DMRS port according to an exemplary embodiment. As shown in FIG4 , the method for indicating an uplink DMRS port is used in a network device and includes the following steps.
  • step S11 in response to the terminal performing STxMP of PUSCH in an SDM multiplexing manner based on a single DCI scheduling manner, first indication information is sent.
  • the DMRS indication field in the DCI is used to indicate the total number of all DMRS ports allocated to the terminal.
  • the first indication information is used to indicate the DMRS ports allocated when a transmission block of PUSCH is sent on the same time-frequency resources through different Panels to different TRPs. Different TRPs/Panels/TCIs/TOs are associated with different beams/TCIs, and there is a corresponding relationship between the DMRS port and the Panel.
  • the network device in response to the terminal performing STxMP of PUSCH through SDM multiplexing in a single DCI scheduling mode, the network device sends a first indication message to the terminal. Since the antenna port DMRS indication field in the DCI is used to indicate the total number of all DMRS ports allocated to the terminal, the first indication message is used to indicate the DMRS ports corresponding to the allocation when a transmission block of PUSCH is sent on the same time-frequency resources through different Panels to different TRPs, and different TRPs/Panels/TCIs/TOs are associated with different beams/TCIs, respectively, and there is a corresponding relationship between the DMRS port and the Panel, so the terminal can obtain different DMRS ports corresponding to multi-Panel transmission under a single DCI through the first indication message.
  • the uplink DMRS port indication method provided by the embodiment of the present disclosure, there is a corresponding relationship between the total number of all DMRS ports allocated to the terminal and the number of transmission layers.
  • the transmission layer number is 3 in the corresponding SDM mode.
  • the first indication information is used to indicate the correspondence between the number of transmission layers used for PUSCH transmission sent through different TRP/Panel/TCI/TO and the DMRS port.
  • the first indication information is carried on a single downlink control information S-DCI.
  • the SRS resource set indication field in the DCI signaling based on single DCI scheduling is used to indicate the correspondence between the number of transmission layers and DMRS ports used for PUSCH transmission on different panels.
  • the SRS resource set indication indication field includes a redefined code point or a newly added reserved code point.
  • the redefined code points or newly added reserved code points are used to indicate the number of transmission layers and the combination of transmission layers corresponding to different CW/Panel/TRP/beams.
  • the redefined code points or newly added code points included in the SRS resource set indication indication field in the embodiment of the present disclosure may be redefined or newly added based on the code point situation indicated in the corresponding SRS resource set indication indication field table in the previous protocol version after the protocol version is updated and improved.
  • the redefined code points or newly added code points included in the SRS resource set indication indication field in R17 may be redefined or newly added based on the code points included in the SRS resource set indication indication field in R16.
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each panel is at most 2, and the number of transmission layers used by different panels in the transmission layer number combination is different, the SRS resource set indication field includes a redefined code point.
  • the number of transmission layers allocated to the first Panel is 1, and the corresponding DMRS port is the first DMRS port
  • the number of transmission layers allocated to the second Panel is 1, and the corresponding DMRS port is the second DMRS port.
  • the number of transmission layers allocated to the first Panel is 2
  • the corresponding DMRS ports are the first and second DMRS ports
  • the number of transmission layers allocated to the second Panel is 2
  • the corresponding DMRS port is the third DMRS port.
  • different code points correspond to different combinations of transmission layer numbers.
  • the multiple panels include a first panel and a second panel
  • the code points include a first code point and a second code point
  • the transmission layer number combination includes a combination of a transmission layer number of 1 and a transmission layer number of 2.
  • the first code point corresponds to a first transmission layer number combination, and the first transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1;
  • the second code point corresponds to a second transmission layer number combination, and the second transmission layer number combination is that the number of transmission layers allocated to the first panel is 1, and the number of transmission layers allocated to the second panel is 2.
  • the first code point corresponds to a first transmission layer number combination, and the first transmission layer number combination is that the number of transmission layers allocated to the first Panel is 1, and the number of transmission layers allocated to the second Panel is 2;
  • the second code point corresponds to a second transmission layer number combination, and the second transmission layer number combination is that the number of transmission layers allocated to the first Panel is 2, and the number of transmission layers allocated to the second Panel is 1.
  • the first code point and the second code point are respectively used to indicate the different correspondences between the SRS resource set and the SRS resource set indication indication field/precoding indication field in the multi-TRP transmission mode.
  • the first code point and the second code point may be 10 or 11, respectively.
  • a predefined method may be used to determine the DMRS port allocated to each Panel, which is not limited in the embodiment of the present disclosure.
  • the DMRS port allocations for different TRPs can be within the same CDM group or from different CDM groups.
  • the RANK combinations supported by different codewords are also different, thereby realizing different DMRS port indications corresponding to multi-panel transmissions based on S-DCI without increasing the existing protocol overhead.
  • the SRS resource set indication indication field in response to the maximum number of transmission layers allocated to each Panel being 3, includes a newly added reserved code point.
  • the RANK combinations supported by STxMP transmission include ⁇ 1+1, 1+2, 2+1, 1+3, 3+1, 2+2 ⁇
  • the number of transmission layers allocated to the first Panel is 1, and the corresponding DMRS port is the first DMRS port; the number of transmission layers allocated to the second Panel is 1, and the corresponding DMRS port is the second DMRS port.
  • the SRS resource set indication field is shown in Table 20, and 4-7 are newly added code points.
  • the DMRS indication field in the DCI indicates that the total number of all allocated DMRS ports is 4 ⁇ 0, 1, 2, 3 ⁇ , the number of transmission layers is 4. If the code point included in the SRS resource set indication field is 4, the corresponding RANK combination is 1+3, that is, the number of transmission layers allocated in the direction of the first Panel is 1, and the DMRS port is ⁇ 0 ⁇ , and the number of transmission layers allocated in the direction of the second Panel is 3, and the DMRS port is ⁇ 1, 2, 3 ⁇ .
  • the DMRS port allocations for different TRPs can be within the same CDM group or from different CDM groups.
  • the RANK combinations supported by different codewords are also different, thereby realizing different DMRS port indications corresponding to multi-panel transmissions based on S-DCI without increasing the existing protocol overhead.
  • FIG5 is a flow chart showing a method for indicating an uplink DMRS port according to an exemplary embodiment. As shown in FIG5 , the method for indicating an uplink DMRS port is used in a terminal and includes the following steps.
  • step S21 in response to the terminal performing STxMP of PUSCH in an SDM multiplexing manner based on a single DCI scheduling manner, first indication information is received;
  • the DMRS indication field in the DCI is used to indicate the total number of all allocated DMRS ports to the terminal.
  • the first indication information is used to indicate the DMRS ports corresponding to the transmission blocks of PUSCH when they are sent on the same time-frequency resources through different Panels to different TRPs.
  • Different TRP/Panel/TCI/TO are associated with different beams/TCIs, and there is a corresponding relationship between the DMRS port and the Panel.
  • the terminal determines the DMRS ports corresponding to the transmission blocks of PUSCH when they are sent on the same time-frequency resources through different Panels to different TRPs.
  • Different TRP/Panel/TCI/TO are associated with different beams/TCIs, and there is a corresponding relationship between the DMRS port and the Panel.
  • the terminal in response to the terminal performing STxMP of PUSCH through SDM multiplexing in a single DCI scheduling mode, the terminal receives the first indication information sent by the network device. Since the antenna port DMRS indication field in the DCI is used to indicate the total number of all DMRS ports allocated to the terminal, the first indication information is used to indicate the DMRS ports corresponding to the allocation when a transmission block of PUSCH is sent on the same time-frequency resources through different Panels to different TRPs, different TRP/Panel/TCI/TO are respectively associated with different beams/TCIs, and there is a corresponding relationship between the DMRS port and the Panel, so the terminal can obtain different DMRS ports corresponding to multi-Panel transmission under a single DCI through the first indication information.
  • the uplink DMRS port indication method provided by the embodiment of the present disclosure, there is a corresponding relationship between the total number of all DMRS ports allocated to the terminal and the number of transmission layers.
  • the transmission layer number is 3 in the corresponding SDM mode.
  • the first indication information is used to indicate the correspondence between the number of transmission layers used for PUSCH transmission sent through different TRP/Panel/TCI/TO and the DMRS port.
  • the first indication information is carried on a single downlink control information S-DCI.
  • the SRS resource set indication field in the DCI signaling based on single DCI scheduling is used to indicate the correspondence between the number of transmission layers and DMRS ports used for PUSCH transmission on different panels.
  • the SRS resource set indication indication field includes a redefined code point or a newly added reserved code point.
  • the redefined code points or newly added reserved code points are used to indicate the number of transmission layers and the combination of transmission layers corresponding to different CW/Panel/TRP/beams.
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each panel is at most 2, and the number of transmission layers used by different panels in the transmission layer number combination is different, the SRS resource set indication field includes a redefined code point.
  • the number of transmission layers allocated to the first Panel is 1, and the corresponding DMRS port is the first DMRS port
  • the number of transmission layers allocated to the second Panel is 1, and the corresponding DMRS port is the second DMRS port.
  • the number of transmission layers allocated to the first Panel is 2
  • the corresponding DMRS ports are the first and second DMRS ports
  • the number of transmission layers allocated to the second Panel is 2
  • the corresponding DMRS port is the third DMRS port.
  • different code points correspond to different combinations of transmission layer numbers.
  • the multiple panels include a first panel and a second panel
  • the code points include a first code point and a second code point
  • the transmission layer number combination includes a combination of a transmission layer number of 1 and a transmission layer number of 2.
  • the first code point corresponds to a first transmission layer number combination, and the first transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1;
  • the second code point corresponds to a second transmission layer number combination, and the second transmission layer number combination is that the number of transmission layers allocated to the first panel is 1, and the number of transmission layers allocated to the second panel is 2.
  • the first code point corresponds to a first transmission layer number combination, and the first transmission layer number combination is that the number of transmission layers allocated to the first Panel is 1, and the number of transmission layers allocated to the second Panel is 2;
  • the second code point corresponds to a second transmission layer number combination, and the second transmission layer number combination is that the number of transmission layers allocated to the first Panel is 2, and the number of transmission layers allocated to the second Panel is 1.
  • the first code point and the second code point are respectively used to indicate different correspondences between the SRS resource set and the SRS resource set indication indication field/precoding indication field in the multi-TRP transmission mode.
  • the first code point and the second code point may be 10 or 11, respectively.
  • a predefined method may be used to determine the DMRS port allocated to each Panel, which is not limited in the embodiment of the present disclosure.
  • the DMRS port allocations for different TRPs can be within the same CDM group or from different CDM groups.
  • the RANK combinations supported by different codewords are also different, thereby realizing different DMRS port indications corresponding to multi-panel transmissions based on S-DCI without increasing the existing protocol overhead.
  • the SRS resource set indication indication field in response to the maximum number of transmission layers allocated to each Panel being 3, includes a newly added reserved code point.
  • the RANK combinations supported by STxMP transmission include ⁇ 1+1, 1+2, 2+1, 1+3, 3+1, 2+2 ⁇
  • the number of transmission layers allocated to the first Panel is 1, and the corresponding DMRS port is the first DMRS port; the number of transmission layers allocated to the second Panel is 1, and the corresponding DMRS port is the second DMRS port.
  • the SRS resource set indication field is as shown in Table 20 above, and 4-7 are newly added code points.
  • the DMRS indication field in the DCI indicates that the total number of all allocated DMRS ports is 4 ⁇ 0, 1, 2, 3 ⁇ , the number of transmission layers is 4. If the code point included in the SRS resource set indication field is 4, the corresponding RANK combination is 1+3, that is, the number of transmission layers allocated in the first Panel direction is 1, and the DMRS port is ⁇ 0 ⁇ , and the number of transmission layers allocated in the second Panel direction is 3, and the DMRS ports are ⁇ 1, 2, 3 ⁇ .
  • the uplink DMRS port indication method provided in the present disclosure is applicable to the process of implementing the uplink DMRS port indication by the interaction between the terminal and the network device.
  • the terminal and the network device respectively have the relevant functions of implementing the uplink DMRS port indication method involved in the above-mentioned embodiment, so they are not repeated here.
  • the DMRS port allocations for different TRPs can be within the same CDM group or from different CDM groups.
  • the RANK combinations supported by different codewords are also different, thereby realizing different DMRS port indications corresponding to multi-panel transmissions based on S-DCI without increasing the existing protocol overhead.
  • an embodiment of the present disclosure also provides an indication device for an uplink DMRS port.
  • the indication device of the uplink DMRS port provided in the embodiment of the present disclosure includes hardware structures and/or software modules corresponding to the execution of each function in order to realize the above functions.
  • the embodiment of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solution of the embodiment of the present disclosure.
  • Fig. 6 is a block diagram of an uplink DMRS port indication device according to an exemplary embodiment.
  • the device includes a sending module 101.
  • the uplink DMRS port indication device 100 can be applied to a network device.
  • the sending module 101 is configured to send the first indication information in response to the terminal performing STxMP of PUSCH through SDM multiplexing in a single DCI scheduling mode.
  • the DMRS indication field in the DCI is used to indicate the total number of all DMRS ports allocated to the terminal.
  • the first indication information is used to indicate the DMRS ports corresponding to the allocation when a transmission block of PUSCH is sent on the same time-frequency resource through different panels to different transmission receiving points TRP. Different TRP/Panel/TCI/TO are associated with different beams/TCIs, and there is a corresponding relationship between the DMRS port and the Panel.
  • the first indication information is used to indicate the correspondence between the number of transmission layers used for PUSCH transmission through different Panels/TRPs/TCIs/TOs and the DMRS ports.
  • the first indication information is carried on a single downlink control information S-DCI;
  • the SRS resource set indication field in the DCI signaling based on single DCI scheduling is used to indicate the correspondence between the number of transmission layers and DMRS ports used for PUSCH transmission on different panels.
  • the SRS resource set indication indication field includes a redefined code point or a newly added reserved code point
  • the redefined code points or newly added reserved code points are used to indicate the number of transmission layers and the combination of transmission layers corresponding to different CW/Panel/TRP/beam;
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each panel is at most 2, and different panels in the transmission layer number combination use different numbers of transmission layers, the SRS resource set indication field includes a redefined code point.
  • different code points correspond to different combinations of transmission layer numbers.
  • the multiple panels include a first panel and a second panel
  • the code points include a first code point and a second code point
  • the transmission layer number combination includes a combination of a transmission layer number of 1 and a transmission layer number of 2;
  • Different code points correspond to different combinations of transmission layers, including:
  • the first code point corresponds to a first transmission layer combination, where the first transmission layer combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1;
  • the second code point corresponds to a second transmission layer combination, where the second transmission layer combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the first code point corresponds to a first transmission layer combination, where the first transmission layer combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1.
  • the first code point and the second code point are respectively used to indicate different correspondences between an SRS resource set and an SRS resource set indication field/precoding indication field in a multi-TRP transmission mode.
  • the SRS resource set indication field in response to the maximum number of transmission layers allocated to each panel being 3, includes a newly added reserved code point.
  • each transmission layer number, Panel, and DMRS port included in the transmission layer number combination there is a predefined correspondence between each transmission layer number, Panel, and DMRS port included in the transmission layer number combination;
  • Different transmission layers correspond to different panels, and different panels correspond to different DMRS ports.
  • Fig. 7 is a block diagram of an uplink DMRS port indication device according to an exemplary embodiment.
  • the device includes a receiving module 201.
  • the uplink DMRS port indication device 200 can be applied in a terminal.
  • the receiving module 201 is configured to send a first indication message in response to the terminal performing STxMP of PUSCH through SDM multiplexing in a single DCI scheduling mode.
  • the DMRS indication field in the DCI is used to indicate the total number of all DMRS ports allocated to the terminal.
  • the first indication information is used to indicate the DMRS ports corresponding to the allocation when a transmission block of PUSCH is sent on the same time-frequency resources through different Panels to different transmission receiving points TRP, and different TRP/Panel/TCI/TO are respectively associated with different beams/TCI, and there is a corresponding relationship between the DMRS port and the Panel.
  • the first indication information is used to indicate the correspondence between the number of transmission layers used for PUSCH transmission through different TRP/Panel/TCI/TO and the DMRS port.
  • the first indication information is carried on a single downlink control information S-DCI;
  • the SRS resource set indication field in the DCI signaling based on single DCI scheduling is used to indicate the correspondence between the number of transmission layers and DMRS ports used for PUSCH transmission on different panels.
  • the SRS resource set indication indication field includes a redefined code point or a newly added reserved code point
  • the redefined code points or newly added reserved code points are used to indicate the number of transmission layers and the combination of transmission layers corresponding to different CW/Panel/TRP/beam;
  • the SRS resource set indication field in response to the fact that the number of transmission layers allocated to each panel is at most 2, and different panels in the transmission layer number combination use different numbers of transmission layers, the SRS resource set indication field includes a redefined code point.
  • different code points correspond to different combinations of transmission layer numbers.
  • the multiple panels include a first panel and a second panel
  • the code points include a first code point and a second code point
  • the transmission layer number combination includes a combination of a transmission layer number of 1 and a transmission layer number of 2;
  • Different code points correspond to different combinations of transmission layers, including:
  • the first code point corresponds to a first transmission layer combination, where the first transmission layer combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1;
  • the second code point corresponds to a second transmission layer combination, where the second transmission layer combination is that the transmission layer number allocated to the first panel is 1, and the transmission layer number allocated to the second panel is 2;
  • the first code point corresponds to the first transmission layer combination, where the first transmission layer combination corresponds to 1 for the first panel and 2 for the second panel.
  • the second code point corresponds to a second transmission layer number combination, where the second transmission layer number combination is that the number of transmission layers allocated to the first panel is 2, and the number of transmission layers allocated to the second panel is 1.
  • the first code point and the second code point are respectively used to indicate different correspondences between an SRS resource set and an SRS resource set indication field/precoding indication field in a multi-TRP transmission mode.
  • the SRS resource set indication field in response to the maximum number of transmission layers allocated to each panel being 3, includes a newly added reserved code point.
  • each transmission layer number, Panel, and DMRS port included in the transmission layer number combination there is a predefined correspondence between each transmission layer number, Panel, and DMRS port included in the transmission layer number combination;
  • Different transmission layers correspond to different panels, and different panels correspond to different DMRS ports.
  • the various modules/units involved in the uplink DMRS port indicating device 100 and the uplink DMRS port indicating device 200 involved in the embodiments of the present disclosure are only for illustrative purposes and are not intended to be limiting.
  • the uplink DMRS port indicating device 100 in the embodiments of the present disclosure may also include a receiving unit and/or a processing unit.
  • the uplink DMRS port indicating device 200 may also include a sending unit and/or a processing unit.
  • the various units included in the uplink DMRS port indicating device 100 and the uplink DMRS port indicating device 200 may interact with each other and may also interact with other network element devices.
  • Fig. 8 is a block diagram of an uplink DMRS port indication device according to an exemplary embodiment.
  • the device 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • apparatus 300 may include one or more of the following components: a processing component 302 , a memory 304 , a power component 306 , a multimedia component 308 , an audio component 310 , an input/output (I/O) interface 312 , a sensor component 314 , and a communication component 316 .
  • the processing component 302 generally controls the overall operation of the device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 302 may include one or more modules to facilitate the interaction between the processing component 302 and other components.
  • the processing component 302 may include a multimedia module to facilitate the interaction between the multimedia component 308 and the processing component 302.
  • the memory 304 is configured to store various types of data to support operations on the device 300. Examples of such data include instructions for any application or method operating on the device 300, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 306 provides power to the various components of the device 300.
  • the power component 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 300.
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), and when the device 300 is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 304 or sent via the communication component 316.
  • the audio component 310 also includes a speaker for outputting audio signals.
  • I/O interface 312 provides an interface between processing component 302 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 314 includes one or more sensors for providing various aspects of the status assessment of the device 300.
  • the sensor assembly 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, the sensor assembly 314 can also detect the position change of the device 300 or a component of the device 300, the presence or absence of user contact with the device 300, the orientation or acceleration/deceleration of the device 300, and the temperature change of the device 300.
  • the sensor assembly 314 can include a proximity sensor configured to detect the presence of a nearby object without any physical contact.
  • the sensor assembly 314 can also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 314 can also include an accelerometer, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the device 300 and other devices.
  • the device 300 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to perform the above method.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 304 including instructions, and the instructions can be executed by the processor 320 of the device 300 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • FIG9 is a block diagram of an indication device for an uplink DMRS port according to an exemplary embodiment.
  • the device 400 may be provided as a network device.
  • the device 400 includes a processing component 422, which further includes one or more processors, and a memory resource represented by a memory 432 for storing instructions executable by the processing component 422, such as an application.
  • the application stored in the memory 432 may include one or more modules, each of which corresponds to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • the device 400 may also include a power supply component 426 configured to perform power management of the device 400, a wired or wireless network interface 450 configured to connect the device 400 to a network, and an input/output (I/O) interface 458.
  • the device 400 may operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM, or the like.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 432 including instructions, which can be executed by the processing component 422 of the device 400 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • plural refers to two or more than two, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • the singular forms “a”, “the”, and “the” are also intended to include plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a particular order or importance. In fact, the expressions “first”, “second”, etc. can be used interchangeably.
  • the first information can also be referred to as the second information, and similarly, the second information can also be referred to as the first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种上行解调参考信号DMRS端口的指示方法, 装置及存储介质, 涉及通信技术领域, 用于确定单DCI下对应的不同Panel传输的不同DMRS端口. 该方法包括: 响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP, 发送第一指示信息; 其中, DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量; 所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口, 不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联, 所述DMRS端口与所述Panel之间具有对应关系.

Description

一种上行解调参考信号端口的指示方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种上行解调参考信号(Demodulation Reference Signal,DMRS)端口的指示方法、装置及存储介质。
背景技术
多传输接收点(multi-Transmission and Reception Point,multi-TRP)场景下,上行增强支持对于物理下行共享信道(Physical Uplink Shared Channel,PUSCH)/物理下行控制信道(Physical Uplink Control Channel,PUCCH)信道的重复发送方式可以通过采用时分复用(Time Division Multiplex,TDM)复用方式在不同的上行波束方向上,向不同的传输接收点(Transmission and Reception Point,TRP)进行上行信道的发送。目前,通信系统的瓶颈仍然在上行传输的速率及覆盖等,因此对于R18标准的系统增强方向,主要是考虑在Multi-TRP(也称为mTRP或M-TRP)场景下,利用多天线面板Panel终端进行上行同时传输来提高上行速率,并进一步提高传输的可靠性。
在NR中,为了增强信号覆盖,提高信号质量,PT-RS作为一种UE专有(UE-specific)的参考信号由网络配置给终端,PT-RS用于跟踪网络设备和终端中的本振引入的相位噪声并用于共相位误差(Common Phase Error,CPE)的估计。其中,PT-RS可以看作是解调参考信号(demodulation reference signal,DMRS)的一种扩展,并具有紧密的关系,如采用相同的预编码,端口关联性、正交序列的生成、准共址(quasi co-location,QCL)关系等。
在上行增强中,为了支持基于single-DCI(single downlink control information,S-DCI,也称为单DCI)的多Panel上行同时传输(Simultaneous transmission via multi-panel,STxMP)方案,需要在空分复用SDM传输复用方案下考虑能够支持SU-MIMO和MU-MIMO的DMRS端口灵活分配指示的增强方案。
发明内容
为克服相关技术中存在的问题,本公开提供一种上行解调参考信号DMRS端口的指示方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种上行解调参考信号DMRS端口的指示方法,应用于网络设备,所述方法包括:
响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物 理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,发送第一指示信息;
其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
一种实施方式中,所述第一指示信息用于指示所述PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,所述第一指示信息承载在单个下行控制信息S-DCI上;
所述基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示所述PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,所述SRS资源集合指示指示域中包括重定义的码点或新增的预留码点;
所述重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合;
其中,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
一种实施方式中,响应于每个Panel对应分配的所述传输层数最多为2,且所述传输层数组合中对应的不同Panel使用的传输层数不同,所述SRS资源集合指示指示域中包括重定义的码点。
一种实施方式中,不同的码点对应不同的传输层数组合。
一种实施方式中,多Panel包括第一Panel和第二Panel,所述码点包括第一码点和第二码点,所述传输层数组合包括传输层数为1和传输层数为2的组合;
所述不同的码点对应不同的传输层数组合,包括:
第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;
第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
或,
第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传 输层数为2,第二Panel对应分配的传输层数为1。
一种实施方式中,所述第一码点和所述第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
一种实施方式中,响应于每个Panel对应分配的所述传输层数最多为3,所述SRS资源集合指示指示域中包括新增的预留码点。
一种实施方式中,所述传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
不同传输层数对应不同的Panel,所述不同的Panel对应不同的DMRS端口。
根据本公开实施例的第二方面,提供一种上行解调参考信号DMRS端口的指示方法,应用于终端,所述方法包括:
响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,接收第一指示信息;
其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
一种实施方式中,所述第一指示信息用于指示所述PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,所述第一指示信息承载在单个下行控制信息S-DCI上;
所述基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示所述PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,所述SRS资源集合指示指示域中包括重定义的码点或新增的预留码点;
所述重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合;
其中,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
一种实施方式中,响应于每个Panel对应分配的所述传输层数最多为2,且所述传输层数组合中对应的不同Panel使用的传输层数不同,所述SRS资源集合指示指示域中包括重定义的码点。
一种实施方式中,不同的码点对应不同的传输层数组合。
一种实施方式中,多Panel包括第一Panel和第二Panel,所述码点包括第一码点和第二码点,所述传输层数组合包括传输层数为1和传输层数为2的组合;
所述不同的码点对应不同的传输层数组合,包括:
第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;
第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
或,
第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
一种实施方式中,所述第一码点和所述第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
一种实施方式中,响应于每个Panel对应分配的所述传输层数最多为3,所述SRS资源集合指示指示域中包括新增的预留码点。
一种实施方式中,所述传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
不同传输层数对应不同的Panel,所述不同的Panel对应不同的DMRS端口。
根据本公开实施例的第三方面,提供一种上行解调参考信号DMRS端口的指示装置,应用于网络设备,所述装置包括:
发送模块,用于响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,发送第一指示信息;
其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
一种实施方式中,所述第一指示信息用于指示所述PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,所述第一指示信息承载在单个下行控制信息S-DCI上;
所述基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示所述PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,所述SRS资源集合指示指示域中包括重定义的码点或新增的预留码点;
所述重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合;
其中,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
一种实施方式中,响应于每个Panel对应分配的所述传输层数最多为2,且所述传输层数组合中对应的不同Panel使用的传输层数不同,所述SRS资源集合指示指示域中包括重定义的码点。
一种实施方式中,不同的码点对应不同的传输层数组合。
一种实施方式中,多Panel包括第一Panel和第二Panel,所述码点包括第一码点和第二码点,所述传输层数组合包括传输层数为1和传输层数为2的组合;
所述不同的码点对应不同的传输层数组合,包括:
第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;
第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
或,
第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
一种实施方式中,所述第一码点和所述第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
一种实施方式中,响应于每个Panel对应分配的所述传输层数最多为3,所述SRS资源集合指示指示域中包括新增的预留码点。
一种实施方式中,所述传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
不同传输层数对应不同的Panel,所述不同的Panel对应不同的DMRS端口。
根据本公开实施例的第四方面,提供一种上行解调参考信号DMRS端口的指示装置,应用于终端,所述装置包括:
接收模块,用于响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,接收第一指示信息;
其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
发送模块,用于响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,发送第一指示信息;
其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
一种实施方式中,所述第一指示信息用于指示所述PUSCH传输通过TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,所述第一指示信息承载在单个下行控制信息S-DCI上;
所述基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示所述PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,所述SRS资源集合指示指示域中包括重定义的码点或新增的预留码点;
所述重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合;
其中,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
一种实施方式中,响应于每个Panel对应分配的所述传输层数最多为2,且所述传输层数组合中对应的不同Panel使用的传输层数不同,所述SRS资源集合指示指示域中包括重定义的码点。
一种实施方式中,不同的码点对应不同的传输层数组合。
一种实施方式中,多Panel包括第一Panel和第二Panel,所述码点包括第一码点和第二码点,所述传输层数组合包括传输层数为1和传输层数为2的组合;
所述不同的码点对应不同的传输层数组合,包括:
第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;
第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
或,
第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
一种实施方式中,所述第一码点和所述第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
一种实施方式中,响应于每个Panel对应分配的所述传输层数最多为3,所述SRS资源集合指示指示域中包括新增的预留码点。
一种实施方式中,所述传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
不同传输层数对应不同的Panel,所述不同的Panel对应不同的DMRS端口。
根据本公开实施例的第五方面,提供一种上行解调参考信号DMRS端口的指示装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行上述第一方面及其一种实施方式中所述的方法。
根据本公开实施例的第六方面,提供一种上行解调参考信号DMRS端口的指示装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行上述第二方面及其一种实施方式中所述的方法。
根据本公开实施例的第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行上述第一方面及其一种实施方式中所述的方法。
根据本公开实施例的第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行上述第二方面 及其一种实施方式中所述的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:响应于终端基于单DCI调度方式下通过SDM复用方式进行PUSCH的STxMP,网络设备向终端发送第一指示信息。由于DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量,第一指示信息用于指示PUSCH的一个传输块通过不同Panel面向不同的TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/TCI/TO分别和不同的波束/TCI相关联,DMRS端口与Panel之间具有对应关系,因此终端可以通过第一指示信息,获取S-DCI下对应多Panel传输的不同DMRS端口。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2A、2B、2C、2D是根据一示例性实施例示出的一种DMRS的结构示意图。
图3是根据一示例性实施例示出的一种S-DCI的多Panel发送的逻辑图。
图4是根据一示例性实施例示出的一种上行DMRS端口的指示方法的流程图。
图5是根据一示例性实施例示出的一种上行DMRS端口的指示方法的流程图。
图6是根据一示例性实施例示出的一种上行DMRS端口的指示装置的框图。
图7是根据一示例性实施例示出的一种上行DMRS端口的指示装置的框图。
图8是根据一示例性实施例示出的一种用于上行DMRS端口的指示装置的框图。
图9是根据一示例性实施例示出的一种用于上行DMRS端口的指示装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开实施例提供的上行DMRS端口的指示方法可应用于图1所示的无线通信系统中。参阅图1所示,该无线通信系统中包括网络设备和终端。终端通过无线资源与网络设备相连接,并进行数据传输。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可 包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括网络设备数量和终端数量不做限定。
进一步可以理解的是,本公开实施例无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。在本公开中,网络设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端进行通信。此外,当为车联网(V2X)通信系统时,网络设备还可以是车载设备。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、客户前置设备(Customer Premise Equipment,CPE),口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
多传输接收点(multi-Transmission and Reception Point,multi-TRP)场景下,上行增强支持对于物理下行共享信道(Physical Uplink Shared Channel,PUSCH)/物理下行控制信道(Physical Uplink Control Channel,PUCCH)信道的重复发送方式可以通过采用时分复 用(Time Division Multiplex,TDM)复用方式在不同的上行波束方向上,向不同的传输接收点(Transmission and Reception Point,TRP)进行上行信道的发送。目前,通信系统的瓶颈仍然在上行传输的速率及覆盖等,因此对于R18标准的系统增强方向,主要是考虑在Multi-TRP(也称为mTRP或M-TRP)场景下,利用多天线面板Panel终端进行上行同时传输来提高上行速率,并进一步提高传输的可靠性。
在NR中,为了增强信号覆盖,提高信号质量,PT-RS作为一种UE专有(UE-specific)的参考信号由网络配置给终端,PT-RS用于跟踪网络设备和终端中的本振引入的相位噪声并用于共相位误差(Common Phase Error,CPE)的估计。其中,PT-RS可以看作是解调参考信号(demodulation reference signal,DMRS)的一种扩展,并具有紧密的关系,如采用相同的预编码,端口关联性、正交序列的生成、准共址(quasi co-location,QCL)关系等。
在上行增强中,为了支持基于single-DCI(single downlink control information,S-DCI,也称为单DCI)的多Panel上行同时传输(Simultaneous transmission via multi-panel,STxMP)方案,需要在空分复用SDM传输复用方案下考虑能够支持SU-MIMO和MU-MIMO的DMRS端口灵活分配指示的增强方案。
相关技术中,网络设备(例如基站)有多个TRP时,能够使用M-TRP/多面板为终端提供服务,且引入CoMP技术,以实现网络设备能够在服务区内提供更为均衡的服务质量。
不同于单点传输如单个TRP或面板(Panel),多点协作传输是指多个TRP(Muplti-TRP,mTRP)/Panel为一个用户提供数据服务。其中,每个TRP的天线阵可以被分为若干相对独立的天线面板,因此整个阵面的形态和端口数都可以随部署场景与业务需求进行灵活的调整。而天线面板或TRP之间也可以由光纤连接,进行更为灵活的分布式部署。在毫米波波段,随着波长的减小,人体或车辆等障碍物所产生的阻挡效应将更为显著。在这种情况下,从保障链路连接鲁棒性的角度出发,可以利用多个TRP或面板之间的协作,从多个角度的多个波束进行传输/接收,从而降低阻挡效应带来的不利影响。在一种实现方式中,Panel、TRP、TCI(Transmission Configuration Indication,传输配置指示符)以及TO(transmission occasion,传输时机)之间具对应关系,因此本公开中用TRP/Panel/TCI/TO,或用多TRP/Panel/TCI/TO来表述。在本公开的所有实施例中,“/”表示“或”。
CoMP传输过程中涉及到的多个站点可能对应于多个地理位置不同的站点或者天线面板朝向有差异的多个扇区。例如当终端从不同的站点接收数据时,各个站点在空间上的差异会导致来自不同站点的接收链路的大尺度信道参数的差别,如多普勒频偏,时延扩展等。而信道的大尺度参数将直接影响到信道估计时滤波器系数的调整与优化,对应于不同站点发出的信号,应当使用不同的信道估计滤波参数以适应相应的信道传播特性。
因此,尽管各个站点在空间位置或角度上的差异对于UE以及CoMP操作本身而言是透明的,但是上述空间差异对于信道大尺度参数的影响则是UE进行信道估计与接收检测时需要考虑的重要因素。因此相关技术中引入了准共址(QUASI-CO-LOCATION,QCL)。QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道所推断出来。其中的大尺度参数可以包括时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及空间接收参数等。
所谓两个天线端口在某些大尺度参数意义下QCL,就是指这两个端口的这些大尺度参数是相同的。或者说,只要两个端口的某些大尺度参数一致,不论他们的实际物理位置或对应的天线面板朝向是否存在差异,终端就可以认为这两个端口是发自相同的位置(即准共站址)。
针对一些典型的应用场景,考虑到各种参考信号之间可能的QCL关系,从简化信令的角度出发,NR中将几种信道大尺度参数分为以下4个类型,便于系统根据不同场景进行配置/指示:
●QCL-TypeA:{Doppler频移,Doppler扩展,平均时延,时延扩展}
-除了空间接收参数参数之外,的其他大尺度参数均相同。
-对于6GHz以下频段而言,可能并不需要空间接收参数。
●QCL-TypeB:{Doppler频移,Doppler扩展}
-仅针对6GHz
●QCL-TypeC:{Doppler频移,平均时延}
●QCL-TypeD:{空间接收参数}
其中,如前所述,由于这一参数主要针对6GHz以上频段,因此将其单独作为一个QCL type。
多TRP/Panel/TCI/TO的应用主要为了改善小区边缘的覆盖,在服务区内提供更为均衡的服务质量,用不同的方式在多个TRP/Panel/TCI/TO间协作传输数据。从网络形态角度考虑,以大量的分布式接入点加基带集中处理的方式进行网络部署将更加有利于提供均衡的用户体验速率,并且显著的降低越区切换带来的时延和信令开销。利用多个TRP或面板之间的协作,从多个角度的多个波束进行信道的传输/接收,可以更好的克服各种遮挡/阻挡效应,保障链路连接的鲁棒性,适合URLLC业务提升传输质量和满足可靠性要求。
在R16研究阶段,基于下行多TRP(发送接收点)/天线面板间的多点协作传输技术的应用,对PDSCH进行了传输增强。由于数据传输包括上下行信道的调度反馈,因此在URLLC的研究中,只对下行数据信道增强并不能保证整体的业务性能。因此在R17的研 究中,继续对PDCCH以及PUCCH和PUSCH进行增强。
其中,网络设备与终端之间可以基于多TRP/Panel/TCI/TO进行PUSCH上行传输的增强。具体的,PUSCH的上行传输方案包括基于码本的上行传输和基于非码本的上行传输方案。
相关技术中,对于PDSCH/PUSCH信道,数据传输的数据层与解调使用的DMRS端口相对应。NR系统中数据信道(PDSCH/PUSCH)DMRS设计主要包含前置DMRS(Front-load DMRS)和附加DMRS(Additional DMRS)。
针对Front-load DMRS,在每个调度时间单位内,DMRS首次出现的位置应当尽可能地靠近调度的起始点。Front-load DMRS的使用,有助于接收侧快速估计信道并进行接收检测,对于降低时延并支持所谓的自包含结构具有重要的作用。取决于总共的正交DMRS端口数,front-load DMRS最多可以占用两个连续的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
Front-load DMRS的设计思路分为两类,其中第一类(type1)采用COMB+OCC结构,第二类(type2)采用FDM+OCC结构。
图2A至图2D示出了两种配置类型的front-load DMRS的图样设计示意图。其中,图2A、图2B示出了配置类型1所对应的1个OFDM符号和2个OFDM符号的DMRS图样映射示意图。图2C、图2D示出了配置类型2所对应的1个OFDM符号和2个OFDM符号的DMRS图样映射示意图。
其中,DMRS端口数取决于传输所使用的正交端口数,front-load DMRS最多可以配置为两个OFDM符号。考虑到功率利用效率的因素,使用两个符号的front-load DMRS时,在频域CS或OCC基础之上,又在时域使用了TD-OCC。
对于低移动性场景,front-load DMRS能以较低的开销获得满足解调需求的信道估计性能。但是,NR系统所考虑的移动速度最高可达500km/h,面临动态范围如此之大的移动性,除了front-load DMRS之外,在中/高速场景之中,除了front-load DMRS之外,还需要在调度持续时间内安插更多的DMRS符号,以满足对信道时变性的估计精度。NR系统中采用了front-load DMRS与时域密度可配置的additional DMRS相结合的DMRS结构。每一组additional DMRS的图样都是front-load DMRS的重复。因此,与front-load DMRS一致,每一组additional DMRS最多也可以占用两个连续的DMRS符号。根据具体的使用场景,在每个调度可以配置最多三组additional DMRS。Additional DMRS的数量取决于高层参数配置以及具体的调度时长。
相关协议中,提供了上行循环前缀正交频分复用(Cyclic Prefix Orthogonal  Frequency-Division Multiplexing,CP-OFDM)波形下的不同参数配置的DMRS端口分配方法。
以下表中示出了不同参数配置的DMRS端口分配情况。其中,以下表中Value表示码点,Number of DMRS CDM group(s)without data表示无数据传输时的DMRS CDM组数量,DMRS port表示DMRS端口,Number of front-load symbols表示front-load symbols的数量。
表1
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 1 0
1 1 1
2 2 0
3 2 1
4 2 2
5 2 3
6-7 Reserved Reserved
其中,表1表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码是能),dmrs-Type=1(DMRS类型),maxLength(最大长度)=1,RANK(传输层数)=1,即在DMRS类型1,单符号,单流传输情况下,DMRS端口分配示意。
表2
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 1 0,1
1 2 0,1
2 2 2,3
3 2 0,2
4-7 Reserved Reserved
其中,表2表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码是能),dmrs-Type=1(DMRS类型),maxLength(最大长度)=1,RANK(传输层数)=2,即在DMRS类型1,单符号,双层传输情况下,DMRS端口分配示意。
表3
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 2 0-2
2-7 Reserved Reserved
其中,表3表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码是能),dmrs-Type=1(DMRS类型),maxLength(最大长度)=1,RANK(传输层数)=3,即在DMRS类型1,单符号,三层传输情况下,DMRS端口分配示意。
表4
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 2 0-3
2-7 Reserved Reserved
其中,表4表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=1(DMRS类型),maxLength(最大长度)=1,RANK(传输层数)=4,即在DMRS类型1,单符号,四层传输情况下,DMRS端口分配示意。
表5
Value Number of DMRS CDM group(s)without data DMRS port(s) Number of front-load symbols
0 1 0 1
1 1 1 1
2 2 0 1
3 2 1 1
4 2 2 1
5 2 3 1
6 2 0 2
7 2 1 2
8 2 2 2
9 2 3 2
10 2 4 2
11 2 5 2
12 2 6 2
13 2 7 2
14-15 Reserved Reserved Reserved
其中,表5表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=1(DMRS类型),maxLength(最大长度)=2,RANK(传输层数)=1,即在DMRS类型1,两个符号,单流传输情况下,DMRS端口分配示意。
表6
Value Number of DMRS CDM group(s)without data DMRS port(s) Number of front-load symbols
0 1 0,1 1
1 2 0,1 1
2 2 2,3 1
3 2 0,2 1
4 2 0,1 2
5 2 2,3 2
6 2 4,5 2
7 2 6,7 2
8 2 0,4 2
9 2 2,6 2
10-15 Reserved Reserved Reserved
其中,表6表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=1(DMRS类型),maxLength(最大长度)=2,RANK(传输层数)=2,即在DMRS类型1,两个符号,两层传输情况下,DMRS端口分配示意。
表7
Value Number of DMRS CDM group(s)without data DMRS port(s) Number of front-load symbols
0 2 0-2 1
1 2 0,1,4 2
2 2 2,3,6 2
3-15 Reserved Reserved Reserved
其中,表7表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=1(DMRS类型),maxLength(最大长度)=2,RANK(传输层数)=3,即在DMRS类型1,两个符号,三层传输情况下,DMRS端口分配示意。
表8
Value Number of DMRS CDM group(s)without data DMRS port(s) Number of front-load symbols
0 2 0-3 1
1 2 0,1,4,5 2
2 2 2,3,6,7 2
3 2 0,2,4,6 2
4-15 Reserved Reserved Reserved
其中,表8表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=1(DMRS类型),maxLength(最大长度)=2,RANK(传输层数)=2,即在DMRS类型1,两个符号,四层传输情况下,DMRS端口分配示意。
表9
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 1 0
1 1 1
2 2 0
3 2 1
4 2 2
5 2 3
6 3 0
7 3 1
8 3 2
9 3 3
10 3 4
11 3 5
12-15 Reserved Reserved
其中,表9表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=2(DMRS类型),maxLength(最大长度)=1,RANK(传输层数)=1,即在DMRS类型2,单符号,单层传输情况下,DMRS端口分配示意。
表10
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 1 0,1
1 2 0,1
2 2 2,3
3 3 0,1
4 3 2,3
5 3 4,5
6 2 0,2
7-15 Reserved Reserved
其中,表10表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=2(DMRS类型),maxLength(最大长度)=1,RANK(传输层数)=2,即在DMRS类型2,单符号,两层传输情况下,DMRS端口分配示意。
表11
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 2 0-2
1 3 0-2
2 3 3-5
3-15 Reserved Reserved
其中,表11表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=2(DMRS类型),maxLength(最大长度)=1,RANK(传输层数)=3,即在DMRS类型2,单符号,三层传输情况下,DMRS端口分配示意。
表12
Value Number of DMRS CDM group(s)without data DMRS port(s)
0 2 0-3
1 3 0-3
2-15 Reserved Reserved
其中,表12表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=2(DMRS类型),maxLength(最大长度)=1,RANK(传输层数)=4,即在DMRS类型2,单符号,四层传输情况下,DMRS端口分配示意。
表13
Value Number of DMRS CDM group(s)without data DMRS port(s) Number of front-load symbols
0 1 0 1
1 1 1 1
2 2 0 1
3 2 1 1
4 2 2 1
5 2 3 1
6 3 0 1
7 3 1 1
8 3 2 1
9 3 3 1
10 3 4 1
11 3 5 1
12 3 0 2
13 3 1 2
14 3 2 2
15 3 3 2
16 3 4 2
17 3 5 2
18 3 6 2
19 3 7 2
20 3 8 2
21 3 9 2
22 3 10 2
23 3 11 2
24 1 0 2
25 1 1 2
26 1 6 2
27 1 7 2
28-31 Reserved Reserved Reserved
其中,表13表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=2(DMRS类型),maxLength(最大长度)=2,RANK(传输层数)=1,即在DMRS类型2,两个符号,单传输情况下,DMRS端口分配示意。
表14
Value Number of DMRS CDM group(s)without data DMRS port(s) Number of front-load symbols
0 1 0,1 1
1 2 0,1 1
2 2 2,3 1
3 3 0,1 1
4 3 2,3 1
5 3 4,5 1
6 2 0,2 1
7 3 0,1 2
8 3 2,3 2
9 3 4,5 2
10 3 6,7 2
11 3 8,9 2
12 3 10,11 2
13 1 0,1 2
14 1 6,7 2
15 2 0,1 2
16 2 2,3 2
17 2 6,7 2
18 2 8,9 2
19-31 Reserved Reserved Reserved
其中,表14表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=2(DMRS类型),maxLength(最大长度)=2,RANK(传输层数)=2,即在DMRS类型2,两个符号,双层传输情况下,DMRS端口分配示意。
表15
Value Number of DMRS CDM group(s)without data DMRS port(s) Number of front-load symbols
0 2 0-2 1
1 3 0-2 1
2 3 3-5 1
3 3 0,1,6 2
4 3 2,3,8 2
5 3 4,5,10 2
6-31 Reserved Reserved Reserved
其中,表15表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=2(DMRS类型),maxLength(最大长度)=2,RANK(传输层数)=3,即在DMRS类型2,两个符号,三层传输情况下,DMRS端口分配示意。
表16
Value Number of DMRS CDM group(s)without data DMRS port(s) Number of front-load symbols
0 2 0-3 1
1 3 0-3 1
2 3 0,1,6,7 2
3 3 2,3,8,9 2
4 3 4,5,10,11 2
5-31 Reserved Reserved Reserved
其中,表16表示Antenna port(s)(天线端口),transform precoder is disabled(转换预编码去使能),dmrs-Type=2(DMRS类型),maxLength(最大长度)=2,RANK(传输层数)=4,即在DMRS类型2,两个符号,四层传输情况下,DMRS端口分配示意。
R17标准在Multi-TRP场景下,上行增强支持了对于PUSCH/PUCCH信道的重复发送方式可以通过采用时分复用(time-division multiplexing,TDM)复用方式在不同的上行波束方向上向给不同的TRP进行上行信道的发送。
目前,通信系统的瓶颈仍然在上行传输的速率及覆盖等,因此对于R18标准的系统增强方向,主要是考虑在Multi-TRP场景下,终端利用多TRP/Panel/TCI/TO进行上行同时传输(STxMP)来提高上行速率,并进一步提高传输的可靠性,进行基于Multi-TRP的PUSCH增强。其中,基于Multi-TRP的PUSCH增强可以基于一个物理下行控制信道(Physical Downlink Control Channel,PDCCH)信道承载的一个下行控制信息(DCI)进行调度,比如单个下行控制信令(single downlink control information,S-DCI)调度多TRP/Panel/TCI传输。也可以考虑基于不同PDCCH承载的不同DCI分别调度。图3是基于single DCI(S-DCI)的多Panel发送实现的逻辑图。参阅图3所示,终端(UE)通过Panel1和Panel2分别基于传输层(Layer)1和Layer2,面向TRP1和TRP2,进行PUSCH1以及PUSCH2的传输。
其中,终端多Panel实现一般会配置多个物理Panel,不同的Panel的能力可能也不相同。比如,具备不同的探测参考信号(Sounding Reference Signal,SRS)端口数,支持的最大数据传输层数也不一定相同,比如一个Panel支持最大2层的传输,另一个Panel支持 最大4层的传输。网络设备的调度器会判断终端当前是否适合多Panel的上行同时传输,如果终端当前适合多Panel的上行同时传输同时被调度,则网络设备会直接或间接指示相关的传输参数,包括终端具体波束指示信息,传输使用的数据层数,以及使用的DMRS端口分配情况,以及预编码的指示信息等。
本公开实施例提供的方法,适用于在S-DCI调度下的DMRS端口指示问题,即如何确定不同Panel上的PUSCH分别采用哪些DMRS端口来进行发送。
目前协议支持的上行最大传输层数是4层,对应一个码字的传输。因此在多Panel增强中还有一个问题就是在上行如何支持2个码字来实现灵活映射。其中,相关技术中,进行上行或者下行的层映射方案中,数据层数为2-4层的情况对应1个码字(codeWord,CW)的传输。而这种配置很难使得同一个MCS适应不同层的信道条件,因此在层间信道性能差异较大的情况下,就会出现性能损失的情况。因此,考虑对于2-4层或者仅针对4层的数据也应用2个CW进行调度和传输。图3示出了一种码字到层的层映射方案示意图。如下图3所示,S-DCI调度下的STxMP传输中,码字0映射到层0(CW#0in Layer0),码字1映射到层1(CW#1in Layer1),以进行面向TRP0和TRP1的上行传输。通过此种方式,网络设备可以充分根据层间信道条件进行调度。比如对应3层传输,在信道层间差异较大的情况下可以使用2个CW进行调度,对应一个CW传输1层数据,另外一个CW传输2层数据。这样也方便数据重传调度,有利于提高系统吞吐量。系统中4层以下的传输为主,因此对于整体的性能优化也是有好处的。
其中,对于多Panel的上行同步传输,基于单DCI的对于PUSCH的一个TB的协作传输调度,可能支持的传输方案包括空分复用(Space Division Multiplexing,SDM)方案、频分复用(Frequency Division Multiplexing,FDM)以及单频网络(Single Frequency Network,SFN)方案中的一种或多种。
其中,SDM空分复用方案,主要是PUSCH的一个传输块(transport block,TB)通过不同Panel上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的TRP/Panel/TCI/TO分别和不同的TCI state(即波束)相关联。
SDM空分复用方案包括SDM-A和SDM-B两种方案。
其中,SDM-A:PUSCH的一个TB的不同部分分别通过不同Panel上分配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的TRP/Panel/TCI/TO分别和不同的TCI state(即波束)相关联。
其中,SDM-B:PUSCH的对应不同RV版本的同一个TB的重复通过不同Panel上分 配的各自对应的DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的TRP/Panel/TCI/TO分别和不同的TCI state(即波束)相关联。
针对FDM频分复用方案,PUSCH的一个TB通过不同Panel上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的TRP/Panel/TCI/TO分别和不同的TCI state(即波束)相关联。
FDM有FDM-A和FDM-B两种可能方案:
FDM-A:PUSCH的一个TB的不同部分分别通过不同Panel上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的TRP/Panel/TCI/TO分别和不同的TCI state(即波束)相关联。
FDM-B:PUSCH的对应不同RV版本的同一个TB的重复通过不同Panel上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同时域资源上的不重叠频域资源上进行发送,不同的TRP/Panel/TCI/TO分别和不同的TCI state(即波束)相关联。
针对SFN方案,PUSCH的一个TB通过不同Panel上分配的相同DMRS端口或端口组合分别面向两个不同的TRP在相同的时频资源上进行发送,不同的TRP/Panel/TCI/TO分别和不同的TCI state(即波束)相关联。
对于基于终端多Panel的上行PUSCH同时传输,会支持上述方案中的一种或多种。
在相关技术中的基于非码本和码本的M-TRP传输中,DCI中的SRI域指示SRS资源集中的SRS资源,由于R17支持两个SRS资源集,因此在基于非码本的M-TRP PUSCH重复传输中,DCI格式0_1/0_2中包含与两个SRS资源集关联的两个SRI域,每个SRI域为一个TRP指示SRI,第一个SRI域的设计基于R15/16的框架,且所有重复传输均采用相同的层数。
其中对于基于非码本的传输,第一个SRI域用来确定第二个SRI域中的元素,且第二个SRI域仅包含与第一个SRI域指示的层数关联的SRI组合。第二个SRI域的比特数N2是由与第一个SRI域关联的所有秩中每个秩的最大码点数量决定的。
在基于码本的M-TRP PUSCH重复传输中,DCI格式0_1/0_2中指示两个TPMI域,其中第一个TPMI域和R15/16中的TPMI域设计相同(包括TPMI索引和层数),第二个TPMI域仅包含第二个TPMI索引,层数与第一个TPMI域指示的层数相同[15]。第一个TPMI域用来确定第二个TPMI域中的元素,且第二个TPMI域仅包含与第一个TPMI域指示的层数关联的TPMI。第二个TPMI域的比特数M2是由与第一个TPMI域关联的所有秩中每个秩的最大码点数量决定的。
其中动态指示S-TRP和M-TRP传输调度的指示域定义如表17所示:
表17
Figure PCTCN2022122318-appb-000001
在相关技术中的M-TRP上行PUSCH增强中,支持S-DCI调度下的终端面向不同TRP发送方向上使用不同的波束即对应TCI state(transmission configuration indication state)进行PUSCH信道重复发送方式的TDM(时分复用技术,time-division multiplexing)方式的分时传输方案。
因此,本公开为了支持基于S-DCI的多Panel上行同时传输方案,需要在SDM传输复用方案下考虑能够支持SU-MIMO和MU-MIMO的DMRS端口灵活分配指示的增强方案。
图4是根据一示例性实施例示出的一种上行DMRS端口的指示方法的流程图,如图4所示,上行DMRS端口的指示方法用于网络设备中,包括以下步骤。
在步骤S11中,响应于终端基于单DCI调度方式下通过SDM复用方式进行PUSCH的STxMP,发送第一指示信息。
其中,DCI中的DMRS指示域用于为终端指示分配的所有DMRS端口的总数量。第一指示信息用于指示PUSCH的一个传输块通过不同Panel面向不同的TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/TCI/TO分别和不同的波束/TCI相关联,DMRS端口与Panel之间具有对应关系。
在本公开实施例中,响应于终端基于单DCI调度方式下通过SDM复用方式进行PUSCH的STxMP,网络设备向终端发送第一指示信息。由于DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量,第一指示信息用于指示PUSCH的一个传输块通过不同Panel面向不同的TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/TCI/TO分别和不同的波束/TCI相关联,DMRS端口与Panel之间具有对应关系,因此终端可以通过第一指示信息,获取单DCI下对应多Panel传输的不同DMRS端口。
本公开实施例提供的上行DMRS端口的指示方法中,终端分配的所有DMRS端口的总数量与传输层数之间具有对应关系。
示例性的,如果DCI中的天线端口指示的DMRS端口总数量为3,则对应SDM方式下传输层数为3的传输。
本公开实施例提供的上行DMRS端口的指示方法中,第一指示信息用于指示PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
本公开实施例提供的上行DMRS端口的指示方法中,第一指示信息承载在单个下行控制信息S-DCI上。
其中,基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
本公开实施例提供的上行DMRS端口的指示方法中,SRS资源集合指示指示域中包括重定义的码点或新增的预留码点。
其中,重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合。
进一步的,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
一种实施方式中,本公开实施例中SRS资源集合指示指示域中包括的重定义的码点或新增的码点,可以是基于协议版本的更新改进后,基于在先协议版本中对应SRS资源集合指示指示域表格中所指示的码点情况进行重定义或新增得到。比如,针对R17中SRS资源 集合指示指示域中包括的重定义的码点或新增的码点,可以是基于R16中SRS资源集合指示指示域中包括的码点进行重定义或新增得到的。
本公开实施例提供的上行DMRS端口的指示方法中,响应于每个Panel对应分配的所述传输层数最多为2,且传输层数组合中对应的不同Panel使用的传输层数不同,SRS资源集合指示指示域中包括重定义的码点。
其中,当STxMP传输为仅支持的RANK组合为{1+1,1+2,2+1,2+2}的情况,使用现有的SRS资源集合指示指示域中的2比特中进行区分RANK=3对应的不同Panel传输的传输层数组合。
应理解,当RANK=1+1或2+2时,不需要提供SRS资源集合指示指示域中的码点指示不同Panel的传输层数组合。
在一些实施例中,PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数为2时,对应的传输层数组合为RANK=1+1,则第一Panel对应分配的传输层数为1,对应的DMRS端口为第一个DMRS端口,第二个Panel对应分配的传输层数为1,对应的DMRS端口为第二个DMRS端口。
在另一些实施例中,PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数为4时,对应的传输层数组合为RANK=2+2,则第一Panel对应分配的传输层数为2,对应的DMRS端口为第一个和第二个DMRS端口,第二Panel对应分配的传输层数为2,对应的DMRS端口为第三个DMRS端口。
本公开实施例提供的上行DMRS端口的指示方法中,不同的码点对应不同的传输层数组合。
一示例性的实施例中,多Panel包括第一Panel和第二Panel,码点包括第一码点和第二码点,传输层数组合包括传输层数为1和传输层数为2的组合。
一些实施例中,第一码点对应第一传输层数组合,第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;第二码点对应第二传输层数组合,第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2。
另一些实施例中,第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
本公开实施例提供的上行DMRS端口的指示方法中,第一码点和第二码点分别用于指 示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
一示例性的实施例中,如上述表17所示,第一码点和第二码点可以分别为10或11。
示例性的,如表18所示,第一码点为10,对应的第一传输层数组合为RANK=3:2+1,即第一Panel对应分配的传输层数为2,对应的DMRS端口为第一个DMRS端口和第二个DMRS端口;第二Panel对应分配的传输层数为1,对应的DMRS端口为第三个DMRS端口。第二码点为11,对应的第二传输层数组合为RANK=3:1+2,即第一Panel对应分配的传输层数为1,对应的DMRS端口为第一个DMRS端口;第二Panel对应分配的传输层数为2,对应的DMRS端口为第二个DMRS端口和第三个DMRS端口。
表18
Figure PCTCN2022122318-appb-000002
又一示例性的,如表19所示,第一码点为10,对应的第一传输层数组合为RANK=3:1+2,即第一Panel对应分配的传输层数为1,对应的DMRS端口为第一个DMRS端口,第二Panel对应分配的传输层数为2,对应的DMRS端口为第二个DMRS端口和第三个DMRS端口;第二码点为11,对应的第二传输层数组合为RANK=3:2+1,即第一Panel 对应分配的传输层数为2,对应的DMRS端口为第一个DMRS端口和第二个DMRS端口,第二Panel对应分配的传输层数为1,对应的DMRS端口为第三个DMRS端口。
表19
Figure PCTCN2022122318-appb-000003
值得说明的是,除了上述实施例涉及的为每个Panel分配DMRS端口时的实施方式,还可以采用预定义的方式分别确定每个Panel分配的DMRS端口,本公开实施例在此不做限定。
在本公开实施例中,当每个Panel对应分配的传输层数最多为2时,通过SRS资源集合指示指示域中重定义的码点来指示DMRS端口与Panel之间的对应关系,从而对于上行DMRS端口的分配,面向不同TRP的DMRS端口分配可以在同一个CDM组内,也可以来自不同CDM组,同时对于不同的码字支持的RANK组合情况也不一样,在不增加现有协议开销的情况下实现基于S-DCI下对应多panel传输的不同DMRS端口指示。
本公开实施例提供的上行DMRS端口的指示方法中,响应于每个Panel对应分配的传输层数最多为3,SRS资源集合指示指示域中包括新增的预留码点。
其中,当STxMP传输支持的RANK组合包含{1+1,1+2,2+1,1+3,3+1,2+2}的情 况,则需要扩展现有的SRS资源集合指示指示域的比特数,也即在SRS资源集合指示指示域中新增预留码点。
值得说明的是,当RANK组合为1+1时,不需要通过新增的预留码点进行指示DMRS端口与Panel之间的对应关系。
作为一种示例性的说明,当RANK组合为1+1时,第一个Panel对应分配的传输层数为1,对应的DMRS端口为第一个DMRS端口,第二个Panel对应分配的传输层数为1,对应的DMRS端口为第二个DMRS端口。
本公开实施例提供的上行DMRS端口的指示方法中,传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
其中,不同传输层数对应不同的Panel,不同的Panel对应不同的DMRS端口。
在一种示例性实施例中,SRS资源集合指示指示域如表20所示,4-7为新增的码点.
表20
Figure PCTCN2022122318-appb-000004
Figure PCTCN2022122318-appb-000005
举例来说,当DCI中的DMRS指示域指示分配的所有DMRS端口的总数量为4{0,1,2,3},则传输层数为4,若SRS资源集合指示指示域包括的码点为4,则对应的RANK组合为1+3,即第一个Panel方向上对应分配的传输层数为1,DMRS端口为{0},第二个Panel方向上对应分配的传输层数为3,DMRS端口为{1,2,3}。
在本公开实施例中,当每个Panel对应分配的传输层数最多为3时,通过SRS资源集合指示指示域中的新增预留码点来指示DMRS端口与Panel之间的对应关系,从而对于上行DMRS端口的分配,面向不同TRP的DMRS端口分配可以在同一个CDM组内,也可以来自不同CDM组,同时对于不同的码字支持的RANK组合情况也不一样,在不增加现有协议开销的情况下实现基于S-DCI下对应多panel传输的不同DMRS端口指示。
图5是根据一示例性实施例示出的一种上行DMRS端口的指示方法的流程图,如图5所示,上行DMRS端口的指示方法用于终端中,包括以下步骤。
在步骤S21中,响应于终端基于单DCI调度方式下通过SDM复用方式进行PUSCH的STxMP,接收第一指示信息;
其中,DCI中的DMRS指示域用于为终端指示分配的所有DMRS端口的总数量。
第一指示信息用于指示PUSCH的一个传输块通过不同Panel面向不同的TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/TCI/TO分别和不同 的波束/TCI相关联,DMRS端口与Panel之间具有对应关系。
终端根据接收到的第一指示信息,确定PUSCH的一个传输块通过不同Panel面向不同的TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/TCI/TO分别和不同的波束/TCI相关联,DMRS端口与Panel之间具有对应关系。
在本公开实施例中,响应于终端基于单DCI调度方式下通过SDM复用方式进行PUSCH的STxMP,终端接收网络设备发送的第一指示信息。由于DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量,第一指示信息用于指示PUSCH的一个传输块通过不同Panel面向不同的TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/TCI/TO分别和不同的波束/TCI相关联,DMRS端口与Panel之间具有对应关系,因此终端可以通过第一指示信息,获取单DCI下对应多Panel传输的不同DMRS端口。
本公开实施例提供的上行DMRS端口的指示方法中,终端分配的所有DMRS端口的总数量与传输层数之间具有对应关系。
示例性的,如果DCI中的天线端口指示的DMRS端口总数量为3,则对应SDM方式下传输层数为3的传输。
本公开实施例提供的上行DMRS端口的指示方法中,第一指示信息用于指示PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
本公开实施例提供的上行DMRS端口的指示方法中,第一指示信息承载在单个下行控制信息S-DCI上。
其中,基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
本公开实施例提供的上行DMRS端口的指示方法中,SRS资源集合指示指示域中包括重定义的码点或新增的预留码点。
其中,重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合。
进一步的,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
本公开实施例提供的上行DMRS端口的指示方法中,响应于每个Panel对应分配的所述传输层数最多为2,且传输层数组合中对应的不同Panel使用的传输层数不同,SRS资源集合指示指示域中包括重定义的码点。
其中,当STxMP传输为仅支持的RANK组合为{1+1,1+2,2+1,2+2}的情况,使用现有的SRS资源集合指示指示域中的2比特中进行区分RANK=3对应的不同Panel传输的传输 层数组合。
应理解,当RANK=1+1或2+2时,不需要提供SRS资源集合指示指示域中的码点指示不同Panel的传输层数组合。
在一些实施例中,PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数为2时,对应的传输层数组合为RANK=1+1,则第一Panel对应分配的传输层数为1,对应的DMRS端口为第一个DMRS端口,第二个Panel对应分配的传输层数为1,对应的DMRS端口为第二个DMRS端口。
在另一些实施例中,PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数为4时,对应的传输层数组合为RANK=2+2,则第一Panel对应分配的传输层数为2,对应的DMRS端口为第一个和第二个DMRS端口,第二Panel对应分配的传输层数为2,对应的DMRS端口为第三个DMRS端口。
本公开实施例提供的上行DMRS端口的指示方法中,不同的码点对应不同的传输层数组合。
一示例性的实施例中,多Panel包括第一Panel和第二Panel,码点包括第一码点和第二码点,传输层数组合包括传输层数为1和传输层数为2的组合。
一些实施例中,第一码点对应第一传输层数组合,第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;第二码点对应第二传输层数组合,第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2。
另一些实施例中,第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
本公开实施例提供的上行DMRS端口的指示方法中,第一码点和第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
一示例性的实施例中,如上述表17所示,第一码点和第二码点可以分别为10或11。
示例性的,如上述表18所示,第一码点为10,对应的第一传输层数组合为RANK=3:2+1,即第一Panel对应分配的传输层数为2,对应的DMRS端口为第一个DMRS端口和第二个DMRS端口;第二Panel对应分配的传输层数为1,对应的DMRS端口为第三个DMRS端口。第二码点为11,对应的第二传输层数组合为RANK=3:1+2,即第一Panel 对应分配的传输层数为1,对应的DMRS端口为第一个DMRS端口;第二Panel对应分配的传输层数为2,对应的DMRS端口为第二个DMRS端口和第三个DMRS端口。
又一示例性的,如上述表19所示,第一码点为10,对应的第一传输层数组合为RANK=3:1+2,即第一Panel对应分配的传输层数为1,对应的DMRS端口为第一个DMRS端口,第二Panel对应分配的传输层数为2,对应的DMRS端口为第二个DMRS端口和第三个DMRS端口;第二码点为11,对应的第二传输层数组合为RANK=3:2+1,即第一Panel对应分配的传输层数为2,对应的DMRS端口为第一个DMRS端口和第二个DMRS端口,第二Panel对应分配的传输层数为1,对应的DMRS端口为第三个DMRS端口。
值得说明的是,除了上述实施例涉及的为每个Panel分配DMRS端口时的实施方式,还可以采用预定义的方式分别确定每个Panel分配的DMRS端口,本公开实施例在此不做限定。
在本公开实施例中,当每个Panel对应分配的传输层数最多为2时,通过SRS资源集合指示指示域中重定义的码点来指示DMRS端口与Panel之间的对应关系,从而对于上行DMRS端口的分配,面向不同TRP的DMRS端口分配可以在同一个CDM组内,也可以来自不同CDM组,同时对于不同的码字支持的RANK组合情况也不一样,在不增加现有协议开销的情况下实现基于S-DCI下对应多panel传输的不同DMRS端口指示。
本公开实施例提供的上行DMRS端口的指示方法中,响应于每个Panel对应分配的传输层数最多为3,SRS资源集合指示指示域中包括新增的预留码点。
其中,当STxMP传输支持的RANK组合包含{1+1,1+2,2+1,1+3,3+1,2+2}的情况,则需要扩展现有的SRS资源集合指示指示域的比特数,也即在SRS资源集合指示指示域中新增预留码点。
值得说明的是,当RANK组合为1+1时,不需要通过新增的预留码点进行指示DMRS端口与Panel之间的对应关系。
作为一种示例性的说明,当RANK组合为1+1时,第一个Panel对应分配的传输层数为1,对应的DMRS端口为第一个DMRS端口,第二个Panel对应分配的传输层数为1,对应的DMRS端口为第二个DMRS端口。
本公开实施例提供的上行DMRS端口的指示方法中,传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
其中,不同传输层数对应不同的Panel,不同的Panel对应不同的DMRS端口。
在一种示例性实施例中,SRS资源集合指示指示域如上述表20所示,4-7为新增的码点。
举例来说,当DCI中的DMRS指示域指示分配的所有DMRS端口的总数量为4{0,1,2,3},则传输层数为4,若SRS资源集合指示指示域包括的码点为4,则对应的RANK组合为1+3,即第一个Panel方向上对应分配的传输层数为1,DMRS端口为{0},第二个Panel方向上对应分配的传输层数为3,DMRS端口为{1,2,3}。
本公开提供的上行DMRS端口的指示方法适用于终端与网络设备交互实现上行DMRS端口的指示的过程,对于终端与网络设备交互实现上行DMRS端口的指示方法中,终端和网络设备分别具备实施上述实施例中涉及的上行DMRS端口的指示方法中的相关功能,故在此不再赘述。
在本公开实施例中,当每个Panel对应分配的传输层数最多为3时,通过SRS资源集合指示指示域中的新增预留码点来指示DMRS端口与Panel之间的对应关系,从而对于上行DMRS端口的分配,面向不同TRP的DMRS端口分配可以在同一个CDM组内,也可以来自不同CDM组,同时对于不同的码字支持的RANK组合情况也不一样,在不增加现有协议开销的情况下实现基于S-DCI下对应多panel传输的不同DMRS端口指示。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种上行DMRS端口的指示装置。
可以理解的是,本公开实施例提供的上行DMRS端口的指示装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图6是根据一示例性实施例示出的一种上行DMRS端口的指示装置框图。参照图6,该装置包括发送模块101。其中,上行DMRS端口的指示装置100可以应用于网络设备中。
该发送模块101被配置为响应于终端基于单DCI调度方式下通过SDM复用方式进行PUSCH的STxMP,发送第一指示信息。其中,DCI中的DMRS指示域用于为终端指示分配的所有DMRS端口的总数量。第一指示信息用于指示PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端 口,不同TRP/Panel/TCI/TO分别和不同的波束/TCI相关联,DMRS端口与Panel之间具有对应关系
一种实施方式中,第一指示信息用于指示PUSCH传输通过不同Panel/TRP/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,第一指示信息承载在单个下行控制信息S-DCI上;
基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,SRS资源集合指示指示域中包括重定义的码点或新增的预留码点;
重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合;
其中,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
一种实施方式中,响应于每个Panel对应分配的传输层数最多为2,且传输层数组合中对应的不同Panel使用的传输层数不同,SRS资源集合指示指示域中包括重定义的码点。
一种实施方式中,不同的码点对应不同的传输层数组合。
一种实施方式中,多Panel包括第一Panel和第二Panel,码点包括第一码点和第二码点,传输层数组合包括传输层数为1和传输层数为2的组合;
不同的码点对应不同的传输层数组合,包括:
第一码点对应第一传输层数组合,第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;
第二码点对应第二传输层数组合,第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
或,
第一码点对应第一传输层数组合,第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
第二码点对应第二传输层数组合,第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
一种实施方式中,第一码点和第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
一种实施方式中,响应于每个Panel对应分配的传输层数最多为3,SRS资源集合指示指示域中包括新增的预留码点。
一种实施方式中,传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间 具有预定义的对应关系;
不同传输层数对应不同的Panel,不同的Panel对应不同的DMRS端口。
图7是根据一示例性实施例示出的一种上行DMRS端口的指示装置框图。参照图7,该装置包括接收模块201。其中,上行DMRS端口的指示装置200可以应用于终端中。
该接收模块201被配置为响应于终端基于单DCI调度方式下通过SDM复用方式进行PUSCH的STxMP,发送第一指示信息。其中,DCI中的DMRS指示域用于为终端指示分配的所有DMRS端口的总数量。第一指示信息用于指示PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/TCI/TO分别和不同的波束/TCI相关联,DMRS端口与Panel之间具有对应关系。
一种实施方式中,第一指示信息用于指示PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,第一指示信息承载在单个下行控制信息S-DCI上;
基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
一种实施方式中,SRS资源集合指示指示域中包括重定义的码点或新增的预留码点;
重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合;
其中,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
一种实施方式中,响应于每个Panel对应分配的传输层数最多为2,且传输层数组合中对应的不同Panel使用的传输层数不同,SRS资源集合指示指示域中包括重定义的码点。
一种实施方式中,不同的码点对应不同的传输层数组合。
一种实施方式中,多Panel包括第一Panel和第二Panel,码点包括第一码点和第二码点,传输层数组合包括传输层数为1和传输层数为2的组合;
不同的码点对应不同的传输层数组合,包括:
第一码点对应第一传输层数组合,第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;
第二码点对应第二传输层数组合,第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
或,
第一码点对应第一传输层数组合,第一传输层数组合为第一Panel对应分配的传输层 数为1,第二Panel对应分配的传输层数为2;
第二码点对应第二传输层数组合,第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
一种实施方式中,第一码点和第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
一种实施方式中,响应于每个Panel对应分配的传输层数最多为3,SRS资源集合指示指示域中包括新增的预留码点。
一种实施方式中,传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
不同传输层数对应不同的Panel,不同的Panel对应不同的DMRS端口。
其中,需要说明的是,本公开实施例涉及的上行DMRS端口的指示装置100和上行DMRS端口的指示装置200中涉及的各个模块/单元,仅是进行示例性说明,并不引以为限。例如,本公开实施例中的上行DMRS端口的指示装置100还可以包括接收单元和/或处理单元。上行DMRS端口的指示装置200还可以包括发送单元和/或处理单元。其中,上行DMRS端口的指示装置100和上行DMRS端口的指示装置200中所包括的各单元之间可以进行交互,也可以与其他网元设备进行交互。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的一种上行DMRS端口的指示装置的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消 息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实 施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图9是根据一示例性实施例示出的一种上行DMRS端口的指示装置的框图。例如,装置400可以被提供为一网络设备。参照图9,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重 要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (26)

  1. 一种上行解调参考信号DMRS端口的指示方法,其特征在于,应用于网络设备,所述方法包括:
    响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,发送第一指示信息;
    其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;
    所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
  2. 根据权利要求1所述的方法,其特征在于,所述第一指示信息用于指示所述PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息承载在单个下行控制信息S-DCI上;
    所述基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示所述PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
  4. 根据权利要求3所述的方法,其特征在于,所述SRS资源集合指示指示域中包括重定义的码点或新增的预留码点;
    所述重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合;
    其中,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
  5. 根据权利要求4所述的方法,其特征在于,响应于每个Panel对应分配的所述传输层数最多为2,且所述传输层数组合中对应的不同Panel使用的传输层数不同,所述SRS资源集合指示指示域中包括重定义的码点。
  6. 根据权利要求4或5所述的方法,其特征在于,不同的码点对应不同的传输层数组合。
  7. 根据权利要求6所述的方法,其特征在于,多Panel包括第一Panel和第二Panel,所述码点包括第一码点和第二码点,所述传输层数组合包括传输层数为1和传输层数为2的组合;
    所述不同的码点对应不同的传输层数组合,包括:
    第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;
    第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
    或,
    第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
    第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
  8. 根据权利要求7所述的方法,其特征在于,所述第一码点和所述第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
  9. 根据权利要求4至8中任意一项所述的方法,其特征在于,响应于每个Panel对应分配的所述传输层数最多为3,所述SRS资源集合指示指示域中包括新增的预留码点。
  10. 根据权利要求4至8中任意一项所述的方法,其特征在于,所述传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
    不同传输层数对应不同的Panel,所述不同的Panel对应不同的DMRS端口。
  11. 一种上行解调参考信号DMRS端口的指示方法,其特征在于,应用于终端,所述方法包括:
    响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,接收第一指示信息;
    其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;
    所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
  12. 根据权利要求11所述的方法,其特征在于,所述第一指示信息用于指示所述PUSCH传输通过不同TRP/Panel/TCI/TO发送使用的传输层数与DMRS端口之间的对应关系。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息承载在单个下行控制信息S-DCI上;
    所述基于单DCI调度的DCI信令中的SRS资源集合指示指示域用于指示所述PUSCH传输在不同Panel上分别使用的传输层数与DMRS端口之间的对应关系。
  14. 根据权利要求13所述的方法,其特征在于,所述SRS资源集合指示指示域中包括重定义的码点或新增的预留码点;
    所述重定义的码点或新增的预留码点用于指示不同CW/Panel/TRP/beam对应的传输层数数量以及传输层数组合;
    其中,传输层数数量、传输层数的组合以及DMRS端口之间具有对应关系。
  15. 根据权利要求14所述的方法,其特征在于,响应于每个Panel对应分配的所述传输层数最多为2,且所述传输层数组合中对应的不同Panel使用的传输层数不同,所述SRS资源集合指示指示域中包括重定义的码点。
  16. 根据权利要求14或15所述的方法,其特征在于,不同的码点对应不同的传输层数组合。
  17. 根据权利要求16所述的方法,其特征在于,多Panel包括第一Panel和第二Panel,所述码点包括第一码点和第二码点,所述传输层数组合包括传输层数为1和传输层数为2的组合;
    所述不同的码点对应不同的传输层数组合,包括:
    第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1;
    第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
    或,
    第一码点对应第一传输层数组合,所述第一传输层数组合为第一Panel对应分配的传输层数为1,第二Panel对应分配的传输层数为2;
    第二码点对应第二传输层数组合,所述第二传输层数组合为第一Panel对应分配的传输层数为2,第二Panel对应分配的传输层数为1。
  18. 根据权利要求17所述的方法,其特征在于,所述第一码点和所述第二码点分别用于指示多TRP传输模式下SRS资源集合与SRS资源集合指示指示域/预编码指示域的不同对应关系。
  19. 根据权利要求14至18中任意一项所述的方法,其特征在于,响应于每个Panel 对应分配的所述传输层数最多为3,所述SRS资源集合指示指示域中包括新增的预留码点。
  20. 根据权利要求14至18中任意一项所述的方法,其特征在于,所述传输层数组合中包含的每个传输层数、Panel以及DMRS端口之间具有预定义的对应关系;
    不同传输层数对应不同的Panel,所述不同的Panel对应不同的DMRS端口。
  21. 一种上行解调参考信号DMRS端口的指示装置,其特征在于,应用于网络设备,所述装置包括:
    发送模块,用于响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,发送第一指示信息;
    其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
  22. 一种上行解调参考信号DMRS端口的指示装置,其特征在于,应用于终端,所述装置包括:
    接收模块,用于响应于终端基于单下行控制信息DCI调度方式下通过空分复用SDM复用方式进行物理上行共享信道PUSCH的多个天线面板Panel同时传输STxMP,接收第一指示信息;
    其中,DCI中的天线端口DMRS指示域用于为终端指示分配的所有DMRS端口的总数量;所述第一指示信息用于指示所述PUSCH的一个传输块通过不同Panel面向不同的传输接收点TRP在相同时频资源上进行发送时分别对应分配的DMRS端口,不同TRP/Panel/传输配置指示符TCI/传输时机TO分别和不同的波束/TCI相关联,所述DMRS端口与所述Panel之间具有对应关系。
  23. 一种上行解调参考信号DMRS端口的指示装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至10中任意一项所述的方法。
  24. 一种上行解调参考信号DMRS端口的指示装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求11至20中任意一项所述的方法。
  25. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得网络设备能够执行权利要求1至10中任意一项所述的方法。
  26. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求11至20中任意一项所述的方法。
PCT/CN2022/122318 2022-09-28 2022-09-28 一种上行解调参考信号端口的指示方法, 装置及存储介质 WO2024065330A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122318 WO2024065330A1 (zh) 2022-09-28 2022-09-28 一种上行解调参考信号端口的指示方法, 装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122318 WO2024065330A1 (zh) 2022-09-28 2022-09-28 一种上行解调参考信号端口的指示方法, 装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024065330A1 true WO2024065330A1 (zh) 2024-04-04

Family

ID=90475307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122318 WO2024065330A1 (zh) 2022-09-28 2022-09-28 一种上行解调参考信号端口的指示方法, 装置及存储介质

Country Status (1)

Country Link
WO (1) WO2024065330A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021237666A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Precoder indication for non-codebook-based uplink transmissions
US20220224472A1 (en) * 2019-05-02 2022-07-14 Lg Electronics Inc. Method for transmitting or receiving physical downlink shared channel in wireless communication system and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220224472A1 (en) * 2019-05-02 2022-07-14 Lg Electronics Inc. Method for transmitting or receiving physical downlink shared channel in wireless communication system and device therefor
WO2021237666A1 (en) * 2020-05-29 2021-12-02 Qualcomm Incorporated Precoder indication for non-codebook-based uplink transmissions

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "On multi-TRP enhancements for NR MIMO in Rel. 16", 3GPP TSG RAN WG1 #96BIS, R1-1904190, 29 March 2019 (2019-03-29), pages 1 - 13, XP051691331 *
SAMSUNG: "NR MIMO evolution for downlink and uplink", 3GPP TSG RAN MEETING #96 RP-221393, 30 May 2022 (2022-05-30), XP052154415 *
VIVO: "Views on UL precoding indication for multi-panel transmission", 3GPP TSG RAN WG1 #109-E, R1-2203546, 29 April 2022 (2022-04-29), XP052153021 *

Similar Documents

Publication Publication Date Title
JP2019525581A (ja) データ伝送方法、装置、コンピュータプログラム、および、記録媒体
WO2021095025A1 (en) Mac ce for indicating default qcl for multi-trp
WO2024065330A1 (zh) 一种上行解调参考信号端口的指示方法, 装置及存储介质
WO2024065317A1 (zh) 一种参考信号配置方法、装置及存储介质
WO2024065328A1 (zh) 一种上行相位跟踪参考信号端口的指示方法、装置及存储介质
WO2019029280A1 (zh) Pucch传输方法、用户设备和装置
JP2018532338A (ja) 動的サブフレーム構造
WO2024031454A1 (zh) 一种预编码指示方法、装置及存储介质
CN116830511A (zh) 一种上行通信方法、装置及存储介质
WO2023206301A1 (zh) 上行传输配置方法及装置、通信设备及存储介质
CN116868550A (zh) 一种上行通信方法、装置及存储介质
WO2024092848A1 (zh) 统一传输配置指示状态的确定方法、装置及存储介质
WO2023206560A1 (zh) 物理上行控制信道pucch传输方法及装置、通信设备及存储介质
WO2023206290A1 (zh) Pusch传输配置方法及装置、通信设备及存储介质
WO2022205306A1 (zh) 上行相位跟踪参考信号pt-rs的增强方法、装置及通信设备
WO2023272508A1 (zh) 用于pucch的通信方法、装置及存储介质
WO2024031455A1 (zh) 一种预编码指示方法、装置及存储介质
CN109842436A (zh) 一种上行信号传输方法、终端和网络侧设备
WO2024092845A1 (zh) 一种探测参考信号的传输方法、装置及介质
WO2024065534A1 (zh) 一种上行波形配置方法、装置及存储介质
WO2023173296A1 (en) Apparatus and methods for machine learning with low training delay and communication overhead
WO2024017197A1 (zh) 传输处理方法、装置及设备
WO2022205233A1 (zh) 用于pusch的通信方法、用于pusch的通信装置及存储介质
WO2024092585A1 (zh) 一种通信方法、装置、设备及存储介质
CN116830540A (zh) 一种上行通信方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959973

Country of ref document: EP

Kind code of ref document: A1