WO2024065184A1 - 显示模组、显示装置和显示系统 - Google Patents

显示模组、显示装置和显示系统 Download PDF

Info

Publication number
WO2024065184A1
WO2024065184A1 PCT/CN2022/121757 CN2022121757W WO2024065184A1 WO 2024065184 A1 WO2024065184 A1 WO 2024065184A1 CN 2022121757 W CN2022121757 W CN 2022121757W WO 2024065184 A1 WO2024065184 A1 WO 2024065184A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
signal
control system
display
brightness
Prior art date
Application number
PCT/CN2022/121757
Other languages
English (en)
French (fr)
Inventor
王建亭
田雪
付玉龙
韩天洋
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280003344.0A priority Critical patent/CN118103763A/zh
Priority to PCT/CN2022/121757 priority patent/WO2024065184A1/zh
Publication of WO2024065184A1 publication Critical patent/WO2024065184A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements

Definitions

  • the present invention relates to the field of display, and in particular to a display module, a display device and a display system.
  • the existing intelligent display products have a relatively low level of intelligence and do not have fault self-diagnosis functions.
  • the operation and maintenance of intelligent display products can only be carried out through manual on-site inspections. As the number of intelligent display products increases and their locations are dispersed, great difficulties are brought to the operation and maintenance of the products.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and proposes a display module, a display device and a display system.
  • an embodiment of the present disclosure provides a display module, which includes: a monitoring system, wherein the monitoring system includes:
  • a detection module configured to detect working characteristic information of at least one target component in the display module when it is working, and determine working state information of the target component according to the working characteristic information of the target component;
  • the sending module is configured to send the working status information.
  • the display module further includes: a power supply component and a display control system component;
  • the at least one target component includes the power supply component, and the working characteristic information of the power supply component when working includes: a control system voltage signal in each first power supply channel through which the power supply component supplies power to the display control system component;
  • the detection module comprises:
  • the first detection unit is respectively connected to each of the first power supply channels, and is configured to respond to the control of the first detection signal, and output first working status information used to characterize that the power supply component supplies power to the display control system component normally, or output second working status information used to characterize that the power supply component supplies power to the display control system component abnormally, according to the voltage signal for the control system loaded in the first power supply channel.
  • the number of first power supply channels through which the power supply component supplies power to the display control system component is 1;
  • the first detection unit includes: a first voltage detection circuit
  • the input end of the first voltage detection circuit is electrically connected to the first power supply channel, and the first voltage detection circuit is configured to output the first working status information when the control system voltage signal is loaded in the first power supply channel, and to output the second working status information when the control system voltage signal is not loaded in the first power supply channel.
  • the number of first power supply channels through which the power supply component supplies power to the display control system component is greater than or equal to 2;
  • the first detection unit includes: a logic processing circuit and at least two first voltage detection circuits corresponding to each of the first power supply channels;
  • the input end of the first voltage detection circuit is electrically connected to the corresponding first power supply channel, and the output end of the first voltage detection circuit is electrically connected to the input end of the logic processing circuit;
  • the first voltage detection circuit is configured to output a first level signal when the corresponding first power supply channel is loaded with a control system voltage signal, and to output a second level signal when the corresponding first power supply channel is not loaded with a control system voltage signal;
  • the logic processing circuit is configured to output the first working state information when each of the electrically connected first voltage detection circuits outputs a first level signal, and to output the second working state information when at least one of the first voltage detection circuits outputs a second level signal;
  • One of the first level signal and the second level signal is a high level signal, and the other is a low level signal.
  • the first power supply channel through which the power supply component supplies power to the display control system component includes: a power supply channel for providing the display control system component with the operating voltage required by the display control system component and a power supply channel for providing the display control system component with the operating voltage required by the display panel.
  • the first voltage detection circuit includes: a first resistor, a second resistor, a third resistor and a first transistor;
  • the first end of the first resistor is electrically connected to the input end of the first voltage detection circuit, and the second end of the first resistor is electrically connected to the first end of the second resistor and the gate of the first transistor;
  • a first end of the second resistor is electrically connected to the gate of the first transistor, and a second end of the second resistor is electrically connected to the low level supply end;
  • a first electrode of the first transistor is electrically connected to an output terminal of the first voltage detection circuit, and a second electrode of the first transistor is electrically connected to a low level supply terminal;
  • a first end of the third resistor is electrically connected to the first high level supply end, and a second end of the third resistor is electrically connected to the output end of the first voltage detection circuit and the first electrode of the first transistor.
  • the display control system component includes a standby power supply module, and the first high-level supply end is an output end of the standby power supply module.
  • a safety circuit is configured in the first power supply channel, a first end of the safety circuit is electrically connected to the power supply component, and a second end of the safety circuit is electrically connected to the display control system component;
  • the first detection unit is electrically connected to the second end of the safety circuit.
  • the display module further includes: a display control system component and a timing control component;
  • the at least one target component includes the display control system component, and the operating characteristic information of the display control system component when in operation includes: a voltage signal for timing control in a second power supply channel through which the display control system component supplies power to the timing control component;
  • the detection module comprises:
  • a second detection unit is connected to the second power supply channel and is configured to respond to the control of a second detection signal and, based on the condition of the timing control voltage signal loaded in the second power supply channel, output third working status information indicating that the display control system component supplies power to the timing control component normally, or output fourth working status information indicating that the display control system component supplies power to the timing control component abnormally.
  • the second detection unit comprises:
  • a second voltage detection circuit wherein an input end of the second voltage detection circuit is electrically connected to the second power supply channel, and the second voltage detection circuit is configured to output the third working state information when the timing control voltage signal is loaded in the second power supply channel, and output the fourth working state information when the timing control voltage signal is not loaded in the second power supply channel;
  • the second voltage detection circuit includes: an eleventh resistor, a twelfth resistor, a thirteenth resistor and an eleventh transistor;
  • the first end of the eleventh resistor is electrically connected to the input end of the second voltage detection circuit, and the second end of the eleventh resistor is electrically connected to the first end of the twelfth resistor and the gate of the eleventh transistor;
  • a first end of the twelfth resistor is electrically connected to the gate of the eleventh transistor, and a second end of the twelfth resistor is electrically connected to the low level supply end;
  • the first electrode of the eleventh transistor is electrically connected to the output end of the second voltage detection circuit, and the second electrode of the eleventh transistor is electrically connected to the low level supply end;
  • a first end of the thirteenth resistor is electrically connected to the first high level supply end, and a second end of the thirteenth resistor is electrically connected to the output end of the second voltage detection circuit and the first electrode of the eleventh transistor.
  • a power supply transistor is configured in the second power supply channel, a first electrode of the power supply transistor is electrically connected to the display control system component, and a second electrode of the power supply transistor is electrically connected to the timing control component;
  • the second detection unit is electrically connected to the second electrode of the power supply transistor.
  • the display module further includes: a backlight driving component
  • the at least one target component comprises a backlight driving component, the power supply output terminal of the backlight driving component is electrically connected to the first terminal of the backlight source, and the backlight driving component is configured with an I2C data reading interface;
  • the working characteristic information of the backlight driving component when in operation includes: a backlight source voltage signal at a power supply output end of the backlight driving component for supplying power to the backlight source;
  • the detection module comprises:
  • the third detection unit is connected to the I2C data reading interface configured by the backlight driving component, and is configured to respond to the control of the third detection signal, and output the fifth working status information used to characterize that the backlight driving component supplies power to the backlight source normally, or output the sixth working status information used to characterize that the backlight driving component supplies power to the backlight source abnormally, according to the voltage value of the backlight source voltage signal at the power supply output end read through the I2C data reading interface configured by the backlight driving component.
  • the display module further includes: a backlight driving component and a backlight source;
  • the at least one target component includes a backlight driving assembly, wherein a power supply output terminal of the backlight driving assembly is electrically connected to a first terminal of the backlight source;
  • the working characteristic information of the backlight driving component when in operation includes: a backlight source voltage signal at a power supply output end of the backlight driving component for supplying power to the backlight source;
  • the detection module comprises:
  • a third detection unit is electrically connected to the power supply output terminal and is configured to respond to the control of a third detection signal and, according to the situation of the backlight source voltage signal loaded at the power supply output terminal, output fifth working state information used to characterize that the backlight driving component supplies power to the backlight source normally, or output sixth working state information used to characterize that the backlight driving component supplies power to the backlight source abnormally.
  • the third detection unit includes: a third voltage detection circuit
  • the input end of the third voltage detection circuit is electrically connected to the power supply output end, and the third voltage detection circuit is configured to output the fifth working state information when the power supply output end is loaded with the backlight source voltage signal, and output the sixth working state information when the power supply output end is not loaded with the backlight source voltage signal;
  • the third voltage detection circuit includes: a twenty-first resistor, a twenty-second resistor, a twenty-third resistor and a twenty-first transistor;
  • a first end of the twenty-first resistor is electrically connected to an input end of the third voltage detection circuit, and a second end of the twenty-first resistor is electrically connected to a first end of the twenty-second resistor and a gate of the twenty-first transistor;
  • a first end of the 22nd resistor is electrically connected to the gate of the 21st transistor, and a second end of the 22nd resistor is electrically connected to the low level supply end;
  • a first electrode of the twenty-first transistor is electrically connected to the output terminal of the third voltage detection circuit, and a second electrode of the twenty-first transistor is electrically connected to the low level supply terminal;
  • a first end of the twenty-third resistor is electrically connected to the second high level supply end, and a second end of the twenty-third resistor is electrically connected to the output end of the second voltage detection circuit and the first electrode of the twenty-first transistor.
  • the display module further includes: a backlight source
  • the at least one target component includes a backlight source, and the operating characteristic information of the backlight source when in operation includes: a backlight source operating current signal when the backlight source is in operation;
  • the detection module comprises:
  • a fourth detection unit configured to, in response to the control of the fourth detection signal, output seventh working state information for indicating that the working current of the backlight source is normal, or output eighth working state information for indicating that the working current of the backlight source is abnormal, according to the backlight source working current signal when the backlight source is working;
  • the fourth detection unit is specifically configured to output the seventh working state information when the current value of the backlight source working current signal is within the first preset current range; and to output the eighth working state information when the current value of the backlight source working current signal is outside the first preset current range.
  • the fourth detection unit includes:
  • a sampling circuit wherein an input end of the sampling circuit is electrically connected to the backlight source and the sampling circuit and the backlight source are connected in series, and the sampling circuit is configured to obtain an analog sampling voltage signal corresponding to the backlight source working current signal;
  • a first signal processing subunit configured to perform analog-to-digital conversion on the analog sampling voltage signal to obtain a corresponding digital sampling voltage signal, and detect whether the current value of the backlight source operating current signal is within a first preset current range according to the voltage value of the digital sampling voltage signal;
  • the first signal processing subunit detects that the current value of the backlight source operating current signal is within the first preset current range, and outputs the seventh operating state information
  • the first signal processing subunit detects that the current value of the backlight source operating current signal is outside the first preset current range, and outputs the eighth operating state information.
  • the display module further includes: a backlight driving component, wherein a power supply output end of the backlight driving component is electrically connected to the first end of the backlight source;
  • the backlight driving component includes: a boost circuit and a boost control module, the boost circuit includes: an inductor, a boost control transistor, a rectifier diode and a 30th resistor;
  • the first end of the inductor is electrically connected to the input end of the boost circuit, and the second end of the inductor is electrically connected to the anode of the rectifier diode;
  • the gate of the boost control transistor is electrically connected to the boost control module, the first electrode of the boost control transistor is electrically connected to the anode of the rectifier diode, and the second electrode of the boost control transistor is electrically connected to the first end of the thirtieth resistor;
  • a second end of the 30th resistor is grounded
  • the cathode of the rectifier diode is electrically connected to the power supply output terminal of the backlight driving component
  • the input end of the sampling circuit is electrically connected to the first end of the thirtieth resistor.
  • the backlight driving assembly includes: a circuit board on which the boost circuit is fixed, and the sampling circuit and the boost circuit are fixed on the same circuit board;
  • the display module further includes: a display control system component, and the first signal processing subunit is integrated on the display control system component.
  • the display module further includes: a backlight source
  • the at least one target component includes a backlight source;
  • the working characteristic information of the backlight source when working includes: the current light output brightness of the backlight source when working;
  • the detection module comprises:
  • the fifth detection unit is configured to respond to the control of the fifth detection signal and, based on the current light output brightness of the backlight source when working, output ninth working state information used to characterize that the backlight source emits light normally, or output tenth working state information used to characterize that the backlight source emits light abnormally.
  • the display module further includes a backlight driving component, and the backlight driving component includes: a light emitting control circuit, and the second end of the backlight source is electrically connected to the second working voltage end through the light emitting control circuit;
  • the light emitting control circuit is configured to be controlled by a light emitting brightness control signal, so that a path is formed between the second end of the backlight source and the second working voltage end when the light emitting brightness control signal is in an effective level state, and a circuit is formed between the second end of the backlight source and the second working voltage end when the light emitting brightness control signal is in an ineffective level state;
  • the fifth detection unit comprises:
  • a photosensitive sensor circuit configured to collect light emitted by the backlight source when in operation and output a corresponding photosensitive signal
  • the second signal processing subunit is configured to determine the current light output brightness of the backlight source when it is working according to the photosensitive signal output by the photosensitive sensor, and to detect whether the light emission of the backlight source is normal or abnormal according to the current light output brightness and the duty cycle of the light brightness control signal currently received by the light control circuit.
  • the second signal processing subunit includes:
  • a brightness determination subunit configured to determine the current light output brightness of the backlight source when it is working according to the photosensitive signal
  • a first judging subunit is configured to judge whether the current light output brightness is less than a first preset target brightness
  • a calculation subunit configured to calculate, when the first judgment subunit determines that the current light output brightness is less than the first preset target brightness, a duty cycle required for the light emitting brightness control signal when the backlight source presents a second preset target brightness according to the current light output brightness and the duty cycle of the light emitting brightness control signal currently received by the light emitting control circuit, wherein the second preset target brightness is greater than or equal to the first preset target brightness;
  • a second judging subunit is configured to judge whether the duty cycle required by the light emitting brightness control signal is within a first preset duty cycle range when the backlight source presents a second preset target brightness;
  • the first fault detection subunit is configured to detect that the backlight source is emitting light normally when the second judgment subunit determines that the duty cycle required by the light emitting brightness control signal is within the first preset duty cycle range when the second judgment subunit determines that the backlight source presents the second preset target brightness, and to detect that the backlight source is emitting light abnormally when the second judgment subunit determines that the duty cycle required by the light emitting brightness control signal is outside the first preset duty cycle range when the backlight source presents the second preset target brightness, and to detect that the backlight source is emitting light normally when the first judgment subunit determines that the current light emitting brightness is greater than or equal to the first preset target brightness.
  • the backlight driving assembly further includes:
  • a brightness control signal supply unit electrically connected to the light emitting control circuit, and configured to provide a light emitting brightness control signal to the light emitting control circuit
  • the second signal processing subunit comprises:
  • a brightness determination subunit configured to determine the current light output brightness of the backlight source when it is working according to the photosensitive signal
  • a brightness judgment subunit configured to judge whether the current light output brightness is within a preset target brightness range
  • the duty cycle adjustment subunit is configured to increase the duty cycle of the light emitting brightness control signal according to a first preset adjustment algorithm when the brightness judgment subunit determines that the current light emitting brightness is less than the minimum value of the preset target brightness range; and to decrease the duty cycle of the light emitting brightness control signal according to a second preset adjustment algorithm when the brightness judgment subunit determines that the current light emitting brightness is greater than the maximum value of the preset target brightness range;
  • a third judging subunit configured to judge whether the duty cycle of the light emitting brightness control signal adjusted by the duty cycle adjusting subunit is within a second preset duty cycle range
  • a first control subunit configured to control the brightness control signal supply unit to output the brightness control signal whose duty cycle is adjusted by the duty cycle adjustment subunit to the light control circuit, and control the light sensor circuit to collect the light emitted by the backlight source when the backlight source is working, when the third judgment subunit judges that the duty cycle of the light emitting brightness control signal adjusted by the duty cycle adjustment subunit is within the second preset duty cycle range;
  • the first fault detection subunit is configured to detect that the backlight source is emitting abnormal light when the third judgment subunit determines that the duty cycle of the luminous brightness control signal adjusted by the duty cycle adjustment subunit is outside the second preset duty cycle range; and to detect that the backlight source is emitting light normally when the brightness judgment subunit determines that the current light output brightness is within the preset target brightness range.
  • the display module further includes: a computing component and a display control system component;
  • the at least one target component includes the computing component; the working characteristic information of the computing component when working includes: the horizontal synchronization signal and/or the vertical synchronization signal in the process of the computing component sending the display data signal to the display control system component;
  • the detection module comprises:
  • the sixth detection unit is configured to respond to the sixth detection signal control and, according to the horizontal synchronization signal and/or the vertical synchronization signal, output the eleventh working status information used to characterize that the process of the computing component providing the display data signal to the display control system component is normal, or output the twelfth working status information used to characterize that the process of the computing component providing the display data signal to the display control system component is abnormal.
  • the sixth detection unit includes:
  • a frequency determination subunit configured to determine a line frequency at which the computing component sends a display data signal according to the horizontal synchronization signal, and to determine a frame frequency at which the computing component sends a display data signal according to the vertical synchronization signal;
  • a fourth determining subunit for determining whether the line frequency determined by the frequency determining subunit is within a preset line frequency range, and whether the frame frequency determined by the determining subunit is within a preset frame frequency range;
  • the second fault detection subunit is configured to detect that the process of the computing component providing the display data signal to the display control system component is normal when the fourth judgment subunit determines that the line frequency determined by the frequency determination subunit is within the preset line frequency range and the frame frequency determined by the determination subunit is within the preset frame frequency range; and to detect that the process of the computing component providing the display data signal to the display control system component is abnormal when the fourth judgment subunit determines that the line frequency determined by the frequency determination subunit is outside the preset line frequency range and/or the fourth judgment subunit determines that the frame frequency determined by the determination subunit is outside the preset frame frequency range.
  • the display module further includes: a display control system component and a timing control component;
  • the at least one target component includes the display control system component; the working characteristic information of the display control system component when working includes: a handshake signal sent by the display control system component to the timing control component;
  • the detection module comprises:
  • the seventh detection unit is configured to respond to the control of the seventh detection signal and, based on the handshake signal received by the timing control component within the detection period, output thirteenth working status information used to characterize that the display control system component outputs a signal normally to the timing control component, or output fourteenth working status information used to characterize that the display control system component outputs a signal abnormally to the timing control component.
  • the seventh detection unit includes:
  • a fifth determination subunit configured to determine whether the frequency at which the timing control component receives the handshake signal during a detection period is within a preset frequency range
  • the third fault detection sub-unit is configured to detect that the display control system component outputs a signal to the timing control component normally when the fifth judgment sub-unit determines that the frequency of the handshake signal received by the timing control component during the detection period is within a preset frequency range; and to detect that the display control system component outputs a signal to the timing control component abnormally when the fifth judgment sub-unit determines that the frequency of the handshake signal received by the timing control component during the detection period is outside the preset frequency range.
  • the handshake signal includes: a LOCKN signal.
  • the seventh detection unit is integrated into the timing control component
  • the output end of the seventh detection unit is electrically connected to the display control system component to send the thirteenth working state information or the fourteenth working state information generated by the seventh detection unit to the display control system component.
  • the display module further includes: a display control system component and a timing control component;
  • the at least one target component includes the display control system component; the working characteristic information of the display control system component when working includes: the timing control component obtains the display data signal of the image to be displayed from the display control system component;
  • the detection module comprises:
  • the eighth detection unit is configured to respond to the control of the eighth detection signal, obtain the display data signal of the image to be displayed from the display control system component before and after the screen switching according to the timing control component, and output the fifteenth working status information used to characterize that the screen switching of the display control system component is normal, or output the sixteenth working status information used to characterize that the screen switching of the display control system component is abnormal.
  • the display module further includes: a computing component; and the eighth detection unit includes:
  • a second control subunit configured to control the computing component to send a display data signal of a first image to the display control system component, and to control the timing control component to obtain a display data signal of an image to be displayed from the display control system component and to perform feature extraction on the obtained display data signal to obtain first display feature information;
  • a third control subunit configured to control the computing component to send a display data signal of a second image to the display control system component, and to control the timing control component to obtain a display data signal of an image to be displayed from the display control system component and to perform feature extraction on the obtained display data signal to obtain second display feature information;
  • the fourth fault detection subunit is configured to detect whether the screen switching of the display control system component is normal or abnormal based on the difference between the first display characteristic information and the second display characteristic information.
  • the timing control component is configured to extract brightness features from the acquired display data signal in response to control of the second control subunit or the third control subunit;
  • the first display characteristic information includes first brightness information
  • the second display characteristic information includes second brightness information
  • the fourth fault detection subunit is specifically configured to detect whether the screen switching of the display control system component is normal or abnormal according to the difference value between the first brightness information and the second brightness information;
  • the difference value is greater than a preset target difference value, it is detected that the screen switching of the display control system component is normal; when the difference value is less than or equal to the preset target difference value, it is detected that the screen switching of the display control system component is abnormal.
  • the first brightness information includes a first brightness function value
  • the second brightness information includes a second brightness function value
  • the difference value between the first brightness information and the second brightness information is a quotient of an absolute value of a difference between the second brightness function value and the first brightness function value and a sum of the two.
  • the display module further includes: a power supply component, a display control system component, a computing component, a timing control component, and a backlight driving component;
  • any at least two of the power supply component, the display control system component, the calculation component, the timing control component and the backlight driving component are located on the same circuit board.
  • an embodiment of the present disclosure further provides a display device, which includes: a display module as provided in the first aspect above.
  • an embodiment of the present disclosure further provides a display system, which includes: a display device and a receiving device as provided in the second aspect above;
  • the receiving device is configured to receive the working status information sent by the sending module.
  • FIG1 is a structural block diagram of a display module in an embodiment of the present disclosure.
  • FIG2 is a structural block diagram of a monitoring system in an embodiment of the present disclosure.
  • FIG3 is a structural block diagram of a detection module in an embodiment of the present disclosure.
  • FIG4 is a structural block diagram of a first detection unit in an embodiment of the present disclosure.
  • FIG5A is a schematic diagram of a circuit structure of a first voltage detection circuit in an embodiment of the present disclosure
  • FIG5B is another schematic diagram of the circuit structure of the first voltage detection circuit in the embodiment of the present disclosure.
  • FIG5C is a schematic diagram of another circuit structure of the first voltage detection circuit in the embodiment of the present disclosure.
  • FIG6 is another structural block diagram of the first detection unit in an embodiment of the present disclosure.
  • FIG7 is another structural block diagram of a detection module in an embodiment of the present disclosure.
  • FIG8A is a schematic diagram of a circuit structure of a second voltage detection circuit in an embodiment of the present disclosure.
  • FIG8B is another schematic diagram of the circuit structure of the second voltage detection circuit in the embodiment of the present disclosure.
  • FIG8C is a schematic diagram of another circuit structure of the second voltage detection circuit in the embodiment of the present disclosure.
  • FIG9 is another structural block diagram of a detection module in an embodiment of the present disclosure.
  • FIG10 is another structural block diagram of a detection module in an embodiment of the present disclosure.
  • FIG11A is a schematic diagram of a circuit structure of a third voltage detection circuit in an embodiment of the present disclosure.
  • FIG11B is another schematic diagram of the circuit structure of the third voltage detection circuit in the embodiment of the present disclosure.
  • FIG11C is a schematic diagram of another circuit structure of the third voltage detection circuit in the embodiment of the present disclosure.
  • FIG12 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • FIG13 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • FIG14 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • FIG15 is a schematic diagram of a circuit structure of a photosensor circuit in an embodiment of the present disclosure.
  • FIG16 is a schematic diagram of a photosensitive sensor chip disposed on a backplane in an embodiment of the present disclosure
  • FIG17A is a structural block diagram of a second signal processing subunit in an embodiment of the present disclosure.
  • FIG17B is a processing logic flow chart of the operation of the second signal processing subunit shown in FIG17A;
  • FIG18A is a structural block diagram of a second signal processing subunit in an embodiment of the present disclosure.
  • FIG18B is a processing logic flow chart of the operation of the second signal processing subunit shown in FIG18A;
  • FIG19 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • FIG20A is a structural block diagram of a sixth detection unit in an embodiment of the present disclosure.
  • FIG20B is a processing logic flow chart of the sixth detection unit shown in FIG20A;
  • FIG21 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • FIG22A is a structural block diagram of a seventh detection unit in an embodiment of the present disclosure.
  • FIG22B is a processing logic flow chart of the seventh detection unit shown in FIG22A;
  • FIG23 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • FIG24A is a structural block diagram of an eighth detection unit in an embodiment of the present disclosure.
  • FIG24B is a processing logic flow chart of the eighth detection unit shown in FIG24A;
  • FIG. 25 is a structural block diagram of a display system provided in an embodiment of the present disclosure.
  • the disclosed embodiment provides a display module with a fault self-diagnosis function, which can enable the display module to automatically report the working status information of the target component, so as to facilitate operation and maintenance personnel to operate and maintain the display product according to the received "working status information" and improve the operation and maintenance efficiency.
  • Fig. 1 is a structural block diagram of a display module in an embodiment of the present disclosure.
  • Fig. 2 is a structural block diagram of a monitoring system in an embodiment of the present disclosure.
  • the display module includes a monitoring system, and the monitoring system 10 includes: a detection module 11 and a sending module 12.
  • the detection module 11 is configured to detect the working characteristic information of at least one target component in the display module when it is working, and determine the working state information of the target component according to the working characteristic information of the target component.
  • the sending module 12 is configured to send the working state information.
  • the specific forms of the detection module 11 and the sending module 12 can be software, hardware or a combination of the two.
  • the sending module 12 can send the working information of the target component to the target object through the network.
  • the network may include various, such as wired communication links, wireless communication links (for example, WIFI, LTE_4G network, NR_5G network) or optical fiber cables, etc.
  • the target object can be a server or a specific terminal (for example, a mobile phone, a tablet, a computer, etc., which can be used by operation and maintenance personnel to consult information).
  • the technical solution of the present disclosure does not limit the communication technology used by the sending module 12 to send the working status information and the target object receiving the working status information.
  • the display module can have a fault self-diagnosis function, and can send the working status information of the target component to the operation and maintenance personnel for review. Therefore, the operation and maintenance personnel no longer need to conduct on-site inspections to see if there are any faults in the display product, which makes it convenient for the operation and maintenance personnel to perform operation and maintenance on the display product, and is conducive to improving the operation and maintenance efficiency.
  • the display module includes: a power supply component 1, a display control system component 2, a computing component 3, a timing control component 4, a backlight driving component 5 and a backlight source 6; at least one target component includes: at least one of the power supply component 1, the display control system component 2, the computing component 3, the timing control component 4, the backlight driving component 5 and the backlight source 6.
  • the power supply component 1 is the part of the display module used for power supply, specifically, it can directly or indirectly supply power to some components in the display module;
  • the display control system component 2 can also be called the main board, which is the core part of the display module, generally used to control other components in the display module to coordinate work, the entity of the display control system component 2 is a circuit board fixed with a display control system chip (Display Control System On Chip), illustratively, the display control system chip can be an MST9U01 chip;
  • the computing component 3 is the capture part of the display control system component 2, generally used to capture the display data signal input by the external signal source, and send it to the display control system component 2 according to certain rules;
  • the timing control component 4 is used to provide control timing to control various drivers in the display module (for example, source driver, gate driver, etc.) to coordinate work;
  • the backlight driving component 5 is used to drive the backlight source 6 to emit light;
  • the backlight source 6 emits light in response to the control of the backlight driving component 5, and
  • the above-mentioned power supply component 1, display control system component 2, computing component 3, timing control component 4, backlight drive component 5 and backlight source 6 are only divided based on functions.
  • the power supply component 1, display control system component 2, computing component 3, timing control component 4, backlight drive component 5 and backlight source 6 can all exist in the display module as independent structures, or two or more of them can exist in the same structure through integration.
  • the technical solution disclosed in the present invention does not limit the specific existence form of the power supply component 1, display control system component 2, computing component 3, timing control component 4, backlight drive component 5 and backlight source 6.
  • Fig. 3 is a structural block diagram of a detection module in an embodiment of the present disclosure.
  • at least one target component includes a power supply component 1
  • the working characteristic information of the power supply component 1 when working includes: a control system voltage signal in each first power supply channel in which the power supply component 1 supplies power to the display control system component 2, and the detection module 11 includes a first detection unit 111.
  • the first detection unit 111 is connected to each first power supply channel, respectively.
  • the first detection unit 111 is configured to respond to the control of the first detection signal and, according to the voltage signal for the control system loaded in the first power supply channel, output first working status information for characterizing that the power supply component 1 supplies power to the display control system component 2 normally, or output second working status information for characterizing that the power supply component 1 supplies power to the display control system component 2 abnormally.
  • each first power supply channel when each first power supply channel is loaded with a corresponding control system voltage signal, it indicates that the power supply component 1 supplies power to the display control system component 2 normally; when at least one first power supply channel is not loaded with a corresponding control system voltage signal, it indicates that the power supply component 1 supplies power to the display control system component 2 abnormally.
  • Fig. 4 is a structural block diagram of the first detection unit in the embodiment of the present disclosure.
  • the number of the first power supply channel for the power supply component 1 to supply power to the display control system component 2 is 1;
  • the first detection unit 111 includes: a first voltage detection circuit 1111; the input end of the first voltage detection circuit 1111 is electrically connected to the first power supply channel, and the first voltage detection circuit 1111 is configured to output the first working state information when the control system voltage signal is loaded in the first power supply channel, and output the second working state information when the control system voltage signal is not loaded in the first power supply channel.
  • Fig. 5A is a schematic diagram of a circuit structure of a first voltage detection circuit in an embodiment of the present disclosure.
  • the first voltage detection circuit 1111 includes: a first resistor R1, a second resistor R2, a third resistor R3 and a first transistor T1.
  • a first end of the first resistor R1 is electrically connected to the input end IN1 of the first voltage detection circuit 1111 , and a second end of the first resistor R1 is electrically connected to a first end of the second resistor R2 and a gate of the first transistor T1 .
  • a first end of the second resistor R2 is electrically connected to the gate of the first transistor T1 , and a second end of the second resistor R2 is electrically connected to the low level supply end.
  • the first electrode of the first transistor T1 is electrically connected to the output terminal OUT1 of the first voltage detection circuit 1111, and the second electrode of the first transistor T1 is electrically connected to the low level supply terminal.
  • the first transistor T1 may be an N-type transistor or a P-type transistor.
  • a first end of the third resistor R3 is electrically connected to the first high level supply end, and a second end of the third resistor R3 is electrically connected to the output end OUT1 of the first voltage detection circuit 1111 and the first electrode of the first transistor T1.
  • the first transistor T1 may be an N-type transistor; when a corresponding control system voltage signal is input to the input end of the first voltage detection circuit 1111, the first transistor T1 is turned on, and a low-level signal provided by the low-level supply end is written to the output end of the first voltage detection circuit 1111 through the first transistor T1, and the output end OUT1 of the first voltage detection circuit 1111 outputs a low-level signal.
  • the first transistor T1 When the corresponding control system voltage signal is not input to the input end IN1 of the first voltage detection circuit 1111, the first transistor T1 is turned off, and a high-level signal provided by the first high-level supply end is written to the output end OUT1 of the first voltage detection circuit 1111 through the third resistor R3, and the output end OUT1 of the first voltage detection circuit 1111 outputs a high-level signal.
  • the output terminal OUT1 of the first voltage detection circuit 1111 when the input terminal IN1 of the first voltage detection circuit 1111 is input with the corresponding control system voltage signal (that is, the first power supply channel is loaded with the corresponding control system voltage signal), the output terminal OUT1 of the first voltage detection circuit 1111 outputs a low-level signal to represent the first working status information; when the input terminal IN1 of the first voltage detection circuit 1111 is not input with the corresponding control system voltage signal (that is, the first power supply channel is not loaded with the corresponding control system voltage signal), the output terminal of the first voltage detection circuit 1111 outputs a high-level signal to represent the second working status information.
  • the resistance value r1 of the first resistor R1 and the resistance value r2 of the second resistor R2 satisfy:
  • V1 is the voltage of the first power supply channel connected to the first voltage detection circuit 1111 which should provide the voltage signal for controlling the system
  • VL is the low level voltage provided by the low level supply terminal
  • Vth_T1_N is the threshold voltage of the first transistor T1.
  • Fig. 5B is another schematic diagram of the circuit structure of the first voltage detection circuit in the embodiment of the present disclosure. As shown in Fig. 5B, different from the situation shown in Fig. 5A, in the situation shown in Fig. 5B, the first transistor T1 is a P-type transistor.
  • the first transistor T1 When a corresponding control system voltage signal is input to the input terminal IN1 of the first voltage detection circuit 1111, the first transistor T1 is turned off, and the high-level signal provided by the first high-level supply terminal is written to the output terminal of the first voltage detection circuit 1111 through the third resistor R3, and the output terminal OUT1 of the first voltage detection circuit 1111 outputs a high-level signal; when the corresponding control system voltage signal is not input to the input terminal IN1 of the first voltage detection circuit 1111, the low-level signal provided by the low-level supply terminal is written to the gate of the P-type transistor through the second resistor R2, the first transistor T1 is turned on, and the low-level signal provided by the low-level supply terminal is written to the output terminal OUT1 of the first voltage detection circuit 1111 through the first transistor T1, and the output terminal OUT1 of the first voltage detection circuit 1111 outputs a low-level signal.
  • the output terminal OUT1 of the first voltage detection circuit 1111 when the input terminal IN1 of the first voltage detection circuit 1111 is input with a corresponding control system voltage signal (that is, the first power supply channel is loaded with a corresponding control system voltage signal), the output terminal OUT1 of the first voltage detection circuit 1111 outputs a high-level signal to represent the first working status information; when the input terminal IN1 of the first voltage detection circuit 1111 is not input with a corresponding control system voltage signal (that is, the first power supply channel is not loaded with a corresponding control system voltage signal), the output terminal OUT1 of the first voltage detection circuit 1111 outputs a low-level signal to represent the second working status information.
  • the resistance value r1 of the first resistor R1 and the resistance value r2 of the second resistor R2 satisfy:
  • V1 is the voltage of the first power supply channel connected to the first voltage detection circuit 1111 that should provide a voltage signal for controlling the system
  • VL is the low level voltage provided by the low level supply terminal
  • Vth_T1_P is the threshold voltage of the first transistor T1.
  • VL may be a ground voltage (generally represented by VSS), which is approximately 0 V.
  • VSS ground voltage
  • the resistance value r3 of the third resistor R3 satisfies r3 ⁇ 2.5 K ⁇ , and the third resistor R3 plays a current limiting role to prevent excessive current at the output end of the first voltage detection circuit 1111.
  • Fig. 5C is another circuit structure diagram of the first voltage detection circuit in the embodiment of the present disclosure.
  • the first voltage detection circuit 1111 includes a first resistor R1, a third resistor R3, a first transistor T1 and a first voltage regulator ZD1.
  • the cathode of the first voltage regulator tube ZD1 is electrically connected to the input end of the first voltage detection circuit 1111, the anode of the first voltage regulator tube ZD1 is electrically connected to the first end of the first resistor R1, and the breakdown voltage of the first voltage regulator tube ZD1 is less than the voltage of the voltage signal for the control system provided by the first power supply channel connected to the first voltage detection circuit 1111;
  • the second end of the first resistor R1 is electrically connected to the gate of the first transistor T1;
  • a first electrode of the first transistor T1 is electrically connected to the output terminal of the first voltage detection circuit 1111, a second electrode of the first transistor T1 is electrically connected to the low level supply terminal, and the first transistor T1 is an N-type transistor;
  • a first end of the third resistor R3 is electrically connected to the first high level supply end, and a second end of the third resistor R3 is electrically connected to the output end of the first voltage detection circuit 1111 and the first electrode of the first transistor T1.
  • the first voltage detection circuit 1111 further includes: a second resistor R2; a first end of the second resistor R2 is electrically connected to the anode of the first voltage regulator tube ZD1 and the first end of the first resistor R1, and a second end of the second resistor R2 is electrically connected to the low level supply end.
  • the working principle of the first voltage detection circuit 1111 shown in FIG5C is similar to the working principle of the first voltage detection circuit 1111 shown in FIG5A. That is, when the input terminal IN1 of the first voltage detection circuit 1111 inputs a corresponding control system voltage signal, the output terminal OUT1 of the first voltage detection circuit 1111 outputs a low level signal; when the input terminal IN1 of the first voltage detection circuit 1111 does not input a corresponding control system voltage signal, the output terminal OUT1 of the first voltage detection circuit 1111 outputs a high level signal.
  • the first voltage detection circuit 1111 may also adopt other circuit structures, and any detection circuit that can be used to detect whether a certain signal exists may be used as the first voltage detection circuit 1111 in the present disclosure.
  • the present disclosure will not describe each of the examples one by one.
  • Fig. 6 is another structural block diagram of the first detection unit in the embodiment of the present disclosure. As shown in Fig. 6, unlike the previous embodiment in which the number of the first power supply channel for the power supply component 1 to supply power to the display control system component 2 is 1, as another optional implementation scheme in the present disclosure, the number of the first power supply channel for the power supply component 1 to supply power to the display control system component 2 is greater than or equal to 2.
  • At least two first power supply channels for the power supply component 1 to supply power to the display control system component 2 may include: a power supply channel for providing the display control system component with the operating voltage (generally 5V) required by the display control system component, and a power supply channel for providing the display control system component with the operating voltage (generally 12V) required by the display panel (the display control system component subsequently outputs the corresponding operating voltage to the display panel).
  • a power supply channel for providing the display control system component with the operating voltage (generally 5V) required by the display control system component and a power supply channel for providing the display control system component with the operating voltage (generally 12V) required by the display panel (the display control system component subsequently outputs the corresponding operating voltage to the display panel).
  • other first power supply channels are established between the power supply component 1 and the display control system component 2 so that the power supply component 1 can provide the required voltage to the display control system component 2.
  • the first detection unit 111 includes: a logic processing circuit 1112 and at least two first voltage detection circuits 1111 corresponding to each first power supply channel.
  • the input end of the first voltage detection circuit 1111 is electrically connected to the corresponding first power supply channel, and the output end of the first voltage detection circuit 1111 is electrically connected to the input end of the logic processing circuit 1112.
  • the first voltage detection circuit 1111 is configured to output a first level signal when the corresponding first power supply channel is loaded with a control system voltage signal, and to output a second level signal when the corresponding first power supply channel is not loaded with a control system voltage signal; one of the first level signal and the second level signal is a high level signal, and the other is a low level signal.
  • the logic processing circuit 1112 is configured to output first working state information when each electrically connected first voltage detection circuit 1111 outputs a first level signal, and to output second working state information when at least one first voltage detection circuit 1111 outputs a second level signal.
  • any first voltage detection circuit 1111 in the first detection unit 111 shown in FIG. 6 can respectively adopt any first voltage detection circuit 1111 in the previous FIG. 5A to FIG. 5C.
  • the voltage magnitudes of the "voltage signal for the control system" detected by different first voltage detection circuits 1111 in FIG. 6 are different, so the specific resistance values of the first resistor R1 and the second resistor R2 set in different first voltage detection circuits 1111 are different.
  • any first voltage detection circuit 1111 in FIG. 6 can also adopt other detection circuits that can be used to detect whether a certain signal exists; for the relevant description of the first voltage detection circuit 1111, please refer to the content in the previous embodiment, which will not be repeated here. Only the logic processing circuit 1112 is described in detail below.
  • the first level signal output by the first voltage detection circuit 1111 in Figure 6 is a low level signal
  • the second level signal is a high level signal
  • the logic processing circuit 1112 is an OR gate circuit
  • the low level signal output by the logic processing circuit 1112 represents the first working state information
  • the high level signal output by the logic processing circuit 1112 represents the second working state information.
  • the OR gate circuit has multiple input terminals and one output terminal. As long as one of the inputs is at a high level (logic "1"), the output is a high level (logic "1"); only when all the inputs are at a low level (logic "0"), the output is a low level (logic "0").
  • the first level signal output by the first voltage detection circuit 1111 in Figure 6 is a high level signal
  • the second level signal is a low level signal
  • the logic processing circuit 1112 is an AND gate circuit, and the high level signal output by the logic processing circuit 1112 represents the first working state information, and the low level signal output by the logic processing circuit 1112 represents the second working state information.
  • the AND gate circuit has multiple input terminals and one output terminal. When all the inputs are at a high level (logic 1) at the same time, the output is a high level, otherwise the output is a low level (logic 0).
  • a safety circuit is configured in the first power supply channel, the first end of the safety circuit is electrically connected to the power supply component 1, and the second end of the safety circuit is electrically connected to the display control system component 2; the first detection unit 111 is electrically connected to the second end of the safety circuit.
  • the safety circuit is arranged in the power supply component 1, and specifically includes a fuse; the safety circuit is configured to disconnect the corresponding first power supply channel when the current in the corresponding first power supply channel exceeds the set rated current, so as to avoid damage to the electrical components in the power supply component 1 and/or the display control system component 2 due to excessive current in the first power supply channel.
  • the first detection unit 111 is integrated on the display control system component 2.
  • the electrical components e.g., resistors, capacitors, transistors, etc.
  • the electrical components included in the first detection unit 111 can be integrated on a circuit board included in the display control system component 2 and located outside the display control system chip, and electrically connected to some external terminals of the display control system chip according to actual needs, so that signals can be transmitted between the first detection unit 111 and the display control system component 2.
  • the display control system component 2 generally has a standby power supply module, when the power supply component 1 supplies power to the display control system component 2 abnormally, the power provided by the standby power supply module can also maintain the display control system component 2 to work for a period of time.
  • the first detection unit 111 is integrated into the display control system component 2, the output end of the standby power supply module of the display control system component 2 can be used as the first high-level supply end.
  • first detection unit 111 it is possible to effectively detect whether there is a fault in the power supply component 1 to the display control system component 2, and it is possible to output first working status information for characterizing that the power supply component 1 to the display control system component 2 is normal, or output second working status information for characterizing that the power supply component 1 to the display control system component 2 is abnormal, so as to facilitate the operation and maintenance personnel to operate and maintain the display product according to the received "working status information" and improve the operation and maintenance efficiency.
  • FIG7 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • at least one target component includes a display control system component 2, and the working characteristic information of the display control system component 2 when working includes: a timing control voltage signal in a second power supply channel for the display control system component 2 to supply power to the timing control component 4;
  • the detection module 11 includes: a second detection unit 112.
  • the second detection unit 112 is connected to the second power supply channel.
  • the second detection unit 112 is configured to respond to the control of the second detection signal and, according to the condition of the timing control voltage signal loaded in the second power supply channel, output third working status information for characterizing that the display control system component 2 supplies power to the timing control component 4 normally, or output fourth working status information for characterizing that the display control system component 2 supplies power to the timing control component 4 abnormally.
  • the second power supply channel when the second power supply channel is loaded with a controller voltage signal, it indicates that the display control system component 2 supplies power to the timing control component 4 normally; when the second power supply channel is not loaded with a controller voltage signal, it indicates that the display control system component 2 supplies power to the timing control component 4 abnormally.
  • FIG8A is a schematic diagram of a circuit structure of a second voltage detection circuit in an embodiment of the present disclosure.
  • the second detection unit 112 includes: a second voltage detection circuit, an input terminal IN2 of the second voltage detection circuit is electrically connected to the second power supply channel, and the second voltage detection circuit is configured to output third working state information when a timing control voltage signal is loaded in the second power supply channel, and output fourth working state information when a timing control voltage signal is not loaded in the second power supply channel.
  • One of the third working state information and the fourth working state information is a high level signal, and the other is a low level signal.
  • the second voltage detection circuit includes: an eleventh resistor R11, a twelfth resistor R12, a thirteenth resistor R13 and an eleventh transistor T11.
  • a first end of the eleventh resistor R11 is electrically connected to the input end IN2 of the second voltage detection circuit, and a second end of the eleventh resistor R11 is electrically connected to a first end of the twelfth resistor R12 and a gate of the eleventh transistor T11.
  • a first end of the twelfth resistor R12 is electrically connected to the gate of the eleventh transistor T11 , and a second end of the twelfth resistor R12 is electrically connected to the low level supply end.
  • a first electrode of the eleventh transistor T11 is electrically connected to the output terminal OUT2 of the second voltage detection circuit, and a second electrode of the eleventh transistor T11 is electrically connected to the low level supply terminal.
  • a first end of the thirteenth resistor R13 is electrically connected to the first high level supply end, and a second end of the thirteenth resistor R13 is electrically connected to the output end OUT2 of the second voltage detection circuit and the first electrode of the eleventh transistor T11.
  • the eleventh transistor T11 can be an N-type transistor; when the input terminal IN2 of the second voltage detection circuit is input with a corresponding timing control voltage signal, the eleventh transistor T11 is turned on, and the low-level signal provided by the low-level supply terminal is written to the output terminal OUT2 of the second voltage detection circuit through the eleventh transistor T11, and the output terminal OUT2 of the second voltage detection circuit outputs a low-level signal.
  • the first transistor T1 When the input terminal IN2 of the second voltage detection circuit is not input with a corresponding timing control voltage signal, the first transistor T1 is turned off, and the high-level signal provided by the first high-level supply terminal is written to the output terminal OUT2 of the second voltage detection circuit through the thirteenth resistor R13, and the output terminal OUT2 of the second voltage detection circuit outputs a high-level signal.
  • the output terminal OUT2 of the second voltage detection circuit when the input terminal IN2 of the second voltage detection circuit inputs the corresponding timing control voltage signal (that is, the second power supply channel is loaded with the corresponding timing control voltage signal), the output terminal OUT2 of the second voltage detection circuit outputs a low-level signal to represent the third working state information; when the input terminal IN2 of the second voltage detection circuit does not input the corresponding timing control voltage signal (that is, the second power supply channel is not loaded with the corresponding timing control voltage signal), the output terminal OUT2 of the second voltage detection circuit outputs a high-level signal to represent the fourth working state information.
  • the resistance value r11 of the eleventh resistor R11 and the resistance value r12 of the twelfth resistor R12 satisfy:
  • V2 is the voltage of the timing control voltage signal provided by the second power supply channel connected to the second voltage detection circuit
  • VL is the low level voltage provided by the low level supply terminal
  • Vth_T11_N is the threshold voltage of the eleventh transistor T11.
  • Fig. 8B is another circuit structure diagram of the second voltage detection circuit in the embodiment of the present disclosure. As shown in Fig. 8B, different from the situation shown in Fig. 8A, in the situation shown in Fig. 8B, the eleventh transistor T11 is an N-type transistor.
  • the eleventh transistor T11 When the input terminal IN2 of the second voltage detection circuit is input with a corresponding voltage signal for timing control, the eleventh transistor T11 is turned off, and the high-level signal provided by the first high-level supply terminal is written to the output terminal OUT2 of the second voltage detection circuit through the thirteenth resistor R13, and the output terminal OUT2 of the second voltage detection circuit outputs a high-level signal; when the input terminal IN2 of the second voltage detection circuit is not input with a corresponding voltage signal for timing control, the low-level signal provided by the low-level supply terminal is written to the gate of the P-type transistor through the twelfth resistor R12, the eleventh transistor T11 is turned on, and the low-level signal provided by the low-level supply terminal is written to the output terminal OUT2 of the second voltage detection circuit through the eleventh transistor T11, and the output terminal OUT2 of the second voltage detection circuit outputs a low-level signal.
  • the output terminal OUT2 of the second voltage detection circuit when the input terminal IN2 of the second voltage detection circuit inputs the corresponding timing control voltage signal (that is, the second power supply channel is loaded with the corresponding timing control voltage signal), the output terminal OUT2 of the second voltage detection circuit outputs a high-level signal to represent the third working state information; when the input terminal IN2 of the second voltage detection circuit does not input the corresponding timing control voltage signal (that is, the second power supply channel is not loaded with the corresponding timing control voltage signal), the output terminal OUT2 of the second voltage detection circuit outputs a low-level signal to represent the fourth working state information.
  • the resistance value r11 of the eleventh resistor R11 and the resistance value r12 of the twelfth resistor R12 satisfy:
  • V2 is the voltage of the timing control voltage signal provided by the second power supply channel connected to the second voltage detection circuit
  • VL is the low level voltage provided by the low level supply terminal
  • Vth_T11_P is the threshold voltage of the eleventh transistor T11.
  • VL may specifically be a ground voltage (generally represented by VSS), which is approximately 0 V.
  • VSS ground voltage
  • the resistance value r13 of the thirteenth resistor R13 satisfies r13 ⁇ 2.5 K ⁇ , and the thirteenth resistor R13 plays a current limiting role to prevent excessive current at the output terminal OUT2 of the second voltage detection circuit.
  • Fig. 8C is another circuit structure diagram of the second voltage detection circuit in the embodiment of the present disclosure.
  • the second detection circuit includes an eleventh resistor R11, a thirteenth resistor R13, an eleventh transistor T11 and an eleventh voltage regulator ZD11.
  • the cathode of the eleventh voltage regulator ZD11 is electrically connected to the input terminal IN2 of the second voltage detection circuit, the anode of the eleventh voltage regulator ZD11 is electrically connected to the first end of the eleventh resistor R11, and the breakdown voltage of the eleventh voltage regulator ZD11 is less than the voltage of the timing control voltage signal that the second power supply channel connected to the second voltage detection circuit should provide;
  • a second end of the eleventh resistor R11 is electrically connected to the gate of the eleventh transistor T11;
  • a first electrode of the eleventh transistor T11 is electrically connected to the output terminal OUT2 of the second voltage detection circuit, a second electrode of the eleventh transistor T11 is electrically connected to the low level supply terminal, and the eleventh transistor T11 is an N-type transistor;
  • a first end of the thirteenth resistor R13 is electrically connected to the first high level supply end, and a second end of the thirteenth resistor R13 is electrically connected to the output end OUT2 of the second voltage detection circuit and the first electrode of the eleventh transistor T11.
  • the second voltage detection circuit further includes: a twelfth resistor R12; a first end of the twelfth resistor R12 is electrically connected to the anode of the voltage regulator tube and the first end of the eleventh resistor R11, and a second end of the twelfth resistor R12 is electrically connected to the low level supply end.
  • the working principle of the second voltage detection circuit shown in FIG8C is similar to that of the second voltage detection circuit shown in FIG8A. That is, when the input terminal IN2 of the second voltage detection circuit inputs a corresponding timing control voltage signal, the output terminal OUT2 of the second voltage detection circuit outputs a low level signal; when the input terminal IN2 of the second voltage detection circuit does not input a corresponding timing control voltage signal, the output terminal OUT2 of the second voltage detection circuit outputs a high level signal.
  • the second voltage detection circuit may also adopt other circuit structures, and any detection circuit that can be used to detect whether a certain signal exists may be used as the second voltage detection circuit in the present disclosure.
  • the present disclosure will not describe each of the examples one by one.
  • a power supply transistor (not shown) is configured in the second power supply channel, the first electrode of the power supply transistor is electrically connected to the display control system component 2, and the second electrode of the power supply transistor is electrically connected to the timing control component 4; the second detection unit 112 is electrically connected to the second electrode of the power supply transistor.
  • the second detection unit 112 is integrated on the display control system component 2.
  • the electrical components included in the second detection unit 112 can be integrated on a circuit board included in the display control system component 2 and located on the periphery of the display control system chip, and electrically connected to some external terminals of the display control system chip according to actual needs, so that signals can be transmitted between the second detection unit 112 and the display control system component 2.
  • the second detection unit 112 it is possible to effectively detect whether there is a fault in the display control system component 2 supplying power to the timing control component 4, and can output third working status information for characterizing that the display control system component 2 supplies power to the timing control component 4 normally, or output fourth working status information for characterizing that the display control system component 2 supplies power to the timing control component 4 abnormally, so as to facilitate the operation and maintenance personnel to operate and maintain the display product according to the received "working status information" and improve the operation and maintenance efficiency.
  • FIG9 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • at least one target component includes a backlight driving component 5, the power supply output end of the backlight driving component 5 is electrically connected to the first end of the backlight source 6, and the backlight driving component 5 is configured with an I2C data reading interface;
  • the working characteristic information of the backlight driving component 5 when working includes: a backlight source voltage signal at the power supply output end of the backlight driving component 5 to supply power to the backlight source 6;
  • the detection module 11 includes: a third detection unit 113.
  • the third detection unit 113 is connected to the I2C data reading interface configured by the backlight driving component 5, and is configured to respond to the control of the third detection signal, and output the fifth working status information used to characterize that the backlight driving component 5 supplies power to the backlight source 6 normally, or output the sixth working status information used to characterize that the backlight driving component 5 supplies power to the backlight source 6 abnormally, according to the voltage value of the backlight source voltage signal at the power supply output end read by the I2C data reading interface configured by the backlight driving component 5.
  • the third detection unit 113 is specifically configured to output fifth working state information when the voltage value of the backlight source voltage signal is within the first preset voltage range; and to output sixth working state information when the voltage value of the backlight source voltage signal is outside the first preset voltage range.
  • the third detection unit 113 is integrated in the display control system component 2. Specifically, the third detection unit 113 is integrated in the display control system chip of the display control system component 2 in the form of software, and can read the voltage value of the backlight source voltage signal at the power supply output end of the backlight driving component 5 through the I2C data reading interface configured by the backlight driving component 5.
  • FIG10 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • at least one target component includes a backlight driving component 5, and the power supply output terminal OUT_V of the backlight driving component 5 is electrically connected to the first end of the backlight source 6;
  • the working characteristic information of the backlight driving component 5 when working includes: the backlight source voltage signal at the power supply output terminal OUT_V of the backlight driving component 5 to supply power to the backlight source 6;
  • the detection module 11 includes: a third detection unit 113.
  • the third detection unit 113 is electrically connected to the power supply output terminal OUT_V.
  • the third detection unit 113 is configured to respond to the control of the third detection signal and, according to the situation of the backlight source voltage signal loaded at the power supply output terminal OUT_V, output the fifth working state information used to characterize that the backlight driving component 5 supplies power to the backlight source 6 normally, or output the sixth working state information used to characterize that the backlight driving component 5 supplies power to the backlight source 6 abnormally.
  • the power supply output terminal OUT_V of the backlight driving component 5 when the power supply output terminal OUT_V of the backlight driving component 5 is loaded with a backlight source voltage signal, it indicates that the backlight driving component 5 supplies power to the backlight source 6 normally; when the power supply output terminal OUT_V of the backlight driving component 5 is not loaded with a backlight source voltage signal, it indicates that the backlight driving component 5 supplies power to the backlight source 6 abnormally.
  • FIG11A is a schematic diagram of a circuit structure of the third voltage detection circuit in the embodiment of the present disclosure.
  • the third detection unit 113 includes: a third voltage detection circuit; an input end of the third voltage detection circuit is electrically connected to the power supply output end OUT_V, and the third voltage detection circuit is configured to output the fifth working state information when the power supply output end OUT_V is loaded with a backlight source voltage signal, and output the sixth working state information when the power supply output end OUT_V is not loaded with a backlight source voltage signal.
  • One of the fifth working state information and the sixth working state information is a high level signal, and the other is a low level signal.
  • the third voltage detection circuit includes: a twenty-first resistor R21, a twenty-second resistor R22, a twenty-third resistor R23 and a twenty-first transistor T21.
  • a first end of the twenty-first resistor R21 is electrically connected to the input end IN3 of the third voltage detection circuit, and a second end of the twenty-first resistor R21 is electrically connected to a first end of the twenty-second resistor R22 and a gate of the twenty-first transistor T21.
  • a first end of the twenty-second resistor R22 is electrically connected to the gate of the twenty-first transistor T21 , and a second end of the twenty-second resistor R22 is electrically connected to the low level supply end.
  • a first electrode of the twenty-first transistor T21 is electrically connected to the output terminal OUT3 of the third voltage detection circuit, and a second electrode of the twenty-first transistor T21 is electrically connected to the low level supply terminal.
  • a first end of the twenty-third resistor R23 is electrically connected to the second high level supply end, and a second end of the twenty-third resistor R23 is electrically connected to the output end OUT3 of the second voltage detection circuit and the first electrode of the twenty-first transistor T21.
  • the twenty-first transistor T21 may be an N-type transistor; when the input terminal IN3 of the third voltage detection circuit is input with a corresponding backlight voltage signal, the twenty-first transistor T21 is turned on, and the low-level signal provided by the low-level supply terminal is written to the output terminal OUT3 of the third voltage detection circuit through the twenty-first transistor T21, and the output terminal OUT3 of the third voltage detection circuit outputs a low-level signal.
  • the twenty-first transistor T21 When the input terminal IN3 of the third voltage detection circuit is not input with a corresponding backlight voltage signal, the twenty-first transistor T21 is turned off, and the high-level signal provided by the second high-level supply terminal is written to the output terminal OUT3 of the third voltage detection circuit through the twenty-third resistor R23, and the output terminal OUT3 of the third voltage detection circuit outputs a high-level signal.
  • the output terminal OUT3 of the third voltage detection circuit when the input terminal of the third voltage detection circuit is input with the corresponding backlight source voltage signal (that is, the power supply output terminal OUT_V of the backlight driving component 5 is loaded with the corresponding backlight source voltage signal), the output terminal OUT3 of the third voltage detection circuit outputs a low-level signal to represent the third working state information; when the input terminal IN3 of the third voltage detection circuit is not input with the corresponding backlight source voltage signal (that is, the power supply output terminal OUT_V of the backlight driving component 5 is not loaded with the corresponding backlight source voltage signal), the output terminal OUT3 of the third voltage detection circuit outputs a high-level signal to represent the fourth working state information.
  • the resistance value r21 of the twenty-first resistor R21 and the resistance value r22 of the twenty-second resistor R22 satisfy:
  • V3 is the voltage of the backlight source voltage signal provided by the power supply output terminal OUT_V of the backlight driving component 5 connected to the third voltage detection circuit
  • VL is the low level voltage provided by the low level supply terminal
  • Vth_T21_N is the threshold voltage of the twenty-first transistor T21.
  • Fig. 11B is another circuit structure diagram of the third voltage detection circuit in the embodiment of the present disclosure. As shown in Fig. 11B, different from the situation shown in Fig. 11A, in the situation shown in Fig. 11B, the twenty-first transistor T21 is an N-type transistor.
  • the twenty-first transistor T21 When the input terminal IN3 of the third voltage detection circuit is input with the corresponding backlight source voltage signal, the twenty-first transistor T21 is turned off, the high-level signal provided by the second high-level supply terminal is written to the output terminal OUT3 of the third voltage detection circuit through the twenty-third resistor R23, and the output terminal OUT3 of the third voltage detection circuit outputs a high-level signal; when the input terminal IN3 of the third voltage detection circuit is not input with the corresponding backlight source voltage signal, the low-level signal provided by the low-level supply terminal is written to the gate of the P-type transistor through the twenty-second resistor R22, the twenty-first transistor T21 is turned on, the low-level signal provided by the low-level supply terminal is written to the output terminal OUT3 of the third voltage detection circuit through the twenty-first transistor T21, and the output terminal OUT3 of the third voltage detection circuit outputs a low-level signal.
  • the output terminal OUT3 of the third voltage detection circuit when the input terminal IN3 of the third voltage detection circuit inputs the corresponding backlight source voltage signal (that is, the power supply output terminal OUT_V of the backlight driving component 5 is loaded with the corresponding backlight source voltage signal), the output terminal OUT3 of the third voltage detection circuit outputs a high-level signal to represent the fifth working state information; when the input terminal IN3 of the third voltage detection circuit does not input the corresponding backlight source voltage signal (that is, the power supply output terminal OUT_V of the backlight driving component 5 is not loaded with the corresponding backlight source voltage signal), the output terminal OUT3 of the third voltage detection circuit outputs a low-level signal to represent the sixth working state information.
  • the resistance value r21 of the twenty-first resistor R21 and the resistance value r22 of the twenty-second resistor R22 satisfy:
  • V3 is the voltage of the backlight source voltage signal provided by the power supply output terminal OUT_V connected to the third voltage detection circuit
  • VL is the low level voltage provided by the low level supply terminal
  • Vth_T21_P is the threshold voltage of the twenty-first transistor T21.
  • VL may specifically be a ground voltage (generally represented by VSS), and its magnitude is approximately 0 V.
  • VSS ground voltage
  • the resistance value r23 of the twenty-third resistor R23 satisfies r23 ⁇ 2.5 K ⁇ , and the twenty-third resistor R23 plays a current limiting role to prevent excessive current at the output terminal OUT3 of the third voltage detection circuit.
  • Fig. 11C is another circuit structure diagram of the third voltage detection circuit in the embodiment of the present disclosure.
  • the third detection circuit includes a twenty-first resistor R21, a twenty-third resistor R23, a twenty-first transistor T21 and a twenty-second voltage regulator ZD22.
  • the cathode of the twenty-second voltage-stabilizing tube ZD22 is electrically connected to the input terminal IN3 of the third voltage detection circuit, the anode of the twenty-second voltage-stabilizing tube ZD22 is electrically connected to the first end of the twenty-first resistor R21, and the breakdown voltage of the twenty-second voltage-stabilizing tube ZD22 is less than the voltage of the backlight source voltage signal provided by the power supply output terminal OUT_V of the backlight driving component 5 connected to the third voltage detection circuit;
  • a second end of the twenty-first resistor R21 is electrically connected to the gate of the twenty-first transistor T21;
  • a first electrode of the twenty-first transistor T21 is electrically connected to the output terminal OUT3 of the third voltage detection circuit, a second electrode of the twenty-first transistor T21 is electrically connected to the low level supply terminal, and the twenty-first transistor T21 is an N-type transistor;
  • a first end of the twenty-third resistor R23 is electrically connected to the second high level supply end, and a second end of the twenty-third resistor R23 is electrically connected to the output end OUT3 of the third voltage detection circuit and the first electrode of the twenty-first transistor T21.
  • the third voltage detection circuit further includes: a twenty-second resistor R22; a first end of the twenty-second resistor R22 is electrically connected to the anode of the twenty-second voltage regulator tube ZD22 and the first end of the twenty-first resistor R21, and a second end of the twenty-second resistor R22 is electrically connected to the low level supply end.
  • the working principle of the third voltage detection circuit shown in FIG11C is similar to that of the third voltage detection circuit shown in FIG11A. That is, when the input terminal IN3 of the third voltage detection circuit inputs a corresponding backlight voltage signal, the output terminal OUT3 of the third voltage detection circuit outputs a low level signal; when the input terminal IN3 of the third voltage detection circuit does not input a corresponding backlight voltage signal, the output terminal OUT3 of the third voltage detection circuit outputs a high level signal.
  • the third voltage detection circuit may also adopt other circuit structures, and any detection circuit that can be used to detect whether a certain signal exists may be used as the third voltage detection circuit in the present disclosure.
  • the present disclosure will not describe each of the examples one by one.
  • the third detection unit 113 is integrated on the backlight driving component 5.
  • the backlight driving component 5 includes a circuit board fixed with various electrical devices for realizing the backlight driving function, and the electrical devices included in the third detection unit 113 can be integrated on the circuit board in the backlight driving component 5, and electrically connected to some existing external terminals in the backlight driving component 5 according to actual needs, so that the third detection unit 113 can transmit signals with the backlight driving component 5.
  • the output end of the third detection unit 113 is also connected to the display control system component 2, so that the third detection unit 113 can transmit signals with the display control system component 2 (for example, the fifth working state information/sixth working state information is sent to the display control system component 2).
  • FIG12 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • at least one target component includes a backlight source 6, the power supply output terminal OUT_V of the backlight driving component 5 is electrically connected to the first end of the backlight source 6, and the working characteristic information of the backlight source 6 when working includes: the backlight source 6 working current signal when the backlight source 6 is working; the detection module 11 includes: a fourth detection unit 114.
  • the fourth detection unit 114 is configured to respond to the control of the fourth detection signal and, based on the working current signal of the backlight source 6 when the backlight source 6 is working, output the seventh working state information for characterizing that the working current of the backlight source 6 is normal, or output the eighth working state information for indicating that the working current of the backlight source 6 is abnormal.
  • the fourth detection unit 114 is specifically configured to output seventh working state information when the current value of the working current signal of the backlight source 6 is within the first preset current range; and to output eighth working state information when the current value of the working current signal of the backlight source 6 is outside the first preset current range.
  • the backlight driving component 5 is configured with an I2C data reading interface; the fourth detection unit 114 is connected to the I2C data reading interface configured by the backlight driving component 5, and the fourth detection unit 114 is also configured to respond to the control of the fourth detection signal to read the current value of the working current signal of the backlight source 6 through the I2C data reading interface configured by the backlight driving component 5.
  • the fourth detection unit 114 is integrated in the display control system component 2. Specifically, the fourth detection unit 114 is integrated in the display control system chip in the display control system component 2 in the form of software, and can read the current value of the working current signal of the backlight source 6 (that is, the current value at the power supply output terminal OUT_V where the backlight drive component 5 supplies power to the backlight source 6) through the I2C data reading interface configured by the backlight drive component 5.
  • FIG13 is another structural block diagram of the detection module in the embodiment of the present disclosure. As shown in FIG13, unlike the previous method of directly reading the current value of the backlight source 6 working current signal through the I2C data reading interface, in some embodiments, the backlight source 6 working current signal when the backlight source 6 is working can be obtained based on the sampling circuit.
  • the fourth detection unit 114 includes: a sampling circuit 1141 and a first signal processing subunit 1142.
  • the input end of the sampling circuit 1141 is electrically connected to the backlight source 6 and the sampling circuit 1141 and the backlight source 6 are connected in series, and the sampling circuit 1141 is configured to obtain an analog sampling voltage signal corresponding to the working current signal of the backlight source 6; the first signal processing subunit 1142 is configured to perform analog-to-digital conversion on the analog sampling voltage signal to obtain a corresponding digital sampling voltage signal, and detect whether the current value of the working current signal of the backlight source 6 is within a first preset current range based on the voltage value of the digital sampling voltage signal.
  • the first signal processing sub-unit 1142 detects that the current value of the working current signal of the backlight source 6 is within the first preset current range, and outputs the seventh working state information; if the voltage value of the digital sampling voltage signal is outside the second preset voltage range, it means that the first signal processing sub-unit 1142 detects that the current value of the working current signal of the backlight source 6 is outside the first preset current range, and outputs the eighth working state information.
  • the backlight driving component 5 includes: a boost circuit and a boost control module.
  • the output end of the boost circuit is the power supply output end OUT_V of the backlight driving component 5 for providing a backlight source voltage signal to the backlight source 6.
  • the boost circuit is used to generate and output a backlight source voltage signal.
  • the boost circuit includes: an inductor L, a boost control transistor Tr, a rectifier diode D and a 30th resistor R30.
  • the first end of the inductor L is electrically connected to the input end IN_V of the boost circuit, and the second end of the inductor L is electrically connected to the anode of the rectifier diode D;
  • the gate of the boost control transistor Tr is electrically connected to the boost control module, the first electrode of the boost control transistor Tr is electrically connected to the anode of the rectifier diode D, and the second electrode of the boost control transistor Tr is electrically connected to the first end of the 30th resistor R30;
  • the second end of the 30th resistor R30 is grounded;
  • the cathode of the rectifier diode D is electrically connected to the power supply output end OUT_V of the backlight driving component 5;
  • the input end of the sampling circuit 1141 is electrically connected to the first end of the 30th resistor R30.
  • the boost control module can output a signal to control the on or off state of the boost control transistor Tr, thereby controlling the voltage of the backlight source voltage signal output by the boost circuit.
  • the 30th resistor R30 in the boost circuit is reused as a sampling resistor. That is, the detection of the working current signal of the backlight source 6 is converted into the detection of the voltage signal at the first end of the 30th resistor R30.
  • the voltage at the first end of the 30th resistor R30 is proportional to the working current signal of the backlight source 6.
  • the sampling circuit 1141 includes: a thirty-first resistor R31, a thirty-second resistor R32, a thirty-third resistor R33 and an operational amplifier OP.
  • the first end of the thirty-first resistor R31 is electrically connected to the input end of the sampling circuit 1141, and the second end of the thirty-first resistor R31 is electrically connected to the non-inverting input end of the operational amplifier OP.
  • the first end of the thirty-second resistor R32 is electrically connected to the inverting input end of the operational amplifier OP, and the second end of the thirty-second transistor Tr is grounded.
  • the first end of the thirty-third resistor R33 is electrically connected to the inverting input end of the operational amplifier OP, and the second end of the thirty-third transistor Tr is electrically connected to the output end of the operational amplifier OP.
  • the output end of the operational amplifier OP is electrically connected to the output end of the sampling circuit 1141.
  • the sampling circuit 1141 can sample and amplify the voltage signal at the first end of the 30th resistor R30, wherein the specific amplification factor is determined by the ratio of the resistance values of the 33rd resistor R33 to the 32nd resistor R32.
  • the sampling circuit 1141 further includes an anti-interference capacitor C31, a first end of the anti-interference capacitor C31 is electrically connected to the non-inverting input end, and a second end of the anti-interference capacitor C31 is grounded.
  • the size of the anti-interference capacitor C31 is 330P to 2200P.
  • a dedicated sampling resistor (the 30th resistor R30 is no longer reused as a sampling resistor) can also be set in the sampling circuit 1141, and the voltage signal formed by detecting the backlight source 6 working current signal flowing through the sampling resistor can be used to obtain an analog sampling voltage signal corresponding to the backlight source 6 working current signal. This situation should also fall within the protection scope of the present disclosure.
  • the sampling circuit 1141 is integrated on the backlight driving component 5; specifically, the backlight driving component 5 includes a circuit board fixed with various electrical components for realizing the backlight driving function; the electrical components included in the sampling circuit 1141 can be integrated on the circuit board of the backlight driving component 5. That is, the electrical components in the sampling circuit and the electrical components in the boost circuit are fixed on the same circuit board.
  • the first signal processing subunit 1142 is integrated in the display control system component 2; specifically, the first signal processing subunit 1142 is integrated in the display control system chip within the display control system component 2 in the form of software.
  • the fourth detection unit 114 it is possible to effectively detect whether there is a fault in the working current signal of the backlight source 6 when the backlight source 6 is working (for example, when the working current of the backlight source 6 is too large, it indicates that there is a short circuit problem of the light bar in the backlight source 6; when the working current of the backlight source 6 is too small, it indicates that there is a break problem of the light bar in the backlight source 6), and it can output the seventh working status information for characterizing that the working current of the backlight source 6 is normal, or output the eighth working status information for abnormal working current of the backlight source 6, so as to facilitate the operation and maintenance personnel to operate and maintain the display product according to the received "working status information" and improve the operation and maintenance efficiency.
  • FIG14 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • at least one target component includes a backlight source 6; the working characteristic information of the backlight source 6 when working includes: the current light output brightness of the backlight source 6 when working; the detection module 11 includes: a fifth detection unit 115.
  • the fifth detection unit 115 is configured to respond to the control of the fifth detection signal, and output the ninth working state information used to characterize the normal light emission of the backlight source 6, or output the tenth working state information used to characterize the abnormal light emission of the backlight source 6 according to the current light output brightness of the backlight source 6 when working.
  • the backlight driving component 5 includes: a light emitting control circuit (generally including a light emitting control transistor Tb), the second end of the backlight source 6 is electrically connected to the second working voltage end (generally providing a Vss voltage) through the light emitting control circuit; the light emitting control circuit is configured to be controlled by a light emitting brightness control signal, so that when the light emitting brightness control signal is in a valid level state, a path is formed between the second end of the backlight source 6 and the second working voltage end, and when the light emitting brightness control signal is in an invalid level state, a circuit is formed between the second end of the backlight source 6 and the second working voltage end.
  • a light emitting control circuit generally including a light emitting control transistor Tb
  • Tb light emitting control transistor
  • the lighting duration of the backlight source 6 per unit time can be controlled by the light control circuit, that is, the equivalent light brightness of the backlight source 6 per unit time can be controlled. The shorter the lighting duration of the backlight source 6 per unit time, the darker the equivalent light brightness of the backlight source 6.
  • the fifth detection unit 115 includes: a photosensitive sensor circuit 1151 and a second signal processing subunit 1152.
  • the photosensitive sensor circuit 1151 is configured to collect the light emitted by the backlight source 6 when it is working and output a corresponding photosensitive signal;
  • the second signal processing subunit 1152 is configured to determine the current light output brightness of the backlight source 6 when it is working according to the photosensitive signal output by the photosensitive sensor, and detect whether the backlight source 6 is emitting light normally or abnormally according to the current light output brightness and the duty cycle of the light emitting brightness control signal currently received by the light emitting control circuit.
  • FIG15 is a schematic diagram of a circuit structure of a light sensor circuit in an embodiment of the present disclosure.
  • FIG16 is a schematic diagram of a light sensor chip disposed on a backplane in an embodiment of the present disclosure.
  • the light sensor circuit 1151 includes a light sensor chip 11511, a power supply circuit 11512, and an output module 11513.
  • the power supply circuit 11512 is configured to provide various required working voltages to the light sensor 11511; the light sensor 11511 is used to collect light and generate corresponding photosensitive signals and send them to the output module 11513; the output module 11513 is used to output the photosensitive signals. Data can be transmitted between the light sensor 11511 and the output module 11513 via the SCL ⁇ SDA signal line.
  • the specific circuit structure of the power supply circuit 11512 shown in the accompanying drawings is only an optional implementation scheme in the present disclosure, and it will not limit the technical solution of the present disclosure.
  • the specific circuit structure of the power supply circuit 11512 can be designed and adjusted according to the selected photosensitive sensor 11511.
  • the output module 11513 is connected to the I2C bus interface of the display control system component 2 so that the photosensitive signal can be transmitted to the display control system component 2.
  • the backlight source 6 is generally placed on the front of the backplane BL, and other optical structures are also provided on the front of the backplane BL, such as a light guide plate, an optical film (e.g., a prism film, a scattering sheet, etc.).
  • a via hole penetrating the backplane BL can be provided on the backplane BL, and then the photosensitive sensor 11511 is placed in the via hole, so that the photosensitive sensor can collect the light emitted by the backlight source 6.
  • FIG17A is a structural block diagram of a second signal processing subunit in an embodiment of the present disclosure.
  • FIG17B is a processing logic flow chart of the second signal processing subunit shown in FIG17A.
  • the second signal processing subunit 1152 includes: a brightness determination subunit, a first judgment subunit, a calculation subunit, a second judgment subunit, and a first fault detection subunit.
  • the brightness determination subunit is configured to determine the current light output brightness of the backlight source 6 when it is working according to the photosensitive signal.
  • the first judging subunit is configured to judge whether the current light output brightness is less than a first preset target brightness.
  • the calculation subunit is configured to calculate the duty cycle required for the luminous brightness control signal when the backlight source 6 presents a second preset target brightness based on the current light output brightness and the duty cycle of the luminous brightness control signal currently received by the luminous control circuit when the first judgment subunit determines that the current light output brightness is less than the first preset target brightness, and the second preset target brightness is greater than or equal to the first preset target brightness.
  • the second determination subunit is configured to determine whether the duty cycle required by the light luminance control signal when the backlight source 6 presents the second preset target brightness is within the first preset duty cycle range.
  • the first fault detection subunit is configured to detect that the backlight source 6 is emitting light normally when the second judgment subunit determines that the duty cycle required by the luminous brightness control signal is within the first preset duty cycle range when the backlight source 6 presents the second preset target brightness; and to detect that the backlight source 6 is emitting light abnormally when the second judgment subunit determines that the duty cycle required by the luminous brightness control signal is outside the first preset duty cycle range when the backlight source 6 presents the second preset target brightness; and to detect that the backlight source 6 is emitting light normally when the first judgment subunit determines that the current light brightness is greater than or equal to the first preset target brightness.
  • the duty cycle of the luminous brightness control signal is the ratio of the duration of the luminous brightness control signal being in the effective level state to the duration of the unit cycle; the larger the duty cycle, the longer the backlight source 6 is lit in the unit cycle.
  • the calculated duty cycle required by the luminous brightness control signal when the backlight source 6 presents the second preset target brightness is within the first preset duty cycle range (including the endpoint value, for example, the first preset duty cycle range is 0-100%, or the first preset duty cycle range is 10%-90%), it indicates that the backlight source 6 emits light normally; if the calculated duty cycle required by the luminous brightness control signal when the backlight source 6 presents the second preset target brightness is outside the first preset duty cycle range, it indicates that the backlight source 6 emits light abnormally.
  • FIG18A is a structural block diagram of the second signal processing subunit in the embodiment of the present disclosure.
  • FIG18B is a processing logic flow chart of the second signal processing subunit 1152 shown in FIG18A.
  • the backlight driving component 5 further includes: a brightness control signal supply unit, the brightness control signal supply unit is electrically connected to the light emitting control circuit, and is configured to provide a light emitting brightness control signal to the light emitting control circuit.
  • the second signal processing subunit 1152 includes: a brightness determination subunit, a brightness judgment subunit, a duty cycle adjustment subunit, a third judgment subunit, a first control subunit and a first fault detection subunit.
  • the brightness determination subunit is configured to determine the current light output brightness of the backlight source 6 when it is working according to the photosensitive signal.
  • the brightness determination subunit is configured to determine whether the current light output brightness is within a preset target brightness range.
  • the duty cycle adjustment subunit is configured to increase the duty cycle of the light-emitting brightness control signal according to a first preset adjustment algorithm (for example, increasing the duty cycle of the light-emitting brightness control signal by a step-by-step increase method) when the brightness judgment subunit determines that the current light-emitting brightness is less than the minimum value of the preset target brightness range; and to decrease the duty cycle of the light-emitting brightness control signal according to a second preset adjustment algorithm (for example, decreasing the duty cycle of the light-emitting brightness control signal by a step-by-step decrease method) when the brightness judgment subunit determines that the current light-emitting brightness is greater than the maximum value of the preset target brightness range.
  • a first preset adjustment algorithm for example, increasing the duty cycle of the light-emitting brightness control signal by a step-by-step increase method
  • a second preset adjustment algorithm for example, decreasing the duty cycle of the light-emitting brightness control signal by a step-by-step decrease method
  • the third judging subunit is configured to judge whether the duty cycle of the light emitting brightness control signal adjusted by the duty cycle adjusting subunit is within a second preset duty cycle range.
  • the first control subunit is configured to control the brightness control signal supply unit to output the brightness control signal whose duty cycle is adjusted by the duty cycle adjustment subunit to the light control circuit when the third judgment subunit determines that the duty cycle of the light emitting brightness control signal adjusted by the duty cycle adjustment subunit is within a second preset duty cycle range, and to control the photosensor circuit 1151 to collect the light emitted by the backlight source 6 when it is working again.
  • the first fault detection subunit is configured to detect abnormal light emission of the backlight source 6 when the third judgment subunit determines that the duty cycle of the light brightness control signal adjusted by the duty cycle adjustment subunit is outside the second preset duty cycle range; and to detect that the backlight source 6 is emitting light normally when the brightness judgment subunit determines that the current light brightness is within the preset target brightness range.
  • the current light output brightness of the backlight source 6 can be compared with the preset target brightness range.
  • the preset adjustment algorithm can be used to increase or decrease the duty cycle of the light emitting brightness control signal accordingly, and then the backlight source 6 is controlled to emit light according to the adjusted duty cycle, and then the current light emitting brightness of the backlight is continuously collected, and this cycle is repeated. If the adjusted duty cycle is outside the second preset duty cycle range, the surface backlight source 6 emits light abnormally.
  • the light sensor circuit is disposed on the back panel of the display module.
  • the second signal processing subunit is integrated into the display control system chip of the display control system component 2; specifically, the second signal processing subunit is integrated into the display control system chip of the display control system component 2 in the form of software.
  • FIG19 is another structural block diagram of the detection module in the embodiment of the present disclosure.
  • at least one target component includes a computing component 3; the working characteristic information of the computing component 3 when working includes: the horizontal synchronization signal and the vertical synchronization signal in the process of the computing component 3 sending the display data signal to the display control system component 2; the detection module 11 includes: the sixth detection unit 116.
  • the sixth detection unit 116 is configured to respond to the sixth detection signal control and, according to the horizontal synchronization signal and/or the vertical synchronization signal, output the eleventh working status information used to characterize that the process of the computing component 3 providing the display data signal to the display control system component 2 is normal, or output the twelfth working status information used to characterize that the process of the computing component 3 providing the display data signal to the display control system component 2 is abnormal.
  • FIG20A is a structural block diagram of the sixth detection unit in the embodiment of the present disclosure.
  • FIG20B is a processing logic flow chart of the sixth detection unit shown in FIG20A.
  • the sixth detection unit 116 includes: a frequency determination subunit 1161, a fourth judgment subunit 1162, and a second fault detection subunit 1163.
  • the frequency determination subunit 1161 is configured to determine the line frequency of the display data signal sent by the computing component 3 according to the horizontal synchronization signal, and to determine the frame frequency of the display data signal sent by the computing component 3 according to the vertical synchronization signal.
  • the fourth determination subunit 1162 determines whether the line frequency determined by the frequency determination subunit 1161 is within a preset line frequency range, and whether the frame frequency determined by the determination subunit is within a preset frame frequency range;
  • the second fault detection subunit 1163 is configured to detect that the process of the computing component 3 providing the display data signal to the display control system component 2 is normal when the fourth judgment subunit 1162 determines that the line frequency determined by the frequency determination subunit 1161 is within the preset line frequency range and the frame frequency determined by the determination subunit is within the preset frame frequency range; and to detect that the process of the computing component 3 providing the display data signal to the display control system component 2 is abnormal when the fourth judgment subunit 1162 determines that the line frequency determined by the frequency determination subunit 1161 is outside the preset line frequency range, and/or the fourth judgment subunit 1162 determines that the frame frequency determined by the determination subunit is outside the preset frame frequency range.
  • the line frequency and frame rate of the display data signal sent by the computing component 3 to the display control system component 2 can be obtained based on the frequency of occurrence of the horizontal synchronization signal and the vertical synchronization signal in the process of the computing component 3 sending the display data signal to the display control system component 2; wherein, if the obtained line frequency is within the pre-set preset line frequency range and the obtained frame frequency is also within the pre-set preset line frequency range, it means that the process of the computing component 3 providing the display data signal to the display control system component 2 is normal; if the obtained line frequency is outside the pre-set preset line frequency range and/or the obtained frame frequency is outside the pre-set preset frame frequency range, it means that the process of the computing component 3 providing the display data signal to the display control system component 2 is abnormal.
  • the sixth detection unit 116 is integrated into the display control system component 2; specifically, the sixth detection unit 116 is integrated into the display control system chip of the display control system component 2 in the form of software.
  • FIG21 is another structural block diagram of the detection module 11 in the embodiment of the present disclosure.
  • at least one target component includes a display control system component 2; the working characteristic information of the display control system component 2 when working includes: a handshake signal sent by the display control system component 2 to the computing component 3; the detection module 11 includes: a seventh detection unit 117.
  • the seventh detection unit 117 is configured to respond to the control of the seventh detection signal, and according to the handshake signal received by the timing control component 4 during the detection period, output the thirteenth working status information used to characterize that the display control system component 2 outputs a normal signal to the timing control component 4, or output the fourteenth working status information used to characterize that the display control system component 2 outputs an abnormal signal to the timing control component 4.
  • a "handshake” process will be performed according to the communication protocol.
  • handshake information will be transmitted; based on the handshake signal received by the timing control component 4 during the detection period, it can be determined whether the process of the display control system component 2 outputting signals to the timing control component 4 is normal or abnormal.
  • the display control system component 2 communicates with the timing control component 4 via a high-definition digital display (V-BY-ONE) interface.
  • the handshake signal includes: a LOCKN signal; wherein the LOCKN signal sent by the display control system component 2 to the timing control component 4 is a high-level signal under normal circumstances.
  • FIG22A is a structural block diagram of the seventh detection unit 117 in the embodiment of the present disclosure.
  • FIG22B is a processing logic flow chart of the seventh detection unit 117 shown in FIG22A.
  • the seventh detection unit 117 includes: a fifth judgment subunit 1171 and a third fault detection subunit 1172.
  • the fifth determination subunit 1171 is configured to determine whether the frequency of the handshake signal received by the timing control component 4 during the detection period is within a preset frequency range.
  • the third fault detection subunit 1172 is configured to detect that the display control system component 2 outputs a signal to the timing control component 4 normally when the fifth judgment subunit 1171 determines that the frequency of the handshake signal received by the timing control component 4 during the detection period is within the preset frequency range; and, when the fifth judgment subunit 1171 determines that the frequency of the handshake signal received by the timing control component 4 during the detection period is outside the preset frequency range, detect that the display control system component 2 outputs an abnormal signal to the timing control component 4.
  • the seventh detection unit 117 is integrated in the timing control component 4; specifically, the timing control component 4 includes a circuit board fixed with a timing control chip, and the seventh detection unit 117 is integrated in the timing control chip of the timing control component 4 in the form of software.
  • the output end of the seventh detection unit 117 is electrically connected to the display control system component 2 to send the thirteenth working state information or the fourteenth working state information generated by the seventh detection unit 117 to the display control system component 2.
  • FIG23 is another structural block diagram of the detection module 11 in the embodiment of the present disclosure.
  • at least one target component includes a display control system component 2; the working characteristic information of the display control system component 2 when working includes: the timing control component 4 obtains the display data signal of the image to be displayed from the display control system component 2; the detection module 11 includes: an eighth detection unit 118.
  • the eighth detection unit 118 is configured to respond to the control of the eighth detection signal, obtain the display data signal of the image to be displayed from the display control system component 2 before and after the screen switching according to the timing control component 4, and output the fifteenth working status information used to characterize that the screen switching of the display control system component 2 is normal, or output the sixteenth working status information used to characterize that the screen switching of the display control system component 2 is abnormal.
  • FIG24A is a structural block diagram of the eighth detection unit 118 in the embodiment of the present disclosure.
  • FIG24B is a processing logic flow chart of the eighth detection unit 118 shown in FIG24A.
  • the eighth detection unit 118 includes: a second control subunit 1181, a third control subunit 1182 and a fourth fault detection subunit 1183.
  • the second control subunit 1181 is configured to control the computing component 3 to send the display data signal of the first image to the display control system component 2, and to control the timing control component 4 to obtain the display data signal of the image to be displayed from the display control system component 2 and perform feature extraction on the obtained display data signal to obtain the first display feature information.
  • the third control subunit 1182 is configured to control the computing component 3 to send a display data signal of the second image to the display control system component 2, and control the timing control component 4 to obtain the display data signal of the image to be displayed from the display control system component 2 and perform feature extraction on the obtained display data signal to obtain second display feature information.
  • the second image and the first image are two different images.
  • the fourth fault detection subunit 1183 is configured to detect whether the screen switching of the display control system component 2 is normal or abnormal according to the difference between the first display characteristic information and the second display characteristic information.
  • the control calculation component 3 sends the display data signal of the first image to the display control system component 2, and controls the timing control component 4 to obtain the display data signal of the image to be displayed from the display control system component 2 and perform feature extraction to obtain the first display feature information; then, the control calculation component 3 sends the display data signal of the second image to the display control system component 2, so that the display control system component 2 performs screen switching, and controls the timing control component 4 to obtain the display data signal of the image to be displayed from the display control system component 2 and perform feature extraction to obtain the second display feature information; then, according to the difference between the first display feature information and the second display feature information, it is judged whether the display control system component 2 performs screen switching normally or abnormally.
  • the difference between the first display feature information and the second display feature information is greater than the set value, it means that the display control system component 2 performs screen switching normally; if the difference between the first display feature information and the second display feature information is less than or equal to the set value, it means that the display control system component 2 performs screen switching abnormally.
  • the timing control component 4 is configured to extract brightness features of the acquired display data signal in response to the control of the second control subunit 1181 or the third control subunit 1182; the first display feature information includes first brightness information, and the second display feature information includes second brightness information; the fourth fault detection subunit is specifically configured to detect whether the screen switching of the display control system component 2 is normal or abnormal based on the difference value between the first brightness information and the second brightness information; wherein, when the difference value is greater than the preset target difference value, it is detected that the screen switching of the display control system component 2 is normal; when the difference value is less than or equal to the preset target difference value, it is detected that the screen switching of the display control system component 2 is abnormal.
  • the first brightness information includes a first brightness function value
  • the second brightness information includes a second brightness function value
  • the difference between the first brightness information and the second brightness information is the quotient of the absolute value of the difference between the second brightness function value and the first brightness function value and the sum of the two.
  • the brightness function may also be called a grayscale function.
  • it includes a columnar function.
  • the columnar function value of the entire image frame may be extracted, or a partial image area may be determined from the entire image frame to extract the columnar function value.
  • the number of image areas for extracting the columnar function value, the area of the area, and the coordinate value of the area may be pre-set, and then the columnar function value may be extracted based on the pre-set parameters.
  • the brightness information obtained based on the brightness feature extraction in the embodiment of the present disclosure refers to the brightness features that can describe the overall brightness features of the picture, the brightness features of one or more regions after the picture is pre-divided into regions, and the brightness features may specifically include the maximum value, minimum value, average value, variance, change curve, etc. of the brightness (or grayscale) in the corresponding region.
  • the above-mentioned use of a columnar function to extract brightness features is only an optional implementation scheme in the embodiment of the present disclosure, which will not limit the technical solution of the present disclosure.
  • other feature extraction algorithms can also be used to extract features from the display data signal, and it is only necessary to ensure that the feature extraction algorithms used for the two feature extractions are the same.
  • the eighth detection unit 118 is integrated in the display control system component 2. Further optionally, the eighth detection unit 118 is integrated in the display control system chip of the display control system component 2 in the form of software.
  • the detection module 11 can selectively include at least one of the first detection unit 111, the second detection unit 112, the third detection unit 113, the fourth detection unit 114, the fifth detection unit 115, the sixth detection unit 116, the seventh detection unit 117, and the eighth detection unit 118 in the above embodiments according to actual needs, so as to monitor at least one of the power supply component 1, the display control system component 2, the calculation component 3, the timing control component 4, the backlight driving component 5, and the backlight source 6.
  • the detection module 11 can selectively include at least one of the first detection unit 111, the second detection unit 112, the third detection unit 113, the fourth detection unit 114, the fifth detection unit 115, the sixth detection unit 116, the seventh detection unit 117, and the eighth detection unit 118 in the above embodiments according to actual needs, so as to monitor at least one of the power supply component 1, the display control system component 2, the calculation component 3, the timing control component 4, the backlight driving component 5, and the backlight source 6.
  • the "working status information" output by the first detection unit 111 to the eighth detection unit 118 can all be sent to the display control system component 2. Therefore, as an optional implementation scheme, for various types of faults, the fault identification bit and the meaning represented by the fault identification bit when taking different values can be pre-designed. In the actual working process, the display control system component 2 can determine the current value of the fault identification bit according to the various working status information received.
  • the first detection unit 111 can be designed to have a fault identification bit "PG" indicating whether the power supply component 1 supplies power to the display control system component 2 normally or abnormally.
  • PG has two values, “1” or “0”. When “PG” takes the value of “1”, it indicates that the power supply component 1 supplies power to the display control system component 2 normally. When “PG” takes the value of "0”, it indicates that the power supply component 1 supplies power to the display control system component 2 abnormally.
  • the second detection unit 112 can be designed to be a fault identification bit "TPG" for indicating whether the display control system component 2 supplies power to the timing control component 4 normally or abnormally.
  • TPG has two values “1” or “0”. When “TPG” takes the value of “1”, it indicates that the display control system component 2 supplies power to the timing control component 4 normally. When “TPG” takes the value of "0”, it indicates that the display control system component 2 supplies power to the timing control component 4 abnormally.
  • the third detection unit 113 can be designed to be a fault identification bit "LDV” indicating whether the backlight driving component 5 supplies power to the backlight source 6 normally or abnormally.
  • "LDV” has two values “1” or “0”. When the value of “LDV” is “1”, it indicates that the backlight driving component 5 supplies power to the backlight source 6 normally. When the value of "LDV” is “0”, it indicates that the backlight driving component 5 supplies power to the backlight source 6 abnormally.
  • the fourth detection unit 114 can be designed to be a fault identification bit "LDI” indicating whether the operating current of the backlight source 6 is normal or abnormal.
  • LMI has two values “1” or “0”. When the value of "LDI” is “1”, it indicates that the operating current of the backlight source 6 is normal. When the value of "LDI” is "0”, it indicates that the operating current of the backlight source 6 is abnormal.
  • the fifth detection unit 115 can be designed to be a fault identification bit "BRI" for indicating whether the light emission of the backlight source 6 is normal or abnormal.
  • BBI fault identification bit
  • "BRI” has two values “1” or “0”. When the value of "BRI” is “1”, it indicates that the light emission of the backlight source 6 is normal. When the value of "BRI” is "0”, it indicates that the light emission of the backlight source 6 is abnormal.
  • the sixth detection unit 116 can be designed to be a fault identification bit "CP" for indicating whether the process of the computing component 3 providing the display data signal to the display control system component 2 is normal or abnormal.
  • "CP" has two values “1” or “0”. When the value of "CP” is “1”, it indicates that the process of the computing component 3 providing the display data signal to the display control system component 2 is normal. When the value of "CP” is "0”, it indicates that the process of the computing component 3 providing the display data signal to the display control system component 2 is abnormal.
  • the seventh detection unit 117 can be designed to be a fault identification bit "LK” for indicating whether the process of the display control system component 2 outputting signals to the timing control component 4 is normal or abnormal.
  • "LK” has two values, “1” or “0”. When “LK” takes the value of “1”, it indicates that the process of the display control system component 2 outputting signals to the timing control component 4 is normal. When “LK” takes the value of "0”, it indicates that the process of the display control system component 2 outputting signals to the timing control component 4 is abnormal.
  • the eighth detection unit 118 can be designed to be a fault identification bit "PCLK” for indicating whether the screen switching of the display control system component 2 is normal or abnormal.
  • PCLK has two values “1” or “0”. When the value of "PCLK” is “1”, it indicates that the screen switching of the display control system component 2 is normal. When the value of "PCLK” is "0”, it indicates that the screen switching of the display control system component 2 is abnormal.
  • the display control system component 2 if the display control system component 2 receives the first working status information output by the first detection unit 111, the display control system component 2 assigns a value of "1" to the fault identification bit "PG"; if the display control system component 2 receives the second working status information output by the first detection unit 111, the display control system component 2 assigns a value of "0" to the fault identification bit "PG".
  • the display control system component 2 receives the third working status information output by the second detection unit 112, the display control system component 2 assigns a value of "1" to the fault identification bit "TPG"; if the display control system component 2 receives the fourth working status information output by the second detection unit 112, the display control system component 2 assigns a value of "0" to the fault identification bit "TPG".
  • the display control system component 2 If the display control system component 2 receives the fifth working status information output by the third detection unit 113, the display control system component 2 assigns a value of "1" to the fault identification bit "LDV"; if the display control system component 2 receives the sixth working status information output by the third detection unit 113, the display control system component 2 assigns a value of "0" to the fault identification bit "LDV".
  • the display control system component 2 If the display control system component 2 receives the seventh working status information output by the fourth detection unit 114, the display control system component 2 assigns a value of "1" to the fault identification bit "LDI"; if the display control system component 2 receives the eighth working status information output by the fourth detection unit 114, the display control system component 2 assigns a value of "0" to the fault identification bit "LDI".
  • the display control system component 2 If the display control system component 2 receives the ninth working status information output by the fifth detection unit 115, the display control system component 2 assigns a value of "1" to the fault identification bit "BRI"; if the display control system component 2 receives the tenth working status information output by the fifth detection unit 115, the display control system component 2 assigns a value of "0" to the fault identification bit "BRI".
  • the display control system component 2 If the display control system component 2 receives the eleventh working status information output by the sixth detection unit 116, the display control system component 2 assigns the fault identification bit "CP" a value of "1"; if the display control system component 2 receives the twelfth working status information output by the sixth detection unit 116, the display control system component 2 assigns the fault identification bit "CP" a value of "0".
  • the display control system component 2 If the display control system component 2 receives the thirteenth working status information output by the seventh detection unit 117, the display control system component 2 assigns a value of "1" to the fault identification bit "LK"; if the display control system component 2 receives the fourteenth working status information output by the seventh detection unit 117, the display control system component 2 assigns a value of "0" to the fault identification bit "LK".
  • the display control system component 2 If the display control system component 2 receives the fifteenth working status information output by the eighth detection unit 118, the display control system component 2 assigns a value of "1" to the fault identification bit "PCLK"; if the display control system component 2 receives the sixteenth working status information output by the eighth detection unit 118, the display control system component 2 assigns a value of "0" to the fault identification bit "PCLK".
  • any at least two of the power supply component 1, the display control system component 2, the computing component 3, the timing control component 4 and the backlight driving component 5 are located on the same circuit board.
  • the power supply component 1, the display control system component 2, the computing component 3, the timing control component 4 and the backlight driving component 5 are integrated on the same circuit board. This design can increase the integration of the display module and reduce costs.
  • the sending module 12 is integrated on the computing component 3.
  • the sending module 12 may be a wired communication module or a wireless communication module (eg, a WIFI communication module, a 4G communication module, a 5G communication module, etc.).
  • the display control system component 2 can send the working status information (specifically, the above-mentioned fault identification bits and corresponding assignments) to the computing component 3 through the existing IC2 interface or the extended data interface (such as the AUX interface), and the sending module 12 in the computing component 3 sends the received working status information to the target object.
  • the working status information specifically, the above-mentioned fault identification bits and corresponding assignments
  • the computing component 3 can send the working status information (specifically, the above-mentioned fault identification bits and corresponding assignments) to the computing component 3 through the existing IC2 interface or the extended data interface (such as the AUX interface), and the sending module 12 in the computing component 3 sends the received working status information to the target object.
  • the monitoring system in the display module can enable the display module to have a fault self-diagnosis function, and can send the working status information of the target components in the display module to the operation and maintenance personnel for review. Therefore, the operation and maintenance personnel no longer need to conduct on-site inspections to see if there are any faults in the display product, which makes it convenient for the operation and maintenance personnel to operate and maintain the display product, which is conducive to improving the operation and maintenance efficiency.
  • an embodiment of the present disclosure further provides a display device, which includes the display module provided in the previous embodiment.
  • a display module provided in the previous embodiment.
  • the display module For a detailed description of the display module, reference may be made to the corresponding content in the previous embodiment.
  • the display device may include one or more display modules.
  • the display device is a spliced screen, and multiple display modules may be combined into a spliced screen in a preset order (eg, array splicing).
  • the display device in the disclosed embodiments may specifically be an electronic tag, a tablet computer, a laptop computer, a PDA, an in-vehicle electronic device, a mobile Internet device (MID), an augmented reality (AR)/virtual reality (VR) device, a robot, a wearable device, an ultra mobile personal computer (UMPC), a netbook, a personal digital assistant (PDA), a personal computer (PC), a television (TV), a teller machine, a self-service machine, and other display products or components with a display function.
  • MID mobile Internet device
  • AR augmented reality
  • VR virtual reality
  • UMPC ultra mobile personal computer
  • PC personal computer
  • TV television
  • teller machine teller machine
  • self-service machine a self-service machine
  • FIG 25 is a structural block diagram of a display system provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure further provides a display system, which includes a display device and a receiving device (i.e., the aforementioned target object); wherein the display device is the display device provided in the previous embodiment, and the specific description can refer to the corresponding content in the previous embodiment; the receiving device is configured to receive the working status information sent by the sending module.
  • a display system which includes a display device and a receiving device (i.e., the aforementioned target object); wherein the display device is the display device provided in the previous embodiment, and the specific description can refer to the corresponding content in the previous embodiment; the receiving device is configured to receive the working status information sent by the sending module.
  • the receiving device may be a server or a specific terminal (for example, a mobile phone, a tablet, a computer, or other electronic device that can be used by operation and maintenance personnel to view information).
  • a server for example, a mobile phone, a tablet, a computer, or other electronic device that can be used by operation and maintenance personnel to view information.
  • the display device filters all working status information before sending the working status information, and the display device ultimately only sends the working status information used to characterize the abnormal working of the target component; at this time, the receiving device can only receive and display the working status information used to characterize the abnormal working of the target component.
  • the display device will send all the working status information generated by the detection module (including: working status information used to characterize the normal working of the target component and working status information used to characterize the abnormal working of the target component), and the receiving device can receive all the working status information accordingly.
  • the receiving device can selectively display part or all of the working status information; for example, only display the working status information used to characterize the abnormal working of the target component, only display the working status information used to characterize the normal working of the target component, display all the working status information indiscriminately, or only display the working status information corresponding to certain specific target components and not display the working status information corresponding to other target components.
  • the number of display devices may be one or more, and the number of receiving devices may be one or more; each display device may send the generated working status information to one or more receiving devices, and each receiving device may receive the working status information sent by one or more display devices.
  • the display devices may specifically be displays for presenting advertisements, electronic tags for displaying product information, self-service machines for users to query product information/store information/navigation routes, navigation/bus stops for displaying traffic information, and display screens provided on electrical appliances (e.g., refrigerators, washing machines, purifiers, vending machines, etc.) for displaying information related to the electrical appliances.
  • electrical appliances e.g., refrigerators, washing machines, purifiers, vending machines, etc.
  • Such software may be distributed on a computer-readable medium, which may include a computer storage medium (or non-transitory medium) and a communication medium (or temporary medium).
  • a computer storage medium includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and can be accessed by a computer.
  • communication media typically contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本公开提供了一种显示模组,其中,包括:检测模块,配置为检测所述显示模组内至少一个目标部件在工作时的工作特征信息,并根据所述目标部件的工作特征信息确定所述目标部件的工作状态信息;发送模块,配置为将所述工作状态信息发出。本公开还提供了一种显示装置和显示系统。

Description

显示模组、显示装置和显示系统 技术领域
本发明涉及显示领域,特别涉及一种显示模组、显示装置和显示系统。
背景技术
随着互联网技术的快速发展后,“互联网+”的应用越来越广泛且在各行各业快速兴起,能够接入至互联网的各种智能化产品层出不穷。在该大环境下,智能化显示产品应用而生;目前已有的智能化显示产品不但具备显示功能,还作为物联网的重要数据输入端口具备数据采集、信息发布、交互等功能。
然而,现有的智能化显示产品的智能化程度相对较低且不具备故障自我诊断功能,智能化显示产品的运维只能通过人工实地巡视检测方式进行,随着智能化显示产品数量增多、点位分散,对产品的运行维护带来很大的困难。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种显示模组、显示装置和显示系统。
第一方面,本公开实施例提供了一种显示模组,其中,包括:监控系统,所述监控系统包括:
检测模块,配置为检测所述显示模组内至少一个目标部件在工作时的工作特征信息,并根据所述目标部件的工作特征信息确定所述目标部件的工作状态信息;
发送模块,配置为将所述工作状态信息发出。
在一些实施例中,所述显示模组还包括:电源组件和显示控制系统组件;
所述至少一个目标部件包括所述电源组件,所述电源组件在工作时的工作特征信息包括:所述电源组件向所述显示控制系统组件进行供电的各第一供电通道中的控制系统用电压信号;
所述检测模块包括:
第一检测单元,与各所述第一供电通道分别相连,配置为响应于第一检测信号的控制,根据所述第一供电通道内所加载所述控制系统用电压信号的情况,输出用于表征所述电源组件向所述显示控制系统组件进行供电正常的第一工作状态信息,或者输出用于表征所述电源组件向所述显示控制系统组件进行供电异常的第二工作状态信息。
在一些实施例中,所述电源组件向所述显示控制系统组件进行供电的第一供电通道的数量为1;
所述第一检测单元包括:第一电压检测电路;
所述第一电压检测电路的输入端与所述第一供电通道电连接,所述第一电压检测电路配置为在所述第一供电通道内加载有所述控制系统用电压信号时输出所述第一工作状态信息,以及在所述第一供电通道内未加载所述控制系统用电压信号时输出所述第二工作状态信息。
在一些实施例中,所述电源组件向所述显示控制系统组件进行供电的第一供电通道数量大于或等于2;
所述第一检测单元包括:逻辑处理电路和与各所述第一供电通道一一对应的至少2个第一电压检测电路;
所述第一电压检测电路的输入端与对应的所述第一供电通道电连接,所述第一电压检测电路的输出端与逻辑处理电路的输入端电连接;
所述第一电压检测电路配置为在对应的所述第一供电通道加载有控制系统用电压信号时输出第一电平信号,以及在对应的所述第一供电通 道内未加载控制系统用电压信号时输出第二电平信号;
所述逻辑处理电路配置为在所电连接的各所述第一电压检测电路均输出为第一电平信号时输出所述第一工作状态信息,以及在至少一个所述第一电压检测电路输出第二电平信号时输出所述第二工作状态信息;
所述第一电平信号和所述第二电平信号中之一为高电平信号,另一为低电平信号。
在一些实施例中,所述电源组件向所述显示控制系统组件进行供电的第一供电通道包括:用于向所述显示控制系统组件提供所述显示控制系统组件所需工作电压的供电通道和用于向所述显示控制系统组件提供显示面板所需工作电压的供电通道。
在一些实施例中,所述第一电压检测电路包括:第一电阻、第二电阻、第三电阻和第一晶体管;
所述第一电阻的第一端与所述第一电压检测电路的输入端电连接,所述第一电阻的第二端与所述第二电阻的第一端和所述第一晶体管的栅极电连接;
所述第二电阻的第一端与所述第一晶体管的栅极电连接,所述第二电阻的第二端与低电平供给端电连接;
所述第一晶体管的第一极与所述第一电压检测电路的输出端电连接,所述第一晶体管的第二极与低电平供给端电连接;
所述第三电阻的第一端与所述第一高电平供给端电连接,所述第三电阻的第二端与所述第一电压检测电路的输出端和所述第一晶体管的第一极电连接。
在一些实施例中,所述显示控制系统组件包括有待机用供电模块,所述第一高电平供给端为所述待机用供电模块的输出端。
在一些实施例中,在所述第一供电通道内配置有保险电路,所述保险电路的第一端与所述电源组件电连接,所述保险电路的第二端与所述 显示控制系统组件电连接;
所述第一检测单元与所述保险电路的第二端电连接。
在一些实施例中,所述显示模组还包括:显示控制系统组件和时序控制组件;
所述至少一个目标部件包括所述显示控制系统组件,所述显示控制系统组件在工作时的工作特征信息包括:所述显示控制系统组件向所述时序控制组件进行供电的第二供电通道中的时序控制用电压信号;
所述检测模块包括:
第二检测单元,与所述第二供电通道相连,配置为响应于第二检测信号的控制,根据所述第二供电通道内所加载所述时序控制用电压信号的情况,输出用于表征所述显示控制系统组件向所述时序控制组件进行供电正常的第三工作状态信息,或者输出用于表征所述显示控制系统组件向所述时序控制组件进行供电异常的第四工作状态信息。
在一些实施例中,所述第二检测单元包括:
第二电压检测电路,所述第二电压检测电路的输入端与所述第二供电通道电连接,所述第二电压检测电路配置为在所述第二供电通道内加载有所述时序控制用电压信号时输出所述第三工作状态信息,以及在所述第二供电通道内未加载所述时序控制用电压信号时输出所述第四工作状态信息;
所述第二电压检测电路包括:第十一电阻、第十二电阻、第十三电阻和第十一晶体管;
所述第十一电阻的第一端与所述第二电压检测电路的输入端电连接,所述第十一电阻的第二端与所述第十二电阻的第一端和所述第十一晶体管的栅极电连接;
所述第十二电阻的第一端与所述第十一晶体管的栅极电连接,所述第十二电阻的第二端与低电平供给端电连接;
所述第十一晶体管的第一极与所述第二电压检测电路的输出端电连接,所述第十一晶体管的第二极与低电平供给端电连接;
所述第十三电阻的第一端与所述第一高电平供给端电连接,所述第十三电阻的第二端与所述第二电压检测电路的输出端和所述第十一晶体管的第一极电连接。
在一些实施例中,在所述第二供电通道内配置有供电晶体管,所述供电晶体管的第一极与所述显示控制系统组件电连接,所述供电晶体管的第二极与所述时序控制组件电连接;
所述第二检测单元与所述供电晶体管的第二极电连接。
在一些实施例中,所述显示模组还包括:背光驱动组件;
所述至少一个目标部件包括背光驱动组件,所述背光驱动组件的供电输出端与所述背光源的第一端电连接,所述背光驱动组件配置有I2C数据读取接口;
所述背光驱动组件在工作时的工作特征信息包括:所述背光驱动组件向所述背光源进行供电的供电输出端处的背光源用电压信号;
所述检测模块包括:
第三检测单元,与所述背光驱动组件所配置的I2C数据读取接口相连,配置为响应于第三检测信号的控制,根据通过所述背光驱动组件所配置的I2C数据读取接口所读取到的所述供电输出端处背光源用电压信号的电压值,输出用于表征所述背光驱动组件向所述背光源进行供电正常的第五工作状态信息,或者输出用于表征所述背光驱动组件向所述背光源进行供电异常的第六工作状态信息。
在一些实施例中,所述显示模组还包括:背光驱动组件和背光源;
所述至少一个目标部件包括背光驱动组件,所述背光驱动组件的供电输出端与背光源的第一端电连接;
所述背光驱动组件在工作时的工作特征信息包括:所述背光驱动组 件向所述背光源进行供电的供电输出端处的背光源用电压信号;
所述检测模块包括:
第三检测单元,与所述供电输出端电连接,配置为响应于第三检测信号的控制,根据所述供电输出端处所加载所述背光源用电压信号的情况,输出用于表征所述背光驱动组件向所述背光源进行供电正常的第五工作状态信息,或者输出用于表征所述背光驱动组件向所述背光源进行供电异常的第六工作状态信息。
在一些实施例中,所述第三检测单元包括:第三电压检测电路;
所述第三电压检测电路的输入端与所述供电输出端电连接,所述第三电压检测电路配置为在所述供电输出端加载有所述背光源用电压信号时输出所述第五工作状态信息,以及在所述供电输出端未加载所述背光源用电压信号时输出所述第六工作状态信息;
所述第三电压检测电路包括:第二十一电阻、第二十二电阻、第二十三电阻和第二十一晶体管;
所述第二十一电阻的第一端与所述第三电压检测电路的输入端电连接,所述第二十一电阻的第二端与所述第二十二电阻的第一端和所述第二十一晶体管的栅极电连接;
所述第二十二电阻的第一端与所述第二十一晶体管的栅极电连接,所述第二十二电阻的第二端与低电平供给端电连接;
所述第二十一晶体管的第一极与所述第三电压检测电路的输出端电连接,所述第二十一晶体管的第二极与低电平供给端电连接;
所述第二十三电阻的第一端与所述第二高电平供给端电连接,所述第二十三电阻的第二端与所述第二电压检测电路的输出端和所述第二十一晶体管的第一极电连接。
在一些实施例中,所述显示模组还包括:背光源;
所述至少一个目标部件包括背光源,所述背光源在工作时的工作特 征信息包括:所述背光源在工作时的背光源工作电流信号;
所述检测模块包括:
第四检测单元,配置为响应于第四检测信号的控制,根据所述背光源在工作时的所述背光源工作电流信号,输出用于表征所述背光源的工作电流正常的第七工作状态信息,或者输出用于所述背光源的工作电流异常的第八工作状态信息;
所述第四检测单元具体配置为在所述背光源工作电流信号的电流值位于第一预设电流范围之内时输出所述第七工作状态信息;以及在所述背光源工作电流信号的电流值位于第一预设电流范围之外时输出所述第八工作状态信息。
在一些实施例中,所述第四检测单元包括:
采样电路,所述采样电路的输入端与所述背光源电连接且所述采样电路与所述背光源形成串联,所述采样电路配置为获取所述背光源工作电流信号所对应的模拟采样电压信号;
第一信号处理子单元,配置为对所述模拟采样电压信号进行模数转换处理,得到相应的数字采样电压信号,并根据所述数字采样电压信号的电压值来检测所述背光源工作电流信号的电流值是否位于第一预设电流范围之内;
其中,若所述数字采样电压信号的电压值位于所述第二预设电压范围之内,则第一信号处理子单元检测出所述背光源工作电流信号的电流值位于第一预设电流范围之内,输出所述第七工作状态信息;
若所述数字采样电压信号的电压值位于所述第二预设电压范围之外,则所述第一信号处理子单元检测出所述背光源工作电流信号的电流值位于第一预设电流范围之外,输出所述第八工作状态信息。
在一些实施例中,所述显示模组还包括:背光驱动组件,所述背光驱动组件的供电输出端与背光源的第一端电连接;
所述背光驱动组件包括:升压电路和升压控制模块,所述升压电路包括:电感、升压控制晶体管、整流二极管和第三十电阻;
所述电感的第一端与所述升压电路的输入端电连接,所述电感的第二端与所述整流二极管的阳极电连接;
所述升压控制晶体管的栅极与升压控制模块电连接,所述升压控制晶体管的第一极与所述整流二极管的阳极电连接,所述升压控制晶体管的第二极与所述第三十电阻的第一端电连接;
所述第三十电阻的第二端接地;
所述整流二极管的阴极与所述背光驱动组件的供电输出端电连接;
所述采样电路的输入端与所述第三十电阻的第一端电连接。
在一些实施例中,所述背光驱动组件包括:固定有所述升压电路的电路板,所述采样电路与所述升压电路固定于同一电路板上;
所述显示模组还包括:显示控制系统组件,所述第一信号处理子单元集成在所述显示控制系统组件上。
在一些实施例中,所述显示模组还包括:背光源;
所述至少一个目标部件包括背光源;所述背光源在工作时的工作特征信息包括:所述背光源在工作时的当前出光亮度;
所述检测模块包括:
第五检测单元,配置为响应于第五检测信号的控制,根据所述背光源在工作时的当前出光亮度,输出用于表征所述背光源发光正常的第九工作状态信息,或者输出用于表征所述背光源发光异常的第十工作状态信息。
在一些实施例中,所述显示模组还背光驱动组件,所述背光驱动组件包括:发光控制电路,所述背光源的第二端通过发光控制电路与第二工作电压端电连接;
所述发光控制电路配置为受控于发光亮度控制信号,在所述发光亮 度控制信号处于有效电平状态时使得所述背光源的第二端与所述第二工作电压端之间形成通路,在所述发光亮度控制信号处于非有效电平状态时使得所述背光源的第二端与所述第二工作电压端之间形成断路;
所述第五检测单元包括:
感光传感器电路,配置为采集所述背光源在工作时所出射光线并输出相应的感光电信号;
第二信号处理子单元,配置为根据所述感光传感器所输出的感光电信号确定所述背光源在工作时的当前出光亮度,以及根据所述当前出光亮度和所述发光控制电路当前所接收到的发光亮度控制信号的占空比,来检测所述背光源发光正常或异常。
在一些实施例中,所述第二信号处理子单元包括:
亮度确定子单元,配置为根据所述感光电信号确定所述背光源在工作时的当前出光亮度;
第一判断子单元,配置为判断所述当前出光亮度是否小于第一预设目标亮度;
计算子单元,配置为在所述第一判断子单元判断出所述当前出光亮度小于所述第一预设目标亮度时,根据所述当前出光亮度和所述发光控制电路当前所接收到的所述发光亮度控制信号的占空比,计算出所述背光源呈现第二预设目标亮度时所述发光亮度控制信号所需的占空比,所述第二预设目标亮度大于或等于所述第一预设目标亮度;
第二判断子单元,配置为判断所述背光源呈现第二预设目标亮度时所述发光亮度控制信号所需的占空比是否位于第一预设占空比范围之内;
第一故障检测子单元,配置为在所述第二判断子单元判断出所述背光源呈现第二预设目标亮度时所述发光亮度控制信号所需的占空比位于所述第一预设占空比范围之内时,检测出所述背光源发光正常;以及, 在所述第二判断子单元判断出所述背光源呈现第二预设目标亮度时所述发光亮度控制信号所需的占空比位于所述第一预设占空比范围之外时,检测出所述背光源发光异常;以及,在所述第一判断子单元判断出所述当前出光亮度大于或等于所述第一预设目标亮度时,检测出所述背光源发光正常。
在一些实施例中,所述背光驱动组件还包括:
亮度控制信号供给单元,与所述发光控制电路电连接,配置为向所述发光控制电路提供发光亮度控制信号;
所述第二信号处理子单元包括:
亮度确定子单元,配置为根据所述感光电信号确定所述背光源在工作时的当前出光亮度;
亮度判断子单元,配置为判断所述当前出光亮度是否位于预设目标亮度范围之内;
占空比调节子单元,配置为在所述亮度判断子单元判断出所述当前出光亮度小于所述预设目标亮度范围的最小值时,按照第一预设调整算法调大所述发光亮度控制信号的占空比;以及,在所述亮度判断子单元判断出所述当前出光亮度大于所述预设目标亮度范围的最大值时,按照第二预设调整算法调小所述发光亮度控制信号的占空比;
第三判断子单元,配置为判断经所述占空比调节子单元调整后的所述发光亮度控制信号的占空比是否位于第二预设占空比范围之内;
第一控制子单元,配置为在所述第三判断子单元判断出经所述占空比调节子单元调整后的所述发光亮度控制信号的占空比位于所述第二预设占空比范围之内时,控制所述亮度控制信号供给单元向所述发光控制电路输出占空比经所述占空比调节子单元调整后的发光亮度控制信号,以及控制所述感光传感器电路再次采集所述背光源在工作时所出射光线;
第一故障检测子单元,配置为在所述第三判断子单元判断出经所述占空比调节子单元所调整后的所述发光亮度控制信号的占空比位于所述第二预设占空比范围之外时,检测出所述背光源发光异常;以及,在所述亮度判断子单元判断出所述当前出光亮度位于预设目标亮度范围之内时,检测出所述背光源发光正常。
在一些实施例中,所述显示模组还包括:计算组件和显示控制系统组件;
所述至少一个目标部件包括所述计算组件;所述计算组件在工作时的工作特征信息包括:所述计算组件向显示控制系统组件发送显示数据信号过程中的水平同步信号和/或垂直同步信号;
所述检测模块包括:
第六检测单元,配置为响应于第六检测信号控制,根据所述水平同步信号和/或所述垂直同步信号,输出用于表征所述计算组件向所述显示控制系统组件提供显示数据信号过程正常的第十一工作状态信息,或者输出用于表征所述计算组件向所述显示控制系统组件提供显示数据信号过程异常的第十二工作状态信息。
在一些实施例中,所述第六检测单元包括:
频率确定子单元,配置为根据所述水平同步信号来确定所述计算组件发送显示数据信号的行频,以及根据所述垂直同步信号来确定所述计算组件发送显示数据信号的帧频;
第四判断子单元,判断所述频率确定子单元所确定出的行频是否位于预设行频范围之内,以及所述确定子单元所确定出的帧频是否位于预设帧频范围之内;
第二故障检测子单元,配置为在所述第四判断子单元判断出所述频率确定子单元所确定出的行频位于预设行频范围之内且所述确定子单元所确定出的帧频位于预设帧频范围之内时,检测出所述计算组件向所述 显示控制系统组件提供显示数据信号过程正常;以及,在所述第四判断子单元判断出所述频率确定子单元所确定出的行频位于预设行频范围之外,和/或所述第四判断子单元判断出所述确定子单元所确定出的帧频位于预设帧频范围之外时,检测出所述计算组件向所述显示控制系统组件提供显示数据信号过程异常。
在一些实施例中,所述显示模组还包括:显示控制系统组件和时序控制组件;
所述至少一个目标部件包括所述显示控制系统组件;所述显示控制系统组件在工作时的工作特征信息包括:所述显示控制系统组件向所述时序控制组件发送的握手信号;
所述检测模块包括:
第七检测单元,配置为响应于第七检测信号的控制,根据所述时序控制组件在检测时段内所接收到的所述握手信号的情况,输出用于表征所述显示控制系统组件向所述时序控制组件输出信号正常的第十三工作状态信息,或者输出用于表征所述显示控制系统组件向所述时序控制组件输出信号异常的第十四工作状态信息。
在一些实施例中,所述第七检测单元包括:
第五判断子单元,配置为判断所述时序控制组件在检测时段内接收所述握手信号的频率是否处于预设频率范围之内;
第三故障检测子单元,配置为在所述第五判断子单元判断出所述时序控制组件在检测时段内接收所述握手信号的频率处于预设频率范围之内时,则检测出所述显示控制系统组件向所述时序控制组件输出信号正常;以及,在所述第五判断子单元判断出所述时序控制组件在检测时段内接收所述握手信号的频率处于预设频率范围之外时,则检测出所述显示控制系统组件向所述时序控制组件输出信号异常。
在一些实施例中,所述握手信号包括:LOCKN信号。
在一些实施例中,所述第七检测单元集成在所述时序控制组件中;
所述第七检测单元的输出端与所述显示控制系统组件电连接,以将所述第七检测单元生成的所述第十三工作状态信息或第十四工作状态信息发送给所述显示控制系统组件。
在一些实施例中,所述显示模组还包括:显示控制系统组件和时序控制组件;
所述至少一个目标部件包括所述显示控制系统组件;所述显示控制系统组件在工作时的工作特征信息包括:所述时序控制组件从所述显示控制系统组件获取待显示图像的显示数据信号;
所述检测模块包括:
第八检测单元,配置为响应于第八检测信号的控制,根据所述时序控制组件分别在画面切换前和切换切换后从所述显示控制系统组件获取待显示图像的显示数据信号,输出用于表征所述显示控制系统组件进行画面切换正常的第十五工作状态信息,或者输出用于表征所述显示控制系统组件进行画面切换异常的第十六工作状态信息。
在一些实施例中,所述显示模组还包括:计算组件;第八检测单元包括:
第二控制子单元,配置为控制所述计算组件向所述显示控制系统组件发送第一图像的显示数据信号,以及控制所述时序控制组件从所述显示控制系统组件获取待显示图像的显示数据信号并对所获取的显示数据信号进行特征提取以得到第一显示特征信息;
第三控制子单元,配置为控制所述计算组件向所述显示控制系统组件发送第二图像的显示数据信号,以及控制所述时序控制组件从所述显示控制系统组件获取待显示图像的显示数据信号并对所获取的显示数据信号进行特征提取以得到第二显示特征信息;
第四故障检测子单元,配置为根据所述第一显示特征信息和所述第 二显示特征信息之间的差异,来检测所述显示控制系统组件进行画面切换正常或异常。
在一些实施例中,所述时序控制组件配置为响应于所述第二控制子单元或所述第三控制子单元的控制对所获取的显示数据信号进行亮度特征提取;
所述第一显示特征信息包括第一亮度信息,所述第二显示特征信息包括第二亮度信息;
所述第四故障检测子单元具体配置为根据所述第一亮度信息和所述第二亮度信息之间的差异值,来检测所述显示控制系统组件进行画面切换正常或异常;
其中,在所述差异值大于预设目标差异值时,检测出所述显示控制系统组件进行画面切换正常;在所述差异值小于或等于所述预设目标差异值时,检测出所述显示控制系统组件进行画面切换异常。
在一些实施例中,所述第一亮度信息包括第一亮度函数值,所述第二亮度信息包括第二亮度函数值;
所述第一亮度信息和所述第二亮度信息之间的差异值为,所述第二亮度函数值与所述第一亮度函数值二者之差的绝对值与二者之和的商。
在一些实施例中,所述显示模组还包括:电源组件、显示控制系统组件、计算组件、时序控制组件和背光驱动组件;
所述电源组件、所述显示控制系统组件、所述计算组件、所述时序控制组件和所述背光驱动组件中的任意至少两个位于同一电路板上。
第二方面,本公开实施例还提供了一种显示装置,其中,包括:如上述第一方面中提供的显示模组。
第三方面,本公开实施例还提供了一种显示系统,其中,包括:如上述第二方面中提供的显示装置和接收装置;
所述接收装置配置为接收所述发送模块所发送的所述工作状态信息。
附图说明
图1为本公开实施例中显示模组的一种结构框图;
图2为本公开实施例中监控系统的一种结构框图;
图3为本公开实施例中检测模块的一种结构框图;
图4为本公开实施例中第一检测单元的一种结构框图;
图5A为本公开实施例中第一电压检测电路的一种电路结构示意图;
图5B为本公开实施例中第一电压检测电路的另一种电路结构示意图;
图5C为本公开实施例中第一电压检测电路的又一种电路结构示意图;
图6为本公开实施例中第一检测单元的另一种结构框图;
图7为本公开实施例中检测模块的另一种结构框图;
图8A为本公开实施例中第二电压检测电路的一种电路结构示意图;
图8B为本公开实施例中第二电压检测电路的另一种电路结构示意图;
图8C为本公开实施例中第二电压检测电路的又一种电路结构示意图;
图9为本公开实施例中检测模块的又一种结构框图;
图10为本公开实施例中检测模块的又一种结构框图;
图11A为本公开实施例中第三电压检测电路的一种电路结构示意图;
图11B为本公开实施例中第三电压检测电路的另一种电路结构示意图;
图11C为本公开实施例中第三电压检测电路的再一种电路结构示意图;
图12为本公开实施例中检测模块的再一种结构框图;
图13为本公开实施例中检测模块的再一种结构框图;
图14为本公开实施例中检测模块的再一种结构框图;
图15为本公开实施例中感光传感器电路的一种电路结构示意图;
图16为本公开实施例中感光传感器芯片设置在背板上的一种示意图;
图17A为本公开实施例中第二信号处理子单元的一种结构框图;
图17B为图17A所示第二信号处理子单元进行工作的一种处理逻辑流程图;
图18A为本公开实施例中第二信号处理子单元的一种结构框图;
图18B为图18A所示第二信号处理子单元进行工作的一种处理逻辑流程图;
图19为本公开实施例中检测模块的再一种结构框图;
图20A为本公开实施例中第六检测单元的一种结构框图;
图20B为图20A所示第六检测单元进行工作的一种处理逻辑流程图;
图21为本公开实施例中检测模块的再一种结构框图;
图22A为本公开实施例中第七检测单元的一种结构框图;
图22B为图22A所示第七检测单元进行工作的一种处理逻辑流程图;
图23为本公开实施例中检测模块的再一种结构框图;
图24A为本公开实施例中第八检测单元的一种结构框图;
图24B为图24A所示第八检测单元进行工作的一种处理逻辑流程图;
图25为本公开实施例所提供的一种显示系统的结构框图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的一种显示模组、显示装置和显示系统进行详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述目标的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例提供了一种具备故障自我诊断功能的显示模组,可使得显示模组能够自动上报目标组件的工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
图1为本公开实施例中显示模组的一种结构框图。图2为本公开实施例中监控系统的一种结构框图。如图1和图2所示,该显示模组包括监控系统,监控系统10包括:检测模块11和发送模块12。
其中,检测模块11配置为检测显示模组内至少一个目标部件在工作时的工作特征信息,并根据目标部件的工作特征信息确定目标部件的工作状态信息。发送模块12配置为将工作状态信息发出。
在本公开实施例中,检测模块11和发送模块12的具体形式可以为软件、硬件或二者的结合。
发送模块12可以通过网络将目标部件的工作信息发送给目标对象。其中,网络可以包括各种,例如有线通信链路、无线通信链路(例如,WIFI、LTE_4G网络、NR_5G网络)或者光纤电缆等等。目标对象可以为服务器或特定终端(例如,手机、平板、电脑等可供运维人员进行信息查阅的电子设备)。本公开的技术方案对于发送模块12发送工作状态信息所采用的通信技术以及接收工作状态信息的目标对象均不作限定。
在本公开实施例中,通过设置上述检测模块11和发送模块12,可使得显示模组具备故障自我诊断功能,且能够将目标部件的工作状态信息发送给运维人员进行查阅,因此无需运维人员再去实地巡视显示产品是否存在故障,方便运维人员对显示产品进行运行维护,有利于提升运行维护效率。
在一些实施例中,显示模组包括:电源组件1、显示控制系统组件2、计算组件3、时序控制组件4、背光驱动组件5和背光源6;至少一个目标部件包括:电源组件1、显示控制系统组件2、计算组件3、时序控制组件4、背光驱动组件5和背光源6中的至少之一。
其中,电源组件1为显示模组中用于进行供电的部分,具体地其可以向显示模组中的部分组件直接或间接的供电;显示控制系统组件2也可以称为主板,其为显示模组中的核心部分,一般用于控制显示模组中其他组件进行协调工作,显示控制系统组件2的实体为固定有显示控制系统芯片(Display Control System On Chip)的电路板,示例性地,显示控制系统芯片可以MST9U01芯片;计算组件3作为显示控制系统组件2的抓取(capture)部分,一般用于抓取外部信号源所输入的显示数据信号,并将其按照一定规则发送给显示控制系统组件2;时序控制组件4用于提供控制时序,以控制显示模组中的各种驱动(例如,源极驱动、栅极驱动等)进行协调工作;背光驱动组件5用于驱动背光源6进行发光;背光源6响应于背光驱动组件5的控制而进行发光,背光源6 一般包括并联的多个灯条。
需要说明的是,上述电源组件1、显示控制系统组件2、计算组件3、时序控制组件4、背光驱动组件5和背光源6,仅仅为基于功能上的划分。在实际产品中,电源组件1、显示控制系统组件2、计算组件3、时序控制组件4、背光驱动组件5和背光源6均可以作为独立结构而存在于显示模组内,或者是两者或多者通过集成方式而存在于同一结构中。本公开的技术方案对于电源组件1、显示控制系统组件2、计算组件3、时序控制组件4、背光驱动组件5和背光源6的具体存在形式不作限定。
图3为本公开实施例中检测模块的一种结构框图。如图3所示,在一些实施例中,至少一个目标部件包括电源组件1,电源组件1在工作时的工作特征信息包括:电源组件1向显示控制系统组件2进行供电的各第一供电通道中的控制系统用电压信号,检测模块11包括第一检测单元111。
第一检测单元111与各第一供电通道分别相连,第一检测单元111配置为响应于第一检测信号的控制,根据第一供电通道内所加载控制系统用电压信号的情况,输出用于表征电源组件1向显示控制系统组件2进行供电正常的第一工作状态信息,或者输出用于表征电源组件1向显示控制系统组件2进行供电异常的第二工作状态信息。
可选地,在各第一供电通道均加载有对应的控制系统用电压信号时,表示电源组件1向显示控制系统组件2进行供电正常;在至少一条第一供电通道未加载对应的控制系统用电压信号时,表示电源组件1向显示控制系统组件2进行供电异常。
图4为本公开实施例中第一检测单元的一种结构框图。如图4所示,作为一种可选实施方案,电源组件1向显示控制系统组件2进行供电的第一供电通道的数量为1;第一检测单元111包括:第一电压检测电路1111;第一电压检测电路1111的输入端与第一供电通道电连接,第一电 压检测电路1111配置为在第一供电通道内加载有控制系统用电压信号时输出第一工作状态信息,以及在第一供电通道内未加载控制系统用电压信号时输出第二工作状态信息。
图5A为本公开实施例中第一电压检测电路的一种电路结构示意图。如图5A所示,在一些实施例中,第一电压检测电路1111包括:第一电阻R1、第二电阻R2、第三电阻R3和第一晶体管T1。
第一电阻R1的第一端与第一电压检测电路1111的输入端IN1电连接,第一电阻R1的第二端与第二电阻R2的第一端和第一晶体管T1的栅极电连接。
第二电阻R2的第一端与第一晶体管T1的栅极电连接,第二电阻R2的第二端与低电平供给端电连接。
第一晶体管T1的第一极与第一电压检测电路1111的输出端OUT1电连接,第一晶体管T1的第二极与低电平供给端电连接。其中,第一晶体管T1可以为N型晶体管或P型晶体管。
第三电阻R3的第一端与第一高电平供给端电连接,第三电阻R3的第二端与第一电压检测电路1111的输出端OUT1和第一晶体管T1的第一极电连接。
作为一个示例,第一晶体管T1可以为N型晶体管;当第一电压检测电路1111的输入端输入有相应控制系统用电压信号时,第一晶体管T1导通,低电平供给端提供的低电平信号通过第一晶体管T1写入至第一电压检测电路1111的输出端,第一电压检测电路1111的输出端OUT1输出低电平信号。当第一电压检测电路1111的输入端IN1未输入有相应控制系统用电压信号时,第一晶体管T1截止,第一高电平供给端提供的高电平信号通过第三电阻R3写入至第一电压检测电路1111的输出端OUT1,第一电压检测电路1111的输出端OUT1输出高电平信号。
也就是说,当第一电压检测电路1111的输入端IN1输入有相应控制 系统用电压信号时(即,第一供电通道加载有对应的控制系统用电压信号),第一电压检测电路1111的输出端OUT1输出低电平信号以表征第一工作状态信息;当第一电压检测电路1111的输入端IN1未输入有相应控制系统用电压信号时(即,第一供电通道未加载有对应的控制系统用电压信号),第一电压检测电路1111的输出端输出高电平信号以表征第二工作状态信息。
在图5A所示情况中,第一电阻R1的阻值r1和第二电阻R2的阻值r2满足:
(V1-VL)*r2/(r1+r2)≥Vth_T1_N
其中,V1为第一电压检测电路1111所连接的第一供电通道应提供控制系统用电压信号的电压,VL为低电平供给端所提供低电平电压,Vth_T1_N为第一晶体管T1的阈值电压。
图5B为本公开实施例中第一电压检测电路的另一种电路结构示意图。如图5B所示,与图5A中所示情况不同的是,图5B所示情况中第一晶体管T1为P型晶体管。
当第一电压检测电路1111的输入端IN1输入有相应控制系统用电压信号时,第一晶体管T1截止,第一高电平供给端提供的高电平信号通过第三电阻R3写入至第一电压检测电路1111的输出端,第一电压检测电路1111的输出端OUT1输出高电平信号;当第一电压检测电路1111的输入端IN1未输入有相应控制系统用电压信号时,低电平供给端提供的低电平信号通过第二电阻R2写入至P型晶体管的栅极,第一晶体管T1导通,低电平供给端提供的低电平信号通过第一晶体管T1写入至第一电压检测电路1111的输出端OUT1,第一电压检测电路1111的输出端OUT1输出低电平信号。
也就是说,当第一电压检测电路1111的输入端IN1输入有相应控制系统用电压信号时(即,第一供电通道加载有对应的控制系统用电压信 号),第一电压检测电路1111的输出端OUT1输出高电平信号以表征第一工作状态信息;当第一电压检测电路1111的输入端IN1输入未有相应控制系统用电压信号时(即,第一供电通道未加载有对应的控制系统用电压信号),第一电压检测电路1111的输出端OUT1输出低电平信号以表征第二工作状态信息。
在图5B所示情况中,第一电阻R1的阻值r1和第二电阻R2的阻值r2满足:
(V1-VL)*r2/(r1+r2)≤Vth_T1_P
其中,V1为第一电压检测电路1111所连接的第一供电通道应提供控制系统用电压信号的电压,VL为低电平供给端所提供低电平电压,Vth_T1_P为第一晶体管T1的阈值电压。
在图5A和图5B所示情况中,VL具体可以为接地电压(一般用VSS表示),大小近似为0V。第三电阻R3的阻值r3满足r3≥2.5KΩ,第三电阻R3起到限流作用,以避免第一电压检测电路1111的输出端处电流过大。
图5C为本公开实施例中第一电压检测电路的又一种电路结构示意图。如图5C所示,第一电压检测电路1111中包括有第一电阻R1、第三电阻R3、第一晶体管T1以及一个第一稳压管ZD1。
第一稳压管ZD1的阴极与第一电压检测电路1111的输入端电连接,第一稳压管ZD1的阳极与第一电阻R1的第一端电连接,第一稳压管ZD1的击穿电压小于第一电压检测电路1111所连接的第一供电通道应提供控制系统用电压信号的电压;
第一电阻R1的第二端与第一晶体管T1的栅极电连接;
第一晶体管T1的第一极与第一电压检测电路1111的输出端电连接,第一晶体管T1的第二极与低电平供给端电连接,第一晶体管T1为N型晶体管;
第三电阻R3的第一端与第一高电平供给端电连接,第三电阻R3的第二端与第一电压检测电路1111的输出端和第一晶体管T1的第一极电连接。
在一些实施例中,第一电压检测电路1111还包括:第二电阻R2;第二电阻R2的第一端与第一稳压管ZD1的阳极和第一电阻R1的第一端电连接,第二电阻R2的第二端与低电平供给端电连接。
图5C所示第一电压检测电路1111的工作原理与图5A所示第一电压检测电路1111的工作原理类似。即,当第一电压检测电路1111的输入端IN1输入有相应控制系统用电压信号时,第一电压检测电路1111的输出端OUT1输出低电平信号;当第一电压检测电路1111的输入端IN1输入未有相应控制系统用电压信号时,第一电压检测电路1111的输出端OUT1输出高电平信号。
需要说明的是,在本公开实施例中第一电压检测电路1111还可以采用其他电路结构,但凡能够用于检测某个信号是否存在的检测电路均可以作为本公开中第一电压检测电路1111来使用。本公开不再一一举例描述。
图6为本公开实施例中第一检测单元的另一种结构框图。如图6所示,与前面实施例中电源组件1向显示控制系统组件2进行供电的第一供电通道数量为1所不同,作为本公开中的另一种可选实施方案,电源组件1向显示控制系统组件2进行供电的第一供电通道数量大于或等于2。
在一些实施例中,电源组件1向显示控制系统组件2进行供电的至少2个第一供电通道可包括:用于向显示控制系统组件提供显示控制系统组件所需工作电压(一般为5V)的供电通道、用于向显示控制系统组件提供显示面板所需工作电压(一般为12V)的供电通道(后续由显示控制系统组件将相应工作电压输出给显示面板)。当然,本公开实施例 中,在电源组件1与显示控制系统组件2之间建立其他的第一供电通道,以供电源组件1向显示控制系统组件2提供所需的电压。
此时,第一检测单元111包括:逻辑处理电路1112和与各第一供电通道一一对应的至少2个第一电压检测电路1111。其中,第一电压检测电路1111的输入端与对应的第一供电通道电连接,第一电压检测电路1111的输出端与逻辑处理电路1112的输入端电连接。
第一电压检测电路1111配置为在对应的第一供电通道加载有控制系统用电压信号时输出第一电平信号,以及在对应的第一供电通道内未加载控制系统用电压信号时输出第二电平信号;第一电平信号和第二电平信号中之一为高电平信号,另一为低电平信号。
逻辑处理电路1112配置为在所电连接的各第一电压检测电路1111均输出为第一电平信号时输出第一工作状态信息,以及在至少一个第一电压检测电路1111输出第二电平信号时输出第二工作状态信息。
需要说明的是,图6所示第一检测单元111内的任一第一电压检测电路1111,可以分别采用前面图5A~图5C中任一第一电压检测电路1111。另外,图6中不同第一电压检测电路1111所检测的“控制系统用电压信号”的电压大小不同,故不同第一电压检测电路1111内所设置第一电阻R1、第二电阻R2的具体阻值不同。当然,图6中任一第一电压检测电路1111也可以采用其他能够用于检测某个信号是否存在的检测电路;对于第一电压检测电路1111的相关描述可参见前面实施例中的内容,此处不再赘述。下面仅对逻辑处理电路1112作详细描述。
作为一种可选实施方案,图6中第一电压检测电路1111所输出的第一电平信号为低电平信号,第二电平信号为高电平信号(此时,第一电压检测电路可采用图5A或图5C中所示);逻辑处理电路1112为或门电路,逻辑处理电路1112输出的低电平信号表征第一工作状态信息,逻辑处理电路1112输出的高电平信号表征第二工作状态信息。
其中,或门电路有多个输入端,一个输出端,只要输入中有一个为高电平时(逻辑“1”),输出就为高电平(逻辑“1”);只有当所有的输入全为低电平(逻辑“0”)时,输出才为低电平(逻辑“0”)。
作为另一种可选实施方案,图6中第一电压检测电路1111所输出的第一电平信号为高电平信号,第二电平信号为低电平信号(此时,第一电压检测电路可采用图5B中所示);逻辑处理电路1112为与门电路,逻辑处理电路1112输出的高电平信号表征第一工作状态信息,逻辑处理电路1112输出的低电平信号表征第二工作状态信息。
其中,与门电路有多个输入端,一个输出端,当所有的输入同时为高电平(逻辑1)时,输出才为高电平,否则输出为低电平(逻辑0)。
需要说明的是,本公开的技术方案对于与门电路和或门电路的具体电路结构不作限定。
在一些实施例中,在第一供电通道内配置有保险电路,保险电路的第一端与电源组件1电连接,保险电路的第二端与显示控制系统组件2电连接;第一检测单元111与保险电路的第二端电连接。
保险电路设置于电源组件1内,具体包括保险丝;保险电路配置为在所对应的第一供电通道内的电流超过所设定的额定电流时使得所对应的第一供电通道断路,以避免因第一供电通道内的电流过大而造成电源组件1和/或显示控制系统组件2内电学器件的损坏。
在一些实施例中,第一检测单元111集成在显示控制系统组件2上。具体地,第一检测单元111所包含的各电学器件(例如,电阻、电容、晶体管等)可集成在显示控制系统组件2所包含电路板上并位于显示控制系统芯片的外围,并根据实际需要来与显示控制系统芯片的部分外接端子电连接,以使得第一检测单元111与显示控制系统组件2之间能够传递信号。
需要说明的是,由于显示控制系统组件2一般自带有待机用供电模 块,在电源组件1向显示控制系统组件2进行供电异常时,通过该待机用供电模块所提供的电源也能够维持显示控制系统组件2进行一段时间的工作。在将第一检测单元111集成在显示控制系统组件2上时,可将显示控制系统组件2所自带的待机用供电模块的输出端作为第一高电平供给端来使用。
基于前面内容可见,通过上述第一检测单元111,可对电源组件1向显示控制系统组件2进行供电是否存在故障进行有效检测,并能够输出用于表征电源组件1向显示控制系统组件2进行供电正常的第一工作状态信息,或者输出用于表征电源组件1向显示控制系统组件2进行供电异常的第二工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
图7为本公开实施例中检测模块的另一种结构框图。如图7所示,在一些实施例中,至少一个目标部件包括显示控制系统组件2,显示控制系统组件2在工作时的工作特征信息包括:显示控制系统组件2向时序控制组件4进行供电的第二供电通道中的时序控制用电压信号;检测模块11包括:第二检测单元112。
第二检测单元112与第二供电通道相连,第二检测单元112配置为响应于第二检测信号的控制,根据第二供电通道内所加载时序控制用电压信号的情况,输出用于表征显示控制系统组件2向时序控制组件4进行供电正常的第三工作状态信息,或者输出用于表征显示控制系统组件2向时序控制组件4进行供电异常的第四工作状态信息。
可选地,在第二供电通道加载有控制器用电压信号时,表示显示控制系统组件2向时序控制组件4进行供电正常;在第二供电通道未加载有控制器用电压信号时,表示显示控制系统组件2向时序控制组件4进行供电异常。
图8A为本公开实施例中第二电压检测电路的一种电路结构示意图。 如图8A所示,在一些实施例中,第二检测单元112包括:第二电压检测电路,第二电压检测电路的输入端IN2与第二供电通道电连接,第二电压检测电路配置为在第二供电通道内加载有时序控制用电压信号时输出第三工作状态信息,以及在第二供电通道内未加载时序控制用电压信号时输出第四工作状态信息。第三工作状态信息和第四工作状态信息中之一为高电平信号,另一为低电平信号。
在一些实施例中,第二电压检测电路包括:第十一电阻R11、第十二电阻R12、第十三电阻R13和第十一晶体管T11。
第十一电阻R11的第一端与第二电压检测电路的输入端IN2电连接,第十一电阻R11的第二端与第十二电阻R12的第一端和第十一晶体管T11的栅极电连接。
第十二电阻R12的第一端与第十一晶体管T11的栅极电连接,第十二电阻R12的第二端与低电平供给端电连接。
第十一晶体管T11的第一极与第二电压检测电路的输出端OUT2电连接,第十一晶体管T11的第二极与低电平供给端电连接。
第十三电阻R13的第一端与第一高电平供给端电连接,第十三电阻R13的第二端与第二电压检测电路的输出端OUT2和第十一晶体管T11的第一极电连接。
作为一个示例,第十一晶体管T11可以为N型晶体管;当第二电压检测电路的输入端IN2输入有相应时序控制用电压信号时,第十一晶体管T11导通,低电平供给端提供的低电平信号通过第十一晶体管T11写入至第二电压检测电路的输出端OUT2,第二电压检测电路的输出端OUT2输出低电平信号。当第二电压检测电路的输入端IN2未输入有相应时序控制用电压信号时,第一晶体管T1截止,第一高电平供给端提供的高电平信号通过第十三电阻R13写入至第二电压检测电路的输出端OUT2,第二电压检测电路的输出端OUT2输出高电平信号。
也就是说,当第二电压检测电路的输入端IN2输入有相应时序控制用电压信号时(即,第二供电通道加载有对应的时序控制用电压信号),第二电压检测电路的输出端OUT2输出低电平信号以表征第三工作状态信息;当第二电压检测电路的输入端IN2输入未有相应时序控制用电压信号时(即,第二供电通道未加载有对应的时序控制用电压信号),第二电压检测电路的输出端OUT2输出高电平信号以表征第四工作状态信息。
在图8A所示情况中,第十一电阻R11的阻值r11和第十二电阻R12的阻值r12满足:
(V2-VL)*r12/(r11+r12)≥Vth_T11_N
其中,V2为第二电压检测电路所连接的第二供电通道应提供时序控制用电压信号的电压,VL为低电平供给端所提供低电平电压,Vth_T11_N为第十一晶体管T11的阈值电压。
图8B为本公开实施例中第二电压检测电路的另一种电路结构示意图。如图8B所示,与图8A中所示情况不同的是,图8B所示情况中第十一晶体管T11为N型晶体管。
当第二电压检测电路的输入端IN2输入有相应时序控制用电压信号时,第十一晶体管T11截止,第一高电平供给端提供的高电平信号通过第十三电阻R13写入至第二电压检测电路的输出端OUT2,第二电压检测电路的输出端OUT2输出高电平信号;当第二电压检测电路的输入端IN2未输入有相应时序控制用电压信号时,低电平供给端提供的低电平信号通过第十二电阻R12写入至P型晶体管的栅极,第十一晶体管T11导通,低电平供给端提供的低电平信号通过第十一晶体管T11写入至第二电压检测电路的输出端OUT2,第二电压检测电路的输出端OUT2输出低电平信号。
也就是说,当第二电压检测电路的输入端IN2输入有相应时序控制 用电压信号时(即,第二供电通道加载有对应的时序控制用电压信号),第二电压检测电路的输出端OUT2输出高电平信号以表征第三工作状态信息;当第二电压检测电路的输入端IN2输入未有相应时序控制用电压信号时(即,第二供电通道未加载有对应的时序控制用电压信号),第二电压检测电路的输出端OUT2输出低电平信号以表征第四工作状态信息。
在图8B所示情况中,第十一电阻R11的阻值r11和第十二电阻R12的阻值r12满足:
(V2-VL)*r12/(r11+r12)≤Vth_T11_P
其中,V2为第二电压检测电路所连接的第二供电通道应提供时序控制用电压信号的电压,VL为低电平供给端所提供低电平电压,Vth_T11_P为第十一晶体管T11的阈值电压。
在图8A和图8B所示情况中,VL具体可以为接地电压(一般用VSS表示),大小近似为0V。第十三电阻R13的阻值r13满足r13≥2.5KΩ,第十三电阻R13起到限流作用,以避免第二电压检测电路的输出端OUT2处电流过大。
图8C为本公开实施例中第二电压检测电路的又一种电路结构示意图。如图8C所示,第二检测电路中包括有第十一电阻R11、第十三电阻R13、第十一晶体管T11以及一个第十一稳压管ZD11。
第十一稳压管ZD11的阴极与第二电压检测电路的输入端IN2电连接,第十一稳压管ZD11的阳极与第十一电阻R11的第一端电连接,第十一稳压管ZD11的击穿电压小于第二电压检测电路所连接的第二供电通道应提供时序控制用电压信号的电压;
第十一电阻R11的第二端与第十一晶体管T11的栅极电连接;
第十一晶体管T11的第一极与第二电压检测电路的输出端OUT2电连接,第十一晶体管T11的第二极与低电平供给端电连接,第十一晶体管 T11为N型晶体管;
第十三电阻R13的第一端与第一高电平供给端电连接,第十三电阻R13的第二端与第二电压检测电路的输出端OUT2和第十一晶体管T11的第一极电连接。
在一些实施例中,第二电压检测电路还包括:第十二电阻R12;第十二电阻R12的第一端与稳压管的阳极和第十一电阻R11的第一端电连接,第十二电阻R12的第二端与低电平供给端电连接。
图8C所示第二电压检测电路的工作原理与图8A所示第二电压检测电路的工作原理类似。即,当第二电压检测电路的输入端IN2输入有相应时序控制用电压信号时,第二电压检测电路的输出端OUT2输出低电平信号;当第二电压检测电路的输入端IN2输入未有相应时序控制用电压信号时,第二电压检测电路的输出端OUT2输出高电平信号。
需要说明的是,在本公开实施例中第二电压检测电路还可以采用其他电路结构,但凡能够用于检测某个信号是否存在的检测电路均可以作为本公开中第二电压检测电路来使用。本公开不再一一举例描述。
在一些实施例中,在第二供电通道内配置有供电晶体管(未示出),供电晶体管的第一极与显示控制系统组件2电连接,供电晶体管的第二极与时序控制组件4电连接;第二检测单元112与供电晶体管的第二极电连接。
在一些实施例中,第二检测单元112集成在显示控制系统组件2上。具体地,第二检测单元112所包含的各电学器件可集成在显示控制系统组件2所包含电路板上并位于显示控制系统芯片的外围,并根据实际需要来与显示控制系统芯片的部分外接端子电连接,以使得第二检测单元112与显示控制系统组件2之间能够传递信号。
基于前面内容可见,通过上述第二检测单元112,可对显示控制系统组件2向时序控制组件4进行供电是否存在故障进行有效检测,并能 够输出用于表征显示控制系统组件2向时序控制组件4进行供电正常的第三工作状态信息,或者输出用于表征显示控制系统组件2向时序控制组件4进行供电异常的第四工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
图9为本公开实施例中检测模块的又一种结构框图。如图9所示,在一些实施例中,至少一个目标部件包括背光驱动组件5,背光驱动组件5的供电输出端与背光源6的第一端电连接,背光驱动组件5配置有I2C数据读取接口;背光驱动组件5在工作时的工作特征信息包括:背光驱动组件5向背光源6进行供电的供电输出端处的背光源用电压信号;检测模块11包括:第三检测单元113。
第三检测单元113与背光驱动组件5所配置的I2C数据读取接口相连,配置为响应于第三检测信号的控制,根据通过背光驱动组件5所配置的I2C数据读取接口所读取到的供电输出端处背光源用电压信号的电压值,输出用于表征背光驱动组件5向背光源6进行供电正常的第五工作状态信息,或者输出用于表征背光驱动组件5向背光源6进行供电异常的第六工作状态信息。
在一些实施例中,第三检测单元113具体配置为在背光源用电压信号的电压值位于第一预设电压范围之内时输出第五工作状态信息;以及在背光源用电压信号的电压值位于第一预设电压范围之外时输出第六工作状态信息。
在一些实施例中,第三检测单元113集成在显示控制系统组件2中。具体地,第三检测单元113以软件形式集成在显示控制系统组件2的显示控制系统芯片中,并能够通过背光驱动组件5所配置的I2C数据读取接口来读取供背光驱动组件5的供电输出端处背光源用电压信号的电压值。
图10为本公开实施例中检测模块的又一种结构框图。如图10所示, 在一些实施例中,至少一个目标部件包括背光驱动组件5,背光驱动组件5的供电输出端OUT_V与背光源6的第一端电连接;背光驱动组件5在工作时的工作特征信息包括:背光驱动组件5向背光源6进行供电的供电输出端OUT_V处的背光源用电压信号;检测模块11包括:第三检测单元113。
第三检测单元113与供电输出端OUT_V电连接,第三检测单元113配置为响应于第三检测信号的控制,根据供电输出端OUT_V处所加载背光源用电压信号的情况,输出用于表征背光驱动组件5向背光源6进行供电正常的第五工作状态信息,或者输出用于表征背光驱动组件5向背光源6进行供电异常的第六工作状态信息。
可选地,在背光驱动组件5的供电输出端OUT_V加载有背光源用电压信号时,表示背光驱动组件5向背光源6进行供电正常;在背光驱动组件5的供电输出端OUT_V未加载有背光源用电压信号时,表示背光驱动组件5向背光源6进行供电异常。
图11A为本公开实施例中第三电压检测电路的一种电路结构示意图。如图11A所示,在一些实施例中,第三检测单元113包括:第三电压检测电路;第三电压检测电路的输入端与供电输出端OUT_V电连接,第三电压检测电路配置为在供电输出端OUT_V加载有背光源用电压信号时输出第五工作状态信息,以及在供电输出端OUT_V未加载背光源用电压信号时输出第六工作状态信息。第五工作状态信息和第六工作状态信息中之一为高电平信号,另一为低电平信号。
在一些实施例中,第三电压检测电路包括:第二十一电阻R21、第二十二电阻R22、第二十三电阻R23和第二十一晶体管T21。
第二十一电阻R21的第一端与第三电压检测电路的输入端IN3电连接,第二十一电阻R21的第二端与第二十二电阻R22的第一端和第二十一晶体管T21的栅极电连接。
第二十二电阻R22的第一端与第二十一晶体管T21的栅极电连接,第二十二电阻R22的第二端与低电平供给端电连接。
第二十一晶体管T21的第一极与第三电压检测电路的输出端OUT3电连接,第二十一晶体管T21的第二极与低电平供给端电连接。
第二十三电阻R23的第一端与第二高电平供给端电连接,第二十三电阻R23的第二端与第二电压检测电路的输出端OUT3和第二十一晶体管T21的第一极电连接。
作为一个示例,第二十一晶体管T21可以为N型晶体管;当第三电压检测电路的输入端IN3输入有相应背光源用电压信号时,第二十一晶体管T21导通,低电平供给端提供的低电平信号通过第二十一晶体管T21写入至第三电压检测电路的输出端OUT3,第三电压检测电路的输出端OUT3输出低电平信号。当第三电压检测电路的输入端IN3未输入有相应背光源用电压信号时,第二十一晶体管T21截止,第二高电平供给端提供的高电平信号通过第二十三电阻R23写入至第三电压检测电路的输出端OUT3,第三电压检测电路的输出端OUT3输出高电平信号。
也就是说,当第三电压检测电路的输入端输入有相应背光源用电压信号时(即,背光驱动组件5的供电输出端OUT_V加载有对应的背光源用电压信号),第三电压检测电路的输出端OUT3输出低电平信号以表征第三工作状态信息;当第三电压检测电路的输入端IN3输入未有相应背光源用电压信号时(即,背光驱动组件5的供电输出端OUT_V未加载有对应的背光源用电压信号),第三电压检测电路的输出端OUT3输出高电平信号以表征第四工作状态信息。
在图11A所示情况中,第二十一电阻R21的阻值r21和第二十二电阻R22的阻值r22满足:
(V3-VL)*r22/(r21+r22)≥Vth_T21_N
其中,V3为第三电压检测电路所连接的背光驱动组件5的供电输出 端OUT_V应提供背光源用电压信号的电压,VL为低电平供给端所提供低电平电压,Vth_T21_N为第二十一晶体管T21的阈值电压。
图11B为本公开实施例中第三电压检测电路的另一种电路结构示意图。如图11B所示,与图11A中所示情况不同的是,图11B所示情况中第二十一晶体管T21为N型晶体管。
当第三电压检测电路的输入端IN3输入有相应背光源用电压信号时,第二十一晶体管T21截止,第二高电平供给端提供的高电平信号通过第二十三电阻R23写入至第三电压检测电路的输出端OUT3,第三电压检测电路的输出端OUT3输出高电平信号;当第三电压检测电路的输入端IN3未输入有相应背光源用电压信号时,低电平供给端提供的低电平信号通过第二十二电阻R22写入至P型晶体管的栅极,第二十一晶体管T21导通,低电平供给端提供的低电平信号通过第二十一晶体管T21写入至第三电压检测电路的输出端OUT3,第三电压检测电路的输出端OUT3输出低电平信号。
也就是说,当第三电压检测电路的输入端IN3输入有相应背光源用电压信号时(即,背光驱动组件5的供电输出端OUT_V加载有对应的背光源用电压信号),第三电压检测电路的输出端OUT3输出高电平信号以表征第五工作状态信息;当第三电压检测电路的输入端IN3输入未有相应背光源用电压信号时(即,背光驱动组件5的供电输出端OUT_V未加载有对应的背光源用电压信号),第三电压检测电路的输出端OUT3输出低电平信号以表征第六工作状态信息。
在图11B所示情况中,第二十一电阻R21的阻值r21和第二十二电阻R22的阻值r22满足:
(V3-VL)*r22/(r21+r22)≤Vth_T21_P
其中,V3为第三电压检测电路所连接的供电输出端OUT_V应提供背光源用电压信号的电压,VL为低电平供给端所提供低电平电压, Vth_T21_P为第二十一晶体管T21的阈值电压。
在图11A和图11B所示情况中,VL具体可以为接地电压(一般用VSS表示),大小近似为0V。第二十三电阻R23的阻值r23满足r23≥2.5KΩ,第二十三电阻R23起到限流作用,以避免第三电压检测电路的输出端OUT3处电流过大。
图11C为本公开实施例中第三电压检测电路的再一种电路结构示意图。如图11C所示,第三检测电路中包括有第二十一电阻R21、第二十三电阻R23、第二十一晶体管T21以及一个第二十二稳压管ZD22。
第二十二稳压管ZD22的阴极与第三电压检测电路的输入端IN3电连接,第二十二稳压管ZD22的阳极与第二十一电阻R21的第一端电连接,第二十二稳压管ZD22的击穿电压小于第三电压检测电路所连接的背光驱动组件5的供电输出端OUT_V应提供背光源用电压信号的电压;
第二十一电阻R21的第二端与第二十一晶体管T21的栅极电连接;
第二十一晶体管T21的第一极与第三电压检测电路的输出端OUT3电连接,第二十一晶体管T21的第二极与低电平供给端电连接,第二十一晶体管T21为N型晶体管;
第二十三电阻R23的第一端与第二高电平供给端电连接,第二十三电阻R23的第二端与第三电压检测电路的输出端OUT3和第二十一晶体管T21的第一极电连接。
在一些实施例中,第三电压检测电路还包括:第二十二电阻R22;第二十二电阻R22的第一端与第二十二稳压管ZD22的阳极和第二十一电阻R21的第一端电连接,第二十二电阻R22的第二端与低电平供给端电连接。
图11C所示第三电压检测电路的工作原理与图11A所示第三电压检测电路的工作原理类似。即,当第三电压检测电路的输入端IN3输入有相应背光源用电压信号时,第三电压检测电路的输出端OUT3输出低电平 信号;当第三电压检测电路的输入端IN3输入未有相应背光源用电压信号时,第三电压检测电路的输出端OUT3输出高电平信号。
需要说明的是,在本公开实施例中第三电压检测电路还可以采用其他电路结构,但凡能够用于检测某个信号是否存在的检测电路均可以作为本公开中第三电压检测电路来使用。本公开不再一一举例描述。
在一些实施例中,第三检测单元113集成在背光驱动组件5上。具体地,背光驱动组件5包括固定有用于实现背光驱动功能的各种电学器件的电路板,第三检测单元113所包含的各电学器件可集成在背光驱动组件5中的电路板上,并根据实际需要来与背光驱动组件5中现有的一些外接端子电连接,以使得第三检测单元113与背光驱动组件5之间能够传递信号。另外,第三检测单元113的输出端还与显示控制系统组件2相连,以使得第三检测单元113与显示控制系统组件2之间能够传递信号(例如,将第五工作状态信息/第六工作状态信息发送给显示控制系统组件2)。
基于前面内容可见,通过上述第三检测单元113,可对背光驱动组件5向背光源6进行供电是否存在故障进行有效检测,并能够输出用于表征背光驱动组件5向背光源6进行供电正常的第五工作状态信息,或者输出用于表征背光驱动组件5向背光源6进行供电异常的第六工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
图12为本公开实施例中检测模块的再一种结构框图。如图12所示,在一些实施例中,至少一个目标部件包括背光源6,背光驱动组件5的供电输出端OUT_V与背光源6的第一端电连接,背光源6在工作时的工作特征信息包括:背光源6在工作时的背光源6工作电流信号;检测模块11包括:第四检测单元114。
第四检测单元114配置为响应于第四检测信号的控制,根据背光源 6在工作时的背光源6工作电流信号,输出用于表征背光源6的工作电流正常的第七工作状态信息,或者输出用于背光源6的工作电流异常的第八工作状态信息。
可选地,第四检测单元114具体配置为在背光源6工作电流信号的电流值位于第一预设电流范围之内时输出第七工作状态信息;以及在背光源6工作电流信号的电流值位于第一预设电流范围之外时输出第八工作状态信息。
在一些实施例中,背光驱动组件5配置有I2C数据读取接口;第四检测单元114与背光驱动组件5所配置的I2C数据读取接口相连,第四检测单元114还配置为响应于第四检测信号的控制,通过背光驱动组件5所配置的I2C数据读取接口读取背光源6工作电流信号的电流值。
在一些实施例中,第四检测单元114集成在显示控制系统组件2中。具体地,第四检测单元114以软件形式集成在显示控制系统组件2内的显示控制系统芯片中,并能够通过背光驱动组件5所配置的I2C数据读取接口来读取背光源6工作电流信号的电流值(即,背光驱动组件5向背光源6进行供电的供电输出端OUT_V处的电流值)。
图13为本公开实施例中检测模块的再一种结构框图。如图13所示,与前面直接通过I2C数据读取接口来读取背光源6工作电流信号的电流值的方式所不同,在一些实施例中可基于采样电路来获取背光源6在工作时的背光源6工作电流信号。在一些实施例中,第四检测单元114包括:采样电路1141和第一信号处理子单元1142。
其中,采样电路1141的输入端与背光源6电连接且采样电路1141与背光源6形成串联,采样电路1141配置为获取背光源6工作电流信号所对应的模拟采样电压信号;第一信号处理子单元1142,配置为对模拟采样电压信号进行模数转换处理,得到相应的数字采样电压信号,并根据数字采样电压信号的电压值来检测背光源6工作电流信号的电流值是 否位于第一预设电流范围之内。
其中,若数字采样电压信号的电压值位于第二预设电压范围之内,则表示第一信号处理子单元1142检测出背光源6工作电流信号的电流值位于第一预设电流范围之内,输出第七工作状态信息;若数字采样电压信号的电压值位于第二预设电压范围之外,则表示第一信号处理子单元1142检测出背光源6工作电流信号的电流值位于第一预设电流范围之外,输出第八工作状态信息。
在一些实施例中,背光驱动组件5包括:升压电路和升压控制模块,升压电路的输出端即为背光驱动组件5用于向背光源6提供背光源用电压信号的供电输出端OUT_V,升压电路用于产生并输出背光源用电压信号。
其中,升压电路包括:电感L、升压控制晶体管Tr、整流二极管D和第三十电阻R30。电感L的第一端与升压电路的输入端IN_V电连接,电感L的第二端与整流二极管D的阳极电连接;升压控制晶体管Tr的栅极与升压控制模块电连接,升压控制晶体管Tr的第一极与整流二极管D的阳极电连接,升压控制晶体管Tr的第二极与第三十电阻R30的第一端电连接;第三十电阻R30的第二端接地;整流二极管D的阴极与背光驱动组件5的供电输出端OUT_V电连接;采样电路1141的输入端与第三十电阻R30的第一端电连接。
在实际应用中,可通过升压控制模块所输出信号来控制升压控制晶体管Tr的导通或截止,从而实现对升压电路所输出的背光源用电压信号的电压大小进行控制。
在本公开实施例中,升压电路内的第三十电阻R30复用作采样电阻。即,将对背光源6工作电流信号的检测转换为对第三十电阻R30的第一端处电压信号的检测。在第三十电阻R30大小固定的情况下,第三十电阻R30的第一端处电压大小与背光源6工作电流信号呈正比。
在一些实施例中,采样电路1141包括:第三十一电阻R31、第三十二电阻R32、第三十三电阻R33和运算放大器OP。其中,第三十一电阻R31的第一端与采样电路1141的输入端电连接,第三十一电阻R31的第二端与运算放大器OP的正相输入端电连接。第三十二电阻R32的第一端与运算放大器OP的反相输入端电连接,第三十二晶体管Tr的第二端接地。第三十三电阻R33的第一端与运算放大器OP的反相输入端电连接,第三十三晶体管Tr的第二端与运算放大器OP的输出端电连接。运算放大器OP的输出端与采样电路1141的输出端电连接。
在本公开实施例中,采样电路1141可对第三十电阻R30的第一端处电压信号作采样和放大处理,其中具体放大倍数由第三十三电阻R33与第三十二电阻R32的电阻值之比来决定。
在一些实施例中,采样电路1141还包括:抗干扰电容C31,抗干扰电容C31的第一端与正相输入端电连接,抗干扰电容C31的第二端接地。抗干扰电容C31的大小在330P~2200P。
需要说明的是,在本公开实施例中也可以在采样电路1141内设置一个专门的采样电阻(第三十电阻R30不再复用作采样电阻),通过检测背光源6工作电流信号流过采样电阻使得所形成的电压信号以得到背光源6工作电流信号所对应的模拟采样电压信号。此种情况也应属于本公开的保护范围。
在一些实施例中,采样电路1141集成在背光驱动组件5上;具体地,背光驱动组件5包括固定有用于实现背光驱动功能的各种电学器件的电路板;采样电路1141所包含的各电学器件可集成在背光驱动组件5的电路板上。即,采样电路中的电学器件与升压电路中的电学器件固定于同一电路板上。
第一信号处理子单元1142集成在显示控制系统组件2中;具体地,第一信号处理子单元1142以软件形式集成在显示控制系统组件2内的显 示控制系统芯片中。
基于前面内容可见,通过上述第四检测单元114,可对背光源6在工作时的背光源6工作电流信号是否存在故障进行有效检测(例如,背光源6工作电流过大时,表明背光源6中存在灯条短路问题;背光源6工作电流过小时,表明背光源6中存在灯条断路问题),并能够输出用于表征背光源6的工作电流正常的第七工作状态信息,或者输出用于背光源6的工作电流异常的第八工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
图14为本公开实施例中检测模块的再一种结构框图。如图14所示,在一些实施例中,至少一个目标部件包括背光源6;背光源6在工作时的工作特征信息包括:背光源6在工作时的当前出光亮度;检测模块11包括:第五检测单元115。
其中,第五检测单元115配置为响应于第五检测信号的控制,根据背光源6在工作时的当前出光亮度,输出用于表征背光源6发光正常的第九工作状态信息,或者输出用于表征背光源6发光异常的第十工作状态信息。
可选地,背光驱动组件5包括:发光控制电路(一般包括一发光控制用晶体管Tb),背光源6的第二端通过发光控制电路与第二工作电压端(一般提供Vss电压)电连接;发光控制电路配置为受控于发光亮度控制信号,在发光亮度控制信号处于有效电平状态时使得背光源6的第二端与第二工作电压端之间形成通路,在发光亮度控制信号处于非有效电平状态时使得背光源6的第二端与第二工作电压端之间形成断路。
在本公开实施例中,通过发光控制电路可对单位时间内背光源6的点亮时长进行控制,即能够对背光源6在单位时间内的等效发光亮度进行控制。其中,单位时间内背光源6的点亮时长越短,则背光源6的等效发光亮度越暗。
在一些实施例中,第五检测单元115包括:感光传感器电路1151和第二信号处理子单元1152。其中,感光传感器电路1151配置为采集背光源6在工作时所出射光线并输出相应的感光电信号;第二信号处理子单元1152配置为根据感光传感器所输出的感光电信号确定背光源6在工作时的当前出光亮度,以及根据当前出光亮度和发光控制电路当前所接收到的发光亮度控制信号的占空比,来检测背光源6发光正常或异常。
图15为本公开实施例中感光传感器电路的一种电路结构示意图。图16为本公开实施例中感光传感器芯片设置在背板上的一种示意图。如图15和图16所示,感光传感器电路1151包括感光传感器芯片11511、供电电路11512和输出模块11513。
其中,供电电路11512配置为向感光传感器11511提供所需的各种工作电压;感光传感器11511用于采集光线并产生相应感光电信号并发送输出模块11513;输出模块11513用于输出感光电信号。其中,感光传感器11511与输出模块11513之间可通过SCL\SDA信号线进行数据传递。
需要说明的是,附图中所示供电电路11512的具体电路结构仅本公开中的一种可选实施方案,其不会对本公开的技术方案产生限制,在本公开实施例中可以根据所选择的感光传感器11511来对供电电路11512的具体电路结构作设计和调整。
在一些实施例中,输出模块11513与显示控制系统组件2的I2C总线接口相连,以使得感光电信号能够被传输至显示控制系统组件2。
在实际应用中,背光源6一般放置于背板BL的正面,在背板BL的正面还设置有其他光学结构,例如导光板、光学薄膜(例如,棱镜膜、散射片等)。在本公开实施例中,可在背板BL上开设贯穿背板BL的过孔,然后将感光传感器11511置于该过孔内,以使得感光传感器能够采 集到背光源6所发出的光线。
图17A为本公开实施例中第二信号处理子单元的一种结构框图。图17B为图17A所示第二信号处理子单元进行工作的一种处理逻辑流程图。如图17A和图17B所示,在一些实施例中,第二信号处理子单元1152包括:亮度确定子单元、第一判断子单元、计算子单元、第二判断子单元和第一故障检测子单元。
其中,亮度确定子单元配置为根据感光电信号确定背光源6在工作时的当前出光亮度。
第一判断子单元配置为判断当前出光亮度是否小于第一预设目标亮度。
计算子单元配置为在第一判断子单元判断出当前出光亮度小于第一预设目标亮度时,根据当前出光亮度和发光控制电路当前所接收到的发光亮度控制信号的占空比,计算出背光源6呈现第二预设目标亮度时发光亮度控制信号所需的占空比,第二预设目标亮度大于或等于第一预设目标亮度。
第二判断子单元配置为判断背光源6呈现第二预设目标亮度时发光亮度控制信号所需的占空比是否位于第一预设占空比范围之内。
第一故障检测子单元配置为在第二判断子单元判断出背光源6呈现第二预设目标亮度时发光亮度控制信号所需的占空比位于第一预设占空比范围之内时,检测出背光源6发光正常;以及,在第二判断子单元判断出背光源6呈现第二预设目标亮度时发光亮度控制信号所需的占空比位于第一预设占空比范围之外时,检测出背光源6发光异常;以及,在第一判断子单元判断出当前出光亮度大于或等于第一预设目标亮度时,检测出背光源6发光正常。
其中,发光亮度控制信号的占空比为单位周期内发光亮度控制信号处于有效电平状态的时长与单位周期时长的比值;其中,占空比越大, 表明在单位周期内背光源6的点亮时长越长。
在图17A和图17B所示方案中,可以根据背光源6的当前出光亮度与第一预设目标亮度来判断背光源6的发光亮度是否异常,并在判断出背光源6的当前发光亮度异常时,根据背光源6的当前发光亮度和发光亮度控制信号的当前占空比,计算出背光源6呈现第二预设目标亮度时发光亮度控制信号所需的占空比。若所计算出的背光源6呈现第二预设目标亮度时发光亮度控制信号所需的占空比位于第一预设占空比范围之内(含端点值,例如,第一预设占空比范围为0~100%,或者第一预设占空比范围为10%~90%)时,则表明背光源6发光正常;若所计算出的背光源6呈现第二预设目标亮度时发光亮度控制信号所需的占空比位于第一预设占空比范围之外时,则表明背光源6发光异常。
图18A为本公开实施例中第二信号处理子单元的一种结构框图。图18B为图18A所示第二信号处理子单元1152进行工作的一种处理逻辑流程图。如图18A和图18B所示,作为第二信号处理子单元1152的另一种可选实施方案,其中背光驱动组件5还包括:亮度控制信号供给单元,亮度控制信号供给单元与发光控制电路电连接,配置为向发光控制电路提供发光亮度控制信号。
第二信号处理子单元1152包括:亮度确定子单元、亮度判断子单元、占空比调节子单元、第三判断子单元、第一控制子单元和第一故障检测子单元。
其中,亮度确定子单元配置为根据感光电信号确定背光源6在工作时的当前出光亮度。
亮度判断子单元配置为判断当前出光亮度是否位于预设目标亮度范围之内。
占空比调节子单元配置为在亮度判断子单元判断出当前出光亮度小于预设目标亮度范围的最小值时,按照第一预设调整算法调大发光亮度 控制信号的占空比(例如,采用步进式增大方式来调大发光亮度控制信号的占空比);以及,在亮度判断子单元判断出当前出光亮度大于预设目标亮度范围的最大值时,按照第二预设调整算法调小发光亮度控制信号的占空比(例如,采用步进式减小方式来调小发光亮度控制信号的占空比)。
第三判断子单元配置为判断经占空比调节子单元调整后的发光亮度控制信号的占空比是否位于第二预设占空比范围之内。
第一控制子单元配置为在第三判断子单元判断出经占空比调节子单元调整后的发光亮度控制信号的占空比位于第二预设占空比范围之内时,控制亮度控制信号供给单元向发光控制电路输出占空比经占空比调节子单元调整后的发光亮度控制信号,以及控制感光传感器电路1151再次采集背光源6在工作时所出射光线。
第一故障检测子单元配置为在第三判断子单元判断出经占空比调节子单元所调整后的发光亮度控制信号的占空比位于第二预设占空比范围之外时,检测出背光源6发光异常;以及,在亮度判断子单元判断出当前出光亮度位于预设目标亮度范围之内时,检测出背光源6发光正常。
在图18A和图18B所示方案中,可以根据背光源6的当前出光亮度与预设目标亮度范围作比较,在背光源6的当前出光亮度位于预设目标亮度范围之外,可以采用预设调整算法来对发光亮度控制信号的占空比作相应调大或调小处理,然后再根据调整后的占空比来控制背光源6进行发光,接着继续采集背光的当前发光亮度,以此循环。其中,若出现调整后的占空比位于第二预设占空比范围之外时,则表面背光源6发光异常。
在一些实施例中,感光传感器电路设置于显示模组的背板上。第二信号处理子单元集成在显示控制系统组件2的显示控制系统芯片中;具体地,第二信号处理子单元以软件形式集成在显示控制系统组件2的显 示控制系统芯片中。
基于前面内容可见,通过上述第五检测单元115,可对背光源6的发光是否存在故障进行有效检测,并能够输出用于表征背光源6发光正常的第九工作状态信息,或者输出用于表征背光源6发光异常的第十工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
图19为本公开实施例中检测模块的再一种结构框图。如图19所示,在一些实施例中,至少一个目标部件包括计算组件3;计算组件3在工作时的工作特征信息包括:计算组件3向显示控制系统组件2发送显示数据信号过程中的水平同步信号和垂直同步信号;检测模块11包括:第六检测单元116。
其中,第六检测单元116配置为响应于第六检测信号控制,根据水平同步信号和/或垂直同步信号,输出用于表征计算组件3向显示控制系统组件2提供显示数据信号过程正常的第十一工作状态信息,或者输出用于表征计算组件3向显示控制系统组件2提供显示数据信号过程异常的第十二工作状态信息。
图20A为本公开实施例中第六检测单元的一种结构框图。图20B为图20A所示第六检测单元进行工作的一种处理逻辑流程图。如图20A和图20B所示,在一些实施例中,第六检测单元116包括:频率确定子单元1161、第四判断子单元1162、第二故障检测子单元1163。
其中,频率确定子单元1161配置为根据水平同步信号来确定计算组件3发送显示数据信号的行频,以及根据垂直同步信号来确定计算组件3发送显示数据信号的帧频。
第四判断子单元1162判断频率确定子单元1161所确定出的行频是否位于预设行频范围之内,以及确定子单元所确定出的帧频是否位于预设帧频范围之内;
第二故障检测子单元1163配置为在第四判断子单元1162判断出频率确定子单元1161所确定出的行频位于预设行频范围之内且确定子单元所确定出的帧频位于预设帧频范围之内时,检测出计算组件3向显示控制系统组件2提供显示数据信号过程正常;以及,在第四判断子单元1162判断出频率确定子单元1161所确定出的行频位于预设行频范围之外,和/或第四判断子单元1162判断出确定子单元所确定出的帧频位于预设帧频范围之外时,检测出计算组件3向显示控制系统组件2提供显示数据信号过程异常。
在图20A和图20B所示方案中,可以根据计算组件3向显示控制系统组件2发送显示数据信号过程中水平同步信号和垂直同步信号的出现频率,得到计算组件3发送显示数据信号的行频和帧频;其中,若得到的行频位于预先设定的预设行频范围内且得到的帧频也位于预先设定的预设行频范围内时,则表示计算组件3向显示控制系统组件2提供显示数据信号过程正常;若出现得到的行频位于预先设定的预设行频范围之外和/或得到的帧频位于预先设定的预设帧频范围之外时,则表示计算组件3向显示控制系统组件2提供显示数据信号过程异常。
在一些实施例中,第六检测单元116集成在显示控制系统组件2中;具体地,第六检测单元116以软件形式集成在显示控制系统组件2的显示控制系统芯片中。
基于前面内容可见,通过上述第六检测单元116,可对计算组件3向显示控制系统组件2提供显示数据信号过程是否存在故障进行有效检测,并能够输出用于表征计算组件3向显示控制系统组件2提供显示数据信号过程正常的第十一工作状态信息,或者输出用于表征计算组件3向显示控制系统组件2提供显示数据信号过程异常的第十二工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
图21为本公开实施例中检测模块11的再一种结构框图。如图21所示,至少一个目标部件包括显示控制系统组件2;显示控制系统组件2在工作时的工作特征信息包括:显示控制系统组件2向计算组件3发送的握手信号;检测模块11包括:第七检测单元117。
其中,第七检测单元117配置为响应于第七检测信号的控制,根据时序控制组件4在检测时段内所接收到的握手信号的情况,输出用于表征显示控制系统组件2向时序控制组件4输出信号正常的第十三工作状态信息,或者输出用于表征显示控制系统组件2向时序控制组件4输出信号异常的第十四工作状态信息。
在显示控制系统组件2向时序控制组件4输出信号的过程中会根据通信协议进行“握手”流程。在“握手流程”中会传递握手信息;基于时序控制组件4在检测时段内所接收到的握手信号的情况可以判定显示控制系统组件2向时序控制组件4输出信号的过程正常或异常。
在一些实施例中,在一些实施例中,显示控制系统组件2与时序控制组件4之间通过高清数字显示(V-BY-ONE)接口进行通信。可选地,握手信号包括:LOCKN信号;其中,显示控制系统组件2发送给时序控制组件4的LOCKN信号在正常情况下为一高电平信号。
图22A为本公开实施例中第七检测单元117的一种结构框图。图22B为图22A所示第七检测单元117进行工作的一种处理逻辑流程图。如图22A和图22B所示,在一些实施例中,第七检测单元117包括:第五判断子单元1171和第三故障检测子单元1172。
其中,第五判断子单元1171配置为判断时序控制组件4在检测时段内接收握手信号的频率是否处于预设频率范围之内。
第三故障检测子单元1172配置为在第五判断子单元1171判断出时序控制组件4在检测时段内接收握手信号的频率处于预设频率范围之内时,则检测出显示控制系统组件2向时序控制组件4输出信号正常;以 及,在第五判断子单元1171判断出时序控制组件4在检测时段内接收握手信号的频率处于预设频率范围之外时,则检测出显示控制系统组件2向时序控制组件4输出信号异常。
在一些实施例中,第七检测单元117集成在时序控制组件4中;具体地,时序控制组件4包括固定有时序控制用芯片的电路板,第七检测单元117以软件形式集成在时序控制组件4的时序控制用芯片中。第七检测单元117的输出端与显示控制系统组件2电连接,以将第七检测单元117生成的第十三工作状态信息或第十四工作状态信息发送给显示控制系统组件2。
基于前面内容可见,通过上述第七检测单元117,可对显示控制系统组件2向时序控制组件4输出信号的过程是否存在故障进行有效检测,并能够输出用于表征显示控制系统组件2向时序控制组件4输出信号正常的第十三工作状态信息,或者输出用于表征显示控制系统组件2向时序控制组件4输出信号异常的第十四工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
图23为本公开实施例中检测模块11的再一种结构框图。如图23所示,在一些实施例中,至少一个目标部件包括显示控制系统组件2;显示控制系统组件2在工作时的工作特征信息包括:时序控制组件4从显示控制系统组件2获取待显示图像的显示数据信号;检测模块11包括:第八检测单元118。
在一些实施例中,第八检测单元118,配置为响应于第八检测信号的控制,根据时序控制组件4分别在画面切换前和切换切换后从显示控制系统组件2获取待显示图像的显示数据信号,输出用于表征显示控制系统组件2进行画面切换正常的第十五工作状态信息,或者输出用于表征显示控制系统组件2进行画面切换异常的第十六工作状态信息。
图24A为本公开实施例中第八检测单元118的一种结构框图。图24B为图24A所示第八检测单元118进行工作的一种处理逻辑流程图。如图24A和图24B所示,在一些实施例中,第八检测单元118包括:第二控制子单元1181、第三控制子单元1182和第四故障检测子单元1183。
其中,第二控制子单元1181配置为控制计算组件3向显示控制系统组件2发送第一图像的显示数据信号,以及控制时序控制组件4从显示控制系统组件2获取待显示图像的显示数据信号并对所获取的显示数据信号进行特征提取以得到第一显示特征信息。
第三控制子单元1182配置为控制计算组件3向显示控制系统组件2发送第二图像的显示数据信号,以及控制时序控制组件4从显示控制系统组件2获取待显示图像的显示数据信号并对所获取的显示数据信号进行特征提取以得到第二显示特征信息。其中,第二图像与第一图像为不同的两幅图像。
第四故障检测子单元1183配置为根据第一显示特征信息和第二显示特征信息之间的差异,来检测显示控制系统组件2进行画面切换正常或异常。
在本公开实施例中,首先,控制计算组件3向显示控制系统组件2发送第一图像的显示数据信号,并控制时序控制组件4从显示控制系统组件2获取待显示图像的显示数据信号且进行特征提取以得到第一显示特征信息;然后,控制计算组件3向显示控制系统组件2发送第二图像的显示数据信号,以使得显示控制系统组件2进行画面切换,并控制时序控制组件4从显示控制系统组件2获取待显示图像的显示数据信号且进行特征提取以得到第二显示特征信息;再根据第一显示特征信息和第二显示特征信息之间的差异来判断显示控制系统组件2进行画面切换正常或异常。其中,若第一显示特征信息和第二显示特征信息之间的差异大于设定值,则表示显示控制系统组件2进行画面切换正常;若第一显 示特征信息和第二显示特征信息之间的差异小于或等于设定值,则表示显示控制系统组件2进行画面切换异常。
在一些实施例中,时序控制组件4配置为响应于第二控制子单元1181或第三控制子单元1182的控制对所获取的显示数据信号进行亮度特征提取;第一显示特征信息包括第一亮度信息,第二显示特征信息包括第二亮度信息;第四故障检测子单元具体配置为根据第一亮度信息和第二亮度信息之间的差异值,来检测显示控制系统组件2进行画面切换正常或异常;其中,在差异值大于预设目标差异值时,检测出显示控制系统组件2进行画面切换正常;在差异值小于或等于预设目标差异值时,检测出显示控制系统组件2进行画面切换异常。
在一些实施例中,第一亮度信息包括第一亮度函数值,第二亮度信息包括第二亮度函数值;第一亮度信息和第二亮度信息之间的差异值为,第二亮度函数值与第一亮度函数值二者之差的绝对值与二者之和的商。
亮度函数也可以叫做灰度函数。例如包括柱状函数。根据本公开的一个示例,可以提取整个图像帧的柱状函数值,也可以从整个图像帧中确定部分图像区域进行柱状函数值的提取。此外,还可以预先设定提取柱状函数值的图像区域的数目,区域的面积以及区域的坐标值,然后基于预先设定的参数进行柱状函数值的提取。
当然,本公开实施例中基于亮度特征提取所得到的亮度信息是指能够描述画面整体亮度特征、画面预先划分区域后一个区域或多个区域的亮度特征,亮度特征具体可以包括所对应区域内亮度(或灰阶)的最大值、最小值、平均值、方差、变化曲线等。上述采用柱状函数来进行亮度特征提取的情况,仅为本公开实施例中的一种可选实施方案,其不会对本公开的技术方案产生限制,在本公开实施例中还可以采用其他特征提取算法来对显示数据信号进行特征提取,仅需保证两次特征提取所使用的特征提取算法相同即可。
在一些实施例中,第八检测单元118集成在显示控制系统组件2上。进一步可选地,第八检测单元118以软件形式集成在显示控制系统组件2的显示控制系统芯片中。
基于前面内容可见,通过上述第八检测单元118,可对显示控制系统组件2进行画面切换是否存在故障进行有效检测,并能够输出用于表征显示控制系统组件2进行画面切换正常的第十五工作状态信息,或者输出用于表征显示控制系统组件2进行画面切换异常的第十六工作状态信息,以方便运维人员根据接收到的“工作状态信息”对显示产品进行运行维护,提升运行维护效率。
需要说明的是,在实际应用中,可根据实际需要将检测模块11选择性的包括上面实施例中的第一检测单元111、第二检测单元112、第三检测单元113、第四检测单元114、第五检测单元115、第六检测单元116、第七检测单元117、第八检测单元118中的至少一者,以对电源组件1、显示控制系统组件2、计算组件3、时序控制组件4、背光驱动组件5和背光源6中至少之一进行监控。这些通过技术手段的组合以得到的新技术方案,也应属于本公开的保护范围。
基于前面内容可见,第一检测单元111~第八检测单元118所输出的“工作状态信息”均可以发送至显示控制系统组件2。因此,作为一个可选实施方案,针对各类故障,可以预先设计故障标识位以及该故障标识位取不同值时所代表的含义,在实际工作过程中,显示控制系统组件2可根据接收到的各种工作状态信息来确定故障标识位的当前取值。
作为一个示例,针对第一检测单元111可以设计用于表示电源组件1向显示控制系统组件2进行供电正常或异常的故障标识位“PG”,“PG”有两种取值“1”或“0”,“PG”取值为“1”时表示电源组件1向显示控制系统组件2进行供电正常,“PG”取值为“0”时表示电源组件1向显示控制系统组件2进行供电异常。
针对第二检测单元112可以设计用于表示显示控制系统组件2向时序控制组件4进行供电正常或异常的故障标识位“TPG”,“TPG”有两种取值“1”或“0”,“TPG”取值为“1”时表示显示控制系统组件2向时序控制组件4进行供电正常,“TPG”取值为“0”时表示显示控制系统组件2向时序控制组件4进行供电异常。
针对第三检测单元113可以设计用于表示背光驱动组件5向背光源6进行供电正常或异常的故障标识位“LDV”,“LDV”有两种取值“1”或“0”,“LDV”取值为“1”时表示背光驱动组件5向背光源6进行供电正常,“LDV”取值为“0”时表示背光驱动组件5向背光源6进行供电异常。
针对第四检测单元114可以设计用于表示背光源6的工作电流正常或异常的故障标识位“LDI”,“LDI”有两种取值“1”或“0”,“LDI”取值为“1”时表示背光源6的工作电流正常,“LDI”取值为“0”时表示背光源6的工作电流异常。
针对第五检测单元115可以设计用于表示背光源6的发光正常或异常的故障标识位“BRI”,“BRI”有两种取值“1”或“0”,“BRI”取值为“1”时表示背光源6的发光正常,“BRI”取值为“0”时表示背光源6的发光异常。
针对第六检测单元116可以设计用于表示计算组件3向显示控制系统组件2提供显示数据信号过程正常或异常的故障标识位“CP”,“CP”有两种取值“1”或“0”,“CP”取值为“1”时表示计算组件3向显示控制系统组件2提供显示数据信号过程正常,“CP”取值为“0”时表示计算组件3向显示控制系统组件2提供显示数据信号过程异常。
针对第七检测单元117可以设计用于表示显示控制系统组件2向时序控制组件4输出信号过程正常或异常的故障标识位“LK”,“LK”有两种取值“1”或“0”,“LK”取值为“1”时表示显示控制系统组件2 向时序控制组件4输出信号过程正常,“LK”取值为“0”时表示显示控制系统组件2向计时序控制组件4输出信号过程异常。
针对第八检测单元118可以设计用于表示显示控制系统组件2进行画面切换正常或异常的故障标识位“PCLK”,“PCLK”有两种取值“1”或“0”,“PCLK”取值为“1”时表示显示控制系统组件2进行画面切换正常,“PCLK”取值为“0”时表示显示控制系统组件2进行画面切换异常。
基于上述设定,在实际工作过程中,若显示控制系统组件2接收到第一检测单元111输出第一工作状态信息时,则显示控制系统组件2为故障标识位“PG”赋值为“1”;若显示控制系统组件2接收到第一检测单元111输出第二工作状态信息时,则显示控制系统组件2为故障标识位“PG”赋值为“0”。
若显示控制系统组件2接收到第二检测单元112输出第三工作状态信息时,则显示控制系统组件2为故障标识位“TPG”赋值为“1”;若显示控制系统组件2接收到第二检测单元112输出第四工作状态信息时,则显示控制系统组件2为故障标识位“TPG”赋值为“0”。
若显示控制系统组件2接收到第三检测单元113输出第五工作状态信息时,则显示控制系统组件2为故障标识位“LDV”赋值为“1”;若显示控制系统组件2接收到第三检测单元113输出第六工作状态信息时,则显示控制系统组件2为故障标识位“LDV”赋值为“0”。
若显示控制系统组件2接收到第四检测单元114输出第七工作状态信息时,则显示控制系统组件2为故障标识位“LDI”赋值为“1”;若显示控制系统组件2接收到第四检测单元114输出第八工作状态信息时,则显示控制系统组件2为故障标识位“LDI”赋值为“0”。
若显示控制系统组件2接收到第五检测单元115输出第九工作状态信息时,则显示控制系统组件2为故障标识位“BRI”赋值为“1”;若 显示控制系统组件2接收到第五检测单元115输出第十工作状态信息时,则显示控制系统组件2为故障标识位“BRI”赋值为“0”。
若显示控制系统组件2接收到第六检测单元116输出第十一工作状态信息时,则显示控制系统组件2为故障标识位“CP”赋值为“1”;若显示控制系统组件2接收到第六检测单元116输出第十二工作状态信息时,则显示控制系统组件2为故障标识位“CP”赋值为“0”。
若显示控制系统组件2接收到第七检测单元117输出第十三工作状态信息时,则显示控制系统组件2为故障标识位“LK”赋值为“1”;若显示控制系统组件2接收到第七检测单元117输出第十四工作状态信息时,则显示控制系统组件2为故障标识位“LK”赋值为“0”。
若显示控制系统组件2接收到第八检测单元118输出第十五工作状态信息时,则显示控制系统组件2为故障标识位“PCLK”赋值为“1”;若显示控制系统组件2接收到第八检测单元118输出第十六工作状态信息时,则显示控制系统组件2为故障标识位“PCLK”赋值为“0”。
在一些实施例中,电源组件1、显示控制系统组件2、计算组件3、时序控制组件4和背光驱动组件5中的任意至少两个位于同一电路板上。
在一些实施例中,电源组件1、显示控制系统组件2、计算组件3、时序控制组件4和背光驱动组件5集成在同一电路板上,通过该设计可以增加显示模组的集成度,并降低成本。
在一些实施例中,发送模块12集成在计算组件3上。发送模块12可以为有线通信模块或无线通信模块(例如WIFI通信模块、4G通信模块、5G通信模块等)。
显示控制系统组件2可通过已有的IC2接口或扩展数据接口(例如AUX接口)将工作状态信息(具体可以为上述各故障标识位以及对应的赋值)发送给计算组件3,计算组件3中的发送模块12将接收到的工作状态信息外发至目标对象。
基于显示模组中的监控系统可使得显示模组具备故障自我诊断功能,且能够将显示模组内目标部件的工作状态信息发送给运维人员进行查阅,因此无需运维人员再去实地巡视显示产品是否存在故障,方便运维人员对显示产品进行运行维护,有利于提升运行维护效率。
基于同一发明构思,本公开实施例还提供了一种显示装置,该显示装置包括前面实施例提供的显示模组,对于该显示模组的具体描述,可参见前面实施例中的相应内容。
在本公开实施例中,显示装置可以包括1个或多个显示模组。作为一个示例,显示装置为拼接屏,多个显示模组可以按照预设顺序(例如阵列式拼接)组合为拼接屏。
本公开实施例中的显示装置具体可以为电子标签、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(Ultra Mobile Personal Computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机、自助机等具备显示功能显示产品或部件。
图25为本公开实施例所提供的一种显示系统的结构框图。如图25所示,同一发明构思,本公开实施例还提供了一种显示系统,该显示系统包括显示装置和接收装置(即前述的目标对象);其中,显示装置为前面实施例中所提供的显示装置,具体描述可参见前面实施例中的相应内容;接收装置配置为接收发送模块所发送的工作状态信息。
在本公开实施例中接收装置可以为服务器或特定终端(例如,手机、平板、电脑等可供运维人员进行信息查阅的电子设备)。
在一些实施例中,显示装置在发送工作状态信息之前会对所有工作 状态信息进行筛选,显示装置最终只发送用于表征目标部件工作异常的工作状态信息;此时,接收装置仅能接收到用于表征目标部件工作异常的工作状态信息并进行显示。
在一些实施例中,显示装置会将检测模块所生成的所有工作状态信息(包括:用于表征目标部件工作正常的工作状态信息和用于表征目标部件工作异常的工作状态信息)都进行发送,此时接收装置相应地可以接收到所有的工作状态信息。但,接收装置可以根据选择性的来显示部分或全部工作状态信息;例如,仅显示用于表征目标部件工作异常的工作状态信息、仅显示用于表征目标部件工作正常的工作状态信息、无差别的显示所有工作状态信息、或仅对特定某些目标部件所对应的工作状态信息进行显示而对于其他目标部件所对应的工作状态信息不进行显示。
本公开实施例中显示装置的数量可以为1个或多个,接收装置的数量可以为1个或多个;每个显示装置可将所生成的工作状态信息发送给1个或多个接收装置,每个接收装置可接收1个或多个显示装置所发送的工作状态信息。
作为本公开实施例中显示系统内显示装置的一些示例,显示装置具体可以为用于呈现广告的显示器、用于展示商品信息的电子标签、用于供用户查询商品信息/门店信息/导航线路的自助机、用于显示交通信息的导航/站牌、设置于电器(例如,冰箱、洗衣机、净化器、售卖机等)上用于展示电器相关信息的展示屏。
本领域普通技术人员可以理解是的,上文所公开系统中的全部或部分功能模块、单元、子单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能, 或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
本文已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (35)

  1. 一种显示模组,其中,包括:监控系统,所述监控系统包括:
    检测模块,配置为检测所述显示模组内至少一个目标部件在工作时的工作特征信息,并根据所述目标部件的工作特征信息确定所述目标部件的工作状态信息;
    发送模块,配置为将所述工作状态信息发出。
  2. 根据权利要求1所述的显示模组,其中,所述显示模组还包括:电源组件和显示控制系统组件;
    所述至少一个目标部件包括所述电源组件,所述电源组件在工作时的工作特征信息包括:所述电源组件向所述显示控制系统组件进行供电的各第一供电通道中的控制系统用电压信号;
    所述检测模块包括:
    第一检测单元,与各所述第一供电通道分别相连,配置为响应于第一检测信号的控制,根据所述第一供电通道内所加载所述控制系统用电压信号的情况,输出用于表征所述电源组件向所述显示控制系统组件进行供电正常的第一工作状态信息,或者输出用于表征所述电源组件向所述显示控制系统组件进行供电异常的第二工作状态信息。
  3. 根据权利要求2所述的显示模组,其中,所述电源组件向所述显示控制系统组件进行供电的第一供电通道的数量为1;
    所述第一检测单元包括:第一电压检测电路;
    所述第一电压检测电路的输入端与所述第一供电通道电连接,所述第一电压检测电路配置为在所述第一供电通道内加载有所述控制系统用电压信号时输出所述第一工作状态信息,以及在所述第一供电通道内未 加载所述控制系统用电压信号时输出所述第二工作状态信息。
  4. 根据权利要求2所述的显示模组,其中,所述电源组件向所述显示控制系统组件进行供电的第一供电通道数量大于或等于2;
    所述第一检测单元包括:逻辑处理电路和与各所述第一供电通道一一对应的至少2个第一电压检测电路;
    所述第一电压检测电路的输入端与对应的所述第一供电通道电连接,所述第一电压检测电路的输出端与逻辑处理电路的输入端电连接;
    所述第一电压检测电路配置为在对应的所述第一供电通道加载有控制系统用电压信号时输出第一电平信号,以及在对应的所述第一供电通道内未加载控制系统用电压信号时输出第二电平信号;
    所述逻辑处理电路配置为在所电连接的各所述第一电压检测电路均输出为第一电平信号时输出所述第一工作状态信息,以及在至少一个所述第一电压检测电路输出第二电平信号时输出所述第二工作状态信息;
    所述第一电平信号和所述第二电平信号中之一为高电平信号,另一为低电平信号。
  5. 根据权利要求4所述的显示模组,其中,所述电源组件向所述显示控制系统组件进行供电的第一供电通道包括:用于向所述显示控制系统组件提供所述显示控制系统组件所需工作电压的供电通道和用于向所述显示控制系统组件提供显示面板所需工作电压的供电通道。
  6. 根据权利要求3至5中任一所述的显示模组,其中,所述第一电压检测电路包括:第一电阻、第二电阻、第三电阻和第一晶体管;
    所述第一电阻的第一端与所述第一电压检测电路的输入端电连接,所述第一电阻的第二端与所述第二电阻的第一端和所述第一晶体管的栅 极电连接;
    所述第二电阻的第一端与所述第一晶体管的栅极电连接,所述第二电阻的第二端与低电平供给端电连接;
    所述第一晶体管的第一极与所述第一电压检测电路的输出端电连接,所述第一晶体管的第二极与低电平供给端电连接;
    所述第三电阻的第一端与所述第一高电平供给端电连接,所述第三电阻的第二端与所述第一电压检测电路的输出端和所述第一晶体管的第一极电连接。
  7. 根据权利要求6所述的显示模组,其中,所述显示控制系统组件包括有待机用供电模块,所述第一高电平供给端为所述待机用供电模块的输出端。
  8. 根据权利要求3至7中任一所述的显示模组,其中,在所述第一供电通道内配置有保险电路,所述保险电路的第一端与所述电源组件电连接,所述保险电路的第二端与所述显示控制系统组件电连接;
    所述第一检测单元与所述保险电路的第二端电连接。
  9. 根据权利要求1至8中任一所述的显示模组,其中,所述显示模组还包括:显示控制系统组件和时序控制组件;
    所述至少一个目标部件包括所述显示控制系统组件,所述显示控制系统组件在工作时的工作特征信息包括:所述显示控制系统组件向所述时序控制组件进行供电的第二供电通道中的时序控制用电压信号;
    所述检测模块包括:
    第二检测单元,与所述第二供电通道相连,配置为响应于第二检测信号的控制,根据所述第二供电通道内所加载所述时序控制用电压信号 的情况,输出用于表征所述显示控制系统组件向所述时序控制组件进行供电正常的第三工作状态信息,或者输出用于表征所述显示控制系统组件向所述时序控制组件进行供电异常的第四工作状态信息。
  10. 根据权利要求9所述的显示模组,其中,所述第二检测单元包括:
    第二电压检测电路,所述第二电压检测电路的输入端与所述第二供电通道电连接,所述第二电压检测电路配置为在所述第二供电通道内加载有所述时序控制用电压信号时输出所述第三工作状态信息,以及在所述第二供电通道内未加载所述时序控制用电压信号时输出所述第四工作状态信息;
    所述第二电压检测电路包括:第十一电阻、第十二电阻、第十三电阻和第十一晶体管;
    所述第十一电阻的第一端与所述第二电压检测电路的输入端电连接,所述第十一电阻的第二端与所述第十二电阻的第一端和所述第十一晶体管的栅极电连接;
    所述第十二电阻的第一端与所述第十一晶体管的栅极电连接,所述第十二电阻的第二端与低电平供给端电连接;
    所述第十一晶体管的第一极与所述第二电压检测电路的输出端电连接,所述第十一晶体管的第二极与低电平供给端电连接;
    所述第十三电阻的第一端与所述第一高电平供给端电连接,所述第十三电阻的第二端与所述第二电压检测电路的输出端和所述第十一晶体管的第一极电连接。
  11. 根据权利要求9或10所述的显示模组,其中,在所述第二供电通道内配置有供电晶体管,所述供电晶体管的第一极与所述显示控制系 统组件电连接,所述供电晶体管的第二极与所述时序控制组件电连接;
    所述第二检测单元与所述供电晶体管的第二极电连接。
  12. 根据权利要求1至11中任一所述的显示模组,其中,所述显示模组还包括:背光驱动组件;
    所述至少一个目标部件包括背光驱动组件,所述背光驱动组件的供电输出端与所述背光源的第一端电连接,所述背光驱动组件配置有I2C数据读取接口;
    所述背光驱动组件在工作时的工作特征信息包括:所述背光驱动组件向所述背光源进行供电的供电输出端处的背光源用电压信号;
    所述检测模块包括:
    第三检测单元,与所述背光驱动组件所配置的I2C数据读取接口相连,配置为响应于第三检测信号的控制,根据通过所述背光驱动组件所配置的I2C数据读取接口所读取到的所述供电输出端处背光源用电压信号的电压值,输出用于表征所述背光驱动组件向所述背光源进行供电正常的第五工作状态信息,或者输出用于表征所述背光驱动组件向所述背光源进行供电异常的第六工作状态信息。
  13. 根据权利要求1至12中任一所述的显示模组,其中,所述显示模组还包括:背光驱动组件和背光源;
    所述至少一个目标部件包括背光驱动组件,所述背光驱动组件的供电输出端与背光源的第一端电连接;
    所述背光驱动组件在工作时的工作特征信息包括:所述背光驱动组件向所述背光源进行供电的供电输出端处的背光源用电压信号;
    所述检测模块包括:
    第三检测单元,与所述供电输出端电连接,配置为响应于第三检测 信号的控制,根据所述供电输出端处所加载所述背光源用电压信号的情况,输出用于表征所述背光驱动组件向所述背光源进行供电正常的第五工作状态信息,或者输出用于表征所述背光驱动组件向所述背光源进行供电异常的第六工作状态信息。
  14. 根据权利要求13所述的显示模组,其中,所述第三检测单元包括:第三电压检测电路;
    所述第三电压检测电路的输入端与所述供电输出端电连接,所述第三电压检测电路配置为在所述供电输出端加载有所述背光源用电压信号时输出所述第五工作状态信息,以及在所述供电输出端未加载所述背光源用电压信号时输出所述第六工作状态信息;
    所述第三电压检测电路包括:第二十一电阻、第二十二电阻、第二十三电阻和第二十一晶体管;
    所述第二十一电阻的第一端与所述第三电压检测电路的输入端电连接,所述第二十一电阻的第二端与所述第二十二电阻的第一端和所述第二十一晶体管的栅极电连接;
    所述第二十二电阻的第一端与所述第二十一晶体管的栅极电连接,所述第二十二电阻的第二端与低电平供给端电连接;
    所述第二十一晶体管的第一极与所述第三电压检测电路的输出端电连接,所述第二十一晶体管的第二极与低电平供给端电连接;
    所述第二十三电阻的第一端与所述第二高电平供给端电连接,所述第二十三电阻的第二端与所述第二电压检测电路的输出端和所述第二十一晶体管的第一极电连接。
  15. 根据权利要求1至14中任一所述的显示模组,其中,所述显示模组还包括:背光源;
    所述至少一个目标部件包括背光源,所述背光源在工作时的工作特征信息包括:所述背光源在工作时的背光源工作电流信号;
    所述检测模块包括:
    第四检测单元,配置为响应于第四检测信号的控制,根据所述背光源在工作时的所述背光源工作电流信号,输出用于表征所述背光源的工作电流正常的第七工作状态信息,或者输出用于所述背光源的工作电流异常的第八工作状态信息;
    所述第四检测单元具体配置为在所述背光源工作电流信号的电流值位于第一预设电流范围之内时输出所述第七工作状态信息;以及在所述背光源工作电流信号的电流值位于第一预设电流范围之外时输出所述第八工作状态信息。
  16. 根据权利要求15所述的显示模组,其中,所述第四检测单元包括:
    采样电路,所述采样电路的输入端与所述背光源电连接且所述采样电路与所述背光源形成串联,所述采样电路配置为获取所述背光源工作电流信号所对应的模拟采样电压信号;
    第一信号处理子单元,配置为对所述模拟采样电压信号进行模数转换处理,得到相应的数字采样电压信号,并根据所述数字采样电压信号的电压值来检测所述背光源工作电流信号的电流值是否位于第一预设电流范围之内;
    其中,若所述数字采样电压信号的电压值位于所述第二预设电压范围之内,则第一信号处理子单元检测出所述背光源工作电流信号的电流值位于第一预设电流范围之内,输出所述第七工作状态信息;
    若所述数字采样电压信号的电压值位于所述第二预设电压范围之外,则所述第一信号处理子单元检测出所述背光源工作电流信号的电流 值位于第一预设电流范围之外,输出所述第八工作状态信息。
  17. 根据权利要求16所述的显示模组,其中,所述显示模组还包括:背光驱动组件,所述背光驱动组件的供电输出端与背光源的第一端电连接;
    所述背光驱动组件包括:升压电路和升压控制模块,所述升压电路包括:电感、升压控制晶体管、整流二极管和第三十电阻;
    所述电感的第一端与所述升压电路的输入端电连接,所述电感的第二端与所述整流二极管的阳极电连接;
    所述升压控制晶体管的栅极与升压控制模块电连接,所述升压控制晶体管的第一极与所述整流二极管的阳极电连接,所述升压控制晶体管的第二极与所述第三十电阻的第一端电连接;
    所述第三十电阻的第二端接地;
    所述整流二极管的阴极与所述背光驱动组件的供电输出端电连接;
    所述采样电路的输入端与所述第三十电阻的第一端电连接。
  18. 根据权利要求17所述的显示模组,其中,所述背光驱动组件包括:固定有所述升压电路的电路板,所述采样电路与所述升压电路固定于同一电路板上;
    所述显示模组还包括:显示控制系统组件,所述第一信号处理子单元集成在所述显示控制系统组件上。
  19. 根据权利要求1至18中任一所述的显示模组,其中,所述显示模组还包括:背光源;
    所述至少一个目标部件包括背光源;所述背光源在工作时的工作特征信息包括:所述背光源在工作时的当前出光亮度;
    所述检测模块包括:
    第五检测单元,配置为响应于第五检测信号的控制,根据所述背光源在工作时的当前出光亮度,输出用于表征所述背光源发光正常的第九工作状态信息,或者输出用于表征所述背光源发光异常的第十工作状态信息。
  20. 根据权利要求19所述的显示模组,其中,所述显示模组还背光驱动组件,所述背光驱动组件包括:发光控制电路,所述背光源的第二端通过发光控制电路与第二工作电压端电连接;
    所述发光控制电路配置为受控于发光亮度控制信号,在所述发光亮度控制信号处于有效电平状态时使得所述背光源的第二端与所述第二工作电压端之间形成通路,在所述发光亮度控制信号处于非有效电平状态时使得所述背光源的第二端与所述第二工作电压端之间形成断路;
    所述第五检测单元包括:
    感光传感器电路,配置为采集所述背光源在工作时所出射光线并输出相应的感光电信号;
    第二信号处理子单元,配置为根据所述感光传感器所输出的感光电信号确定所述背光源在工作时的当前出光亮度,以及根据所述当前出光亮度和所述发光控制电路当前所接收到的发光亮度控制信号的占空比,来检测所述背光源发光正常或异常。
  21. 根据权利要求20所述的显示模组,其中,所述第二信号处理子单元包括:
    亮度确定子单元,配置为根据所述感光电信号确定所述背光源在工作时的当前出光亮度;
    第一判断子单元,配置为判断所述当前出光亮度是否小于第一预设 目标亮度;
    计算子单元,配置为在所述第一判断子单元判断出所述当前出光亮度小于所述第一预设目标亮度时,根据所述当前出光亮度和所述发光控制电路当前所接收到的所述发光亮度控制信号的占空比,计算出所述背光源呈现第二预设目标亮度时所述发光亮度控制信号所需的占空比,所述第二预设目标亮度大于或等于所述第一预设目标亮度;
    第二判断子单元,配置为判断所述背光源呈现第二预设目标亮度时所述发光亮度控制信号所需的占空比是否位于第一预设占空比范围之内;
    第一故障检测子单元,配置为在所述第二判断子单元判断出所述背光源呈现第二预设目标亮度时所述发光亮度控制信号所需的占空比位于所述第一预设占空比范围之内时,检测出所述背光源发光正常;以及,在所述第二判断子单元判断出所述背光源呈现第二预设目标亮度时所述发光亮度控制信号所需的占空比位于所述第一预设占空比范围之外时,检测出所述背光源发光异常;以及,在所述第一判断子单元判断出所述当前出光亮度大于或等于所述第一预设目标亮度时,检测出所述背光源发光正常。
  22. 根据权利要求20所述的显示模组,其中,所述背光驱动组件还包括:
    亮度控制信号供给单元,与所述发光控制电路电连接,配置为向所述发光控制电路提供发光亮度控制信号;
    所述第二信号处理子单元包括:
    亮度确定子单元,配置为根据所述感光电信号确定所述背光源在工作时的当前出光亮度;
    亮度判断子单元,配置为判断所述当前出光亮度是否位于预设目标 亮度范围之内;
    占空比调节子单元,配置为在所述亮度判断子单元判断出所述当前出光亮度小于所述预设目标亮度范围的最小值时,按照第一预设调整算法调大所述发光亮度控制信号的占空比;以及,在所述亮度判断子单元判断出所述当前出光亮度大于所述预设目标亮度范围的最大值时,按照第二预设调整算法调小所述发光亮度控制信号的占空比;
    第三判断子单元,配置为判断经所述占空比调节子单元调整后的所述发光亮度控制信号的占空比是否位于第二预设占空比范围之内;
    第一控制子单元,配置为在所述第三判断子单元判断出经所述占空比调节子单元调整后的所述发光亮度控制信号的占空比位于所述第二预设占空比范围之内时,控制所述亮度控制信号供给单元向所述发光控制电路输出占空比经所述占空比调节子单元调整后的发光亮度控制信号,以及控制所述感光传感器电路再次采集所述背光源在工作时所出射光线;
    第一故障检测子单元,配置为在所述第三判断子单元判断出经所述占空比调节子单元所调整后的所述发光亮度控制信号的占空比位于所述第二预设占空比范围之外时,检测出所述背光源发光异常;以及,在所述亮度判断子单元判断出所述当前出光亮度位于预设目标亮度范围之内时,检测出所述背光源发光正常。
  23. 根据权利要求1至22中任一所述的显示模组,其中,所述显示模组还包括:计算组件和显示控制系统组件;
    所述至少一个目标部件包括所述计算组件;所述计算组件在工作时的工作特征信息包括:所述计算组件向显示控制系统组件发送显示数据信号过程中的水平同步信号和/或垂直同步信号;
    所述检测模块包括:
    第六检测单元,配置为响应于第六检测信号控制,根据所述水平同步信号和/或所述垂直同步信号,输出用于表征所述计算组件向所述显示控制系统组件提供显示数据信号过程正常的第十一工作状态信息,或者输出用于表征所述计算组件向所述显示控制系统组件提供显示数据信号过程异常的第十二工作状态信息。
  24. 根据权利要求23所述的显示模组,其中,所述第六检测单元包括:
    频率确定子单元,配置为根据所述水平同步信号来确定所述计算组件发送显示数据信号的行频,以及根据所述垂直同步信号来确定所述计算组件发送显示数据信号的帧频;
    第四判断子单元,判断所述频率确定子单元所确定出的行频是否位于预设行频范围之内,以及所述确定子单元所确定出的帧频是否位于预设帧频范围之内;
    第二故障检测子单元,配置为在所述第四判断子单元判断出所述频率确定子单元所确定出的行频位于预设行频范围之内且所述确定子单元所确定出的帧频位于预设帧频范围之内时,检测出所述计算组件向所述显示控制系统组件提供显示数据信号过程正常;以及,在所述第四判断子单元判断出所述频率确定子单元所确定出的行频位于预设行频范围之外,和/或所述第四判断子单元判断出所述确定子单元所确定出的帧频位于预设帧频范围之外时,检测出所述计算组件向所述显示控制系统组件提供显示数据信号过程异常。
  25. 根据权利要求1至24中任一所述的显示模组,其中,所述显示模组还包括:显示控制系统组件和时序控制组件;
    所述至少一个目标部件包括所述显示控制系统组件;所述显示控制 系统组件在工作时的工作特征信息包括:所述显示控制系统组件向所述时序控制组件发送的握手信号;
    所述检测模块包括:
    第七检测单元,配置为响应于第七检测信号的控制,根据所述时序控制组件在检测时段内所接收到的所述握手信号的情况,输出用于表征所述显示控制系统组件向所述时序控制组件输出信号正常的第十三工作状态信息,或者输出用于表征所述显示控制系统组件向所述时序控制组件输出信号异常的第十四工作状态信息。
  26. 根据权利要求25所述的显示模组,其中,所述第七检测单元包括:
    第五判断子单元,配置为判断所述时序控制组件在检测时段内接收所述握手信号的频率是否处于预设频率范围之内;
    第三故障检测子单元,配置为在所述第五判断子单元判断出所述时序控制组件在检测时段内接收所述握手信号的频率处于预设频率范围之内时,则检测出所述显示控制系统组件向所述时序控制组件输出信号正常;以及,在所述第五判断子单元判断出所述时序控制组件在检测时段内接收所述握手信号的频率处于预设频率范围之外时,则检测出所述显示控制系统组件向所述时序控制组件输出信号异常。
  27. 根据权利要求25或26所述的显示模组,其中,所述握手信号包括:LOCKN信号。
  28. 根据权利要求25至27中任一所述的显示模组,其中,所述第七检测单元集成在所述时序控制组件中;
    所述第七检测单元的输出端与所述显示控制系统组件电连接,以将 所述第七检测单元生成的所述第十三工作状态信息或第十四工作状态信息发送给所述显示控制系统组件。
  29. 根据权利要求1至28中任一所述的显示模组,其中,所述显示模组还包括:显示控制系统组件和时序控制组件;
    所述至少一个目标部件包括所述显示控制系统组件;所述显示控制系统组件在工作时的工作特征信息包括:所述时序控制组件从所述显示控制系统组件获取待显示图像的显示数据信号;
    所述检测模块包括:
    第八检测单元,配置为响应于第八检测信号的控制,根据所述时序控制组件分别在画面切换前和切换切换后从所述显示控制系统组件获取待显示图像的显示数据信号,输出用于表征所述显示控制系统组件进行画面切换正常的第十五工作状态信息,或者输出用于表征所述显示控制系统组件进行画面切换异常的第十六工作状态信息。
  30. 根据权利要求29所述的显示模组,其中,所述显示模组还包括:计算组件;第八检测单元包括:
    第二控制子单元,配置为控制所述计算组件向所述显示控制系统组件发送第一图像的显示数据信号,以及控制所述时序控制组件从所述显示控制系统组件获取待显示图像的显示数据信号并对所获取的显示数据信号进行特征提取以得到第一显示特征信息;
    第三控制子单元,配置为控制所述计算组件向所述显示控制系统组件发送第二图像的显示数据信号,以及控制所述时序控制组件从所述显示控制系统组件获取待显示图像的显示数据信号并对所获取的显示数据信号进行特征提取以得到第二显示特征信息;
    第四故障检测子单元,配置为根据所述第一显示特征信息和所述第 二显示特征信息之间的差异,来检测所述显示控制系统组件进行画面切换正常或异常。
  31. 根据权利要求30所述的显示模组,其中,所述时序控制组件配置为响应于所述第二控制子单元或所述第三控制子单元的控制对所获取的显示数据信号进行亮度特征提取;
    所述第一显示特征信息包括第一亮度信息,所述第二显示特征信息包括第二亮度信息;
    所述第四故障检测子单元具体配置为根据所述第一亮度信息和所述第二亮度信息之间的差异值,来检测所述显示控制系统组件进行画面切换正常或异常;
    其中,在所述差异值大于预设目标差异值时,检测出所述显示控制系统组件进行画面切换正常;在所述差异值小于或等于所述预设目标差异值时,检测出所述显示控制系统组件进行画面切换异常。
  32. 根据权利要求31所述的显示模组,其中,所述第一亮度信息包括第一亮度函数值,所述第二亮度信息包括第二亮度函数值;
    所述第一亮度信息和所述第二亮度信息之间的差异值为,所述第二亮度函数值与所述第一亮度函数值二者之差的绝对值与二者之和的商。
  33. 根据权利要求1至32中任一所述的显示模组,其中,所述显示模组还包括:电源组件、显示控制系统组件、计算组件、时序控制组件和背光驱动组件;
    所述电源组件、所述显示控制系统组件、所述计算组件、所述时序控制组件和所述背光驱动组件中的任意至少两个位于同一电路板上。
  34. 一种显示装置,其中,包括:如上述权利要求1至33中任一所述的显示模组。
  35. 一种显示系统,其中,包括:如上述权利要求34中所述的显示装置和接收装置;
    所述接收装置配置为接收所述发送模块所发送的所述工作状态信息。
PCT/CN2022/121757 2022-09-27 2022-09-27 显示模组、显示装置和显示系统 WO2024065184A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280003344.0A CN118103763A (zh) 2022-09-27 2022-09-27 显示模组、显示装置和显示系统
PCT/CN2022/121757 WO2024065184A1 (zh) 2022-09-27 2022-09-27 显示模组、显示装置和显示系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121757 WO2024065184A1 (zh) 2022-09-27 2022-09-27 显示模组、显示装置和显示系统

Publications (1)

Publication Number Publication Date
WO2024065184A1 true WO2024065184A1 (zh) 2024-04-04

Family

ID=90475205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121757 WO2024065184A1 (zh) 2022-09-27 2022-09-27 显示模组、显示装置和显示系统

Country Status (2)

Country Link
CN (1) CN118103763A (zh)
WO (1) WO2024065184A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150026506A1 (en) * 2013-07-16 2015-01-22 Samsung Display Co., Ltd. Error detecting apparatus for gate driver, display apparatus having the same and method of detecting error of gate driver
CN106507013A (zh) * 2016-10-26 2017-03-15 青岛海信电器股份有限公司 Vbo信号传输的控制方法、装置和显示终端
CN107808645A (zh) * 2016-08-30 2018-03-16 乐金显示有限公司 显示装置和电力监测电路
CN108682367A (zh) * 2018-04-26 2018-10-19 京东方科技集团股份有限公司 显示器自监控方法以及显示器
CN109891313A (zh) * 2016-10-31 2019-06-14 松下电器产业株式会社 液晶显示装置和故障检查方法
CN113129789A (zh) * 2020-01-15 2021-07-16 深圳市诚信恒佳科技有限公司 一种led显示屏故障自检方法及led显示屏故障巡检方法
CN114708822A (zh) * 2022-04-12 2022-07-05 长沙硕博电子科技股份有限公司 一种led屏背光恒流防短路控制系统及防短路故障控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150026506A1 (en) * 2013-07-16 2015-01-22 Samsung Display Co., Ltd. Error detecting apparatus for gate driver, display apparatus having the same and method of detecting error of gate driver
CN107808645A (zh) * 2016-08-30 2018-03-16 乐金显示有限公司 显示装置和电力监测电路
CN106507013A (zh) * 2016-10-26 2017-03-15 青岛海信电器股份有限公司 Vbo信号传输的控制方法、装置和显示终端
CN109891313A (zh) * 2016-10-31 2019-06-14 松下电器产业株式会社 液晶显示装置和故障检查方法
CN108682367A (zh) * 2018-04-26 2018-10-19 京东方科技集团股份有限公司 显示器自监控方法以及显示器
CN113129789A (zh) * 2020-01-15 2021-07-16 深圳市诚信恒佳科技有限公司 一种led显示屏故障自检方法及led显示屏故障巡检方法
CN114708822A (zh) * 2022-04-12 2022-07-05 长沙硕博电子科技股份有限公司 一种led屏背光恒流防短路控制系统及防短路故障控制方法

Also Published As

Publication number Publication date
CN118103763A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
US9812047B2 (en) System and method for remotely monitoring the operating life of electronic displays
EP2385517A1 (en) System and method for operating an electronic device having an HDMI port that is shared between an HDMI source function and an HDMI sink function of the electronic device
CN111429833B (zh) 一种降低led显示屏功耗的方法及其装置
CN101799617B (zh) 点亮控制装置及投影机
US11462139B2 (en) Self-monitoring method of display and display
WO2012144770A2 (en) Method for displaying status of power consumption and portable device thereof
US9626907B2 (en) Driving circuit and organic light emitting display apparatus
WO2020253213A1 (zh) 显示屏动态控制系统及显示屏
WO2017012307A1 (zh) 显示装置及其驱动方法和驱动模块
KR20120026829A (ko) 발광 구동 장치, 디스플레이 장치 및 그 구동 방법
US20220406242A1 (en) Display panel and driving method thereof
CN102446477A (zh) 一种带有dp接口的液晶模组测试装置及测试方法
US20230162652A1 (en) Display device, control method thereof, and ic chip
CN111798787B (zh) 显示面板的亮度调节方法、装置及系统
KR20140142110A (ko) 전원공급장치 및 그 제어 방법
WO2024065184A1 (zh) 显示模组、显示装置和显示系统
US20220084467A1 (en) Correction method, correction apparatus and correction system of cathode voltage, display module and method of adjusting brightness thereof
CN102348084A (zh) 电视系统及其无信号时功耗降低方法
US9947294B2 (en) Power advantaged image data control
US11488544B2 (en) Digital signage system and operating method therefor
US11922853B2 (en) Display device, method and system for displaying image thereof, and storage medium
CN103971658A (zh) 显示驱动装置及其显示驱动方法
US20240029607A1 (en) Drive circuit, data-driven method and display panel
CN111091794A (zh) 医疗设备显示装置的亮度调节方法、存储介质和医疗设备
CN1177466C (zh) 自动屏幕保护器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959834

Country of ref document: EP

Kind code of ref document: A1