WO2024065169A1 - 储能系统的控制方法、控制装置和储能系统 - Google Patents

储能系统的控制方法、控制装置和储能系统 Download PDF

Info

Publication number
WO2024065169A1
WO2024065169A1 PCT/CN2022/121686 CN2022121686W WO2024065169A1 WO 2024065169 A1 WO2024065169 A1 WO 2024065169A1 CN 2022121686 W CN2022121686 W CN 2022121686W WO 2024065169 A1 WO2024065169 A1 WO 2024065169A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
storage unit
energy
generation system
charge
Prior art date
Application number
PCT/CN2022/121686
Other languages
English (en)
French (fr)
Inventor
林龙珍
颜昱
刘帝平
陈绍岩
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/121686 priority Critical patent/WO2024065169A1/zh
Publication of WO2024065169A1 publication Critical patent/WO2024065169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Definitions

  • the present application relates to the field of energy storage technology, and in particular to a control method, a control device and an energy storage system.
  • an energy storage system connected to the energy generation system is usually provided to store excess energy.
  • the energy generation system charges the energy storage system in a continuous charging manner. After a long period of charge and discharge cycles, the batteries in the energy storage system produce lithium deposition, heat generation and other phenomena, which affect the performance and service life of the batteries. Therefore, how to provide a control method for an energy storage system to improve the performance and service life of the energy storage system is a technical problem that needs to be solved urgently.
  • the present application provides a control method, a control device and an energy storage system for an energy storage system, which can improve the performance and service life of the energy storage system.
  • the present application provides a control method for an energy storage system, wherein the energy storage system comprises a plurality of energy storage units, the energy storage system is coupled to an energy generation system and a power grid, the energy storage system is used to store electrical energy obtained from the energy generation system and release electrical energy to the power grid, the method comprising: in a first stage, controlling the energy generation system to charge a first energy storage unit of the plurality of energy storage units, the first stage being a charging stage of a charging cycle of the first energy storage unit; and in a second stage, controlling the first energy storage unit to discharge a second energy storage unit of the plurality of energy storage units, the second stage being a discharging stage of a charging cycle of the first energy storage unit.
  • the energy generation system in the first stage of the charging cycle of the first energy storage unit, the energy generation system is controlled to charge the first energy storage unit, which can make full use of the electric energy output by the energy generation system and avoid energy waste; in the second stage of the charging cycle of the first energy storage unit, the first energy storage unit is controlled to discharge to the second energy storage unit, which can reduce the lithium deposition and heating of the battery in the energy storage system, which is conducive to improving the performance and service life of the battery. Therefore, the solution of the present application can improve the performance and service life of the energy storage system.
  • controlling the energy generation system to charge the first energy storage unit of the multiple energy storage units includes: in the first stage, according to the dispatching state of the power grid, the output power of the energy generation system, the charging power of the first energy storage unit, the remaining capacity of the first energy storage unit, and at least one of the remaining capacity of the second energy storage unit, controlling the energy generation system to charge the first energy storage unit of the multiple energy storage units. In this way, it is convenient to determine the strategy for the energy generation system to charge the first energy storage unit according to different usage scenarios.
  • the energy generation system is controlled to charge the first energy storage unit of the multiple energy storage units according to at least one of the dispatching state of the power grid, the output power of the energy generation system, the charging power of the first energy storage unit, the remaining capacity of the first energy storage unit, and the remaining capacity of the second energy storage unit, including: when the remaining capacity of the first energy storage unit is less than the maximum preset capacity, the energy generation system is controlled to charge the first energy storage unit. In this way, the remaining capacity of the first energy storage unit can be maintained within a suitable range, avoiding overcharging caused by charging the first energy storage unit when the remaining capacity of the first energy storage unit is high.
  • the energy generation system is controlled to charge the first energy storage unit of the multiple energy storage units according to at least one of the dispatching state of the power grid, the output power of the energy generation system, the charging power of the first energy storage unit, the remaining capacity of the first energy storage unit, and the remaining capacity of the second energy storage unit, including: when the dispatching state of the power grid includes the absence of energy dispatching demand, the energy generation system is controlled to charge the first energy storage unit according to the output power of the energy generation system, the charging power of the first energy storage unit, and the remaining capacity of the second energy storage unit. In this way, when there is no dispatching demand from the power grid, a strategy for charging the first energy storage unit can be determined according to corresponding information.
  • the controlling the energy generation system to charge the first energy storage unit of the multiple energy storage units includes: when the output power of the energy generation system is less than the charging power of the first energy storage unit, controlling the energy generation system to charge the first energy storage unit, and controlling at least one of the second energy storage unit and the power grid to charge the first energy storage unit, wherein the remaining capacity of the second energy storage unit is greater than or equal to the minimum preset capacity.
  • the second energy storage unit and/or the power grid can charge the first energy storage unit at the same time as the energy generation system in the first stage to meet the first energy storage unit's demand for charging power, thereby facilitating the extension of the service life of the first energy storage unit.
  • controlling the energy generation system to charge a first energy storage unit of the multiple energy storage units includes: controlling the output power of the energy generation system to be the same as the charging power of the first energy storage unit when the output power of the energy generation system is greater than or equal to the charging power of the first energy storage unit; and after controlling the output power of the energy generation system to be the same as the charging power of the first energy storage unit, controlling the energy generation system to charge the first energy storage unit.
  • the output power of the energy generation system when the output power of the energy generation system is greater than or equal to the charging power of the first energy storage unit, the output power of the energy generation system is controlled to be the same as the charging power of the first energy storage unit, and after the output power of the energy generation system is controlled to be the same as the charging power of the first energy storage unit, only the energy generation system is controlled to charge the first energy storage unit.
  • This implementation can meet the demand of the first energy storage unit for charging power, which is conducive to extending the service life of the first energy storage unit; at the same time, this implementation is simple and easy to implement.
  • the controlling the energy generation system to charge the first energy storage unit of the multiple energy storage units includes: when the remaining capacity of the second energy storage unit is less than the minimum preset capacity, controlling the energy generation system and/or the power grid to charge the second energy storage unit. In this way, it is convenient to flexibly select a strategy for charging the second energy storage unit according to actual conditions; in addition, after the second energy storage unit is charged to a certain amount of electricity, it is convenient to use the second energy storage unit to charge the first energy storage unit in the subsequent process.
  • controlling the energy generation system and/or the power grid to charge the second energy storage unit includes: when the output power of the energy generation system is less than the charging power of the first energy storage unit, controlling the energy generation system and the power grid to charge the first energy storage unit, and controlling the power grid to charge the second energy storage unit. In this way, while charging the first energy storage unit, the second energy storage unit is also charged, so that after the second energy storage unit is charged to a suitable amount of power, the second energy storage unit can be used to charge the first energy storage unit.
  • the controlling the energy generation system and/or the power grid to charge the second energy storage unit includes: when the output power of the energy generation system is equal to the charging power of the first energy storage unit, controlling the energy generation system to charge the first energy storage unit and controlling the power grid to charge the second energy storage unit; when the output power of the energy generation system is greater than the charging power of the first energy storage unit, controlling the energy generation system to charge the first energy storage unit and controlling the energy generation system and/or the power grid to charge the second energy storage unit.
  • the energy generation system when the output power of the energy generation system is greater than the charging power of the first energy storage unit, the energy generation system is controlled to charge the first energy storage unit, and the energy generation system and/or the power grid are controlled to charge the second energy storage unit, including: when the difference between the output power of the energy generation system and the charging power of the first energy storage unit is less than the maximum charging power of the second energy storage unit, the energy generation system and the power grid are controlled to charge the second energy storage unit. In this way, it is convenient to realize fast charging of the second energy storage unit.
  • the energy generation system is controlled to charge the first energy storage unit of the multiple energy storage units according to at least one of the dispatching state of the power grid, the output power of the energy generation system, the charging power of the first energy storage unit, the remaining capacity of the first energy storage unit, and the remaining capacity of the second energy storage unit, including: when the dispatching state of the power grid includes the existence of energy dispatching demand and the output power of the energy generation system is greater than the required power of the power grid, the energy generation system is controlled to charge the first energy storage unit according to the output power of the energy generation system, the charging power of the first energy storage unit, and the remaining capacity of the second energy storage unit.
  • the energy generation system when the power grid has a dispatching demand and the output power of the energy generation system is greater than the power demand of the power grid, the energy generation system is controlled to charge the first energy storage unit. In this way, the first energy storage unit can be charged while meeting the demand of the power grid, avoiding affecting the stability of the power grid due to charging the first energy storage unit.
  • the controlling the energy generation system to charge the first energy storage unit of the multiple energy storage units includes: when the remaining capacity of the second energy storage unit is greater than or equal to the minimum preset capacity, controlling the energy generation system to charge the first energy storage unit, or controlling the energy generation system and the second energy storage unit to charge the first energy storage unit.
  • the second energy storage unit and/or the energy generation system can charge the first energy storage unit at the same time in the first stage to meet the first energy storage unit's demand for charging power, thereby facilitating extending the service life of the first energy storage unit.
  • the controlling the energy generation system to charge the first energy storage unit of the multiple energy storage units includes: when the remaining capacity of the second energy storage unit is less than the minimum preset capacity, controlling the energy generation system to charge the second energy storage unit; after controlling the energy generation system to charge the second energy storage unit, controlling the energy generation system and/or the second energy storage unit to charge the first energy storage unit.
  • the remaining capacity of the second energy storage unit can be made greater than the minimum preset capacity, so that when charging the first energy storage unit, the charging power requirement of the first energy storage unit is met.
  • controlling the first energy storage unit to discharge to the second energy storage unit of the plurality of energy storage units includes: in the second stage, according to at least one of the dispatching state of the power grid and the remaining capacity of the second energy storage unit, controlling the first energy storage unit to discharge to the second energy storage unit of the plurality of energy storage units. In this way, it is convenient to flexibly set different discharge strategies of the first energy storage unit during the charging cycle according to actual conditions.
  • controlling the first energy storage unit to discharge to the second energy storage unit of the plurality of energy storage units according to at least one of the dispatching state of the power grid and the remaining capacity of the second energy storage unit includes: when the remaining capacity of the second energy storage unit is less than the maximum preset capacity, controlling the first energy storage unit to discharge to the second energy storage unit. In this way, overcharging caused by excessive power received by the second energy storage unit can be avoided.
  • the controlling the first energy storage unit to discharge to the second energy storage unit of the plurality of energy storage units according to at least one of the dispatching state of the power grid and the remaining capacity of the second energy storage unit includes: when the dispatching state of the power grid includes the existence of energy dispatching demand, controlling the output power of the energy generation system to be 0, and controlling the first energy storage unit to discharge to the second energy storage unit. In this way, the discharge of the first energy storage unit to the power grid can be prevented from affecting the stability of the power grid.
  • the controlling the first energy storage unit to discharge to the second energy storage unit of the plurality of energy storage units according to at least one of the dispatching state of the power grid and the remaining capacity of the second energy storage unit includes: when the dispatching state of the power grid includes the existence of energy dispatching demand, controlling the output power of the energy generation system to be equal to the required power of the power grid, and controlling the first energy storage unit to discharge to the second energy storage unit.
  • This implementation is simple and easy, and can simultaneously meet the demand of the power grid and the demand of the first energy storage unit to discharge to the second energy storage unit.
  • the method further includes: when the charge amount of the first energy storage unit reaches a first preset capacity, controlling the first energy storage unit to switch from the first stage to the second stage; when the discharge amount of the first energy storage unit reaches a second preset capacity, controlling the first energy storage unit to switch from the second stage to the first stage. In this way, the first energy storage unit is charged by continuously switching between the first stage and the second stage during the charging cycle of the first energy storage unit.
  • the method further includes: when the remaining capacity of the first energy storage unit reaches a maximum preset capacity, controlling the energy generation system to stop charging the first energy storage unit. In this way, the remaining capacity of the first energy storage unit does not exceed the maximum preset capacity, and after the energy generation system finishes charging the first energy storage unit, the first energy storage unit can be used as an energy absorption device to receive the electricity discharged by other energy storage units of the plurality of energy storage units.
  • the present application provides a control device, which is coupled to an energy storage system, wherein the energy storage system is coupled to an energy generation system and a power grid, and the energy storage system is used to store electrical energy obtained from the energy generation system and release electrical energy to the power grid.
  • the energy storage system includes multiple energy storage units
  • the control device includes a control unit, which is used to: in a first stage, control the energy generation system to charge a first energy storage unit of the multiple energy storage units, and the first stage is a charging stage of a charging cycle of the first energy storage unit; in a second stage, control the first energy storage unit to discharge a second energy storage unit of the multiple energy storage units, and the second stage is a discharging stage of a charging cycle of the first energy storage unit.
  • control unit is also used to: in the first stage, control the energy generation system to charge the first energy storage unit of the multiple energy storage units according to at least one of the dispatching status of the power grid, the output power of the energy generation system, the charging power of the first energy storage unit, the remaining capacity of the first energy storage unit, and the remaining capacity of the second energy storage unit.
  • the present application provides an energy storage system, which is coupled to an energy generation system and a power grid, and is used to store electrical energy obtained from the energy generation system and release electrical energy to the power grid.
  • the energy storage system includes multiple energy storage units and the control device described in the second aspect and any one of the second aspects.
  • the present application provides a control device for an energy storage system, the control device comprising a memory and a processor, the memory being used to store instructions, the processor being used to read the instructions and execute the first aspect and any one of the methods in the first aspect according to the instructions.
  • the energy generation system in the first stage of the charging cycle of the first energy storage unit, the energy generation system is controlled to charge the first energy storage unit, which can make full use of the electric energy output by the energy generation system and avoid energy waste; in the second stage of the charging cycle of the first energy storage unit, the first energy storage unit is controlled to discharge to the second energy storage unit, which can reduce the lithium deposition and heating of the battery in the energy storage system, which is conducive to improving the performance and service life of the battery. Therefore, the solution of the present application can improve the performance and service life of the energy storage system.
  • FIG1 is a schematic diagram of an application scenario of an energy storage system in an embodiment of the present application.
  • FIG2 is a schematic diagram of an architecture of an application scenario of an energy storage system according to an embodiment of the present application
  • FIG3 is a schematic diagram of a control method for an energy storage system according to an embodiment of the present application.
  • FIG4 is a schematic diagram of a charging cycle of a first energy storage unit according to an embodiment of the present application.
  • FIG5 is a schematic diagram of a control method according to an embodiment of the present application.
  • FIG6 is a schematic diagram of a control method according to an embodiment of the present application.
  • FIG7 is a schematic diagram of a control device according to an embodiment of the present application.
  • FIG8 is a schematic diagram of an energy storage system according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a control device according to an embodiment of the present application.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • an energy storage system connected to the energy generation system is usually set up to store excess energy.
  • the energy generation system charges the energy storage system in a continuous charging manner. After a long period of charge and discharge cycles, the batteries in the energy storage system produce lithium deposition, heat generation and other phenomena, affecting the performance and service life of the batteries.
  • the present application provides a control method for an energy storage system, wherein the energy storage system includes multiple energy storage units, the energy storage system is coupled with an energy generation system and a power grid, and the energy storage system is used to store electrical energy obtained from the energy generation system and release electrical energy to the power grid.
  • the control method includes: in a first stage, controlling the energy generation system to charge the first energy storage unit of the multiple energy storage units, and the first stage is the charging stage of the charging cycle of the first energy storage unit; in a second stage, controlling the first energy storage unit to discharge to the second energy storage unit of the multiple energy storage units, and the second stage is the discharging stage of the charging cycle of the first energy storage unit.
  • the first energy storage unit is charged to a certain amount of electricity in the first stage of the charging cycle, and then discharges to the second energy storage unit in the second stage, thereby reducing the occurrence of lithium plating and heating of the battery of the first energy storage unit in the energy storage system, which is beneficial to improving the performance and service life of the battery, thereby improving the performance and service life of the energy storage system.
  • FIG. 1 is a schematic diagram of an application scenario of an energy storage system according to an embodiment of the present application.
  • the energy generation system 120 is connected to the energy storage system 110 and the power grid 130 , and the energy generation system 120 can transmit power to the energy storage system 110 and the power grid 130 .
  • the energy generation system 120 can convert solar energy, wind energy, nuclear energy, etc. into electrical energy.
  • the energy generation system 120 is a renewable energy system such as a wind power generation system, a photovoltaic power generation system, or a tidal power generation system, or a nuclear power generation system, a thermal power generation system, or a hydropower generation system, or a power generation system that combines a wind power generation system and a thermal power generation system. This application does not limit the power generation form of the energy generation system 120.
  • the energy storage system 110 is used to store electric energy, and the energy storage system 110 may include multiple energy storage units.
  • each energy storage unit may include at least one battery, and a battery management system (BMS) is designed in each energy storage unit to monitor battery information such as the state of charge (SOC), temperature, current, voltage, and state of health (SOH), and to interact with the upper-level energy management system (EMS) or power conversion system (PCS) in real time to achieve energy management of the entire energy storage system 110.
  • SOC state of charge
  • SOH state of health
  • EMS upper-level energy management system
  • PCS power conversion system
  • a battery may include a plurality of battery cells, which are connected in series, in parallel or in mixed connection to form a battery.
  • a battery cell may be the smallest unit of a battery.
  • the energy storage system 110 may also output power to an electrical device, which may be an electric vehicle or the like.
  • the energy storage system 110 is connected to a power grid 130.
  • the power grid 130 may be a distribution grid, a regional grid, or a power supply grid, which is not limited in this application.
  • the power grid 130 may receive power output by the energy storage system 110, or may transmit power to the energy storage system 110.
  • the power grid 130 may also be replaced by user-side electrical equipment, which may not output power to the energy storage system 110.
  • the user-side electrical equipment may receive power output by the energy storage system 110 and/or the energy generation system 120.
  • the energy storage system 110 is connected to the energy generation system 120, the energy storage system 110 is connected to the power grid 130, and the energy generation system 120 is connected to the power grid 130. It can also be understood that the energy storage system 110 is coupled to the energy generation system 120, the energy storage system 110 is coupled to the power grid 130, and the energy generation system 120 is coupled to the power grid 130.
  • Fig. 2 is a schematic diagram of the architecture of an application scenario of an energy storage system according to an embodiment of the present application.
  • the energy generation system 120 is illustrated as a photovoltaic power generation system as an example. It should be noted that the energy generation system 120 is not limited to a photovoltaic power generation system.
  • the output power of the energy generation system 120 is the power output after passing through the first controller.
  • the first controller may be a maximum power point tracking solar controller (MPTT), which may control the output power of the energy generation system 120 and may also control whether the energy generation system 120 outputs power to the energy storage system 110 or the power grid 130.
  • MPTT maximum power point tracking solar controller
  • the power of the energy generation system 120 is output to the bus 140 through the MPPT, which means that the energy generation system 120 may output direct current to the bus 104 under the control of the MPPT.
  • the power output by the grid 130 can be output to the bus 140 through an alternating current-direct current (AC/DC) converter.
  • the AC/DC converter is a bidirectional AC/DC converter that can support a fast charge/discharge switching function.
  • the AC generated by the grid 130 can be converted into DC through a bidirectional AC/DC converter and then output to the bus 140.
  • the energy storage system 110 includes a plurality of energy storage units, each of which includes a battery and a direct current-direct current (DCDC) converter.
  • the DCDC converter is a bidirectional DCDC converter that can support a fast charge and discharge switching function, and can also convert the size of the current or power to meet the charge and discharge power of the battery.
  • Each energy storage unit can output power to the bus 140 through DCDC, and can also output power to other energy storage units through DCDC.
  • the current or power of the bus 140 can also be transmitted to each energy storage unit through DCDC.
  • the charging or discharging of the energy storage unit can be turned on and off by controlling the DCDC converter.
  • the DCDC converter may be an isolated DCDC converter or a non-isolated DCDC converter.
  • Fig. 3 is a schematic diagram of a control method for an energy storage system according to an embodiment of the present application.
  • the control method 300 includes the following steps.
  • the control method 300 of the embodiment of the present application is applicable to the energy storage system 110 shown in Figures 1 and 2.
  • the energy storage system 110 is coupled to the energy generation system 120 and the power grid 130.
  • the energy storage system 110 is used to store the electrical energy obtained from the energy generation system 120 and release the electrical energy to the power grid 130.
  • the energy storage system 110 includes multiple energy storage units.
  • the control method 300 of the embodiment of the present application is executed by a control device, which can be set in the energy storage system 110, or in the energy generation system 120, or can be independently set outside the energy storage system 110 and the energy generation system 120.
  • the specific setting of the control device can be specifically set according to actual conditions, and the embodiment of the present application does not specifically limit this.
  • Step 310 In the first stage, the energy generation system 120 is controlled to charge the first energy storage unit 111 of the plurality of energy storage units.
  • the first stage is the charging stage of the charging cycle of the first energy storage unit 111 .
  • step 310 may be implemented by the following operations.
  • the control device controls the MPPT to output the power of the energy generation system 120 to the bus 140 , and then the control device controls the DCDC in the first energy storage unit 111 to convert the direct current on the bus 140 side into a charging current of the first energy storage unit 111 and output the current to the first energy storage unit 111 .
  • step 310 the energy generation system 120 is controlled to charge the first energy storage unit 111, so as to fully utilize the electric energy generated by the energy generation system 120 and avoid energy waste.
  • Step 320 In the second stage, the first energy storage unit 111 is controlled to discharge to the second energy storage unit 112 of the plurality of energy storage units.
  • the second stage is the discharge stage of the charging cycle of the first energy storage unit 111 .
  • step 320 may be implemented by the following operations:
  • the control device controls the DCDC of the first energy storage unit 111 and the DCDC of the second energy storage unit 112 to turn on, so as to output the power of the first energy storage unit 111 to the second energy storage unit 112 .
  • FIG4 is a schematic diagram of a charging cycle of the first energy storage unit of an embodiment of the present application.
  • the charging cycle of the first energy storage unit 111 includes a plurality of first stages and second stages that appear in sequence.
  • the first energy storage unit 111 is charged to replenish the power of the first energy storage unit 111.
  • the second stage the first energy storage unit 111 is discharged to reduce or eliminate the polarization accumulation of the battery in the first energy storage unit 111, thereby reducing the generation of lithium plating and reducing the heat accumulation caused by charging the first energy storage unit 111.
  • the charging power of the first energy storage unit 111 may be different, and the amount of electricity replenished may also be different, which can be determined by the BMS according to the battery information of the battery of the first energy storage unit.
  • the discharge power and the amount of electricity discharged of the first energy storage unit 111 may also be different.
  • durations of different first stages and different second stages may be the same or different, and these may be specifically set according to actual conditions.
  • controlling the first energy storage unit 111 to discharge to the second energy storage unit 112 can reduce the generation of lithium deposition and heating of the battery in the energy storage system 110, which is beneficial to improving the performance and service life of the battery.
  • controlling the first energy storage unit 111 to discharge to the power grid 130 is easier to implement, has less impact on the power grid 130, and does not affect the stability of the power grid 130.
  • the embodiment of the present application provides a control method 300.
  • the energy generation system 120 is controlled to charge the first energy storage unit 111 of the multiple energy storage units, and the first stage is the charging stage of the charging cycle of the first energy storage unit 111; in the second stage, the first energy storage unit 111 is controlled to discharge the second energy storage unit 112 of the multiple energy storage units, and the second stage is the discharging stage of the charging cycle of the first energy storage unit 111.
  • the electric energy generated by the energy generation system 120 can be fully utilized to avoid energy waste, and the occurrence of lithium plating and heat generation of the battery in the energy storage system 110 can be reduced, which is beneficial to improving the performance and service life of the battery. Therefore, the solution of the present application can improve the performance and service life of the energy storage system 110.
  • the first energy storage unit 111 may be controlled to charge the first energy storage unit 111.
  • the first energy storage unit 111 may be charged by other energy storage units to heat the battery of the first energy storage unit 111.
  • Fig. 5 is a schematic diagram of a control method according to an embodiment of the present application.
  • step 310 includes step 311 .
  • Step 311 In the first stage, the energy generation system 120 is controlled to charge the first energy storage unit 111 of the multiple energy storage units according to the dispatching status of the power grid 130, the output power of the energy generation system 120, the charging power of the first energy storage unit 111, the remaining capacity of the first energy storage unit 111 and at least one of the remaining capacity of the second energy storage unit 112.
  • the charging power of the first energy storage unit 111 can be determined based on the battery information of the battery in the first energy storage unit 111.
  • the battery information may include the voltage of each battery cell in the battery, the temperature of the battery cell, the SOH of the battery cell and the battery, the SOC of the battery cell and the battery, etc.
  • the BMS in the first energy storage unit 111 can determine the charging current and charging power of the first energy storage unit 111 based on the battery information. For example, the BMS can obtain the battery information in real time and determine the most suitable charging power for the first energy storage unit 111 based on the battery information.
  • the charging power can be sent to the control device.
  • the BMS sends the charging power to the control device through a controller area network (CAN) communication method.
  • CAN controller area network
  • the output power of the energy generation system 120 is the power at the output side of the energy generation system 120, for example, the output power at position a in Figure 2.
  • the output power of the energy generation system 120 may be controlled by a first controller, such as an MPPT.
  • the remaining capacity of the first energy storage unit 111 and the remaining capacity of the second energy storage unit 112 refer to the SOC of the first energy storage unit 111 and the SOC of the second energy storage unit 112 , respectively.
  • the strategy for the energy generation system 120 to charge the first energy storage unit 111 based on information such as the dispatching status of the power grid 130, the output power of the energy generation system 120, the charging power of the first energy storage unit 111, the remaining capacity of the first energy storage unit 111 and the remaining capacity of the second energy storage unit 112.
  • step 311 includes: when the remaining capacity of the first energy storage unit 111 is less than the maximum preset capacity, controlling the energy generation system 120 to charge the first energy storage unit 111.
  • the maximum preset capacity may be the maximum SOC of the battery of the first energy storage unit 111 , and the SOC may be specifically set according to actual needs, for example, the SOC is 0.8, 0.9, etc.
  • the remaining capacity of the first energy storage unit 111 can be maintained within a suitable range, thereby avoiding overcharging caused by charging the first energy storage unit 111 when the remaining capacity of the first energy storage unit 111 is high.
  • Fig. 6 is a schematic diagram of a control method according to an embodiment of the present application.
  • step 311 includes step 312 .
  • Step 312 When the dispatching state of the power grid 130 includes the absence of energy dispatching demand, the energy generation system 120 is controlled to charge the first energy storage unit 111 according to the output power of the energy generation system 120 , the charging power of the first energy storage unit 111 and the remaining capacity of the second energy storage unit 112 .
  • the dispatching state of the power grid 130 includes a situation where there is no energy dispatching demand, it can be that at this time, the power grid 130 does not need the energy generation system 120 and the energy storage system 110 to transmit power to the power grid 130 .
  • the strategy for charging the first energy storage unit 111 when there is no scheduling demand from the power grid 130, it is convenient to determine the strategy for charging the first energy storage unit 111 based on the relationship between the output power P2 of the energy generation system 120 and the charging power P1 of the first energy storage unit 111, and the remaining capacity of the second energy storage unit 112.
  • step 312 includes: when the output power of the energy generation system 120 is less than the charging power of the first energy storage unit 111, controlling the energy generation system 120 to charge the first energy storage unit 111, and controlling at least one of the second energy storage unit 112 and the power grid 130 to charge the first energy storage unit 111, wherein the remaining capacity of the second energy storage unit 112 is greater than or equal to the minimum preset capacity
  • the minimum preset capacity may be specifically set according to actual needs.
  • the SOC of the battery in the second energy storage unit 112 corresponding to the minimum preset capacity of the second energy storage unit 112 is 0.5.
  • the second energy storage unit 112 can be used as an energy supplement device to charge the first energy storage unit.
  • the output power of the energy generation system 120 is less than the charging power of the first energy storage unit 111, in addition to the energy generation system 120, other devices are required to charge the first energy storage unit 111.
  • the energy generation system 120 and the power grid 130 charge the first energy storage unit at the same time, which is more economical.
  • the energy generation system 120 and the second energy storage unit 112 charge the first energy storage unit 111 at the same time, and the power grid 130 does not charge the first energy storage unit 111.
  • the power grid 130 does not need to charge the first energy storage unit 111, and the charging strategy is simple and easy, and will not affect the normal operation and stability of the power grid 130.
  • the energy generation system 120, the power grid 130 and the second energy storage unit 112 charge the first energy storage unit 111 simultaneously.
  • the control device controls the first controller, such as the MPPT, to output the output power of the energy generation system 120 to the bus 104; the control device controls the DCDC of the second energy storage unit 112 to output the power of the second energy storage unit 112 to the bus 104; the control device controls the AC/DC to output the power of the power grid 130 to the bus 104; the control device controls the DCDC of the first energy storage unit 111 to convert the power (direct current) on the bus 104 side and output it to the first energy storage unit 111.
  • the first controller such as the MPPT
  • the control device controls the DCDC of the second energy storage unit 112 to output the power of the second energy storage unit 112 to the bus 104
  • the control device controls the AC/DC to output the power of the power grid 130 to the bus 104
  • the control device controls the DCDC of the first energy storage unit 111 to convert the power (direct current) on the bus 104 side and output it to the first energy storage unit 111.
  • the second energy storage unit 112 and/or the power grid 130 can charge the first energy storage unit 111 in the first stage simultaneously with the energy generation system 120 to meet the first energy storage unit 111's demand for charging power, thereby facilitating extending the service life of the first energy storage unit 111.
  • step 312 includes: when the output power of the energy generation system 120 is greater than or equal to the charging power of the first energy storage unit 111, controlling the output power of the energy generation system 120 to be the same as the charging power of the first energy storage unit 111; after controlling the output power of the energy generation system 120 to be the same as the charging power of the first energy storage unit 111, controlling the energy generation system 120 to charge the first energy storage unit 111.
  • the output power of the energy generation system 120 when the output power of the energy generation system 120 is greater than or equal to the charging power of the first energy storage unit 111, the output power of the energy generation system 120 is controlled to be the same as the charging power of the first energy storage unit 111, and after the output power of the energy generation system 120 is controlled to be the same as the charging power of the first energy storage unit 111, only the energy generation system 120 is controlled to charge the first energy storage unit 111. In this way, the demand for charging power of the first energy storage unit 111 can be met, which is conducive to extending the service life of the first energy storage unit 111; at the same time, the implementation method is simple and easy to implement.
  • step 312 includes: when the remaining capacity of the second energy storage unit 112 is less than the minimum preset capacity, controlling the energy generation system 120 and/or the power grid 130 to charge the second energy storage unit 112.
  • step 312 includes: when the remaining capacity of the second energy storage unit 112 is less than the minimum preset capacity, controlling the energy generation system 120 and/or the power grid 130 to charge the second energy storage unit 112.
  • the energy generation system 120 and/or the power grid 130 are controlled to charge the second energy storage unit 112, including: when the output power of the energy generation system 120 is less than the charging power of the first energy storage unit 111, the energy generation system 120 and the power grid 130 are controlled to charge the first energy storage unit 111, and the power grid 130 is controlled to charge the second energy storage unit 112.
  • the second energy storage unit 112 while charging the first energy storage unit 111 , the second energy storage unit 112 is also charged, so that after the second energy storage unit 112 is charged to a suitable amount of power, the first energy storage unit 111 can be charged using the second energy storage unit 112 .
  • the energy generation system 120 and the power grid 130 are controlled to only charge the first energy storage unit 111 and not charge the second energy storage unit 112 .
  • the energy generation system 120 and/or the power grid 130 are controlled to charge the second energy storage unit 112, including: when the output power of the energy generation system 120 is equal to the charging power of the first energy storage unit 111, the energy generation system 120 is controlled to charge the first energy storage unit 111, and the power grid 130 is controlled to charge the second energy storage unit 112; when the output power of the energy generation system 120 is greater than the charging power of the first energy storage unit 111, the energy generation system 120 is controlled to charge the first energy storage unit 111, and the energy generation system 120 and/or the power grid 130 are controlled to charge the second energy storage unit 112.
  • the energy generation system 120 when the output power of the energy generation system 120 is greater than the charging power of the first energy storage unit 111, the energy generation system 120 is controlled to charge the first energy storage unit 111, and the energy generation system 120 and/or the power grid 130 are controlled to charge the second energy storage unit 112, including: when the difference between the output power of the energy generation system 120 and the charging power of the first energy storage unit 111 is less than the maximum charging power of the second energy storage unit 112, the energy generation system 120 and the power grid 130 are controlled to charge the second energy storage unit 112. In this way, it is convenient to realize the rapid charging of the second energy storage unit 112.
  • step 311 includes: when the dispatching state of the power grid 130 includes the existence of an energy dispatching demand and the output power of the energy generation system 120 is greater than the required power of the power grid 130, controlling the energy generation system 120 to charge the first energy storage unit 111 according to the output power of the energy generation system 120, the charging power of the first energy storage unit 111 and the remaining capacity of the second energy storage unit 112.
  • the power grid 130 has an energy dispatching demand, wherein the power grid 130 may send the energy dispatching demand to at least one of the energy generation system 120 and the energy storage system 110.
  • the power grid 130 preferentially sends the energy dispatching demand to the energy generation system 120.
  • the power grid 130 may also send the dispatching demand to the energy storage system 110.
  • the energy generation system 120 is controlled to charge the first energy storage unit 111.
  • the first energy storage unit 111 can be charged while the demand of the power grid 130 is met, thereby avoiding the situation where the demand of the power grid 130 cannot be met due to the charging of the first energy storage unit 111, thereby avoiding affecting the stability of the power grid 130.
  • controlling the energy generation system 120 to charge the first energy storage unit 111 of the plurality of energy storage units includes: when the remaining capacity of the second energy storage unit 112 is greater than or equal to the minimum preset capacity, controlling the energy generation system 120 to charge the first energy storage unit 111, or controlling the energy generation system 120 and the second energy storage unit 112 to charge the first energy storage unit 111.
  • the second energy storage unit 112 and/or the energy generation system 120 can simultaneously charge the first energy storage unit 111 in the first stage to meet the demand of the first energy storage unit 111 for charging power, thereby facilitating the extension of the service life of the first energy storage unit 111.
  • the difference between the output power of the energy generation system 120 and the required power of the power grid 130 is greater than or equal to the charging power of the first energy storage unit 111 , it is only necessary to control the energy generation system 120 to charge the first energy storage unit 111 .
  • the second energy storage unit 112 and the energy generation system 120 are controlled to charge the first energy storage unit 111 simultaneously in the first stage.
  • the power delivered by the energy generation system 120 to the first energy storage unit 111 is P2-P4
  • the power delivered by the second energy storage unit 112 to the first energy storage unit 111 is P1-(P2-P4).
  • controlling the energy generation system 120 to charge the first energy storage unit 111 of the plurality of energy storage units includes: when the remaining capacity of the second energy storage unit 112 is less than the minimum preset capacity, controlling the energy generation system 120 to charge the second energy storage unit 112; after controlling the energy generation system 120 to charge the second energy storage unit 112, controlling the energy generation system 120 and/or the second energy storage unit 112 to charge the first energy storage unit 111.
  • the remaining capacity of the second energy storage unit 112 can be made greater than the minimum preset capacity, so that when charging the first energy storage unit 111, the charging power requirement of the first energy storage unit 111 is met.
  • the energy generation system 120 can also be controlled to simultaneously charge the first energy storage unit 111 and the second energy storage unit 112. It should be noted that the charging power of the first energy storage unit 111 is the appropriate charging power calculated by the BMS, and the charging power of the second energy storage unit 112 does not exceed the maximum charging power of the second energy storage unit 112.
  • controlling the first energy storage unit 111 to discharge to the second energy storage unit 112 of the plurality of energy storage units includes: in the second stage, according to the dispatching state of the power grid 130 and at least one of the remaining capacity of the second energy storage unit 112, controlling the first energy storage unit 111 to discharge to the second energy storage unit 112 of the plurality of energy storage units. In this way, it is convenient to flexibly set different discharge strategies of the first energy storage unit 111 in the charging cycle according to actual conditions.
  • controlling the first energy storage unit 111 to discharge to the second energy storage unit 112 of the plurality of energy storage units includes: when the remaining capacity of the second energy storage unit 112 is less than the maximum preset capacity, controlling the first energy storage unit 111 to discharge to the second energy storage unit 112. In this way, overcharging caused by excessive power received by the second energy storage unit 112 can be avoided.
  • controlling the first energy storage unit 111 to discharge to the second energy storage unit 112 of the plurality of energy storage units includes: when the dispatching state of the power grid 130 includes the absence of energy dispatching demand, controlling the output power of the energy generation system 120 to be 0, and controlling the first energy storage unit 111 to discharge to the second energy storage unit 112. In this way, the first energy storage unit 111 can be prevented from discharging to the power grid 130 and affecting the stability of the power grid 130.
  • controlling the first energy storage unit 111 to discharge to the second energy storage unit 112 of the plurality of energy storage units includes: when the dispatching state of the power grid 130 includes the existence of energy dispatching demand, controlling the output power of the energy generation system 120 to be equal to the required power of the power grid 130, and controlling the first energy storage unit 111 to discharge to the second energy storage unit 112.
  • This implementation is simple and easy, and can simultaneously meet the demand of the power grid 130 and the demand of the first energy storage unit 111 to discharge to the second energy storage unit 112.
  • the method further includes: when the charge amount of the first energy storage unit 111 reaches the first preset capacity, controlling the first energy storage unit 111 to switch from the first stage to the second stage; when the discharge amount of the first energy storage unit 111 reaches the second preset capacity, controlling the first energy storage unit 111 to switch from the second stage to the first stage. In this way, by continuously switching between the first stage and the second stage during the charging cycle of the first energy storage unit 111, the charging of the first energy storage unit 111 is achieved.
  • the first preset capacity and the second preset capacity can be specifically set according to actual needs, and this application does not impose any specific restrictions on this.
  • the first preset capacity is greater than the second preset capacity.
  • the time of the first stage is less than the time of the second stage.
  • the charging power of the first energy storage unit 111 may be different, or may be determined according to battery information of the first energy storage unit 111 .
  • the method further includes: when the remaining capacity of the first energy storage unit 111 reaches the maximum preset capacity, controlling the energy generation system 120 to stop charging the first energy storage unit 111.
  • the remaining capacity of the first energy storage unit 111 does not exceed the maximum preset capacity, and after the energy generation system 120 finishes charging the first energy storage unit 111, it can serve as an energy absorption device to receive the electricity discharged by other energy storage units of the multiple energy storage units.
  • the control device no longer controls the energy generation system 120 to charge the first energy storage unit 111.
  • the first energy storage unit 111 only serves as an energy absorption device to absorb the electricity released by the remaining energy storage units during the discharge phase of the charging cycle; at the same time, the first energy storage unit 111 will not charge the remaining energy storage battery units.
  • FIG7 is a schematic diagram of a control device according to an embodiment of the present application.
  • the present application provides a control device 500, the control device 500 is coupled to an energy storage system 110, the energy storage system 110 is coupled to an energy generation system 120 and a power grid 130, the energy storage system 110 is used to store the electric energy obtained from the energy generation system 120 and release the electric energy to the power grid 130, the energy storage system 110 includes a plurality of energy storage units, and the control device 500 includes a control unit 510.
  • the control unit 510 is used to: in a first stage, control the energy generation system 120 to charge the first energy storage unit 111 of the plurality of energy storage units, the first stage is the charging stage of the charging cycle of the first energy storage unit 111; in a second stage, control the first energy storage unit 111 to discharge the second energy storage unit 112 of the plurality of energy storage units, the second stage is the discharging stage of the charging cycle of the first energy storage unit 111.
  • control unit 510 is also used to: in the first stage, control the energy generation system 120 to charge the first energy storage unit 111 of the multiple energy storage units according to the dispatching status of the power grid 130, the output power of the energy generation system 120, the charging power of the first energy storage unit 111, the remaining capacity of the first energy storage unit 111 and at least one of the remaining capacity of the second energy storage unit 112.
  • control unit 510 is also used to execute any one of the control methods described above. Similar descriptions can be found above and will not be repeated here.
  • FIG8 is a schematic diagram of an energy storage system according to an embodiment of the present application.
  • the present application provides an energy storage system 110, which is coupled to an energy generation system 120 and a power grid 130, and is used to store electrical energy obtained from the energy generation system 120 and release electrical energy to the power grid 130, and the energy storage system 110 includes a plurality of energy storage units and the control device 500 described above.
  • the energy storage system 110 includes a plurality of energy storage units, for example, two energy storage units, namely a first energy storage unit 111 and a second energy storage unit 112, which are connected in parallel.
  • the energy storage system 110 may also include three or more energy storage units.
  • the control device 500 can be connected to multiple energy storage units in a wireless or wired manner, and the embodiment of the present application does not impose any specific limitation on this.
  • Fig. 9 is a schematic diagram of a control device of an embodiment of the present application.
  • the present application provides a control device 600 of an energy storage system 110, the control device 600 includes a memory 610 and a processor 620, the memory 610 is used to store instructions, and the processor 620 is used to read the instructions and execute the method described above according to the instructions.
  • the processor 620 of the embodiment of the present application can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed by the hardware integrated logic circuit in the processor or the instruction in the form of software.
  • the above processor can be a general processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the methods and steps disclosed in the embodiments of the present application can be implemented or executed.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as being executed by a hardware decoding processor, or being executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 610 of the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM Direct Rambus RAM
  • SRAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • ESDRAM Enhanced SDRAM
  • SLDRAM Synchlink DRAM
  • DR RAM Direct Rambus RAM
  • the present application also provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium can be applied to the control device of the energy storage system in the embodiment of the present application, and when the computer program is run on the computer, the computer executes the corresponding processes implemented by the control device in the various methods of the embodiment of the present application. For the sake of brevity, they are not repeated here.
  • An embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the control device of the energy storage system in the embodiment of the present application, and when the computer program instructions are executed on a computer, the computer executes the corresponding processes implemented by the control device of the energy storage system in each method of the embodiment of the present application. For the sake of brevity, they are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to the control device of the energy storage system in the embodiment of the present application.
  • the computer program runs on a computer, the computer executes the corresponding processes implemented by the control device of the energy storage system in the various methods of the embodiment of the present application. For the sake of brevity, they are not described here.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard drives, ROM, RAM, magnetic disks, or optical disks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种储能系统的控制方法、控制装置和储能系统。储能系统耦合至能源产生系统,储能系统包括多个储能单元,储能系统的控制方法包括:在第一阶段,控制能源产生系统向多个储能单元的第一储能单元充电,第一阶段为第一储能单元的充电周期的充电阶段;在第二阶段,控制第一储能单元向多个储能单元的第二储能单元放电,第二阶段为第一储能单元的充电周期的放电阶段。本申请的技术方案可以提高储能系统的性能和使用寿命。

Description

储能系统的控制方法、控制装置和储能系统 技术领域
本申请涉及储能技术领域,特别是涉及一种储能系统的控制方法、控制装置和储能系统。
背景技术
随着新能源产业的迅速发展,大量的风电、光伏等能源产生系统接入电网。为了避免能源产生系统输出的能量过大而导致的浪费,通常设置有与能源产生系统连接的储能系统,以存储多余的能量。
然而,在储能系统的使用过程中,能源产生系统以持续充电的方式向储能系统充电,储能系统中的电池经过长期的充放电循环后,产生析锂、发热等现象,影响电池的性能和使用寿命。因此,如何提供一种储能系统的控制方法,以提高储能系统的性能和使用寿命是一项亟待解决的技术问题。
发明内容
本申请提供了一种储能系统的控制方法、控制装置和储能系统,可以提高储能系统的性能和使用寿命。
第一方面,本申请提供了一种储能系统的控制方法,所述储能系统包括多个储能单元,所述储能系统与能源产生系统和电网耦合,所述储能系统用于存储从所述能源产生系统获得的电能并向所述电网释放电能,所述方法包括:在第一阶段,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,所述第一阶段为所述第一储能单元的充电周期的充电阶段;在第二阶段,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,所述第二阶段为所述第一储能单元的充电周期的放电阶段。
在本申请实施例中,在第一储能单元的充电周期的第一阶段,控制能源产生系统向第一储能单元充电,可以充分利用能源产生系统输出的电能,避免能量的浪 费;在第一储能单元的充电周期的第二阶段,控制第一储能单元向第二储能单元放电,可以减少储能系统中的电池的析锂和发热现象的产生,有利于提升电池的性能和使用寿命。因此,本申请的方案可以提高储能系统的性能和使用寿命。
在一种可能的实现方式中,所述在第一阶段,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述第一阶段,根据所述电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量、和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电。这样,便于根据不同的使用场景,确定能源产生系统向第一储能单元充电的策略。
在一种可能的实现方式中,所述根据电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述第一储能单元的剩余容量小于最大预设容量的情况下,控制所述能源产生系统向所述第一储能单元充电。这样,可以将第一储能单元的剩余容量保持在合适的范围内,避免在第一储能单元的剩余容量较高的情况下对第一储能单元充电而导致的过充。
在一种可能的实现方式中,所述根据电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述电网的调度状态包括不存在能源调度需求的情况下,根据所述能源产生系统的输出功率、所述第一储能单元的充电功率和所述第二储能单元的剩余容量,控制所述能源产生系统向所述第一储能单元充电。这样,可以在电网没有调度需求的情况下,根据相应的信息,确定对第一储能单元进行充电的策略。
在一种可能的实现方式中,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述能源产生系统的输出功率小于所述第一储能单元的充电功率的情况下,控制所述能源产生系统向所述第一储能单元充电,并且控制所述第二储能单元和所述电网中的至少一个向所述第一储能单元充电,其中,所述第二储能单元的剩余容量大于或等于最小预设容量。这样,第二储能单元和/或电网可以 与能源产生系统同时在第一阶段向第一储能单元充电,以满足第一储能单元对充电功率的需求,从而有利于延长第一储能单元的使用寿命。
在一种可能的实现方式中,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述能源产生系统的输出功率大于或等于所述第一储能单元的充电功率的情况下,控制所述能源产生系统的输出功率与所述第一储能单元的充电功率相同;在控制所述能源产生系统的输出功率与所述第一储能单元的充电功率相同之后,控制所述能源产生系统向所述第一储能单元充电。
在该实现方式中,在能源产生系统的输出功率大于或等于第一储能单元的充电功率的情况下,控制能源产生系统的输出功率与第一储能单元的充电功率相同,并且在控制能源产生系统的输出功率与第一储能单元的充电功率相同之后,仅控制能源产生系统向第一储能单元充电。该实现方式可以满足第一储能单元对充电功率的需求,有利于延长第一储能单元的使用寿命;同时该实现方式简单,便于实现。
在一种可能的实现方式中,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述第二储能单元的剩余容量小于最小预设容量的情况下,控制所述能源产生系统和/或所述电网向所述第二储能单元充电。这样,便于根据实际情况,灵活地选择向第二储能单元充电的策略;此外,对第二储能单元充电至一定电量后,便于在后续过程中使用第二储能单元对第一储能单元充电。
在一种可能的实现方式中,所述控制所述能源产生系统和/或所述电网向所述第二储能单元充电,包括:在所述能源产生系统的输出功率小于所述第一储能单元的充电功率的情况下,控制所述能源产生系统和所述电网向所述第一储能单元充电,控制所述电网向所述第二储能单元充电。这样,在向第一储能单元充电的同时,也实现了对第二储能单元的充电,从而便于在第二储能单元充电至合适电量后,使用第二储能单元对第一储能单元充电。
在一种可能的实现方式中,所述控制所述能源产生系统和/或所述电网向所述第二储能单元充电,包括:在所述能源产生系统的输出功率等于所述第一储能单元的充电功率的情况下,控制所述能源产生系统向所述第一储能单元充电,控制所述电网向所述第二储能单元充电;在所述能源产生系统的输出功率大于所述第一储能单元的充电功率的情况下,控制所述能源产生系统向所述第一储能单元充电,控制所述能源产生系统和/或所述电网向所述第二储能单元充电。这样,便于根据实际情况,选择 合适的控制方法,以实现对第一储能单元的充电以及对第二储能单元的电量的补充。
在一种可能的实现方式中,在所述能源产生系统的输出功率大于所述第一储能单元的充电功率的情况下,控制所述能源产生系统向所述第一储能单元充电,控制所述能源产生系统和/或所述电网向所述第二储能单元充电,包括:在所述能源产生系统的输出功率与所述第一储能单元的充电功率之差小于所述第二储能单元的最大充电功率的状态下,控制所述能源产生系统和所述电网向所述第二储能单元充电。这样,便于实现对第二储能单元的快速充电。
在一种可能的实现方式中,所述根据电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述电网的调度状态包括存在能源调度需求且所述能源产生系统的输出功率大于所述电网的需求功率的情况下,根据所述能源产生系统的输出功率、所述第一储能单元的充电功率和所述第二储能单元的剩余容量,控制所述能源产生系统向所述第一储能单元充电。
在该实现方式中,在电网有调度需求且能源产生系统的输出功率大于电网的需求功率的情况下,控制能源产生系统对第一储能单元充电。这样,可以在满足电网的需求的情况下,实现对第一储能单元的充电,避免因对第一储能单元充电而影响电网的稳定性。
在一种可能的实现方式中,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述第二储能单元的剩余容量大于或等于最小预设容量的情况下,控制所述能源产生系统向所述第一储能单元充电,或控制所述能源产生系统和所述第二储能单元向所述第一储能单元充电。这样,第二储能单元和/或能源产生系统可以同时在第一阶段向第一储能单元充电,以满足第一储能单元对充电功率的需求,从而有利于延长第一储能单元的使用寿命。
在一种可能的实现方式中,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:在所述第二储能单元的剩余容量小于最小预设容量的情况下,控制所述能源产生系统向所述第二储能单元充电;在控制所述能源产生系统向所述第二储能单元充电之后,控制所述能源产生系统和/或所述第二储能单元向所述第一储能单元充电。这样,可以使第二储能单元的剩余容量大于最小预设容量,以便 在对第一储能单元充电时,满足第一储能单元对充电功率的要求。
在一种可能的实现方式中,所述在第二阶段,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,包括:在所述第二阶段,根据电网的调度状态和所述第二储能单元的剩余容量中的至少一个,控制所述第一储能单元向所述多个储能单元的第二储能单元放电。这样,便于根据实际情况,灵活地设置不同的第一储能单元在充电周期内的放电策略。
在一种可能的实现方式中,所述根据电网的调度状态和所述第二储能单元的剩余容量中的至少一个,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,包括:在所述第二储能单元的剩余容量小于最大预设容量的情况下,控制所述第一储能单元向所述第二储能单元放电。这样,可以避免第二储能单元接受的电量过多的导致的过充。
在一种可能的实现方式中,所述根据电网的调度状态和所述第二储能单元的剩余容量中的至少一个,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,包括:在所述电网的调度状态包括存在能源调度需求的情况下,控制所述能源产生系统的输出功率为0,并控制所述第一储能单元向所述第二储能单元放电。这样,可以避免第一储能单元向电网放电而影响电网的稳定性。
在一种可能的实现方式中,所述根据电网的调度状态和所述第二储能单元的剩余容量中的至少一个,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,包括:在所述电网的调度状态包括存在能源调度需求的情况下,控制所述能源产生系统的输出功率等于所述电网的需求功率,并控制所述第一储能单元向所述第二储能单元放电。该实现方式简单易行,可以同时满足电网的需求和第一储能单元向第二储能单元放电的需求。
在一种可能的实现方式中,所述方法还包括:在所述第一储能单元的充电量达到第一预设容量的情况下,控制所述第一储能单元从所述第一阶段切换到所述第二阶段;在所述第一储能单元的放电量达到第二预设容量的情况下,控制所述第一储能单元从所述第二阶段切换到所述第一阶段。这样,通过在第一储能单元的充电周期内的第一阶段和第二阶段的不断切换,实现对第一储能单元的充电。
在一种可能的实现方式中,所述方法还包括:在所述第一储能单元的剩余容量达到最大预设容量的情况下,控制所述能源产生系统停止向所述第一储能单元充 电。这样,第一储能单元的剩余容量不超过最大预设容量,可以在能源产生系统对第一储能单元结束充电后,作为能量吸收装置以接收多个储能单元的其它储能单元放出的电量。
第二方面,本申请提供了一种所述控制装置,所述控制装置耦合到储能系统,所述储能系统与能源产生系统和电网耦合,所述储能系统用于存储从所述能源产生系统获得的电能并向所述电网释放电能,所述储能系统包括多个储能单元,所述控制装置包括控制单元,所述控制单元用于:在第一阶段,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,所述第一阶段为所述第一储能单元的充电周期的充电阶段;在第二阶段,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,所述第二阶段为所述第一储能单元的充电周期的放电阶段。
在一种可能的实现方式中,所述控制单元还用于:在所述第一阶段,根据所述电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量、和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电。
第三方面,本申请提供了一种储能系统,所述储能系统与能源产生系统和电网耦合,所述储能系统用于存储从所述能源产生系统获得的电能并向所述电网释放电能,所述储能系统包括多个储能单元和第二方面及第二方面中任一项所述的控制装置。
第四方面,本申请提供了一种储能系统的控制装置,所述控制装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并根据所述指令执行第一方面及第一方面中任一项所述的方法。
在本申请实施例中,在第一储能单元的充电周期的第一阶段,控制能源产生系统向第一储能单元充电,可以充分利用能源产生系统输出的电能,避免能量的浪费;在第一储能单元的充电周期的第二阶段,控制第一储能单元向第二储能单元放电,可以减少储能系统中的电池的析锂和发热现象的产生,有利于提升电池的性能和使用寿命。因此,本申请的方案可以提高储能系统的性能和使用寿命。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所 需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一实施例中的储能系统的应用场景的示意图;
图2为本申请一实施例的储能系统的应用场景的架构示意图;
图3为本申请一实施例的储能系统的控制方法的示意图;
图4为本申请一实施例的第一储能单元的充电周期的示意图;
图5为本申请一实施例的控制方法的示意图;
图6为本申请一实施例的控制方法的示意图;
图7为本申请一实施例的控制装置的示意图;
图8为本申请一实施例的储能系统的示意图;
图9为本申请一实施例的控制装置的示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的 普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
随着新能源产业的迅速发展,大量的风电、光伏等能源产生系统接入电网,以向电网提供电能。在能源产生系统产生的能量较多的情况下,为了避免能源产生系统输出的能量过大而导致的浪费,通常设置有与能源产生系统连接的储能系统,以存储多余的能量。
研究人员发现,在储能系统的使用过程中,能源产生系统以持续充电的方式向储能系统充电,储能系统中的电池经过长期的充放电循环后,产生析锂、发热等现象,影响电池的性能和使用寿命。
基于此,本申请提供了一种储能系统的控制方法,储能系统包括多个储能单元,储能系统与能源产生系统和电网耦合,储能系统用于存储从能源产生系统获得的电能并向电网释放电能。控制方法包括:在第一阶段,控制能源产生系统向多个储能单元的第一储能单元充电,第一阶段为第一储能单元的充电周期的充电阶段;在第二阶段,控制第一储能单元向多个储能单元的第二储能单元放电,第二阶段为第一储能单元的充电周期的放电阶段。这样,通过在第一储能单元的充电周期中,引入放电阶段,使第一储能单元在充电周期的第一阶段充至一定电量后,在第二阶段向第二储能单元放电,从而可以减少储能系统中的第一储能单元的电池的析锂和发热现象的产生,有利于提升电池的性能和使用寿命,从而有利于提高储能系统的性能和使用寿命。
图1为本申请一实施例的储能系统的应用场景的示意图。
如图1所示,能源产生系统120与储能系统110和电网130连接,能源产生系统120可以向储能系统110和电网130输送功率。
能源产生系统120可以将太阳能、风能、核能等转化为电能。能源产生系统120为风能发电系统、光伏发电系统,或潮汐能发电系统等可再生能源系统,也可以是核能发电系统、火力发电系统或水力发电系统,还可以为风能发电系统和火力发电系统相结合的发电系统。本申请对能源产生系统120的发电形式不进行限定。
储能系统110用于存储电能,储能系统110可以包括多个储能单元。可选 地,每个储能单元可以包括至少一个电池,每个储能单元中设计有电池管理系统(Battery Management System,BMS)来监控电池的荷电状态(State of Charge,SOC)、温度、电流、电压、电池健康状态(State of Health,SOH)等电池信息,并跟上层能量管理系统(Energy Management System,EMS)或者功率转换系统(Power Convert System,PCS)进行实时的信息交互,实现整个储能系统110的能量管理。其中,电池的SOC也可以称为电池的剩余容量。
一个电池中,可以包括多个电池单体,该多个电池单体串联、并联或混联以组成电池。其中,电池单体可以为电池的最小单元。
可选地,储能系统110还可以向用电设备输出功率,用电设备可以为电动车等。
可选地,储能系统110与电网130连接。电网130可以为配电网,可以为区域性电网,也可以为供电电网,本申请对此不进行限定。电网130可以接收储能系统110输出的功率,也可以向储能系统110输送功率。
可选地,电网130也可以采用用户侧用电设备替代,用户侧用电设备不可以向储能系统110输出功率。可选地,用户侧用电设备可以接收储能系统110和/或能源产生系统120输出的功率。
应理解,在本申请实施例中,储能系统110与能源产生系统120连接,储能系统110与电网130连接,以及能源产生系统120与电网130连接,也可以理解为储能系统110与能源产生系统120耦合,储能系统110与电网130耦合,以及能源产生系统120与电网130耦合。
图2是本申请一实施例的储能系统的应用场景的架构示意图。如图2所示,图2中以能源产生系统120为光伏发电系统为例进行说明。需要注意的是,能源产生系统120并不局限于光伏发电系统。
能源产生系统120的输出功率为经过第一控制器后所输出的功率。例如,对于光伏发电系统而言,第一控制器可以为最大功率点跟踪太阳能控制器(Maximum Power Point Tracking,MPTT),MPTT可以控制能源产生系统120的输出功率的大小,还可以控制能源产生系统120是否向储能系统110或电网130输出功率。例如,能源产生系统120的功率通过MPPT输出至母线140,也可以说,能源产生系统120可以在MPPT的控制下输出直流至母线104。
电网130输出的功率可以通过交流-直流(Alternating Current-Direct Current-,AC/DC)变换器输出至母线140。该AC/DC变换器为双向AC/DC变换器,可以支持快速充电/放电的切换功能。电网130产生的交流可以通过双向AC/DC变换器转换为直流后,输出至母线140。
储能系统110包括多个储能单元,每个储能单元包括电池和直流-直流(Direct Current-Direct Current,DCDC)变换器。DCDC变换器为双向DCDC变换器,可以支持快速充放电的切换功能,还可以转换电流或功率的大小,以满足电池的充放电功率。每个储能单元可以通过DCDC将功率输出至母线140,也可以通过DCDC将功率输出至其他储能单元。此外,母线140的电流或功率也可以通过DCDC输送至每个储能单元。
在每个储能单元中,可以通过DCDC变换器控制储能单元的充电或放电的开启和关闭。
DCDC变换器可以为隔离的DCDC变换器,也可以为非隔离的DCDC变换器。
图3为本申请一实施例的储能系统的控制方法的示意图。在本申请实施例中,如图3所示,控制方法300包括以下步骤。
本申请实施例的控制方法300适用于图1和图2所示的储能系统110,储能系统110与能源产生系统120和电网130耦合,储能系统110用于存储从能源产生系统120获得的电能并向电网130释放电能,储能系统110包括多个储能单元。
本申请实施例的控制方法300由控制装置执行,该控制装置可以设置在储能系统110中,也可以设置在能源产生系统120中,还可以独立设置于储能系统110和能源产生系统120之外。控制装置的具体设置可以根据实际情况具体设置,本申请实施例对此不作具体限制。
步骤310:在第一阶段,控制能源产生系统120向多个储能单元的第一储能单元111充电,第一阶段为第一储能单元111的充电周期的充电阶段。
可选地,步骤310可以通过如下操作实现。例如,控制装置控制MPPT使能源产生系统120的功率输出至母线140,之后,控制装置控制第一储能单元111中的DCDC将母线140侧的直流电转换至第一储能单元111的充电电流并将该电流输出至第一储能单元111。
在步骤310中,控制能源产生系统120向第一储能单元111充电,可以充分利用能源产生系统120产生的电能,避免能量的浪费。
步骤320:在第二阶段,控制第一储能单元111向多个储能单元的第二储能单元112放电,第二阶段为第一储能单元111的充电周期的放电阶段。
可选地,步骤320可以通过如下操作实现。例如,控制装置控制第一储能单元111的DCDC和第二储能单元112的DCDC开启,以将第一储能单元111的功率输出至第二储能单元112。
图4为本申请一实施例的第一储能单元的充电周期的示意图。如图4所示,在第一储能单元111的充电周期内,包括多个依次循环出现的第一阶段和第二阶段。在第一阶段内,第一储能单元111进行充电以补充第一储能单元111的电量。在第二阶段,第一储能单元111进行放电,以减小或消除第一储能单元111中的电池的极化累积,从而减少析锂的产生,并且减少对第一储能单元111充电所造成的热量累积。
在不同的第一阶段,第一储能单元111的充电功率可以不同,所补充的电量也可以不同,这些均可以通过BMS根据第一储能单元的电池的电池信息确定。同理,在不同的第二阶段,第一储能单元111的放电功率和放出的电量也可以不同。
不同的第一阶段和不同的第二阶段的持续时间可以相同,也可以不同,这些均可以根据实际情况具体设置。
在步骤320中,控制第一储能单元111向第二储能单元112放电,可以减少储能系统110中的电池的析锂和发热现象的产生,有利于提升电池的性能和使用寿命。此外,相比于控制第一储能单元111向电网130放电,控制第一储能单元111向第二储能单元112放电,更容易实现,并且对电网130的影响更小,不会影响电网130的稳定性。
本申请实施例提供了一种控制方法300。在第一阶段,控制能源产生系统120向多个储能单元的第一储能单元111充电,第一阶段为第一储能单元111的充电周期的充电阶段;在第二阶段,控制第一储能单元111向多个储能单元的第二储能单元112放电,第二阶段为第一储能单元111的充电周期的放电阶段。这样,既可以充分利用能源产生系统120产生的电能,避免能量的浪费,又可以减少储能系统110中的电池的析锂和发热现象的产生,有利于提升电池的性能和使用寿命。因此,本申请的方案可以提高储能系统110的性能和使用寿命。
可选地,在第一阶段,还可以仅控制储能系统110中的除了第一储能单元111之外的其它储能单元向第一储能单元111充电。这样,可以通过其它储能单元向第一储能单元111充电,实现对第一储能单元111的电池的加热。
图5为本申请一实施例的控制方法的示意图。可选地,在本申请一实施例中,如图5所示,步骤310包括步骤311。
步骤311:在第一阶段,根据电网130的调度状态、能源产生系统120的输出功率、第一储能单元111的充电功率、第一储能单元111的剩余容量和第二储能单元112的剩余容量中的至少一个,控制能源产生系统120向多个储能单元的第一储能单元111充电。
第一储能单元111的充电功率可以根据第一储能单元111中的电池的电池信息确定,电池信息可以包括电池中的每个电池单体的电压、电池单体的温度、电池单体及电池的SOH,电池单体及电池的SOC等。第一储能单元111中的BMS可以根据电池信息确定第一储能单元111的充电电流和充电功率。例如,BMS可以实时获取电池信息,并根据电池信息确定最适合第一储能单元111的充电功率。
在BMS确定第一储能单元111的充电功率后,可以将充电功率发送至控制装置。例如,BMS通过控制器局域网(Controller Area Network,CAN)通信的方式将充电功率发送至控制装置。
能源产生系统120的输出功率为能源产生系统120的输出侧的功率,例如,图2中的位置a处的输出功率。能源产生系统120的输出功率的大小可以由第一控制器,例如MPPT控制。
第一储能单元111的剩余容量和第二储能单元112的剩余容量分别指第一储能单元111的SOC和第二储能单元112的SOC。
在该实施例中,便于根据电网130的的调度状态、能源产生系统120的输出功率、第一储能单元111的充电功率、第一储能单元111的剩余容量和第二储能单元112的剩余容量等信息,确定能源产生系统120向第一储能单元111充电的策略。
可选地,在步骤310之前,方法300还包括:获取电网130的调度状态、能源产生系统120的输出功率、第一储能单元111的充电功率、第一储能单元111的剩余容量和第二储能单元112的剩余容量中的至少一个。
可选地,在本申请一实施例中,步骤311包括:在第一储能单元111的剩余 容量小于最大预设容量的情况下,控制能源产生系统120向第一储能单元111充电。
最大预设容量可以为第一储能单元111的电池的最大SOC,该SOC可以根据实际需要具体设置,例如SOC为0.8,0.9等。
在该实施例中,可以将第一储能单元111的剩余容量保持在合适的范围内,避免在第一储能单元111的剩余容量较高的情况下对第一储能单元111充电而导致的过充现象的发生。
图6为本申请一实施例的控制方法的示意图。可选地,在本申请一实施例中,如图6所示,步骤311包括步骤312。
步骤312:在电网130的调度状态包括不存在能源调度需求的情况下,根据能源产生系统120的输出功率、第一储能单元111的充电功率和第二储能单元112的剩余容量,控制能源产生系统120向第一储能单元111充电。
在电网130的调度状态包括不存在能源调度需求的情况下,可以为,此时电网130不需要能源产生系统120和储能系统110向电网130输送功率。
在该实施例中,在电网130没有调度需求的情况下,便于根据能源产生系统120的输出功率P2和第一储能单元111的充电功率P1之间的关系,和第二储能单元112的剩余容量,确定对第一储能单元111进行充电的策略。
可选地,在本申请一实施例中,步骤312包括:在能源产生系统120的输出功率小于第一储能单元111的充电功率的情况下,控制能源产生系统120,向第一储能单元111充电,并且控制第二储能单元112和电网130中的至少一个向第一储能单元111充电,其中,第二储能单元112的剩余容量大于或等于最小预设容量
最小预设容量可以根据实际需要具体设置,例如第二储能单元112的最小预设容量所对应的第二储能单元112中的电池的SOC为0.5。
在第二储能单元112的剩余容量大于或等于最小预设容量的情况下,第二储能单元112可以作为能量补充装置向第一储能单元充电。在能源产生系统120的输出功率小于第一储能单元111的充电功率的情况下,除了能源产生系统120外,还需要其余装置向第一储能单元111充电。
可选地,在处于用电低谷时段的情况下,能源产生系统120和电网130同时向第一储能单元充电。这样,具有较高的经济性。
可选地,在第二储能单元112的最大输出功率P3和能源产生系统120的输 出功率P2之和大于或等于第一储能单元111的充电功率P1的情况下,能源产生系统120和第二储能单元112同时向第一储能单元111充电,电网130不向第一储能单元111充电。这样,不需要电网130对第一储能单元111充电,该充电策略简单易行,且不会影响电网130的正常运行和稳定性。
可选地,在第二储能单元112的最大输出功率P3和能源产生系统120的输出功率之和小于第一储能单元111的充电功率的情况下,能源产生系统120,电网130和第二储能单元112同时向第一储能单元111充电。
可选地,在能源产生系统120,电网130和第二储能单元112同时向第一储能单元111充电的情况下,可以通过以下操作实现。控制装置控制第一控制器,例如MPPT将能源产生系统120的输出功率输出至母线104;控制装置控制第二储能单元112的DCDC将第二储能单元112的功率输出至母线104;控制装置控制AC/DC将电网130的功率输出至母线104;控制装置控制第一储能单元111的DCDC将母线104侧的功率(直流电)转换并输出至第一储能单元111。
在该实施例中,第二储能单元112和/或电网130可以与能源产生系统120同时在第一阶段向第一储能单元111充电,以满足第一储能单元111对充电功率的需求,从而有利于延长第一储能单元111的使用寿命。
可选地,在本申请一实施例中,步骤312包括:在能源产生系统120的输出功率大于或等于第一储能单元111的充电功率的情况下,控制能源产生系统120的输出功率与第一储能单元111的充电功率相同;在控制能源产生系统120的输出功率与第一储能单元111的充电功率相同之后,控制能源产生系统120向第一储能单元111充电。
在该实施例中,在能源产生系统120的输出功率大于或等于第一储能单元111的充电功率的情况下,控制能源产生系统120的输出功率与第一储能单元111的充电功率相同,并且在控制能源产生系统120的输出功率与第一储能单元111的充电功率相同之后,仅控制能源产生系统120向第一储能单元111充电。这样,可以满足第一储能单元111对充电功率的需求,有利于延长第一储能单元111的使用寿命;同时该实现方式简单,便于实现。
可选地,在本申请一实施例中,步骤312包括:在第二储能单元112的剩余容量小于最小预设容量的情况下,控制能源产生系统120和/或电网130向第二储能 单元112充电。这样,便于根据实际情况,灵活地选择向第二储能单元112充电的策略;此外,对第二储能单元112充电至一定电量后,便于在后续过程中使用第二储能单元112对第一储能单元111充电。
可选地,在本申请一实施例中,在第二储能单元112的剩余容量小于最小预设容量的情况下,控制能源产生系统120和/或电网130第二储能单元112充电,包括:在能源产生系统120的输出功率小于第一储能单元111的充电功率的情况下,控制能源产生系统120和电网130向第一储能单元111充电,控制电网130向第二储能单元112充电。
在该实施例中,在向第一储能单元111充电的同时,也实现了对第二储能单元112的充电,从而便于在第二储能单元112充电至合适电量后,使用第二储能单元112对第一储能单元111充电。
可选地,在能源产生系统120的输出功率小于第一储能单元111的充电功率的情况下,控制能源产生系统120和电网130仅向第一储能单元111充电,不向第二储能单元112充电。
可选地,在本申请一实施例中,在第二储能单元112的剩余容量小于最小预设容量的情况下,控制能源产生系统120和/或电网130向第二储能单元112充电,包括:在能源产生系统120的输出功率等于第一储能单元111的充电功率的情况下,控制能源产生系统120向第一储能单元111充电,控制电网130向第二储能单元112充电;在能源产生系统120的输出功率大于第一储能单元111的充电功率的情况下,控制能源产生系统120向第一储能单元111充电,控制能源产生系统120和/或电网130向第二储能单元112充电。
在该实施例中,便于根据实际情况,选择合适的控制方法,以实现对第一储能单元111的充电以及对第二储能单元112的电量的补充。
可选地,在本申请一实施例中,在能源产生系统120的输出功率大于第一储能单元111的充电功率的情况下,控制能源产生系统120向第一储能单元111充电,控制能源产生系统120和/或电网130向第二储能单元112充电,包括:在能源产生系统120的输出功率与第一储能单元111的充电功率之差小于第二储能单元112的最大充电功率的状态下,控制能源产生系统120和电网130向第二储能单元112充电。这样,便于实现对第二储能单元112的快速充电。
可选地,在本申请一实施例中,步骤311包括:在电网130的调度状态包括存在能源调度需求且能源产生系统120的输出功率大于电网130的需求功率的情况下,根据能源产生系统120的输出功率、第一储能单元111的充电功率和第二储能单元112的剩余容量,控制能源产生系统120向第一储能单元111充电。
电网130存在能源调度需求,其中电网130可以向能源产生系统120和储能系统110的至少一个发送能源调度需求。可选地,电网130优先向能源产生系统120发送能源调度需求。可选地,在能源产生系统120的输出功率不能满足电网130的调度需求的情况下,电网130还可以向储能系统110发送调度需求。
在该实施例中,在电网130有调度需求且能源产生系统120的输出功率大于电网130的需求功率的情况下,控制能源产生系统120对第一储能单元111充电。这样,可以在满足电网130的需求的情况下,实现对第一储能单元111的充电,避免因对第一储能单元111充电而导致电网130的需求不能被满足的情况的发生,从而可以避免影响电网130的稳定性。
可选地,在本申请一实施例中,控制能源产生系统120向多个储能单元的第一储能单元111充电,包括:在第二储能单元112的剩余容量大于或等于最小预设容量的情况下,控制能源产生系统120向第一储能单元111充电,或控制能源产生系统120和第二储能单元112向第一储能单元111充电。这样,第二储能单元112和/或能源产生系统120可以同时在第一阶段向第一储能单元111充电,以满足第一储能单元111对充电功率的需求,从而有利于延长第一储能单元111的使用寿命。
可选地,在能源产生系统120的输出功率与电网130的需求功率之差大于或等于第一储能单元111的充电功率的情况下,仅需要控制能源产生系统120向第一储能单元111充电。
可选地,在能源产生系统120的输出功率P2与电网130的需求功率P4之差小于于第一储能单元111的充电功率P1的情况下,控制第二储能单元112和能源产生系统120同时在第一阶段向第一储能单元111充电。在这种情况下,能源产生系统120向第一储能单元111输送的功率为P2-P4,第二储能单元112向第一储能单元111输送的功率为P1-(P2-P4)。
可选地,在本申请一实施例中,控制能源产生系统120向多个储能单元的第一储能单元111充电,包括:在第二储能单元112的剩余容量小于最小预设容量的情 况下,控制能源产生系统120向第二储能单元112充电;在控制能源产生系统120向第二储能单元112充电之后,控制能源产生系统120和/或第二储能单元112向第一储能单元111充电。这样,可以使第二储能单元112的剩余容量大于最小预设容量,以便在对第一储能单元111充电时,满足第一储能单元111对充电功率的要求。
可选地,在第二储能单元112的剩余容量小于最小预设容量的情况下,还可以控制能源产生系统120同时向第一储能单元111和第二储能单元112充电。需要注意的是,第一储能单元111的充电功率为BMS计算得到的适合的充电功率,第二储能单元112的充电功率只要不超过第二储能单元112的最大充电功率即可。
可选地,在本申请一实施例中,在第二阶段,控制第一储能单元111向多个储能单元的第二储能单元112放电,包括:在第二阶段,根据电网130的调度状态和第二储能单元112的剩余容量中的至少一个,控制第一储能单元111向多个储能单元的第二储能单元112放电。这样,便于根据实际情况,灵活地设置不同的第一储能单元111在充电周期内的放电策略。
可选地,在本申请一实施例中,根据电网130的调度状态和第二储能单元112的剩余容量中的至少一个,控制第一储能单元111向多个储能单元的第二储能单元112放电,包括:在第二储能单元112的剩余容量小于最大预设容量的情况下,控制第一储能单元111向第二储能单元112放电。这样,可以避免第二储能单元112接受的电量过多的导致的过充。
可选地,在本申请一实施例中,根据电网130的调度状态和第二储能单元112的剩余容量中的至少一个,控制第一储能单元111向多个储能单元的第二储能单元112放电,包括:在电网130的调度状态包括不存在能源调度需求的情况下,控制能源产生系统120的输出功率为0,并控制第一储能单元111向第二储能单元112放电。这样,可以避免第一储能单元111向电网130放电而影响电网130的稳定性。
可选地,在本申请一实施例中,根据电网130的调度状态和第二储能单元112的剩余容量中的至少一个,控制第一储能单元111向多个储能单元的第二储能单元112放电,包括:在电网130的调度状态包括存在能源调度需求的情况下,控制能源产生系统120的输出功率等于电网130的需求功率,并控制第一储能单元111向第二储能单元112放电。该实现方式简单易行,可以同时满足电网130的需求和第一储能单元111向第二储能单元112放电的需求。
可选地,在本申请一实施例,方法还包括:在第一储能单元111的充电量达到第一预设容量的情况下,控制第一储能单元111从第一阶段切换到第二阶段;在第一储能单元111的放电量达到第二预设容量的情况下,控制第一储能单元111从第二阶段切换到第一阶段。这样,通过在第一储能单元111的充电周期内的第一阶段和第二阶段的不断切换,实现对第一储能单元111的充电。
第一预设容量和第二预设容量可以根据实际需要具体设置,本申请对此不作具体限制。
可选地,第一预设容量大于第二预设容量。可选地,第一阶段的时间小于第二阶段的时间。
可选地,不同的第一阶段中,第一储能单元111的充电功率可以不同,者可以根据第一储能单元111的电池信息确定。
可选地,在本申请一实施例中,方法还包括:在第一储能单元111的剩余容量达到最大预设容量的情况下,控制能源产生系统120停止向第一储能单元111充电。这样,第一储能单元111的剩余容量不超过最大预设容量,可以在能源产生系统120对第一储能单元111结束充电后,作为能量吸收装置以接收多个储能单元的其它储能单元放出的电量。
在本申请中,在第一储能单元111的剩余容量达到最大预设容量且控制能源产生系统120结束对第一储能单元111的充电后,控制装置不再控制能源产生系统120对第一储能单元111充电,也就是说,第一储能单元111仅作为能量吸收装置,吸收其余储能单元在充电周期的放电阶段所放出的电量;同时,第一储能单元111也不会向其余储能电池单元充电。
上文结合图1至图6,详细描述了本申请的方法实施例,下文将详细描述本申请的控制装置的实施例。应理解,方法实施例与控制装置的实施例相互对应,类似的描述可以参照方法实施例,在此不再赘述。
图7为本申请一实施例的控制装置的示意图。如图7所示,本申请提供了一种控制装置500,控制装置500耦合到储能系统110,储能系统110与能源产生系统120和电网130耦合,储能系统110用于存储从所述能源产生系统120获得的电能并向所述电网130释放电能,储能系统110包括多个储能单元,控制装置500包括控制单元510。控制单元510用于:在第一阶段,控制能源产生系统120向多个储能单元的第 一储能单元111充电,第一阶段为第一储能单元111的充电周期的充电阶段;在第二阶段,控制第一储能单元111向多个储能单元的第二储能单元112放电,第二阶段为第一储能单元111的充电周期的放电阶段。
可选地,在本申请一实施例中,控制单元510还用于:在第一阶段,根据电网130的调度状态、能源产生系统120的输出功率、第一储能单元111的充电功率、第一储能单元111的剩余容量和第二储能单元112的剩余容量中的至少一个,控制能源产生系统120向多个储能单元的第一储能单元111充电。
可选地,控制单元510还用于执行上文所述的任一种控制方法,类似的描述可以参见上文,在此不再赘述。
图8为本申请一实施例的储能系统的示意图。如图8所示,本申请提供了一种储能系统110,储能系统110与能源产生系统120和电网130耦合,储能系统110用于存储从所述能源产生系统120获得的电能并向所述电网130释放电能,储能系统110包括多个储能单元和上文所述的控制装置500。
储能系统110包括多个储能单元,例如,包括两个储能单元,即第一储能单元111和第二储能单元112,这两个储能单元并联连接。可选地,储能系统110还可以包括三个或更多的储能单元。
控制装置500可以通过无线或有线的方式与多个储能单元连接,本申请实施例对此不做具体限制。
图9为本申请一实施例的控制装置的示意图。如图9所示,本申请提供了一种储能系统110的控制装置600,控制装置600包括存储器610和处理器620,存储器610用于存储指令,处理器620用于读取指令并根据指令执行上文所述的方法。
本申请实施例的处理器620可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法和步骤。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为 硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例的存储器610可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请还提供了一种计算机可读存储介质,用于存储计算机程序。
可选地,该计算机可读存储介质可应用于本申请实施例中的储能系统的控制装置,并且该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由控制装置实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选地,该计算机程序产品可应用于本申请实施例中的储能系统的控制装置,并且该计算机程序指令在计算机上运行时,使得计算机执行本申请实施例的各个方法中由储能系统的控制装置实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选地,该计算机程序可应用于本申请实施例中的储能系统的控制装置,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由储 能系统的控制装置实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (23)

  1. 一种储能系统的控制方法,其特征在于,所述储能系统包括多个储能单元,所述储能系统与能源产生系统和电网耦合,所述储能系统用于存储从所述能源产生系统获得的电能并向所述电网释放电能,所述方法包括:
    在第一阶段,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,所述第一阶段为所述第一储能单元的充电周期的充电阶段;
    在第二阶段,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,所述第二阶段为所述第一储能单元的充电周期的放电阶段。
  2. 根据权利要求1所述的控制方法,其特征在于,所述在第一阶段,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:
    在所述第一阶段,根据所述电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量、和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电。
  3. 根据权利要求2所述的控制方法,其特征在于,所述根据电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量、和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:
    在所述第一储能单元的剩余容量小于最大预设容量的情况下,控制所述能源产生系统向所述第一储能单元充电。
  4. 根据权利要求2或3所述的控制方法,其特征在于,所述根据电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量、和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:
    在所述电网的调度状态包括不存在能源调度需求的情况下,根据所述能源产生系统的输出功率、所述第一储能单元的充电功率和所述第二储能单元的剩余容量,控制所述能源产生系统向所述第一储能单元充电。
  5. 根据权利要求4所述的控制方法,其特征在于,所述控制所述能源产生系统向 所述多个储能单元的第一储能单元充电,包括:
    在所述能源产生系统的输出功率小于所述第一储能单元的充电功率的情况下,控制所述能源产生系统向所述第一储能单元充电,并且控制所述第二储能单元和所述电网中的至少一个向所述第一储能单元充电,其中,所述第二储能单元的剩余容量大于或等于最小预设容量。
  6. 根据权利要求4所述的控制方法,其特征在于,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:
    在所述能源产生系统的输出功率大于或等于所述第一储能单元的充电功率的情况下,控制所述能源产生系统的输出功率与所述第一储能单元的充电功率相同;
    在控制所述能源产生系统的输出功率与所述第一储能单元的充电功率相同之后,控制所述能源产生系统向所述第一储能单元充电。
  7. 根据权利要求4所述的控制方法,其特征在于,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:
    在所述第二储能单元的剩余容量小于最小预设容量的情况下,控制所述能源产生系统和/或所述电网向所述第二储能单元充电。
  8. 根据权利要求7所述的控制方法,其特征在于,所述控制所述能源产生系统和/或所述电网向所述第二储能单元充电,包括:
    在所述能源产生系统的输出功率小于所述第一储能单元的充电功率的情况下,控制所述能源产生系统和所述电网向所述第一储能单元充电,控制所述电网向所述第二储能单元充电。
  9. 根据权利要求7所述的控制方法,其特征在于,所述控制所述能源产生系统和/或所述电网向所述第二储能单元充电,包括:
    在所述能源产生系统的输出功率等于所述第一储能单元的充电功率的情况下,控制所述能源产生系统向所述第一储能单元充电,控制所述电网向所述第二储能单元充电;
    在所述能源产生系统的输出功率大于所述第一储能单元的充电功率的情况下,控制所述能源产生系统向所述第一储能单元充电,控制所述能源产生系统和/或所述电网向所述第二储能单元充电。
  10. 根据权利要求9所述的控制方法,其特征在于,在所述能源产生系统的输出功 率大于所述第一储能单元的充电功率的情况下,控制所述能源产生系统向所述第一储能单元充电,控制所述能源产生系统和/或所述电网向所述第二储能单元充电,包括:
    在所述能源产生系统的输出功率与所述第一储能单元的充电功率之差小于所述第二储能单元的最大充电功率的状态下,控制所述能源产生系统和所述电网向所述第二储能单元充电。
  11. 根据权利要求2或3所述的控制方法,其特征在于,所述根据电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:
    在所述电网的调度状态包括存在能源调度需求且所述能源产生系统的输出功率大于所述电网的需求功率的情况下,根据所述能源产生系统的输出功率、所述第一储能单元的充电功率和所述第二储能单元的剩余容量,控制所述能源产生系统向所述第一储能单元充电。
  12. 根据权利要求11所述的控制方法,其特征在于,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:
    在所述第二储能单元的剩余容量大于或等于最小预设容量的情况下,控制所述能源产生系统向所述第一储能单元充电,或控制所述能源产生系统和所述第二储能单元向所述第一储能单元充电。
  13. 根据权利要求11所述的控制方法,其特征在于,所述控制所述能源产生系统向所述多个储能单元的第一储能单元充电,包括:
    在所述第二储能单元的剩余容量小于最小预设容量的情况下,控制所述能源产生系统向所述第二储能单元充电;
    在控制所述能源产生系统向所述第二储能单元充电之后,控制所述能源产生系统和/或所述第二储能单元向所述第一储能单元充电。
  14. 根据权利要求1-13中任一项所述的控制方法,其特征在于,所述在第二阶段,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,包括:
    在所述第二阶段,根据电网的调度状态和所述第二储能单元的剩余容量中的至少一个,控制所述第一储能单元向所述多个储能单元的第二储能单元放电。
  15. 根据权利要求14所述的控制方法,其特征在于,所述根据电网的调度状态和 所述第二储能单元的剩余容量中的至少一个,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,包括:
    在所述第二储能单元的剩余容量小于最大预设容量的情况下,控制所述第一储能单元向所述第二储能单元放电。
  16. 根据权利要求14或15所述的控制方法,其特征在于,所述根据电网的调度状态和所述第二储能单元的剩余容量中的至少一个,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,包括:
    在所述电网的调度状态包括存在能源调度需求的情况下,控制所述能源产生系统的输出功率为0,并控制所述第一储能单元向所述第二储能单元放电。
  17. 根据权利要求14或15所述的控制方法,其特征在于,所述根据电网的调度状态和所述第二储能单元的剩余容量中的至少一个,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,包括:
    在所述电网的调度状态包括存在能源调度需求的情况下,控制所述能源产生系统的输出功率等于所述电网的需求功率,并控制所述第一储能单元向所述第二储能单元放电。
  18. 根据权利要求1-17中任一项所述的控制方法,其特征在于,所述方法还包括:
    在所述第一储能单元的充电量达到第一预设容量的情况下,控制所述第一储能单元从所述第一阶段切换到所述第二阶段;
    在所述第一储能单元的放电量达到第二预设容量的情况下,控制所述第一储能单元从所述第二阶段切换到所述第一阶段。
  19. 根据权利要求1-18中任一项所述的控制方法,其特征在于,所述方法还包括:
    在所述第一储能单元的剩余容量达到最大预设容量的情况下,控制所述能源产生系统停止向所述第一储能单元充电。
  20. 一种控制装置,所述控制装置耦合到储能系统,其特征在于,所述储能系统与能源产生系统和电网耦合,所述储能系统用于存储从所述能源产生系统获得的电能并向所述电网释放电能,所述储能系统包括多个储能单元,所述控制装置包括控制单元,所述控制单元用于:
    在第一阶段,控制所述能源产生系统向所述多个储能单元的第一储能单元充电,所述第一阶段为所述第一储能单元的充电周期的充电阶段;
    在第二阶段,控制所述第一储能单元向所述多个储能单元的第二储能单元放电,所述第二阶段为所述第一储能单元的充电周期的放电阶段。
  21. 根据权利要求20所述的控制装置,其特征在于,所述控制单元还用于:
    在所述第一阶段,根据所述电网的调度状态、所述能源产生系统的输出功率、所述第一储能单元的充电功率、所述第一储能单元的剩余容量、和所述第二储能单元的剩余容量中的至少一个,控制所述能源产生系统向所述多个储能单元的第一储能单元充电。
  22. 一种储能系统,其特征在于,所述储能系统与能源产生系统和电网耦合,所述储能系统用于存储从所述能源产生系统获得的电能并向所述电网释放电能,所述储能系统包括多个储能单元和如权利要求20或21所述的控制装置。
  23. 一种储能系统的控制装置,其特征在于,所述控制装置包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并根据所述指令执行如权利要求1至19中任一项所述的方法。
PCT/CN2022/121686 2022-09-27 2022-09-27 储能系统的控制方法、控制装置和储能系统 WO2024065169A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121686 WO2024065169A1 (zh) 2022-09-27 2022-09-27 储能系统的控制方法、控制装置和储能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121686 WO2024065169A1 (zh) 2022-09-27 2022-09-27 储能系统的控制方法、控制装置和储能系统

Publications (1)

Publication Number Publication Date
WO2024065169A1 true WO2024065169A1 (zh) 2024-04-04

Family

ID=90475191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121686 WO2024065169A1 (zh) 2022-09-27 2022-09-27 储能系统的控制方法、控制装置和储能系统

Country Status (1)

Country Link
WO (1) WO2024065169A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051701A (zh) * 2007-03-01 2007-10-10 华为技术有限公司 一种蓄电池脉冲快速充电方法及充电系统
CN104393356A (zh) * 2014-10-24 2015-03-04 新疆希望电子有限公司 一种蓄电池与超级电容器混合储能快速充电方法
JP2016184476A (ja) * 2015-03-25 2016-10-20 パナソニックIpマネジメント株式会社 蓄電システム及び管理装置
JP2017175888A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101051701A (zh) * 2007-03-01 2007-10-10 华为技术有限公司 一种蓄电池脉冲快速充电方法及充电系统
CN104393356A (zh) * 2014-10-24 2015-03-04 新疆希望电子有限公司 一种蓄电池与超级电容器混合储能快速充电方法
JP2016184476A (ja) * 2015-03-25 2016-10-20 パナソニックIpマネジメント株式会社 蓄電システム及び管理装置
JP2017175888A (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 電力変換システム、電力変換装置

Similar Documents

Publication Publication Date Title
CN109301849B (zh) 一种用户侧电池储能电站的能量管理组合控制策略
CN108832646B (zh) 一种适用于可动态重构电池储能系统的管理系统及其方法
AU2021202731B2 (en) Method for managing charging and discharging of parallel-connected battery pack, electronic device, and electrical system
Hambridge et al. Solid State Transformer (SST) as an energy router: Economic dispatch based energy routing strategy
CN107968429B (zh) 一种光储充系统能量管理装置、系统
WO2023029335A1 (zh) 一种光储充系统的参数配置方法及终端
US20220216558A1 (en) Scalable and manageable energy storage system and method
CN109103939A (zh) 一种降低光伏电站损耗的储能系统智能控制装置及方法
CN114336694B (zh) 一种混合储能电站能量优化控制方法
CN113765130A (zh) 一种微电网的运行控制方法
CN114069676A (zh) 一种基于soc均分的电池储能电站agc控制方法
US20230352959A1 (en) Energy conversion management system and method
CN114006442A (zh) 一种考虑荷电状态一致的电池储能电站能量管理方法
CN102340040A (zh) 大功率模块化铅酸蓄电池化成充放电系统
CN116191556A (zh) 考虑新能源消纳和机组组合的5g基站需求响应方法及系统
WO2024066911A1 (zh) 智能电池管理系统、方法、电子设备及可读存储介质
CN116819355B (zh) 一种电芯后段微网直流总线节能测试系统
WO2024040462A1 (zh) 储能系统的控制方法和控制装置
WO2024065169A1 (zh) 储能系统的控制方法、控制装置和储能系统
Li et al. Micro-grid resource allocation based on multi-objective optimization in cloud platform
CN102931676A (zh) 一种太阳能电力并网自用多功能系统的构造与方法
CN116544982A (zh) 一种光伏消纳与峰谷套利的光储系统及其控制方法
CN112467774B (zh) 基于全局能效寻优和soc自适应的储能系统管控方法及装置
JP7356922B2 (ja) 分散型電源システムおよび分散型電源装置
CN112769244B (zh) 一种利用退役电池组的混合型储能系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959819

Country of ref document: EP

Kind code of ref document: A1