WO2024065092A1 - 一种信号传输方法和装置 - Google Patents

一种信号传输方法和装置 Download PDF

Info

Publication number
WO2024065092A1
WO2024065092A1 PCT/CN2022/121390 CN2022121390W WO2024065092A1 WO 2024065092 A1 WO2024065092 A1 WO 2024065092A1 CN 2022121390 W CN2022121390 W CN 2022121390W WO 2024065092 A1 WO2024065092 A1 WO 2024065092A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
signal
phase
ptrs
matrix
Prior art date
Application number
PCT/CN2022/121390
Other languages
English (en)
French (fr)
Inventor
瞿辉洋
马千里
黄煌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/121390 priority Critical patent/WO2024065092A1/zh
Publication of WO2024065092A1 publication Critical patent/WO2024065092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the field of communication technology, and in particular to a signal transmission method and device.
  • Phase noise refers to the random change in the phase of the system output signal caused by various noises in the communication system (such as various RF devices). Phase noise is an important indicator for measuring the frequency stability quality of frequency standard sources (high-stability crystal oscillators, atomic frequency standards, etc.). As the operating frequency band of the communication system becomes higher and higher, especially in the scenario of high frequency (such as carrier frequency of 70GHz) + high-speed movement (such as mobile speed>250km/h), the impact of phase noise is becoming more and more serious, posing a challenge to the stable transmission of data.
  • high frequency such as carrier frequency of 70GHz
  • high-speed movement such as mobile speed>250km/h
  • the embodiments of the present application provide a signal transmission method and device, which can reduce or even eliminate the influence of phase noise and improve the reliability of data transmission.
  • a signal transmission method which is applied to a transmitting end, and the method includes: obtaining a first data block; precoding the first data block to obtain a second data block; and mapping the first phase noise pilot block and the second data block to time-frequency resources for transmission.
  • the precoding of the first data block may be performed by using BM-OCDM coding technology or OFDM technology or other technologies to precode the first data block, which is not limited in this application.
  • the second data block includes (MM PTRS ) ⁇ N data symbols;
  • the first phase-noise pilot block includes M PTRS ⁇ N pilot symbols, where M is the sum of the number of subcarriers used to transmit the second data block and the number of subcarriers used to transmit the first phase-noise pilot block, and M, M PTRS , and N are positive integers.
  • mapping the first phase-noise pilot block and the second data block to time-frequency resources for transmission includes: setting M PTRS pilot symbols and (MM PTRS ) data symbols on each OFDM symbol in the N OFDM symbols.
  • phase noise pilot in the frequency domain that is, the first phase noise pilot block and the second data block are signals in the frequency domain.
  • M PTRS pilot symbols are evenly spaced on the OFDM symbol.
  • This implementation method can achieve uniform distribution of pilot symbols in the frequency domain, which is beneficial to improving the reliability of phase noise pilot transmission.
  • the pilot signal of the first phase-noise pilot block is a first reference signal
  • the first reference signal is related to at least one of a user ID, a number of frequency domain resources of the user, and a number of phase-noise pilots of the user.
  • the pilot signal of the first phase noise pilot block can be a known signal in the frequency domain, which facilitates the receiving end to parse the phase noise pilot from the received signal.
  • the pilot signal of the first phase-noise pilot block makes the value of the third data block at the first time domain position index be the second reference signal, the third data block is obtained by performing an inverse Fourier transform on the second data block, and the first time domain position index is a first preset index; the second reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, and the number of phase-noise pilots of the user.
  • the pilot signal in the time domain is a known signal, which facilitates the receiving end to parse the phase noise pilot from the received signal.
  • mapping a first phase-noise pilot block and a second data block to time-frequency resources for transmission includes: merging the first phase-noise pilot block and the second data block into a first signal block; performing Fourier transform on the first signal block to obtain a second signal block, and mapping the second signal block to time-frequency resources for transmission; the pilot signal of the first phase-noise pilot block makes the value of the second signal block at a first frequency domain position index be a third reference signal, and the first frequency domain position index is a second preset index; the third reference signal is related to at least one of a user ID, a number of frequency domain resources of a user, and a number of phase-noise pilots of the user.
  • the first phase noise pilot block and the second data block are signals in the time domain.
  • the time-frequency resources of the first phase-noise pilot block are different from the time-frequency resources of the second data block.
  • data and phase noise pilot signals can be transmitted on different time-frequency resources, thereby improving the reliability of data transmission.
  • the first phase-noise pilot block includes M PTRS ⁇ N pilot symbols, which are expressed as a first matrix of M PTRS ⁇ N dimensions;
  • the first data block includes (MM PTRS ) ⁇ N data symbols, which are expressed as a second matrix of (MM PTRS ) ⁇ N dimensions; wherein M is the sum of the number of subcarriers used to transmit the first data block and the number of subcarriers used to transmit the first phase-noise pilot block, N is the number of OFDM symbols, and M, M PTRS , and N are positive integers;
  • the first column vector X PTRS (:, 1) in the first matrix satisfies the following relationship:
  • X QAM (:, 1) is the first column vector in the second matrix
  • a is a preset value
  • the matrix is a submatrix extracted from the matrix P according to the first time domain position index, the matrix represents the conjugate transpose of the matrix F M , ⁇ represents a diagonal matrix with a dimension of M*M, and F M represents a Fourier transform matrix with a dimension of M*M;
  • nth column vector X PTRS (:, n) in the first matrix satisfies the following relationship:
  • X QAM (:, n) is the nth column vector in the second matrix, and the value of n is a positive integer from 2 to N.
  • the value of each phase-noise pilot symbol in the first phase-noise pilot block can be determined, so that in the signal finally transmitted, the time-frequency resource position of the phase-noise pilot symbol is at a preset position.
  • a signal transmission method which is applied to a transmitting end, and the method includes: determining a second phase noise pilot block according to a preset condition; merging a fourth data block to be transmitted with the second phase noise pilot block to obtain a third signal block; precoding the third signal block to obtain a fourth signal block; and transmitting the fourth signal block.
  • Precoding the first data block may be performed by using BM-OCDM coding technology or OFDM technology or other technologies to precode the first data block, and this application does not limit this.
  • phase noise pilot and data are combined and precoded, and the precoded data is mapped to time-frequency resources, so that the phase noise pilot can be sent while sending data, so that the receiving end can reduce or even eliminate the influence of phase noise, and the reliability of data transmission can be improved.
  • the preset condition may include: in the signal finally sent out, the time-frequency resource position of the phase-noise pilot signal is a preset time-frequency resource position, so that the receiving end can easily parse the phase-noise pilot from the received signal.
  • the preset conditions include: the value of the fourth signal block at the second frequency domain position index is a fourth reference signal, the fourth reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, and the number of phase noise pilots of the user, and the second frequency domain position index is a third preset index.
  • the second phase-noise pilot block is a known signal in the frequency domain, which can ensure that the time-frequency resource position of the phase-noise pilot signal in the signal finally sent out is a preset time-frequency resource position.
  • the preset conditions include: the value of the fifth signal block at the second time domain position index is the fifth reference signal, the fifth signal block is obtained by inverse Fourier transforming the fourth signal block, the second time domain position index is the fourth preset index, and the fifth reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, and the number of phase noise pilots of the user.
  • the second phase-noise pilot block is inversely transformed by Fourier, it is a known signal in the time domain, which can ensure that the time-frequency resource position of the phase-noise pilot signal in the signal finally sent out is a preset time-frequency resource position.
  • transmitting a fourth signal block includes: performing a Fourier transform on the fourth signal block to obtain a sixth signal block; transmitting the sixth signal block; the preset conditions include: the value of the fourth signal block at the second time domain position index is a fifth reference signal, the fifth reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, and the number of phase noise pilots of the user, and the second time domain position index is a fourth preset index.
  • the pilot signal of the second phase-noise pilot block is a known signal, which can ensure that the time-frequency resource position of the phase-noise pilot signal in the signal finally sent out is a preset time-frequency resource position.
  • the second phase-noise pilot block includes M PTRS ⁇ N pilot symbols, which are expressed as a first matrix of M PTRS ⁇ N dimensions;
  • the fourth data block includes (MM PTRS ) ⁇ N data symbols, which are expressed as a second matrix of (MM PTRS ) ⁇ N dimensions; wherein M is the sum of the number of subcarriers used to transmit the fourth data block and the number of subcarriers used to transmit the second phase-noise pilot block, N is the number of OFDM symbols, and M, M PTRS , and N are positive integers;
  • the third signal block is expressed as a third matrix of M ⁇ N dimensions;
  • the first column vector X PTRS (:, 1) in the first matrix satisfies the following relationship:
  • X QAM (:, 1) is the first column vector in the second matrix
  • a is a preset value
  • the matrix is a submatrix extracted from the matrix P according to the second frequency domain position index, the matrix represents the conjugate transpose of the matrix F M , ⁇ represents a diagonal matrix with a dimension of M*M, and F M represents a Fourier transform matrix with a dimension of M*M;
  • nth column vector X PTRS (:, n) in the first matrix satisfies the following relationship:
  • X QAM (:, n) is the nth column vector in the second matrix, and the value of n is a positive integer from 2 to N.
  • the value of the second phase noise pilot block that is, the first matrix, can be obtained based on the second frequency domain position index.
  • the second phase-noise pilot block includes M PTRS ⁇ N pilot symbols, which are expressed as a first matrix of M PTRS ⁇ N dimensions;
  • the fourth data block includes (MM PTRS ) ⁇ N data symbols, which are expressed as a second matrix of (MM PTRS ) ⁇ N dimensions; wherein M is the sum of the number of subcarriers used to transmit the fourth data block and the number of subcarriers used to transmit the second phase-noise pilot block, N is the number of OFDM symbols, and M, M PTRS , and N are positive integers;
  • the third signal block is expressed as a third matrix of M ⁇ N dimensions;
  • the first column vector X PTRS (:, 1) in the first matrix satisfies the following relationship:
  • X QAM (:,1) is the first column vector in the second matrix
  • a is a preset value
  • the matrix is a submatrix extracted from the matrix P according to the second time domain position index, the matrix represents the conjugate transpose of the matrix F M , ⁇ represents a diagonal matrix with a dimension of M*M, and F M represents a Fourier transform matrix with a dimension of M*M;
  • nth column vector X PTRS (:, n) in the first matrix satisfies the following relationship:
  • X QAM (:, n) is the nth column vector in the second matrix, and the value of n is a positive integer from 2 to N.
  • the value of the second phase noise pilot block that is, the first matrix, can be obtained based on the second time domain position index.
  • a signal transmission method which is applied to a receiving end, and the method includes: receiving a signal, which is a signal formed after the signal sent by the transmitting end in the first aspect or the second aspect is transmitted through a channel; and determining phase noise based on the signal.
  • a signal transmission system comprising:
  • a sending end used to execute the method described in the first aspect or any possible implementation of the first aspect or the second aspect or any possible implementation of the second aspect;
  • the receiving end is used to execute the method described in the third aspect.
  • a signal transmission device comprising a module or unit or technical means for implementing the method described in the first aspect or any possible implementation method of the first aspect.
  • the device may include: an acquisition module for acquiring a first data block; an encoding module for pre-encoding the first data block to obtain a second data block; and a transmission module for mapping the first phase noise pilot block and the second data block to time-frequency resources for transmission.
  • the second data block includes (MM PTRS ) ⁇ N data symbols
  • the first phase-noise pilot block includes M PTRS ⁇ N pilot symbols
  • M is the sum of the number of subcarriers used to transmit the second data block and the number of subcarriers used to transmit the first phase-noise pilot block
  • M, M PTRS , and N are positive integers
  • the transmission module is used to: set M PTRS pilot symbols and (MM PTRS ) data symbols on each OFDM symbol of N orthogonal frequency division multiplexing OFDM symbols.
  • M PTRS pilot symbols are evenly spaced on the OFDM symbol.
  • the pilot signal of the first phase-noise pilot block is a first reference signal
  • the first reference signal is related to at least one of a user ID, a number of frequency domain resources of a user, and a number of phase-noise pilots of the user.
  • the pilot signal of the first phase-noise pilot block makes the value of the third data block at the first time domain position index be the second reference signal, the third data block is obtained by performing an inverse Fourier transform on the second data block, and the first time domain position index is a first preset index; the second reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, and the number of phase-noise pilots of the user.
  • the transmission module is used to: merge a first phase-noise pilot block and a second data block into a first signal block; perform Fourier transform on the first signal block to obtain a second signal block, and map the second signal block to time-frequency resources for transmission; the pilot signal of the first phase-noise pilot block makes the value of the second signal block at the first frequency domain position index be a third reference signal, and the first frequency domain position index is a second preset index; the third reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, and the number of phase-noise pilots of the user.
  • the time-frequency resources of the first phase-noise pilot block are different from the time-frequency resources of the second data block.
  • the first phase-noise pilot block includes M PTRS ⁇ N pilot symbols, which are expressed as a first matrix of M PTRS ⁇ N dimensions;
  • the first data block includes (MM PTRS ) ⁇ N data symbols, which are expressed as a second matrix of (MM PTRS ) ⁇ N dimensions; wherein M is the sum of the number of subcarriers used to transmit the first data block and the number of subcarriers used to transmit the first phase-noise pilot block, N is the number of OFDM symbols, and M, M PTRS , and N are positive integers;
  • the first column vector X PTRS (:, 1) in the first matrix satisfies the following relationship:
  • X QAM (:, 1) is the first column vector in the second matrix
  • a is a preset value
  • the matrix is a submatrix extracted from the matrix P according to the first time domain position index, the matrix represents the conjugate transpose of the matrix F M , ⁇ represents a diagonal matrix with a dimension of M*M, and F M represents a Fourier transform matrix with a dimension of M*M;
  • nth column vector X PTRS (:, n) in the first matrix satisfies the following relationship:
  • X QAM (:, n) is the nth column vector in the second matrix, and the value of n is a positive integer from 2 to N.
  • the encoding module is configured to precode the first data block by using a block interleaved BM-orthogonal chirp division multiplexing OCDM encoding technology or an OFDM technology.
  • a signal transmission device comprising a module or unit or technical means for implementing the method described in the above second aspect or any possible implementation method of the second aspect.
  • the device may include: a determination module, used to determine the second phase-noise pilot block according to preset conditions; an encoding module, used to combine the fourth data block to be transmitted and the second phase-noise pilot block to obtain a third signal block; pre-encode the third signal block to obtain a fourth signal block; and a transmission module, used to transmit the fourth signal block.
  • a determination module used to determine the second phase-noise pilot block according to preset conditions
  • an encoding module used to combine the fourth data block to be transmitted and the second phase-noise pilot block to obtain a third signal block
  • pre-encode the third signal block to obtain a fourth signal block
  • a transmission module used to transmit the fourth signal block.
  • the preset conditions include: the value of the fourth signal block at the second frequency domain position index is a fourth reference signal, the fourth reference signal is related to at least one of the user IDID, the number of frequency domain resources of the user, and the number of phase noise pilots of the user, and the second frequency domain position index is a third preset index.
  • the preset conditions include: the value of the fifth signal block at the second time domain position index is the fifth reference signal, the fifth signal block is obtained by inverse Fourier transforming the fourth signal block, the second time domain position index is the fourth preset index, and the fifth reference signal is related to at least one of the user IDID, the number of frequency domain resources of the user, and the number of phase noise pilots of the user.
  • the transmission module is used to: perform Fourier transform on the fourth signal block to obtain a sixth signal block; transmit the sixth signal block; wherein the preset conditions include: the value of the fourth signal block at the second time domain position index is the fifth reference signal, the fifth reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, and the number of phase noise pilots of the user, and the second time domain position index is the fourth preset index.
  • the second phase-noise pilot block includes M PTRS ⁇ N pilot symbols, which are expressed as a first matrix of M PTRS ⁇ N dimensions;
  • the fourth data block includes (MM PTRS ) ⁇ N data symbols, which are expressed as a second matrix of (MM PTRS ) ⁇ N dimensions; wherein M is the sum of the number of subcarriers used to transmit the fourth data block and the number of subcarriers used to transmit the second phase-noise pilot block, N is the number of OFDM symbols, and M, M PTRS , and N are positive integers;
  • the third signal block is expressed as a third matrix of M ⁇ N dimensions;
  • the first column vector X PTRS (:, 1) in the first matrix satisfies the following relationship:
  • X QAM (:,1) is the first column vector in the second matrix
  • a is a preset value
  • the matrix is a submatrix extracted from the matrix P according to the second frequency domain position index, the matrix represents the conjugate transpose of the matrix F M , ⁇ represents a diagonal matrix with a dimension of M*M, and F M represents a Fourier transform matrix with a dimension of M*M;
  • nth column vector X PTRS (:, n) in the first matrix satisfies the following relationship:
  • X QAM (:, n) is the nth column vector in the second matrix, and the value of n is a positive integer from 2 to N.
  • the second phase-noise pilot block includes M PTRS ⁇ N pilot symbols, which are expressed as a first matrix of M PTRS ⁇ N dimensions;
  • the fourth data block includes (MM PTRS ) ⁇ N data symbols, which are expressed as a second matrix of (MM PTRS ) ⁇ N dimensions; wherein M is the sum of the number of subcarriers used to transmit the fourth data block and the number of subcarriers used to transmit the second phase-noise pilot block, N is the number of OFDM symbols, and M, M PTRS , and N are positive integers;
  • the third signal block is expressed as a third matrix of M ⁇ N dimensions;
  • the first column vector X PTRS (:, 1) in the first matrix satisfies the following relationship:
  • X QAM (:, 1) is the first column vector in the second matrix
  • a is a preset value
  • the matrix is a submatrix extracted from the matrix P according to the second time domain position index, the matrix represents the conjugate transpose of the matrix F M , ⁇ represents a diagonal matrix with a dimension of M*M, and F M represents a Fourier transform matrix with a dimension of M*M;
  • nth column vector X PTRS (:, n) in the first matrix satisfies the following relationship:
  • X QAM (:, n) is the nth column vector in the second matrix, and the value of n is a positive integer from 2 to N.
  • the encoding module is configured to precode the first data block by using a block interleaved BM-orthogonal chirp division multiplexing OCDM encoding technology or an OFDM technology.
  • a communication device comprising a processor and an interface circuit, wherein the interface circuit is used to receive signals from other communication devices outside the communication device and transmit them to the processor or send signals from the processor to other communication devices outside the communication device, and the processor is used to implement the method as described in the first aspect or a possible implementation manner of the first aspect through a logic circuit or by executing code instructions, or to implement the method as described in the second aspect or a possible implementation manner of the second aspect.
  • a computer-readable storage medium wherein a computer program or instruction is stored in the storage medium.
  • the computer program or instruction is executed by a communication device, the method described in the first aspect or a possible implementation manner of the first aspect is implemented, or the method described in the second aspect or a possible implementation manner of the second aspect is implemented.
  • a computer program product wherein instructions are stored in the computer program product, and when the computer program product is run on a computer, the computer executes the method described in the first aspect or a possible implementation of the first aspect, or executes the method described in the second aspect or a possible implementation of the second aspect.
  • FIGS. 1A to 1C are schematic diagrams of several wireless communication systems applicable to embodiments of the present application.
  • FIG2 is a flow chart of a signal transmission method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of a possible signal processing flow
  • FIG4 is a schematic diagram of forming a first signal block
  • FIG5 is a schematic diagram of a possible signal processing flow
  • FIG6 is a flow chart of another signal transmission method provided in an embodiment of the present application.
  • FIG7 is a flow chart of a possible signal processing
  • FIG8 is a schematic diagram of forming a fourth signal block
  • FIG9 is a schematic diagram of performing Fourier transform on a signal
  • FIG10 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of another communication device provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another communication device provided in an embodiment of the present application.
  • the embodiments of the present application can be applied to various wireless communication systems.
  • the embodiment of the present application can be applied to a system for satellite and terminal communication, which includes a satellite and a terminal type network element.
  • the satellite provides communication services for the terminal device, and the terminal device includes, for example, but is not limited to, a smart phone, a smart watch, a tablet computer, and the like.
  • the satellite transmits downlink data to the terminal; and the terminal transmits uplink data to the satellite.
  • the embodiments of the present application can be applied to satellite and satellite communication systems.
  • the traditional satellite intersatellite link communication system can be divided into two parts: the acquisition, tracking and pointing (APT) subsystem and the communication subsystem.
  • the communication subsystem is responsible for the transmission of intersatellite information and is the main body of the intersatellite communication system;
  • the APT subsystem is responsible for the capture, alignment and tracking between satellites, where capture refers to determining the incoming wave direction of the incident signal, alignment refers to adjusting the transmission wave to aim at the receiving direction, and tracking refers to continuously adjusting the alignment and capture during the entire communication process.
  • the embodiment of the present application can be applied to wireless communication systems such as cellular communication or wireless local area network communication.
  • one network device can provide services for multiple terminals, and one terminal can also communicate with multiple network devices.
  • one access point can provide services for multiple terminals, and one terminal can also communicate with multiple access points.
  • the network device is a device deployed in a wireless access network or a wireless local area network to provide wireless communication functions for terminal devices.
  • the network device may include various forms of macro base stations, micro base stations (also known as small stations), relay stations, access points, etc. In systems using different wireless access technologies, the names of network devices may be different.
  • the network device may also be a wireless controller in a CRAN (Cloud Radio Access Network) scenario.
  • the network device may also be a base station device in a fifth generation mobile communication technology ( 5th generation mobile networks, 5G) network or a sixth generation mobile communication technology (6th generation mobile networks, 6G) network or a network device in an evolved public land mobile network (public land mobile network, PLMN) network.
  • the network device may also be a wearable device or a vehicle-mounted device.
  • the network device may also be a transmission and reception point (Transmission and Reception Point, TRP).
  • the network device may also be an access point (access point, AP).
  • the terminal involved in this article can also be called terminal equipment, user equipment (UE), mobile station, mobile terminal, etc.
  • the terminal can be widely used in various scenarios, for example, device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (IOT), virtual reality, augmented reality, industrial control, automatic driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • the terminal can be a mobile phone, a tablet computer, a computer with wireless transceiver function, a wearable device, a vehicle, a drone, a helicopter, an airplane, a ship, a robot, a mechanical arm, a smart home device, etc.
  • the embodiments of this application do not limit the specific technology and specific device form adopted by the terminal.
  • the network devices and terminals can be fixed or movable.
  • the network devices and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on the water surface; they can also be deployed on aircraft, balloons, and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the network devices and terminals.
  • FIG. 2 a flow chart of a signal transmission method provided in an embodiment of the present application is provided.
  • the method can be applied to the communication scenarios shown in FIG. 1A, FIG. 1B, or FIG. 1C, or other communication scenarios, and the present application does not limit it.
  • the execution subject of the method can be a signal sender, and the signal sender can be any device that needs to send a signal (such as a satellite, a terminal, or a base station, etc.).
  • the method includes:
  • the first data block is a data block to be transmitted.
  • the specific implementation of obtaining the first data block may be to generate the first data block or to receive the first data block from other devices, which is not limited in this application.
  • a first data stream is obtained, and the first data stream is split according to a preset data block size to obtain at least one data block, and the first data block is one of the at least one data block.
  • the preset data block size can be a preset number of data symbols, which can be specifically determined according to the system bandwidth and the number of time domain symbols. Take the time-frequency resources of 5G new radio (new radio, NR) as an example: the bandwidth in the frequency domain includes 512 subcarriers (corresponding to 512 resource elements (Resource elements, RE)), and the time domain includes 14 OFDM symbols, of which the number of OFDMs that can be used to transmit data symbols is 10, and the number of REs that can be used to transmit data symbols is 491. Then the preset data block size can be 491 ⁇ 10 data symbols. Of course, this is only an example and is not limited to this.
  • S202 Precode the first data block to obtain a second data block.
  • BM-OCDM is a two-dimensional precoding scheme formed by combining orthogonal chirp division multiplexing (OCDM) and block interleaving (BM) technology. Because BM-OCDM can disperse all data to the entire time-frequency dimension, it can obtain more channel diversity gain, thereby achieving better demodulation performance.
  • OFDM orthogonal frequency division multiplexing
  • BM-OCDM block interleaving
  • the data block to be sent (such as the first data block) is represented as a two-dimensional matrix, such as X, X ⁇ C M,N , where the dimension of X is M*N, the elements in the matrix are data symbols in the data to be sent, and the data block to be sent includes a total of M*N data symbols.
  • the data block X is precoded using BM-OCDM, which can be expressed as:
  • a and B represent the left and right transformation matrices respectively.
  • F M represents the Fourier transform matrix with dimension M*M
  • F N represents the Fourier transform matrix with dimension N*N.
  • is a diagonal matrix of dimension M*M
  • BN-OCDM coding is taken as an example, that is, A and B are not unit matrices.
  • S203 Map the first phase-noise pilot block and the second data block to time-frequency resources for transmission.
  • the phase noise pilot refers to a pilot used to correct phase noise.
  • the first phase noise pilot block is a phase noise pilot block composed of multiple pilot symbols (or called phase noise pilot symbols).
  • the first phase noise pilot block can be expressed in the form of a two-dimensional matrix, such as X PTRS , represents a matrix of dimension M PTRS ⁇ N, the elements in the matrix are pilot symbols in the first phase-noise pilot block, and the first phase-noise pilot block includes a total of M PTRS ⁇ N data symbols.
  • M PTRS represents the number of subcarriers that can be used to transmit phase-noise pilot symbols
  • N represents the number of OFDM symbols that can be used to transmit phase-noise pilot symbols.
  • the time-frequency resources of the first phase-noise pilot block are different from the time-frequency resources of the second data block.
  • the phase-noise pilot symbol and the data symbol on the same OFDM symbol are respectively carried on different REs on the OFDM symbol.
  • each symbol (or each element) in the first signal block or the second signal block and each symbol in the second phase-noise pilot block correspond to a certain time-frequency resource in the time-frequency domain (for example, one OFDM symbol in the time domain and one RE in the frequency domain).
  • X D AX QAM B.
  • the first phase-noise pilot block and the second data block are mapped to time-frequency resources for transmission, including: mapping the first phase-noise pilot block and the second data block to the time-frequency resources, and after inverse Fourier transformation, forming a time domain signal to be sent out, and the sent signal includes a signal corresponding to the data symbol (called a data signal) and a signal corresponding to the phase-noise pilot symbol (called a pilot signal).
  • the signal received by the receiving end includes the pilot signal, and the receiving end can then compensate for the phase noise according to the pilot signal. For example, after receiving a signal containing a phase noise pilot, the receiving end can obtain the phase error of the signal containing the phase noise pilot. The receiving end obtains the phase error of the signal that does not contain the phase noise pilot (for example, the signal formed by mapping the second data block to the time-frequency resource for transmission alone), and then performs linear interpolation between the two phase errors to obtain the phase offset value of the phase noise, so that the phase noise can be corrected according to the phase offset value.
  • a phase noise pilot can be added in the time domain.
  • the first phase noise pilot block and the second data block are signals in the time domain.
  • Mapping the first phase noise pilot block and the second data block to the time-frequency resources for transmission includes: merging the first phase noise pilot block and the second data block into a first signal block; performing Fourier transform on the first signal block (i.e. converting the first signal block to the frequency domain) to obtain a second signal block; mapping the second signal block to the time-frequency resources for transmission.
  • Mapping the second signal block to the time-frequency resources for transmission can specifically include mapping the second signal block to a subcarrier to obtain a frequency domain signal; then, performing an inverse Fourier transform on the frequency domain signal to form a time domain signal, which is sent out.
  • the first data block is precoded (for example, using BM-OCDM coding) to obtain the second data block; after the second data block and the first phase noise pilot are combined together, Fourier transform (DFT), mapping (i.e., subcarrier mapping), inverse Fourier transform (IFFT) and other processing are performed to form a time domain signal and send it out.
  • DFT Fourier transform
  • mapping i.e., subcarrier mapping
  • IFFT inverse Fourier transform
  • a demodulation reference signal can also be added.
  • the formation process of the first signal block is introduced in the form of a matrix as follows:
  • the first data block may be represented in the form of a two-dimensional matrix with a dimension of (MM PTRS ) ⁇ N, such as X data ,
  • the first phase noise pilot block is represented in the form of a two-dimensional matrix of M PTRS ⁇ N, such as X PTRS ,
  • the transmitted signal R can be expressed as:
  • phase noise pilot When a phase noise pilot is added in the time domain, after the first phase noise pilot block is converted to the frequency domain, it is a known signal in the frequency domain.
  • each symbol (or each element) in the first signal block or the second signal block and each symbol in the second phase-noise pilot block correspond to a certain time-frequency resource in the time-frequency domain (for example, one OFDM symbol in the time domain and one RE in the frequency domain). Therefore, after the first phase-noise pilot block is converted to the frequency domain, it is a known signal in the frequency domain, which can also be described as the pilot signal of the first phase-noise pilot block making the value of the second signal block at the first frequency domain position index the third reference signal.
  • the first frequency domain position index is a second preset index
  • the second preset index can be specified by a protocol, or pre-configured, or notified by network signaling, or agreed upon by a sending end or a receiving end, etc., and this application does not impose any restrictions.
  • the third reference signal is a known signal.
  • the third reference signal may be specifically related to at least one of the user identification (Identity document, ID), the number of frequency domain resources of the user, the number of phase-noise pilots of the user, etc., and this application does not impose any limitation.
  • the phase-noise pilot symbols are located at preset time-frequency resource positions (eg, the RE index used by the phase-noise pilot symbols is the preset RE index), or in other words, the symbols carried at these preset time-frequency resource positions are phase-noise pilot symbols.
  • a phase-noise pilot can be added in the frequency domain.
  • the first phase-noise pilot block and the second data block are signals in the frequency domain.
  • Mapping the first phase-noise pilot block and the second data block to time-frequency resources for transmission includes: merging the first phase-noise pilot block and the second data block into a first signal block; mapping the first signal block to time-frequency resources for transmission. Mapping the first signal block to time-frequency resources for transmission may specifically include mapping the first signal block to a subcarrier to obtain a frequency domain signal; then, performing an inverse Fourier transform on the frequency domain signal to form a time domain signal, which is sent out.
  • the first data block is precoded (for example, using BM-OCDM coding) to obtain a second data block; after the first data block and the first phase noise pilot are combined together, mapping (i.e., subcarrier mapping), inverse Fourier transform (IFFT) and other processing are performed to form a time domain signal and send it out.
  • mapping i.e., subcarrier mapping
  • IFFT inverse Fourier transform
  • a demodulation reference signal can also be added.
  • the second data block includes (MM PTRS ) ⁇ N data symbols and the first phase-noise pilot block includes M PTRS ⁇ N pilot symbols, where M is the sum of the number of subcarriers used to transmit the second data block and the number of subcarriers used to transmit the first phase-noise pilot block, and M, M PTRS , and N are positive integers.
  • Mapping the first phase-noise pilot block and the second data block to time-frequency resources for transmission includes: setting M PTRS pilot symbols and (MM PTRS ) data symbols on each OFDM symbol in N orthogonal frequency division multiplexing OFDM symbols.
  • the M PTRS pilot symbols are evenly spaced on the OFDM symbol. For example, a pilot symbol is set every ⁇ data symbols.
  • M can be obtained by subtracting the number of subcarriers that cannot be used to transmit data and pilots (such as guard subcarriers) from the total number of allocated subcarriers (the number of subcarriers included in the bandwidth).
  • the pilot signal of the first phase-noise pilot block is a known signal in the frequency domain.
  • the pilot signal of the first phase-noise pilot block is a first reference signal, wherein the first reference signal is related to at least one of a user ID, a number of frequency domain resources of a user, and a number of phase-noise pilots of a user.
  • the phase-noise pilot symbol is located at a preset time-frequency resource position (such as an index of a RE used by the phase-noise pilot symbol is a preset RE index), or in other words, the symbols carried at these preset time-frequency resource positions are phase-noise pilot symbols.
  • the pilot signal in the time domain is a known signal.
  • the pilot signal of the first phase-noise pilot block makes the value of the third data block at the first time domain position index a second reference signal, wherein the third data block is obtained by inverse Fourier transforming the second data block, and the first time domain position index is a first preset index; the second reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, and the number of phase-noise pilots of the user.
  • the first preset index may be specified by the protocol, or pre-configured, or notified by network signaling, or agreed upon by the transmitting end or the receiving end, etc., and this application does not impose any restrictions.
  • the symbols in the first phase noise pilot block X PTRS are determined values and are all the same value. For example:
  • b is a constant, and its size can be set as needed in a specific system.
  • the value b may be set equal to the value with the largest absolute value in the second data block X QAM . If 64-QAM modulation is adopted, in X QAM , the value of the element may be 1+1i, 3+3i, 7+7i, etc., but it is obvious that the absolute value of 7+7i is the largest, so b may be set to 7+7i.
  • a flowchart of another signal transmission method provided in an embodiment of the present application is different from the method shown in Figure 2 in that the phase noise pilot in this method needs to participate in precoding.
  • the method can be applied to the communication scenarios shown in Figure 1A, Figure 1B, or Figure 1C, or other communication scenarios, and the present application does not limit it.
  • the executor of the method can be a signal sender, and the signal sender can be any device that needs to send a signal (such as a satellite, a terminal, or a base station, etc.).
  • the method includes:
  • each phase noise symbol in the combined third signal block is determined according to a preset condition.
  • BM-OCDM orthogonal frequency division multiplexing
  • BM-OCDM coding is taken as an example, and A and B are not unit matrices.
  • the BM-OCDM coding principle can be referred to the relevant introduction above, and will not be repeated here.
  • S604 Transmit a fourth signal block.
  • the fourth signal block is mapped to the time-frequency resources, and after inverse Fourier transform, a time domain signal is formed and sent out.
  • the signal sent out includes a signal corresponding to the data symbol (called a data signal) and a signal corresponding to the phase noise pilot symbol (called a pilot signal).
  • the third signal block obtained by merging the fourth data block and the second phase noise pilot block is processed in sequence such as precoding (taking BM-OCDM coding as an example), Fourier transform (DFT), mapping and inverse Fourier transform (IFFT) to form a time domain signal and send it out.
  • precoding taking BM-OCDM coding as an example
  • DFT Fourier transform
  • IFFT inverse Fourier transform
  • the time-frequency resources of the second phase-noise pilot block are different from the time-frequency resources of the fourth data block.
  • Each symbol in each symbol (or each element) in the third signal block (or the fourth signal block) corresponds to a certain time-frequency resource in the time-frequency domain.
  • each symbol in each symbol (or each element) in the third signal block (or the fourth signal block) corresponds to an OFDM symbol in the time domain and to an RE in the frequency domain.
  • the preset condition includes: in the signal finally sent out, the time-frequency resource position of the phase-noise pilot signal is a preset time-frequency resource position.
  • FIG8 is a schematic diagram of the formation of the fourth signal block.
  • different patterns are used to distinguish data symbols and phase noise pilot symbols.
  • the shaded portion represents the data symbol
  • the non-shaded portion represents the phase noise pilot symbol.
  • the fourth signal block is a signal in the frequency domain.
  • the preset condition includes: after the second phase noise pilot block is precoded, it is a known signal in the frequency domain.
  • each symbol (or each element) in the third signal block (or the fourth signal block) corresponds to a certain time-frequency resource in the time-frequency domain. Therefore, after the second phase-noise pilot block is precoded, it is a known signal in the frequency domain, and can also be described as: the value of the fourth signal block at the second frequency domain position index is the fourth reference signal.
  • the fourth reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, the number of phase-noise pilots of the user, etc.
  • the second frequency domain position index is a third preset index
  • the third preset index can be specified by the protocol, or pre-configured, or notified by network signaling, or agreed upon by the sender or the receiver, etc., and this application does not impose any restrictions.
  • the fourth signal block is a signal in the frequency domain.
  • the preset condition includes: after the second phase noise pilot block is inversely transformed by Fourier, it is a known signal in the time domain.
  • the second phase-noise pilot block is inversely transformed by Fourier, it is a known signal in the time domain, and can also be described as: the value of the fifth signal block at the second time domain position index is the fifth reference signal, and the fifth signal block is obtained by inverse Fourier transforming the fourth signal block.
  • the fifth reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, the number of phase-noise pilots of the user, etc.
  • the second time domain position index is a fourth preset index, and the fourth preset index can be specified by the protocol, or pre-configured, or notified by network signaling, or agreed upon by the sender or the receiver, etc., and this application does not limit it.
  • the fourth signal block is a signal in the time domain. Transmitting the fourth signal block includes: performing Fourier transform on the fourth signal block to obtain a sixth signal block; and transmitting the sixth signal block.
  • the preset condition includes: the pilot signal of the second phase noise pilot block is a known signal.
  • the pilot signal of the second phase-noise pilot block is a known signal, and can also be described as: the value of the fourth signal block at the second time domain position index is the fifth reference signal.
  • the fifth reference signal is related to at least one of the user ID, the number of frequency domain resources of the user, the number of phase-noise pilots of the user, etc.
  • the second time domain position index is a fourth preset index, and the fourth preset index can be specified by the protocol, or pre-configured, or notified by network signaling, or agreed by the sending end or the receiving end, etc., and this application does not limit it.
  • F M represents the M*M dimensional Fourier transform matrix: its nth row and kth column elements are expressed as
  • M number of REs (resource elements). The specific value is equal to the sum of the number of subcarriers used to transmit the fourth data block and the number of subcarriers used to transmit the second phase noise pilot block.
  • N number of OFDM symbols transmitted.
  • M PTRS The number of transmitted phase-noise pilot symbols, which satisfies M PTRS ⁇ M.
  • the symbol “ ⁇ ” mathematically represents much less than.
  • M, M PTRS , and N are positive integers.
  • PTRS The position index of the phase-noise pilot symbol in M REs, such as the second frequency domain position index or the second time domain position index mentioned above.
  • the dimension of the matrix is mathematically defined as M PTRS ⁇ M, where M PTRS is the number of rows of the matrix and M is the number of columns of the matrix. And the internal elements of the matrix are rational numbers.
  • the dimension of matrix P is M ⁇ M, that is, it has M rows and M columns.
  • the elements of the nth row and kth column of matrix P are:
  • the ⁇ th row of the matrix P is defined as: P( ⁇ ,:).
  • P( ⁇ ,:) is a row vector of length N.
  • X(:, 1) is a column vector of length M.
  • X(:, n) represents the nth column vector in matrix X.
  • the second phase-noise pilot block includes M PTRS ⁇ N pilot symbols, which can be expressed as a first matrix X QAM of M PTRS ⁇ N dimensions;
  • the fourth data block includes (MM PTRS ) ⁇ N data symbols, which can be expressed as a second matrix X PTRS of (MM PTRS ) ⁇ N dimensions.
  • the third signal block obtained by combining the second phase-noise pilot block and the fourth data block can be expressed as a third matrix X of M ⁇ N dimensions, X ⁇ C M,N , where the dimension of X is M*N, and the elements in the matrix include data symbols and phase-noise pilot symbols.
  • the BM-OCDM encoding and inverse Fourier transform of the third signal block can be expressed as:
  • X PTRS contains M PTRS ⁇ N unknowns to be solved.
  • N there are N columns of unknown variables, and each column of unknown variables contains M PTRS unknowns to be solved.
  • P(X QAM +X PTRS ) S data +S PTRS ; wherein the dimension of the matrix S PTRS is: M PTRS ⁇ N, that is, the matrix has M PTRS rows and N columns.
  • the pilot signal finally transmitted is a known signal (that is, the position in the instant frequency domain is known and the value is known), so the S PTRS can be expressed as:
  • each element in the first column is a .
  • X PTRS X PTRS (:, 1)
  • X PTRS (:, 1) is a column vector of length M PTRS ):
  • Submatrix The dimension is M PTRS ⁇ M, that is, the matrix There are M PTRS rows and M columns.
  • the matrix Multiply the matrix by the first column of matrix X to get the first column of S PTRS , that is:
  • X(:,1) is a column vector of length M.
  • the column vector X(:,1) can be determined according to the position index Index PTRS :
  • the number of phase noise pilot symbols is M PTRS , which are placed at intervals of ⁇ .
  • a data symbol is between two adjacent phase noise pilot symbols.
  • the remaining elements constitute the second sub-matrix, corresponding to the data part
  • the second submatrix The dimension is M PTRS ⁇ (MM PTRS ), that is, there are M PTRS rows and MM PTRS columns.
  • X PTRS (:, 1) can be constructed by extracting the corresponding elements from formula 1X(:, 1), with a length of M PTRS , that is:
  • X QAM (:, 1) can be constructed by extracting the corresponding elements from formula 1X(:, 1), and the length is MM PTRS , that is:
  • the first column X PTRS (:, 1) can be obtained as:
  • n is a positive integer from 2 to N.
  • phase noise pilot can also be applied to the embodiment shown in FIG. 2 , where a phase noise pilot is added in the frequency domain, and after the first phase noise pilot block is transformed into the time domain, the pilot signal in the time domain is a known signal.
  • phase noise pilot by combining the phase noise pilot and data and performing precoding, and mapping the precoded data to time-frequency resources, it is possible to send the phase noise pilot while sending the data, so that the receiving end can reduce or even eliminate the influence of phase noise, and improve the reliability of data transmission.
  • Figures 10, 11 and 12 are schematic diagrams of possible communication devices provided in embodiments of the present application. These communication devices can be used to implement the functions of the signal sender (such as a satellite, terminal or base station, etc.) in the above method embodiments, and thus can also achieve the beneficial effects of the above method embodiments.
  • the signal sender such as a satellite, terminal or base station, etc.
  • the communication device 1000 includes an acquisition module 1001, a coding module 1002 and a transmission module 1003.
  • the communication device 1000 is used to implement the function of the signal sender (such as a satellite, terminal or base station, etc.) in the method embodiment shown in Fig. 2 above.
  • the acquisition module 1001 is used to acquire a first data block; the encoding module 1002 is used to pre-encode the first data block to obtain a second data block; and the transmission module 1003 is used to map the first phase noise pilot block and the second data block to time-frequency resources for transmission.
  • the communication device 1100 includes a determination module 1101, a coding module 1102 and a transmission module 1103.
  • the communication device 1100 is used to implement the function of the signal sender (such as a satellite, terminal or base station, etc.) in the method embodiment shown in Fig. 6 above.
  • the determination module 1101 is used to determine the second phase-noise pilot block according to a preset condition; the encoding module 1102 is used to combine the fourth data block to be transmitted and the second phase-noise pilot block to obtain a third signal block; the third signal block is pre-encoded to obtain a fourth signal block; and the transmission module 1103 is used to transmit the fourth signal block.
  • the communication device 1200 includes a processor 1210 and an interface circuit 1220.
  • the interface circuit 1220 may receive signals from other communication devices outside the communication device 1200 and transmit them to the processor 1210 or send signals from the processor 1210 to other communication devices outside the communication device 1200.
  • the processor 1210 implements the method steps described in the above method embodiments through logic circuits or execution code instructions.
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 may be a transceiver or an input/output interface.
  • the communication device 1200 may further include a memory 1230 for storing instructions executed by the processor 1210 or storing input data required by the processor 1210 to execute instructions or storing data generated after the processor 1210 executes instructions.
  • the memory 1230 and the processor 1210 may be integrated together.
  • the processor in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware, or by a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an erasable programmable read-only memory, an electrically erasable programmable read-only memory, a register, a hard disk, a mobile hard disk, a CD-ROM, or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium can also be a component of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the ASIC can be located in a base station or a terminal.
  • the processor and the storage medium can also be present in a base station or a terminal as discrete components.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user device or other programmable device.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instruction may be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that a computer can access or a data storage device such as a server, data center, etc. that integrates one or more available media.
  • the available medium may be a magnetic medium, for example, a floppy disk, a hard disk, a tape; it may also be an optical medium, for example, a digital video disc; it may also be a semiconductor medium, for example, a solid-state hard disk.
  • the computer-readable storage medium may be a volatile or nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • “at least one” means one or more, and “more than one” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an “or” relationship; in the formula of the present application, the character “/” indicates that the previous and next associated objects are in a “division” relationship.
  • “Including at least one of A, B and C” can mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法和装置,方法包括:获取第一数据块;对第一数据块进行预编码,得到第二数据块,将第一相噪导频块和第二数据块映射到时频资源上传输;或者,根据预设条件确定第二相噪导频块,将待传输的第四数据块和第二相噪导频块合并,得到第三信号块,对第三信号块进行预编码,得到第四信号块,传输第四信号块。本申请通过对数据进行预编码,将预编码后的数据和相噪导频分别映射到时频资源传输,或者,对数据和相噪导频一起进行预编码,将预编码后的数据映射到时频资源传输,可以实现在发送数据的同时发送相噪导频,使得接收端可以根据相噪导频降低甚至消除相位噪声的影响,可以提高数据传输的可靠性。

Description

一种信号传输方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种信号传输方法和装置。
背景技术
相位噪声(Phase noise)是指通信系统(如各种射频器件)在各种噪声的作用下引起的系统输出信号相位的随机变化。相位噪声是衡量频率标准源(高稳晶振、原子频标等)频稳质量的重要指标。随着通信系统工作频段越来越高,尤其是在高频(如载波频率为70GHz)+高速移动(如移动速度>250km/h)的场景下,相位噪声的影响越来越严重,对数据的稳定传输提出挑战。
如何降低甚至消除相位噪声的影响,提高数据传输的可靠性,是本申请要解决的技术问题。
发明内容
本申请实施例提供一种信号传输方法和装置,可以降低甚至消除相位噪声的影响,提高数据传输的可靠性。
第一方面,提供一种信号传输方法,应用于发送端,方法包括:获取第一数据块;对第一数据块进行预编码,得到第二数据块;将第一相噪导频块和第二数据块映射到时频资源上传输。其中,对第一数据块进行预编码,可以是使用BM-OCDM编码技术或OFDM技术或者其它技术对第一数据块进行预编码,本申请不做限制。
在上述方案中,通过对数据进行预编码,并将预编码后的数据和相噪导频分别映射到时频资源传输,可以实现在发送数据的同时发送相噪导频,使得接收端可以根据相噪导频降低甚至消除相位噪声的影响,可以提高数据传输的可靠性。
一种可能的实现方式中,第二数据块包括(M-M PTRS)×N个数据符号;第一相噪导频块包括M PTRS×N个导频符号,M为用于传输第二数据块的子载波个数和用于传输第一相噪导频块的子载波个数的和,M、M PTRS、N为正整数。相应的,将第一相噪导频块和第二数据块映射到时频资源上传输,包括:在N个OFDM符号中的每个OFDM符号上设置M PTRS个导频符号和(M-M PTRS)个数据符号。
通过该实施方式,可以实现在频域上加相噪导频,即第一相噪导频块和第二数据块是频域上的信号。
一种可能的实现方式中,M PTRS个导频符号在OFDM符号上均匀间隔设置。
该实现方式,可以实现导频符号在频域均匀分布,有利于提高相噪导频传输的可靠性。
一种可能的实现方式中,第一相噪导频块的导频信号为第一参考信号,第一参考信号与用户标识ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
通过该方式,可以实现第一相噪导频块的导频信号在频域上是已知信号,便于接收端从接收信号中解析相噪导频。
一种可能的实现方式中,第一相噪导频块的导频信号使得第三数据块在第一时域位置索引处的值为第二参考信号,第三数据块由第二数据块经过傅里叶逆变换获得,第一时域 位置索引为第一预设索引;第二参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
通过该方式,可以实现第一相噪导频块变换到时域后,在时域上的导频信号是已知信号,便于接收端从接收信号中解析相噪导频。
一种可能的实现方式中,将第一相噪导频块和第二数据块映射到时频资源上传输,包括:将第一相噪导频块和第二数据块合并为第一信号块;对第一信号块进行傅里叶变换,得到第二信号块,将第二信号块映射到时频资源上传输;第一相噪导频块的导频信号使得第二信号块在第一频域位置索引处的值为第三参考信号,第一频域位置索引为第二预设索引;第三参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
通过该方式,可以实现在时域上加相噪导频。换而言之,第一相噪导频块和第二数据块是时域上的信号。
一种可能的实现方式中,第一相噪导频块的时频资源和第二数据块的时频资源不同。
通过该实现方式,可以实现数据和相噪导频在不同时频资源上传输,可以提高数据传输的可靠性。
一种可能的实现方式中,第一相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;第一数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输第一数据块的子载波个数和用于传输第一相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整数;
第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
Figure PCTCN2022121390-appb-000001
其中,X QAM(:,1)为第二矩阵中的第1列向量;
Figure PCTCN2022121390-appb-000002
为M PTRS维矩阵,a为预设值;
Figure PCTCN2022121390-appb-000003
为根据第一时域位置索引从矩阵P中抽取出的子矩阵,矩阵
Figure PCTCN2022121390-appb-000004
Figure PCTCN2022121390-appb-000005
表示矩阵F M的共轭转置, ^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
Figure PCTCN2022121390-appb-000006
为矩阵P被抽取子矩阵
Figure PCTCN2022121390-appb-000007
后剩余元素组成的子矩阵。
第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
Figure PCTCN2022121390-appb-000008
其中,X QAM(:,n)为第二矩阵中的第n列向量,n的取值为2到N的正整数。
通过该实现方式,可以确定第一相噪导频块中各个相噪导频符号的值,使得最终发射出去的信号中,相噪导频符号的时频资源位置在预设位置。
第二方面,提供一种信号传输方法,应用于发送端,方法包括:根据预设条件确定第二相噪导频块;将待传输的第四数据块和第二相噪导频块合并,得到第三信号块;对第三信号块进行预编码,得到第四信号块;传输第四信号块。其中,对第一数据块进行预编码,可以是使用BM-OCDM编码技术或OFDM技术或者其它技术对第一数据块进行预编码,本申请不做限制。
在上述方案中,将相噪导频和数据合并后进行预编码,并将预编码后的数据映射到时频资源,可以实现在发送数据的同时发送相噪导频,使得接收端可以降低甚至消除相位噪声的影响,可以提高数据传输的可靠性。
在本申请实施例中,预设条件可以包括:最终发送出去的信号中,相噪导频信号的时频资源位置是预设的时频资源位置。如此,便于接收端从接收信号中解析相噪导频。
以下,介绍预设条件的几种具体实现方式:
一种可能的实现方式中,预设条件包括:第四信号块在第二频域位置索引处的值为第四参考信号,第四参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关,第二频域位置索引为第三预设索引。
该实现方式中,第二相噪导频块经过预编码后,在频域上是已知信号,可以保证最终发送出去的信号中,相噪导频信号的时频资源位置是预设的时频资源位置。
一种可能的实现方式中,预设条件包括:第五信号块在第二时域位置索引处的值为第五参考信号,第五信号块由第四信号块经过傅里叶逆变换获得,第二时域位置索引为第四预设索引,第五参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
该实现方式中,第二相噪导频块经过傅里叶逆变换后,在时域上是已知信号,可以保证最终发送出去的信号中,相噪导频信号的时频资源位置是预设的时频资源位置。
一种可能的实现方式中,传输第四信号块,包括:对第四信号块进行傅里叶变换,得到第六信号块;传输第六信号块;预设条件包括:第四信号块在第二时域位置索引处的值为第五参考信号,第五参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关,第二时域位置索引为第四预设索引。
该实现方式中,第二相噪导频块的导频信号是已知信号,可以保证最终发送出去的信号中,相噪导频信号的时频资源位置是预设的时频资源位置。
一种可能的实现方式中,第二相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;第四数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输第四数据块的子载波个数和用于传输第二相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整数;第三信号块表示为M×N维的第三矩阵;
第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
Figure PCTCN2022121390-appb-000009
其中,X QAM(:,1)为第二矩阵中的第1列向量;
Figure PCTCN2022121390-appb-000010
为M PTRS维矩阵,a为预设值;
Figure PCTCN2022121390-appb-000011
为根据第二频域位置索引从矩阵P中抽取出的子矩阵,矩阵
Figure PCTCN2022121390-appb-000012
Figure PCTCN2022121390-appb-000013
表示矩阵F M的共轭转置, ^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
Figure PCTCN2022121390-appb-000014
为矩阵P被抽取子矩阵
Figure PCTCN2022121390-appb-000015
后剩余元素组成的子矩阵。
第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
Figure PCTCN2022121390-appb-000016
其中,X QAM(:,n)为第二矩阵中的第n列向量,n的取值为2到N的正整数。
通过该方式,可以基于第二频域位置索引求出第二相噪导频块的值,即第一矩阵。
一种可能的实现方式中,第二相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;第四数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输第四数据块的子载波个数和用于传输第二相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整数;第三信号块表示为M×N维的第三矩阵;
第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
Figure PCTCN2022121390-appb-000017
其中,X QAM(:,1)为第二矩阵中的第1列向量;
Figure PCTCN2022121390-appb-000018
为M PTRS维矩阵,a为预设值;
Figure PCTCN2022121390-appb-000019
为根据第二时域位置索引从矩阵P中抽取出的子矩阵,矩阵
Figure PCTCN2022121390-appb-000020
Figure PCTCN2022121390-appb-000021
表示矩阵F M的共轭转置, ^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
Figure PCTCN2022121390-appb-000022
为矩阵P被抽取子矩阵
Figure PCTCN2022121390-appb-000023
后剩余元素组成的子矩阵。
第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
Figure PCTCN2022121390-appb-000024
其中,X QAM(:,n)为第二矩阵中的第n列向量,n的取值为2到N的正整数。
通过该方式,可以基于第二时域位置索引求出第二相噪导频块的值,即第一矩阵。
第三方面,提供一种信号传输方法,应用于接收端,方法包括:接收信号,该信号是第一方面或第二方面中发送端发送的信号经过信道传输后形成的信号;根据该信号确定相位噪声。
第四方面,提供一种信号传输系统,包括:
发送端,用于执行第一方面或第一方面任一种可能的实现方式或第二方面或第二方面任一种可能的实现方式中所述的方法;
接收端,用于执行第三方面所述的方法。
第五方面,提供一种信号传输装置,包括用于实现上述第一方面或第一方面任一种可能的实现方式中所述的方法的模块或单元或技术手段。
示例性的,装置可以包括:获取模块,用于获取第一数据块;编码模块,用于对第一数据块进行预编码,得到第二数据块;传输模块,用于将第一相噪导频块和第二数据块映射到时频资源上传输。
一种可能的实现方式中,第二数据块包括(M-M PTRS)×N个数据符号;第一相噪导频块包括M PTRS×N个导频符号,M为用于传输第二数据块的子载波个数和用于传输第一相噪导频块的子载波个数的和,M、M PTRS、N为正整数;传输模块用于:在N个正交频分复用OFDM符号中的每个OFDM符号上设置M PTRS个导频符号和(M-M PTRS)个数据符号。
一种可能的实现方式中,M PTRS个导频符号在OFDM符号上均匀间隔设置。
一种可能的实现方式中,第一相噪导频块的导频信号为第一参考信号,第一参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
一种可能的实现方式中,第一相噪导频块的导频信号使得第三数据块在第一时域位置索引处的值为第二参考信号,第三数据块由第二数据块经过傅里叶逆变换获得,第一时域位置索引为第一预设索引;第二参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
一种可能的实现方式中,传输模块用于:将第一相噪导频块和第二数据块合并为第一信号块;对第一信号块进行傅里叶变换,得到第二信号块,将第二信号块映射到时频资源上传输;第一相噪导频块的导频信号使得第二信号块在第一频域位置索引处的值为第三参考信号,第一频域位置索引为第二预设索引;第三参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
一种可能的实现方式中,第一相噪导频块的时频资源和第二数据块的时频资源不同。
一种可能的实现方式中,第一相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;第一数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输第一数据块的子载波个数和用于传输第一相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整 数;
第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
Figure PCTCN2022121390-appb-000025
其中,X QAM(:,1)为第二矩阵中的第1列向量;
Figure PCTCN2022121390-appb-000026
为M PTRS维矩阵,a为预设值;
Figure PCTCN2022121390-appb-000027
为根据第一时域位置索引从矩阵P中抽取出的子矩阵,矩阵
Figure PCTCN2022121390-appb-000028
Figure PCTCN2022121390-appb-000029
表示矩阵F M的共轭转置, ^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
Figure PCTCN2022121390-appb-000030
为矩阵P被抽取子矩阵
Figure PCTCN2022121390-appb-000031
后剩余元素组成的子矩阵。
第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
Figure PCTCN2022121390-appb-000032
其中,X QAM(:,n)为第二矩阵中的第n列向量,n的取值为2到N的正整数。
一种可能的实现方式中,编码模块,用于使用块交织BM-正交啁啾分复用OCDM编码技术或OFDM技术对所述第一数据块进行预编码。
第六方面,提供一种信号传输装置,包括用于实现上述第二方面或第二方面任一种可能的实现方式中所述的方法的模块或单元或技术手段。
示例性的,装置可以包括:确定模块,用于根据预设条件确定第二相噪导频块;编码模块,用于将待传输的第四数据块和第二相噪导频块合并,得到第三信号块;对第三信号块进行预编码,得到第四信号块;传输模块,用于传输第四信号块。
一种可能的实现方式中,预设条件包括:第四信号块在第二频域位置索引处的值为第四参考信号,第四参考信号与用户IDID、用户的频域资源个数、用户的相噪导频个数中至少一项相关,第二频域位置索引为第三预设索引。
一种可能的实现方式中,预设条件包括:第五信号块在第二时域位置索引处的值为第五参考信号,第五信号块由第四信号块经过傅里叶逆变换获得,第二时域位置索引为第四预设索引,第五参考信号与用户IDID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
一种可能的实现方式中,传输模块用于:对第四信号块进行傅里叶变换,得到第六信号块;传输第六信号块;其中,预设条件包括:第四信号块在第二时域位置索引处的值为第五参考信号,第五参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关,第二时域位置索引为第四预设索引。
一种可能的实现方式中,第二相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;第四数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输第四数据块的子载波个数和用于传输第二相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整数;第三信号块表示为M×N维的第三矩阵;
第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
Figure PCTCN2022121390-appb-000033
其中,X QAM(:,1)为第二矩阵中的第1列向量;
Figure PCTCN2022121390-appb-000034
为M PTRS维矩阵,a为预设值;
Figure PCTCN2022121390-appb-000035
为根据第二频域位置索引从矩阵P中抽取出的子矩阵,矩阵
Figure PCTCN2022121390-appb-000036
Figure PCTCN2022121390-appb-000037
表示矩阵F M的共轭转置, ^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
Figure PCTCN2022121390-appb-000038
为矩阵P被抽取子矩阵
Figure PCTCN2022121390-appb-000039
后剩余元素组成的子矩阵。
第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
Figure PCTCN2022121390-appb-000040
其中,X QAM(:,n)为第二矩阵中的第n列向量,n的取值为2到N的正整数。
一种可能的实现方式中,第二相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;第四数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输第四数据块的子载波个数和用于传输第二相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整数;第三信号块表示为M×N维的第三矩阵;
第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
Figure PCTCN2022121390-appb-000041
其中,X QAM(:,1)为第二矩阵中的第1列向量;
Figure PCTCN2022121390-appb-000042
为M PTRS维矩阵,a为预设值;
Figure PCTCN2022121390-appb-000043
为根据第二时域位置索引从矩阵P中抽取出的子矩阵,矩阵
Figure PCTCN2022121390-appb-000044
Figure PCTCN2022121390-appb-000045
表示矩阵F M的共轭转置, ^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
Figure PCTCN2022121390-appb-000046
为矩阵P被抽取子矩阵
Figure PCTCN2022121390-appb-000047
后剩余元素组成的子矩阵。
第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
Figure PCTCN2022121390-appb-000048
其中,X QAM(:,n)为第二矩阵中的第n列向量,n的取值为2到N的正整数。
一种可能的实现方式中,编码模块,用于使用块交织BM-正交啁啾分复用OCDM编码技术或OFDM技术对所述第一数据块进行预编码。
第七方面,提供一种通信装置,包括处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现如第一方面或第一方面一种可能的实现方式中所述的方法,或者,实现如第二方面或第二方面一种可能的实现方式中所述的方法。
第八方面,提供一种计算机可读存储介质,存储介质中存储有计算机程序或指令,当计算机程序或指令被通信装置执行时,如第一方面或第一方面一种可能的实现方式中所述的方法,或者,实现如第二方面或第二方面一种可能的实现方式中所述的方法。
第九方面,提供一种计算机程序产品,计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行如第一方面或第一方面一种可能的实现方式中所述的方法,或者,执行如第二方面或第二方面一种可能的实现方式中所述的方法。
附图说明
图1A~图1C为本申请实施例适用的几种无线通信系统的示意图;
图2为本申请实施例提供的一种信号传输方法的流程图;
图3为一种可能的信号处理流程的示意图;
图4为形成第一信号块的示意图;
图5为一种可能的信号处理流程的示意图;
图6为本申请实施例提供的另一种信号传输方法的流程图;
图7为一种可能的信号处理的流程图;
图8为形成第四信号块的示意图;
图9为对信号做傅里叶变换的示意图;
图10为本申请实施例提供的一种通信装置的示意图;
图11为本申请实施例提供的另一种通信装置的示意图;
图12为本申请实施例提供的另一种通信装置的示意图。
具体实施方式
本申请实施例可以应用于各类无线通信系统。
示例性的,参见图1A,本申请实施例可以应用于卫星和终端通信的系统,该包括卫星以及终端类型网元。所述卫星为终端设备提供通信服务,所述终端设备例如包括但不限于是智能手机、智能手表、平板电脑等设备。卫星向终端传输下行数据;终端向卫星传输上行数据。
示例性的,参见图1B,本申请实施例可以应用于卫星和卫星通信的系统。传统的卫星星间链路通信系统可以分为:捕获跟踪对准(Acquisition,Tracking and Pointing,APT)子系统和通信子系统两大部分。通信子系统负责星间信息的传输,是星间通信系统的主体;APT子系统负责卫星之间的捕获、对准和跟踪,其中,捕获是指确定入射信号的来波方向,对准是指调整发射波瞄准接收方向,跟踪是指在整个通信过程中不断调整对准和捕获。
示例性的,参见图1C,本申请实施例可以应用于蜂窝通信或无线局域网通信等无线通信系统。在蜂窝通信系统中,一个网络设备可以为多个终端提供服务,一个终端也可以跟多个网络设备通信。在无线局域网通信系统中,一个接入点可以为多个终端进行服务,一个终端也可以跟多个接入点进行通信。
其中,网络设备是一种部署在无线接入网或者无线局域网中为终端设备提供无线通信功能的装置。网络设备可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,网络设备的名称可能会有所不同。网络设备还可以是CRAN(Cloud Radio Access Network,云无线接入网络)场景下的无线控制器。网络设备还可以是第五代移动通信技术(5 th generation mobile networks,5G)网络或第六代移动通信技术(6th generation mobile networks,6G)网络中的基站设备或者演进的公共陆地移动网(public land mobile network,PLMN)网络中的网络设备。网络设备还可以是可穿戴设备或车载设备。网络设备还可以传输接收节点(Transmission and Reception Point,TRP)。网络设备还可以是接入点(access point,AP)。
另外,本文所涉及到的终端,也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
网络设备和终端可以是固定位置的,也可以是可移动的。网络设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端的应用场景不做限定。
应理解,以上几种通信系统仅为示例,实际应用中,本申请实施例还可以应用于其它通信系统。
参见图2,为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于图1A或图1B或图1C所示的通信场景,或者其它通信场景,本申请不做限制。该方法的执行主体可以是信号发送方,信号发送方可以是任何需要发送信号的设备(如卫星、终端或基站等)。方法包括:
S201、获取第一数据块。
可以理解的,第一数据块是待传输的数据块。获取第一数据块的具体实现方式,可以是生成第一数据块,或者是从其它设备接收第一数据块,本申请不做限制。
一种可能的示例中,获取第一数据流,按照预设的数据块大小对第一数据流进行拆分,获得至少一个数据块,第一数据块为该至少一个数据块中的一个。其中,该预设的数据块大小可以是预设数量的数据符号,具体可以根据系统带宽和时域符号个数确定。以5G新无线(new radio,NR)的时频资源为例:频域上带宽包括512个子载波(对应512个资源元素(Resource elements,RE)),时域上包括14个OFDM符号,其中可以用于传输数据符号的OFDM数量为10个,可以用于传输数据符号的RE为491个,则该预设的数据块大小可以为491×10个数据符号,当然此处仅为举例,实际不限于此。
S202、对第一数据块进行预编码,得到第二数据块。
预编码方式可以有多种,例如正交频分复用(orthogonal frequency division multiplexing,,OFDM)、BM-OCDM、或其它编码方式。其中,BM-OCDM是将正交啁啾分复用(orthogonal chirp division multiplexing,OCDM)和块交织(block multiplexing,BM)技术结合,形成的二维预编码方案。因BM-OCDM能够将数据全部分散到整个时间-频率维度,进而获取了更多的信道分集增益,从而实现更优的解调性能。
以下介绍BM-OCDM的编码原理:
将待发送的数据块(如第一数据块)表示为二维矩阵的形式,如X,X∈C M,N,其中X的维度为M*N,矩阵中的元素为待发送的数据中的数据符号,待发送的数据块一共包括M*N个数据符号。采用BM-OCDM对数据块X预编码,可表示为:
S=AXB;
其中,A、B分别表示左右变换矩阵,
Figure PCTCN2022121390-appb-000049
F M表示维度为M*M的傅里叶变换矩阵,F N标识维度为N*N的傅里叶变换矩阵,
Figure PCTCN2022121390-appb-000050
表示矩阵F M的共轭转置,^是维度为M*M的对角矩阵,^可以表示为^(n,n)=exp(-j2πn 2/N)。
需要说明的是,当A、B都为单位矩阵时,S=AXB,等效于OFDM编码。
为了便于描述,在下文中,以BN-OCDM编码为例,即A、B不为单位矩阵。
S203、将第一相噪导频块和第二数据块映射到时频资源上传输。
可以理解的,相噪导频是指用于纠正相位噪声的导频。第一相噪导频块是由多个导频符号(或称为相噪导频符号)组成相噪导频块。第一相噪导频块可以表示为二维矩阵的形式,如X PTRS
Figure PCTCN2022121390-appb-000051
表示维度为M PTRS×N的矩阵,矩阵中的元素为第一相噪导频块中的导频符号,第一相噪导频块一共包括M PTRS×N个数据符号。M PTRS表示可用于传输相噪导频符号的子载波数量,N表示可用于传输相噪导频符号的OFDM符号的数量。
在本申请实施例中,第一相噪导频块的时频资源和第二数据块的时频资源不同。例如,在同一个OFDM符号上的相噪导频符号和数据符号,分别承载在该OFDM符号上的不同的RE上。
例如,第一信号块或第二信号块中的每个符号(或者说每个元素)以及第二相噪导频块中的每个符号,在时频域上,都对应一个确定的时频资源(例如时域上对应一个OFDM符号,频域上对应一个RE)。以5G NR的时频资源为例:512个频率资源(Resource elements,RE)(即M=512),14个OFDM符号(其中含有4个已知参考符号,即N=10),设频域资源上相噪符号和导频符号的间隔为24个RE,频率方向上的相噪导频符号个数(即相噪导频使用的子载波数)为:M PTRS=21;频率方向上的数据符号个数(即第一数据块或第二数据块使用的子载波数)为:M data=512-21=491。则对(M-M PTRS)×(N-N DMRS)=491×10维度的数据块(即第一数据块)做BM-OCDM变换,得到第二数据块:X D=AX QAMB。X D和M PTRS×(N-N DMRS)=21×10维的相噪导频块可合并为M×N维的信号块,该信号块中的符号与512×14个RE一一对应。
将第一相噪导频块和第二数据块映射到时频资源上传输,包括:将第一相噪导频块和第二数据块映射到时频资源,并经过傅里叶逆变换之后,形成时域信号发送出去,发送出去中的信号中包括数据符号对应的信号(称为数据信号)和相噪导频符号对应的信号(称为导频信号)。
当第一相噪导频块和第二数据块一起映射到时频资源上传输后,接收端收到的信号中就包括导频信号,接收端进而可以根据导频信号补偿相位噪声。例如,接收到会收到包含有相噪导频的信号后,接收端可以获得包含有相噪导频的信号的相位误差,接收端通过获取未包含有相噪导频的信号的相位误差(例如单独将第二数据块映射到时频资源上传输形成的信号),然后通过在两个相位误差之间进行线性插值,就可以得到相位噪声的相位偏移值,从而可以根据该相位偏移值对相位噪声进行校正。
一种可能的设计中,可以在时域上加相噪导频。换而言之,第一相噪导频块和第二数据块是时域上的信号。将第一相噪导频块和第二数据块映射到时频资源上传输,包括:将第一相噪导频块和第二数据块合并为第一信号块;对第一信号块进行傅里叶变换(即将第一信号块转换到频域),得到第二信号块;将第二信号块映射到所述时频资源上传输。其中,将第二信号块映射到时频资源上传输,具体可以包括将第二信号块映射到子载波上,得到频域信号;然后,频域信号进行傅里叶逆变换,形成时域信号,发送出去。
例如,参见图3,为信号处理流程的示意图,第一数据块经过预编码(例如,采用BM-OCDM编码),得到第二数据块;将第二数据块和第一相噪导频合并到一起后,进行傅里叶变换(DFT)、映射(即子载波映射)、傅里叶逆变换(IFFT)等处理,形成时域信号发送出去。可选的,在DFT之后,执行映射之前,还可以加入解调参考信号。
为了便于理解,以下通过矩阵的方式,介绍第一信号块的形成过程:
参见图4,第一数据块可以表示为维度为(M-M PTRS)×N的二维矩阵的形式,如X data
Figure PCTCN2022121390-appb-000052
对X data进行BM-OCDM编码,即:
Figure PCTCN2022121390-appb-000053
得到第二数据块S data
第一相噪导频块表示为M PTRS×N的二维矩阵的形式,如X PTRS
Figure PCTCN2022121390-appb-000054
将第一数据块和第二数据块合并后的第一信号块表示为维度为M×N的二维矩阵S total,S total=S data∪X PTRS,S total∈C M,N
对S total进行傅里叶变换:Y=F MS total
对Y进行填零操作后,做M FFT点的(M FFT表示对Y进行填零操作后数据长度)傅里 叶逆变换(如IFFT),将其变换到时域,形成时域信号发射出去。发射出去的信号R可以表示为:
Figure PCTCN2022121390-appb-000055
其中,
Figure PCTCN2022121390-appb-000056
表示做M FFT点的傅里叶逆变换。
在时域上加相噪导频的情况下,第一相噪导频块转换到频域后,在频域上是已知信号。
根据前文可知,第一信号块或第二信号块中的每个符号(或者说每个元素)以及第二相噪导频块中的每个符号,在时频域上,都对应一个确定的时频资源(例如时域上对应一个OFDM符号,频域上对应一个RE)。因此,第一相噪导频块转换到频域后,在频域上是已知信号,也可以描述为,第一相噪导频块的导频信号使得第二信号块在第一频域位置索引处的值为第三参考信号。
其中,第一频域位置索引为第二预设索引,该第二预设索引可以由协议规定,或者预先配置,或者由网络信令告知,或者由发送端或接收端约定等,本申请不做限制。
第三参考信号是已知信号,第三参考信号具体可以与用户标识(Identity document,ID)、用户的频域资源个数、用户的相噪导频个数等中至少一项相关,本申请不做限制。
如图4所示,相噪导频符号位于预设的时频资源位置(如相噪导频符号使用的RE的索引为预设RE索引),或者说,在这些预设的时频资源位置上承载的符号是相噪导频符号。
一种可能的设计中,可以在频域上加相噪导频。换而言之,第一相噪导频块和第二数据块是频域上的信号。将第一相噪导频块和第二数据块映射到时频资源上传输,包括:将第一相噪导频块和第二数据块合并为第一信号块;将第一信号块映射到时频资源上传输。其中,将第一信号块映射到时频资源上传输,具体可以包括将第一信号块映射到子载波上,得到频域信号;然后,频域信号进行傅里叶逆变换,形成时域信号,发送出去。
例如,参见图5,为信号处理流程的示意图,第一数据块经过预编码(例如,采用BM-OCDM编码),得到第二数据块;将第一数据块和第一相噪导频合并到一起后,进行映射(即子载波映射)、傅里叶逆变换(IFFT)等处理,形成时域信号发送出去。可选的,在预编码之后,映射之前,还可以加入解调参考信号。
仍以第二数据块包括(M-M PTRS)×N个数据符号、第一相噪导频块包括M PTRS×N个导频符号为例,其中M为用于传输所述第二数据块的子载波个数和用于传输所述第一相噪导频块的子载波个数的和,M、M PTRS、N为正整数。将第一相噪导频块和所述第二数据块映射到时频资源上传输,包括:在N个正交频分复用OFDM符号中的每个OFDM符号上设置M PTRS个导频符号和(M-M PTRS)个数据符号。其中,M PTRS个导频符号在所述OFDM符号上均匀间隔设置。例如,每隔Δ个数据符号设置一个导频符号。
在具体实现时,M可以由分配的子载波总数(带宽中包含的子载波数量)中减不可用于传输数据和导频的子载波(如保护子载波)的数量得到。
可选的,在频域上加相噪导频的情况下,第一相噪导频块的导频信号在频域上是已知信号。例如,第一相噪导频块的导频信号为第一参考信号,其中第一参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数等中至少一项相关。如图4所示,相噪导频符 号位于预设的时频资源位置(如相噪导频符号使用的RE的索引为预设RE索引),或者说,在这些预设的时频资源位置上承载的符号是相噪导频符号。
可选的,在频域上加相噪导频的情况下,第一相噪导频块变换到时域后,在时域上的导频信号是已知信号。例如,第一相噪导频块的导频信号使得第三数据块在第一时域位置索引处的值为第二参考信号,其中,第三数据块由第二数据块经过傅里叶逆变换获得,第一时域位置索引为第一预设索引;第二参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中的至少一项相关。第一预设索引可以由协议规定,或者预先配置,或者由网络信令告知,或者由发送端或接收端约定等,本申请不做限制。
一种可能的设计中,第一相噪导频块X PTRS中的符号为确定的值,且均为相同的值。例如:
Figure PCTCN2022121390-appb-000057
其中b为常数,在具体的系统中可以根据需要设置其大小。
例如,为了保证系统的峰均比(peak-to-average ratio,PAPR)不恶化,可以设置数值b等于第二数据块X QAM中绝对值最大的值。如采用64-QAM调制,在X QAM中,元素的取值可能是1+1i、3+3i、7+7i等,但是明显来说7+7i的绝对值是最大的,因此可以将b设置为7+7i。
在上述方案中,通过对数据进行预编码,并将预编码后的数据和相噪导频分别映射到不同的时频资源,可以实现在发送数据的同时发送相噪导频,使得接收端可以降低甚至消除相位噪声的影响,可以提高数据传输的可靠性。
参见图6,为本申请实施例提供的另一种信号传输方法的流程图,与图2所示方法不同的是,本方法中的相噪导频需参与预编码。该方法可以应用于图1A或图1B或图1C所示的通信场景,或者其它通信场景,本申请不做限制。该方法的执行主体可以是信号发送方,信号发送方可以是任何需要发送信号的设备(如卫星、终端或基站等)。方法包括:
S601、根据预设条件确定第二相噪导频块;
具体来说,需要根据预设条件确定第二相噪导频块中各个导频符号的值。
S602、将待传输的第四数据块和第二相噪导频块合并,得到第三信号块;
进一步的,还要根据预设条件确定各个相噪符号在合并后的第三信号块中的位置。
S603、对第三信号块进行预编码,得到第四信号块;
预编码方式可以有多种,例如正交频分复用(orthogonal frequency division multiplexing,,OFDM)、BM-OCDM、或其它编码方式。为了便于描述,在下文中,以BM-OCDM编码为例,A、B不为单位矩阵。BM-OCDM编码原理可以参考上文相关介绍,此处不再赘述。
S604、传输第四信号块。
具体的,将第四信号块映射到时频资源,经过傅里叶逆变换之后,形成时域信号发送出去,发送出去中的信号中包括数据符号对应的信号(称为数据信号)和相噪导频符号对应的信号(称为导频信号)。
如图7所示,为信号处理的流程图,第四数据块和第二相噪导频块合并得到的第三信号块,依次经过预编码(以BM-OCDM编码为例)、傅里叶变换(DFT)、映射和傅里叶逆变换(IFFT)等处理后,形成时域信号发送出去。
在本申请实施例中,第二相噪导频块的时频资源和第四数据块的时频资源不同。第三信号块(或第四信号块)中的每个符号(或者说每个元素)中的每个符号,在时频域上,都对应一个确定的时频资源。以5G NR的时频资源为例:第三信号块(或第四信号块)中的每个符号(或者说每个元素)中的每个符号,在时域上对应一个OFDM符号,频域上对应一个RE。
预设条件包括:最终发送出去的信号中,相噪导频信号的时频资源位置是预设的时频资源位置。
参见图8,为第四信号块的形成示意图。在图8中用不同的图案区分了数据符号和相噪导频符号,在第四信号块,阴影部分表示数据符号,非阴影部分表示相噪导频符号。第四信号块映射到时频资源上时,相噪导频符号的资源位置在预设的时频资源位置。
一种可能的设计中,第四信号块是频域上的信号。预设条件包括:第二相噪导频块经过预编码后,在频域上是已知信号。
根据前文可知,第三信号块(或第四信号块)中的每个符号(或者说每个元素)中的每个符号,在时频域上,都对应一个确定的时频资源。因此,第二相噪导频块经过预编码后,在频域上是已知信号,还可以描述为:第四信号块在第二频域位置索引处的值为第四参考信号。其中,第四参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数等中至少一项相关。第二频域位置索引为第三预设索引,第三预设索引可以由协议规定,或者预先配置,或者由网络信令告知,或者由发送端或接收端约定等,本申请不做限制。
一种可能的设计中,第四信号块是频域上的信号。预设条件包括:第二相噪导频块经过傅里叶逆变换后,在时域上是已知信号。
类似的,第二相噪导频块经过傅里叶逆变换后,在时域上是已知信号,还可以描述为:第五信号块在第二时域位置索引处的值为第五参考信号,第五信号块由第四信号块经过傅里叶逆变换获得。其中,第五参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数等中至少一项相关。第二时域位置索引为第四预设索引,第四预设索引可以由协议规定,或者预先配置,或者由网络信令告知,或者由发送端或接收端约定等,本申请不做限制。
一种可能的设计中,第四信号块是时域上的信号。传输第四信号块包括:对第四信号块进行傅里叶变换,得到第六信号块;传输第六信号块。预设条件包括:第二相噪导频块的导频信号是已知信号。
类似的,第二相噪导频块的导频信号是已知信号,还可以描述为:第四信号块在第二时域位置索引处的值为第五参考信号。其中,第五参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数等中至少一项相关。第二时域位置索引为第四预设索引,第四预设索引可以由协议规定,或者预先配置,或者由网络信令告知,或者由发送端或接收端约定等,本申请不做限制。
为了更好地理解方案,以下通过矩阵的形式描述确定第二相噪导频块的过程:
首先定义以下参数:
F M表示M*M维的傅里叶变换矩阵:其第n行,第k列的元素表示为
Figure PCTCN2022121390-appb-000058
Figure PCTCN2022121390-appb-000059
M:RE(resource element)个数。具体数值等于用于传输第四数据块的子载波个数和用于传输第二相噪导频块的子载波个数的和。
N:传输的OFDM符号个数。
M PTRS:传输的相噪导频符号个数,其满足M PTRS<<M。符号“<<”数学上表示远远小于。
M、M PTRS、N为正整数。
以现有的5G NR标准为例,存在一种配置情况:M PTRS=21,M=512。
Index PTRS:在M个RE中,相噪导频符号的位置索引,例如上文所述的第二频域位置索引或第二时域位置索引。
M PTRS个相噪导频符号在一个OFDM符号中,等间隔均匀放置,设间隔为Δ=M/M PTRS),则Index PTRS={1,Δ+1,2Δ+1,...,(M PTRS-1)Δ+1}。
Figure PCTCN2022121390-appb-000060
是从数学上定义矩阵的维度为M PTRS×M,其中,M PTRS为该矩阵的行数,M为该矩阵的列数。并且矩阵内部元素为有理数。
为方便后文表述,定义两个矩阵的乘积
Figure PCTCN2022121390-appb-000061
构成的新矩阵为:
Figure PCTCN2022121390-appb-000062
矩阵P的维度为M×M,即有M行M列。矩阵P的第n行,第k列的元素为:
Figure PCTCN2022121390-appb-000063
定义矩阵P的第Δ行为:P(Δ,:)。P(Δ,:)为长度为N的行向量。
定义矩阵X的第1列为:X(:,1)。X(:,1)为长度为M的列向量。以此类推,X(:,n)表示矩阵X中的第n列向量。
根据以上参数,第二相噪导频块包括M PTRS×N个导频符号,可以表示为M PTRS×N维的第一矩阵X QAM;第四数据块包括(M-M PTRS)×N个数据符号,可表示为(M-M PTRS)×N维的第二矩阵X PTRS。第二相噪导频块和第四数据块合并得到的第三信号块则可以表示为M×N维的第三矩阵X,X∈C M,N,其中X的维度为M*N,矩阵中的元素包括数据符号和相噪导频符号。
对第三信号块进行BM-OCDM编码以及傅里叶逆变换可以表示为:
Figure PCTCN2022121390-appb-000064
其中,
Figure PCTCN2022121390-appb-000065
表示对矩阵X的每一列做傅里叶逆变换;
Figure PCTCN2022121390-appb-000066
表示最终发射出去的信号,包括数据信号
Figure PCTCN2022121390-appb-000067
和相噪导频信号
Figure PCTCN2022121390-appb-000068
Figure PCTCN2022121390-appb-000069
参见图9,对最终发射出去的信号
Figure PCTCN2022121390-appb-000070
按照每一行做傅里叶变换,得到信号S,其中S=S data+S PTRS。在得到的信号S中,导频信号为单冲激信号。利用该特点,可以列如下方程式对X PTRS进行求解:
Figure PCTCN2022121390-appb-000071
其中,X PTRS中含有M PTRS×N个待求解的未知数。或者说,有N列未知变量,每列未知变量中有M PTRS个待求解的未知数。
根据
Figure PCTCN2022121390-appb-000072
方程式
Figure PCTCN2022121390-appb-000073
可以表示为:
P(X QAM+X PTRS)=S data+S PTRS;其中,矩阵S PTRS的维度为:M PTRS×N,即该矩阵有M PTRS行,N列。
在本申请实施例中,最终发射出去的导频信号是已知信号(即时频域位置已知,数值已知),因此可以将S PTRS表示为:
Figure PCTCN2022121390-appb-000074
在矩阵S PTRS中,仅有一列为常数。第一列中每个元素均为 aa的取值大小和系统参数有关。以5G NR为例,假设N=14,那么a的值可以为14),其他列的元素全部为0。
以下介绍求解X PTRS中的第一列未知变量(即X PTRS(:,1),X PTRS(:,1)为长度为M PTRS的列向量)的方法:
抽取矩阵P的第1、第Δ+1、第2Δ+1,…第(M PTRS-1)Δ+1行向量,(每个行向量的长度为M)构成子矩阵
Figure PCTCN2022121390-appb-000075
Figure PCTCN2022121390-appb-000076
子矩阵
Figure PCTCN2022121390-appb-000077
的维度为M PTRS×M,即矩阵
Figure PCTCN2022121390-appb-000078
有M PTRS行,M列。
将矩阵
Figure PCTCN2022121390-appb-000079
矩阵和矩阵X的第一列相乘,得到S PTRS的第一列,即:
Figure PCTCN2022121390-appb-000080
其中,X(:,1)为长度为M的列向量。
因为X(:,1)这一列中,包含了X QAM(:,1)和X PTRS(:,1),根据位置索引Index PTRS,可以确定列向量X(:,1):
Figure PCTCN2022121390-appb-000081
在列向量X(:,1)中,相噪导频符号的个数为M PTRS个,间隔Δ放置。两个相邻的相噪导频符号之间为数据符号。
继续把矩阵
Figure PCTCN2022121390-appb-000082
做分割,具体而言,按照
Figure PCTCN2022121390-appb-000083
的行做分割,分割为两个子矩阵,分别对应到X(:,1)中的PTRS和数据对应的位置。则矩阵
Figure PCTCN2022121390-appb-000084
(
Figure PCTCN2022121390-appb-000085
有M PTRS行,M列)可以表示为:
Figure PCTCN2022121390-appb-000086
Figure PCTCN2022121390-appb-000087
的M列中,间隔Δ取出M PTRS列,构成子矩阵
Figure PCTCN2022121390-appb-000088
(
Figure PCTCN2022121390-appb-000089
维度为:M PTRS×M PTRS,即行和列数均为M PTRS):
Figure PCTCN2022121390-appb-000090
Figure PCTCN2022121390-appb-000091
中,除去
Figure PCTCN2022121390-appb-000092
内元素后,剩下的元素,构成第二个子矩阵,对应数据部分
Figure PCTCN2022121390-appb-000093
Figure PCTCN2022121390-appb-000094
第二个子矩阵
Figure PCTCN2022121390-appb-000095
的维度为M PTRS×(M-M PTRS),即有M PTRS行,M-M PTRS列。
Figure PCTCN2022121390-appb-000096
可表示为:
Figure PCTCN2022121390-appb-000097
因此,X PTRS(:,1)可以从公式1X(:,1)中抽取对应元素构成,长度为M PTRS即:
Figure PCTCN2022121390-appb-000098
X QAM(:,1)可以从公式1X(:,1)中抽取对应元素构成,长度为M-M PTRS即:
Figure PCTCN2022121390-appb-000099
综上,可以求得第一列X PTRS(:,1)为:
Figure PCTCN2022121390-appb-000100
其中,
Figure PCTCN2022121390-appb-000101
表示矩阵
Figure PCTCN2022121390-appb-000102
求逆。
以下介绍求解X PTRS中的第二列未知变量(即X PTRS(:,2))的方法:
仅需要将公式2中的全 a向量替换为全0向量,X QAM(:,1)对应的数据换成第二列数据X QAM(:,2)即可,即:
Figure PCTCN2022121390-appb-000103
Figure PCTCN2022121390-appb-000104
对于其它列数据,可以参考第二列数据的求解规律,可以求得第2至第N列数据,即:
Figure PCTCN2022121390-appb-000105
其中,
Figure PCTCN2022121390-appb-000106
n的取值为2到N的正整数。
可以理解的,上述求解相噪导频的方法也可以适用于图2所示实施例中,在频域上加相噪导频,且第一相噪导频块变换到时域后,在时域上的导频信号是已知信号的场景。
在上述方案中,通过将相噪导频和数据合并后进行预编码,并将预编码后的数据映射到时频资源,可以实现在发送数据的同时发送相噪导频,使得接收端可以降低甚至消除相位噪声的影响,可以提高数据传输的可靠性。
以上介绍了本申请实施例提供的方法,以下介绍本申请实施例提供的装置。
图10、图11图和图12为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中信号发送方(如卫星、终端或基站等)的功能,因此也能实现上述方法实施例所具备的有益效果。
如图10所示,通信装置1000包括获取模块1001、编码模块1002和传输模块1003。通信装置1000用于实现上述图2中所示的方法实施例中信号发送方(如卫星、终端或基站等)的功能。
例如,获取模块1001,用于获取第一数据块;编码模块1002,用于对第一数据块进行预编码,得到第二数据块;传输模块1003,用于将第一相噪导频块和第二数据块映射到时 频资源上传输。
有关上述各个模块更详细的描述可以直接参考图2所示的方法实施例中相关描述直接得到,这里不加赘述。
如图11所示,通信装置1100包括确定模块1101、编码模块1102和传输模块1103。通信装置1100用于实现上述图6中所示的方法实施例中信号发送方(如卫星、终端或基站等)的功能。
例如,确定模块1101,用于根据预设条件确定第二相噪导频块;编码模块1102,用于将待传输的第四数据块和第二相噪导频块合并,得到第三信号块;对第三信号块进行预编码,得到第四信号块;传输模块1103,用于传输第四信号块。
有关上述各个模块更详细的描述可以直接参考图6所示的方法实施例中相关描述直接得到,这里不加赘述。
如图12所示,通信装置1200包括处理器1210和接口电路1220。接口电路1220可以接收来自通信装置1200之外的其它通信装置的信号并传输至处理器1210或将来自处理器1210的信号发送给通信装置1200之外的其它通信装置,处理器1210通过逻辑电路或执行代码指令用于实现上述方法实施例中所描述的方法步骤。
可以理解的是,处理器1210和接口电路1220之间相互耦合。接口电路1220可以为收发器或输入输出接口。可选的,通信装置1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。
可选的,存储器1230与处理器1210可以集成在一起。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数 据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (31)

  1. 一种信号传输方法,其特征在于,包括:
    获取第一数据块;
    对所述第一数据块进行预编码,得到第二数据块;
    将第一相噪导频块和所述第二数据块映射到时频资源上传输。
  2. 如权利要求1所述的方法,其特征在于,所述第二数据块包括(M-M PTRS)×N个数据符号;所述第一相噪导频块包括M PTRS×N个导频符号,M为用于传输所述第二数据块的子载波个数和用于传输所述第一相噪导频块的子载波个数的和,M、M PTRS、N为正整数;
    所述将第一相噪导频块和所述第二数据块映射到时频资源上传输,包括:
    在N个正交频分复用OFDM符号中的每个OFDM符号上设置M PTRS个导频符号和(M-M PTRS)个数据符号。
  3. 如权利要求2所述的方法,其特征在于,所述M PTRS个导频符号在所述OFDM符号上均匀间隔设置。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一相噪导频块的导频信号为第一参考信号,所述第一参考信号与用户标识ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
  5. 如权利要求2或3所述的方法,其特征在于,所述第一相噪导频块的导频信号使得第三数据块在第一时域位置索引处的值为第二参考信号,所述第三数据块由所述第二数据块经过傅里叶逆变换获得,所述第一时域位置索引为第一预设索引;所述第二参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
  6. 如权利要求1所述的方法,其特征在于,所述将第一相噪导频块和所述第二数据块映射到时频资源上传输,包括:
    将所述第一相噪导频块和所述第二数据块合并为第一信号块;对第一信号块进行傅里叶变换,得到第二信号块,将所述第二信号块映射到所述时频资源上传输;所述第一相噪导频块的导频信号使得所述第二信号块在第一频域位置索引处的值为第三参考信号,所述第一频域位置索引为第二预设索引;所述第三参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一相噪导频块的时频资源和所述第二数据块的时频资源不同。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述对第一数据块进行预编码,包括:
    使用块交织BM-正交啁啾分复用OCDM编码技术或OFDM技术对所述第一数据块进行预编码。
  9. 如权利要求5所述的方法,其特征在于,所述第一相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;所述第一数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输所述第一数据块的子载波个数和用于传输所述第一相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整数;
    所述第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
    Figure PCTCN2022121390-appb-100001
    其中,X QAM(:,1)为所述第二矩阵中的第1列向量;
    Figure PCTCN2022121390-appb-100002
    为M PTRS维矩阵,a为预设值;
    Figure PCTCN2022121390-appb-100003
    为根据所述第一时域位置索引从矩阵P中抽取出的子矩阵,矩阵
    Figure PCTCN2022121390-appb-100004
    Figure PCTCN2022121390-appb-100005
    表示矩阵F M的共轭转置,^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
    Figure PCTCN2022121390-appb-100006
    为矩阵P被抽取子矩阵
    Figure PCTCN2022121390-appb-100007
    后剩余元素组成的子矩阵;
    所述第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
    Figure PCTCN2022121390-appb-100008
    其中,X QAM(:,n)为所述第二矩阵中的第n列向量,n的取值为2到N的正整数。
  10. 一种信号传输方法,其特征在于,包括:
    根据预设条件确定第二相噪导频块;
    将待传输的第四数据块和所述第二相噪导频块合并,得到第三信号块;
    对所述第三信号块进行预编码,得到第四信号块;
    传输所述第四信号块。
  11. 如权利要求10所述的方法,其特征在于,所述预设条件包括:所述第四信号块在第二频域位置索引处的值为第四参考信号,所述第四参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关,第二频域位置索引为第三预设索引。
  12. 如权利要求10所述的方法,其特征在于,所述预设条件包括:第五信号块在第二时域位置索引处的值为第五参考信号,所述第五信号块由所述第四信号块经过傅里叶逆变换获得,第二时域位置索引为第四预设索引,所述第五参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
  13. 如权利要求10所述的方法,其特征在于,所述传输所述第四信号块,包括:
    对所述第四信号块进行傅里叶变换,得到第六信号块;
    传输所述第六信号块;
    其中,所述预设条件包括:所述第四信号块在第二时域位置索引处的值为第五参考信号,所述第五参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关,第二时域位置索引为第四预设索引。
  14. 如权利要求10-13任一项所述的方法,其特征在于,所述对第三信号块进行预编码, 包括:
    使用块交织BM-正交啁啾分复用OCDM编码技术或正交频分复用OFDM技术对所述第三信号块进行预编码。
  15. 如权利要求11所述的方法,其特征在于,所述第二相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;所述第四数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输所述第四数据块的子载波个数和用于传输所述第二相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整数;第三信号块表示为M×N维的第三矩阵;
    所述第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
    Figure PCTCN2022121390-appb-100009
    其中,X QAM(:,1)为所述第二矩阵中的第1列向量;
    Figure PCTCN2022121390-appb-100010
    为M PTRS维矩阵,a为预设值;
    Figure PCTCN2022121390-appb-100011
    为根据所述第二频域位置索引从矩阵P中抽取出的子矩阵,矩阵
    Figure PCTCN2022121390-appb-100012
    Figure PCTCN2022121390-appb-100013
    表示矩阵F M的共轭转置,^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
    Figure PCTCN2022121390-appb-100014
    为矩阵P被抽取子矩阵
    Figure PCTCN2022121390-appb-100015
    后剩余元素组成的子矩阵;
    所述第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
    Figure PCTCN2022121390-appb-100016
    其中,X QAM(:,n)为所述第二矩阵中的第n列向量,n的取值为2到N的正整数。
  16. 如权利要求12或13所述的方法,其特征在于,所述第二相噪导频块包括M PTRS×N个导频符号,表示为M PTRS×N维的第一矩阵;所述第四数据块包括(M-M PTRS)×N个数据符号,表示为(M-M PTRS)×N维的第二矩阵;其中,M为用于传输所述第四数据块的子载波个数和用于传输所述第二相噪导频块的子载波个数的和,N为OFDM符号的个数,M、M PTRS、N为正整数;第三信号块表示为M×N维的第三矩阵;
    所述第一矩阵中的第一列向量X PTRS(:,1)满足如下关系:
    Figure PCTCN2022121390-appb-100017
    其中,X QAM(:,1)为所述第二矩阵中的第1列向量;
    Figure PCTCN2022121390-appb-100018
    为M PTRS维矩阵,a为预设值;
    Figure PCTCN2022121390-appb-100019
    为根据所述第二时域位置索引从矩阵P中抽取出的子矩阵,矩阵
    Figure PCTCN2022121390-appb-100020
    Figure PCTCN2022121390-appb-100021
    表示矩阵F M的共轭转置,^表示维度为M*M的对角矩阵,F M表示维度为M*M的傅里叶变换矩阵;
    Figure PCTCN2022121390-appb-100022
    为矩阵P被抽取子矩阵
    Figure PCTCN2022121390-appb-100023
    后剩余元素组成的子矩阵;
    所述第一矩阵中的第n列向量X PTRS(:,n),满足如下关系:
    Figure PCTCN2022121390-appb-100024
    其中,X QAM(:,n)为所述第二矩阵中的第n列向量,n的取值为2到N的正整数。
  17. 一种信号传输装置,其特征在于,包括:
    获取模块,用于获取第一数据块;
    编码模块,用于对所述第一数据块进行预编码,得到第二数据块;
    传输模块,用于将第一相噪导频块和所述第二数据块映射到时频资源上传输。
  18. 如权利要求17所述的装置,其特征在于,所述第二数据块包括(M-M PTRS)×N个数据符号;所述第一相噪导频块包括M PTRS×N个导频符号,M为用于传输所述第二数据块的子载波个数和用于传输所述第一相噪导频块的子载波个数的和,M、M PTRS、N为正整数;
    所述传输模块用于:
    在N个正交频分复用OFDM符号中的每个OFDM符号上设置M PTRS个导频符号和(M-M PTRS)个数据符号。
  19. 如权利要求18所述的装置,其特征在于,所述M PTRS个导频符号在所述OFDM符号上均匀间隔设置。
  20. 如权利要求18或19所述的装置,其特征在于,所述第一相噪导频块的导频信号为第一参考信号,所述第一参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
  21. 如权利要求18或19所述的装置,其特征在于,所述第一相噪导频块的导频信号使得第三数据块在第一时域位置索引处的值为第二参考信号,所述第三数据块由所述第二数据块经过傅里叶逆变换获得,所述第一时域位置索引为第一预设索引;所述第二参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
  22. 如权利要求17所述的装置,其特征在于,所述传输模块用于:
    将所述第一相噪导频块和所述第二数据块合并为第一信号块;对第一信号块进行傅里叶变换,得到第二信号块,将所述第二信号块映射到所述时频资源上传输;所述第一相噪导频块的导频信号使得所述第二信号块在第一频域位置索引处的值为第三参考信号,所述第一频域位置索引为第二预设索引;所述第三参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
  23. 如权利要求17-22任一项所述的装置,其特征在于,所述第一相噪导频块的时频资源和所述第二数据块的时频资源不同。
  24. 一种信号传输装置,其特征在于,包括:
    确定模块,用于根据预设条件确定第二相噪导频块;
    编码模块,用于将待传输的第四数据块和所述第二相噪导频块合并,得到第三信号块;对所述第三信号块进行预编码,得到第四信号块;
    传输模块,用于传输所述第四信号块。
  25. 如权利要求24所述的装置,其特征在于,所述预设条件包括:所述第四信号块在第二频域位置索引处的值为第四参考信号,所述第四参考信号与用户IDID、用户的频域资源个数、用户的相噪导频个数中至少一项相关,第二频域位置索引为第三预设索引。
  26. 如权利要求24所述的装置,其特征在于,所述预设条件包括:第五信号块在第二时域位置索引处的值为第五参考信号,所述第五信号块由所述第四信号块经过傅里叶逆变换获得,第二时域位置索引为第四预设索引,所述第五参考信号与用户IDID、用户的频域资源个数、用户的相噪导频个数中至少一项相关。
  27. 如权利要求24所述的装置,其特征在于,所述传输模块用于:
    对所述第四信号块进行傅里叶变换,得到第六信号块;
    传输所述第六信号块;
    其中,所述预设条件包括:所述第四信号块在第二时域位置索引处的值为第五参考信号,所述第五参考信号与用户ID、用户的频域资源个数、用户的相噪导频个数中至少一项相关,第二时域位置索引为第四预设索引。
  28. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-9中任一项所述的方法,或者,实现如权利要求10-16中任一项所述的方法。
  29. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-9中任一项所述的方法,或者,实现如权利要求10-16中任一项所述的方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-9中任一项所述的方法,或者,执行如权利要求10-16中任一项所述的方法。
  31. 一种信号传输系统,其特征在于,包括:
    发送端,用于执行如权利要求1-9任一项所述的方法或者如权利要求10-16任一项所述的方法;
    接收端,用于接收来自所述发送端的信号,根据所述信号确定相位噪声。
PCT/CN2022/121390 2022-09-26 2022-09-26 一种信号传输方法和装置 WO2024065092A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121390 WO2024065092A1 (zh) 2022-09-26 2022-09-26 一种信号传输方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121390 WO2024065092A1 (zh) 2022-09-26 2022-09-26 一种信号传输方法和装置

Publications (1)

Publication Number Publication Date
WO2024065092A1 true WO2024065092A1 (zh) 2024-04-04

Family

ID=90475185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121390 WO2024065092A1 (zh) 2022-09-26 2022-09-26 一种信号传输方法和装置

Country Status (1)

Country Link
WO (1) WO2024065092A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259145A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 一种数据传输方法、发送装置及接收装置
CN108259143A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 一种参考信号的传输方法、发送端和接收端
US20200076558A1 (en) * 2016-12-02 2020-03-05 Wisig Networks Private Limited A method and a system for transmitting dft-s-ofdm symbols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200076558A1 (en) * 2016-12-02 2020-03-05 Wisig Networks Private Limited A method and a system for transmitting dft-s-ofdm symbols
CN108259145A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 一种数据传输方法、发送装置及接收装置
CN108259143A (zh) * 2016-12-28 2018-07-06 电信科学技术研究院 一种参考信号的传输方法、发送端和接收端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On PT-RS for DFT-s-OFDM", 3GPP DRAFT; R1-1707367 ON PT-RS FOR DFT-S-OFDM_R1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Hangzhou, China; 20170515 - 20170519, 7 May 2017 (2017-05-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051263026 *

Similar Documents

Publication Publication Date Title
CN112003808B (zh) 信号处理方法及装置
CN110089083B (zh) 用于离散傅里叶变换-扩频-正交频分复用的峰值平均功率比抑制的系统和方法
CN113824481B (zh) 上行传输方法、装置、芯片系统及存储介质
CN111901263B (zh) 无线信号补偿方法、数值确定方法及装置、设备、介质
EP3750248A1 (en) Self interference noise cancellation to support multiple frequency bands
US10917271B2 (en) Optimized channel estimation field for enhanced directional multi-gigabit network
US20170063586A1 (en) Method for transmitting data between baseband unit bbu and remote radio unit rru, and data transmission apparatus
KR102189993B1 (ko) 다채널 기반 신호 송신 방법 및 장치
CN112236984B (zh) 电子设备和通信方法
US20230403182A1 (en) Radio Receiver
WO2024065092A1 (zh) 一种信号传输方法和装置
EP4391468A1 (en) Communication method and related apparatus
US11563608B2 (en) Method and apparatus for signal modulation and demodulation in wireless communication system
KR20200055452A (ko) 무선 통신 시스템에서의 채널 추정 방법 및 장치
WO2020147076A1 (en) Overhead reduction in channel state information feedback
US20200220758A1 (en) Communication method using waveform robust to frequency dispersion in communication system and apparatus for the same
WO2024138586A1 (zh) 通信方法、通信装置、芯片、存储介质和程序产品
CN115412418B (zh) 一种适用于otfs多天线端口的导频设计方法、介质及装置
JP7511015B2 (ja) 無線受信機
US11888774B2 (en) Method and apparatus for channel estimation in communication system
US12028193B2 (en) Radio receiver
US20200274603A1 (en) Channel state information feedback method, communications apparatus, and system
KR20240107043A (ko) 통신 시스템에서 도플러 주파수 보상 방법 및 장치
CN108809395B (zh) 用于车辆通信的方法和设备
KR102184075B1 (ko) 간섭 회피를 위해 데이터 심볼 변환하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959744

Country of ref document: EP

Kind code of ref document: A1