WO2024063395A1 - 자기열량소재 특성평가장치 - Google Patents

자기열량소재 특성평가장치 Download PDF

Info

Publication number
WO2024063395A1
WO2024063395A1 PCT/KR2023/013259 KR2023013259W WO2024063395A1 WO 2024063395 A1 WO2024063395 A1 WO 2024063395A1 KR 2023013259 W KR2023013259 W KR 2023013259W WO 2024063395 A1 WO2024063395 A1 WO 2024063395A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
evaluation device
material property
property evaluation
magnetocaloric material
Prior art date
Application number
PCT/KR2023/013259
Other languages
English (en)
French (fr)
Inventor
김종우
강기훈
안철우
이아영
최종진
한병동
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2024063395A1 publication Critical patent/WO2024063395A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity

Definitions

  • the present invention relates to a magnetocaloric material property evaluation device that can accurately analyze the adiabatic temperature change of a magnetocaloric material (also referred to as 'magnetic cooling material') applied to a magnetic cooling system.
  • a magnetocaloric material also referred to as 'magnetic cooling material'
  • MCM magnetocaloric materials
  • a magnetocaloric material may have a magneto caloric effect (MCE) in which the temperature of the material is heated/cooled due to a change in entropy occurring in response to an externally applied magnetic field.
  • MCE magneto caloric effect
  • Magnetic cooling systems using these magnetocaloric materials can be applied to home air conditioning systems, refrigerators, and data center server room air conditioning systems.
  • the adiabatic temperature change ( ⁇ T ad , Adiabatic Temperature Change), which is a magnetocaloric effect characteristic that occurs in the magnetocaloric material (MCM) according to the applied magnetic field, is a very important factor that determines the efficiency of the magnetic cooling system.
  • the adiabatic temperature change forms a sharp peak only in a specific temperature range depending on the base temperature.
  • the present invention is intended to solve the above-mentioned problems, and its purpose is to provide a magnetocaloric material property evaluation device that can accurately analyze the adiabatic temperature change of a magnetocaloric material applied to a magnetic cooling system without relying on thermodynamic calculations. there is.
  • a magnetocaloric material property evaluation device for realizing the above-described purpose includes a base plate; A holder portion installed on the upper surface of the base plate and having a sample storage groove therein to accommodate a sample to be evaluated; A magnetic field application unit rotatably installed in a dual magnet structure on the outer peripheral surface of the holder unit and selectively applying/removing a magnetic field to the sample depending on the rotation angle; a temperature control unit that controls the temperature of the sample by circulating fluid within the holder unit; and a temperature measuring unit that measures the adiabatic temperature change of the sample to which the magnetic field is applied/removed by the magnetic field application unit.
  • the holder portion includes a pair of supports arranged at a predetermined interval in the horizontal direction on the base plate; a hollow rotating shaft whose both ends are rotatably coupled to the support; And a holder housing that is fitted on the central axis line inside the rotation shaft through the coupling hole of the support so as not to interfere with each other, and is provided with the sample storage groove on one side and a fluid storage space in which the fluid circulates on the other side. It can be included.
  • the holder housing includes: a window member coupled to the edge of the sample storage groove to block and secure the opening of the sample storage groove after the sample is stored in the sample storage groove; and a hollow fixing member coupled to one inner peripheral surface of the holder housing so as to pressurize and fix the window member toward the sample storage groove.
  • the holder housing includes a first body having the sample storage groove on one side; and a hollow second body coupled to the other inner peripheral surface of the first body and having the fluid storage space therein.
  • first body and the second body may be formed of any one of polyoxymethylene (POM), polyetherimide (PEI), and polycarbonate (PC).
  • POM polyoxymethylene
  • PEI polyetherimide
  • PC polycarbonate
  • the magnetic field application unit includes an internal magnet that is integrally coupled with the rotation shaft and rotates a predetermined angle when transmitting power, and in which a plurality of magnets are radially arranged with respect to the axis of the rotation shaft; and an external magnet fixedly installed on the base plate to maintain a predetermined gap with the outer peripheral surface of the internal magnet, and having a plurality of magnets corresponding to the magnets of the internal magnet arranged radially with respect to the rotation axis. there is.
  • the magnetic field application unit applies a magnetic field when the internal magnet is rotated at a predetermined angle and the magnetization directions of the magnets constituting the internal magnet and the external magnet are the same, and the magnetization of the magnets respectively constituting the internal magnet and the external magnet are applied. If the direction is reversed, the magnetic field can be eliminated.
  • the temperature control unit may include a fluid supply means for supplying and circulating fluid by being connected through a supply pipe and a return pipe installed along the axis in the fluid storage space.
  • the supply pipe may be disposed longer than the recovery pipe toward the sample storage groove within the fluid storage space.
  • the temperature measuring unit may include a temperature measuring device disposed on the same axis as the sample storage groove to measure the adiabatic temperature change of the sample.
  • the temperature measuring device may further include one capable of position adjustment in the X, Y, and Z axes along the guide rail.
  • the temperature measuring unit may further include a contact thermometer connected to the sample storage groove via a thermocouple line to measure the adiabatic temperature change of the sample.
  • the magnetocaloric material property evaluation device configured as described above, can easily apply/remove a magnetic field to a sample according to the driving angle of the magnetic field application unit installed in a dual structure, and apply/remove the magnetic field through the temperature measurement unit. It has the advantage of being able to accurately analyze the properties of magnetocaloric materials by measuring the adiabatic temperature change of the sample in real time.
  • the device structure can be simplified compared to the case where the temperature control unit is kept inside, and the operational stability of the device can be secured by avoiding interference by magnetic fields. You can.
  • Figure 1 is a schematic diagram showing a magnetic cooling system using a general magnetocaloric material
  • Figure 2 is a graph showing the characteristics of the magnetocaloric material applied in Figure 1;
  • Figures 3 and 4 are perspective views of the magnetocaloric material property evaluation device according to the present invention.
  • Figure 5 is a side view of the magnetocaloric material property evaluation device according to the present invention.
  • FIG. 6 to 8 are perspective views showing the holder coupling structure according to the present invention.
  • FIGS. 9 and 10 are cross-sectional and exploded views showing the internal structure of the holder housing according to the present invention.
  • FIG. 11 to 15 are diagrams showing the structure and operating principle of the magnetic field application unit according to the present invention.
  • Figure 16 is a main sectional view showing the temperature control unit according to the present invention.
  • Figure 17 shows the results of repeated measurement of the adiabatic temperature change of gadolinium (Gd), a representative magnetocaloric material, using the magnetocaloric material property evaluation device according to the present invention.
  • base plate 110 handle
  • first body 230b second body
  • sample storage groove 231a step
  • Fluid storage space 235 Window member
  • Fixing member 239 O-ring
  • timing belt 333 pulley
  • Temperature measuring unit 510 Temperature measuring device
  • Figures 3 and 4 are perspective views of a magnetocaloric material property evaluation device according to the present invention
  • Figure 5 is a side view of the magnetocaloric material property evaluation device according to the present invention.
  • the magnetocaloric material property evaluation device 1 includes a base plate 100, a holder part 200, a magnetic field application part 300, and a temperature control part. (400) and may include a temperature measuring unit (500).
  • the base plate 100 constitutes the main lower frame of the device and may be formed as a flat plate of a predetermined area. Handles 110 may be provided on both sides of the base plate 100 to facilitate transportation.
  • the holder portion 200 is installed on the upper surface of the base plate 100, and may be provided with a sample storage groove 231 therein so that the sample M to be evaluated can be accommodated.
  • the sample (M) may be in powder or bulk form.
  • the holder portion 200 includes at least one pair of supports 210 disposed at a predetermined interval in the horizontal direction on the base plate 100, and It may include a hollow rotating shaft 220 that is rotatably bearing-coupled at both ends, and a holder housing 230 (see FIG. 7) that is fitted on a central axis line inside the rotating shaft 220 without interfering with each other. .
  • the holder housing 230 may be coupled to the opposite side of the support 210 by inserting both ends into hollow fixed pipes 215a and 215b that protrude a predetermined length in the axial direction. .
  • the holder housing 230 is provided with a sample storage groove 231 in which the sample (M) is accommodated on one side fitted with the fixing pipe 215a of the support 210, and on the other side.
  • a fluid storage space 233 may be provided so that fluid can circulate through the temperature control unit 400, which will be described later.
  • the fixing pipe 215a of the one-side support 210 may be provided with a sample measuring hole 211 (see FIG. 8) communicating with one side of the holder housing 230. Therefore, the state of the sample M stored in the sample storage groove 231 (see FIG. 9) of the holder housing 230 can be measured through the sample measurement hole 211.
  • the holder housing 230 has a sample storage groove (230) so that the sample (M) can be secured by blocking the opening of the sample storage groove (231) after the sample (M) is stored in the sample storage groove (231).
  • a window member 235 coupled to the edge step 231a of 231) and a hollow shape coupled to one inner peripheral surface of the holder housing 230 so that the window member 235 can be pressed and fixed toward the sample storage groove 231. It may include a fixing member 237.
  • the holder housing 230 is screwed to the first body 230a, which has a sample storage groove 231 on one side, and the inner peripheral surface of the other side of the first body 230a, and has a fluid storage space 233 therein. It may include a hollow-shaped second body 230b. In this case, watertight performance can be improved by interposing the O-ring 239 between the coupling portion of the first body 230a and the second body 230b.
  • the second body 230b is screwed to the other inner peripheral surface of the first body 230a, but the present invention is not limited thereto and the second body 230b is connected to the first body 230a. It can be changed and applied to the case where it is fitted and joined to the inner peripheral surface of the other side.
  • the first body (230a) and the second body (230b) are made of a material with low thermal conductivity for this purpose. can be formed.
  • the first body 230a and the second body 230b may be made of any one of polyoxymethylene (POM), polyetherimide (PEI), and polycarbonate (PC), which has high strength and low thermal conductivity.
  • POM polyoxymethylene
  • PEI polyetherimide
  • PC polycarbonate
  • a POM material that is relatively easy to obtain and inexpensive can be used.
  • the heat of the fluid circulating in the fluid storage space 233 inside the second body 230b can be concentrated toward the sample storage groove 231 inside the first body 230a, through which the first body 230a )
  • the temperature of the sample (M) can be efficiently controlled by controlling the overall temperature.
  • the present invention has been described as an example in which the first body (230a) and the second body (230b) are made of any one of POM, PEI, and PC, but can be changed to other materials with low thermal conductivity. there is.
  • the window member 235 is preferably formed of a material through which infrared rays emitted from the temperature measuring unit 500, which will be described later, can easily pass.
  • the support 210 on the other side of the holder housing 230 communicates with the inside of the rotation shaft 220 so that the holder housing 230 can be easily separated from or inserted into the rotation shaft 220.
  • a coupling hole 213 may be provided.
  • the other support 210 may be provided with an auxiliary support 217 to facilitate separation and coupling of the holder housing 230.
  • a fixing pipe 215b into which the other side of the holder housing 230 is fitted may be formed integrally with the auxiliary support 217. Therefore, a method of inserting one end of the holder housing 230 into the coupling hole 213 of the other support 210 while the other side of the holder housing 230 is fixed to the fixing pipe 215b of the auxiliary support 217. can be combined.
  • the auxiliary support 217 After the auxiliary support 217 is coupled to the other support 210, its position may be fixed through a separate fastening member (not shown).
  • the magnetic field application unit 300 selectively applies/removes a magnetic field to the sample (M) stored in the sample storage groove 231 according to the rotation angle.
  • This magnetic field application unit 300 is used in the holder unit 200. It can be rotatably installed with a double magnet structure on the outer circumferential surface.
  • the magnetic field application unit 300 is formed integrally with the rotation shaft 220, rotates at a predetermined angle when power is transmitted, and is provided with a plurality of magnets 311 based on the axis of the rotation shaft 220.
  • the magnetic field application unit 300 may include an internal magnet 310 arranged radially, and an external magnet 320 fixedly installed on the base plate 100 to maintain a predetermined gap with the outer peripheral surface of the internal magnet 310.
  • the external magnet 320 may have a plurality of magnets 321, each corresponding to the magnet 311 of the internal magnet 310, arranged radially with respect to the rotation axis 220.
  • the internal magnet 310 and the external magnet 320 can be divided into a plurality of spaces for storing the plurality of magnets 311 and 321 through a partition wall with a predetermined thickness (for example, 2 mm). That is, the internal magnet 310 and external magnet 320 constituting the magnetic field application unit 300 may have a Halbach array structure. In this case, the sample M is located on the inner central axis of the internal magnet 310.
  • the internal magnet 310 receives the rotational power of the step motor 330 via the timing belt 331 through the pulley 333 formed integrally with the rotation shaft 220 and rotates at a predetermined angle. can do.
  • the external magnet 320 is fixed and the internal magnet 310 (see FIG. 12) is installed to be rotatable at a predetermined angle.
  • the internal magnet 310 is fixed and the external magnet 310 is installed to rotate at a predetermined angle. It can be modified and applied to a case where the magnet 320 is installed to be able to rotate at a predetermined angle.
  • the magnetic field application unit 300 of this structure operates by rotating the internal magnet 310 at a predetermined angle (180°) by receiving power from the step motor 330.
  • the rotation time of the internal magnet 310 can be 0.1 to 0.5 seconds, and the process of applying/removing a magnetic field to the sample M can be repeatedly driven.
  • the temperature control unit 400 can control the temperature of the sample M stored in the sample storage groove 231 by circulating fluid within the holder unit 200.
  • the temperature control unit 400 is connected via a supply pipe 411 and a return pipe 413 installed along the axis in the fluid storage space 233 and includes a fluid supply means 410 for supplying and circulating fluid. It can be included.
  • the fluid supply means 410 (see FIG. 5) may use a chiller, and water (distilled water) may be used as the fluid.
  • the structure of the holder part 200 in which the sample M is stored can be simply constructed by using water as the fluid supplied through the fluid supply means 410.
  • a fluid containing some antifreeze such as ethylene glycol
  • the supplied fluid can optionally be a coolant such as water or ethylene glycol.
  • the supply pipe 411 may be arranged longer than the recovery pipe 413 within the fluid storage space 233 toward the sample storage groove 231. Accordingly, the fluid supplied to the fluid storage space 233 through the supply pipe 411 is not discharged directly through the adjacent return pipe 413, and the supplied fluid is allowed to circulate smoothly within the fluid storage space 233. You can.
  • the temperature measuring unit 500 can measure the adiabatic temperature change of the sample M to which the magnetic field is applied/removed by the magnetic field applying unit 300.
  • the temperature measuring unit 500 may include a temperature measuring device 510 that is disposed on the same axis as the sample storage groove 231 and measures the adiabatic temperature change of the sample M.
  • This temperature measuring device 510 can measure the temperature of the sample M (see FIG. 5) by irradiating infrared rays to the sample M through the sample measurement hole 211 of the holder unit 200.
  • the temperature measuring device 510 can be positioned along the guide rail 511 in the X, Y, and Z axes (for convenience of explanation, only the Y direction guide rail 511 is shown). In the present invention, an example of manually adjusting the temperature measuring device 510 along the guide rail 511 is shown and explained, but the position can be adjusted automatically by applying an actuator.
  • the temperature measuring unit 500 is connected to the sample storage groove 231 via a thermocouple line 521 to measure the adiabatic temperature change of the sample M. It may include an expression thermometer 520. Accordingly, through the non-contact temperature measuring device 510 and the contact thermometer 520, the temperature that appears quickly can be measured simultaneously with the application/removal of the magnetic field to the sample M, and based on this, the temperature of the sample M can be measured. Adiabatic temperature changes can be accurately analyzed.
  • the holder housing 230 is pulled out from the rotation axis 220 through the other side of the support 210 of the holder unit 200, and then the sample storage groove 231 is opened.
  • the opening of the sample storage groove 231 is blocked using the window member 235, and the fixing member ( 237) to fix the position.
  • the holder housing 230 containing the sample M is fitted into the rotating shaft 220, and the sample M is placed on the central axis of the magnetic field application unit 300.
  • fluid is supplied to the fluid storage space 233 inside the holder housing 230 through the temperature control unit 400 to control the base temperature of the sample M.
  • the cycle driving conditions of the magnetic field application unit 300 are set, and then the magnetic field application unit 300 is driven to perform a magnetic field application/removal process.
  • the adiabatic temperature change ( ⁇ T ad ) of the sample (M) is measured through the temperature measuring device 510 and the contact thermometer 520 of the temperature measuring unit 500.
  • Figure 17 shows the results of repeated measurement of the adiabatic temperature change of gadolinium (Gd), a representative magnetocaloric material, using the magnetocaloric material property evaluation device (1) according to the present invention.
  • (510) and contact thermometer (520) were measured in a non-contact/contact manner, respectively (color picture: non-contact measurement, graph: contact measurement).

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

본 발명은 자기냉각시스템에 적용되는 자기열량소재의 단열온도변화를 열역학 계산에 의존하지 않고 실제로 정확하게 분석할 수 있는 자기열량소재 특성평가장치에 관한 것이다.

Description

자기열량소재 특성평가장치
본 발명은 자기냉각시스템에 적용되는 자기열량소재('자기냉각소재'라고도 함)의 단열온도변화를 정확하게 분석할 수 있는 자기열량소재 특성평가장치에 관한 것이다.
최근 국제적인 온실가스(GHG) 배출 규제와 냉방/냉장 관련 에너지 소비율이 증가함에 따라 기존 가스압축 냉각시스템의 가스 냉매(CFC)를 대체할 필요성이 대두되고 있다. 이에 따라 차세대 냉각시스템에 대한 연구들이 많은 관심을 받고 있다. 일례로, 자기열량소재(MCM, Magnetocaloric Materials)는 차세대 냉각기술 중 하나인 자기냉각시스템의 냉각재로서 핵심요소이다.
구체적으로, 도 1을 참조하면, 자기열량소재(MCM)는 외부 인가 자장에 따라 발생하는 엔트로피 변화에 의해 소재의 온도가 가열/냉각되는 자기열량효과(MCE, Magneto caloric Effect)를 가질 수 있다. 이러한 자기열량소재를 이용한 자기냉각시스템은 가정용 공조시스템, 냉장고나 데이터센터 서버룸의 공조시스템 등에 응용될 수 있다.
도 2를 참조하면, 상기 자기열량소재(MCM)에서 인가 자장에 따라 발생하는 자기열량효과 특성인 단열온도변화(ΔTad, Adiabatic Temperature Change)는 자기냉각시스템의 효율성을 좌우하는 매우 중요한 요소이다. 상기 단열온도변화는 베이스 온도에 따라 특정 온도구간에서만 뾰족한 정점(Sharp peak)을 형성한다.
그러나 현재까지 상기 자기열량소재(MCM)의 단열온도변화를 정밀하게 측정할 수 있는 실험 장비가 제안된 바 없다. 기존에는 열역학적 계산을 통한 간접적인 도출방법을 이용하여 단열온도변화를 측정하기도 하였으나, 이러한 측정방법은 실험 오차가 크고 소재특성 분석의 한계로 정확한 결과를 얻기 어렵다.
본 발명은 상술한 문제점을 해결하고자 한 것으로, 자기냉각시스템에 적용되는 자기열량소재의 단열온도변화를 열역학 계산에 의존하지 않고 실제로 정확하게 분석할 수 있는 자기열량소재 특성평가장치를 제공하는데 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명에 따른 자기열량소재 특성평가장치는, 베이스플레이트; 상기 베이스플레이트의 상면에 설치되며, 평가대상 시료가 수납될 수 있도록 내부에 시료수납홈이 구비되는 홀더부; 상기 홀더부의 외주면에 이중 자석 구조로 회전 가능하게 설치되며, 회전 각도에 따라 상기 시료에 선택적으로 자기장을 인가/제거하는 자기장인가부; 상기 홀더부 내에 유체를 순환시켜 상기 시료의 온도를 제어하는 온도제어부; 및 상기 자기장인가부에 의해 자기장이 인가/제거되는 시료의 단열온도변화를 측정하는 온도측정부;를 포함할 수 있다.
이 경우 상기 홀더부는, 상기 베이스플레이트 상에 수평방향으로 소정간격 이격 배치되는 한 쌍의 지지대; 상기 지지대에 양단이 회전 가능하게 결합되는 중공 형상의 회전축; 및 상기 지지대의 결합공을 통해 상기 회전축 내부의 중심축 선상에 서로 간섭되지 않게 끼움 결합되며, 일측에 상기 시료수납홈이 구비되고 타측에 상기 유체가 순환되는 유체수납공간이 마련되는 홀더하우징;을 포함할 수 있다.
또한 상기 홀더하우징은, 상기 시료수납홈에 시료가 수납된 후 상기 시료수납홈의 개구를 막아 고정할 수 있도록 상기 시료수납홈의 테두리 단턱에 결합되는 윈도우부재; 및 상기 윈도우부재를 상기 시료수납홈 측으로 가압 고정할 수 있도록 상기 홀더하우징의 일측 내주면에 결합되는 중공 형상의 고정부재;를 더 포함할 수 있다.
또한 상기 홀더하우징은, 상기 시료수납홈이 일측에 구비되는 제1몸체; 및 상기 제1몸체의 타측 내주면에 결합되며, 내부에 상기 유체수납공간이 마련되는 중공 형상의 제2몸체;를 포함할 수 있다.
또한 상기 제1몸체와 제2몸체는, POM(Polyoxymethylene), PEI(Polyetherimide), PC(Polycarbonate) 중 어느 하나의 소재로 형성될 수 있다.
또한 상기 자기장인가부는, 상기 회전축과 일체로 결합되어 동력 전달 시 소정각도 회전되며, 상기 회전축의 축선을 기준으로 복수의 자석이 방사상으로 배치되는 내부자석; 및 상기 내부자석의 외주면과 소정간극을 유지하도록 상기 베이스플레이트 상에 고정 설치되며, 상기 내부자석의 자석과 제각기 대응되는 복수의 자석이 상기 회전축을 기준으로 방사상으로 배치되는 외부자석;을 포함할 수 있다.
또한 상기 자기장인가부는, 상기 내부자석이 소정각도씩 회전되면서 상기 내부자석과 외부자석을 제각기 구성하는 자석의 자화방향이 동일한 경우 자기장이 인가되고, 상기 내부자석과 외부자석을 제각기 구성하는 자석의 자화방향이 반대인 경우 자기장이 제거될 수 있다.
또한 상기 온도제어부는, 상기 유체수납공간 내에 축 방향을 따라 설치된 공급관과 회수관을 매개로 연결되어 유체를 공급 순환시키는 유체공급수단;을 포함할 수 있다.
또한 상기 공급관은, 상기 유체수납공간 내에서 상기 시료수납홈 측을 향해 상기 회수관보다 길게 배치된 것을 포함할 수 있다.
또한 상기 온도측정부는, 상기 시료수납홈과 동일 축 선상에 배치되어 상기 시료의 단열온도변화를 측정하는 온도측정장치;를 포함할 수 있다.
또한 상기 온도측정장치는, 가이드레일을 따라 X, Y, Z축 방향으로 위치조절이 가능한 것을 더 포함할 수 있다.
또한 상기 온도측정부는, 상기 시료수납홈 내에 열전대 라인(Thermocouple line)을 매개로 연결되어 상기 시료의 단열온도변화를 측정하는 접촉식 온도계;를 더 포함할 수 있다.
이상과 같은 구성의 본 발명에 따른 자기열량소재 특성평가장치는, 이중구조로 설치된 자기장 인가부의 구동 각도에 따라 시료에 자기장을 용이하게 인가/제거할 수 있으며, 온도측정부를 통해 자기장이 인가/제거되는 시료의 단열온도변화를 실시간으로 측정함으로써 자기열량소재의 특성을 정확하게 분석할 수 있는 장점이 있다.
아울러 상기 시료의 온도를 조절하기 위해 외부 순환되는 유체를 사용함에 따라, 온도제어부를 내부에 존치하는 경우 대비, 장치 구조를 단순화할 수 있고, 자기장에 의한 간섭을 회피하여 장치의 작동 안정성을 확보할 수 있다.
또한 온도를 조절하기 위한 유체로 물을 사용함에 따라 상온에서 효율적인 온도 제어가 가능하다.
도 1은 일반적인 자기열량소재가 적용된 자기냉각시스템을 보여주는 개략도,
도 2는 도 1에 적용된 자기열량소재의 특성을 보여주는 그래프,
도 3 및 도 4는 본 발명에 따른 자기열량소재 특성평가장치의 사시도,
도 5는 본 발명에 따른 자기열량소재 특성평가장치의 측면도,
도 6 내지 도 8은 본 발명에 따른 홀더부 결합 구조를 보여주는 사시도,
도 9 및 도 10은 본 발명에 따른 홀더하우징의 내부구조를 보여주는 단면도 및 분해도,
도 11 내지 도 15는 본 발명에 따른 자기장인가부의 구조 및 작동원리를 보여주는 도면,
도 16은 본 발명에 따른 온도제어부를 보여주는 요부단면도,
도 17은 본 발명에 따른 자기열량소재 특성평가장치를 이용하여 대표적 자기열량소재인 가돌리늄(Gd)의 단열온도변화를 반복 측정한 결과이다.
※부호의 설명※
1 : 자기열량소재 특성 평가장치 M : 시료
100 : 베이스플레이트 110 : 손잡이
200 : 홀더부 210 : 지지대
211 : 시료측정공 213 : 결합공
220 : 회전축 230 : 홀더하우징
230a : 제1몸체 230b : 제2몸체
231 : 시료수납홈 231a : 단턱
233 : 유체수납공간 235 : 윈도우부재
237 : 고정부재 239 : 오링
300 : 자기장인가부 310 : 내부자석
320 : 외부자석 330 : 스텝모터
331 : 타이밍벨트 333 : 풀리
400 : 온도제어부 410 : 유체공급수단
411 : 공급관 413 : 회수관
500 : 온도측정부 510 : 온도측정장치
511 : 가이드레일 520 : 접촉식 온도계
521 : 열전대 라인
이하 첨부한 도면을 참조하여 본 발명의 구체적인 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
여기서, 각 도면의 구성요소들에 대해 참조부호를 부가함에 있어서 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호로 표기되었음에 유의하여야 한다.
도 3 및 도 4는 본 발명에 따른 자기열량소재 특성평가장치의 사시도이고, 도 5는 본 발명에 따른 자기열량소재 특성평가장치의 측면도이다.
도 3 및 도 4를 참조하면, 본 발명의 바람직한 일 실시예에 따른 자기열량소재 특성평가장치(1)는, 베이스플레이트(100), 홀더부(200), 자기장인가부(300), 온도제어부(400), 온도측정부(500)를 포함할 수 있다.
이러한 본 발명의 구성에 대해 구체적으로 설명하면 다음과 같다.
먼저, 상기 베이스플레이트(100)는 장치의 주된 하부프레임을 구성하는 것으로, 소정 면적의 평평한 판체로 형성될 수 있다. 이러한 베이스플레이트(100)의 양측에는 운반이 용이하도록 손잡이(110)가 구비될 수 있다.
상기 홀더부(200)는 베이스플레이트(100)의 상면에 설치되는 것으로, 평가대상 시료(M)가 수납될 수 있도록 내부에 시료수납홈(231)이 구비될 수 있다. 시료(M)는 파우더나 벌크(Bulk) 형태일 수 있다.
구체적으로, 도 5 및 도 6을 참조하면, 상기 홀더부(200)는 베이스플레이트(100) 상에 수평방향으로 소정간격 이격 배치되는 적어도 한 쌍의 지지대(210)와, 상기 지지대(210)에 양단이 회전 가능하게 베어링 결합되는 중공 형상의 회전축(220)과, 상기 회전축(220) 내부의 중심축 선상에 서로 간섭되지 않게 끼움 결합되는 홀더하우징(230)(도 7 참조)을 포함할 수 있다.
도 7을 참조하면, 상기 홀더하우징(230)은 지지대(210)의 대향면에 축방향으로 소정길이 돌출된 중공 형태의 고정파이프(215a)(215b)에 양단이 삽입되는 방식으로 결합될 수 있다.
도 8 및 도 9를 참조하면, 상기 홀더하우징(230)은 지지대(210)의 고정파이프(215a)와 끼움 결합되는 일측에 시료(M)가 수납되는 시료수납홈(231)이 구비되고, 타측 내부에는 후술할 온도제어부(400)를 통해 유체가 순환될 수 있도록 유체수납공간(233)이 마련될 수 있다.
그리고 상기 일측 지지대(210)의 고정파이프(215a)에는 홀더하우징(230)의 일측과 연통되는 시료측정공(211)(도 8 참조)이 구비될 수 있다. 따라서 상기 시료측정공(211)을 통해 홀더하우징(230)의 시료수납홈(231)(도 9 참조) 내에 수납된 시료(M) 상태를 측정할 수 있다.
도 10을 참조하여 구체적으로 설명하면, 상기 홀더하우징(230)은 시료수납홈(231)에 시료(M)가 수납된 후 시료수납홈(231)의 개구를 막아 고정할 수 있도록 시료수납홈(231)의 테두리 단턱(231a)에 결합되는 윈도우부재(235)와, 상기 윈도우부재(235)를 시료수납홈(231) 측으로 가압 고정할 수 있도록 홀더하우징(230)의 일측 내주면에 결합되는 중공 형상의 고정부재(237)를 포함할 수 있다.
이 경우 상기 홀더하우징(230)은 시료수납홈(231)이 일측에 구비되는 제1몸체(230a)와, 제1몸체(230a)의 타측 내주면에 나사 결합되며 내부에 유체수납공간(233)이 마련되는 중공 형상의 제2몸체(230b)를 포함할 수 있다. 이 경우 제1몸체(230a)와 제2몸체(230b)의 결합부 사이에 오링(239)을 개재하여 수밀 성능을 향상시킬 수 있다. 본 발명에서는 제2몸체(230b)가 제1몸체(230a)의 타측 내주면에 나사 결합되는 경우의 일례를 들어 설명하였으나, 이에 한정되지 않으며 상기 제2몸체(230b)가 제1몸체(230a)의 타측 내주면에 끼움 결합되는 경우로 변경 적용될 수 있다.
한편, 자기열량효과는 시료(M)의 온도에 따라 다르게 나타나며, 단열조건에서 온도변화를 측정하여야 하기 때문에, 이를 위해 상기 제1몸체(230a)와 제2몸체(230b)는 열전도율이 낮은 소재로 형성될 수 있다. 일례로, 상기 제1몸체(230a)와 제2몸체(230b)는 고강도이면서 열전도율이 낮은 POM(Polyoxymethylene), PEI(Polyetherimide), PC(Polycarbonate) 중 어느 하나의 소재를 사용할 수 있다. 바람직하게, 본 발명에서는 비교적 구하기 쉽고 가격이 저렴한 POM 소재를 사용할 수 있다. 이에 따라 제2몸체(230b) 내부의 유체수납공간(233)에서 순환되는 유체의 열을 제1몸체(230a) 내부의 시료수납홈(231) 측으로 집중시킬 수 있으며, 이를 통해 제1몸체(230a)의 전체 온도 조절을 통해 시료(M)의 온도를 효율적으로 제어할 수 있다.
다시 말해, 상기 제1몸체(230a)와 제2몸체(230b)를 열전도율이 낮은 소재를 사용함에 따라 시료(M)의 온도변화가 외부로 유출되는 것을 최소화할 수 있다. 이 경우 본 발명에서는 상기 제1몸체(230a)와 제2몸체(230b)가 POM, PEI, PC 중 어느 하나의 소재로 적용된 경우의 일례를 들어 설명하였으나, 열전도율이 낮은 다른 소재로 변경 적용할 수 있다.
또한 상기 윈도우부재(235)는 후술할 온도측정부(500)에서 조사되는 적외선이 용이하게 통과할 수 있는 소재로 형성되는 것이 바람직하다.
도 11을 참조하면, 상기 홀더하우징(230)의 타측 지지대(210)에는 상기 홀더하우징(230)을 회전축(220) 내부로부터 용이하게 분리 또는 끼움 결합할 수 있도록 상기 회전축(220)의 내부와 연통되는 결합공(213)이 구비될 수 있다.
이 경우 상기 타측 지지대(210)에는 홀더하우징(230)의 분리 결합이 용이하도록 보조지지대(217)가 구비될 수 있다. 상기 보조지지대(217)에는 홀더하우징(230)의 타측이 끼움 결합되는 고정파이프(215b)가 일체로 형성될 수 있다. 따라서, 상기 홀더하우징(230)의 타측을 보조지지대(217)의 고정파이프(215b)에 고정한 상태에서 홀더하우징(230)의 일측 선단을 타측 지지대(210)의 결합공(213) 내에 삽입하는 방식으로 결합할 수 있다. 상기 보조지지대(217)가 타측 지지대(210)에 결합된 후에는 별도의 체결부재(미도시)를 매개로 위치가 고정될 수 있다.
상기 자기장인가부(300)는 회전 각도에 따라 시료수납홈(231)에 수납된 시료(M)에 선택적으로 자기장을 인가/제거하는 것으로, 이러한 자기장인가부(300)는 홀더부(200)의 외주면에 이중 자석 구조로 회전 가능하게 설치될 수 있다.
구체적으로, 도 12 및 도 13을 참조하면, 상기 자기장인가부(300)는 회전축(220)과 일체로 형성되어 동력 전달 시 소정각도 회전되며 회전축(220)의 축선을 기준으로 복수의 자석(311)이 방사상으로 배치되는 내부자석(310)과, 상기 내부자석(310)의 외주면과 소정간극을 유지하도록 베이스플레이트(100) 상에 고정 설치되는 외부자석(320)을 포함할 수 있다.
이 경우 상기 외부자석(320)은 내부자석(310)의 자석(311)과 제각기 대응되는 복수의 자석(321)이 회전축(220)을 기준으로 방사상으로 배치될 수 있다.
아울러 상기 내부자석(310)과 외부자석(320)은 복수의 자석(311)(321)을 수납하기 위한 공간을 소정두께(일례로 2㎜)의 격벽을 통해 복수로 구획할 수 있다. 즉 상기 자기장인가부(300)를 구성하는 내부자석(310)과 외부자석(320)은 할박 배열(Halbach array) 구조를 적용할 수 있다. 이 경우 상기 내부자석(310)의 내부 중심축 선상에 상기 시료(M)가 위치하게 된다.
다시 도 11을 참조하면, 상기 내부자석(310)은 타이밍벨트(331)를 매개로 스텝모터(330)의 회전동력을 회전축(220)에 일체로 형성된 풀리(333)를 통해 전달받아 소정각도 회전할 수 있다.
이 경우 본 발명에서는 외부자석(320)이 고정되고 내부자석(310)(도 12 참조)이 소정각도 회전 가능하게 설치된 경우의 일례를 들어 도시하고 설명하였으나, 반대로 내부자석(310)이 고정되고 외부자석(320)이 소정각도 회전 가능하게 설치된 경우로 변경 적용할 수 있다.
이러한 구조의 자기장인가부(300)는 내부자석(310)이 스텝모터(330)의 동력을 전달받아 소정각도(180°)씩 회전하면서 작동하게 된다.
구체적으로, 도 14 및 도 15를 참조하면, 상기 내부자석(310)과 외부자석(320)을 제각기 구성하는 자석(311)(321)의 자화방향이 동일한 경우 자기장이 인가(Field on)(0°)될 수 있다. 그리고 상기 내부자석(310)과 외부자석(320)을 제각기 구성하는 자석(311)(321)의 자화방향이 반대인 경우 자기장이 제거(Field off)(180°)될 수 있다.
또한 상기 내부자석(310)의 회전시간은 0.1 ~ 0.5초 일수 있으며, 시료(M)에 자기장 인가/제거 과정을 반복적으로 구동할 수 있다.
도 16을 참조하면, 상기 온도제어부(400)는 홀더부(200) 내에 유체를 순환시켜 시료수납홈(231) 내에 수납된 시료(M)의 온도를 제어할 수 있다.
구체적으로, 상기 온도제어부(400)는 유체수납공간(233) 내에 축 방향을 따라 설치되는 공급관(411)과 회수관(413)을 매개로 연결되어 유체를 공급 순환시키는 유체공급수단(410)을 포함할 수 있다. 바람직하게, 유체공급수단(410)(도 5 참조)은 칠러(Chiller)를 이용할 수 있으며, 유체는 물(증류수)을 적용할 수 있다.
이 경우 상기 유체공급수단(410)을 통해 공급되는 유체로 물을 사용함으로써 시료(M)가 수납되는 홀더부(200)의 구조를 간단하게 구성할 수 있다.
특히, 기존 온도제어부의 경우 전기를 사용하여 시료(M)의 온도를 제어하는 방식임에 따라 주변의 다른 부품에 영향을 줄 수 있는데 반해, 본 발명에 따른 온도제어부(400)의 경우에는 전기가 아닌 물을 사용하는 유체공급수단(410)이 적용됨에 따라 다른 부품에 영향을 최소화할 수 있다. 아울러 자기장에 의한 간섭을 회피하여, 장치의 작동 안정성을 확보할 수 있다.
또한 상기 분석대상 시료(M)가 영하의 온도에서 측정되어야 하는 경우에는 에틸렌글리콜 등 부동액이 일부 포함된 유체를 사용할 수 있다. 즉 상기 공급되는 유체는 물, 에틸렌글리콜 등의 냉각수를 선택적으로 사용할 수 있다.
한편, 상기 공급관(411)은 유체수납공간(233) 내에서 시료수납홈(231) 측을 향해 회수관(413)보다 길게 배치될 수 있다. 이에 따라 공급관(411)을 통해 유체수납공간(233)에 공급되는 유체가 이웃하는 회수관(413)을 통해 곧바로 배출되지 않고 상기 공급되는 유체가 유체수납공간(233) 내에서 원활하게 순환되도록 할 수 있다.
다시 도 3을 참조하면, 상기 온도측정부(500)는 자기장인가부(300)에 의해 자기장이 인가/제거되는 시료(M)의 단열온도변화를 측정할 수 있다.
구체적으로, 상기 온도측정부(500)는 시료수납홈(231)과 동일 축 선상에 배치되어 시료(M)의 단열온도변화를 측정하는 온도측정장치(510)를 포함할 수 있다. 이러한 온도측정장치(510)는 홀더부(200)의 시료측정공(211)을 통해 시료(M)에 적외선을 조사하여 시료(M)(도 5 참조)의 온도를 측정할 수 있다.
이 경우 상기 온도측정장치(510)는 가이드레일(511)을 따라 X, Y, Z축 방향(설명의 편의를 위해 Y 방향 가이드레일(511)만 도시함)으로 위치조절이 가능할 수 있다. 본 발명에서는 상기 온도측정장치(510)를 가이드레일(511)을 따라 수동으로 조절하는 경우의 일례를 들어 도시하고 설명하였으나, 액추에이터를 적용하여 자동으로 위치 조절할 수도 있다.
아울러 상기 온도측정부(500)는 도 16에 도시된 바와 같이, 시료수납홈(231) 내에 열전대 라인(Thermocouple line)(521)을 매개로 연결되어 시료(M)의 단열온도변화를 측정하는 접촉식 온도계(520)를 포함할 수 있다. 이에 따라 상기 비접촉식인 온도측정장치(510)와 접촉식 온도계(520)를 통해 시료(M)에 자기장의 인가/제거와 동시에 빠르게 나타나는 온도를 동시에 측정할 수 있으며, 이를 바탕으로 시료(M)의 단열온도변화를 정확하게 분석할 수 있다.
그러면, 이상과 같은 구성의 본 발명에 따른 자기열량소재 특성평가장치(1)의 작동에 대하여 설명하기로 한다.
먼저, 홀더부(200)의 지지대(210) 타측을 통해 홀더하우징(230)을 회전축(220)으로부터 인출한 후 시료수납홈(231)을 개방한다.
그런 후, 파우더 또는 벌크 형태의 평가대상 시료(M)를 시료수납홈(231)에 수납한 후, 윈도우부재(235)를 이용하여 시료수납홈(231)의 개구를 막아줌과 아울러 고정부재(237)를 이용하여 위치를 고정한다.
그런 다음, 상기 시료(M)가 수납된 홀더하우징(230)을 회전축(220) 내부에 끼움 결합하여, 시료(M)가 자기장 인가부(300)의 중심축 선상에 위치하도록 배치한다.
그리고 온도제어부(400)를 통해 홀더하우징(230) 내부의 유체수납공간(233)에 유체를 공급하여 시료(M)의 베이스 온도를 조절한다.
시료(M)가 측정 온도에 도달하면 자기장인가부(300)의 사이클 구동 조건 세팅 후 자기장인가부(300)를 구동하여 자기장 인가/제거 공정을 실시한다.
아울러 온도측정부(500)의 온도측정장치(510)와 접촉식 온도계(520)를 통해 시료(M)의 단열온도변화(ΔTad)를 측정한다.
도 17은 본 발명에 따른 자기열량소재 특성평가장치(1)를 이용하여 대표적 자기열량소재인 가돌리늄(Gd)의 단열온도변화를 반복 측정한 결과이다.
도 17을 참조하면, 본 실험에서는 시료(M)의 측정온도(=시작온도 또는 기준온도)를 기준으로 사이클 구동 시 자기장 인가/제거 공정에 따라 발생되는 시료(M)의 온도 변화를 온도측정장치(510)와 접촉식 온도계(520)를 통해 비접촉식/접촉식으로 각각 측정하였다(색상그림: 비접촉식 측정, 그래프: 접촉식 측정).
그 결과, 반복측정 시 시료(M)의 측정온도에서 자기장 인가/제거에 따라 시료(M) 자체의 온도 증가/감소가 안정적으로 측정되었음을 확인하였다.
이상에서는 본 발명을 특정의 구체적인 실시 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시 예에 한정되지 않으며 본 발명의 기술사상을 벗어나지 않는 범위 내에서 다양한 변경과 수정이 가능함은 물론이다.

Claims (12)

  1. 베이스플레이트;
    상기 베이스플레이트의 상면에 설치되며, 평가대상 시료가 수납될 수 있도록 내부에 시료수납홈이 구비되는 홀더부;
    상기 홀더부의 외주면에 이중 자석 구조로 회전 가능하게 설치되며, 회전 각도에 따라 상기 시료에 선택적으로 자기장을 인가/제거하는 자기장인가부;
    상기 홀더부 내에 유체를 순환시켜 상기 시료의 온도를 제어하는 온도제어부; 및
    상기 자기장인가부에 의해 자기장이 인가/제거되는 시료의 단열온도변화를 측정하는 온도측정부;를 포함하는 자기열량소재 특성평가장치.
  2. 제1항에 있어서,
    상기 홀더부는,
    상기 베이스플레이트 상에 수평방향으로 소정간격 이격 배치되는 한 쌍의 지지대;
    상기 지지대에 양단이 회전 가능하게 결합되는 중공 형상의 회전축; 및
    상기 지지대의 결합공을 통해 상기 회전축 내부의 중심축 선상에 서로 간섭되지 않게 끼움 결합되며, 일측에 상기 시료수납홈이 구비되고 타측에 상기 유체가 순환되는 유체수납공간이 마련되는 홀더하우징;을 포함하는 자기열량소재 특성평가장치.
  3. 제2항에 있어서,
    상기 홀더하우징은,
    상기 시료수납홈에 시료가 수납된 후 상기 시료수납홈의 개구를 막아 고정할 수 있도록 상기 시료수납홈의 테두리 단턱에 결합되는 윈도우부재; 및
    상기 윈도우부재를 상기 시료수납홈 측으로 가압 고정할 수 있도록 상기 홀더하우징의 일측 내주면에 결합되는 중공 형상의 고정부재;를 더 포함하는 자기열량소재 특성평가장치.
  4. 제2항 또는 제3항에 있어서,
    상기 홀더하우징은,
    상기 시료수납홈이 일측에 구비되는 제1몸체; 및
    상기 제1몸체의 타측 내주면에 결합되며, 내부에 상기 유체수납공간이 마련되는 중공 형상의 제2몸체;를 포함하는 자기열량소재 특성평가장치.
  5. 제4항에 있어서,
    상기 제1몸체와 제2몸체는,
    POM(Polyoxymethylene), PEI(Polyetherimide), PC(Polycarbonate) 중 어느 하나의 소재로 형성된 것을 포함하는 자기열량소재 특성평가장치.
  6. 제2항에 있어서,
    상기 자기장인가부는,
    상기 회전축과 일체로 결합되어 동력 전달 시 소정각도 회전되며, 상기 회전축의 축선을 기준으로 복수의 자석이 방사상으로 배치되는 내부자석; 및
    상기 내부자석의 외주면과 소정간극을 유지하도록 상기 베이스플레이트 상에 고정 설치되며, 상기 내부자석의 자석과 제각기 대응되는 복수의 자석이 상기 회전축을 기준으로 방사상으로 배치되는 외부자석;을 포함하는 자기열량소재 특성평가장치.
  7. 제6항에 있어서,
    상기 자기장인가부는,
    상기 내부자석이 소정각도씩 회전되면서 상기 내부자석과 외부자석을 제각기 구성하는 자석의 자화방향이 동일한 경우 자기장이 인가되고,
    상기 내부자석과 외부자석을 제각기 구성하는 자석의 자화방향이 반대인 경우 자기장이 제거되는 것인 자기열량소재 특성평가장치.
  8. 제2항에 있어서,
    상기 온도제어부는,
    상기 유체수납공간 내에 축 방향을 따라 설치된 공급관과 회수관을 매개로 연결되어 유체를 공급 순환시키는 유체공급수단;을 포함하는 자기열량소재 특성평가장치.
  9. 제8항에 있어서,
    상기 공급관은,
    상기 유체수납공간 내에서 상기 시료수납홈 측을 향해 상기 회수관보다 길게 배치된 것을 포함하는 자기열량소재 특성평가장치.
  10. 제1항에 있어서,
    상기 온도측정부는,
    상기 시료수납홈과 동일 축 선상에 배치되어 상기 시료의 단열온도변화를 측정하는 온도측정장치;를 포함하는 자기열량소재 특성평가장치.
  11. 제10항에 있어서,
    상기 온도측정장치는,
    가이드레일을 따라 X, Y, Z축 방향으로 위치조절이 가능한 것을 더 포함하는 자기열량소재 특성평가장치.
  12. 제10항에 있어서,
    상기 온도측정부는,
    상기 시료수납홈 내에 열전대 라인(Thermocouple line)을 매개로 연결되어 상기 시료의 단열온도변화를 측정하는 접촉식 온도계;를 더 포함하는 자기열량소재 특성평가장치.
PCT/KR2023/013259 2022-09-20 2023-09-05 자기열량소재 특성평가장치 WO2024063395A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0118498 2022-09-20
KR1020220118498A KR20240040166A (ko) 2022-09-20 2022-09-20 자기열량소재 특성평가장치

Publications (1)

Publication Number Publication Date
WO2024063395A1 true WO2024063395A1 (ko) 2024-03-28

Family

ID=90454648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/013259 WO2024063395A1 (ko) 2022-09-20 2023-09-05 자기열량소재 특성평가장치

Country Status (2)

Country Link
KR (1) KR20240040166A (ko)
WO (1) WO2024063395A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071383A1 (en) * 2008-09-24 2010-03-25 Hussmann Corporation Magnetic refrigeration device
US20110162388A1 (en) * 2010-01-05 2011-07-07 General Electric Company Magnetocaloric device
KR101374207B1 (ko) * 2013-10-07 2014-03-13 한국지질자원연구원 암석 열전도도 측정 장치 및 이의 사용방법
KR101624207B1 (ko) * 2015-02-03 2016-05-25 주식회사 보템시스 회전 자계의 에너지 분포 측정기
CN113899780A (zh) * 2020-06-22 2022-01-07 中国科学院宁波材料技术与工程研究所 一种磁热效应高通量表征系统及表征方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101954538B1 (ko) 2017-11-28 2019-03-05 엘지전자 주식회사 자기 냉각 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100071383A1 (en) * 2008-09-24 2010-03-25 Hussmann Corporation Magnetic refrigeration device
US20110162388A1 (en) * 2010-01-05 2011-07-07 General Electric Company Magnetocaloric device
KR101374207B1 (ko) * 2013-10-07 2014-03-13 한국지질자원연구원 암석 열전도도 측정 장치 및 이의 사용방법
KR101624207B1 (ko) * 2015-02-03 2016-05-25 주식회사 보템시스 회전 자계의 에너지 분포 측정기
CN113899780A (zh) * 2020-06-22 2022-01-07 中国科学院宁波材料技术与工程研究所 一种磁热效应高通量表征系统及表征方法

Also Published As

Publication number Publication date
KR20240040166A (ko) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2015142010A1 (en) Magnetic regenerator unit and magnetic cooling system with the same
WO2015030285A1 (ko) 냉동고
JPS6145177B2 (ko)
WO2024063395A1 (ko) 자기열량소재 특성평가장치
WO2018236039A1 (ko) 오븐
WO2019237430A1 (zh) 原位置检测装置
WO2011025157A2 (en) Refrigerator
WO2019146832A1 (ko) 공기조화기의 실외기
WO2019045450A1 (ko) 냉장고
WO2021167221A1 (ko) 전자 기기
WO2014069726A1 (ko) 극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법
WO2010056037A9 (ko) 홀 효과 측정장치
WO2014104747A1 (ko) 태양열 발전 시스템에 사용되는 축열조, 이에 사용되는 태양열 발전기 및 이를 포함하는 태양열 발전 시스템
WO2021045399A1 (ko) 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터
JP3374273B2 (ja) 強磁場低温物性測定装置
WO2024017327A1 (zh) 液冷数据中心测试设备及液冷数据中心测试系统
CN116191774B (zh) 一种交流永磁同步电机机壳散热结构
US6070413A (en) Condensation-free apparatus and method for transferring low-temperature fluid
WO2017039295A1 (ko) 냉장고
WO2022039374A1 (ko) 냉장고
WO2020159175A1 (ko) 전열관 및 칠러용 열교환기
WO2021096058A1 (ko) 결로 발생 저감과 온도조절이 가능한 블록형 보냉용기
WO2014038743A1 (ko) 질량분석기용 2중 냉기 공급구 및 이를 이용한 냉각장치
WO2019022290A1 (ko) 액상의 냉각/가열용 용기 시스템
CN217406946U (zh) 温度监控设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868450

Country of ref document: EP

Kind code of ref document: A1