WO2024063227A1 - 착용형 보행장애 분석 장치 - Google Patents

착용형 보행장애 분석 장치 Download PDF

Info

Publication number
WO2024063227A1
WO2024063227A1 PCT/KR2023/002654 KR2023002654W WO2024063227A1 WO 2024063227 A1 WO2024063227 A1 WO 2024063227A1 KR 2023002654 W KR2023002654 W KR 2023002654W WO 2024063227 A1 WO2024063227 A1 WO 2024063227A1
Authority
WO
WIPO (PCT)
Prior art keywords
walking
analysis device
disorder
reaction force
wearable
Prior art date
Application number
PCT/KR2023/002654
Other languages
English (en)
French (fr)
Inventor
김충현
박지수
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2024063227A1 publication Critical patent/WO2024063227A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6829Foot or ankle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors

Definitions

  • This application relates to a wearable walking disorder analysis device that can estimate whether the walking condition is good, that is, walking soundness, by estimating the pedestrian's walking cycle and analyzing the corresponding weight transfer situation.
  • Walking upright, standing on two legs, is the most basic daily life movement unique to humans, and checking the walking condition can be used to gauge a person's health status.
  • Gait is a movement in space (locomotion) through patterned movements of limbs, and maintaining balance is essential for normal walking.
  • a condition in which normal walking becomes difficult due to difficulties in maintaining balance is called gait disorder. do.
  • this application was conceived to solve the above-mentioned problem, and uses a walking disorder analysis technology using an insole-based wearable device to detect the phenomenon of excessive weight shift to one of the left and right feet when walking.
  • the gait cycle is accurately analyzed using only the human body's medial-lateral component (COPx), which is relatively less affected by the degree of gait disturbance among the positions of the human body's center of pressure (COP).
  • COPx medial-lateral component
  • the present application includes a plurality of left sole sensor units that measure a left ground reaction force (GRF) signal generated from the left sole during walking; A plurality of right sole sensor units that measure a right ground reaction force signal generated from the sole of the right foot while walking; And a wearable walking disorder analysis device including a calculation unit that receives and calculates the left ground reaction force signal and the right ground reaction force signal, wherein the calculation unit integrates the left ground reaction force signal and the right ground reaction force signal to determine the left and right ground reaction force signals in the left and right directions of the human body.
  • the human body's center of pressure value (COPx) can be calculated and used to estimate the gait cycle.
  • the calculation unit calculates a change in COPx according to the estimated gait cycle
  • the device may further include a gait disorder diagnosis unit that diagnoses a gait disorder based on the change in COPx.
  • the display unit may display the change in COPx according to the gait cycle in polar coordinates.
  • the calculation unit may compare the areas within the two closed curves on the upper and lower sides shown on the display unit and calculate the slope of the tangent line at the contact point of the two closed curves.
  • the polar coordinate system is represented by an upper closed curve with a positive COPx value and a lower closed curve with a negative COPx value, and each of the upper closed curve and the lower closed curve is in one of the right foot strike phase and the left foot stand phase. It may apply to
  • the calculation unit calculates the area of the upper closed curve and the area of the lower closed curve
  • the walking disorder diagnosis unit diagnoses walking disorder when the difference between the area of the upper closed curve and the area of the lower closed curve is greater than a preset standard, and
  • the gait disorder diagnosis department diagnoses gait disorder. It can be judged that the foot corresponding to the larger area of the two closed curves remains on the ground for a longer period of time and supports the body weight longer than the other foot.
  • the calculation unit calculates the slope of a tangent at a contact point between the upper closed curve and the lower closed curve, and the walking disorder diagnosis unit may diagnose a walking disorder if the tangent slope is greater than a preset standard.
  • the calculation unit uses the following [Formula 1], [Formula 2], [Formula 3], and [Formula 4] to calculate an area ratio index (ARI), which is a value representing the difference in time when each foot supports the body weight as a ratio. ) is calculated, and the walking disorder diagnosis unit diagnoses whether or not there is a walking disorder using the ARI as an indicator,
  • ARI area ratio index
  • the Area Closed is the area within the closed curve
  • Area Closed.R and Area Closed.L are the areas of the closed curve corresponding to the right foot support period and the area of the closed curve corresponding to the left foot support period, respectively
  • Area ratio.R is the total area of the two closed curves.
  • Area ratio.L is the ratio of the area of the closed curve corresponding to the left foot support period to the total area of the two closed curves.
  • the walking disorder diagnosis unit may determine that there is a walking disorder if the ARI value is greater than or equal to a preset standard.
  • the human body pressure center value may be viewed in real time through a smart device.
  • the wearable walking disorder analysis device may further include an amplifier that amplifies the left ground reaction force signal and the right reaction force signal.
  • the wearable walking disorder analysis device may further include a timer that synchronizes the left ground reaction force signal and the right ground reaction force signal.
  • the plurality of left sole sensors and the plurality of right sole sensors may be installed on the big toe, first metatarsal bone, fifth metatarsal bone, cuboid bone, and heel of the left and right feet, respectively.
  • the ARI can be used as a biomarker for diagnosing patients with gait disorders.
  • This application uses a pressure sensor installed on the bottom of the insole to acquire and analyze ground reaction force information generated while walking, thereby enabling the movement of the human body's center of pressure to be identified in real time.
  • the pressure sensor installed on the bottom of the insole is designed to consume low power, allowing acquisition of biometric data for a long time, and can be applied at all times regardless of time and place.
  • This application can be used as a low-cost, high-efficiency health management system by determining the wearer's walking health and providing analysis information directly to a PC or smart device in real time.
  • This application is a telemedicine device that measures a patient's biometric data and transmits it remotely so that medical staff can examine it.
  • the acquired data can be constructed as big data and used to advance gait disorder analysis technology in the future.
  • This application displays the gait cycle and the positional change of COPx in a polar coordinate system and compares the weight bearing ratio of the left and right foot support devices during walking through pictures to intuitively determine whether a person has a gait disorder and establish quantified standards necessary for objective judgment of gait disorder. presents. Therefore, it is easy to compare or distinguish the gait characteristics of healthy adults and patients with gait disorders, and it is possible to distinguish between the affected foot and the healthy foot.
  • this application develops and applies a gait analysis device that can be worn by individuals, thereby providing a low-cost health management system that allows anyone to easily analyze their own gait patterns and use them as health information.
  • FIG. 1 is a schematic diagram schematically showing a wearable walking disorder analysis device according to an embodiment of the present application.
  • Figure 2 is a flowchart showing the operation process of a wearable walking disorder analysis device according to an embodiment of the present application.
  • Figure 3 is a schematic diagram explaining the configuration of a wearable walking disorder analysis device according to an embodiment of the present application.
  • Figure 4 is a schematic diagram explaining the sensor attachment position of the wearable walking disorder analysis device according to an embodiment of the present application.
  • Figure 5 is a diagram illustrating a process of estimating a gait cycle through a wearable gait disorder analysis device and a frequency adaptive oscillator according to an embodiment of the present application.
  • Figure 6 is a graph showing the gait cycle of a pedestrian acquired by wearing a wearable walking disorder analysis device according to an embodiment of the present application and the corresponding change in center of pressure value (COPx) in the left and right directions of the human body in a rectangular coordinate system.
  • COPx center of pressure value
  • Figure 7 is a graph showing the gait cycle of a pedestrian acquired by wearing a wearable walking disorder analysis device according to an embodiment of the present application and the corresponding change in center of pressure value (COPx) in the left and right directions of the human body in polar coordinates.
  • COPx center of pressure value
  • Figure 8a is a graph showing the gait cycle of a healthy adult acquired by wearing a wearable gait disorder analysis device according to an embodiment of the present application and the corresponding change in center of pressure value (COPx) in the left and right directions of the human body in polar coordinates.
  • COPx center of pressure value
  • Figure 8b is a graph showing the gait cycle of a patient with a gait disorder acquired by wearing a wearable gait disorder analysis device according to an embodiment of the present application and the corresponding change in center of pressure value (COPx) in the left and right directions of the human body in polar coordinates.
  • COPx center of pressure value
  • Figure 1 is a schematic diagram schematically showing a wearable walking disorder analysis device 1 according to an embodiment of the present application.
  • FIG. 2 is a flowchart showing the operation process of the wearable walking disorder analysis device 1 of FIG. 1 according to an embodiment of the present application.
  • the wearable gait disorder analysis device 1 can distinguish each gait step and evaluate gait soundness by measuring and comparing changes in ground reaction force that appear on the soles of both feet for each gait step.
  • the wearable walking disorder analysis device 1 consists of a sensor 11 and an amplifier that measure the ground reaction force generated from the sole of the human foot while walking.
  • a computation unit that performs calculations using the ground reaction force data and synchronizes the measurement timing of both feet data
  • a storage unit that stores the measured ground reaction force data
  • ground reaction force data of both feet that integrates the left ground reaction force data and the right ground reaction force data. It may include a communication unit that transmits data to a computer or smart device.
  • the wearable walking disorder analysis device 1 may further include a walking disorder diagnosis unit.
  • the calculation unit calculates the change in the center of pressure (COPx) of the human body in the left and right directions, and the walking disorder diagnosis unit diagnoses the walking disorder based on the change in COPx.
  • the wearable gait disorder analysis device 1 may further include a display unit that displays the change in COPx according to the gait cycle in polar coordinates.
  • the wearable walking disorder analysis device 1 may attach a plurality of sensors 11 to the bottom of the insole 10 inside the shoe, In this embodiment, ground reaction force data of both feet can be measured using five sensors for each foot.
  • the measured left ground reaction force signal and right reaction force signal can be amplified through an amplifier and then combined in the calculation unit.
  • Figure 3 is a schematic diagram explaining the configuration of a wearable walking disorder analysis device 1 according to an embodiment of the present application.
  • the calculation unit integrates the left ground reaction force signal with the right ground reaction force signal, calculates the center of pressure value (COPx) in the left and right directions of the human body, and uses this to estimate the gait cycle. there is.
  • COPx center of pressure value
  • the gait disorder diagnosis unit can diagnose gait disorder based on the change in COPx according to the estimated gait cycle.
  • results can be transmitted to a gait analysis computer or smart device through a Bluetooth device to view the data in real time, and a separate timer can be set and the time data can be used to synchronize the ground reaction force data of both feet.
  • the printed circuit board (PCB) on the bottom of the insole 10 inside the shoe of the wearable walking disorder analysis device 1 and the data collection method can be seen.
  • the PCB can be made small and light to minimize the impact on the user when walking.
  • the STM32F411x developed by STMicroelectron-ics may be used as a microcontroller unit (MCU) that performs data collection and communication.
  • Ground reaction force can be measured using a force sensing resistor (FSR 402, Interlink Electronics, Inc. CA 93012, USA). After the ground reaction force data collected from the left foot MCU is transmitted to the right foot MCU, the right foot ground reaction force data and They can be synchronized, combined, and finally transferred and/or collected to a PC.
  • the sampling rate of ground reaction force may be 100 Hz.
  • Figure 4 is a schematic diagram explaining the attachment position of the sensor 11 of the wearable walking disorder analysis device 1 according to an embodiment of the present application.
  • the attachment position of the pressure sensor 11 is the big toe, the first metatarsal bone, and the fifth, which sequentially touch the ground at each step of walking.
  • COPx can be obtained using the following [Equation 1].
  • x i is the location of the ith FSR and is defined based on the wearer's height.
  • F i is the magnitude of the ground reaction force signal measured at the ith FSR.
  • the COPx value can be obtained by dividing it by the location of the FSR located on the 5th metatarsal of the right foot to evaluate it as a ratio to the outermost sensor location on the foot.
  • Figure 5 is a diagram illustrating a process of estimating a gait cycle through a wearable gait disorder analysis device and a frequency adaptive oscillator according to an embodiment of the present application.
  • AO is an estimated signal based on the assumption that the input signal u(t) consists of a linear combination of a signal consisting of a certain frequency and a multiple of that frequency.
  • [Formula 2] used as a method to find is as follows:
  • AO is a signal learned using these four variables. Calculate .
  • the calculation unit estimates the signal can be obtained as the final gait cycle.
  • Figure 6 shows the gait cycle of a pedestrian acquired by wearing a wearable walking disorder analysis device according to an embodiment of the present application and the resulting trajectory of change in the center of pressure value (COPx) in the left and right directions of the human body, that is, This is a graph expressed in a rectangular coordinate system.
  • COPx center of pressure value
  • Figure 7 shows the gait cycle of a pedestrian acquired by wearing a wearable walking disorder analysis device according to an embodiment of the present application and the resulting trajectory of change in the center of pressure value (COPx) in the left and right directions of the human body, that is, This is a graph expressed in polar coordinates.
  • COPx center of pressure value
  • Cartesian coordinate system graph of FIG. 6 can be converted to a polar coordinate system using the following [Equation 3].
  • the upper closed curve and lower closed curve in Figure 7 correspond to the right foot strike phase and the left foot strike phase in which COPx is a positive value and a negative value, respectively.
  • the calculation unit can compare the areas within the two closed curves on the upper and lower sides shown on the display unit and calculate the slope of the tangent line at the contact point.
  • the walking disorder diagnosis unit can diagnose a walking disorder when the difference between the area of the upper closed curve and the area of the lower closed curve is greater than a preset standard.
  • a preset standard When the walking speed is constant, in an ideal walking state, the sum of the areas surrounded by two closed curves in each walking cycle should always be constant, and the areas of the two closed curves are the same, so the time for both feet to step on the ground is the same. However, in actual walking, the areas of the two closed curves are different. If the upper closed curve area is larger than the lower closed curve area, it means that the subject steps on the right foot longer than the left foot while walking, which can be expressed as the right foot supporting the body weight longer.
  • the calculation unit uses the following [Equation 4] to calculate ARI (area ratio index), which is a value representing the difference in time when each foot supports the body weight as a ratio, and the walking disorder diagnosis unit uses the ARI as an indicator to diagnose whether or not there is a walking disorder. You can.
  • the Area Closed is the area within the closed curve
  • Area Closed.R and Area Closed.L are the areas of the closed curve corresponding to the right foot support period and the area of the closed curve corresponding to the left foot support period, respectively
  • Area ratio.R is the total area of the two closed curves.
  • Area ratio.L is the ratio of the area of the closed curve corresponding to the left foot support period to the total area of the two closed curves.
  • the walking disorder diagnosis unit may determine that there is a walking disorder if the ARI value is higher than a preset standard. Patients with gait disorders also include stroke patients.
  • Stroke patients' gait disorder is one of the major complications that limits their activities of daily living, requiring long-term rehabilitation, and even after rehabilitation, they end up walking with hemiparesis with gait asymmetry.
  • the ARI can be used as a diagnostic biomarker for patients with gait disorders, such as stroke patients.
  • FIGS. 8A and 8B are graphs showing changes in the position of the left and right center of pressure (COPx) of the human body in polar coordinates of healthy adults and patients with walking disorders obtained by wearing a wearable walking disorder analysis device according to an embodiment of the present application.
  • COPx center of pressure
  • the upper closed curve representing the right foot support phase in which COPx is positive and the lower closed curve representing the left foot support phase in which COPx is negative are distinguished.
  • the sizes of the inner areas of the upper and lower closed curves are similar to each other, but in the polar coordinate graph for a patient with a walking disorder shown in FIG. 8B, the area sizes of the upper and lower closed curves are very different from each other. Able to know. In other words, it shows that not only are the ARIs of the two groups significantly different from each other, but the position of the affected foot can be easily distinguished with the naked eye.
  • the wearable walking disorder analysis device can determine the movement situation of the human body's center of pressure in real time by acquiring and analyzing ground reaction force information generated during walking using a pressure sensor installed on the bottom of the insole.
  • the pressure sensor installed on the bottom of the insole is designed to consume low power, allowing acquisition of biometric data for a long time, and can be applied at all times regardless of time and place.
  • this application can be used as a low-cost, high-efficiency health management system by determining the wearer's walking health and providing analysis information directly to a PC or smart device in real time.
  • This application is a telemedicine device that measures a patient's biometric data and transmits it remotely so that medical staff can examine it.
  • the acquired data can be constructed as big data and used to advance gait disorder analysis technology in the future.
  • this application develops and applies a gait analysis device that can be worn by individuals, thereby providing a low-cost health management system that allows anyone to easily analyze their own gait patterns and use them as health information.
  • the wearable walking disorder analysis device can evaluate whether the walking condition is good, that is, walking soundness, by estimating the walking cycle of the pedestrian and analyzing the weight transfer situation accordingly.
  • This application can be used as a low-cost, high-efficiency health management system by determining the wearer's walking health and providing analysis information directly to a PC or smart device in real time.
  • This application is a telemedicine device that measures a patient's biometric data and transmits it remotely so that medical staff can examine it.
  • the acquired data can be constructed as big data and used to advance gait disorder analysis technology in the future.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Power Engineering (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

본 출원은 보행 중 좌측 발바닥에서 발생하는 좌측 지면 반력 신호를 측정하는 복수의 좌측 발바닥 센서부; 보행 중 우측 발바닥에서 발생하는 우측 지면 반력 신호를 측정하는 복수의 우측 발바닥 센서부; 및 상기 좌측 지면 반력 신호와 상기 우측 지면 반력 신호를 수신하여 연산하는 연산부를 포함하는 착용형 보행장애 분석 장치로서, 상기 연산부는, 상기 좌측 지면 반력과 우측 지면 반력 신호를 통합하여 인체 좌우 방향에서의 인체 압력 중심 값(COPx)을 연산하고 이를 이용하여 보행 주기를 추정하며, 보행 주기에 따른 인체 압력 중심 값(COPx)의 변화를 극좌표계로 그려서 보행장애를 판단하는 것을 특징으로 하는 착용형 보행장애 분석 장치에 관한 것이다.

Description

착용형 보행장애 분석 장치
본 출원은 보행자의 보행주기를 추정하고 이에 따른 체중이동 상황을 분석하여 보행상태의 양호 여부, 즉, 보행 건전성을 평가할 수 있는 착용형 보행장애 분석 장치에 관한 것이다.
관련 출원에 대한 상호 참조
본 출원은 2022년 9월 22일자로 출원된 대한민국 특허출원 제10-2022-0119888호에 대한 우선권을 주장하며, 그 출원 내용 전체가 본 출원에 참조로서 통합된다.
국가지원 연구개발에 대한 설명
본 연구는 한국과학기술연구원의 주관 하에 과학기술정보통신부의 초고령화 대응 장애극복 연구사업(과제고유번호: 1711173293)'의 지원에 의하여 이루어진 것이다.
두 다리로 서서 걷는 직립 보행은 인간 특유의 가장 기본적인 일상생활 동작으로서 보행상태를 점검하면 인간의 건강상태를 가늠할 수 있다.
보행(gait)은 패턴화된 사지의 움직임을 통해 공간을 이동(locomotion)하는 것으로서 균형을 유지(balance)하는 것이 정상 보행에 필수적인데 이러한 균형유지가 어려워지면서 정상적으로 보행할 수 없는 상태를 보행장애라고 한다.
최근, 개인의 건강관리에 대한 관심이 고조되면서 이러한 보행특성이 건강에 미치는 영향 또는 건강 상태에 따라 달라지는 보행특성에 대한 연구가 많이 진행되고 있다. 즉, 기존 연구들에 의하면 보행 패턴의 분석과 보행건전성 평가를 통하여 건강상태나 질병의 유무를 판단하려는 노력이 진행되고 있다.
사람들은 신체적 특성이 서로 다르기 때문에 보행 패턴 또한 다양하게 나타난다. 기존의 발명들은 압력센서나 가속도센서를 이용하여 보행에 따른 생체신호를 취득하여 단순 비교함으로써 보행 균형도를 평가하였으나, 이는 환자의 보행장애 정도가 경증이거나 건강한 성인 중에서도 미약한 수준의 비정상 보행을 보이는 경우에는 서로 구분이 어려운 문제점이 있었다. 또한 보행 진행방향과 이에 수직한 방향의 압력 중심 값(center of pressure, COP), 즉 COPy와 COPx을 모두 이용하여 보행장애 환자들의 보행장애를 진단하는 경우 COPy의 변화에 일관성이 부족하여 판단 오류 발생률이 매우 높아지게 된다.
[선행기술문헌]
[특허문헌]
한국특허공보 제10-1648270호
이에 본 출원은 상기한 문제점을 해결하기 위해 착안된 것으로서, 안창(insole) 기반의 착용형 장치를 이용한 보행장애 분석기술을 이용하여 보행시 체중이 좌우 발 중 한쪽으로 과도하게 쏠리는 현상을 감지한다.
본 출원에 의한 기술에서는 인체 압력 중심(COP)의 위치 중에서 보행장애 정도의 영향을 상대적으로 적게 받는 인체 좌우방향(medial-lateral) 성분(COPx)만을 이용하여 보행주기를 정확하게 분석한다.
상기 보행주기와 이 보행주기에 따른 COPx의 위치변화를 극좌표계(polar coordinate)에 표시하고 보행시 좌우발 지지기의 체중지지 비율을 그림을 통하여 비교함으로써 직관적으로 보행장애 보유 여부를 알아내고 객관적인 보행장애 판단에 필요한 정량화된 기준을 제시한다.
전술한 기술적 과제를 달성하기 위해, 본 출원은 보행 중 좌측 발바닥에서 발생하는 좌측 지면 반력(ground reaction force, GRF) 신호를 측정하는 복수의 좌측 발바닥 센서부; 보행 중 우측 발바닥에서 발생하는 우측 지면 반력 신호를 측정하는 복수의 우측 발바닥 센서부; 및 상기 좌측 지면 반력 신호와 상기 우측 지면 반력 신호를 수신하여 연산하는 연산부를 포함하는 착용형 보행장애 분석 장치로서, 상기 연산부는, 상기 좌측 지면 반력 신호와 우측 지면 반력 신호를 통합하여 인체 좌우 방향에서의 인체 압력 중심 값(COPx)을 연산하고 이를 이용하여 보행 주기를 추정할 수 있다.
일 실시예에서, 상기 연산부는 추정한 보행 주기에 따른 상기 COPx의 변화를 연산하고, 상기 장치는 상기 COPx의 변화를 기초로, 보행장애를 진단하는 보행장애 진단부를 더 포함할 수 있다.
일 실시예에서, 디스플레이부는 보행 주기에 따른 상기 COPx의 변화를 극좌표계로 나타낼 수 있다.
일 실시예에서, 상기 연산부는 상기 디스플레이부에 나타난 상하측의 두 폐곡선 안의 각각의 면적을 비교하고 두 폐곡선의 접촉점에서의 접선의 기울기를 연산할 수 있다.
일 실시예에서, 상기 극좌표계는 COPx가 양수(positive value)인 상부 폐곡선 및 COPx가 음수(negative value)인 하부 폐곡선으로 나타내지며, 상부 폐곡선 및 하부 폐곡선 각각은 오른발 지지기 및 왼발 지지기 중 하나에 해당할 수 있다.
일 실시예에서, 상기 연산부는 상부 폐곡선의 면적과 하부 폐곡선의 면적을 연산하고, 상기 보행장애 진단부는 상부 폐곡선의 면적과 하부 폐곡선의 면적의 차이가 미리 설정된 기준 이상일 경우 보행장애로 진단하고, 상기 보행장애 진단부가 보행장애로 진단할 경우. 두 폐곡선 중 면적이 큰 것에 해당하는 발이 다른 발에 비하여 보행 중 더 오랫동안 지면에 디디고, 체중을 지지하는 시간이 더 길다고 판단될 수 있다.
일 실시예에서, 상기 연산부는 상부 폐곡선과 하부 폐곡선의 접촉점에서의 접선의 기울기를 연산하고, 상기 보행장애 진단부는 접선 기울기가 미리 설정된 기준 이상이면 보행장애로 진단할 수 있다.
일 실시예에서, 상기 연산부는 하기 [수식 1], [수식 2], [수식 3] 및 [수식 4]를 이용해 양 발이 각각 체중을 지지하는 시간의 차이를 비율로 나타낸 값인 ARI(area ratio index)를 계산하고, 상기 보행장애 진단부는 상기 ARI를 지표로서 보행장애 여부를 진단하고,
[수식 1]
Figure PCTKR2023002654-appb-img-000001
[수식 2]
Figure PCTKR2023002654-appb-img-000002
[수식 3]
Figure PCTKR2023002654-appb-img-000003
[수식 4]
Figure PCTKR2023002654-appb-img-000004
상기 AreaClosed은 폐곡선 안의 면적이고, AreaClosed.R 및 AreaClosed.L 각각은 오른발 지지기에 해당하는 폐곡선의 면적과 왼발 지지기에 해당하는 폐곡선의 면적이고, Arearatio.R은 두 폐곡선의 전체 면적에 대한 오른발 지지기에 해당하는 폐곡선의 면적의 비율이고, Arearatio.L 은 두 폐곡선의 전체 면적에 대한 왼발 지지기에 해당하는 폐곡선의 면적의 비율이다.
일 실시예에서, 상기 보행장애 진단부는 상기 ARI 값이 미리 설정된 기준 이상이면 보행장애가 있다고 판단할 수 있다.
일 실시예에서, 상기 인체 압력 중심 값은 스마트 기기를 통하여 실시간으로 열람 가능할 수 있다.
일 실시예에서, 상기 착용형 보행장애 분석 장치는, 상기 좌측 지면 반력 신호와 상기 우측 반력 신호를 증폭하는 증폭기를 더 포함할 수 있다.
일 실시예에서, 상기 착용형 보행장애 분석 장치는, 상기 좌측 지면 반력 신호와 상기 우측 지면 반력 신호를 동기화하는 타이머를 더 포함할 수 있다.
일 실시예에서, 상기 복수의 좌측 발바닥 센서와 상기 복수의 우측 발바닥 센서는, 각각 좌우측 발의 엄지 발가락, 첫 번째 중족골, 다섯 번째 중족골, 입방골 및 뒤꿈치에 설치될 수 있다.
일 실시예에서, 상기 ARI를 보행장애 환자 진단용 바이오 마커로 활용할 수 있다.
본 출원은 안창 바닥에 설치하는 압력센서를 이용하여 보행 중 발생하는 지면 반력 정보를 취득, 분석함으로써 인체 압력중심의 이동 상황을 실시간으로 파악할 수 있다. 또한, 안창 바닥에 설치하는 압력센서는 저전력 소모형으로 설계되어 장시간 생체데이터 취득이 가능하고, 시간과 장소에 구애 받지 않고 상시 적용 가능하다.
본 출원은 착용자의 보행 건전성을 판단하고, 분석 정보를 PC 또는 스마트 기기에 직접적으로 실시간으로 제공함으로써, 저비용 고효율의 건강관리시스템으로 활용할 수 있다. 본 출원은 원격의료장비로서, 환자의 생체 데이터를 측정하고 원격으로 전달하여 의료진이 진찰할 수 있다. 취득한 데이터는 빅데이터로 구축하여 향후 보행장애 분석기술 고도화에 활용 가능하다.
본 출원은 보행주기와 COPx의 위치변화를 극좌표계에 표시하고 보행시 좌우발 지지기의 체중지지 비율을 그림을 통하여 비교함으로써 직관적으로 보행장애 보유 여부를 알아내고 객관적인 보행장애 판단에 필요한 정량화된 기준을 제시한다. 따라서, 건강한 성인과 보행장애 환자의 보행특성을 비교하거나 구분하기에 용이하고, 환측 발과 건측 발의 구분이 가능하다.
또한, 본 출원은 개인이 착용할 수 있는 보행분석 장치를 개발, 적용함으로써 누구나 손쉽게 자신의 보행 패턴을 분석하여 건강정보로 활용할 수 있는 저비용의 건강관리 시스템을 제공할 수 있다.
도 1은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치를 개략적으로 나타내는 모식도이다.
도 2는 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치의 운용프로세스를 나타낸 순서도이다.
도 3은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치의 구성을 설명하는 모식도이다.
도 4는 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치의 센서 부착 위치를 설명하는 모식도이다.
도 5는 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치 및 주파수 적응 발진기를 통해 보행 주기를 추정하는 과정을 도시하는 도면이다.
도 6은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치를 착용하여 취득한 보행자의 보행주기와 이에 따른 인체 좌우방향 압력 중심 값(COPx) 변화를 직교좌표계로 나타낸 그래프이다.
도 7은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치를 착용하여 취득한 보행자의 보행주기와 이에 따른 인체 좌우방향 압력 중심 값(COPx) 변화를 극좌표계로 나타낸 그래프이다.
도 8a는 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치를 착용하여 취득한 건강한 성인의 보행주기와 이에 따른 인체 좌우방향 압력 중심 값(COPx) 변화를 극좌표계로 나타낸 그래프이다.
도 8b는 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치를 착용하여 취득한 보행장애 환자의 보행주기와 이에 따른 인체 좌우방향 압력 중심 값(COPx) 변화를 극좌표계로 나타낸 그래프이다.
이하, 첨부된 도면을 기준으로 본 출원의 바람직한 실시 형태를 통하여, 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치와 이를 이용한 보행 분석 방법에 대하여 설명하기로 한다.
설명에 앞서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라, 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 본 출원의 구현예들이 첨부된 도면을 참고로 설명되었으나, 이는 예시를 위하여 설명되는 것이며, 이것에 의해 본 출원의 기술적 사상과 그 구성 및 적용이 제한되지 않는다.
도 1은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치(1)를 개략적으로 나타내는 모식도이다.
도 2는 본 출원의 일 실시 형태에 따른 도 1의 착용형 보행장애 분석 장치(1)의 운용프로세스를 나타낸 순서도이다.
일반적으로, 보행 중에는 인체 양 발바닥이 교대로 지면에 닿았다가 떨어지기를 반복하게 된다. 따라서, 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치(1)는 보행 단계별로 양 발바닥에서 나타나는 지면 반력의 변화를 측정, 비교하여 각 보행단계를 구별하고 보행 건전성을 평가할 수 있다.
구체적으로 도 1 및 도 2를 함께 참조하면, 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치(1)는 보행중 인체 발바닥에서 발생하는 지면 반력을 측정하는 센서(11)와 증폭기로 이루어지고, 지면 반력 데이터를 이용하여 계산을 진행하고 양발 데이터의 측정시기를 동기화하는 연산부 및 측정된 지면 반력 데이터를 저장하는 저장부, 좌측 지면 반력 데이터와 우측 지면 반력 데이터를 통합한 양발의 지면 반력 데이터를 컴퓨터 또는 스마트 기기 등으로 데이터를 전달하는 통신부를 포함할 수 있다. 추가적으로, 착용형 보행장애 분석 장치(1)는 보행장애 진단부를 더 포함할 수 있다. 상기 연산부는 인체 좌우 방향에서의 인체 압력 중심 값(COPx)의 변화를 연산하고, 보행장애 진단부는 상기 COPx의 변화를 기초로 보행장애를 진단한다. 착용형 보행장애 분석 장치(1)는 보행 주기에 따른 상기 COPx의 변화를 극좌표계로 나타내는 디스플레이부를 더 포함할 수 있다.
또한, 도 1에 도시된 바와 같이, 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치(1)는, 신발 내부의 안창(10) 바닥에 복수의 센서(11)를 부착할 수 있는데, 본 실시예에서는 양 발에 각각 5개의 센서를 사용하여 양발의 지면 반력 데이터를 측정할 수 있다.
또한, 측정된 좌측 지면 반력 신호와 우측 반력 신호는 증폭기를 통해 증폭한 후, 연산부에서 합쳐질 수 있다.
도 3은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치(1)의 구성을 설명하는 모식도이다.
도 3에 도시된 바와 같이, 상기 연산부는, 상기 좌측 지면 반력 신호를 우측 지면 반력 신호와 통합한 후 인체 좌우 방향에서의 인체 압력 중심 값(COPx)을 연산하고 이를 이용하여 보행 주기를 추정할 수 있다.
또한 보행장애 진단부는 추정한 보행 주기에 따른 상기 COPx의 변화를 기초로 보행장애를 진단할 수 있다.
이러한 결과는 블루투스 장치를 통하여 보행 분석용 컴퓨터 또는 스마트 기기로 전송하여 실시간으로 데이터를 열람할 수 있으며, 별도의 타이머를 두고 그 시간 데이터를 이용하여 양발 지면 반력 데이터를 동기화(synchronization)할 수 있다.
도 3을 참조하면, 착용형 보행장애 분석 장치(1)의 신발 내부의 안창(10) 바닥의 인쇄 회로 기판(printed circuit board, PCB)과 데이터 수집 방법을 알 수 있다. PCB 는 보행시, 사용자에게 영향을 최소한으로 주기 위해 작고 가볍게 제작될 수 있다. 일 실시예에서, 데이터 수집과 통신을 수행하는 마이크로 컨트롤러 유닛(micro controller unit, MCU)에는 STMicroelectron-ics에서 개발한 STM32F411x 가 사용될 수 있다. 지면 반력은 force sensing resistor(FSR 402, Interlink Electronics, Inc. CA 93012,USA)를 사용하여 측정할 수 있으며, 왼발 MCU 에서 수집한 지면 반력 데이터가 오른발 MCU 로 전송된 뒤, 오른발의 지면 반력 데이터와 동기화하여 합친 후 최종적으로 PC로 전송 및/또는 수집될 수 있다. 일 예에서, 지면 반력의 sampling rate 는 100 Hz 일 수 있다.
도 4은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치(1)의 센서(11) 부착 위치를 설명하는 모식도이다.
도 4에 도시된 바와 같이, 본 출원의 일 실시 형태에서는 압력 센서(11)의 부착 위치는 각 보행 단계별로 순차적으로 지면에 닿는 엄지 발가락(toe), 첫 번째 중족골(1st metatarsal bone), 다섯 번째 중족골(5th metatarsal bone), 입방골(cuboid bone) 그리고 뒤꿈치(heel) 등 총 5곳이다.
도 4에 기재된 바와 같이, 양 발의 뒤꿈치 중앙부를 연결한 선분을 x축으로 나타내었다. 기존 발명에서 보행 주기 추정을 위해 COP를 사용하는 경우, 보행 진행방향과 이에 수직한 방향의 COP 값, 즉 COPy 와 COPx 을 모두 이용하였다. 그러나 보행 장애 환자들의 경우 COPy의 변화에 일관성이 부족하여 판단 오류 발생률이 매우 높아지게 하는 문제점이 존재했다. 따라서 본 출원에서는 보행 장애에 따른 영향이 적게 나타나는 COPx 데이터를 연산부의 주파수 적응 발진기(adaptive frequency oscillator, AO) 알고리즘에 입력데이터로 적용하여 보행 주기를 추정한 후 하나의 보행 주기(gait cycle)에서 COPx 의 변화를 고찰함으로써 건강한 성인과 보행장애 환자를 구분할 수 있다.
여기에서, COPx 는 다음의 [수식 1]을 이용하여 구해질 수 있다.
[수식 1]
Figure PCTKR2023002654-appb-img-000005
xi은 i 번째 FSR의 위치로서 착용자의 키를 기준으로 정의된다. Fi는 i번째 FSR에서 측정되는 지면 반력 신호의 크기이다. 또한 COPx 값을 발의 가장 바깥쪽 센서 위치에 대한 비율로서 평가하기 위해 오른발 5 번째 중족골에 위치한 FSR의 위치로 나누어 구해질 수 있다.
도 5는 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치 및 주파수 적응 발진기를 통해 보행 주기를 추정하는 과정을 도시하는 도면이다.
도 5를 참조하면, AO는 입력되는 신호 u(t)가 어떤 주파수와 그 주파수의 배수로 이루어진 신호의 선형 조합으로 이루어진다는 가정을 기반으로 추정 신호
Figure PCTKR2023002654-appb-img-000006
를 구하는 방법으로서 사용하는 [수식 2]은 다음과 같다
[수식 2]
Figure PCTKR2023002654-appb-img-000007
상기 [수식 2]에서 정의한 변수들을 살펴보면
Figure PCTKR2023002654-appb-img-000008
와 ai는 각각 i번째 오실레이터의 위상(phase)과 진폭(amplitude), a0는 신호의 기본 offset 의 크기, 그리고 ω은 신호의 주파수이다. AO 는 이들 네가지 변수를 이용하여 학습된 신호인
Figure PCTKR2023002654-appb-img-000009
을 연산한다. 연산부의 AO 알고리즘은 5차 방정식 또는 6차 방정식 등으로 설계될 수 있다( i = 5, 6). 여기에서
Figure PCTKR2023002654-appb-img-000010
는 입력 신호에 대하여 위상, 진폭, 그리고 주파수들이 적응(adaptive)하는 속도를 결정하는 파라미터이다. 연산부는 추정 신호
Figure PCTKR2023002654-appb-img-000011
을 최종적인 보행주기로 구할 수 있다.
도 6은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치를 착용하여 취득한 보행자의 보행주기와 이에 따른 인체 좌우방향 압력 중심 값(COPx) 변화의 궤적, 즉
Figure PCTKR2023002654-appb-img-000012
을 직교좌표계로 나타낸 그래프이다.
도 7은 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치를 착용하여 취득한 보행자의 보행주기와 이에 따른 인체 좌우방향 압력 중심 값(COPx) 변화의 궤적, 즉
Figure PCTKR2023002654-appb-img-000013
을 극좌표계로 나타낸 그래프이다.
도 7을 참조하면, 도 6의 직교좌표계 그래프를 다음의 [수식 3]을 이용하여 극좌표계로 변환할 수 있다.
[수식 3]
Figure PCTKR2023002654-appb-img-000014
도 7의 상부 폐곡선과 하부 폐곡선은 COPx가 각각 양수(positive value)와 음수(negative value)인 오른발 지지기와 왼발 지지기에 해당한다.
연산부는 상기 디스플레이부에 나타난 상하측의 두 폐곡선 안의 각각의 면적을 비교하고 접촉점에서의 접선의 기울기를 연산할 수 있다.
상기 보행장애 진단부는 상부 폐곡선의 면적과 하부 폐곡선의 면적의 차이가 미리 설정된 기준 이상일 경우 보행장애로 진단할 수 있다. 보행 속도가 일정한 경우, 이상적인 보행상태에서는 매(each) 보행 주기에서 두 폐곡선으로 둘러싸인 면적의 합은 항상 일정해야 하며 두 폐곡선의 면적이 서로 동일하여 양 발이 지면을 디디는 시간이 같게 된다. 그러나 실제 보행에서는 두 폐곡선의 면적이 서로 다르다. 만약, 상부 폐곡선 면적이 하부 폐곡선 면적보다 큰 경우에는 그 피험자는 보행 중 왼발보다 오른발을 더 오랫동안 디디고 있음을 의미하며 이는 곧 오른발이 체중을 지지하는 시간이 더 길다고 표현할 수 있다.
연산부는 다음의 [수식 4]를 이용해 양 발이 각각 체중을 지지하는 시간의 차이를 비율로 나타낸 값인 ARI(area ratio index)를 계산하고, 보행장애 진단부는 상기 ARI를 지표로서 보행장애 여부를 진단할 수 있다.
[수식 4]
Figure PCTKR2023002654-appb-img-000015
상기 AreaClosed은 폐곡선 안의 면적이고, AreaClosed.R 및 AreaClosed.L 각각은 오른발 지지기에 해당하는 폐곡선의 면적과 왼발 지지기에 해당하는 폐곡선의 면적이고, Arearatio.R은 두 폐곡선의 전체 면적에 대한 오른발 지지기에 해당하는 폐곡선의 면적의 비율이고, Arearatio.L은 두 폐곡선의 전체 면적에 대한 왼발 지지기에 해당하는 폐곡선의 면적의 비율이다. 보행장애 진단부는 상기 ARI 값이 미리 설정된 기준 이상이면 보행장애가 있다고 판단할 수 있다. 보행장애 환자에는 뇌졸중 환자도 포함되는데, 뇌졸중 환자의 보행 장애는 일상생활 활동을 제한하는 주요 합병증 중 하나로서 장기간의 재활을 필요하며 재활 후에도 보행 비대칭이 발생하는 편마비 보행을 하게 된다. 일 실시예에서, 상기 ARI를 뇌졸중 환자와 같은 보행장애 환자의 진단용 바이오 마커로 활용할 수 있다.
도 8a 및 도 8b는 본 출원의 일 실시 형태에 따른 착용형 보행장애 분석 장치를 착용하여 취득한 건강한 성인 및 보행장애 환자의 인체 좌우방향 압력 중심 (COPx)의 위치 변화를 극좌표계로 나타낸 그래프이다.
도 8a 및 8b를 참조하면, COPx가 양수(positive)인 오른발 지지기를 나타나는 상부 폐곡선과 음수(negative)인 왼발 지지기를 나타내는 하부 폐곡선을 구분하였다. 도 8a에 도시된 건강한 성인에 대한 극좌표계 그래프를 살펴보면 상부와 하부 폐곡선 내부 면적의 크기가 서로 비슷하지만 도 8b에 도시된 보행장애 환자에 대한 극좌표계 그래프에서는 상하 폐곡선의 면적 크기가 서로 많이 다르다는 것을 알 수 있다. 즉, 두 그룹의 ARI가 서로 많이 다를 뿐만 아니라 환측 발의 위치를 육안으로 손쉽게 구분할 수 있음을 보여준다.
이와 같은 본 출원의 일 실시예에 따른 착용형 보행장애 분석 장치는 안창 바닥에 설치하는 압력센서를 이용하여 보행 중 발생하는 지면 반력 정보를 취득, 분석함으로써 인체 압력중심의 이동 상황을 실시간으로 파악할 수 있다. 또한, 안창 바닥에 설치하는 압력센서는 저전력 소모형으로 설계되어 장시간 생체데이터 취득이 가능하고, 시간과 장소에 구애 받지 않고 상시 적용 가능하다.
따라서, 본 출원은 착용자의 보행 건전성을 판단하고, 분석 정보를 PC 또는 스마트 기기에 직접적으로 실시간으로 제공함으로써, 저비용 고효율의 건강관리시스템으로 활용할 수 있다. 본 출원은 원격의료장비로서, 환자의 생체 데이터를 측정하고 원격으로 전달하여 의료진이 진찰할 수 있다. 취득한 데이터는 빅데이터로 구축하여 향후 보행장애 분석기술 고도화에 활용 가능하다.
보행주기와 COPx의 위치변화를 극좌표계에 표시하고 보행시 좌우발 지지기의 체중지지 비율을 그림을 통하여 비교함으로써 직관적으로 보행장애 판단에 필요한 정량화된 기준을 제시한다. 따라서, 건강한 성인과 보행장애 환자의 보행특성을 비교하거나 구분하기에 용이하고, 환측 발과 건측 발의 구분이 가능하다.
또한, 본 출원은 개인이 착용할 수 있는 보행분석 장치를 개발, 적용함으로써 누구나 손쉽게 자신의 보행 패턴을 분석하여 건강정보로 활용할 수 있는 저비용의 건강관리 시스템을 제공할 수 있다.
전술한 설명들을 참고하여, 본 출원이 속하는 기술 분야의 종사자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있음을 이해할 수 있을 것이다.
그러므로, 지금까지 전술한 실시 형태는 모든 면에서 예시적인 것으로서, 본 출원을 상기 실시 형태들에 한정하기 위한 것이 아님을 이해해야만 하고, 본 출원의 범위는 전술한 상세한 설명보다는 후술하는 특허 청구 범위에 의하여 나타내지며, 특허 청구 범위의 의미 및 범위 그리고 균등한 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
본 출원의 일 측면에 따른 착용형 보행장애 분석 장치는 보행자의 보행주기를 추정하고 이에 따른 체중이동 상황을 분석하여 보행상태의 양호 여부, 즉, 보행 건전성을 평가할 수 있다.
본 출원은 착용자의 보행 건전성을 판단하고, 분석 정보를 PC 또는 스마트 기기에 직접적으로 실시간으로 제공함으로써, 저비용 고효율의 건강관리시스템으로 활용할 수 있다. 본 출원은 원격의료장비로서, 환자의 생체 데이터를 측정하고 원격으로 전달하여 의료진이 진찰할 수 있다. 취득한 데이터는 빅데이터로 구축하여 향후 보행장애 분석기술 고도화에 활용 가능하다.

Claims (14)

  1. 보행 중 좌측 발바닥에서 발생하는 좌측 지면 반력 신호를 측정하는 복수의 좌측 발바닥 센서부;
    보행 중 우측 발바닥에서 발생하는 우측 지면 반력 신호를 측정하는 복수의 우측 발바닥 센서부; 및
    상기 좌측 지면 반력 신호와 상기 우측 지면 반력 신호를 수신하여 연산하는 연산부를 포함하는 착용형 보행장애 분석 장치로서,
    상기 연산부는, 상기 좌측 지면 반력 신호를 우측 지면 반력 신호와 통합하여 인체 좌우 방향에서의 인체 압력 중심 값(COPx)을 연산하고 이를 이용하여 보행 주기를 추정하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  2. 제 1 항에 있어서,
    상기 연산부는 추정한 보행 주기에 따른 상기 COPx의 변화를 연산하고,
    상기 장치는 상기 COPx의 변화를 기초로 보행장애를 진단하는 보행장애 진단부를 더 포함하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  3. 제2항에 있어서,
    보행 주기에 따른 상기 COPx의 변화를 극좌표계(polar coordinate)로 나타내는 디스플레이부를 더 포함하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  4. 제3항에 있어서,
    상기 연산부는 상기 디스플레이부에 나타난 상하측의 두 폐곡선 안의 각각의 면적을 비교하고 두 폐곡선의 접촉점에서의 접선의 기울기를 연산하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  5. 제3항에 있어서,
    상기 극좌표계는 COPx가 양수(positive value)인 상부 폐곡선 및 COPx가 음수(negative value)인 하부 폐곡선으로 나타내지며, 상부 폐곡선 및 하부 폐곡선 각각은 오른발 지지기 및 왼발 지지기 중 하나에 해당하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  6. 제5항에 있어서,
    상기 연산부는 상부 폐곡선의 면적과 하부 폐곡선의 면적을 연산하고,
    상기 보행장애 진단부는 상부 폐곡선의 면적과 하부 폐곡선의 면적의 차이가 미리 설정된 기준 이상일 경우 보행장애로 진단하고,
    상기 보행장애 진단부가 보행 장애라고 진단할 경우. 두 폐곡선 중 면적이 큰 것에 해당하는 발이 다른 발에 비하여 보행 중 더 오랫동안 지면에 디디고, 체중을 지지하는 시간이 더 길다고 판단되는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  7. 제5항에 있어서,
    상기 연산부는 상부 폐곡선과 하부 폐곡선의 접촉점에서의 접선의 기울기를 연산하고,
    상기 보행장애 진단부는 접선 기울기가 미리 설정된 기준 이상이면 보행장애로 진단하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  8. 제6항에 있어서,
    상기 연산부는 하기 [수식 1], [수식 2], [수식 3] 및 [수식 4]을 이용해 양 발이 각각 체중을 지지하는 시간의 차이를 비율로 나타낸 값인 ARI(area ratio index)를 계산하고,
    상기 보행장애 진단부는 상기 ARI를 지표로서 보행장애 여부를 진단하고,
    [수식 1]
    Figure PCTKR2023002654-appb-img-000016
    [수식 2]
    Figure PCTKR2023002654-appb-img-000017
    [수식 3]
    Figure PCTKR2023002654-appb-img-000018
    [수식 4]
    Figure PCTKR2023002654-appb-img-000019
    상기 AreaClosed은 폐곡선 안의 면적이고, AreaClosed.R 및 AreaClosed.L 각각은 오른발 지지기에 해당하는 폐곡선의 면적과 왼발 지지기에 해당하는 폐곡선의 면적이고, Arearatio.R은 두 폐곡선의 전체 면적에 대한 오른발 지지기에 해당하는 폐곡선의 면적의 비율이고, Arearatio.L은 두 폐곡선의 전체 면적에 대한 왼발 지지기에 해당하는 폐곡선의 면적의 비율인 것을 특징으로 하는 착용형 보행장애 분석 장치.
  9. 제8항에 있어서,
    상기 보행장애 진단부는 상기 ARI 값이 미리 설정된 기준 이상이면 보행장애가 있다고 판단하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  10. 제1항에 있어서,
    상기 인체 압력 중심 값을 스마트 기기를 통하여 실시간으로 열람 가능한 것을 특징으로 하는 착용형 보행장애 분석 장치.
  11. 제1항에 있어서,
    상기 착용형 보행장애 분석 장치는, 상기 좌측 지면 반력 신호와 상기 우측 반력 신호를 증폭하는 증폭기를 더 포함하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  12. 제1항에 있어서,
    상기 착용형 보행장애 분석 장치는, 상기 좌측 지면 반력 신호와 상기 우측 지면 반력 신호를 동기화하는 타이머를 더 포함하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  13. 제1항에 있어서,
    상기 복수의 좌측 발바닥 센서와 상기 복수의 우측 발바닥 센서는, 각각 좌우측 발의 엄지 발가락, 첫 번째 중족골, 다섯 번째 중족골, 입방골 및 뒤꿈치에 설치되는 것을 특징으로 하는 착용형 보행장애 분석 장치.
  14. 제7항에 있어서,
    상기 ARI를 보행장애 환자 진단용 바이오 마커로 활용하는 것을 특징으로 하는 착용형 보행장애 분석 장치.
PCT/KR2023/002654 2022-09-22 2023-02-24 착용형 보행장애 분석 장치 WO2024063227A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220119888A KR20240040948A (ko) 2022-09-22 2022-09-22 착용형 보행장애 분석 장치
KR10-2022-0119888 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024063227A1 true WO2024063227A1 (ko) 2024-03-28

Family

ID=90454528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002654 WO2024063227A1 (ko) 2022-09-22 2023-02-24 착용형 보행장애 분석 장치

Country Status (2)

Country Link
KR (1) KR20240040948A (ko)
WO (1) WO2024063227A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200102162A (ko) * 2019-02-21 2020-08-31 한국과학기술연구원 착용형 보행 분석 장치
KR20210065645A (ko) * 2019-11-27 2021-06-04 한국과학기술연구원 착용형 보행 시작 의도 판단 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648270B1 (ko) 2014-11-10 2016-08-16 연세대학교 산학협력단 보행 단계 판정을 위한 발모듈, 이를 이용한 보행 단계 판정 방법, 보행 분석 시스템 및 능동형 보행 보조 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200102162A (ko) * 2019-02-21 2020-08-31 한국과학기술연구원 착용형 보행 분석 장치
KR20210065645A (ko) * 2019-11-27 2021-06-04 한국과학기술연구원 착용형 보행 시작 의도 판단 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Ph.D. thesis", 1 August 2022, HANYANG UNIVERSITY, Korea, article LEE, HO SEOK: "Clinical Application of Hip-Knee Cyclograms in Gait Analysis in Hemiplegic Stroke Patient", pages: 1 - 73, XP009554341 *
HANSEN ANDREW H., CHILDRESS DUDLEY S., MEIER MARGRIT R.: "A simple method for determination of gait events", JOURNAL OF BIOMECHANICS, PERGAMON PRESS, NEW YORK, NY, US, vol. 35, no. 1, 1 January 2002 (2002-01-01), US , pages 135 - 138, XP093149782, ISSN: 0021-9290, DOI: 10.1016/S0021-9290(01)00174-9 *
LU CHIAHAO, AMUNDSEN-HUFFMASTER SOMMER L., LOUIE KENNETH H., PETRUCCI MATTHEW N., PALNITKAR TARA, PATRIAT REMI, HAREL NOAM, PARK M: "Modulation of Beta Oscillations in the Pallidum During Externally Cued Gait", FRONTIERS IN SIGNAL PROCESSING, vol. 2, XP093149785, ISSN: 2673-8198, DOI: 10.3389/frsip.2022.813509 *

Also Published As

Publication number Publication date
KR20240040948A (ko) 2024-03-29

Similar Documents

Publication Publication Date Title
Chen et al. Toward pervasive gait analysis with wearable sensors: A systematic review
Washabaugh et al. Validity and repeatability of inertial measurement units for measuring gait parameters
Allseits et al. The development and concurrent validity of a real-time algorithm for temporal gait analysis using inertial measurement units
CN100475128C (zh) 生物学信息监测系统
WO2014171696A1 (ko) 비정상 보행 여부를 측정하는 방법
US20040230138A1 (en) Physical movement analyzer and physical movement analyzing method
Lee et al. Toward using a smartwatch to monitor frailty in a hospital setting: using a single wrist-wearable sensor to assess frailty in bedbound inpatients
Lockhart et al. Wavelet based automated postural event detection and activity classification with single IMU (TEMPO)
Mustufa et al. Design of a smart insole for ambulatory assessment of gait
Benocci et al. A wireless system for gait and posture analysis based on pressure insoles and Inertial Measurement Units
De Vroey et al. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population
Silsupadol et al. Smartphone-based assessment of gait during straight walking, turning, and walking speed modulation in laboratory and free-living environments
Anwary et al. Validity and consistency of concurrent extraction of gait features using inertial measurement units and motion capture system
JP2004358229A (ja) 身体運動解析装置および身体運動解析システム
Amitrano et al. Experimental development and validation of an e-textile sock prototype
CN113288121A (zh) 一种步态分析系统
Suriani et al. Optimal accelerometer placement for fall detection of rehabilitation patients
Borghetti et al. Multisensor system for analyzing the thigh movement during walking
WO2019112319A1 (ko) 웨어러블 디바이스를 이용한 여성 배뇨 감지 시스템 및 이를 이용한 진단 방법
WO2024063227A1 (ko) 착용형 보행장애 분석 장치
CN109730687A (zh) 用于脑瘫患者的可穿戴步态检测分析系统
WO2024071564A1 (ko) 3차원 보행신호 기반 노인성 인지장애 진단 장치 및 방법
Xie et al. Wearable multisource quantitative gait analysis of Parkinson's diseases
Zebin et al. Inertial sensing for gait analysis and the scope for sensor fusion
Bhongade et al. Machine learning-based gait characterization using single IMU sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868294

Country of ref document: EP

Kind code of ref document: A1