WO2024063156A1 - Squib firing circuit - Google Patents

Squib firing circuit Download PDF

Info

Publication number
WO2024063156A1
WO2024063156A1 PCT/JP2023/034434 JP2023034434W WO2024063156A1 WO 2024063156 A1 WO2024063156 A1 WO 2024063156A1 JP 2023034434 W JP2023034434 W JP 2023034434W WO 2024063156 A1 WO2024063156 A1 WO 2024063156A1
Authority
WO
WIPO (PCT)
Prior art keywords
squib
switching elements
upstream
downstream
current
Prior art date
Application number
PCT/JP2023/034434
Other languages
French (fr)
Japanese (ja)
Inventor
賢紀 床
Original Assignee
ヴィオニア スウェーデン セーフティー システムズ エービー
賢紀 床
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴィオニア スウェーデン セーフティー システムズ エービー, 賢紀 床 filed Critical ヴィオニア スウェーデン セーフティー システムズ エービー
Publication of WO2024063156A1 publication Critical patent/WO2024063156A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/017Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including arrangements for providing electric power to safety arrangements or their actuating means, e.g. to pyrotechnic fuses or electro-mechanic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags

Definitions

  • the present invention relates to a squib firing circuit.
  • Passenger cars are equipped with airbag devices that deploy airbags to protect occupants in the event of a collision.
  • the airbag system includes an electrical ignition device (squib).
  • squib electrical ignition device
  • a vehicle control device detects a collision, it sends an electric current to the squib, causing it to fire.
  • the squib ignites, the gas generating agent in the inflator is ignited and burned, generating gas.
  • the gas generated inflates the airbag to protect the occupants.
  • Patent Document 1 proposes an airbag ignition system that can reliably deploy an airbag in the event of a collision of a vehicle or the like.
  • ASICs application specific integrated circuits
  • High-density ASICs have low power durability, and the power supply voltage supplied to the circuit is lower than 5V or 3.3V. For example, 1.75V is used as the power supply voltage.
  • the power resistance of a transistor for driving an external load included in an ASIC is decreasing due to miniaturization of semiconductors, and therefore, the voltage for driving the load is decreasing. In order to make the squib ignition more reliable, it is necessary to supply a higher power supply voltage.
  • the airbag ignition system disclosed in Patent Document 1 does not consider ASIC implementation and does not operate at a low power supply voltage.
  • the present invention has been made in view of this situation.
  • the object is to provide a squib firing circuit that fires a squib with a low supply voltage electrical circuit.
  • a squib firing circuit includes a plurality of upstream switching elements connected in parallel to one end of the squib and supplying power to the squib when in an on state, and the upstream switching elements connected in parallel to the other end of the squib.
  • the device includes the same number of downstream switching elements as the switching elements, and the sum of the on-resistances of the upstream switching element and the downstream switching element has a resistance value that allows a current to flow that satisfies the current that causes the squib to fire.
  • the plurality of upstream switching elements and the plurality of downstream switching elements are included in a single integrated circuit.
  • the upstream switching element and the same number of downstream switching elements as the upstream switching elements are included in a single integrated circuit, and the squib firing circuit includes a plurality of integrated circuits, A plurality of sets of the upstream switching elements included in the integrated circuit and the same number of downstream switching elements as the upstream switching elements are connected in parallel to one of the squibs.
  • the upstream switching element and the downstream switching element are switching transistors.
  • one of the upstream switching elements and one of the downstream switching elements constitute a constant current circuit, and the sum of the currents supplied by the plurality of constant current circuits is equal to the sum of the currents supplied by the plurality of constant current circuits. This is the value that satisfies the current that causes the squib to fire.
  • the squib ignition circuit it is possible to ignite the squib using an electric circuit with a low power supply voltage.
  • FIG. 1 is an explanatory diagram showing a configuration example of an airbag system.
  • FIG. 1 is an explanatory diagram showing a configuration example of an airbag system. It is an explanatory diagram showing an example of parallel connection.
  • FIG. 7 is an explanatory diagram showing another example of parallel connection.
  • FIG. 1 is an explanatory diagram showing an example of the configuration of an airbag system.
  • the airbag system 100 includes an airbag ECU (Electronic Control Unit) 10, a squib 3, an on-vehicle battery 4, and an airbag (not shown).
  • the airbag ECU 1 is an electronic circuit that controls deployment of the airbag.
  • the squib 3 is an ignition device that ignites the gas generating agent of the inflator. Since a vehicle is usually equipped with a plurality of airbags, the same number of squibs 3 as airbags are installed in the vehicle.
  • the airbag ECU 1 includes a boost circuit 11, a power supply circuit 12, a power backup capacitor 13, a system ASIC (Application Specific Integrated Circuit) 14, a high side switch 15, an additional ASIC 16, and a CAN (Controller Area Network) interface 17. , an MCU (micro controller unit) 18, and an on-board sensor 19.
  • the onboard battery 4 is a secondary battery.
  • the negative terminal of the vehicle battery 4 is connected to the body of the vehicle, and the positive terminal is connected to the ignition switch IG.
  • the boost circuit 11 boosts the voltage of the vehicle battery 4 connected via the ignition switch IG to a predetermined voltage.
  • the booster circuit 11 supplies charge to the power supply backup capacitor 13 .
  • the power supply circuit 12 steps down the backup power supply voltage of the power supply backup capacitor 13 to a predetermined system voltage when the output voltage of the first booster circuit cannot be maintained due to a drop in the voltage of the vehicle battery 4 or the like.
  • One end of the power backup capacitor 13 is connected to the output of the booster circuit 11, and the other end is connected to the vehicle ground, which is a reference potential, via the ground of the airbag ECU 1.
  • the power backup capacitor 13 serves to supply power for igniting the squib 3.
  • the power supply backup capacitor 13 stores charges supplied from the booster circuit 11 .
  • the system ASIC 14 controls the ignition of the squib 3.
  • the high-side switch 15 is disposed between the power supply backup capacitor 13 and the system ASIC 14 and additional ASIC 16. When the high-side switch 15 is turned on, the power stored in the power supply backup capacitor 13 is supplied to the system ASIC 14 and additional ASIC 16.
  • the additional ASIC 16 controls the ignition of the squib 3 similarly to the system ASIC 14.
  • the CAN interface 17 allows the MCU 18 to communicate with other ECUs via CAN.
  • the MCU 18 controls the system ASIC 14 and the additional ASIC 16, and controls the ignition of the squib 3.
  • the on-board sensor 19 detects the acceleration of the airbag ECU 1.
  • the acceleration detection result is transmitted to the system ASIC 14 and MCU 18.
  • the system ASIC 14 includes a first power controller 141, a second power controller 142, a first sensor interface 143, a second sensor interface 144, a deployment controller 145, a switch controller 146, and a squib driver 2.
  • the first power controller 141 controls the boost circuit 11.
  • the second power controller 142 controls the power supply circuit 12.
  • the first sensor interface 143 receives signals from a collision detection sensor and a side collision prediction sensor mounted on the vehicle.
  • the collision detection sensor is a front collision detection sensor, a side collision detection sensor, or the like.
  • the front collision detection sensor is, for example, an acceleration sensor mounted on a strong frame in front of the vehicle, and detects a collision based on the magnitude of acceleration.
  • the side collision detection sensor is a sensor that detects a collision on the side of a vehicle.
  • a side collision detection sensor is a pressure sensor mounted inside a vehicle door, and detects a collision based on the pressure generated by the deformation of the door.
  • a collision prediction sensor including a side collision is composed of a sensor installed outside the airbag ECU 1, such as a radar, Lidar (Laser Imaging Detection and Ranging), and a stereo camera, and can also be used in place of a side collision detection sensor. It is possible.
  • the second sensor interface 144 receives signals from the situation sensing sensor.
  • the situation detection sensor includes a sensor for predicting the physique of the driver, a sensor for detecting the presence or absence of a passenger in the front passenger seat or the rear seat, and the like.
  • the situation detection sensor is a pressure sensor provided on the seat surface or backrest of the seat. A pressure sensor detects the load applied to the seat and backrest, detects the presence or absence of an occupant, and estimates the occupant's weight, physique, or seating posture.
  • the deployment controller 145 deploys the airbag at the time of a collision based on commands from the MCU 18 and sensor information from the first sensor interface 143 and the second sensor interface 144.
  • the switch controller 146 turns on the high side switch 15 under control from the expansion controller 145.
  • the squib driver 2 supplies the power stored in the power backup capacitor 13 to the squib 3, causing the squib 3 to fire.
  • FIG. 2 is an explanatory diagram showing an example of the configuration of the airbag system.
  • FIG. 2 shows the configuration of the squib driver 2. As shown in FIG. In FIG. 2, the arrangement of the structure has been changed and descriptions have been added to make it easier to understand the structure of the squib driver 2. Further, in FIG. 2, components unnecessary for understanding the configuration of the squib driver 2 in FIG. 1 are omitted. In FIG. 2, components common to those in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted.
  • the squib driver 2 includes firing circuits 21, 22, 23, . . . for each squib 3. Since the configuration of each firing circuit is the same, the firing circuit 21 will be described as a representative.
  • the firing circuit 21 fires the squib 3.
  • the squib 3 ignites the gas generating agent of the inflator.
  • Firing circuit 21 includes an upstream driver interface 211 , an upstream controller 212 , an upstream switching element 213 , a downstream driver interface 214 , a downstream controller 215 , and a downstream switching element 216 .
  • the upstream driver interface 211 receives commands from the deployment controller 145 and outputs operation commands to the upstream controller 212 and downstream controller 215.
  • the downstream driver interface 214 receives commands from the second sensor interface 144 and the SPI (Serial Peripheral Interface) interface 148 and outputs operation commands to the downstream controller 215.
  • SPI Serial Peripheral Interface
  • the upstream controller 212 and the downstream controller 215 operate only when receiving operation commands from the upstream driver interface 211 and the downstream driver interface 214.
  • the upstream controller 212 turns on the upstream switching element 213 (conducting state) and creates a state in which power from the power supply backup capacitor 13 is accepted via the high side switch 15.
  • the upstream switching element 213 can supply current to the upstream terminal of the squib 3.
  • the downstream controller 215 turns on the downstream switching element 216 to ground the downstream terminal of the squib 3. This causes current to flow through the squib 3, causing it to ignite.
  • the airbag deploys when the squib 3 ignites.
  • the upstream switching element 213 and downstream switching element 216 are configured with switching transistors with excellent response.
  • the upstream switching element 213 and downstream switching element 216 are configured with MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors).
  • the reason why the squib 3 does not fire unless both the upstream driver interface 211 and the downstream driver interface 214 receive an operation command is to deploy only the appropriate airbag according to the situation inside the vehicle when a collision is detected. It is.
  • one firing circuit supplies current to one squib 3.
  • one firing circuit may not be able to supply sufficient current to the squib 3.
  • the power supply voltage supplied to the ignition circuit is 17.7V
  • the resistance value (ON resistance) of the upstream switching element and the wiring resistance are 1.25 ⁇ in total
  • the squib resistance is 9.85 ⁇
  • the resistance of the downstream switching element is 1.25 ⁇ .
  • the resistance value (on resistance) and wiring resistance are 1.25 ⁇ in total
  • the current flowing through the squib is 1.43A from equation (1).
  • the squib 3 reliably fires with a current of 1.43A, no problem will occur, but if a larger current, for example 1.75A, is required, the squib 3 will not fire. That is, the sum of the on-resistances of the one upstream switching element 213 and the one downstream switching element 216 has a resistance value that allows a current to flow that is less than the current that causes the squib 3 to fire. In addition, if the resistance value of the squib 3 is set high, the sum of the resistance values will further increase and will not reach the current that causes the squib 3 to fire.
  • the squib 3 Since the resistance value of the squib 3 is greater than the sum of the on-resistances of the upstream switching element 213 and the downstream switching element 216, the squib 3 has a dominant influence on the firing current. At this time, in order to ignite the squib 3, it is conceivable to increase the power supply voltage. However, there are cases where it is not possible to increase the power supply voltage due to problems with the power resistance of the ASIC that constitutes the ignition circuit. Therefore, a plurality of firing circuits are connected in parallel to one squib 3.
  • FIG. 3 is an explanatory diagram showing an example of parallel connection.
  • the example shown in FIG. 3 is an example in which two of the plurality of firing circuits included in one squib driver 2 constituting one system ASIC 14 are connected in parallel to one squib 3.
  • FIG. 4 is an explanatory diagram showing another example of parallel connection.
  • the example shown in FIG. 4 is an example in which a plurality of system ASICs 14a and 14b are prepared, and each firing circuit of the squib drivers 2a and 2b of the two system ASICs 14a and 14b is connected in parallel to one squib 3. be.
  • Embodiments 1 and 2 even if the squib cannot be reliably ignited with the current supplied by a single ignition circuit, the power supply voltage can be increased by connecting multiple ignition circuits to one squib. It becomes possible to supply a current that reliably ignites the squib without causing the squib to ignite.
  • the current is supplied to one squib 3 from the firing circuit 21a and the firing circuit 21b included in different system ASICs 14a and 14b. Therefore, if there is a lag in the start of operation between the ignition circuit 21a and the ignition circuit 21b, the current flowing to the squib 3 will be halved during the time when the lag occurs. Therefore, it is desirable to allow some time for supplying the current to the squib 3. For example, if the condition for the squib 3 to ignite is to supply a current of 1.75 A for 500 ⁇ s or more, the time during which the current can be supplied is designed to be, for example, 600 ⁇ s. Specifically, this can be achieved by increasing the capacity of the power supply backup capacitor 13.
  • Airbag system 1 Airbag ECU 11: Boost circuit 12: Power supply circuit 13: Power backup capacitor 14: System ASIC 141: First power controller 142: Second power controller 143: First sensor interface 144: Second sensor interface 145: Deployment controller 146: Switch controller 147, 148: SPI interface 14a, 14b: System ASIC 15: High side switch 16: Additional ASIC 17: CAN interface 18: MCU 19: On-board sensor 2: Squib driver 21, 22, 23: Firing circuit 211: Upstream driver interface 212: Upstream controller 213: Upstream switching element 214: Downstream driver interface 215: Downstream controller 216: Downstream switching element 2a, 2b: Squib Driver 21a, 21b: Ignition circuit 3: Squib 4: Vehicle battery IG: Ignition switch

Abstract

This squib firing circuit comprises: a plurality of upstream switching elements that are connected in parallel to one end of a squib, and supply power to the squib when in an on-state; and downstream switching elements that are of the same number as the upstream switching elements, and are connected in parallel to the other end of the squib. The sum of the on-resistances of the upstream switching elements and the downstream switching elements is a resistance value that allows the flow of a current of a value satisfying the current at which the squib fires.

Description

スクイブ発火回路squib firing circuit
 本発明は、スクイブ発火回路に関する。 The present invention relates to a squib firing circuit.
 乗用車には、衝突発生時にエアバッグを展開して乗員を保護するエアバッグ装置が搭載されている。エアバッグ装置には電気式の点火装置(スクイブ)が含まれている。車両の制御装置は、衝突を検知すると、スクイブに電流を流し、スクイブを発火させる。スクイブが発火することにより、インフレータ内のガス発生剤が点火され燃焼し、ガスが発生する。発生したガスによりエアバッグが膨らみ、乗員を保護する。特許文献1には、車両等の衝突の際には確実にエアバッグを展開させることができるエアバッグ点火システムが提案されている。 Passenger cars are equipped with airbag devices that deploy airbags to protect occupants in the event of a collision. The airbag system includes an electrical ignition device (squib). When a vehicle control device detects a collision, it sends an electric current to the squib, causing it to fire. When the squib ignites, the gas generating agent in the inflator is ignited and burned, generating gas. The gas generated inflates the airbag to protect the occupants. Patent Document 1 proposes an airbag ignition system that can reliably deploy an airbag in the event of a collision of a vehicle or the like.
特開2000-280857号公報Japanese Patent Application Publication No. 2000-280857
 近年、電気・電子回路のASIC(application specific integrated circuit:特定用途向け集積回路)化が進んでおり、スクイブへ電力を供給する電気回路も含まれる。高密度化されたASICの耐電力は低く、回路に供給する電源電圧が5Vや3.3Vよりも低下している。例えば、電源電圧として1.75Vが採用されている。また、ASICが有する外部負荷駆動用のトランジスタの耐電力は、半導体の微細化により下がっているため、負荷を駆動する電圧が下がることとなる。スクイブ発火をより確実にさせるためには、より高い電源電圧を供給する必要がある。 In recent years, electrical and electronic circuits have been increasingly converted to ASICs (application specific integrated circuits), including the electrical circuits that supply power to squibs. High-density ASICs have low power durability, and the power supply voltage supplied to the circuit is lower than 5V or 3.3V. For example, 1.75V is used as the power supply voltage. Further, the power resistance of a transistor for driving an external load included in an ASIC is decreasing due to miniaturization of semiconductors, and therefore, the voltage for driving the load is decreasing. In order to make the squib ignition more reliable, it is necessary to supply a higher power supply voltage.
 特許文献1に開示のエアバッグ点火システムは、ASIC化は考慮されておらず、低い電源電圧では動作しない。本発明は、このような状況に鑑みてなされたものである。その目的は、低い電源電圧の電気回路によりスクイブを発火させるスクイブ発火回路の提供である。 The airbag ignition system disclosed in Patent Document 1 does not consider ASIC implementation and does not operate at a low power supply voltage. The present invention has been made in view of this situation. The object is to provide a squib firing circuit that fires a squib with a low supply voltage electrical circuit.
 本願の一態様に係るスクイブ発火回路は、スクイブの一端に並列接続され、オン状態のときに前記スクイブに電力を供給する複数の上流スイッチング素子と、前記スクイブの他端に並列接続された前記上流スイッチング素子と同数の下流スイッチング素子とを備え、前記上流スイッチング素子と前記下流スイッチング素子のオン抵抗の和は、前記スクイブが発火する電流を満たす値の電流を流すことが可能な抵抗値を有する。 A squib firing circuit according to an aspect of the present application includes a plurality of upstream switching elements connected in parallel to one end of the squib and supplying power to the squib when in an on state, and the upstream switching elements connected in parallel to the other end of the squib. The device includes the same number of downstream switching elements as the switching elements, and the sum of the on-resistances of the upstream switching element and the downstream switching element has a resistance value that allows a current to flow that satisfies the current that causes the squib to fire.
 本願の一態様に係るスクイブ発火回路において、複数の前記上流スイッチング素子及び複数の前記下流スイッチング素子は、単一の集積回路に含まれている。 In the squib firing circuit according to one aspect of the present application, the plurality of upstream switching elements and the plurality of downstream switching elements are included in a single integrated circuit.
 本願の一態様に係るスクイブ発火回路において、前記上流スイッチング素子及び前記上流スイッチング素子と同数の前記下流スイッチング素子は、単一の集積回路に含まれており、前記集積回路を複数備え、互いに異なる前記集積回路に含まれる複数組の前記上流スイッチング素子及び前記上流スイッチング素子と同数の前記下流スイッチング素子が、一の前記スクイブに並列接続してある。 In the squib firing circuit according to one aspect of the present application, the upstream switching element and the same number of downstream switching elements as the upstream switching elements are included in a single integrated circuit, and the squib firing circuit includes a plurality of integrated circuits, A plurality of sets of the upstream switching elements included in the integrated circuit and the same number of downstream switching elements as the upstream switching elements are connected in parallel to one of the squibs.
 本願の一態様に係るスクイブ発火回路において、前記上流スイッチング素子及び前記下流スイッチング素子はスイッチングトランジスタである。 In the squib firing circuit according to one aspect of the present application, the upstream switching element and the downstream switching element are switching transistors.
 本願の一態様に係るスクイブ発火回路において、一の前記上流スイッチング素子及び一の前記下流スイッチング素子は定電流回路を構成する素子であり、複数の前記定電流回路が供給する電流の和は、前記スクイブが発火する電流を満たす値である。 In the squib firing circuit according to one aspect of the present application, one of the upstream switching elements and one of the downstream switching elements constitute a constant current circuit, and the sum of the currents supplied by the plurality of constant current circuits is equal to the sum of the currents supplied by the plurality of constant current circuits. This is the value that satisfies the current that causes the squib to fire.
 本願の一態様に係るスクイブ発火回路にあっては、低い電源電圧の電気回路によりスクイブを発火させることが可能となる。 In the squib ignition circuit according to one aspect of the present application, it is possible to ignite the squib using an electric circuit with a low power supply voltage.
エアバッグシステムの構成例を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration example of an airbag system. エアバッグシステムの構成例を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration example of an airbag system. 並列接続の例を示す説明図である。It is an explanatory diagram showing an example of parallel connection. 並列接続の他の例を示す説明図である。FIG. 7 is an explanatory diagram showing another example of parallel connection.
 以下実施の形態を、図面を参照して説明する。図1はエアバッグシステムの構成例を示す説明図である。エアバッグシステム100はエアバッグECU(Electronic Control Unit)10、スクイブ3、車載バッテリ4及びエアバッグ(図示しない)を含む。エアバッグECU1はエアバッグの展開を制御する電子回路である。スクイブ3はインフレータのガス発生剤を点火する点火装置である。車両には通常複数のエアバッグが搭載されているから、スクイブ3もエアバッグと同数が車両に搭載されている。 Embodiments will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing an example of the configuration of an airbag system. The airbag system 100 includes an airbag ECU (Electronic Control Unit) 10, a squib 3, an on-vehicle battery 4, and an airbag (not shown). The airbag ECU 1 is an electronic circuit that controls deployment of the airbag. The squib 3 is an ignition device that ignites the gas generating agent of the inflator. Since a vehicle is usually equipped with a plurality of airbags, the same number of squibs 3 as airbags are installed in the vehicle.
 エアバッグECU1は昇圧回路11、電源供給回路12、電源バックアップコンデンサ13、システムASIC(Application Specific Integrated Circuit:特定用途向け集積回路)14、ハイサイドスイッチ15、付加ASIC16、CAN(Controller Area Network)インタフェース17、MCU(micro controller unit)18、及び、オンボードセンサ19を含む。 The airbag ECU 1 includes a boost circuit 11, a power supply circuit 12, a power backup capacitor 13, a system ASIC (Application Specific Integrated Circuit) 14, a high side switch 15, an additional ASIC 16, and a CAN (Controller Area Network) interface 17. , an MCU (micro controller unit) 18, and an on-board sensor 19.
 車載バッテリ4は二次電池である。車載バッテリ4の負極端子は車両のボディに接続され、正極端子はイグニッションスイッチIGに接続されている。 The onboard battery 4 is a secondary battery. The negative terminal of the vehicle battery 4 is connected to the body of the vehicle, and the positive terminal is connected to the ignition switch IG.
 昇圧回路11は、イグニッションスイッチIGを介して接続される車載バッテリ4の電圧を所定の電圧へ昇圧する。昇圧回路11は電源バックアップコンデンサ13へ電荷を供給する。電源供給回路12は車載バッテリ4の電圧が降下したなどの原因で第1昇圧回路の出力電圧が維持できない場合に、電源バックアップコンデンサ13のバックアップ電源電圧を所定のシステム電圧へ降圧する。 The boost circuit 11 boosts the voltage of the vehicle battery 4 connected via the ignition switch IG to a predetermined voltage. The booster circuit 11 supplies charge to the power supply backup capacitor 13 . The power supply circuit 12 steps down the backup power supply voltage of the power supply backup capacitor 13 to a predetermined system voltage when the output voltage of the first booster circuit cannot be maintained due to a drop in the voltage of the vehicle battery 4 or the like.
 電源バックアップコンデンサ13は一端が、昇圧回路11の出力に接続され、他端がエアバッグECU1のグランドを経由し、基準電位である車両グラウンドに接続されている。電源バックアップコンデンサ13はスクイブ3を点火させるための電力を供給する役目を担う。電源バックアップコンデンサ13は、昇圧回路11から供給される電荷を蓄積する。 One end of the power backup capacitor 13 is connected to the output of the booster circuit 11, and the other end is connected to the vehicle ground, which is a reference potential, via the ground of the airbag ECU 1. The power backup capacitor 13 serves to supply power for igniting the squib 3. The power supply backup capacitor 13 stores charges supplied from the booster circuit 11 .
 システムASIC14はスクイブ3の点火を制御する。ハイサイドスイッチ15は、電源バックアップコンデンサ13と、システムASIC14及び付加ASIC16との間に配置されている。ハイサイドスイッチ15がオン状態になると、電源バックアップコンデンサ13に蓄積した電力がシステムASIC14及び付加ASIC16へ供給される。 The system ASIC 14 controls the ignition of the squib 3. The high-side switch 15 is disposed between the power supply backup capacitor 13 and the system ASIC 14 and additional ASIC 16. When the high-side switch 15 is turned on, the power stored in the power supply backup capacitor 13 is supplied to the system ASIC 14 and additional ASIC 16.
 付加ASIC16は、システムASIC14と同様にスクイブ3の点火を制御する。CANインタフェース17はMCU18が、CANを介した他のECUと通信を提供する。MCU18は、システムASIC14及び付加ASIC16を制御し、スクイブ3の点火を制御する。 The additional ASIC 16 controls the ignition of the squib 3 similarly to the system ASIC 14. The CAN interface 17 allows the MCU 18 to communicate with other ECUs via CAN. The MCU 18 controls the system ASIC 14 and the additional ASIC 16, and controls the ignition of the squib 3.
 オンボードセンサ19はエアバッグECU1の加速度を検出する。加速度検出結果をシステムASIC14及びMCU18へ送信する。 The on-board sensor 19 detects the acceleration of the airbag ECU 1. The acceleration detection result is transmitted to the system ASIC 14 and MCU 18.
 システムASIC14は第1パワーコントローラ141、第2パワーコントローラ142、第1センサインタフェース143、第2センサインタフェース144、展開コントローラ145、スイッチコントローラ146、及び、スクイブドライバ2を含む。 The system ASIC 14 includes a first power controller 141, a second power controller 142, a first sensor interface 143, a second sensor interface 144, a deployment controller 145, a switch controller 146, and a squib driver 2.
 第1パワーコントローラ141は昇圧回路11を制御する。第2パワーコントローラ142は電源供給回路12を制御する。 The first power controller 141 controls the boost circuit 11. The second power controller 142 controls the power supply circuit 12.
 第1センサインタフェース143は車両に搭載された衝突検知センサ、側突予知センサからの信号を受信する。衝突検知センサは、前方衝突検知センサ、側突検知センサ等である。前方衝突検知センサは、例えば、車両前方の強固なフレームに実装された加速度センサであり、加速度の大きさにより衝突を検知する。側突検知センサは、車両の側面への衝突を検知するセンサである。側突検知センサは、車両のドア内などに実装する圧力センサであり、ドアの変形によって生じた圧力により、衝突を検知する。側突を含む衝突予知センサは、例えば、レーダ、Lidar(Laser Imaging Detection and Ranging)及びステレオカメラなどのエアバッグECU1の外部に設けられたセンサから構成され、側突検知センサの代わりとして用いることも可能である。 The first sensor interface 143 receives signals from a collision detection sensor and a side collision prediction sensor mounted on the vehicle. The collision detection sensor is a front collision detection sensor, a side collision detection sensor, or the like. The front collision detection sensor is, for example, an acceleration sensor mounted on a strong frame in front of the vehicle, and detects a collision based on the magnitude of acceleration. The side collision detection sensor is a sensor that detects a collision on the side of a vehicle. A side collision detection sensor is a pressure sensor mounted inside a vehicle door, and detects a collision based on the pressure generated by the deformation of the door. A collision prediction sensor including a side collision is composed of a sensor installed outside the airbag ECU 1, such as a radar, Lidar (Laser Imaging Detection and Ranging), and a stereo camera, and can also be used in place of a side collision detection sensor. It is possible.
 第2センサインタフェース144は状況検知センサからの信号を受信する。状況検知センサは、運転手の体格を予測するためのセンサや、助手席や後部座席の乗員の有無を検知するセンサ等である。例えば、状況検知センサは座席の座面や背もたれに設けてある圧力センサである。圧力センサにより、座面や背もたれに掛かる荷重を検知し、乗員の有無を検知、乗員の体重や体格、又は、着座姿勢を推測する。 The second sensor interface 144 receives signals from the situation sensing sensor. The situation detection sensor includes a sensor for predicting the physique of the driver, a sensor for detecting the presence or absence of a passenger in the front passenger seat or the rear seat, and the like. For example, the situation detection sensor is a pressure sensor provided on the seat surface or backrest of the seat. A pressure sensor detects the load applied to the seat and backrest, detects the presence or absence of an occupant, and estimates the occupant's weight, physique, or seating posture.
 展開コントローラ145は、MCU18からの命令や第1センサインタフェース143や第2センサインタフェース144からのセンサ情報に基づき、衝突時にエアバッグの展開を行う。スイッチコントローラ146は展開コントローラ145からの制御によりハイサイドスイッチ15をオン状態にする。スクイブドライバ2は、ハイサイドスイッチ15をオン状態になると、電源バックアップコンデンサ13に蓄積した電力をスクイブ3に供給し、スクイブ3を発火させる。 The deployment controller 145 deploys the airbag at the time of a collision based on commands from the MCU 18 and sensor information from the first sensor interface 143 and the second sensor interface 144. The switch controller 146 turns on the high side switch 15 under control from the expansion controller 145. When the high-side switch 15 is turned on, the squib driver 2 supplies the power stored in the power backup capacitor 13 to the squib 3, causing the squib 3 to fire.
 図2はエアバッグシステムの構成例を示す説明図である。図2はスクイブドライバ2の構成を示す内容としてある。図2では、スクイブドライバ2の構成を理解しやすいように、構成の配置変更や記載の追加を行っている。また、図2では、図1においてスクイブドライバ2の構成を理解するのに不要な構成は省略している。図2において図1と共通する構成は同じ符号を付し、説明を省略する。 FIG. 2 is an explanatory diagram showing an example of the configuration of the airbag system. FIG. 2 shows the configuration of the squib driver 2. As shown in FIG. In FIG. 2, the arrangement of the structure has been changed and descriptions have been added to make it easier to understand the structure of the squib driver 2. Further, in FIG. 2, components unnecessary for understanding the configuration of the squib driver 2 in FIG. 1 are omitted. In FIG. 2, components common to those in FIG. 1 are denoted by the same reference numerals, and explanations thereof will be omitted.
 スクイブドライバ2はスクイブ3毎に発火回路21、22、23…を備えている。各発火回路の構成は同じであるので、発火回路21を代表として説明する。発火回路21はスクイブ3を発火させる。スクイブ3は、インフレータのガス発生剤を点火する。発火回路21は上流ドライバインタフェース211、上流コントローラ212、上流スイッチング素子213、下流ドライバインタフェース214、下流コントローラ215、下流スイッチング素子216を含む。 The squib driver 2 includes firing circuits 21, 22, 23, . . . for each squib 3. Since the configuration of each firing circuit is the same, the firing circuit 21 will be described as a representative. The firing circuit 21 fires the squib 3. The squib 3 ignites the gas generating agent of the inflator. Firing circuit 21 includes an upstream driver interface 211 , an upstream controller 212 , an upstream switching element 213 , a downstream driver interface 214 , a downstream controller 215 , and a downstream switching element 216 .
 上流ドライバインタフェース211は展開コントローラ145からの命令を受け、上流コントローラ212と下流コントローラ215に動作指令を出力する。下流ドライバインタフェース214は第2センサインタフェース144、SPI(Serial Peripheral Interface)インタフェース148から命令を受け、下流コントローラ215に動作指令を出力する。 The upstream driver interface 211 receives commands from the deployment controller 145 and outputs operation commands to the upstream controller 212 and downstream controller 215. The downstream driver interface 214 receives commands from the second sensor interface 144 and the SPI (Serial Peripheral Interface) interface 148 and outputs operation commands to the downstream controller 215.
 上流コントローラ212、及び、下流コントローラ215は、上流ドライバインタフェース211、及び、下流ドライバインタフェース214から動作指令を受け付けた場合のみ動作する。上流コントローラ212は上流スイッチング素子213をオン状態(導通状態)にし、ハイサイドスイッチ15を介して、電源バックアップコンデンサ13からの電力を受け入れる状態を作る。上流スイッチング素子213はスクイブ3の上流側端子に電流供給が可能となる。下流コントローラ215は下流スイッチング素子216をオン状態にし、スクイブ3の下流側端子を接地状態とする。これより、スクイブ3に電流が流れ、発火する。スクイブ3の発火により、エアバッグが展開する。 The upstream controller 212 and the downstream controller 215 operate only when receiving operation commands from the upstream driver interface 211 and the downstream driver interface 214. The upstream controller 212 turns on the upstream switching element 213 (conducting state) and creates a state in which power from the power supply backup capacitor 13 is accepted via the high side switch 15. The upstream switching element 213 can supply current to the upstream terminal of the squib 3. The downstream controller 215 turns on the downstream switching element 216 to ground the downstream terminal of the squib 3. This causes current to flow through the squib 3, causing it to ignite. The airbag deploys when the squib 3 ignites.
 上流コントローラ212及び上流スイッチング素子213、並びに、下流コントローラ215及び下流スイッチング素子216は、定電流回路を構成することが望ましい。複数のスクイブ3を発火させる場合、一つのスクイブ3に電流を多く供給してしまい、他のスクイブ3に供給する電流が不十分となってしまうことを防ぐためである。 It is desirable that the upstream controller 212 and the upstream switching element 213, as well as the downstream controller 215 and the downstream switching element 216, constitute a constant current circuit. This is to prevent a situation where a large amount of current is supplied to one squib 3 and insufficient current is supplied to other squibs 3 when a plurality of squibs 3 are fired.
 上流スイッチング素子213、下流スイッチング素子216は応答性に優れたスイッチングトランジスタで構成する。例えば、上流スイッチング素子213、下流スイッチング素子216はMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)で構成する。 The upstream switching element 213 and downstream switching element 216 are configured with switching transistors with excellent response. For example, the upstream switching element 213 and downstream switching element 216 are configured with MOSFETs (Metal-Oxide-Semiconductor Field Effect Transistors).
 上流ドライバインタフェース211及び下流ドライバインタフェース214が共に、動作指令を受け付けなければ、スクイブ3の発火動作を行わないのは、衝突検知時の車両内の状況に応じた適切なエアバッグのみを展開させるためである。 The reason why the squib 3 does not fire unless both the upstream driver interface 211 and the downstream driver interface 214 receive an operation command is to deploy only the appropriate airbag according to the situation inside the vehicle when a collision is detected. It is.
 図2において、一つのスクイブ3に対して、一つの発火回路が電流を供給している。しかし、スクイブ3の仕様によっては、一つの発火回路では十分な電流をスクイブ3へ供給できない場合がある。例えば、発火回路に供給される電源電圧が17.7V、発火回路において、上流スイッチング素子の抵抗値(オン抵抗)及び配線抵抗を合わせて1.25Ω、スクイブの抵抗が9.85Ω、下流スイッチング素子の抵抗値(オン抵抗)及び配線抵抗を合わせて1.25Ωとした場合、スクイブに流れる電流は、式(1)から、1.43Aである。 In FIG. 2, one firing circuit supplies current to one squib 3. However, depending on the specifications of the squib 3, one firing circuit may not be able to supply sufficient current to the squib 3. For example, the power supply voltage supplied to the ignition circuit is 17.7V, in the ignition circuit, the resistance value (ON resistance) of the upstream switching element and the wiring resistance are 1.25Ω in total, the squib resistance is 9.85Ω, and the resistance of the downstream switching element is 1.25Ω. When the resistance value (on resistance) and wiring resistance are 1.25Ω in total, the current flowing through the squib is 1.43A from equation (1).
 I= V/R = 17.7 /(1.25×2 + 9.85) = 1.43 …(1) I= V/R = 17.7 /(1.25×2 + 9.85) = 1.43…(1)
 スクイブ3が1.43Aの電流で確実に発火するのであれば、問題は生じないが、もっと大きな電流、例えば1.75Aを必要とする場合、スクイブ3は発火しない。すなわち、一の上流スイッチング素子213及び一の下流スイッチング素子216のオン抵抗の和は、スクイブ3が発火する電流に満たない電流を流す抵抗値を有することになる。それに加えスクイブ3の抵抗値が高く設定された場合、抵抗値の合計が更に大きくなり、スクイブ3が発火する電流に満たないことになる。スクイブ3の抵抗値の方が上流スイッチング素子213と下流スイッチング素子216のオン抵抗の和よりも大きいため、スクイブ3の方が発火電流への影響は支配的である。このとき、スクイブ3を発火させるには電源電圧を上げることが考えられる。しかしながら、点火回路を構成するASICの耐電力の問題から電源電圧を上げられない場合がある。そこで、一つのスクイブ3に複数の発火回路を並列接続する。 If the squib 3 reliably fires with a current of 1.43A, no problem will occur, but if a larger current, for example 1.75A, is required, the squib 3 will not fire. That is, the sum of the on-resistances of the one upstream switching element 213 and the one downstream switching element 216 has a resistance value that allows a current to flow that is less than the current that causes the squib 3 to fire. In addition, if the resistance value of the squib 3 is set high, the sum of the resistance values will further increase and will not reach the current that causes the squib 3 to fire. Since the resistance value of the squib 3 is greater than the sum of the on-resistances of the upstream switching element 213 and the downstream switching element 216, the squib 3 has a dominant influence on the firing current. At this time, in order to ignite the squib 3, it is conceivable to increase the power supply voltage. However, there are cases where it is not possible to increase the power supply voltage due to problems with the power resistance of the ASIC that constitutes the ignition circuit. Therefore, a plurality of firing circuits are connected in parallel to one squib 3.
(実施の形態1)
 図3は並列接続の例を示す説明図である。図3に示す例は、一つのシステムASIC14を構成する一つスクイブドライバ2が有する複数の発火回路のうち2つずつを一つのスクイブ3に並列接続する例である。発火回路21と発火回路22とを一つのスクイブ3に接続することにより、スクイブ3へ流せる最大の電流は1.43×2=2.86(A)となり、必要とする電流1.75Aを超え、スクイブ3の動作は保証される。その際、例えば、発火回路21、22において定電流回路の電流上限を1.2Aと設定しておけば、1.2A×2=2.4Aが供給電流の上限値となり、不要なエネルギー消費を防ぐことができる。つまり上記例と比較すると、2.86-2.4=0.46(A)の削減となる。すなわち電源バックアップコンデンサ13の容量削減となる。
(Embodiment 1)
FIG. 3 is an explanatory diagram showing an example of parallel connection. The example shown in FIG. 3 is an example in which two of the plurality of firing circuits included in one squib driver 2 constituting one system ASIC 14 are connected in parallel to one squib 3. By connecting the firing circuit 21 and the firing circuit 22 to one squib 3, the maximum current that can be passed through the squib 3 is 1.43×2=2.86 (A), which exceeds the required current of 1.75A. , the operation of the squib 3 is guaranteed. At that time, for example, if the current upper limit of the constant current circuit in the ignition circuits 21 and 22 is set to 1.2A, 1.2A x 2 = 2.4A will be the upper limit of the supply current, and unnecessary energy consumption will be avoided. It can be prevented. In other words, compared to the above example, the reduction is 2.86-2.4=0.46 (A). In other words, the capacity of the power supply backup capacitor 13 is reduced.
(実施の形態2)
 本実施の形態は、互いに異なるシステムASIC(集積回路)に含まれる複数組の上流スイッチング素子及び上流スイッチング素子と同数の下流スイッチング素子が、一のスクイブに並列接続してある構成に関する。図4は並列接続の他の例を示す説明図である。図4に示す例は、複数のシステムASIC14a、14bを複数用意し、2つのシステムASIC14a、14bのそれぞれスクイブドライバ2a、2bが有する発火回路の一つずつを一つのスクイブ3に並列接続する例である。発火回路21aと発火回路21bとを一つのスクイブ3に接続することにより、スクイブ3へ流せる最大の電流は1.43×2=2.86(A)となり、必要とする電流1.75Aを超え、スクイブ3の動作は保証される。
(Embodiment 2)
This embodiment relates to a configuration in which a plurality of sets of upstream switching elements included in different system ASICs (integrated circuits) and the same number of downstream switching elements as the upstream switching elements are connected in parallel to one squib. FIG. 4 is an explanatory diagram showing another example of parallel connection. The example shown in FIG. 4 is an example in which a plurality of system ASICs 14a and 14b are prepared, and each firing circuit of the squib drivers 2a and 2b of the two system ASICs 14a and 14b is connected in parallel to one squib 3. be. By connecting the firing circuit 21a and the firing circuit 21b to one squib 3, the maximum current that can be passed through the squib 3 is 1.43×2=2.86 (A), which exceeds the required current of 1.75A. , the operation of the squib 3 is guaranteed.
 実施の形態1及び実施の形態2においては、単一の発火回路が供給する電流ではスクイブを確実に発火できない場合においても、複数の発火回路を一つのスクイブに接続することにより、電源電圧を上昇させることなく、スクイブが確実に発火する電流を供給する事が可能となる。 In Embodiments 1 and 2, even if the squib cannot be reliably ignited with the current supplied by a single ignition circuit, the power supply voltage can be increased by connecting multiple ignition circuits to one squib. It becomes possible to supply a current that reliably ignites the squib without causing the squib to ignite.
 実施の形態2においては、異なるシステムASIC14a、14bが有する発火回路21aと発火回路21bとから、一つのスクイブ3へ電流を供給する。そのため、発火回路21aと発火回路21bとの動作開始にズレが生じた場合、ズレが生じた時間は、スクイブ3への電流が半分となってしまう。そこで、スクイブ3へ電流を供給する時間長に余裕を持たせることが望ましい。例えば、スクイブ3が発火する条件が、1.75Aの電流を500μs以上供給する場合、電流の供給可能な時間を、例えば600μsとなるように設計する。具体的には、電源バックアップコンデンサ13の容量を増やすことにより実現可能である。 In the second embodiment, current is supplied to one squib 3 from the firing circuit 21a and the firing circuit 21b included in different system ASICs 14a and 14b. Therefore, if there is a lag in the start of operation between the ignition circuit 21a and the ignition circuit 21b, the current flowing to the squib 3 will be halved during the time when the lag occurs. Therefore, it is desirable to allow some time for supplying the current to the squib 3. For example, if the condition for the squib 3 to ignite is to supply a current of 1.75 A for 500 μs or more, the time during which the current can be supplied is designed to be, for example, 600 μs. Specifically, this can be achieved by increasing the capacity of the power supply backup capacitor 13.
 各実施の形態で記載されている技術的特徴(構成要件)はお互いに組み合わせ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 また、請求の範囲には他の2以上のクレームを引用するクレームを記載する形式(マルチクレーム形式)を用いているが、これに限るものではない。マルチクレームを少なくとも一つ引用するマルチクレーム(マルチマルチクレーム)を記載する形式を用いて記載しても良い。
The technical features (constituent features) described in each embodiment can be combined with each other, and new technical features can be formed by combining them.
The embodiments disclosed herein are illustrative in all respects and should be considered not to be restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above-mentioned meaning, and it is intended that all changes within the scope and meanings equivalent to the scope of the claims are included.
Further, although the scope of claims uses a format in which claims refer to two or more other claims (multi-claim format), this is not a limitation. It may also be written using a multi-claim format that cites at least one multi-claim.
 100     :エアバッグシステム
 1       :エアバッグECU
 11      :昇圧回路
 12      :電源供給回路
 13      :電源バックアップコンデンサ
 14      :システムASIC
 141     :第1パワーコントローラ
 142     :第2パワーコントローラ
 143     :第1センサインタフェース
 144     :第2センサインタフェース
 145     :展開コントローラ
 146     :スイッチコントローラ
 147、148 :SPIインタフェース
 14a、14b :システムASIC
 15      :ハイサイドスイッチ
 16      :付加ASIC
 17      :CANインタフェース
 18      :MCU
 19      :オンボードセンサ
 2       :スクイブドライバ
 21、22、23:発火回路
 211     :上流ドライバインタフェース
 212     :上流コントローラ
 213     :上流スイッチング素子
 214     :下流ドライバインタフェース
 215     :下流コントローラ
 216     :下流スイッチング素子
 2a、2b   :スクイブドライバ
 21a、21b :発火回路
 3       :スクイブ
 4       :車載バッテリ
 IG      :イグニッションスイッチ
100: Airbag system 1: Airbag ECU
11: Boost circuit 12: Power supply circuit 13: Power backup capacitor 14: System ASIC
141: First power controller 142: Second power controller 143: First sensor interface 144: Second sensor interface 145: Deployment controller 146: Switch controller 147, 148: SPI interface 14a, 14b: System ASIC
15: High side switch 16: Additional ASIC
17: CAN interface 18: MCU
19: On-board sensor 2: Squib driver 21, 22, 23: Firing circuit 211: Upstream driver interface 212: Upstream controller 213: Upstream switching element 214: Downstream driver interface 215: Downstream controller 216: Downstream switching element 2a, 2b: Squib Driver 21a, 21b: Ignition circuit 3: Squib 4: Vehicle battery IG: Ignition switch

Claims (5)

  1.  スクイブの一端に並列接続され、オン状態のときに前記スクイブに電力を供給する複数の上流スイッチング素子と、
     前記スクイブの他端に並列接続された前記上流スイッチング素子と同数の下流スイッチング素子とを備え、
     前記上流スイッチング素子と前記下流スイッチング素子のオン抵抗の和は、前記スクイブが発火する電流を満たす値の電流を流すことが可能な抵抗値を有する
     スクイブ発火回路。
    a plurality of upstream switching elements connected in parallel to one end of the squib and supplying power to the squib when in an on state;
    comprising the same number of downstream switching elements as the upstream switching elements connected in parallel to the other end of the squib,
    The sum of the on-resistances of the upstream switching element and the downstream switching element has a resistance value that allows a current to flow that satisfies the current for firing the squib.
  2.  複数の前記上流スイッチング素子及び複数の前記下流スイッチング素子は、単一の集積回路に含まれている
     請求項1に記載のスクイブ発火回路。
    The squib firing circuit of claim 1, wherein a plurality of said upstream switching elements and a plurality of said downstream switching elements are included in a single integrated circuit.
  3.  前記上流スイッチング素子及び前記上流スイッチング素子と同数の前記下流スイッチング素子は、単一の集積回路に含まれており、
     前記集積回路を複数備え、
     互いに異なる前記集積回路に含まれる複数組の前記上流スイッチング素子及び前記上流スイッチング素子と同数の前記下流スイッチング素子が、一の前記スクイブに並列接続してある
     請求項1に記載のスクイブ発火回路。
    the upstream switching element and the same number of downstream switching elements as the upstream switching elements are included in a single integrated circuit;
    comprising a plurality of the integrated circuits,
    The squib firing circuit according to claim 1, wherein a plurality of sets of the upstream switching elements included in the different integrated circuits and the same number of downstream switching elements as the upstream switching elements are connected in parallel to one of the squibs.
  4.  前記上流スイッチング素子及び前記下流スイッチング素子はスイッチングトランジスタである
     請求項1から請求項3の何れか一項に記載のスクイブ発火回路。
    The squib firing circuit according to any one of claims 1 to 3, wherein the upstream switching element and the downstream switching element are switching transistors.
  5.  一の前記上流スイッチング素子及び一の前記下流スイッチング素子は定電流回路を構成する素子であり、
     複数の前記定電流回路が供給する電流の和は、前記スクイブが発火する電流を満たす値である
     請求項1から請求項3の何れか一項に記載のスクイブ発火回路。
    One of the upstream switching elements and one of the downstream switching elements are elements that constitute a constant current circuit,
    The squib firing circuit according to any one of claims 1 to 3, wherein the sum of the currents supplied by the plurality of constant current circuits is a value that satisfies the current that causes the squib to fire.
PCT/JP2023/034434 2022-09-22 2023-09-22 Squib firing circuit WO2024063156A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022151525 2022-09-22
JP2022-151525 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024063156A1 true WO2024063156A1 (en) 2024-03-28

Family

ID=90454787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/034434 WO2024063156A1 (en) 2022-09-22 2023-09-22 Squib firing circuit

Country Status (1)

Country Link
WO (1) WO2024063156A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237914A (en) * 2003-02-07 2004-08-26 Fujitsu Ten Ltd Air bag device
WO2012143750A1 (en) * 2011-04-22 2012-10-26 Freescale Semiconductor, Inc. Method and device for diagnosing a reservoir capacitor of a vehicle passenger protection system, and vehicle safety system incorporating such device
US20170327068A1 (en) * 2016-05-13 2017-11-16 Tk Holdings Inc. Smart initiator assembly
JP2018090002A (en) * 2016-11-30 2018-06-14 株式会社デンソーテン Airbag ignition device
KR20200048147A (en) * 2018-10-29 2020-05-08 현대모비스 주식회사 Apparatus for controlling airbag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004237914A (en) * 2003-02-07 2004-08-26 Fujitsu Ten Ltd Air bag device
WO2012143750A1 (en) * 2011-04-22 2012-10-26 Freescale Semiconductor, Inc. Method and device for diagnosing a reservoir capacitor of a vehicle passenger protection system, and vehicle safety system incorporating such device
US20170327068A1 (en) * 2016-05-13 2017-11-16 Tk Holdings Inc. Smart initiator assembly
JP2018090002A (en) * 2016-11-30 2018-06-14 株式会社デンソーテン Airbag ignition device
KR20200048147A (en) * 2018-10-29 2020-05-08 현대모비스 주식회사 Apparatus for controlling airbag

Similar Documents

Publication Publication Date Title
US6166451A (en) Distributed airbag firing system and interface circuit therefor
US7364190B2 (en) Igniter for air bag system
JP5532078B2 (en) Crew protection device
US7161790B2 (en) Ignition device for bus connection
US6209910B1 (en) Ignition control system for a passive safety device
US6037674A (en) Circuit and method of current limiting a half-bridge driver
JP2004284452A (en) Airbag system
WO2024063156A1 (en) Squib firing circuit
JP6289490B2 (en) Dual actuation system for inflatable restraint
JP4241037B2 (en) Airbag starter
US6717289B2 (en) Method for controlling the emergency power supply and the emergency power supply system, in particular for a vehicle occupant protection system
US7048303B2 (en) Air bag starter and backup circuit used therein
JP3582822B2 (en) Vehicle occupant protection device and control method thereof
JP2009196541A (en) Airbag ignition circuit and airbag ignition unit
JP4116608B2 (en) Current supply circuit
JP2546194Y2 (en) Air bag device
JPH09269247A (en) Multiplex communication circuit
EP0926012B1 (en) Igniter for air bag
JP3360549B2 (en) Explosive element ignition device
JP3001872U (en) Occupant protection device
KR100513080B1 (en) Vehicle Control
US20060208569A1 (en) Airbag electronic control unit with central squib current limiting
WO2003066389A1 (en) Current supply circuit
US20080100047A1 (en) Blasting cap apparatus for vehicle airbag and control method
JP2001001860A (en) Receiving circuit of multiplex communication device