WO2024063029A1 - Foam adhesive sheet, and method for manufacturing structure - Google Patents

Foam adhesive sheet, and method for manufacturing structure Download PDF

Info

Publication number
WO2024063029A1
WO2024063029A1 PCT/JP2023/033787 JP2023033787W WO2024063029A1 WO 2024063029 A1 WO2024063029 A1 WO 2024063029A1 JP 2023033787 W JP2023033787 W JP 2023033787W WO 2024063029 A1 WO2024063029 A1 WO 2024063029A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive sheet
adhesive layer
foamable
adhesive
foaming
Prior art date
Application number
PCT/JP2023/033787
Other languages
French (fr)
Japanese (ja)
Inventor
純子 小谷
信之 神田
優菜 鈴木
健太郎 星
菜穂 前田
泉 長谷川
信哉 島田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2024063029A1 publication Critical patent/WO2024063029A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/08Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers using foamed adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated

Definitions

  • This disclosure relates to a foamable adhesive sheet and a method for manufacturing a structure using the same.
  • Adhesives for bonding members together are used in various fields, and many bonding methods are known.
  • Patent Documents 1 and 2 disclose adhesive sheets containing a foaming agent (foamable adhesive sheets).
  • a foamable adhesive sheet for example, a method is known in which a foamable adhesive sheet is placed between members, and then the foamable adhesive sheet is foamed and cured by heating to bond the members together.
  • foamable adhesive sheets are required to have foaming properties to fill the gaps between components, and adhesive properties to bond the components together.
  • the present disclosure has been made in view of the above circumstances, and provides a foamable adhesive sheet and a structure using the foamable adhesive sheet, which is suitable for a predetermined gap and can obtain excellent foaming properties and adhesive properties.
  • the main purpose is to provide a manufacturing method for.
  • One embodiment of the present disclosure is a foamable adhesive sheet having an adhesive layer, wherein the adhesive layer contains a thermosetting adhesive and a foaming agent, and in the foamable adhesive sheet, thermomechanical measurement The initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature of 160 ° C or more and less than 200 ° C.
  • a foamable adhesive sheet in which the total of the following is 100% or more and 308% or less with respect to the gap setting value of 100%.
  • Another embodiment of the present disclosure includes a step of arranging a foamable adhesive sheet having an adhesive layer between a first member and a second member, and a step of foaming and curing the foamable adhesive sheet by heating.
  • a bonding step of bonding a member and the second member, wherein the adhesive layer contains a thermosetting adhesive and a foaming agent, and the foamable adhesive sheet includes: , by thermomechanical measurement, the initial thickness of the foamable adhesive sheet when applying a compressive load, increasing the temperature at a predetermined temperature increase rate, and measuring the displacement, and at a predetermined temperature of 160 ° C or more and less than 200 ° C.
  • the total displacement amount is 100% or more and 308% or less with respect to the gap setting value of 100%, and the gap setting value is between the first member and the second member.
  • Provided is a method for manufacturing a structure in which the distance of the gap after arranging the .
  • Another embodiment of the present disclosure includes a step of arranging a foamable adhesive sheet having an adhesive layer between a first member and a second member, and a step of foaming and curing the foamable adhesive sheet by heating.
  • the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement is set to be 121% or more and 168% or less with respect to the gap setting value of 100%, and the gap setting value is A method for manufacturing a structure is provided, in which the distance of a gap after the foamable adhesive sheet is placed between one member and the second member is provided.
  • the present disclosure can provide a foamable adhesive sheet and a method for manufacturing a structure using the foamable adhesive sheet, which can obtain excellent foaming properties and adhesive properties suitable for a predetermined gap.
  • FIG. 1 is a schematic cross-sectional view illustrating a foamable adhesive sheet in the present disclosure.
  • FIG. 1 is a schematic cross-sectional view illustrating a foamable adhesive sheet in the present disclosure.
  • FIG. 1 is a schematic cross-sectional view illustrating a foamable adhesive sheet in the present disclosure.
  • 1 is a graph illustrating a TMA curve for a foamable adhesive sheet.
  • FIG. 1 is a schematic cross-sectional view illustrating a foamable adhesive sheet according to the present disclosure.
  • FIG. 3 is a process diagram illustrating a method for manufacturing a structure according to the present disclosure.
  • 1 is a graph illustrating a TMA curve for a foamable adhesive sheet.
  • the term “sheet” also includes a member called a "film.”
  • the term “film” also includes a member called a "sheet.”
  • the numerical range in this specification is a range of average values.
  • the foamable adhesive sheet In order to fill the gaps between members and join the members together, the foamable adhesive sheet must have foaming characteristics such that the thickness of the foamable adhesive sheet after foaming and curing is at least as thick as the gap between the members. be.
  • foamable adhesive sheets it is difficult to balance the expansion ratio and adhesive strength. Therefore, it can be said that there is still room for investigation regarding foaming characteristics and adhesive characteristics suitable for the intended gap.
  • the foaming properties of a foamable adhesive sheet have been evaluated, for example, by the expansion ratio of the foamable adhesive sheet.
  • the foaming ratio of a foamable adhesive sheet refers to the foaming ratio when the foamable adhesive sheet is foamed and cured in a state where no external pressure is applied to the foamable adhesive sheet.
  • thermomechanical measurement the foamable adhesive sheet is heated under a compressive load, and the displacement due to thermal expansion of the foamable adhesive sheet is measured. Measure.
  • the foamable adhesive sheet is foamed and cured while a certain degree of compressive load is applied to the foamed adhesive sheet. Therefore, the measurement conditions for the thermomechanical analysis can be closer to the actual foaming and curing conditions of the foamable adhesive sheet, compared to the conditions for measuring the expansion ratio of the conventional foamable adhesive sheet. Therefore, it is thought that thermomechanical measurements can provide measured values that reflect the foaming and curing behavior of the foamable adhesive sheet.
  • the inventors of the present disclosure focused on the foaming properties of a foamable adhesive sheet measured by thermomechanical measurement, and as a result of intensive studies on the foaming properties and adhesive properties of a foamable adhesive sheet, It has been found that there is a correlation between the amount of displacement when measuring the foaming characteristics of a foamable adhesive sheet and the adhesive strength of the foamable adhesive sheet after foaming and curing. If the total of the initial thickness of the foamable adhesive sheet and the amount of displacement measured by thermomechanical measurement is within a predetermined range for the target gap, then It was found that the adhesive strength was increased. The present disclosure is based on such knowledge.
  • the foamable adhesive sheet in the present disclosure is a foamable adhesive sheet having an adhesive layer, the adhesive layer containing a thermosetting adhesive and a foaming agent, and the foamable adhesive sheet , the initial thickness of the foamable adhesive sheet and a predetermined temperature of 160 ° C or more and less than 200 ° C
  • the sum of the amount of displacement at and is 100% or more and 308% or less with respect to the gap setting value of 100%.
  • the foamable adhesive sheet in the present disclosure will be explained with reference to the drawings.
  • 1 to 3 are schematic cross-sectional views illustrating a foamable adhesive sheet according to the present disclosure.
  • the foamable adhesive sheet 10 in FIG. 1 has an adhesive layer 1.
  • the foamable adhesive sheet 10 in FIG. 2 has a first adhesive layer 1a and a second adhesive layer 1b.
  • the foamable adhesive sheet 10 in FIG. 3 has a first adhesive layer 1a, a base material 2, and a second adhesive layer 1b in this order.
  • the adhesive layer 1, the first adhesive layer 1a, and the second adhesive layer 1b all contain a thermosetting adhesive and a foaming agent.
  • Figure 4 shows the temperature on the horizontal axis and the displacement on the vertical axis when the foamable adhesive sheet was measured by thermomechanical measurement (TMA) by applying a compressive load and increasing the temperature at a predetermined temperature increase rate. It is a graph illustrating a TMA curve with an axis.
  • TMA thermomechanical measurement
  • the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature measured by thermomechanical measurement is within a predetermined range with respect to the gap setting value.
  • excellent foaming and adhesion properties can be obtained that are suitable for the gap settings. Therefore, it is possible to obtain a foamable adhesive sheet that is optimal for filling gaps between members and joining members together, with respect to the gap setting value.
  • the initial thickness of the foamable adhesive sheet and 160° C. were determined by thermomechanical measurement when a compressive load was applied, the temperature was raised at a predetermined temperature increase rate, and the displacement was measured.
  • the total amount of displacement at a predetermined temperature of 200° C. or more is 100% or more and 308% or less with respect to the gap setting value of 100%.
  • the total of the initial thickness of the foamable adhesive sheet and the above displacement amount is preferably 112% or more and 308% or less, more preferably 138% or more and 308% or less, with respect to the gap setting value of 100%. .
  • foaming characteristics and adhesive characteristics suitable for the gap setting value can be obtained.
  • thermomechanical measurement is performed by the following method. First, a foam adhesive sheet is punched out using a jig with a diameter of 4 mm to prepare a sample. Next, the sample is placed in an aluminum container with a diameter of 5 mm, and an aluminum plate with a diameter of 4 mm is placed on top of the sample. Next, thermomechanical measurement is performed under the conditions of temperature: 25° C. or more and 250° C. or less, heating rate: 20° C./min, load: 10 mN, and compression mode, and displacement due to expansion or contraction of the sample is measured. Then, the amount of displacement at a predetermined temperature is determined. As the thermomechanical measuring device, for example, a thermomechanical analyzer TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd. is used.
  • the amount of displacement at a predetermined temperature refers to the amount of displacement accompanying expansion when the predetermined temperature is reached, with the amount of displacement at 25° C. being 0 in the TMA curve.
  • the unit of displacement is " ⁇ m".
  • the predetermined temperature is any temperature between 160°C and below 200°C. This is because when the predetermined temperature is within the above range, a foamable adhesive sheet with good heat resistance can be obtained. Therefore, it can be applied to applications that require heat resistance similar to that of automobile engines. Further, if the predetermined temperature is lower than the above range, the amount of displacement at the predetermined temperature tends to be small. Therefore, adhesive strength may decrease. In this case, interfacial destruction may easily occur between the adhesive sheet and the member after foaming and curing.
  • a thermal expansion agent such as a hydrocarbon is encapsulated inside a shell made of resin.
  • the above-mentioned predetermined temperature is an arbitrary temperature of 160°C or more and less than 200°C.
  • the amount of displacement can be controlled, for example, by adjusting the particle size and content of the foaming agent.
  • the particle size of the blowing agent is large, the above displacement amount tends to be large.
  • the amount of displacement tends to be small.
  • the content of the blowing agent is large, the above displacement amount tends to become large.
  • the content of the blowing agent is small, the above displacement amount tends to be small.
  • the initial thickness of the foamable adhesive sheet is the thickness of the foamable adhesive sheet before foaming, and the thickness of the foamable adhesive sheet at room temperature after setting the foamable adhesive sheet sample in a thermomechanical measuring device.
  • thickness Specifically, as described above, first, a sample is produced by punching out a foamable adhesive sheet using a jig of 4 mm in diameter. Next, the sample is placed in an aluminum container with a diameter of 5 mm, and an aluminum plate with a diameter of 4 mm is placed on top of the sample.
  • the expansion and compression probe of the thermomechanical measurement device is brought into contact with the sample under a load of 100 mN, and the thickness after the aluminum plate and the sample are brought into sufficiently smooth contact is defined as the initial thickness of the foamable adhesive sheet.
  • the initial thickness of the foamable adhesive sheet refers to the thickness of the foamable adhesive sheet excluding the separator.
  • the unit of the initial thickness of the foamable adhesive sheet is " ⁇ m".
  • the above-mentioned gap setting value is preferably, for example, 100 ⁇ m or more and 500 ⁇ m or less, and more preferably 200 ⁇ m or more and 400 ⁇ m or less.
  • the present disclosure is suitable when the gap setting is relatively small as described above. Note that the definition of the gap setting value will be described later.
  • the unit of the gap setting value is " ⁇ m".
  • the foamable adhesive sheet of the present disclosure has a high adhesive strength after foaming and curing.
  • the shear strength (adhesive strength) based on JIS K6850:1999 corresponding to ISO 4587 may be, for example, 1.50 MPa or more, 1.80 MPa or more, or 2.10 MPa or more at 23°C.
  • the above shear strength (adhesive strength) may be, for example, 0.50 MPa or more, 0.75 MPa or more, or 1.00 MPa or more at 130°C.
  • the shear strength is about 1 MPa or more and 2 MPa or less at room temperature, and it does not have heat resistance at 200°C. Therefore, if the above shear strength (adhesive strength) is in the above range at 23°C, it has an advantage in terms of strength. Furthermore, if the above shear strength (adhesive strength) is in the above range at 130°C, it can be applied to applications that require heat resistance around an automobile engine or similar.
  • the foamable adhesive sheet in the present disclosure preferably has high electrical insulation properties after foaming and curing.
  • the dielectric breakdown voltage based on JIS C2107:2011 corresponding to IEC 60454-2 is preferably, for example, 3 kV or more, and more preferably 5 kV or more.
  • the thermal conductivity is preferably, for example, 0.1 W/mK or more, and more preferably 0.15 W/mK or more. When the thermal conductivity is within the above range, the parts can be made smaller and the curing reaction during heating can be promoted.
  • the adhesive layer in the present disclosure contains a thermosetting adhesive and a foaming agent.
  • the foaming agent in the present disclosure is a foaming agent that causes a foaming reaction due to heat.
  • a foaming agent that is generally used in the adhesive layer of a foamable adhesive sheet can be used.
  • the foaming initiation temperature of the foaming agent is equal to or higher than the softening temperature of the main ingredient of a thermosetting adhesive such as an epoxy resin, and below the activation temperature of the curing reaction of the main ingredient of a thermosetting adhesive such as an epoxy resin. It is preferable that there be.
  • the foaming start temperature of the foaming agent is, for example, 70°C or higher, and may be 100°C or higher. If the foaming start temperature is too low, foaming will start early, foaming will occur while the flexibility and fluidity of the resin component is low, and uniform foaming may be difficult to produce. On the other hand, the foaming start temperature of the foaming agent is, for example, 210° C. or lower. If the foaming start temperature is too high, the resin component may deteriorate.
  • the foaming start temperature of the foaming agent is 70°C or more and 210°C or less, and may be 100°C or more and 210°C or less.
  • thermosetting adhesive such as an epoxy resin
  • the foaming agent examples include microcapsule foaming agents. It is preferable that the microcapsule type foaming agent has a thermal expansion agent such as a hydrocarbon as a core and a resin such as an acrylonitrile copolymer as a shell.
  • an organic blowing agent for example, an organic blowing agent or an inorganic blowing agent may be used.
  • organic blowing agents include azo blowing agents such as azodicarbonamide (ADCA), azobisformamide, and azobisisobutyronitrile, fluorinated alkane blowing agents such as trichloromonofluoromethane, and paratoluenesulfonyl hydrazide.
  • Hydrazine blowing agents such as p-toluenesulfonyl semicarbazide, triazole blowing agents such as 5-morpholyl-1,2,3,4-thiatriazole, N, such as N,N-dinitrosoterephthalamide, etc.
  • examples include nitroso blowing agents.
  • examples of inorganic blowing agents include ammonium carbonate, ammonium hydrogen carbonate, ammonium nitrite, ammonium borohydride, and azides.
  • the blowing agents may be used alone or in combination of two or more.
  • the average particle diameter of the blowing agent may be, for example, 10 ⁇ m or more, 13 ⁇ m or more, or 17 ⁇ m or more. Further, the average particle diameter of the foaming agent is preferably equal to or less than the thickness of the adhesive layer, and may be, for example, 44 ⁇ m or less, 30 ⁇ m or less, or 24 ⁇ m or less. Specifically, the average particle size of the foaming agent may be 10 ⁇ m or more and 44 ⁇ m or less, 13 ⁇ m or more and 30 ⁇ m or less, or 17 ⁇ m or more and 24 ⁇ m or less.
  • the average particle size of the blowing agent is the particle size at 50% of the integrated value in the particle size distribution determined by laser diffraction scattering method. Furthermore, when measuring the average particle size of the foaming agent, the adhesive layer is dissolved in a solvent and the foaming agent is separated.
  • the solvent is not particularly limited as long as it is capable of dissolving components other than the foaming agent contained in the adhesive layer, and is appropriately selected depending on the type of thermosetting adhesive contained in the adhesive layer. .
  • a solvent used in the adhesive composition used to form the adhesive layer can be used. Specifically, methyl ethyl ketone, ethyl acetate, toluene, etc. can be used.
  • the foaming ratio of the foaming agent at the maximum foaming temperature is, for example, 1.5 times or more, and may be 3 times or more.
  • the foaming ratio of the foaming agent at the maximum foaming temperature is, for example, 15 times or less, and may be 10 times or less.
  • the foaming ratio of the foaming agent at the maximum foaming temperature is 1.5 times or more and 15 times or less, and may be 3 times or more and 10 times or less.
  • the content of the foaming agent is, for example, 0.5 parts by mass or more, may be 2 parts by mass or more, and may be 3 parts by mass or more when the resin component contained in the adhesive layer is 100 parts by mass. The amount may be 4 parts by mass or more, or 5 parts by mass or more. On the other hand, the content of the foaming agent is, for example, 25 parts by mass or less, may be 20 parts by mass or less, or may be 15 parts by mass or less, based on 100 parts by mass of the resin component contained in the adhesive layer. . If the content of the foaming agent is too large, the content of the thermosetting adhesive will be relatively small, which may reduce the adhesive strength after foaming and curing.
  • the content of the foaming agent is 0.5 parts by mass or more and 25 parts by mass or less, and 2 parts by mass or more and 25 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass. It may be 3 parts by mass or more and 20 parts by mass or less, 4 parts by mass or more and 15 parts by mass or less, or 5 parts by mass or more and 15 parts by mass or less.
  • thermosetting adhesive in the present disclosure, a thermosetting adhesive generally used for the adhesive layer of a foamable adhesive sheet can be used.
  • the thermosetting adhesive can be applied even when the member is not transparent, such as a metal member.
  • thermosetting adhesives examples include epoxy resin adhesives, acrylic resin adhesives, phenolic resin adhesives, unsaturated polyester resin adhesives, alkyd resin adhesives, and urethane resin adhesives. , thermosetting polyimide resin adhesives, and the like.
  • the thermosetting adhesive is preferably an epoxy resin adhesive. That is, the thermosetting adhesive preferably contains an epoxy resin and a curing agent.
  • epoxy resin adhesives have excellent mechanical strength, heat resistance, insulation, chemical resistance, etc., have low curing shrinkage, and can be used in a wide range of applications.
  • thermosetting adhesive is an epoxy resin adhesive
  • Epoxy resin in the present disclosure is a compound that has at least one epoxy group or glycidyl group and is cured by causing a crosslinking polymerization reaction when used in combination with a curing agent.
  • Epoxy resins also include monomers having at least one epoxy group or glycidyl group.
  • epoxy resin examples include aromatic epoxy resins, aliphatic epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins.
  • epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, bisphenol A novolac type epoxy resin, novolac type epoxy resin such as cresol novolac type epoxy resin, urethane modified epoxy resin, etc.
  • modified epoxy resins such as rubber modified epoxy resins.
  • biphenyl-type epoxy resin stilbene-type epoxy resin, triphenolmethane-type epoxy resin, alkyl-modified triphenolmethane-type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol-type epoxy resin
  • examples include naphthalene type epoxy resin, glycol type epoxy resin, and pentaerythritol type epoxy resin.
  • the number of epoxy resins may be one, or two or more.
  • the bisphenol A epoxy resin can exist in a liquid state at room temperature or in a solid state at room temperature, depending on the number of repeating units in the bisphenol skeleton.
  • a bisphenol A type epoxy resin whose main chain has a bisphenol skeleton of, for example, 2 or more and 10 or less is solid at room temperature.
  • bisphenol A type epoxy resin is preferable since it can improve heat resistance.
  • the epoxy resin may be a monofunctional epoxy resin, a bifunctional epoxy resin, a trifunctional epoxy resin, or a tetrafunctional or higher functional epoxy resin.
  • the adhesive layer may further contain an acrylic resin that is compatible with the epoxy resin.
  • Acrylic resin is a resin that is compatible with epoxy resin. Since acrylic resin is compatible with epoxy resin, it is easy to improve the toughness of the adhesive layer. As a result, the adhesiveness after foaming and curing can be improved. Furthermore, the acrylic resin acts as a compatibilizer for the foaming agent (for example, a foaming agent whose shell is made of acrylonitrile copolymer resin), and is thought to improve adhesiveness after foaming and curing by uniformly dispersing and foaming. .
  • the flexibility of the acrylic resin is exhibited, and it is possible to improve the adhesion to the base material after foaming and hardening and the cracking resistance after foaming and hardening. Furthermore, since the acrylic resin is compatible with the epoxy resin, the hardness of the surface of the adhesive layer can be kept high. On the other hand, if the acrylic resin is incompatible with the epoxy resin, a flexible portion will be formed on the surface of the adhesive layer, making the interface with the first member and the second member less slippery, reducing workability. There is.
  • the acrylic resin in the present disclosure is compatible with the epoxy resin.
  • the fact that the acrylic resin is compatible with the epoxy resin means that micron-sized islands occur when the cross section of the adhesive layer is observed using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Check that it is not. More specifically, it is preferable that the average particle size of the islands is 1 ⁇ m or less. Among these, the average particle size of the islands may be 0.5 ⁇ m or less, or 0.3 ⁇ m or less.
  • the number of samples is preferably large, for example 100 or more.
  • the area to be observed is in the range of 100 ⁇ m ⁇ 100 ⁇ m, or in the case where the thickness of the adhesive layer is 100 ⁇ m or less, the area is in the range of thickness ⁇ 100 ⁇ m.
  • the acrylic resin may have a polar group.
  • the polar group include an epoxy group, a hydroxyl group, a carboxyl group, a nitrile group, and an amide group.
  • the acrylic resin is a homopolymer of acrylic ester monomers, may be a mixed component containing two or more of the above homopolymers, or is a copolymer of two or more acrylic ester monomers. , or a copolymer. Moreover, the acrylic resin may be a mixed component of the above-mentioned homopolymer and the above-mentioned copolymer.
  • the acrylic acid ester monomer "acrylic acid" also includes the concept of methacrylic acid. Specifically, the acrylic resin may be a mixture of a methacrylate polymer and an acrylate polymer, or may be an acrylic acid ester polymer such as acrylate-acrylate, methacrylate-methacrylate, or methacrylate-acrylate. . Among these, the acrylic resin preferably contains a copolymer of two or more types of acrylic ester monomers ((meth)acrylic ester copolymer).
  • Examples of the monomer components constituting the (meth)acrylic acid ester copolymer include the monomer components described in JP-A-2014-065889.
  • the monomer component may have the above-mentioned polar group.
  • Examples of the (meth)acrylic acid ester copolymer include ethyl acrylate-butyl acrylate-acrylonitrile copolymer, ethyl acrylate-acrylonitrile copolymer, and butyl acrylate-acrylonitrile copolymer.
  • “acrylic acid” such as methyl acrylate and ethyl acrylate also includes “methacrylic acid” such as methyl methacrylate and ethyl methacrylate.
  • the above (meth)acrylic acid ester copolymer is preferably a block copolymer, and more preferably an acrylic block copolymer such as a methacrylate-acrylate copolymer.
  • the (meth)acrylate constituting the acrylic block copolymer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, and acrylic acid. Examples include benzidyl. These "acrylic acids” also include “methacrylic acids.”
  • methacrylate-acrylate copolymer examples include acrylic copolymers such as methyl methacrylate-butyl acrylate-methyl methacrylate (MMA-BA-MMA) copolymer.
  • MMA-BA-MMA copolymers also include block copolymers of polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate (PMMA-PBA-PMMA).
  • the acrylic copolymer does not need to have a polar group, or may be a modified product in which the above-mentioned polar groups are partially introduced. Since the above-mentioned modified product is easily compatible with the epoxy resin, the adhesiveness is further improved.
  • the acrylic resin is a (meth)acrylic acid having a first polymer part having a glass transition temperature (Tg) of 10°C or lower and a second polymer part having a glass transition temperature (Tg) of 20°C or higher.
  • Tg glass transition temperature
  • the acrylic resin is an ester copolymer.
  • Such a (meth)acrylic acid ester copolymer has a first polymer portion that becomes a soft segment and a second polymer portion that becomes a hard segment.
  • the manifestation of the above effects can be estimated as follows.
  • an acrylic resin that has both soft and hard segments such as the above-mentioned (meth)acrylic acid ester copolymer
  • the hard segments contribute to heat resistance
  • the soft segments contribute to toughness or flexibility.
  • an adhesive layer with good heat resistance, toughness, and flexibility can be obtained.
  • At least one of the first polymer portion and the second polymer portion contained in the (meth)acrylic acid ester copolymer has compatibility with the epoxy resin. If the first polymer portion is compatible with the epoxy resin, flexibility can be increased. Moreover, when the second polymeric part has compatibility with the epoxy resin, cohesiveness and toughness can be improved.
  • the above-mentioned (meth)acrylic acid ester copolymer is preferably a block copolymer, particularly ABA in which the compatible portion is polymer block A and the incompatible portion is polymer block B.
  • it is a block copolymer.
  • the first polymer portion is an incompatible portion
  • the second polymer portion is a compatible portion
  • the first polymer portion is a polymer block B
  • the second polymer portion is a polymer block A.
  • -BA block copolymer is preferred.
  • the above-mentioned (meth)acrylic acid ester copolymer may be a modified product in which the above-mentioned polar group is introduced into a part of the first polymer portion or the second polymer portion.
  • a specific example of the (meth)acrylic acid ester copolymer having the first polymer portion and the second polymer portion is the MMA-BA-MMA copolymer described above.
  • the content of the acrylic resin is, for example, 1 part by mass or more, may be 3 parts by mass or more, or even 5 parts by mass or more when the resin component contained in the adhesive layer is 100 parts by mass.
  • the amount may be 7 parts by mass or more, or 10 parts by mass or more. If the content of the acrylic resin is too low, the adhesiveness after foaming and curing and the adhesiveness of the adhesive layer to the base material may decrease.
  • the content of the acrylic resin is, for example, 60 parts by mass or less, may be 50 parts by mass or less, and may be 40 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass.
  • the amount may be 35 parts by mass or less, or 30 parts by mass or less. If the content of acrylic resin is too large, the film strength may decrease.
  • the content of acrylic resin in the first adhesive layer and the second adhesive layer is the same. may be different from each other.
  • Curing Agent As the curing agent in the present disclosure, a curing agent generally used in an epoxy resin-based adhesive can be used.
  • the curing agent is preferably solid at 23°C.
  • a curing agent that is solid at 23°C can have a longer storage stability (pot life) compared to a curing agent that is liquid at 23°C.
  • the curing agent may be a latent curing agent.
  • the curing agent is usually a curing agent that causes a curing reaction due to heat.
  • one type of curing agent may be used alone, or two or more types may be used.
  • the reaction initiation temperature of the curing agent is, for example, 110°C or higher, and may be 130°C or higher. If the reaction initiation temperature is too low, the reaction will start early, and curing will occur with the resin component having low flexibility and fluidity, making it difficult to achieve uniform curing. On the other hand, the reaction initiation temperature of the curing agent is, for example, 200° C. or lower. If the reaction initiation temperature is too high, the resin component may deteriorate. In addition, when using a resin with high heat resistance, such as a phenol resin, in addition to the epoxy resin, the reaction initiation temperature of the curing agent may be, for example, 300 ° C. or lower, since the resin component is less likely to deteriorate. .
  • reaction start temperature of the curing agent is 110°C or more and 300°C or less, may be 110°C or more and 200°C or less, or may be 130°C or more and 200°C or less.
  • the reaction initiation temperature of the curing agent is determined by differential scanning calorimetry (DSC).
  • the curing agent examples include imidazole curing agents, phenol curing agents, amine curing agents, acid anhydride curing agents, isocyanate curing agents, and thiol curing agents.
  • imidazole-based curing agents examples include imidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, 2-phenylimidazole, carboxylates of imidazole compounds, and adducts with epoxy compounds. It is also preferable that imidazole-based curing agents have hydroxyl groups. As crystallization occurs through hydrogen bonds between hydroxyl groups, the reaction initiation temperature tends to be high.
  • phenolic curing agents examples include phenolic resins. Further, examples of the phenol resin include resol type phenol resin and novolak type phenol resin. From the viewpoint of adhesion to the substrate after foaming and curing, cracking resistance after foaming and curing, etc., a phenolic novolac resin having a Tg of 110° C. or less is particularly preferred. Furthermore, a phenolic curing agent and an imidazole curing agent may be used in combination. In that case, it is preferable to use an imidazole curing agent as a curing catalyst.
  • Examples of the amine curing agent include aliphatic amines, aromatic amines, alicyclic amines, and polyamide amines.
  • Examples of aliphatic amines include diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylylylene diamine (MXDA), and the like.
  • Examples of aromatic amines include diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and diaminodiphenylsulfone (DDS).
  • a dicyandiamide curing agent such as dicyandiamide (DICY), an organic acid dihydrazide curing agent, an amine adduct curing agent, or a ketimine curing agent can be used.
  • Examples of acid anhydride curing agents include alicyclic acid anhydrides (liquid acid anhydrides) and aromatic acid anhydrides.
  • Examples of the alicyclic acid anhydride include hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), and the like.
  • Examples of the aromatic acid anhydride include trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenonetetracarboxylic acid (BTDA), and the like.
  • Examples of the isocyanate curing agent include block isocyanate.
  • thiol curing agent examples include ester bond type thiol compounds, aliphatic ether bond type thiol compounds, and aromatic ether bond type thiol compounds.
  • a curing agent other than an imidazole curing agent in combination with an imidazole curing agent.
  • an imidazole curing agent as a curing catalyst.
  • the content of the curing agent is, for example, 1 part by mass or more and 40 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass.
  • the content of the curing agent is, for example, 1 part by mass or more and 15 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass. It is preferable that
  • the content of the curing agent is, for example, 5 parts by mass or more and 40 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass.
  • an imidazole curing agent or a phenolic curing agent as a main component as a curing agent means that the mass proportion of the imidazole curing agent or phenol curing agent is the largest in the curing agent.
  • the adhesive layer in the present disclosure may contain only the above-mentioned epoxy resin and acrylic resin as resin components, for example, when the thermosetting adhesive is an epoxy resin adhesive, It may further contain other resins. Examples of other resins include urethane resins.
  • the total ratio of the epoxy resin and the acrylic resin to the resin component contained in the adhesive layer is, for example, 70% by mass or more, may be 80% by mass or more, may be 90% by mass or more, and may be 100% by mass. It may be %.
  • the content of the resin component in the adhesive layer is, for example, 60% by mass or more, or may be 70% by mass or more, 80% by mass or more, or may be 90% by mass or more.
  • the adhesive layer contains additives such as silane coupling agents, fillers, antioxidants, light stabilizers, ultraviolet absorbers, lubricants, plasticizers, antistatic agents, crosslinking agents, colorants, etc., as necessary. You may do so.
  • silane coupling agent include epoxy-based silane coupling agents.
  • the filler include inorganic fillers such as calcium carbonate, aluminum hydroxide, magnesium hydroxide, antimony trioxide, zinc borate, molybdenum compounds, and titanium dioxide.
  • examples of the antioxidant include phenolic antioxidants and sulfur-based antioxidants.
  • the thickness of the adhesive layer is not particularly limited, but is preferably equal to or larger than the average particle size of the foaming agent.
  • the thickness of the adhesive layer may be, for example, 10 ⁇ m or more and 200 ⁇ m or less, 15 ⁇ m or more and 150 ⁇ m or less, or 20 ⁇ m or more and 100 ⁇ m or less. If the adhesive layer is too thin, it may not be possible to obtain sufficient adhesion to the base material and adhesion after foaming and curing. Furthermore, if the adhesive layer is too thick, the surface quality may deteriorate.
  • the thickness of the adhesive layer is measured from a cross section in the thickness direction of the foamable adhesive sheet observed by a transmission electron microscope (TEM), a scanning electron microscope (SEM), or a scanning transmission electron microscope (STEM). This value is the average value of the thickness of 10 randomly selected locations. Note that the same applies to the method of measuring the thickness of other layers included in the foamable adhesive sheet.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • STEM scanning transmission electron microscope
  • the adhesive layer may be a continuous layer or a discontinuous layer.
  • the discontinuous layer include patterns such as stripes and dots.
  • the surface of the adhesive layer may have an uneven shape such as embossing.
  • the adhesive layer can be formed, for example, by applying an adhesive composition and removing the solvent.
  • coating methods include roll coating, reverse roll coating, transfer roll coating, gravure coating, gravure reverse coating, comma coating, rod coating, blade coating, bar coating, wire bar coating, die coating, lip coating, dip coating, etc. can be mentioned.
  • the adhesive composition may or may not contain a solvent.
  • solvent as used herein has a broad meaning that includes not only a strict solvent (a solvent that dissolves a solute) but also a dispersion medium. Further, the solvent contained in the adhesive composition is evaporated and removed when the adhesive composition is applied and dried to form an adhesive layer.
  • the adhesive composition can be obtained by mixing the above-mentioned components, kneading and dispersing as necessary.
  • common kneading and dispersing machines such as two-roll mills, three-roll mills, pebble mills, trom mills, Szegvari attritors, high-speed impeller dispersing machines, high-speed stone mills, high-speed impact mills, and despars are used.
  • high-speed mixer, ribbon blender, co-kneader, intensive mixer, tumbler, blender, desperser, homogenizer, and ultrasonic dispersion machine are applicable.
  • the foamable adhesive sheet in the present disclosure only needs to have an adhesive layer, for example, it may have only one adhesive layer, or it may have a first adhesive layer and a second adhesive layer as adhesive layers. It's okay. Further, when the foamable adhesive sheet according to the present disclosure has a first adhesive layer and a second adhesive layer as adhesive layers, it may have the first adhesive layer and the second adhesive layer in this order, and the first adhesive layer and the second adhesive layer may be provided in this order. The layer, the base material, and the second adhesive layer may be included in this order. When the base material is arranged between the first adhesive layer and the second adhesive layer, the handleability and workability of the foamable adhesive sheet can be improved. On the other hand, when the foamable adhesive sheet does not have a base material, the thickness of the entire foamable adhesive sheet can be reduced. Therefore, for example, the foamable adhesive sheet can be inserted into a narrow gap.
  • the foamable adhesive sheet in the present disclosure has a first adhesive layer and a second adhesive layer as adhesive layers, and may have a base material between the first adhesive layer and the second adhesive layer. .
  • the base material has insulation properties. Further, the base material is preferably in the form of a sheet.
  • the base material may have a single layer structure or a multilayer structure. Further, the base material may or may not have a porous structure inside.
  • Examples of the base material include resin base materials and nonwoven fabrics.
  • Examples of the resin contained in the resin base material include polyester resin, polycarbonate, polyarylate, polyurethane, polyamide, polyamide resin, polyimide resin, polysulfone resin, polyetherketone resin, polyphenylene sulfide (PPS), modified polyphenylene oxide, and the like.
  • Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and aromatic polyester.
  • Examples of the polyamide resin include polyetheramide.
  • Examples of the polyimide resin include polyimide, polyetherimide, and polyamideimide.
  • Examples of the polysulfone resin include polysulfone and polyethersulfone.
  • polyetherketone resin examples include polyetherketone and polyetheretherketone.
  • the glass transition temperature of the resin is, for example, 80°C or higher, may be 140°C or higher, or may be 200°C or higher.
  • liquid crystal polymer (LCP) may be used as the resin.
  • nonwoven fabric examples include nonwoven fabrics containing fibers such as cellulose fibers, polyester fibers, nylon fibers, aramid fibers, polyphenylene sulfide fibers, liquid crystal polymer fibers, glass fibers, metal fibers, and carbon fibers.
  • fibers such as cellulose fibers, polyester fibers, nylon fibers, aramid fibers, polyphenylene sulfide fibers, liquid crystal polymer fibers, glass fibers, metal fibers, and carbon fibers.
  • the base material may be surface-treated to improve adhesion with the adhesive layer.
  • the thickness of the base material is not particularly limited, and may be, for example, 2 ⁇ m or more and 200 ⁇ m or less, 5 ⁇ m or more and 100 ⁇ m or less, or 9 ⁇ m or more and 50 ⁇ m or less.
  • the foamable adhesive sheet in the present disclosure may have other configurations as necessary.
  • the foamable adhesive sheet in the present disclosure may have a first intermediate layer between the base material and the first adhesive layer. Further, the foamable adhesive sheet in the present disclosure may have a second intermediate layer between the base material and the second adhesive layer.
  • first intermediate layer and the second intermediate layer By arranging the first intermediate layer and the second intermediate layer, it is possible to improve the adhesion of the first adhesive layer and the second adhesive layer to the base material. Furthermore, by arranging the first intermediate layer and the second intermediate layer, for example, when the foam adhesive sheet is bent, stress applied to the bent part can be alleviated, and when the foam adhesive sheet is cut, the stress applied to the bent part can be alleviated. The stress applied to the cut portion can be alleviated. As a result, it is possible to suppress lifting and peeling of the first adhesive layer and the second adhesive layer from the base material when the foamable adhesive sheet is bent or cut.
  • the foamable adhesive sheet 10 shown in FIG. Layer 3b is arranged.
  • the foamable adhesive sheet 10 has both the first intermediate layer 3a and the second intermediate layer 3b in FIG. 5, it may have only either one.
  • the foamable adhesive sheet only needs to have at least one of the first intermediate layer and the second intermediate layer, for example, only the first intermediate layer disposed between the base material and the first adhesive layer. It may have only the second intermediate layer disposed between the base material and the second adhesive layer, or it may have only the second intermediate layer disposed between the base material and the first adhesive layer, and the base material and the first intermediate layer disposed between the base material and the first adhesive layer. and a second intermediate layer disposed between the second adhesive layer. Among these, it is preferable that the first intermediate layer is disposed between the base material and the first adhesive layer, and that the second intermediate layer is disposed between the base material and the second adhesive layer.
  • the material included in the first intermediate layer and the second intermediate layer may be any material that can enhance the adhesion between the base material and the first adhesive layer or the second adhesive layer, and can relieve stress. It is not particularly limited, and is appropriately selected depending on the materials of the base material, the first adhesive layer, the second adhesive layer, and the like. Examples include polyester, polyvinyl chloride, polyvinyl acetate, polyurethane, polymers obtained by copolymerizing at least two thereof, crosslinked products thereof, and mixtures thereof.
  • the crosslinked product is a crosslinked product obtained by crosslinking the above resin with a curing agent.
  • the curing agent include isocyanate curing agents.
  • the first intermediate layer and the second intermediate layer contain a crosslinked resin.
  • crosslinked resin refers to one that does not melt even at high temperatures. This makes it possible to improve adhesive strength at high temperatures, that is, heat resistance.
  • the thickness of the first intermediate layer and the thickness of the second intermediate layer are not particularly limited, but are, for example, 0.1 ⁇ m or more, may be 0.5 ⁇ m or more, or may be 1 ⁇ m or more. If the first intermediate layer or the second intermediate layer is too thin, the effect of suppressing the peeling of the first adhesive layer or the second adhesive layer from the base material during bending or cutting of the foamable adhesive sheet will not be achieved sufficiently. there is a possibility. On the other hand, the thickness of the first intermediate layer and the thickness of the second intermediate layer are, for example, 4 ⁇ m or less, and may be 3.5 ⁇ m or less.
  • the first intermediate layer and the second intermediate layer themselves usually do not have high heat resistance, so if the first intermediate layer or the second intermediate layer is too thick, the heat resistance (adhesion strength at high temperatures) may decrease.
  • the thickness of the first intermediate layer and the thickness of the second intermediate layer are 0.1 ⁇ m or more and 4 ⁇ m or less, and may be 0.5 ⁇ m or more and 4 ⁇ m or less, and 0.5 ⁇ m or more and 3.5 ⁇ m or less.
  • the thickness may be 1 ⁇ m or more and 3.5 ⁇ m or less.
  • the first intermediate layer and the second intermediate layer can be formed, for example, by applying a resin composition and removing the solvent.
  • coating methods include roll coating, reverse roll coating, transfer roll coating, gravure coating, gravure reverse coating, comma coating, rod coating, blade coating, bar coating, wire bar coating, die coating, lip coating, and dip coating. Can be mentioned.
  • the foamable adhesive sheet in the present disclosure may have a first separator on the side of the first adhesive layer opposite to the second adhesive layer. Further, the foamable adhesive sheet in the present disclosure may have a second separator on the side of the second adhesive layer opposite to the first adhesive layer.
  • the first separator and the second separator are not particularly limited as long as they can be peeled off from the first adhesive layer and the second adhesive layer, and have sufficient strength to protect the first adhesive layer and the second adhesive layer. be able to.
  • Examples of the first separator and the second separator include a release film, release paper, and the like. Further, the first separator and the second separator may have a single layer structure or a multilayer structure.
  • Examples of the single-layer separator include fluororesin films.
  • a separator with a multilayer structure for example, a laminate having a release layer on one or both sides of a base layer can be mentioned.
  • the base material layer include resin films such as polypropylene, polyethylene, and polyethylene terephthalate, and papers such as high-quality paper, coated paper, and impregnated paper.
  • the material for the release layer is not particularly limited as long as it has release properties, and examples include silicone compounds, organic compound-modified silicone compounds, fluorine compounds, aminoalkyd compounds, melamine compounds, acrylic compounds, polyester compounds, and long-lasting materials. Examples include chain alkyl compounds. These compounds may be of emulsion type, solvent type or non-solvent type.
  • the thickness of the foamable adhesive sheet in the present disclosure is, for example, 10 ⁇ m or more, and may be 20 ⁇ m or more.
  • the thickness of the foamable adhesive sheet is, for example, 1000 ⁇ m or less, and may be 200 ⁇ m or less.
  • the thickness of the foamable adhesive sheet is 10 ⁇ m or more and 1000 ⁇ m or less, and may be 20 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the foamable adhesive sheet here and the initial thickness of the foamable adhesive sheet described above are different.
  • the use of the foamable adhesive sheet in the present disclosure is not particularly limited.
  • the foamable adhesive sheet according to the present disclosure can be used, for example, to bond two members together by placing the foamable adhesive sheet between two members and then foaming and curing the foamable adhesive sheet by heating. Can be done.
  • the foamable adhesive sheet according to the present disclosure is used for adhering a coil and a stator in a motor, and for adhering a rotor and a permanent magnet in an embedded magnet type motor.
  • the method for manufacturing the foamable adhesive sheet in the present disclosure is not particularly limited.
  • the adhesive layer is formed by applying an adhesive composition to one side of the separator and drying it. There are several methods. Thereafter, the separator may be peeled off.
  • the foamable adhesive sheet has a first adhesive layer and a second adhesive layer as adhesive layers and does not have a base material between the first adhesive layer and the second adhesive layer
  • the first separator and the second separator may be peeled off.
  • the foamable adhesive sheet has a first adhesive layer, a base material, and a second adhesive layer in this order, by applying and drying the adhesive composition on both sides of the base material, Mention may be made of methods for forming the first adhesive layer and the second adhesive layer.
  • the first adhesive layer and the second adhesive layer may be formed sequentially or simultaneously.
  • the first adhesive layer may be formed by applying and drying the adhesive composition on one side of the base material
  • the first adhesive layer may be formed by applying and drying the adhesive composition on one side of the separator.
  • Another example is a method of forming two adhesive layers and laminating the second adhesive layer and a separator on the other side of the base material.
  • a first embodiment of the method for manufacturing a structure according to the present disclosure includes a step of arranging a foamable adhesive sheet having an adhesive layer between a first member and a second member, and a step of arranging a foamable adhesive sheet having an adhesive layer. a bonding step of foaming and curing by heating and bonding the first member and the second member, the adhesive layer comprising a thermosetting adhesive, a foaming agent, and a foaming agent.
  • the initial thickness of the foamable adhesive sheet is determined by thermomechanical measurement when a compressive load is applied, the temperature is raised at a predetermined temperature increase rate, and the displacement is measured.
  • the total amount of displacement at a predetermined temperature of 100% or more and less than 200°C is 100% or more and 308% or less with respect to 100% of the gap setting value, and the gap setting value is This is the distance of the gap after the foamable adhesive sheet is placed between the two members.
  • FIGS. 6(a) to 6(b) are process diagrams illustrating the method for manufacturing the structure of this embodiment.
  • the foamable adhesive sheet 10 is placed between the first member 20a and the second member 20b.
  • the adhesive layer of the foamable adhesive sheet 10 is foamed and cured by heating.
  • the first member 20a and the second member 20b are adhered (joined) by the adhesive sheet 11 after foaming and hardening. Thereby, a structure 100 is obtained in which the adhesive sheet 11 is arranged between the first member 20a and the second member 20b.
  • the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature in the TMA curve as shown in FIG. within range.
  • the gap setting value is the distance of the gap after the foamable adhesive sheet is placed between the first member and the second member.
  • the sum of the distances d1 and d2 of the gaps G1 and G2 after the foam adhesive sheet 10 is placed between the first member 20a and the second member 20b is the gap setting value.
  • the above-mentioned foamable adhesive sheet is used. Therefore, excellent foaming and adhesion properties suitable for the gap settings can be obtained. Therefore, in order to fill the gaps between the members and join the members to each other, it is possible to select and use the foamable adhesive sheet that is most suitable for the gap setting value.
  • Foamable adhesive sheet In the foamable adhesive sheet used in this embodiment, displacement was measured by applying a compressive load and increasing the temperature at a predetermined temperature increase rate by thermomechanical measurement. At this time, the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature of 160° C. or more and less than 200° C. is within a predetermined range with respect to the gap setting value.
  • the foamable adhesive sheet is the same as the foamable adhesive sheet described above.
  • the gap setting value is the distance of the gap after the foamable adhesive sheet is placed between the first member and the second member.
  • the arrangement step in this embodiment is a step of arranging a foamable adhesive sheet having an adhesive layer between the first member and the second member.
  • the method of arranging the foamable adhesive sheet between the first member and the second member is appropriately selected depending on the types of the first member and the second member. For example, a method in which a foam adhesive sheet is placed on one of the first member and the second member, and the other member is placed on the side of the foam adhesive sheet opposite to the first member; and a method of inserting a foam adhesive sheet into the gap between the second member, after placing the foam adhesive sheet in the hole, groove, etc. of the first member, foam adhesive in the hole, groove, etc. of the first member. Examples include a method of inserting a second member into the gap after the sheet is placed.
  • a foam adhesive sheet may be attached to the second member. After that, a second member with a foam adhesive sheet pasted in the hole or groove of the first member is placed. After the foam adhesive sheet is pasted in the hole or groove of the first member, the foam adhesive sheet is Examples include a method of arranging the second member in a hole or groove of the first member to which the second member is pasted.
  • the first and second members are appropriately selected depending on the application of the structure.
  • the first and second members are preferably members that require adhesion and insulation.
  • motor parts are included. More specifically, the coil and stator of a motor, and the rotor and permanent magnet of an embedded magnet motor are included.
  • Adhesion process in this embodiment is a process of foaming and curing the foamable adhesive sheet by heating and bonding the first member and the second member.
  • the heating temperature in the bonding process is the initial thickness of the foamable adhesive sheet when a compressive load is applied to the foamable adhesive sheet, the temperature is raised at a predetermined temperature increase rate, and the displacement is measured by thermomechanical measurement. It is preferable that the total amount including the amount of displacement at a predetermined temperature is set to be 100% or more and 308% or less, and preferably set to be 112% or more and 294% or less with respect to the gap setting value of 100%. It is more preferable that If the heating temperature is lower than the above range, the amount of displacement will be small, so foaming will be insufficient and adhesive strength may decrease. In this case, interfacial destruction may easily occur between the adhesive sheet after foaming and curing and the first member or the second member.
  • the amount of displacement tends to decrease after reaching the maximum amount of displacement in the TMA curve. Therefore, if the heating temperature is higher than the above range, the amount of displacement will become smaller after reaching the maximum amount of displacement, and as a result, the thickness of the adhesive layer during foaming cannot be maintained, and the adhesive strength may decrease. There is sex.
  • the heating temperature is preferably 160°C or higher and 190°C or lower.
  • heat resistance can be improved. Therefore, it can be applied to applications that require heat resistance similar to that of automobile engines.
  • a second embodiment of the method for manufacturing a structure according to the present disclosure includes a step of arranging a foamable adhesive sheet having an adhesive layer between a first member and a second member; a bonding step of foaming and curing by heating and bonding the first member and the second member, the adhesive layer comprising a thermosetting adhesive, a foaming agent, and a foaming agent. and the heating temperature in the bonding step is 150°C or more and less than 200°C, and in the foamable adhesive sheet, according to thermomechanical measurement, a compressive load is applied to the heating temperature at a predetermined temperature increase rate.
  • the gap setting value is the distance of the gap after the foamable adhesive sheet is placed between the first member and the second member.
  • FIG. 7 shows the time on the horizontal axis, when the foamable adhesive sheet was heated to a predetermined temperature at a predetermined temperature increase rate, and the displacement was measured by thermomechanical measurement (TMA).
  • TMA thermomechanical measurement
  • the heating temperature in the bonding step is 150°C or more and less than 200°C, and the initial thickness of the foamable adhesive sheet and the foamable adhesive sheet are measured by thermomechanical measurement.
  • heating conditions during foam curing of a foamable adhesive sheet are set based on, for example, the foaming start temperature of the foaming agent, the maximum foaming temperature of the foaming agent, the curing start temperature of the adhesive, etc.
  • Patent Document 2 states that regarding the heating conditions, when the thermal foaming temperature (foaming start temperature) of the thermal foaming agent is T1 and the curing start temperature of the adhesive layer is T2, the relationship T1 ⁇ T2 is satisfied.
  • the thermal foaming temperature (foaming start temperature) of the thermal foaming agent is T1 and the curing start temperature of the adhesive layer is T2, the relationship T1 ⁇ T2 is satisfied.
  • the foaming start temperature of the foaming agent and the hardening start temperature of the adhesive layer are in a predetermined relationship. It was also found that the adhesive strength may decrease. Note that the foaming start temperature and maximum foaming temperature of the foaming agent are the foaming characteristics of the foaming agent alone, and cannot be said to be the foaming characteristics of the foamable adhesive sheet.
  • the heating conditions are set based on the initial thickness of the foamable adhesive sheet and the amount of displacement measured by thermomechanical measurement of the foamable adhesive sheet.
  • the measurement conditions for the thermomechanical analysis can be made close to the actual foaming and curing conditions of the foamable adhesive sheet. Therefore, it is thought that thermomechanical measurements can provide measured values that reflect the foaming and curing behavior of the foamable adhesive sheet.
  • Foamable adhesive sheet The foamable adhesive sheet used in this embodiment has an adhesive layer, and the adhesive layer contains a thermosetting adhesive and a foaming agent.
  • the adhesive layer in the foamable adhesive sheet is the same as the adhesive layer described in the section "A. Foamable adhesive sheet 2. Adhesive layer" above.
  • foamable adhesive sheet is the same as those described in the section of "A. Foamable adhesive sheet" above.
  • the arrangement step in this embodiment is a step of arranging a foamable adhesive sheet having an adhesive layer between the first member and the second member.
  • the arrangement step and the first and second members are the same as those in the first embodiment.
  • Adhesion process in this embodiment is a process of foaming and curing the foamable adhesive sheet by heating and bonding the first member and the second member.
  • the heating temperature in the bonding process is 150°C or more and less than 200°C
  • the foam adhesive sheet is heated to the heating temperature at a predetermined heating rate by applying a compressive load according to thermomechanical measurements.
  • the total of the initial thickness of the foamable adhesive sheet and the amount of displacement is set to be 121% or more and 168% or less with respect to the gap setting value of 100%.
  • the heating temperature in the bonding step is 150°C or more and less than 200°C, and the total of the initial thickness of the foamable adhesive sheet and the above displacement is 149% or more with respect to the gap setting value of 100%. % or less.
  • thermomechanical measurement is performed by the following method. First, a foam adhesive sheet is punched out using a jig with a diameter of 4 mm to prepare a sample. Next, the sample is placed in an aluminum container with a diameter of 5 mm, and an aluminum plate with a diameter of 4 mm is placed on top of the sample. Next, thermomechanical measurements are performed under the conditions of temperature: 25° C. to a predetermined heating temperature, heating rate: 20° C./min, load: 10 mN, compression mode, and displacement due to expansion or contraction of the sample is measured. As the thermomechanical measuring device, for example, a thermomechanical analyzer TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd. is used.
  • the heating temperature is preferably 160°C or higher and 190°C or lower.
  • heat resistance can be improved. Therefore, it can be applied to applications that require heat resistance similar to that of automobile engines.
  • gap setting value is the same as the gap setting value described in the section of "A. Foamable adhesive sheet" above.
  • ⁇ Acrylic resin PMMA-PBuA-PMMA (acrylamide group in part), Tg: -20°C, 120°C, Mw: 150,000 ⁇ Epoxy resin A: Bisphenol A novolac type, solid at room temperature, softening temperature: 70°C, epoxy equivalent: 210g/eq, Mw: 1300, melt viscosity at 150°C: 0.5Pa ⁇ s ⁇ Epoxy resin B: BPA phenoxy type, solid at room temperature, softening temperature: 110°C, epoxy equivalent: 8000g/eq, Mw: 50,000 ⁇ Epoxy resin C: bisphenol A type, liquid at room temperature, epoxy equivalent: 184 to 194 g/eq ⁇ Epoxy resin D: Diaminodiphenylmethane type, high viscosity liquid, epoxy equivalent: 110 to 130 g/eq ⁇ Epoxy resin E: silicone modification, epoxy equivalent: 1200 g/mol ⁇ Curing agent 1: ⁇ -(hydroxy (or dihydroxy) phen
  • ⁇ Thermal foaming agent 1 thermally expandable microcapsules, average particle size 13 ⁇ m, expansion start temperature 123-133°C, maximum expansion temperature 168-178°C, core: hydrocarbon, shell: thermoplastic polymer
  • ⁇ Thermal foaming agent 2 Thermally expandable microcapsules, average particle size 21 ⁇ m, expansion start temperature 120-130°C, maximum expansion temperature 175-190°C, core: hydrocarbon
  • shell thermoplastic polymer
  • silane coupling agent 3-glycidoxypropyl Trimethoxysilane/Solvent: Methyl ethyl ketone
  • PEN film polyethylene naphthalate (PEN film, manufactured by Toyobo Film Solutions Co., Ltd., Theonex Q51, thickness 25 ⁇ m) was prepared, with an intermediate layer having a thickness of 5 ⁇ m or less arranged on one surface.
  • the adhesive composition was applied to the surface of the substrate opposite to the intermediate layer using an applicator so that the thickness after drying was 45 ⁇ m. Thereafter, it was dried in an oven at 100° C. for 3 minutes to form a first adhesive layer.
  • the adhesive composition was applied to the surface of the intermediate layer opposite to the base material using an applicator so that the thickness after drying was 45 ⁇ m. Thereafter, it was dried in an oven at 100° C. for 3 minutes to form a second adhesive layer.
  • a release film (PET separator, made by Nipper Co., Ltd., PET50 ⁇ 1-J2, thickness 50 ⁇ m) was laminated. Thereby, a foamable adhesive sheet was obtained in which the first adhesive layer, the base material, the intermediate layer, the second adhesive layer, and the second separator were arranged in this order.
  • PET separator made by Nipper Co., Ltd., PET50 ⁇ 1-J2, thickness 50 ⁇ m
  • thermomechanical measurement As a thermomechanical measuring device, a thermomechanical analyzer TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd. was used. First, a sample was prepared by punching out a foam adhesive sheet using a jig with a diameter of 4 mm. Next, the sample was placed in an aluminum container with a diameter of 5 mm with the second adhesive layer facing the bottom, and an aluminum plate with a diameter of 4 mm was placed on top of the sample. In this state, the expansion and compression probe of the thermomechanical measuring device was brought into contact with a load of 100 mN, and the thickness of the sample after sufficiently smooth contact between the aluminum plate and the sample was defined as the initial thickness of the foamable adhesive sheet.
  • thermomechanical measurements were performed under the conditions of temperature: 25° C. or higher and 250° C. or lower, heating rate: 20° C./min, load: 10 mN, and compression mode, and displacement due to expansion or contraction of the sample was measured. Then, the amount of displacement at each temperature was determined.
  • Adhesive strength Two metal plates (cold rolled steel plate SPCC-SD) with a thickness of 1.6 mm, a width of 25 mm, and a length of 100 mm were prepared. Spacers were placed at one end of one of the metal plates at an interval of 15 mm.
  • the thickness of the spacer is 300 ⁇ m (thickness of 5 layers of Kapton Tape P-221 manufactured by Nitto Denko Corporation) or 370 ⁇ m (thickness of 2 layers of Kapton Tape P-221 manufactured by Nitto Denko Corporation and fluororesin manufactured by Teraoka Manufacturing Co., Ltd.).
  • the thickness was one layer of adhesive tape 8410). Further, the foam adhesive sheet was cut into a size of 12.5 mm x 25 mm.
  • the foamable adhesive sheet was in a state with the separator removed. Next, a foam adhesive sheet was placed between the spacers, another metal plate was placed so that one tip overlapped with the other, and the sheet was fixed with a clip to obtain a test piece. Thereafter, the test piece was placed in a thermal oven (manufactured by Yamato Kagaku Co., Ltd., DN610) and heated to foam and harden the first adhesive layer and the second adhesive layer of the foamable adhesive sheet. At this time, the heating conditions were a temperature increase rate of 20°C/min and a heating temperature of 160°C, 180°C, and 200°C.
  • the shear strength (adhesive strength) of the heated test piece was measured using a tensile tester Tensilon RTF1350 (manufactured by A&D Co., Ltd.) in accordance with JIS K6850:1999.
  • the measurement conditions were a tensile speed of 10 mm/min and a temperature of 23°C.
  • test numbers 1 to 9 in the foamable adhesive sheets of Production Examples 1 to 6, the initial thickness of the foamable adhesive sheet and a predetermined temperature of 160°C or higher and lower than 200°C, as measured by TMA. The total displacement amount was within a predetermined range with respect to the gap setting value.
  • the adhesive strength increases when the heating temperature in the bonding process is 160°C or higher and 190°C or lower. I understand.
  • thermomechanical measurement As a thermomechanical measuring device, a thermomechanical analyzer TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd. was used. First, a sample was prepared by punching out a foamable adhesive sheet using a jig with a diameter of 4 mm. Next, the sample was placed in an aluminum container with a diameter of 5 mm with the second adhesive layer facing the bottom, and an aluminum plate with a diameter of 4 mm was placed on top of the sample. In this state, the expansion and compression probe of the thermomechanical measuring device was brought into contact with a load of 100 mN, and the thickness of the sample after sufficiently smooth contact between the aluminum plate and the sample was defined as the initial thickness of the foamable adhesive sheet.
  • thermomechanical measurements were performed under the conditions of temperature: 25° C. to the final temperature, heating rate: 20° C./min, load: 10 mN, compression mode, and displacement due to expansion or contraction of the sample was measured. At this time, the temperatures reached were 150°C, 160°C, 180°C, 190°C, and 200°C.
  • Adhesive strength Shear strength was measured in the same manner as in Evaluation 1. Regarding the heating conditions for the foamable adhesive sheet, the heating temperatures were 150°C, 160°C, 180°C, 190°C, and 200°C.
  • the heating temperature in the bonding process is 150°C or more and less than 200°C, and the total of the initial thickness of the foam adhesive sheet and the amount of displacement measured by TMA is relative to the gap setting value. It has been found that adhesive strength increases when the temperature falls within a predetermined range.
  • Adhesive layer 1a First adhesive layer 1b
  • Second adhesive layer 2 Base material 3a
  • First intermediate layer 3b Second intermediate layer 10
  • Foamable adhesive sheet 11 Adhesive sheet after foaming and curing 20a
  • First Member 20b Second member 100... Structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present disclosure provides a foam adhesive sheet having an adhesive layer, the adhesive layer containing a thermosetting adhesive and a foaming agent, wherein when a displacement was measured through the thermochemical analysis by applying a compressive load and elevating temperature at a predetermined rate, the sum of the initial thickness of the foam adhesive sheet and the amount of displacement at a predetermined temperature of 160 °C to 200 °C (exclusive of 200 °C) is 100% to 308% with respect to a gap setting value of 100%.

Description

発泡性接着シートおよび構造体の製造方法Method for manufacturing foam adhesive sheet and structure
 本開示は、発泡性接着シートおよびそれを用いた構造体の製造方法に関する。 This disclosure relates to a foamable adhesive sheet and a method for manufacturing a structure using the same.
 部材同士を接着する接着剤は、様々な分野で用いられており、その接着方法も、多くの方法が知られている。 Adhesives for bonding members together are used in various fields, and many bonding methods are known.
 例えば特許文献1、2には、発泡剤を含有する接着シート(発泡性接着シート)が開示されている。発泡性接着シートの使用方法として、例えば、部材間に発泡性接着シートを配置し、その後、発泡性接着シートを加熱により発泡硬化させることで、部材同士を接着する方法が知られている。 For example, Patent Documents 1 and 2 disclose adhesive sheets containing a foaming agent (foamable adhesive sheets). As a method of using a foamable adhesive sheet, for example, a method is known in which a foamable adhesive sheet is placed between members, and then the foamable adhesive sheet is foamed and cured by heating to bond the members together.
 このような発泡性接着シートには、部材間の間隙を充填するための発泡特性、および、部材同士を接合するための接着特性が要求される。 Such foamable adhesive sheets are required to have foaming properties to fill the gaps between components, and adhesive properties to bond the components together.
特開2000-53944号公報Japanese Patent Application Publication No. 2000-53944 特許第6223477号公報Patent No. 6223477
 しかしながら、発泡性接着シートを加熱により発泡硬化させる際には、発泡および硬化がともに起こるため、発泡および硬化のバランスをとることが難しく、発泡倍率が低下したり、接着強度が低下したりするという問題がある。このように、発泡倍率および接着強度のバランス調整が困難であり、所望の発泡特性および接着特性を得ることが困難であった。 However, when foaming and curing a foamable adhesive sheet by heating, both foaming and curing occur, so it is difficult to maintain a balance between foaming and curing, resulting in a decrease in foaming ratio and adhesive strength. There's a problem. As described above, it has been difficult to balance the expansion ratio and adhesive strength, and it has been difficult to obtain desired foaming characteristics and adhesive characteristics.
 本開示は、上記実情に鑑みてなされたものであり、所定の間隙に適した、優れた発泡特性および接着特性を得ることが可能な、発泡性接着シートおよび発泡性接着シートを用いた構造体の製造方法を提供することを主目的とする。 The present disclosure has been made in view of the above circumstances, and provides a foamable adhesive sheet and a structure using the foamable adhesive sheet, which is suitable for a predetermined gap and can obtain excellent foaming properties and adhesive properties. The main purpose is to provide a manufacturing method for.
 本開示の一実施形態は、接着層を有する発泡性接着シートであって、上記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、上記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、上記発泡性接着シートの初期厚さと、160℃以上200℃未満の所定の温度での変位量との合計が、間隙設定値100%に対して、100%以上、308%以下である、発泡性接着シートを提供する。 One embodiment of the present disclosure is a foamable adhesive sheet having an adhesive layer, wherein the adhesive layer contains a thermosetting adhesive and a foaming agent, and in the foamable adhesive sheet, thermomechanical measurement The initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature of 160 ° C or more and less than 200 ° C. Provided is a foamable adhesive sheet in which the total of the following is 100% or more and 308% or less with respect to the gap setting value of 100%.
 本開示の他の実施形態は、第一部材および第二部材の間に、接着層を有する発泡性接着シートを配置する配置工程と、上記発泡性接着シートを加熱により発泡硬化させ、上記第一部材および上記第二部材を接着する接着工程と、を有する構造体の製造方法であって、上記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、上記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、上記発泡性接着シートの初期厚さと、160℃以上200℃未満の所定の温度での変位量との合計が、間隙設定値100%に対して、100%以上、308%以下であり、上記間隙設定値が、上記第一部材および上記第二部材の間に上記発泡性接着シートを配置した後の間隙の距離である、構造体の製造方法を提供する。 Another embodiment of the present disclosure includes a step of arranging a foamable adhesive sheet having an adhesive layer between a first member and a second member, and a step of foaming and curing the foamable adhesive sheet by heating. a bonding step of bonding a member and the second member, wherein the adhesive layer contains a thermosetting adhesive and a foaming agent, and the foamable adhesive sheet includes: , by thermomechanical measurement, the initial thickness of the foamable adhesive sheet when applying a compressive load, increasing the temperature at a predetermined temperature increase rate, and measuring the displacement, and at a predetermined temperature of 160 ° C or more and less than 200 ° C. The total displacement amount is 100% or more and 308% or less with respect to the gap setting value of 100%, and the gap setting value is between the first member and the second member. Provided is a method for manufacturing a structure in which the distance of the gap after arranging the .
 本開示の他の実施形態は、第一部材および第二部材の間に、接着層を有する発泡性接着シートを配置する配置工程と、上記発泡性接着シートを加熱により発泡硬化させ、上記第一部材および上記第二部材を接着する接着工程と、を有する構造体の製造方法であって、上記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、上記接着工程における加熱温度を、150℃以上200℃未満であり、かつ、上記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で上記加熱温度まで昇温し、変位を測定したときの、上記発泡性接着シートの初期厚さと、変位量との合計が、間隙設定値100%に対して、121%以上、168%以下となるように設定し、上記間隙設定値が、上記第一部材および上記第二部材の間に上記発泡性接着シートを配置した後の間隙の距離である、構造体の製造方法を提供する。 Another embodiment of the present disclosure includes a step of arranging a foamable adhesive sheet having an adhesive layer between a first member and a second member, and a step of foaming and curing the foamable adhesive sheet by heating. a bonding step of bonding a member and the second member, wherein the adhesive layer contains a thermosetting adhesive and a foaming agent, and the heating temperature in the bonding step is is 150°C or more and less than 200°C, and when the foamable adhesive sheet is heated to the heating temperature at a predetermined heating rate by applying a compressive load and the displacement is measured by thermomechanical measurement. The sum of the initial thickness of the foamable adhesive sheet and the amount of displacement is set to be 121% or more and 168% or less with respect to the gap setting value of 100%, and the gap setting value is A method for manufacturing a structure is provided, in which the distance of a gap after the foamable adhesive sheet is placed between one member and the second member is provided.
 本開示は、所定の間隙に適した、優れた発泡特性および接着特性を得ることが可能な、発泡性接着シートおよび発泡性接着シートを用いた構造体の製造方法を提供することができる。 The present disclosure can provide a foamable adhesive sheet and a method for manufacturing a structure using the foamable adhesive sheet, which can obtain excellent foaming properties and adhesive properties suitable for a predetermined gap.
本開示における発泡性接着シートを例示する概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating a foamable adhesive sheet in the present disclosure. 本開示における発泡性接着シートを例示する概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating a foamable adhesive sheet in the present disclosure. 本開示における発泡性接着シートを例示する概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating a foamable adhesive sheet in the present disclosure. 発泡性接着シートについてのTMA曲線を例示するグラフである。1 is a graph illustrating a TMA curve for a foamable adhesive sheet. 本開示における発泡性接着シートを例示する概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating a foamable adhesive sheet according to the present disclosure. 本開示における構造体の製造方法を例示する工程図である。FIG. 3 is a process diagram illustrating a method for manufacturing a structure according to the present disclosure. 発泡性接着シートについてのTMA曲線を例示するグラフである。1 is a graph illustrating a TMA curve for a foamable adhesive sheet.
 下記に、図面等を参照しながら本開示の実施の形態を説明する。ただし、本開示は多くの異なる態様で実施することが可能であり、下記に例示する実施の形態の記載内容に限定して解釈されない。また、図面は説明をより明確にするため、実際の形態に比べ、各部の幅、厚さ、形状等について模式的に表わされる場合があるが、あくまで一例であって、本開示の解釈を限定しない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。 Embodiments of the present disclosure will be described below with reference to the drawings and the like. However, the present disclosure can be implemented in many different ways, and should not be construed as being limited to the description of the embodiments exemplified below. Further, in order to make the explanation clearer, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the actual form, but this is just an example and does not limit the interpretation of the present disclosure. do not. In addition, in this specification and each figure, the same elements as those described above with respect to the previously shown figures are denoted by the same reference numerals, and detailed explanations may be omitted as appropriate.
 本明細書において、ある部材の上に他の部材を配置する態様を表現するにあたり、単に「上に」あるいは「下に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上あるいは直下に他の部材を配置する場合と、ある部材の上方あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含む。また、本明細書において、ある部材の面に他の部材を配置する態様を表現するにあたり、単に「面側に」または「面に」と表記する場合、特に断りの無い限りは、ある部材に接するように、直上あるいは直下に他の部材を配置する場合と、ある部材の上方あるいは下方に、さらに別の部材を介して他の部材を配置する場合との両方を含む。 In this specification, when expressing a mode in which another member is placed on top of a certain member, when it is simply expressed as "above" or "below", unless otherwise specified, it means that the member is in contact with a certain member. This includes both cases in which another member is placed directly above or below a certain member, and cases in which another member is placed above or below a certain member via another member. In addition, in this specification, when expressing a mode in which another member is arranged on the surface of a certain member, when it is simply expressed as "on the surface side" or "on the surface", unless otherwise specified, This includes both a case in which another member is placed directly above or directly below a certain member, and a case in which another member is placed above or below a certain member via another member.
 また、本明細書において、「シート」には、「フィルム」と呼ばれる部材も含まれる。また、「フィルム」には、「シート」と呼ばれる部材も含まれる。また、本明細書における数値範囲は、平均的な値の範囲である。 Furthermore, in this specification, the term "sheet" also includes a member called a "film." Furthermore, the term "film" also includes a member called a "sheet." Moreover, the numerical range in this specification is a range of average values.
 発泡性接着シートにおいて、部材間の間隙を充填し、部材同士を接合するためには、発泡性接着シートの発泡硬化後の厚さが少なくとも部材間の間隙以上となるような発泡特性が必要である。しかしながら、上述したように、発泡性接着シートにおいては、発泡倍率および接着強度のバランスをとることが困難である。そのため、目的とする間隙に適した発泡特性および接着特性については、未だ検討の余地があるといえる。 In order to fill the gaps between members and join the members together, the foamable adhesive sheet must have foaming characteristics such that the thickness of the foamable adhesive sheet after foaming and curing is at least as thick as the gap between the members. be. However, as described above, in foamable adhesive sheets, it is difficult to balance the expansion ratio and adhesive strength. Therefore, it can be said that there is still room for investigation regarding foaming characteristics and adhesive characteristics suitable for the intended gap.
 従来、発泡性接着シートの発泡特性については、例えば、発泡性接着シートの発泡倍率により評価している。一般的に、発泡性接着シートの発泡倍率は、発泡性接着シートに外圧がかからない状態で、発泡性接着シートを発泡硬化させたときの発泡倍率をいう。 Conventionally, the foaming properties of a foamable adhesive sheet have been evaluated, for example, by the expansion ratio of the foamable adhesive sheet. Generally, the foaming ratio of a foamable adhesive sheet refers to the foaming ratio when the foamable adhesive sheet is foamed and cured in a state where no external pressure is applied to the foamable adhesive sheet.
 一方、発泡性接着シートを用いて部材同士を接着する場合には、発泡性接着シートを部材間に挟んだ状態で発泡硬化させるため、発泡性接着シートに外圧がかかった状態で、発泡性接着シートを発泡硬化させることになる。そのため、発泡性接着シートの発泡倍率の測定条件と、実際の発泡性接着シートの発泡硬化条件とは、大きく異なる。 On the other hand, when bonding components together using a foam adhesive sheet, the foam adhesive sheet is sandwiched between the components and the foam is cured. The sheet will be foamed and hardened. Therefore, the conditions for measuring the expansion ratio of a foamable adhesive sheet and the actual foaming and curing conditions for a foamable adhesive sheet are significantly different.
 これに対し、熱機械測定(TMA)により発泡性接着シートの発泡特性を測定する場合には、発泡性接着シートに圧縮荷重を加えた状態で加熱し、発泡性接着シートの熱膨張に伴う変位を測定する。この場合、発泡接着シートにある程度の圧縮荷重がかかった状態で、発泡性接着シートを発泡硬化させることになる。そのため、熱機械分析の測定条件は、従来の発泡性接着シートの発泡倍率の測定条件と比べて、実際の発泡性接着シートの発泡硬化条件に近づけることができる。よって、熱機械測定であれば、発泡性接着シートの発泡硬化挙動が反映された測定値が得られると考えられる。 On the other hand, when measuring the foaming characteristics of a foamable adhesive sheet by thermomechanical measurement (TMA), the foamable adhesive sheet is heated under a compressive load, and the displacement due to thermal expansion of the foamable adhesive sheet is measured. Measure. In this case, the foamable adhesive sheet is foamed and cured while a certain degree of compressive load is applied to the foamed adhesive sheet. Therefore, the measurement conditions for the thermomechanical analysis can be closer to the actual foaming and curing conditions of the foamable adhesive sheet, compared to the conditions for measuring the expansion ratio of the conventional foamable adhesive sheet. Therefore, it is thought that thermomechanical measurements can provide measured values that reflect the foaming and curing behavior of the foamable adhesive sheet.
 そこで、本開示における発明者らは、熱機械測定により測定される発泡性接着シートの発泡特性に着目し、発泡性接着シートの発泡特性および接着特性について鋭意検討を重ねた結果、熱機械測定により発泡性接着シートの発泡特性を測定したときの変位量と、発泡性接着シートの発泡硬化後の接着強度とに、相関があることを見出した。そして、発泡性接着シートの初期厚さと、熱機械測定により測定される変位量との合計が、目的とする間隙に対して所定の範囲内である場合に、発泡性接着シートの発泡硬化後の接着強度が高くなることを知見した。本開示は、このような知見に基づくものである。 Therefore, the inventors of the present disclosure focused on the foaming properties of a foamable adhesive sheet measured by thermomechanical measurement, and as a result of intensive studies on the foaming properties and adhesive properties of a foamable adhesive sheet, It has been found that there is a correlation between the amount of displacement when measuring the foaming characteristics of a foamable adhesive sheet and the adhesive strength of the foamable adhesive sheet after foaming and curing. If the total of the initial thickness of the foamable adhesive sheet and the amount of displacement measured by thermomechanical measurement is within a predetermined range for the target gap, then It was found that the adhesive strength was increased. The present disclosure is based on such knowledge.
 以下、本開示における発泡性接着シートおよび構造体の製造方法について、詳細に説明する。 Hereinafter, the method for manufacturing the foamable adhesive sheet and structure in the present disclosure will be described in detail.
A.発泡性接着シート
 本開示における発泡性接着シートは、接着層を有する発泡性接着シートであって、上記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、上記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、上記発泡性接着シートの初期厚さと、160℃以上200℃未満の所定の温度での変位量との合計が、間隙設定値100%に対して、100%以上、308%以下である。
A. Foamable Adhesive Sheet The foamable adhesive sheet in the present disclosure is a foamable adhesive sheet having an adhesive layer, the adhesive layer containing a thermosetting adhesive and a foaming agent, and the foamable adhesive sheet , the initial thickness of the foamable adhesive sheet and a predetermined temperature of 160 ° C or more and less than 200 ° C The sum of the amount of displacement at and is 100% or more and 308% or less with respect to the gap setting value of 100%.
 本開示における発泡性接着シートについて、図面を参照して説明する。図1~図3は、本開示における発泡性接着シートを例示する概略断面図である。図1における発泡性接着シート10は、接着層1を有する。図2における発泡性接着シート10は、第一接着層1aと第二接着層1bとを有する。図3における発泡性接着シート10は、第一接着層1aと基材2と第二接着層1bとをこの順に有する。また、接着層1、第一接着層1aおよび第二接着層1bはいずれも、熱硬化性の接着剤と発泡剤とを含有する。 The foamable adhesive sheet in the present disclosure will be explained with reference to the drawings. 1 to 3 are schematic cross-sectional views illustrating a foamable adhesive sheet according to the present disclosure. The foamable adhesive sheet 10 in FIG. 1 has an adhesive layer 1. The foamable adhesive sheet 10 shown in FIG. The foamable adhesive sheet 10 in FIG. 2 has a first adhesive layer 1a and a second adhesive layer 1b. The foamable adhesive sheet 10 in FIG. 3 has a first adhesive layer 1a, a base material 2, and a second adhesive layer 1b in this order. Moreover, the adhesive layer 1, the first adhesive layer 1a, and the second adhesive layer 1b all contain a thermosetting adhesive and a foaming agent.
 図4は、発泡性接着シートについて、熱機械測定(TMA)により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、温度を横軸、変位量を縦軸としたTMA曲線を例示するグラフである。本開示における発泡性接着シートにおいては、発泡性接着シートの初期厚さと、図4に示すようなTMA曲線における所定温度での変位量との合計が、間隙設定値に対して所定の範囲内である。 Figure 4 shows the temperature on the horizontal axis and the displacement on the vertical axis when the foamable adhesive sheet was measured by thermomechanical measurement (TMA) by applying a compressive load and increasing the temperature at a predetermined temperature increase rate. It is a graph illustrating a TMA curve with an axis. In the foamable adhesive sheet of the present disclosure, the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature in the TMA curve as shown in FIG. 4 is within a predetermined range with respect to the gap setting value. be.
 本開示における発泡性接着シートにおいては、発泡性接着シートの初期厚さと、熱機械測定により測定される所定温度での変位量との合計が、間隙設定値に対して所定の範囲内であることにより、間隙設定値に適した、優れた発泡特性および接着特性を得ることができる。よって、間隙設定値に対して、部材間の間隙の充填および部材同士の接合に最適な発泡性接着シートとすることができる。 In the foamable adhesive sheet of the present disclosure, the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature measured by thermomechanical measurement is within a predetermined range with respect to the gap setting value. As a result, excellent foaming and adhesion properties can be obtained that are suitable for the gap settings. Therefore, it is possible to obtain a foamable adhesive sheet that is optimal for filling gaps between members and joining members together, with respect to the gap setting value.
 以下、本開示における発泡性接着シートの各構成について説明する。 Hereinafter, each structure of the foamable adhesive sheet in the present disclosure will be explained.
1.特性
 本開示における発泡性接着シートにおいては、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、発泡性接着シートの初期厚さと、160℃以上200℃未満の所定の温度での変位量の合計が、間隙設定値100%に対して、100%以上、308%以下である。発泡性接着シートの初期厚さと、上記変位量との合計は、間隙設定値100%に対して、112%以上308%以下であることが好ましく、138%以上308%以下であることがより好ましい。発泡性接着シートの初期厚さと、上記変位量との合計が上記範囲内であることにより、間隙設定値に適した発泡特性および接着特性を得ることができる。
1. Characteristics In the foamable adhesive sheet of the present disclosure, the initial thickness of the foamable adhesive sheet and 160° C. were determined by thermomechanical measurement when a compressive load was applied, the temperature was raised at a predetermined temperature increase rate, and the displacement was measured. The total amount of displacement at a predetermined temperature of 200° C. or more is 100% or more and 308% or less with respect to the gap setting value of 100%. The total of the initial thickness of the foamable adhesive sheet and the above displacement amount is preferably 112% or more and 308% or less, more preferably 138% or more and 308% or less, with respect to the gap setting value of 100%. . When the sum of the initial thickness of the foamable adhesive sheet and the displacement amount is within the above range, foaming characteristics and adhesive characteristics suitable for the gap setting value can be obtained.
 ここで、熱機械測定は、以下の方法により行う。まず、発泡性接着シートを、φ4mmの治具で打ち抜き、サンプルを作製する。次に、φ5mmのアルミニウム容器にサンプルを入れ、サンプルの上にφ4mmのアルミニウムプレートを置く。次いで、温度:25℃以上250℃以下、昇温速度:20℃/min、荷重:10mN、圧縮モードの条件で、熱機械測定を行い、サンプルの膨張または収縮に伴う変位を測定する。そして、所定温度での変位量を求める。熱機械測定装置としては、例えば、日立ハイテクサイエンス社製の熱機械分析装置TMA7100を用いる。 Here, the thermomechanical measurement is performed by the following method. First, a foam adhesive sheet is punched out using a jig with a diameter of 4 mm to prepare a sample. Next, the sample is placed in an aluminum container with a diameter of 5 mm, and an aluminum plate with a diameter of 4 mm is placed on top of the sample. Next, thermomechanical measurement is performed under the conditions of temperature: 25° C. or more and 250° C. or less, heating rate: 20° C./min, load: 10 mN, and compression mode, and displacement due to expansion or contraction of the sample is measured. Then, the amount of displacement at a predetermined temperature is determined. As the thermomechanical measuring device, for example, a thermomechanical analyzer TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd. is used.
 なお、所定温度での変位量は、TMA曲線において、25℃での変位量を0とし、所定温度に到達したときの膨張に伴う変位量をいう。変位量の単位は、「μm」とする。 Note that the amount of displacement at a predetermined temperature refers to the amount of displacement accompanying expansion when the predetermined temperature is reached, with the amount of displacement at 25° C. being 0 in the TMA curve. The unit of displacement is "μm".
 また、所定温度での変位量を求める際、所定温度は、160℃以上200℃未満の任意の温度である。これは、所定温度が上記範囲内である場合、耐熱性の良好な発泡性接着シートとすることができるからである。そのため、自動車のエンジン回りやそれに近い耐熱性が必要とされる用途への適用が可能になる。また、所定温度が上記範囲内よりも低いと、所定温度での変位量が小さくなる傾向がある。そのため、接着強度が低下する可能性がある。この場合、発泡硬化後の接着シートと部材との間で、界面破壊が生じやすくなる可能性がある。ここで、マイクロカプセル型発泡剤においては、樹脂からなるシェルの内部に、炭化水素等の熱膨張剤が内包されている。マイクロカプセル型発泡剤の場合、加熱すると、シェルを構成する樹脂が軟化するとともに、炭化水素等の熱膨張剤の圧力が上昇し、マイクロカプセル型発泡剤が膨張する。膨張によってシェルが薄くなるため、さらに加熱を続けると、マイクロカプセル型発泡剤から熱膨張剤が抜けてしまい、マイクロカプセル型発泡剤が収縮する。そのため、マイクロカプセル型発泡剤の場合、TMA曲線において、最大変位量に達した後に変位量が小さくなる傾向がある。よって、所定温度が上記範囲内よりも高いと、所定温度での変位量が小さくなり、その結果、接着強度が低下する可能性がある。したがって、本開示においては、上記の所定温度を、160℃以上200℃未満の任意の温度としている。 Furthermore, when determining the amount of displacement at a predetermined temperature, the predetermined temperature is any temperature between 160°C and below 200°C. This is because when the predetermined temperature is within the above range, a foamable adhesive sheet with good heat resistance can be obtained. Therefore, it can be applied to applications that require heat resistance similar to that of automobile engines. Further, if the predetermined temperature is lower than the above range, the amount of displacement at the predetermined temperature tends to be small. Therefore, adhesive strength may decrease. In this case, interfacial destruction may easily occur between the adhesive sheet and the member after foaming and curing. Here, in a microcapsule type foaming agent, a thermal expansion agent such as a hydrocarbon is encapsulated inside a shell made of resin. In the case of a microcapsule type foaming agent, when heated, the resin constituting the shell softens and the pressure of a thermal expansion agent such as a hydrocarbon increases, causing the microcapsule type foaming agent to expand. As the shell becomes thinner due to expansion, if heating is continued, the thermal expansion agent will escape from the microcapsule foaming agent, causing the microcapsule foaming agent to shrink. Therefore, in the case of a microcapsule type foaming agent, in the TMA curve, the amount of displacement tends to decrease after reaching the maximum amount of displacement. Therefore, if the predetermined temperature is higher than the above range, the amount of displacement at the predetermined temperature will become small, and as a result, the adhesive strength may decrease. Therefore, in the present disclosure, the above-mentioned predetermined temperature is an arbitrary temperature of 160°C or more and less than 200°C.
 発泡性接着シートにおいては、例えば、発泡剤の粒径や含有量を調整することにより、上記変位量を制御することができる。例えば、発泡剤の粒径が大きいと、上記変位量が大きくなる傾向にある。一方、発泡剤の粒径が小さいと、上記変位量が小さくなる傾向にある。また、例えば、発泡剤の含有量が多いと、上記変位量が大きくなる傾向にある。一方、発泡剤の含有量が少ないと、上記変位量が小さくなる傾向にある。 In the foamable adhesive sheet, the amount of displacement can be controlled, for example, by adjusting the particle size and content of the foaming agent. For example, when the particle size of the blowing agent is large, the above displacement amount tends to be large. On the other hand, when the particle size of the blowing agent is small, the amount of displacement tends to be small. Further, for example, when the content of the blowing agent is large, the above displacement amount tends to become large. On the other hand, when the content of the blowing agent is small, the above displacement amount tends to be small.
 また、発泡性接着シートの初期厚さとは、発泡性接着シートの発泡前の厚さであり、熱機械測定装置に発泡性接着シートのサンプルをセットした後の、常温での発泡性接着シートの厚さをいう。具体的には、上述したように、まず、発泡性接着シートを、φ4mmの治具で打ち抜き、サンプルを作製する。次に、φ5mmのアルミニウム容器にサンプルを入れ、サンプルの上にφ4mmのアルミニウムプレートを置く。この状態で、熱機械測定装置の膨張圧縮プローブを荷重100mNで接触させて、アルミニウムプレートとサンプルを十分平滑に接触させた後の厚さを、発泡性接着シートの初期厚さとする。なお、発泡性接着シートがセパレータを有する場合、発泡性接着シートの初期厚さは、セパレータを除く発泡性接着シートの厚さをいう。発泡性接着シートの初期厚さの単位は、「μm」とする。 In addition, the initial thickness of the foamable adhesive sheet is the thickness of the foamable adhesive sheet before foaming, and the thickness of the foamable adhesive sheet at room temperature after setting the foamable adhesive sheet sample in a thermomechanical measuring device. Refers to thickness. Specifically, as described above, first, a sample is produced by punching out a foamable adhesive sheet using a jig of 4 mm in diameter. Next, the sample is placed in an aluminum container with a diameter of 5 mm, and an aluminum plate with a diameter of 4 mm is placed on top of the sample. In this state, the expansion and compression probe of the thermomechanical measurement device is brought into contact with the sample under a load of 100 mN, and the thickness after the aluminum plate and the sample are brought into sufficiently smooth contact is defined as the initial thickness of the foamable adhesive sheet. In addition, when the foamable adhesive sheet has a separator, the initial thickness of the foamable adhesive sheet refers to the thickness of the foamable adhesive sheet excluding the separator. The unit of the initial thickness of the foamable adhesive sheet is "μm".
 また、上記間隙設定値は、例えば、100μm以上500μm以下であることが好ましく、200μm以上400μm以下であることがより好ましい。本開示は、間隙設定値が上記のような比較的小さい場合に好適である。なお、間隙設定値の定義については、後述する。間隙設定値の単位は、「μm」とする。 Further, the above-mentioned gap setting value is preferably, for example, 100 μm or more and 500 μm or less, and more preferably 200 μm or more and 400 μm or less. The present disclosure is suitable when the gap setting is relatively small as described above. Note that the definition of the gap setting value will be described later. The unit of the gap setting value is "μm".
 また、本開示における発泡性接着シートは、発泡硬化後の接着強度が高いことが好ましい。ISO 4587に対応するJIS K6850:1999に基づくせん断強度(接着強度)は、23℃において、例えば1.50MPa以上であってもよく、1.80MPa以上であってもよく、2.10MPa以上であってもよい。また、上記せん断強度(接着強度)は、130℃において、例えば0.50MPa以上であってもよく、0.75MPa以上であってもよく、1.00MPa以上であってもよい。例えば、加熱の必要のない高強度のアクリルフォーム粘着テープにおいては、せん断強度(接着強度)が常温で1MPa以上2MPa以下程度であり、200℃では耐熱性がない。そのため、上記せん断強度(接着強度)が23℃で上記範囲であれば、強度面での優位性がある。また、上記せん断強度(接着強度)が130℃で上記範囲であれば、自動車のエンジン回りやそれに近い耐熱性が必要とされる用途への適用が可能になる。 Furthermore, it is preferable that the foamable adhesive sheet of the present disclosure has a high adhesive strength after foaming and curing. The shear strength (adhesive strength) based on JIS K6850:1999 corresponding to ISO 4587 may be, for example, 1.50 MPa or more, 1.80 MPa or more, or 2.10 MPa or more at 23°C. Furthermore, the above shear strength (adhesive strength) may be, for example, 0.50 MPa or more, 0.75 MPa or more, or 1.00 MPa or more at 130°C. For example, in a high-strength acrylic foam adhesive tape that does not require heating, the shear strength (adhesive strength) is about 1 MPa or more and 2 MPa or less at room temperature, and it does not have heat resistance at 200°C. Therefore, if the above shear strength (adhesive strength) is in the above range at 23°C, it has an advantage in terms of strength. Furthermore, if the above shear strength (adhesive strength) is in the above range at 130°C, it can be applied to applications that require heat resistance around an automobile engine or similar.
 また、本開示における発泡性接着シートは、発泡硬化後の電気絶縁性が高いことが好ましい。発泡性接着シートの発泡硬化後において、IEC 60454-2に対応するJIS C2107:2011に基づく絶縁破壊電圧は、例えば3kV以上であることが好ましく、5kV以上であることがより好ましい。上記絶縁破壊電圧が上記範囲であることにより、防錆や銅線まわりへの適用が可能となる。また、発泡性接着シートの発泡硬化後において、熱伝導率は、例えば0.1W/mK以上であることが好ましく、0.15W/mK以上であることがより好ましい。上記熱伝導率が上記範囲であることにより、部品の小型化を図ることができ、また加熱時の硬化反応を促進することができる。 Furthermore, the foamable adhesive sheet in the present disclosure preferably has high electrical insulation properties after foaming and curing. After the foamable adhesive sheet is foamed and cured, the dielectric breakdown voltage based on JIS C2107:2011 corresponding to IEC 60454-2 is preferably, for example, 3 kV or more, and more preferably 5 kV or more. When the dielectric breakdown voltage is within the above range, it becomes possible to prevent rust and to be applied around copper wires. Further, after the foamable adhesive sheet is foamed and cured, the thermal conductivity is preferably, for example, 0.1 W/mK or more, and more preferably 0.15 W/mK or more. When the thermal conductivity is within the above range, the parts can be made smaller and the curing reaction during heating can be promoted.
2.接着層
 本開示における接着層は、熱硬化性の接着剤および発泡剤を含有する。
2. Adhesive Layer The adhesive layer in the present disclosure contains a thermosetting adhesive and a foaming agent.
(1)材料
(a)発泡剤
 本開示における発泡剤は、熱により発泡反応が生じる発泡剤である。発泡剤としては、一般に発泡性接着シートの接着層に使用される発泡剤を用いることができる。
(1) Material (a) Foaming agent The foaming agent in the present disclosure is a foaming agent that causes a foaming reaction due to heat. As the foaming agent, a foaming agent that is generally used in the adhesive layer of a foamable adhesive sheet can be used.
 発泡剤の発泡開始温度は、エポキシ樹脂等の熱硬化性の接着剤の主剤の軟化温度以上であり、かつ、エポキシ樹脂等の熱硬化性の接着剤の主剤の硬化反応の活性化温度以下であることが好ましい。発泡剤の発泡開始温度は、例えば、70℃以上であり、100℃以上であってもよい。発泡開始温度が低すぎると、発泡が早期に開始され、樹脂成分の柔軟性や流動性が低い状態で発泡が生じ、均一な発泡が生じにくい可能性がある。一方、発泡剤の発泡開始温度は、例えば、210℃以下である。発泡開始温度が高すぎると、樹脂成分が劣化する可能性がある。具体的には、発泡剤の発泡開始温度は、70℃以上210℃以下であり、100℃以上210℃以下であってもよい。 The foaming initiation temperature of the foaming agent is equal to or higher than the softening temperature of the main ingredient of a thermosetting adhesive such as an epoxy resin, and below the activation temperature of the curing reaction of the main ingredient of a thermosetting adhesive such as an epoxy resin. It is preferable that there be. The foaming start temperature of the foaming agent is, for example, 70°C or higher, and may be 100°C or higher. If the foaming start temperature is too low, foaming will start early, foaming will occur while the flexibility and fluidity of the resin component is low, and uniform foaming may be difficult to produce. On the other hand, the foaming start temperature of the foaming agent is, for example, 210° C. or lower. If the foaming start temperature is too high, the resin component may deteriorate. Specifically, the foaming start temperature of the foaming agent is 70°C or more and 210°C or less, and may be 100°C or more and 210°C or less.
 なお、エポキシ樹脂等の熱硬化性の接着剤の主剤の軟化温度は、JIS K7234:1986に規定される環球式軟化温度試験法を用いて測定する。 Note that the softening temperature of the main ingredient of a thermosetting adhesive such as an epoxy resin is measured using the ring and ball softening temperature test method specified in JIS K7234:1986.
 発泡剤としては、例えば、マイクロカプセル型発泡剤が挙げられる。マイクロカプセル型発泡剤は、炭化水素等の熱膨張剤をコアとし、アクリロニトリルコポリマー等の樹脂をシェルとすることが好ましい。 Examples of the foaming agent include microcapsule foaming agents. It is preferable that the microcapsule type foaming agent has a thermal expansion agent such as a hydrocarbon as a core and a resin such as an acrylonitrile copolymer as a shell.
 また、発泡剤として、例えば、有機系発泡剤や無機系発泡剤を用いてもよい。有機系発泡剤としては、例えば、アゾジカルボンアミド(ADCA)、アゾビスホルムアミド、アゾビスイソブチロニトリル等のアゾ発泡剤、トリクロロモノフルオロメタン等のフッ化アルカン系発泡剤、パラトルエンスルホニルヒドラジド等のヒドラジン系発泡剤、p-トルエンスルホニルセミカルバジド等のセミカルバジド系発泡剤、5-モルホリル-1,2,3,4-チアトリアゾール等のトリアゾール系発泡剤、N,N-ジニトロソテレフタルアミド等のN-ニトロソ系発泡剤が挙げられる。一方、無機系発泡剤としては、例えば、炭酸アンモニウム、炭酸水素アンモニウム、亜硝酸アンモニウム、水素化ホウ素アンモニウム、アジド類が挙げられる。 Furthermore, as the blowing agent, for example, an organic blowing agent or an inorganic blowing agent may be used. Examples of organic blowing agents include azo blowing agents such as azodicarbonamide (ADCA), azobisformamide, and azobisisobutyronitrile, fluorinated alkane blowing agents such as trichloromonofluoromethane, and paratoluenesulfonyl hydrazide. Hydrazine blowing agents, semicarbazide blowing agents such as p-toluenesulfonyl semicarbazide, triazole blowing agents such as 5-morpholyl-1,2,3,4-thiatriazole, N, such as N,N-dinitrosoterephthalamide, etc. - Examples include nitroso blowing agents. On the other hand, examples of inorganic blowing agents include ammonium carbonate, ammonium hydrogen carbonate, ammonium nitrite, ammonium borohydride, and azides.
 発泡剤は、1種単独で用いてもよく、2種以上を併用してもよい。 The blowing agents may be used alone or in combination of two or more.
 発泡剤の平均粒径は、例えば、10μm以上であってもよく、13μm以上であってもよく、17μm以上であってもよい。また、発泡剤の平均粒径は、接着層の厚さ以下であることが好ましく、例えば、44μm以下であってもよく、30μm以下であってもよく、24μm以下であってもよい。具体的には、発泡剤の平均粒径は、10μm以上44μm以下であってもよく、13μm以上30μm以下であってもよく、17μm以上24μm以下であってもよい。 The average particle diameter of the blowing agent may be, for example, 10 μm or more, 13 μm or more, or 17 μm or more. Further, the average particle diameter of the foaming agent is preferably equal to or less than the thickness of the adhesive layer, and may be, for example, 44 μm or less, 30 μm or less, or 24 μm or less. Specifically, the average particle size of the foaming agent may be 10 μm or more and 44 μm or less, 13 μm or more and 30 μm or less, or 17 μm or more and 24 μm or less.
 なお、発泡剤の平均粒径は、レーザー回折散乱法によって求めた粒度分布における積算値50%での粒径である。また、発泡剤の平均粒径を測定するに際しては、接着層を溶剤に溶解させて発泡剤を分離する。溶剤は、接着層に含まれる発泡剤以外の成分を溶解することが可能な溶剤であれば特に限定されず、接着層に含まれる熱硬化性の接着剤の種類等に応じて適宜選択される。例えば、接着層の形成に用いられる接着剤組成物に使用される溶剤を用いることができる。具体的には、メチルエチルケトン、酢酸エチル、トルエン等を用いることができる。 Note that the average particle size of the blowing agent is the particle size at 50% of the integrated value in the particle size distribution determined by laser diffraction scattering method. Furthermore, when measuring the average particle size of the foaming agent, the adhesive layer is dissolved in a solvent and the foaming agent is separated. The solvent is not particularly limited as long as it is capable of dissolving components other than the foaming agent contained in the adhesive layer, and is appropriately selected depending on the type of thermosetting adhesive contained in the adhesive layer. . For example, a solvent used in the adhesive composition used to form the adhesive layer can be used. Specifically, methyl ethyl ketone, ethyl acetate, toluene, etc. can be used.
 発泡剤の最大発泡温度での発泡倍率は、例えば1.5倍以上であり、3倍以上であってもよい。一方、発泡剤の最大発泡温度での発泡倍率は、例えば15倍以下であり、10倍以下であってもよい。具体的には、発泡剤の最大発泡温度での発泡倍率は、1.5倍以上15倍以下であり、3倍以上10倍以下であってもよい。 The foaming ratio of the foaming agent at the maximum foaming temperature is, for example, 1.5 times or more, and may be 3 times or more. On the other hand, the foaming ratio of the foaming agent at the maximum foaming temperature is, for example, 15 times or less, and may be 10 times or less. Specifically, the foaming ratio of the foaming agent at the maximum foaming temperature is 1.5 times or more and 15 times or less, and may be 3 times or more and 10 times or less.
 発泡剤の含有量は、接着層に含まれる樹脂成分を100質量部とした場合に、例えば、0.5質量部以上であり、2質量部以上であってもよく、3質量部以上であってもよく、4質量部以上であってもよく、5質量部以上であってもよい。一方、発泡剤の含有量は、接着層に含まれる樹脂成分100質量部に対して、例えば25質量部以下であり、20質量部以下であってもよく、15質量部以下であってもよい。発泡剤の含有量が多すぎると、熱硬化性の接着剤の含有量が相対的に少なくなるため、発泡硬化後の接着強度が低下する可能性がある。具体的には、発泡剤の含有量は、接着層に含まれる樹脂成分を100質量部とした場合に、0.5質量部以上25質量部以下であり、2質量部以上25質量部以下であってもよく、3質量部以上20質量部以下であってもよく、4質量部以上15質量部以下であってもよく、5質量部以上15質量部以下であってもよい。 The content of the foaming agent is, for example, 0.5 parts by mass or more, may be 2 parts by mass or more, and may be 3 parts by mass or more when the resin component contained in the adhesive layer is 100 parts by mass. The amount may be 4 parts by mass or more, or 5 parts by mass or more. On the other hand, the content of the foaming agent is, for example, 25 parts by mass or less, may be 20 parts by mass or less, or may be 15 parts by mass or less, based on 100 parts by mass of the resin component contained in the adhesive layer. . If the content of the foaming agent is too large, the content of the thermosetting adhesive will be relatively small, which may reduce the adhesive strength after foaming and curing. Specifically, the content of the foaming agent is 0.5 parts by mass or more and 25 parts by mass or less, and 2 parts by mass or more and 25 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass. It may be 3 parts by mass or more and 20 parts by mass or less, 4 parts by mass or more and 15 parts by mass or less, or 5 parts by mass or more and 15 parts by mass or less.
(b)熱硬化性の接着剤
 本開示における熱硬化性の接着剤としては、一般に発泡性接着シートの接着層に使用される熱硬化性の接着剤を用いることができる。熱硬化性の接着剤は、例えば金属製の部材のように部材が透明性を有さない場合でも適用可能である。
(b) Thermosetting Adhesive As the thermosetting adhesive in the present disclosure, a thermosetting adhesive generally used for the adhesive layer of a foamable adhesive sheet can be used. The thermosetting adhesive can be applied even when the member is not transparent, such as a metal member.
 また、熱硬化性の接着剤としては、例えば、エポキシ樹脂系接着剤、アクリル樹脂系接着剤、フェノール樹脂系接着剤、不飽和ポリエステル樹脂系接着剤、アルキド樹脂系接着剤、ウレタン樹脂系接着剤、熱硬化性ポリイミド樹脂系接着剤等が挙げられる。 Examples of thermosetting adhesives include epoxy resin adhesives, acrylic resin adhesives, phenolic resin adhesives, unsaturated polyester resin adhesives, alkyd resin adhesives, and urethane resin adhesives. , thermosetting polyimide resin adhesives, and the like.
 中でも、熱硬化性の接着剤は、エポキシ樹脂系接着剤であることが好ましい。すなわち、熱硬化性の接着剤は、エポキシ樹脂と、硬化剤とを含有することが好ましい。一般に、エポキシ樹脂系接着剤は、機械的強度、耐熱性、絶縁性、耐薬品性等に優れており、硬化収縮が小さく、幅広い用途に用いることができる。 Among these, the thermosetting adhesive is preferably an epoxy resin adhesive. That is, the thermosetting adhesive preferably contains an epoxy resin and a curing agent. In general, epoxy resin adhesives have excellent mechanical strength, heat resistance, insulation, chemical resistance, etc., have low curing shrinkage, and can be used in a wide range of applications.
 以下、熱硬化性の接着剤がエポキシ樹脂系接着剤である場合について例を挙げて説明する。 Hereinafter, a case where the thermosetting adhesive is an epoxy resin adhesive will be explained by giving an example.
(i)エポキシ樹脂
 本開示におけるエポキシ樹脂は、少なくとも1つ以上のエポキシ基またはグリシジル基を有し、硬化剤との併用により架橋重合反応を起こして硬化する化合物である。エポキシ樹脂には、少なくとも1つ以上のエポキシ基またはグリシジル基を有する単量体も含まれる。
(i) Epoxy resin The epoxy resin in the present disclosure is a compound that has at least one epoxy group or glycidyl group and is cured by causing a crosslinking polymerization reaction when used in combination with a curing agent. Epoxy resins also include monomers having at least one epoxy group or glycidyl group.
 エポキシ樹脂としては、例えば、芳香族系エポキシ樹脂、脂肪族系エポキシ樹脂、脂環式エポキシ樹脂、複素環系エポキシ樹脂が挙げられる。エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ウレタン変性エポキシ樹脂やゴム変性エポキシ樹脂等の変性エポキシ樹脂が挙げられる。また、他の具体例としては、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリコール型エポキシ樹脂、ペンタエリスリトール型エポキシ樹脂が挙げられる。エポキシ樹脂は、1種であってもよく、2種以上であってもよい。 Examples of the epoxy resin include aromatic epoxy resins, aliphatic epoxy resins, alicyclic epoxy resins, and heterocyclic epoxy resins. Specific examples of epoxy resins include bisphenol type epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin, bisphenol A novolac type epoxy resin, novolac type epoxy resin such as cresol novolac type epoxy resin, urethane modified epoxy resin, etc. Examples include modified epoxy resins such as rubber modified epoxy resins. In addition, other specific examples include biphenyl-type epoxy resin, stilbene-type epoxy resin, triphenolmethane-type epoxy resin, alkyl-modified triphenolmethane-type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol-type epoxy resin, Examples include naphthalene type epoxy resin, glycol type epoxy resin, and pentaerythritol type epoxy resin. The number of epoxy resins may be one, or two or more.
 ビスフェノールA型エポキシ樹脂は、ビスフェノール骨格の繰り返し単位の数によって、常温で液体の状態、または常温で固体の状態で存在することができる。主鎖のビスフェノール骨格が、例えば2以上10以下であるビスフェノールA型エポキシ樹脂は、常温で固体である。特に、ビスフェノールA型エポキシ樹脂は、耐熱性向上を図ることができる点で好ましい。 The bisphenol A epoxy resin can exist in a liquid state at room temperature or in a solid state at room temperature, depending on the number of repeating units in the bisphenol skeleton. A bisphenol A type epoxy resin whose main chain has a bisphenol skeleton of, for example, 2 or more and 10 or less is solid at room temperature. Particularly, bisphenol A type epoxy resin is preferable since it can improve heat resistance.
 エポキシ樹脂は、1官能のエポキシ樹脂であってもよく、2官能のエポキシ樹脂であってもよく、3官能のエポキシ樹脂であってもよく、4官能以上のエポキシ樹脂であってもよい。 The epoxy resin may be a monofunctional epoxy resin, a bifunctional epoxy resin, a trifunctional epoxy resin, or a tetrafunctional or higher functional epoxy resin.
(ii)アクリル樹脂
 本開示において、熱硬化性の接着剤がエポキシ樹脂系接着剤である場合、接着層は、エポキシ樹脂と相溶するアクリル樹脂をさらに含有していてもよい。アクリル樹脂は、エポキシ樹脂と相溶した樹脂である。アクリル樹脂は、エポキシ樹脂と相溶することから、接着層の靭性を向上させやすい。その結果、発泡硬化後の接着性を向上させることができる。さらに、アクリル樹脂が、発泡剤(例えば、シェル部がアクリロニトリルコポリマーの樹脂である発泡剤)の相溶化剤として働き、均一に分散、発泡することで、発泡硬化後の接着性が向上すると考えられる。また、アクリル樹脂による柔軟性が発揮され、発泡硬化後の基材に対する密着性や発泡硬化後の耐割れ性の向上を図ることができる。また、アクリル樹脂がエポキシ樹脂と相溶することで、接着層の表面の硬度を高く保つことができる。一方、アクリル樹脂がエポキシ樹脂と非相溶であると、接着層の表面に柔軟な部位が形成されるため、第一部材や第二部材との界面が滑りにくくなり、作業性が低下することがある。
(ii) Acrylic resin In the present disclosure, when the thermosetting adhesive is an epoxy resin adhesive, the adhesive layer may further contain an acrylic resin that is compatible with the epoxy resin. Acrylic resin is a resin that is compatible with epoxy resin. Since acrylic resin is compatible with epoxy resin, it is easy to improve the toughness of the adhesive layer. As a result, the adhesiveness after foaming and curing can be improved. Furthermore, the acrylic resin acts as a compatibilizer for the foaming agent (for example, a foaming agent whose shell is made of acrylonitrile copolymer resin), and is thought to improve adhesiveness after foaming and curing by uniformly dispersing and foaming. . In addition, the flexibility of the acrylic resin is exhibited, and it is possible to improve the adhesion to the base material after foaming and hardening and the cracking resistance after foaming and hardening. Furthermore, since the acrylic resin is compatible with the epoxy resin, the hardness of the surface of the adhesive layer can be kept high. On the other hand, if the acrylic resin is incompatible with the epoxy resin, a flexible portion will be formed on the surface of the adhesive layer, making the interface with the first member and the second member less slippery, reducing workability. There is.
 本開示におけるアクリル樹脂は、エポキシ樹脂と相溶している。ここで、アクリル樹脂がエポキシ樹脂と相溶していることは、接着層の断面を走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)で観察したときに、ミクロンサイズの島が発生していないことから確認する。より具体的には、島の平均粒径が1μm以下であることが好ましい。中でも、島の平均粒径は、0.5μm以下であってもよく、0.3μm以下であってもよい。サンプル数は多いことが好ましく、例えば100以上である。観察するエリア面積は、100μm×100μmの範囲、もしくは、接着層の厚さが100μm以下の場合は、厚さ×100μmの範囲で行う。 The acrylic resin in the present disclosure is compatible with the epoxy resin. Here, the fact that the acrylic resin is compatible with the epoxy resin means that micron-sized islands occur when the cross section of the adhesive layer is observed using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Check that it is not. More specifically, it is preferable that the average particle size of the islands is 1 μm or less. Among these, the average particle size of the islands may be 0.5 μm or less, or 0.3 μm or less. The number of samples is preferably large, for example 100 or more. The area to be observed is in the range of 100 μm×100 μm, or in the case where the thickness of the adhesive layer is 100 μm or less, the area is in the range of thickness×100 μm.
 アクリル樹脂は、極性基を有していてもよい。極性基としては、例えば、エポキシ基、水酸基、カルボキシル基、ニトリル基、アミド基が挙げられる。 The acrylic resin may have a polar group. Examples of the polar group include an epoxy group, a hydroxyl group, a carboxyl group, a nitrile group, and an amide group.
 アクリル樹脂は、アクリル酸エステル単量体の単独重合体であり、上記単独重合体を2種以上含む混合成分であってもよく、2種以上のアクリル酸エステル単量体の共重合体であり、共重合体を1以上含む成分であってもよい。また、アクリル樹脂は、上記単独重合体と上記共重合体との混合成分であってもよい。アクリル酸エステル単量体の「アクリル酸」には、メタクリル酸の概念も含まれる。具体的には、アクリル樹脂は、メタクリレートの重合体とアクリレートの重合体との混合物であってもよく、アクリレート-アクリレート、メタクリレート-メタクリレート、メタクリレート-アクリレート等のアクリル酸エステル重合体であってもよい。中でも、アクリル樹脂は、2種以上のアクリル酸エステル単量体の共重合体((メタ)アクリル酸エステル共重合体)を含むことが好ましい。 The acrylic resin is a homopolymer of acrylic ester monomers, may be a mixed component containing two or more of the above homopolymers, or is a copolymer of two or more acrylic ester monomers. , or a copolymer. Moreover, the acrylic resin may be a mixed component of the above-mentioned homopolymer and the above-mentioned copolymer. The acrylic acid ester monomer "acrylic acid" also includes the concept of methacrylic acid. Specifically, the acrylic resin may be a mixture of a methacrylate polymer and an acrylate polymer, or may be an acrylic acid ester polymer such as acrylate-acrylate, methacrylate-methacrylate, or methacrylate-acrylate. . Among these, the acrylic resin preferably contains a copolymer of two or more types of acrylic ester monomers ((meth)acrylic ester copolymer).
 (メタ)アクリル酸エステル共重合体を構成する単量体成分としては、例えば、特開2014-065889号公報に記載の単量体成分が挙げられる。上記単量体成分は、上述した極性基を有していてもよい。上記(メタ)アクリル酸エステル共重合体としては、例えば、エチルアクリレート-ブチルアクリレート-アクリロニトリル共重合体、エチルアクリレート-アクリロニトリル共重合体、ブチルアクリレート-アクリロニトリル共重合体が挙げられる。なお、アクリル酸メチル、アクリル酸エチル等の「アクリル酸」には、メタクリル酸メチル、メタクリル酸エチル等の「メタクリル酸」も含まれる。 Examples of the monomer components constituting the (meth)acrylic acid ester copolymer include the monomer components described in JP-A-2014-065889. The monomer component may have the above-mentioned polar group. Examples of the (meth)acrylic acid ester copolymer include ethyl acrylate-butyl acrylate-acrylonitrile copolymer, ethyl acrylate-acrylonitrile copolymer, and butyl acrylate-acrylonitrile copolymer. Note that "acrylic acid" such as methyl acrylate and ethyl acrylate also includes "methacrylic acid" such as methyl methacrylate and ethyl methacrylate.
 上記(メタ)アクリル酸エステル共重合体としては、ブロック共重合体が好ましく、さらにメタクリレート-アクリレート共重合体等のアクリル系ブロック共重合体が好ましい。アクリル系ブロック共重合体を構成する(メタ)アクリレートとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ラウリル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸ベンジジルが挙げられる。これらの「アクリル酸」には、「メタクリル酸」も含まれる。 The above (meth)acrylic acid ester copolymer is preferably a block copolymer, and more preferably an acrylic block copolymer such as a methacrylate-acrylate copolymer. Examples of the (meth)acrylate constituting the acrylic block copolymer include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate, and acrylic acid. Examples include benzidyl. These "acrylic acids" also include "methacrylic acids."
 メタクリレート-アクリレート共重合体の具体例としては、メチルメタクリレート-ブチルアクリレート-メチルメタクリレート(MMA-BA-MMA)共重合体等のアクリル系共重合体が挙げられる。MMA-BA-MMA共重合体には、ポリメチルメタクリレート-ポリブチルアクリレート-ポリメチルメタクリレート(PMMA-PBA-PMMA)のブロック共重合体も含まれる。 Specific examples of the methacrylate-acrylate copolymer include acrylic copolymers such as methyl methacrylate-butyl acrylate-methyl methacrylate (MMA-BA-MMA) copolymer. MMA-BA-MMA copolymers also include block copolymers of polymethyl methacrylate-polybutyl acrylate-polymethyl methacrylate (PMMA-PBA-PMMA).
 アクリル系共重合体は、極性基を有していなくてもよく、また一部に上述した極性基を導入した変性物であってもよい。上記変性物は、エポキシ樹脂と相溶しやすいため、接着性がより向上する。 The acrylic copolymer does not need to have a polar group, or may be a modified product in which the above-mentioned polar groups are partially introduced. Since the above-mentioned modified product is easily compatible with the epoxy resin, the adhesiveness is further improved.
 中でも、アクリル樹脂は、ガラス転移温度(Tg)が10℃以下である第一重合体部分と、ガラス転移温度(Tg)が20℃以上である第二重合体部分とを有する(メタ)アクリル酸エステル共重合体であることが好ましい。このような(メタ)アクリル酸エステル共重合体は、柔らかいセグメントとなる第一重合体部分と、硬いセグメントとなる第二重合体部分とを有する。このような共重合体を添加することにより、接着層は、硬化後の靭性が向上して接着力をより高めることができる。 Among them, the acrylic resin is a (meth)acrylic acid having a first polymer part having a glass transition temperature (Tg) of 10°C or lower and a second polymer part having a glass transition temperature (Tg) of 20°C or higher. Preferably, it is an ester copolymer. Such a (meth)acrylic acid ester copolymer has a first polymer portion that becomes a soft segment and a second polymer portion that becomes a hard segment. By adding such a copolymer, the adhesive layer has improved toughness after curing and can further increase adhesive strength.
 上記の効果の発現は、以下のように推定できる。上記(メタ)アクリル酸エステル共重合体のような、柔らかいセグメントと、硬いセグメントとを併せ持つアクリル樹脂を用いることで、硬いセグメントが耐熱性に寄与し、柔らかいセグメントが靱性ないし柔軟性に寄与するため、耐熱性、靱性、柔軟性が良好な接着層が得られる。 The manifestation of the above effects can be estimated as follows. By using an acrylic resin that has both soft and hard segments, such as the above-mentioned (meth)acrylic acid ester copolymer, the hard segments contribute to heat resistance, and the soft segments contribute to toughness or flexibility. , an adhesive layer with good heat resistance, toughness, and flexibility can be obtained.
 上記(メタ)アクリル酸エステル共重合体に含まれる第一重合体部分および第二重合体部分の少なくとも一方は、エポキシ樹脂に対して相溶性を有する。第一重合体部分がエポキシ樹脂に対して相溶性を有する場合には、柔軟性を高めることができる。また、第二重合体部分がエポキシ樹脂に対して相溶性を有する場合には、凝集性や靱性を高めることができる。 At least one of the first polymer portion and the second polymer portion contained in the (meth)acrylic acid ester copolymer has compatibility with the epoxy resin. If the first polymer portion is compatible with the epoxy resin, flexibility can be increased. Moreover, when the second polymeric part has compatibility with the epoxy resin, cohesiveness and toughness can be improved.
 上記(メタ)アクリル酸エステル共重合体は、中でもブロック共重合体であることが好ましく、特に、相溶部位を重合体ブロックA、非相溶部位を重合体ブロックBとするA-B-Aブロック共重合体であることが好ましい。さらには、第一重合体部分が非相溶部位、第二重合体部分が相溶部位であり、第一重合体部分を重合体ブロックB、第二重合体部分を重合体ブロックAとするA-B-Aブロック共重合体であることが好ましい。 The above-mentioned (meth)acrylic acid ester copolymer is preferably a block copolymer, particularly ABA in which the compatible portion is polymer block A and the incompatible portion is polymer block B. Preferably, it is a block copolymer. Furthermore, the first polymer portion is an incompatible portion, the second polymer portion is a compatible portion, the first polymer portion is a polymer block B, and the second polymer portion is a polymer block A. -BA block copolymer is preferred.
 また、上記(メタ)アクリル酸エステル共重合体は、第一重合体部分または第二重合体部分の一部に上述の極性基を導入した変性物であってもよい。 Moreover, the above-mentioned (meth)acrylic acid ester copolymer may be a modified product in which the above-mentioned polar group is introduced into a part of the first polymer portion or the second polymer portion.
 上記の第一重合体部分および第二重合体部分を有する(メタ)アクリル酸エステル共重合体の具体例としては、上記のMMA-BA-MMA共重合体が挙げられる。 A specific example of the (meth)acrylic acid ester copolymer having the first polymer portion and the second polymer portion is the MMA-BA-MMA copolymer described above.
 アクリル樹脂の含有量は、接着層に含まれる樹脂成分を100質量部とした場合に、例えば、1質量部以上であり、3質量部以上であってもよく、5質量部以上であってもよく、7質量部以上であってもよく、10質量部以上であってもよい。アクリル樹脂の含有量が少なすぎると、発泡硬化後の接着性および接着層の基材に対する密着性が低下する可能性がある。一方、アクリル樹脂の含有量は、接着層に含まれる樹脂成分を100質量部とした場合に、例えば、60質量部以下であり、50質量部以下であってもよく、40質量部以下であってもよく、35質量部以下であってもよく、30質量部以下であってもよい。アクリル樹脂の含有量が多すぎると、膜強度が低下する可能性がある。 The content of the acrylic resin is, for example, 1 part by mass or more, may be 3 parts by mass or more, or even 5 parts by mass or more when the resin component contained in the adhesive layer is 100 parts by mass. The amount may be 7 parts by mass or more, or 10 parts by mass or more. If the content of the acrylic resin is too low, the adhesiveness after foaming and curing and the adhesiveness of the adhesive layer to the base material may decrease. On the other hand, the content of the acrylic resin is, for example, 60 parts by mass or less, may be 50 parts by mass or less, and may be 40 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass. The amount may be 35 parts by mass or less, or 30 parts by mass or less. If the content of acrylic resin is too large, the film strength may decrease.
 また、後述するように、発泡性接着シートが、接着層として第一接着層および第二接着層を有する場合、第一接着層および第二接着層において、アクリル樹脂の含有量は、同じであってもよく、互いに異なっていてもよい。 Further, as described later, when the foamable adhesive sheet has a first adhesive layer and a second adhesive layer as adhesive layers, the content of acrylic resin in the first adhesive layer and the second adhesive layer is the same. may be different from each other.
(iii)硬化剤
 本開示における硬化剤としては、一般にエポキシ樹脂系接着剤に使用される硬化剤を用いることができる。
(iii) Curing Agent As the curing agent in the present disclosure, a curing agent generally used in an epoxy resin-based adhesive can be used.
 硬化剤は、23℃で固体であることが好ましい。23℃で固体である硬化剤は、23℃で液体である硬化剤と比較して、保存安定性(ポットライフ)を長くすることができる。また、硬化剤は、潜在性硬化剤であってもよい。また、硬化剤は、通常、熱により硬化反応が生じる硬化剤である。また、硬化剤は、1種単独で用いてもよく、2種以上用いてもよい。 The curing agent is preferably solid at 23°C. A curing agent that is solid at 23°C can have a longer storage stability (pot life) compared to a curing agent that is liquid at 23°C. Further, the curing agent may be a latent curing agent. Further, the curing agent is usually a curing agent that causes a curing reaction due to heat. Moreover, one type of curing agent may be used alone, or two or more types may be used.
 硬化剤の反応開始温度は、例えば110℃以上であり、130℃以上であってもよい。反応開始温度が低すぎると、反応が早期に開始され、樹脂成分の柔軟性や流動性が低い状態で硬化が生じ、均一な硬化が生じにくい可能性がある。一方、硬化剤の反応開始温度は、例えば、200℃以下である。反応開始温度が高すぎると、樹脂成分が劣化する可能性がある。なお、エポキシ樹脂の他に、例えばフェノール樹脂等の耐熱性が高い樹脂を使用する場合には、樹脂成分の劣化が少ないため、硬化剤の反応開始温度は、例えば300℃以下であってもよい。具体的には、硬化剤の反応開始温度は、110℃以上300℃以下であり、110℃以上200℃以下であってもよく、130℃以上200℃以下であってもよい。硬化剤の反応開始温度は、示差走査熱量測定(DSC)により求める。 The reaction initiation temperature of the curing agent is, for example, 110°C or higher, and may be 130°C or higher. If the reaction initiation temperature is too low, the reaction will start early, and curing will occur with the resin component having low flexibility and fluidity, making it difficult to achieve uniform curing. On the other hand, the reaction initiation temperature of the curing agent is, for example, 200° C. or lower. If the reaction initiation temperature is too high, the resin component may deteriorate. In addition, when using a resin with high heat resistance, such as a phenol resin, in addition to the epoxy resin, the reaction initiation temperature of the curing agent may be, for example, 300 ° C. or lower, since the resin component is less likely to deteriorate. . Specifically, the reaction start temperature of the curing agent is 110°C or more and 300°C or less, may be 110°C or more and 200°C or less, or may be 130°C or more and 200°C or less. The reaction initiation temperature of the curing agent is determined by differential scanning calorimetry (DSC).
 硬化剤の具体例としては、イミダゾール系硬化剤、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、イソシアネート系硬化剤、チオール系硬化剤が挙げられる。 Specific examples of the curing agent include imidazole curing agents, phenol curing agents, amine curing agents, acid anhydride curing agents, isocyanate curing agents, and thiol curing agents.
 イミダゾール系硬化剤としては、例えば、イミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-イソプロピルイミダゾール、2-フェニルイミダゾールや、イミダゾール化合物のカルボン酸塩、エポキシ化合物との付加物が挙げられる。また、イミダゾール系硬化剤は、ヒドロキシル基を有することが好ましい。ヒドロキシ基同士の水素結合で結晶化するため、反応開始温度が高くなる傾向にある。 Examples of imidazole-based curing agents include imidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-isopropylimidazole, 2-phenylimidazole, carboxylates of imidazole compounds, and adducts with epoxy compounds. It is also preferable that imidazole-based curing agents have hydroxyl groups. As crystallization occurs through hydrogen bonds between hydroxyl groups, the reaction initiation temperature tends to be high.
 フェノール系硬化剤としては、例えば、フェノール樹脂が挙げられる。さらに、フェノール樹脂としては、例えば、レゾール型フェノール樹脂、ノボラック型フェノール樹脂が挙げられる。発泡硬化後の基材に対する密着性や発泡硬化後の耐割れ性等の観点から、Tgが110℃以下のフェノール型ノボラック樹脂が特に好ましい。また、フェノール系硬化剤およびイミダゾール系硬化剤を併用してもよい。その場合、イミダゾール系硬化剤を硬化触媒として用いることが好ましい。 Examples of phenolic curing agents include phenolic resins. Further, examples of the phenol resin include resol type phenol resin and novolak type phenol resin. From the viewpoint of adhesion to the substrate after foaming and curing, cracking resistance after foaming and curing, etc., a phenolic novolac resin having a Tg of 110° C. or less is particularly preferred. Furthermore, a phenolic curing agent and an imidazole curing agent may be used in combination. In that case, it is preferable to use an imidazole curing agent as a curing catalyst.
 アミン系硬化剤としては、例えば、脂肪族アミン、芳香族アミン、脂環式アミン、ポリアミドアミンが挙げられる。脂肪族アミンとしては、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)等が挙げられる。芳香族アミンとしては、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)等が挙げられる。また、アミン系硬化剤として、ジシアンジアミド(DICY)等のジシアンジアミド系硬化剤、有機酸ジヒドラジド系硬化剤、アミンアダクト系硬化剤、ケチミン系硬化剤を用いることができる。 Examples of the amine curing agent include aliphatic amines, aromatic amines, alicyclic amines, and polyamide amines. Examples of aliphatic amines include diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylylylene diamine (MXDA), and the like. Examples of aromatic amines include diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), and diaminodiphenylsulfone (DDS). Further, as the amine curing agent, a dicyandiamide curing agent such as dicyandiamide (DICY), an organic acid dihydrazide curing agent, an amine adduct curing agent, or a ketimine curing agent can be used.
 酸無水物系硬化剤としては、例えば、脂環族酸無水物(液状酸無水物)、芳香族酸無水物が挙げられる。脂環族酸無水物としては、ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)等が挙げられる。芳香族酸無水物としては、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)等が挙げられる。 Examples of acid anhydride curing agents include alicyclic acid anhydrides (liquid acid anhydrides) and aromatic acid anhydrides. Examples of the alicyclic acid anhydride include hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA), and the like. Examples of the aromatic acid anhydride include trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenonetetracarboxylic acid (BTDA), and the like.
 イソシアネート系硬化剤としては、例えば、ブロックイソシアネートが挙げられる。 Examples of the isocyanate curing agent include block isocyanate.
 チオール系硬化剤としては、例えば、エステル結合型チオール化合物、脂肪族エーテル結合型チオール化合物、芳香族エーテル結合型チオール化合物が挙げられる。 Examples of the thiol curing agent include ester bond type thiol compounds, aliphatic ether bond type thiol compounds, and aromatic ether bond type thiol compounds.
 中でも、イミダゾール系硬化剤以外の硬化剤と、イミダゾール系硬化剤とを併用することが好ましい。その場合、イミダゾール系硬化剤を硬化触媒として用いることが好ましい。 Among these, it is preferable to use a curing agent other than an imidazole curing agent in combination with an imidazole curing agent. In that case, it is preferable to use an imidazole curing agent as a curing catalyst.
 硬化剤の含有量は、接着層に含まれる樹脂成分を100質量部とした場合に、例えば、1質量部以上、40質量部以下である。例えば、硬化剤としてイミダゾール系硬化剤を主成分として用いる場合、硬化剤の含有量は、接着層に含まれる樹脂成分を100質量部とした場合に、例えば、1質量部以上、15質量部以下であることが好ましい。一方、硬化剤としてフェノール系硬化剤を主成分として用いる場合、硬化剤の含有量は、接着層に含まれる樹脂成分を100質量部とした場合に、例えば、5質量部以上、40質量部以下であることが好ましい。なお、硬化剤としてイミダゾール系硬化剤またはフェノール系硬化剤を主成分として用いるとは、硬化剤において、イミダゾール系硬化剤またはフェノール系硬化剤の質量割合が最も多いことをいう。 The content of the curing agent is, for example, 1 part by mass or more and 40 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass. For example, when using an imidazole-based curing agent as a main component, the content of the curing agent is, for example, 1 part by mass or more and 15 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass. It is preferable that On the other hand, when using a phenolic curing agent as the main component, the content of the curing agent is, for example, 5 parts by mass or more and 40 parts by mass or less, when the resin component contained in the adhesive layer is 100 parts by mass. It is preferable that Note that using an imidazole curing agent or a phenolic curing agent as a main component as a curing agent means that the mass proportion of the imidazole curing agent or phenol curing agent is the largest in the curing agent.
(c)その他の成分
 本開示における接着層は、例えば熱硬化性の接着剤がエポキシ樹脂系接着剤である場合、樹脂成分として、上記のエポキシ樹脂およびアクリル樹脂のみを含有していてもよく、他の樹脂をさらに含有していてもよい。他の樹脂としては、例えばウレタン樹脂が挙げられる。
(c) Other components The adhesive layer in the present disclosure may contain only the above-mentioned epoxy resin and acrylic resin as resin components, for example, when the thermosetting adhesive is an epoxy resin adhesive, It may further contain other resins. Examples of other resins include urethane resins.
 接着層に含まれる樹脂成分に対する、エポキシ樹脂およびアクリル樹脂の合計の割合は、例えば70質量%以上であり、80質量%以上であってもよく、90質量%以上であってもよく、100質量%であってもよい。 The total ratio of the epoxy resin and the acrylic resin to the resin component contained in the adhesive layer is, for example, 70% by mass or more, may be 80% by mass or more, may be 90% by mass or more, and may be 100% by mass. It may be %.
 接着層に含まれる樹脂成分の含有量は、例えば60質量%以上であり、70質量%以上であってもよく、80質量%以上であってもよく、90質量%以上であってもよい。 The content of the resin component in the adhesive layer is, for example, 60% by mass or more, or may be 70% by mass or more, 80% by mass or more, or may be 90% by mass or more.
 接着層は、必要に応じて、例えばシランカップリング剤、充填剤、酸化防止剤、光安定剤、紫外線吸収剤、滑剤、可塑剤、帯電防止剤、架橋剤、着色剤等の添加剤を含有していてもよい。シランカップリング剤としては、例えば、エポキシ系シランカップリング剤が挙げられる。充填剤としては、例えば、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、三酸化アンチモン、ホウ酸亜鉛、モリブデン化合物、二酸化チタン等の無機充填剤が挙げられる。酸化防止剤としては、例えば、フェノール系酸化防止剤、硫黄系酸化防止剤が挙げられる。 The adhesive layer contains additives such as silane coupling agents, fillers, antioxidants, light stabilizers, ultraviolet absorbers, lubricants, plasticizers, antistatic agents, crosslinking agents, colorants, etc., as necessary. You may do so. Examples of the silane coupling agent include epoxy-based silane coupling agents. Examples of the filler include inorganic fillers such as calcium carbonate, aluminum hydroxide, magnesium hydroxide, antimony trioxide, zinc borate, molybdenum compounds, and titanium dioxide. Examples of the antioxidant include phenolic antioxidants and sulfur-based antioxidants.
(2)接着層
 接着層の厚さは、特に限定されないが、発泡剤の平均粒径以上であることが好ましい。接着層の厚さは、例えば10μm以上200μm以下であり、15μm以上150μm以下であってもよく、20μm以上100μm以下であってもよい。接着層が薄すぎると、基材との密着性および発泡硬化後の接着性を十分に得ることができない可能性がある。また、接着層が厚すぎると、面質が悪化する可能性がある。
(2) Adhesive layer The thickness of the adhesive layer is not particularly limited, but is preferably equal to or larger than the average particle size of the foaming agent. The thickness of the adhesive layer may be, for example, 10 μm or more and 200 μm or less, 15 μm or more and 150 μm or less, or 20 μm or more and 100 μm or less. If the adhesive layer is too thin, it may not be possible to obtain sufficient adhesion to the base material and adhesion after foaming and curing. Furthermore, if the adhesive layer is too thick, the surface quality may deteriorate.
 ここで、接着層の厚さは、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)又は走査透過型電子顕微鏡(STEM)により観察される発泡性接着シートの厚さ方向の断面から測定した値であり、無作為に選んだ10箇所の厚さの平均値とする。なお、発泡性接着シートが有する他の層の厚さの測定方法についても同様とする。 Here, the thickness of the adhesive layer is measured from a cross section in the thickness direction of the foamable adhesive sheet observed by a transmission electron microscope (TEM), a scanning electron microscope (SEM), or a scanning transmission electron microscope (STEM). This value is the average value of the thickness of 10 randomly selected locations. Note that the same applies to the method of measuring the thickness of other layers included in the foamable adhesive sheet.
 接着層は、連続層であってもよく、不連続層であってもよい。不連続層としては、例えば、ストライプ、ドット等のパターンが挙げられる。また、接着層の表面が、エンボス等の凹凸形状を有していてもよい。 The adhesive layer may be a continuous layer or a discontinuous layer. Examples of the discontinuous layer include patterns such as stripes and dots. Further, the surface of the adhesive layer may have an uneven shape such as embossing.
 接着層は、例えば、接着剤組成物を塗布し、溶剤を除去することで形成することができる。塗布方法としては、例えば、ロールコート、リバースロールコート、トランスファーロールコート、グラビアコート、グラビアリバースコート、コンマコート、ロッドコ-ト、ブレードコート、バーコート、ワイヤーバーコート、ダイコート、リップコート、ディップコート等が挙げられる。 The adhesive layer can be formed, for example, by applying an adhesive composition and removing the solvent. Examples of coating methods include roll coating, reverse roll coating, transfer roll coating, gravure coating, gravure reverse coating, comma coating, rod coating, blade coating, bar coating, wire bar coating, die coating, lip coating, dip coating, etc. can be mentioned.
 接着剤組成物は、溶媒を含有していてもよく、溶媒を含有していなくてもよい。なお、本明細書における溶媒は、厳密な溶媒(溶質を溶解させる溶媒)のみならず、分散媒も含む広義の意味である。また、接着剤組成物に含まれる溶媒は、接着剤組成物を塗布乾燥して接着層を形成する際に揮発して除去される。 The adhesive composition may or may not contain a solvent. Note that the term "solvent" as used herein has a broad meaning that includes not only a strict solvent (a solvent that dissolves a solute) but also a dispersion medium. Further, the solvent contained in the adhesive composition is evaporated and removed when the adhesive composition is applied and dried to form an adhesive layer.
 接着剤組成物は、上述した各成分を混合し、必要に応じて混練、分散することにより、得ることができる。混合および分散方法としては、一般的な混練分散機、例えば、二本ロールミル、三本ロールミル、ペブルミル、トロンミル、ツェグバリ(Szegvari)アトライター、高速インペラー分散機、高速ストーンミル、高速度衝撃ミル、デスパー、高速ミキサー、リボンブレンダー、コニーダー、インテンシブミキサー、タンブラー、ブレンダー、デスパーザー、ホモジナイザー、超音波分散機が適用できる。 The adhesive composition can be obtained by mixing the above-mentioned components, kneading and dispersing as necessary. For mixing and dispersing methods, common kneading and dispersing machines such as two-roll mills, three-roll mills, pebble mills, trom mills, Szegvari attritors, high-speed impeller dispersing machines, high-speed stone mills, high-speed impact mills, and despars are used. , high-speed mixer, ribbon blender, co-kneader, intensive mixer, tumbler, blender, desperser, homogenizer, and ultrasonic dispersion machine are applicable.
 本開示における発泡性接着シートは、接着層を有していればよく、例えば、1つの接着層のみを有していてもよく、接着層として第一接着層および第二接着層を有していてもよい。また、本開示における発泡性接着シートが、接着層として第一接着層および第二接着層を有する場合、第一接着層と第二接着層とをこの順に有していてもよく、第一接着層と基材と第二接着層とをこの順に有していてもよい。第一接着層および第二接着層の間に基材が配置されている場合には、発泡性接着シートの取扱性および作業性を良くすることができる。一方、発泡性接着シートが基材を有さない場合には、発泡性接着シート全体の厚さを薄くすることができる。そのため、例えば、狭い隙間にも発泡性接着シートを挿入可能である。 The foamable adhesive sheet in the present disclosure only needs to have an adhesive layer, for example, it may have only one adhesive layer, or it may have a first adhesive layer and a second adhesive layer as adhesive layers. It's okay. Further, when the foamable adhesive sheet according to the present disclosure has a first adhesive layer and a second adhesive layer as adhesive layers, it may have the first adhesive layer and the second adhesive layer in this order, and the first adhesive layer and the second adhesive layer may be provided in this order. The layer, the base material, and the second adhesive layer may be included in this order. When the base material is arranged between the first adhesive layer and the second adhesive layer, the handleability and workability of the foamable adhesive sheet can be improved. On the other hand, when the foamable adhesive sheet does not have a base material, the thickness of the entire foamable adhesive sheet can be reduced. Therefore, for example, the foamable adhesive sheet can be inserted into a narrow gap.
3.基材
 本開示における発泡性接着シートは、接着層として第一接着層および第二接着層を有しており、第一接着層および第二接着層の間に基材を有していてもよい。
3. Base material The foamable adhesive sheet in the present disclosure has a first adhesive layer and a second adhesive layer as adhesive layers, and may have a base material between the first adhesive layer and the second adhesive layer. .
 基材は、絶縁性を有することが好ましい。また、基材は、シート状であることが好ましい。基材は、単層構造を有していてもよく、複層構造を有していてもよい。また、基材は、内部に多孔構造を有していてもよく、有していなくてもよい。 It is preferable that the base material has insulation properties. Further, the base material is preferably in the form of a sheet. The base material may have a single layer structure or a multilayer structure. Further, the base material may or may not have a porous structure inside.
 基材としては、例えば、樹脂基材、不織布が挙げられる。 Examples of the base material include resin base materials and nonwoven fabrics.
 樹脂基材に含まれる樹脂としては、ポリエステル樹脂、ポリカーボネート、ポリアリレート、ポリウレタン、ポリアミド、ポリアミド樹脂、ポリイミド樹脂、ポリスルホン樹脂、ポリエーテルケトン樹脂、ポリフェニレンサルファイド(PPS)、変性ポリフェニレンオキシド等が挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)、芳香族ポリエステルが挙げられる。ポリアミド樹脂としては、例えば、ポリエーテルアミドが挙げられる。ポリイミド樹脂としては、例えば、ポリイミド、ポリエーテルイミド、ポリアミドイミドが挙げられる。ポリスルホン樹脂としては、例えば、ポリスルホン、ポリエーテルスルホンが挙げられる。ポリエーテルケトン樹脂としては、例えば、ポリエーテルケトン、ポリエーテルエーテルケトンが挙げられる。樹脂のガラス転移温度は、例えば80℃以上であり、140℃以上であってもよく、200℃以上であってもよい。また、樹脂として、液晶ポリマー(LCP)を用いてもよい。 Examples of the resin contained in the resin base material include polyester resin, polycarbonate, polyarylate, polyurethane, polyamide, polyamide resin, polyimide resin, polysulfone resin, polyetherketone resin, polyphenylene sulfide (PPS), modified polyphenylene oxide, and the like. Examples of the polyester resin include polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), and aromatic polyester. Examples of the polyamide resin include polyetheramide. Examples of the polyimide resin include polyimide, polyetherimide, and polyamideimide. Examples of the polysulfone resin include polysulfone and polyethersulfone. Examples of the polyetherketone resin include polyetherketone and polyetheretherketone. The glass transition temperature of the resin is, for example, 80°C or higher, may be 140°C or higher, or may be 200°C or higher. Furthermore, liquid crystal polymer (LCP) may be used as the resin.
 不織布としては、例えば、セルロース繊維、ポリエステル繊維、ナイロン繊維、アラミド繊維、ポリフェニレンサルファイド繊維、液晶ポリマー繊維、ガラス繊維、金属繊維、カーボン繊維等の繊維を含む不織布が挙げられる。 Examples of the nonwoven fabric include nonwoven fabrics containing fibers such as cellulose fibers, polyester fibers, nylon fibers, aramid fibers, polyphenylene sulfide fibers, liquid crystal polymer fibers, glass fibers, metal fibers, and carbon fibers.
 基材は、接着層との密着性を高めるため、表面処理が施されていてもよい。 The base material may be surface-treated to improve adhesion with the adhesive layer.
 基材の厚さは、特に限定されず、例えば2μm以上200μm以下であり、5μm以上100μm以下であってもよく、9μm以上50μm以下であってもよい。 The thickness of the base material is not particularly limited, and may be, for example, 2 μm or more and 200 μm or less, 5 μm or more and 100 μm or less, or 9 μm or more and 50 μm or less.
4.その他の構成
 本開示における発泡性接着シートは、上記の接着層および基材に加えて、必要に応じて、他の構成を有していてもよい。
4. Other configurations In addition to the adhesive layer and base material described above, the foamable adhesive sheet in the present disclosure may have other configurations as necessary.
(1)中間層
 本開示における発泡性接着シートは、基材および第一接着層の間に第一中間層を有していてもよい。また、本開示における発泡性接着シートは、基材および第二接着層の間に第二中間層を有していてもよい。第一中間層や第二中間層が配置されていることにより、第一接着層や第二接着層の基材に対する密着性を向上させることができる。さらには、第一中間層や第二中間層が配置されていることで、例えば、発泡性接着シートを折り曲げた際に屈曲部にかかる応力を緩和したり、発泡性接着シートを切断した際に切断部にかかる応力を緩和したりすることができる。その結果、発泡性接着シートの屈曲時や切断時において基材からの第一接着層や第二接着層の浮きや剥がれを抑制することができる。
(1) Intermediate layer The foamable adhesive sheet in the present disclosure may have a first intermediate layer between the base material and the first adhesive layer. Further, the foamable adhesive sheet in the present disclosure may have a second intermediate layer between the base material and the second adhesive layer. By arranging the first intermediate layer and the second intermediate layer, it is possible to improve the adhesion of the first adhesive layer and the second adhesive layer to the base material. Furthermore, by arranging the first intermediate layer and the second intermediate layer, for example, when the foam adhesive sheet is bent, stress applied to the bent part can be alleviated, and when the foam adhesive sheet is cut, the stress applied to the bent part can be alleviated. The stress applied to the cut portion can be alleviated. As a result, it is possible to suppress lifting and peeling of the first adhesive layer and the second adhesive layer from the base material when the foamable adhesive sheet is bent or cut.
 例えば、図5に示す発泡性接着シート10においては、基材2および第一接着層1aの間に第一中間層3aが配置され、基材2および第二接着層1bの間に第二中間層3bが配置されている。なお、図5においては、発泡性接着シート10は、第一中間層3aおよび第二中間層3bの両方を有するが、いずれか一方のみを有していてもよい。 For example, in the foamable adhesive sheet 10 shown in FIG. Layer 3b is arranged. In addition, although the foamable adhesive sheet 10 has both the first intermediate layer 3a and the second intermediate layer 3b in FIG. 5, it may have only either one.
 発泡性接着シートは、第一中間層および第二中間層の少なくとも一方を有していればよく、例えば、基材および第一接着層の間に配置された第一中間層のみを有していてもよく、基材および第二接着層の間に配置された第二中間層のみを有していてもよく、基材および第一接着層の間に配置された第一中間層と、基材および第二接着層の間に配置された第二中間層との両方を有していてもよい。中でも、基材および第一接着層の間に第一中間層が配置され、かつ、基材および第二接着層の間に第二中間層が配置されていることが好ましい。 The foamable adhesive sheet only needs to have at least one of the first intermediate layer and the second intermediate layer, for example, only the first intermediate layer disposed between the base material and the first adhesive layer. It may have only the second intermediate layer disposed between the base material and the second adhesive layer, or it may have only the second intermediate layer disposed between the base material and the first adhesive layer, and the base material and the first intermediate layer disposed between the base material and the first adhesive layer. and a second intermediate layer disposed between the second adhesive layer. Among these, it is preferable that the first intermediate layer is disposed between the base material and the first adhesive layer, and that the second intermediate layer is disposed between the base material and the second adhesive layer.
 第一中間層および第二中間層に含まれる材料としては、基材と第一接着層や第二接着層との密着性を高めることができ、かつ、応力を緩和することができる材料であれば特に限定されず、基材、第一接着層、および第二接着層の材料等に応じて適宜選択される。例えば、ポリエステル、ポリ塩化ビニル、ポリ酢酸ビニル、ポリウレタン、それらの少なくとも2種以上を共重合させた重合体、それらの架橋体、およびそれらの混合物等が挙げられる。 The material included in the first intermediate layer and the second intermediate layer may be any material that can enhance the adhesion between the base material and the first adhesive layer or the second adhesive layer, and can relieve stress. It is not particularly limited, and is appropriately selected depending on the materials of the base material, the first adhesive layer, the second adhesive layer, and the like. Examples include polyester, polyvinyl chloride, polyvinyl acetate, polyurethane, polymers obtained by copolymerizing at least two thereof, crosslinked products thereof, and mixtures thereof.
 架橋体は、上記の樹脂を硬化剤により架橋した架橋体である。硬化剤としては、例えば、イソシアネート系硬化剤が挙げられる。 The crosslinked product is a crosslinked product obtained by crosslinking the above resin with a curing agent. Examples of the curing agent include isocyanate curing agents.
 中でも、第一中間層および第二中間層は、架橋された樹脂を含有することが好ましい。なお、架橋された樹脂とは、高温にしても溶融しないものをいう。これにより、高温下での接着力、つまり耐熱性を向上させることができる。 Among these, it is preferable that the first intermediate layer and the second intermediate layer contain a crosslinked resin. Note that crosslinked resin refers to one that does not melt even at high temperatures. This makes it possible to improve adhesive strength at high temperatures, that is, heat resistance.
 第一中間層の厚さおよび第二中間層の厚さは、特に限定されないが、例えば0.1μm以上であり、0.5μm以上であってもよく、1μm以上であってもよい。第一中間層や第二中間層が薄すぎると、発泡性接着シートの屈曲時および切断時の基材からの第一接着層や第二接着層の剥がれを抑制する効果が十分に得られない可能性がある。一方、第一中間層の厚さおよび第二中間層の厚さは、例えば4μm以下であり、3.5μm以下であってもよい。第一中間層および第二中間層自体は、通常、耐熱性が高くないため、第一中間層や第二中間層が厚すぎると、耐熱性(高温下での接着力)が低下する可能性がある。具体的には、第一中間層の厚さおよび第二中間層の厚さは、0.1μm以上4μm以下であり、0.5μm以上4μm以下であってもよく、0.5μm以上3.5μm以下であってもよく、1μm以上3.5μm以下であってもよい。 The thickness of the first intermediate layer and the thickness of the second intermediate layer are not particularly limited, but are, for example, 0.1 μm or more, may be 0.5 μm or more, or may be 1 μm or more. If the first intermediate layer or the second intermediate layer is too thin, the effect of suppressing the peeling of the first adhesive layer or the second adhesive layer from the base material during bending or cutting of the foamable adhesive sheet will not be achieved sufficiently. there is a possibility. On the other hand, the thickness of the first intermediate layer and the thickness of the second intermediate layer are, for example, 4 μm or less, and may be 3.5 μm or less. The first intermediate layer and the second intermediate layer themselves usually do not have high heat resistance, so if the first intermediate layer or the second intermediate layer is too thick, the heat resistance (adhesion strength at high temperatures) may decrease. There is. Specifically, the thickness of the first intermediate layer and the thickness of the second intermediate layer are 0.1 μm or more and 4 μm or less, and may be 0.5 μm or more and 4 μm or less, and 0.5 μm or more and 3.5 μm or less. The thickness may be 1 μm or more and 3.5 μm or less.
 第一中間層および第二中間層は、例えば、樹脂組成物を塗布し、溶剤を除去することで形成することができる。塗布方法としては、例えば、ロールコート、リバースロールコート、トランスファーロールコート、グラビアコート、グラビアリバースコート、コンマコート、ロッドコ-ト、ブレードコート、バーコート、ワイヤーバーコート、ダイコート、リップコート、ディップコートが挙げられる。 The first intermediate layer and the second intermediate layer can be formed, for example, by applying a resin composition and removing the solvent. Examples of coating methods include roll coating, reverse roll coating, transfer roll coating, gravure coating, gravure reverse coating, comma coating, rod coating, blade coating, bar coating, wire bar coating, die coating, lip coating, and dip coating. Can be mentioned.
(2)セパレータ
 本開示における発泡性接着シートは、第一接着層の第二接着層とは反対の面側に第一セパレータを有していてもよい。また、本開示における発泡性接着シートは、第二接着層の第一接着層とは反対の面側に第二セパレータを有していてもよい。
(2) Separator The foamable adhesive sheet in the present disclosure may have a first separator on the side of the first adhesive layer opposite to the second adhesive layer. Further, the foamable adhesive sheet in the present disclosure may have a second separator on the side of the second adhesive layer opposite to the first adhesive layer.
 第一セパレータおよび第二セパレータは、第一接着層や第二接着層から剥離可能であれば特に限定されず、第一接着層や第二接着層を保護することが可能な程度の強度を有することができる。このような第一セパレータおよび第二セパレータとしては、例えば、離型フィルム、剥離紙等を挙げることができる。また、第一セパレータおよび第二セパレータは、単層構造を有していてもよく、複層構造を有していてもよい。 The first separator and the second separator are not particularly limited as long as they can be peeled off from the first adhesive layer and the second adhesive layer, and have sufficient strength to protect the first adhesive layer and the second adhesive layer. be able to. Examples of the first separator and the second separator include a release film, release paper, and the like. Further, the first separator and the second separator may have a single layer structure or a multilayer structure.
 単層構造のセパレータとしては、例えば、フッ素樹脂系フィルム等が挙げられる。 Examples of the single-layer separator include fluororesin films.
 また、複層構造のセパレータとしては、例えば、基材層の片面または両面に離型層を有する積層体が挙げられる。基材層としては、例えば、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート等の樹脂フィルムや、上質紙、コート紙、含浸紙等の紙が挙げられる。離型層の材料としては、離型性を有する材料であれば特に限定されず、例えば、シリコーン化合物、有機化合物変性シリコーン化合物、フッ素化合物、アミノアルキド化合物、メラミン化合物、アクリル化合物、ポリエステル化合物、長鎖アルキル化合物等が挙げられる。これらの化合物は、エマルジョン型、溶剤型または無溶剤型のいずれもが使用できる。 Further, as a separator with a multilayer structure, for example, a laminate having a release layer on one or both sides of a base layer can be mentioned. Examples of the base material layer include resin films such as polypropylene, polyethylene, and polyethylene terephthalate, and papers such as high-quality paper, coated paper, and impregnated paper. The material for the release layer is not particularly limited as long as it has release properties, and examples include silicone compounds, organic compound-modified silicone compounds, fluorine compounds, aminoalkyd compounds, melamine compounds, acrylic compounds, polyester compounds, and long-lasting materials. Examples include chain alkyl compounds. These compounds may be of emulsion type, solvent type or non-solvent type.
5.発泡性接着シート
 本開示における発泡性接着シートの厚さは、例えば10μm以上であり、20μm以上であってもよい。一方、発泡性接着シートの厚さは、例えば1000μm以下であり、200μm以下であってもよい。具体的には、発泡性接着シートの厚さは、10μm以上1000μm以下であり、20μm以上200μm以下であってもよい。ここでいう発泡性接着シートの厚さと、上記の発泡性接着シートの初期厚さとは、異なる。
5. Foamable Adhesive Sheet The thickness of the foamable adhesive sheet in the present disclosure is, for example, 10 μm or more, and may be 20 μm or more. On the other hand, the thickness of the foamable adhesive sheet is, for example, 1000 μm or less, and may be 200 μm or less. Specifically, the thickness of the foamable adhesive sheet is 10 μm or more and 1000 μm or less, and may be 20 μm or more and 200 μm or less. The thickness of the foamable adhesive sheet here and the initial thickness of the foamable adhesive sheet described above are different.
 本開示における発泡性接着シートの用途は、特に限定されない。本開示における発泡性接着シートは、例えば、2つの部材間に発泡性接着シートを配置し、その後、発泡性接着シートを加熱により発泡硬化させることで、2つの部材同士を接着する場合に用いることができる。具体的には、本開示における発泡性接着シートは、モータにおけるコイルおよびステータの接着や、埋込磁石型モータにおけるロータおよび永久磁石の接着に用いられる。 The use of the foamable adhesive sheet in the present disclosure is not particularly limited. The foamable adhesive sheet according to the present disclosure can be used, for example, to bond two members together by placing the foamable adhesive sheet between two members and then foaming and curing the foamable adhesive sheet by heating. Can be done. Specifically, the foamable adhesive sheet according to the present disclosure is used for adhering a coil and a stator in a motor, and for adhering a rotor and a permanent magnet in an embedded magnet type motor.
 本開示における発泡性接着シートの製造方法は、特に限定されない。 The method for manufacturing the foamable adhesive sheet in the present disclosure is not particularly limited.
 例えば、発泡性接着シートが、1つの接着層のみを有し、基材を有さない場合には、セパレータの一方の面に接着剤組成物を塗布および乾燥することによって、接着層を形成する方法が挙げられる。その後、セパレータを剥離してもよい。 For example, when the foamable adhesive sheet has only one adhesive layer and no base material, the adhesive layer is formed by applying an adhesive composition to one side of the separator and drying it. There are several methods. Thereafter, the separator may be peeled off.
 また、例えば、発泡性接着シートが、接着層として第一接着層および第二接着層を有し、第一接着層および第二接着層の間に基材を有さない場合、第一セパレータ上に第一接着層を形成するための接着剤組成物を塗布および乾燥して、第一接着層を形成し、また第二セパレータ上に第二接着層を形成するための接着剤組成物を塗布および乾燥して、第二接着層を形成し、第一セパレータおよび第一接着層の積層体と、第二セパレータおよび第二接着層の積層体とをラミネートする方法が挙げられる。その後、第一セパレータや第二セパレータを剥離してもよい。 For example, when the foamable adhesive sheet has a first adhesive layer and a second adhesive layer as adhesive layers and does not have a base material between the first adhesive layer and the second adhesive layer, it is possible to applying and drying an adhesive composition to form a first adhesive layer on the separator, and applying an adhesive composition to form a second adhesive layer on the second separator; and drying to form a second adhesive layer, and a method of laminating a laminate of the first separator and the first adhesive layer and a laminate of the second separator and the second adhesive layer. After that, the first separator and the second separator may be peeled off.
 また、例えば、発泡性接着シートが、第一接着層と基材と第二接着層とをこの順に有する場合には、基材の両面にそれぞれ、接着剤組成物を塗布および乾燥することによって、第一接着層および第二接着層を形成する方法を挙げることができる。第一接着層および第二接着層は、順次形成してもよく、同時に形成してもよい。また、例えば、基材の一方の面に接着剤組成物を塗布および乾燥することによって第一接着層を形成し、また、セパレータの一方の面に接着剤組成物を塗布および乾燥することによって第二接着層を形成し、基材の他方の面に第二接着層およびセパレータをラミネートする方法も挙げられる。 For example, when the foamable adhesive sheet has a first adhesive layer, a base material, and a second adhesive layer in this order, by applying and drying the adhesive composition on both sides of the base material, Mention may be made of methods for forming the first adhesive layer and the second adhesive layer. The first adhesive layer and the second adhesive layer may be formed sequentially or simultaneously. Alternatively, for example, the first adhesive layer may be formed by applying and drying the adhesive composition on one side of the base material, and the first adhesive layer may be formed by applying and drying the adhesive composition on one side of the separator. Another example is a method of forming two adhesive layers and laminating the second adhesive layer and a separator on the other side of the base material.
B.構造体の製造方法
 本開示における構造体の製造方法は、2つの実施態様を有する。以下、各実施態様について説明する。
B. Method for manufacturing a structure The method for manufacturing a structure in the present disclosure has two embodiments. Each embodiment will be described below.
1.第1実施態様
 本開示における構造体の製造方法の第1実施態様は、第一部材および第二部材の間に、接着層を有する発泡性接着シートを配置する配置工程と、上記発泡性接着シートを加熱により発泡硬化させ、上記第一部材および上記第二部材を接着する接着工程と、を有する構造体の製造方法であって、上記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、上記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、上記発泡性接着シートの初期厚さと、160℃以上200℃未満の所定の温度での変位量との合計が、間隙設定値100%に対して、100%以上、308%以下であり、上記間隙設定値が、上記第一部材および上記第二部材の間に上記発泡性接着シートを配置した後の間隙の距離である。
1. First Embodiment A first embodiment of the method for manufacturing a structure according to the present disclosure includes a step of arranging a foamable adhesive sheet having an adhesive layer between a first member and a second member, and a step of arranging a foamable adhesive sheet having an adhesive layer. a bonding step of foaming and curing by heating and bonding the first member and the second member, the adhesive layer comprising a thermosetting adhesive, a foaming agent, and a foaming agent. In the foamable adhesive sheet, the initial thickness of the foamable adhesive sheet is determined by thermomechanical measurement when a compressive load is applied, the temperature is raised at a predetermined temperature increase rate, and the displacement is measured. The total amount of displacement at a predetermined temperature of 100% or more and less than 200°C is 100% or more and 308% or less with respect to 100% of the gap setting value, and the gap setting value is This is the distance of the gap after the foamable adhesive sheet is placed between the two members.
 図6(a)~図6(b)は、本実施態様の構造体の製造方法を例示する工程図である。まず、図6(a)に示すように、第一部材20aおよび第二部材20bの間に、発泡性接着シート10を配置する。次に、図6(b)に示すように、発泡性接着シート10の接着層を加熱により発泡硬化させる。発泡硬化後の接着シート11により、第一部材20aおよび第二部材20bは接着(接合)される。これにより、第一部材20aおよび第二部材20bの間に接着シート11が配置された構造体100が得られる。 FIGS. 6(a) to 6(b) are process diagrams illustrating the method for manufacturing the structure of this embodiment. First, as shown in FIG. 6(a), the foamable adhesive sheet 10 is placed between the first member 20a and the second member 20b. Next, as shown in FIG. 6(b), the adhesive layer of the foamable adhesive sheet 10 is foamed and cured by heating. The first member 20a and the second member 20b are adhered (joined) by the adhesive sheet 11 after foaming and hardening. Thereby, a structure 100 is obtained in which the adhesive sheet 11 is arranged between the first member 20a and the second member 20b.
 また、本実施態様の発泡性接着シートにおいては、発泡性接着シートの初期厚さと、図4に示すようなTMA曲線における所定温度での変位量との合計が、間隙設定値に対して所定の範囲内である。 Furthermore, in the foamable adhesive sheet of this embodiment, the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature in the TMA curve as shown in FIG. Within range.
 間隙設定値は、第一部材および第二部材の間に発泡性接着シートを配置した後の間隙の距離である。例えば図6(a)においては、第一部材20aおよび第二部材20bの間に発泡性接着シート10を配置した後の間隙G1、G2の距離d1、d2の合計が、間隙設定値となる。 The gap setting value is the distance of the gap after the foamable adhesive sheet is placed between the first member and the second member. For example, in FIG. 6A, the sum of the distances d1 and d2 of the gaps G1 and G2 after the foam adhesive sheet 10 is placed between the first member 20a and the second member 20b is the gap setting value.
 本実施態様の構造体の製造方法においては、上述の発泡性接着シートを用いる。したがって、間隙設定値に適した、優れた発泡特性および接着特性を得ることができる。よって、部材間の間隙の充填および部材同士の接合のために、間隙設定値に対して最適な発泡性接着シートを選択して用いることができる。 In the method for manufacturing a structure of this embodiment, the above-mentioned foamable adhesive sheet is used. Therefore, excellent foaming and adhesion properties suitable for the gap settings can be obtained. Therefore, in order to fill the gaps between the members and join the members to each other, it is possible to select and use the foamable adhesive sheet that is most suitable for the gap setting value.
 以下、本実施態様の構造体の製造方法に用いられる発泡性接着シートおよび本実施態様の構造体の製造方法の各工程について説明する。 Hereinafter, the foamable adhesive sheet used in the method of manufacturing a structure of this embodiment and each step of the method of manufacturing a structure of this embodiment will be described.
(1)発泡性接着シート
 本実施態様に用いられる発泡性接着シートにおいては、発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、発泡性接着シートの初期厚さと、160℃以上200℃未満の所定の温度での変位量との合計が、間隙設定値に対して所定の範囲内である。
(1) Foamable adhesive sheet In the foamable adhesive sheet used in this embodiment, displacement was measured by applying a compressive load and increasing the temperature at a predetermined temperature increase rate by thermomechanical measurement. At this time, the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement at a predetermined temperature of 160° C. or more and less than 200° C. is within a predetermined range with respect to the gap setting value.
 発泡性接着シートについては、上述の発泡性接着シートと同様とする。 The foamable adhesive sheet is the same as the foamable adhesive sheet described above.
 なお、本実施態様において、間隙設定値は、第一部材および第二部材の間に発泡性接着シートを配置した後の間隙の距離である。 Note that in this embodiment, the gap setting value is the distance of the gap after the foamable adhesive sheet is placed between the first member and the second member.
(2)配置工程
 本実施態様における配置工程は、第一部材および第二部材の間に、接着層を有する発泡性接着シートを配置する工程である。
(2) Arrangement step The arrangement step in this embodiment is a step of arranging a foamable adhesive sheet having an adhesive layer between the first member and the second member.
 第一部材および第二部材の間に発泡性接着シートを配置する方法は、第一部材および第二部材の種類等に応じて適宜選択される。例えば、第一部材および第二部材のうち、一方の部材に発泡性接着シートを配置し、発泡性接着シートの一方の部材とは反対の面側に他方の部材を配置する方法、第一部材および第二部材の間の隙間に発泡性接着シートを挿入する方法、第一部材の穴や溝等に発泡性接着シートを配置した後、第一部材の穴や溝等の中の発泡性接着シートを配置した後の隙間に第二部材を挿入する方法等が挙げられる。また、例えば、第一部材が穴や溝を有しており、第一部材の穴や溝に第二部材を配置して接着する場合には、第二部材に発泡性接着シートを貼り付けた後、第一部材の穴や溝に、発泡性接着シートが貼り付けられた第二部材を配置する方法、第一部材の穴や溝に発泡性接着シートを貼り付けた後、発泡性接着シートが貼り付けられた第一部材の穴や溝に、第二部材を配置する方法等が挙げられる。 The method of arranging the foamable adhesive sheet between the first member and the second member is appropriately selected depending on the types of the first member and the second member. For example, a method in which a foam adhesive sheet is placed on one of the first member and the second member, and the other member is placed on the side of the foam adhesive sheet opposite to the first member; and a method of inserting a foam adhesive sheet into the gap between the second member, after placing the foam adhesive sheet in the hole, groove, etc. of the first member, foam adhesive in the hole, groove, etc. of the first member. Examples include a method of inserting a second member into the gap after the sheet is placed. For example, when the first member has holes or grooves and the second member is placed in the holes or grooves of the first member and is bonded, a foam adhesive sheet may be attached to the second member. After that, a second member with a foam adhesive sheet pasted in the hole or groove of the first member is placed. After the foam adhesive sheet is pasted in the hole or groove of the first member, the foam adhesive sheet is Examples include a method of arranging the second member in a hole or groove of the first member to which the second member is pasted.
 第一部材および第二部材は、構造体の用途等に応じて適宜選択される。第一部材および第二部材は、接着および絶縁が必要な部材であることが好ましい。例えば、モータの部品が挙げられる。具体的には、モータにおけるコイルおよびステータや、埋込磁石型モータにおけるロータおよび永久磁石が挙げられる。 The first and second members are appropriately selected depending on the application of the structure. The first and second members are preferably members that require adhesion and insulation. For example, motor parts are included. More specifically, the coil and stator of a motor, and the rotor and permanent magnet of an embedded magnet motor are included.
(3)接着工程
 本実施態様における接着工程は、上記発泡性接着シートを加熱により発泡硬化させ、第一部材および第二部材を接着する工程である。
(3) Adhesion process The adhesion process in this embodiment is a process of foaming and curing the foamable adhesive sheet by heating and bonding the first member and the second member.
 接着工程における加熱温度は、発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、発泡性接着シートの初期厚さと、所定の温度で変位量との合計が、間隙設定値100%に対して、100%以上308%以下となるように設定されていることが好ましく、112%以上294%以下となるように設定されていることがより好ましい。加熱温度が上記範囲よりも低いと、変位量が小さいため、発泡が不十分になり、接着強度が低下する可能性がある。この場合、発泡硬化後の接着シートと第一部材または第二部材との間で、界面破壊が生じやすくなる可能性がある。また、上述したように、マイクロカプセル型発泡剤の場合、TMA曲線において、最大変位量に達した後に変位量が小さくなる傾向がある。よって、加熱温度が上記範囲よりも高いと、最大変位量に達した後に変位量が小さくなり、その結果、発泡時の接着層の厚さを維持することができず、接着強度が低下する可能性がある。 The heating temperature in the bonding process is the initial thickness of the foamable adhesive sheet when a compressive load is applied to the foamable adhesive sheet, the temperature is raised at a predetermined temperature increase rate, and the displacement is measured by thermomechanical measurement. It is preferable that the total amount including the amount of displacement at a predetermined temperature is set to be 100% or more and 308% or less, and preferably set to be 112% or more and 294% or less with respect to the gap setting value of 100%. It is more preferable that If the heating temperature is lower than the above range, the amount of displacement will be small, so foaming will be insufficient and adhesive strength may decrease. In this case, interfacial destruction may easily occur between the adhesive sheet after foaming and curing and the first member or the second member. Furthermore, as described above, in the case of microcapsule-type foaming agents, the amount of displacement tends to decrease after reaching the maximum amount of displacement in the TMA curve. Therefore, if the heating temperature is higher than the above range, the amount of displacement will become smaller after reaching the maximum amount of displacement, and as a result, the thickness of the adhesive layer during foaming cannot be maintained, and the adhesive strength may decrease. There is sex.
 具体的には、加熱温度は、160℃以上190℃以下であることが好ましい。加熱温度が上記範囲内であることにより、耐熱性を向上させることができる。そのため、自動車のエンジン回りやそれに近い耐熱性が必要とされる用途への適用が可能になる。 Specifically, the heating temperature is preferably 160°C or higher and 190°C or lower. When the heating temperature is within the above range, heat resistance can be improved. Therefore, it can be applied to applications that require heat resistance similar to that of automobile engines.
2.第2実施態様
 本開示における構造体の製造方法の第2実施態様は、第一部材および第二部材の間に、接着層を有する発泡性接着シートを配置する配置工程と、上記発泡性接着シートを加熱により発泡硬化させ、上記第一部材および上記第二部材を接着する接着工程と、を有する構造体の製造方法であって、上記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、上記接着工程における加熱温度を、150℃以上200℃未満であり、かつ、上記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で上記加熱温度まで昇温し、変位を測定したときの、上記発泡性接着シートの初期厚さと、変位量との合計が、間隙設定値100%に対して、121%以上、168%以下となるように設定し、上記間隙設定値が、上記第一部材および上記第二部材の間に上記発泡性接着シートを配置した後の間隙の距離である。
2. Second Embodiment A second embodiment of the method for manufacturing a structure according to the present disclosure includes a step of arranging a foamable adhesive sheet having an adhesive layer between a first member and a second member; a bonding step of foaming and curing by heating and bonding the first member and the second member, the adhesive layer comprising a thermosetting adhesive, a foaming agent, and a foaming agent. and the heating temperature in the bonding step is 150°C or more and less than 200°C, and in the foamable adhesive sheet, according to thermomechanical measurement, a compressive load is applied to the heating temperature at a predetermined temperature increase rate. Set so that the sum of the initial thickness of the foamable adhesive sheet and the amount of displacement is 121% or more and 168% or less with respect to the gap setting value of 100% when the temperature is increased to However, the gap setting value is the distance of the gap after the foamable adhesive sheet is placed between the first member and the second member.
 図7は、発泡性接着シートについて、熱機械測定(TMA)により、圧縮荷重を加えて、所定の昇温速度で所定の温度まで昇温し、変位を測定したときの、時間を横軸、変位量を縦軸としたTMA曲線を例示するグラフである。本実施態様の構造体の製造方法においては、接着工程における加熱温度を、150℃以上200℃未満であり、かつ、発泡性接着シートの初期厚さと、例えば図7に示すような発泡性接着シートについてのTMA曲線における変位量との合計が、間隙設定値に対して所定の範囲内となるように設定する。 FIG. 7 shows the time on the horizontal axis, when the foamable adhesive sheet was heated to a predetermined temperature at a predetermined temperature increase rate, and the displacement was measured by thermomechanical measurement (TMA). It is a graph illustrating a TMA curve with displacement amount as the vertical axis. In the method for manufacturing a structure of this embodiment, the heating temperature in the bonding step is 150°C or more and less than 200°C, and the initial thickness of the foamable adhesive sheet and the foamable adhesive sheet as shown in FIG. The sum of the amount of displacement in the TMA curve and the amount of displacement in the TMA curve is set so that it is within a predetermined range with respect to the gap setting value.
 本実施態様の発泡性接着シートにおいては、接着工程における加熱温度を、150℃以上200℃未満であり、かつ、発泡性接着シートの初期厚さと、発泡性接着シートについて熱機械測定により測定される変位量との合計が、間隙設定値に対して所定の範囲内となるように設定することにより、間隙設定値に適した、優れた発泡特性および接着特性を得ることができる。よって、間隙設定値に対して、接着工程における加熱条件を最適化することができる。 In the foamable adhesive sheet of this embodiment, the heating temperature in the bonding step is 150°C or more and less than 200°C, and the initial thickness of the foamable adhesive sheet and the foamable adhesive sheet are measured by thermomechanical measurement. By setting the sum together with the displacement amount to be within a predetermined range with respect to the gap setting value, excellent foaming properties and adhesive properties suitable for the gap setting value can be obtained. Therefore, the heating conditions in the bonding process can be optimized with respect to the gap setting value.
 従来、発泡性接着シートの発泡硬化時の加熱条件については、例えば、発泡剤の発泡開始温度、発泡剤の最大発泡温度、接着剤の硬化開始温度等に基づいて設定されている。例えば、特許文献2には、加熱条件について、熱発泡剤の熱発泡温度(発泡開始温度)をT1とし、接着層の硬化開始温度をT2としたとき、T1≦T2の関係を満足することが開示されている。しかしながら、本開示の発明者らが、発泡性接着シートの発泡硬化時の加熱条件について検討したところ、発泡剤の発泡開始温度と接着層の硬化開始温度とを所定の関係とする場合であっても、接着強度が低下する場合があることが判明した。なお、発泡剤の発泡開始温度や最大発泡温度は、発泡剤単体の発泡特性であり、発泡性接着シートの発泡特性であるとはいえない。 Conventionally, heating conditions during foam curing of a foamable adhesive sheet are set based on, for example, the foaming start temperature of the foaming agent, the maximum foaming temperature of the foaming agent, the curing start temperature of the adhesive, etc. For example, Patent Document 2 states that regarding the heating conditions, when the thermal foaming temperature (foaming start temperature) of the thermal foaming agent is T1 and the curing start temperature of the adhesive layer is T2, the relationship T1≦T2 is satisfied. Disclosed. However, when the inventors of the present disclosure studied the heating conditions during foaming and curing of a foamable adhesive sheet, it was found that the foaming start temperature of the foaming agent and the hardening start temperature of the adhesive layer are in a predetermined relationship. It was also found that the adhesive strength may decrease. Note that the foaming start temperature and maximum foaming temperature of the foaming agent are the foaming characteristics of the foaming agent alone, and cannot be said to be the foaming characteristics of the foamable adhesive sheet.
 これに対し、本実施態様においては、発泡性接着シートの初期厚さと、発泡性接着シートについて熱機械測定により測定される変位量とに基づいて加熱条件を設定している。上述したように、熱機械分析の測定条件は、実際の発泡性接着シートの発泡硬化条件に近づけることができる。よって、熱機械測定であれば、発泡性接着シートの発泡硬化挙動が反映された測定値が得られると考えられる。 In contrast, in this embodiment, the heating conditions are set based on the initial thickness of the foamable adhesive sheet and the amount of displacement measured by thermomechanical measurement of the foamable adhesive sheet. As described above, the measurement conditions for the thermomechanical analysis can be made close to the actual foaming and curing conditions of the foamable adhesive sheet. Therefore, it is thought that thermomechanical measurements can provide measured values that reflect the foaming and curing behavior of the foamable adhesive sheet.
 以下、本実施態様の構造体の製造方法に用いられる発泡性接着シートおよび本実施態様の構造体の製造方法の各工程について説明する。 Hereinafter, the foamable adhesive sheet used in the method of manufacturing a structure of this embodiment and each step of the method of manufacturing a structure of this embodiment will be described.
(1)発泡性接着シート
 本実施態様に用いられる発泡性接着シートは、接着層を有しており、接着層は、熱硬化性の接着剤と、発泡剤とを含有する。
(1) Foamable adhesive sheet The foamable adhesive sheet used in this embodiment has an adhesive layer, and the adhesive layer contains a thermosetting adhesive and a foaming agent.
 発泡性接着シートにおける接着層については、上記「A.発泡性接着シート 2.接着層」の項に記載した接着層と同様とする。 The adhesive layer in the foamable adhesive sheet is the same as the adhesive layer described in the section "A. Foamable adhesive sheet 2. Adhesive layer" above.
 また、発泡性接着シートにおける他の構成についても、上記「A.発泡性接着シート」の項に記載した内容と同様とする。 In addition, the other configurations of the foamable adhesive sheet are the same as those described in the section of "A. Foamable adhesive sheet" above.
(2)配置工程
 本実施態様における配置工程は、第一部材および第二部材の間に、接着層を有する発泡性接着シートを配置する工程である。配置工程ならびに第一部材および第二部材については、上記第1実施態様と同様とする。
(2) Arrangement step The arrangement step in this embodiment is a step of arranging a foamable adhesive sheet having an adhesive layer between the first member and the second member. The arrangement step and the first and second members are the same as those in the first embodiment.
(3)接着工程
 本実施態様における接着工程は、上記発泡性接着シートを加熱により発泡硬化させ、第一部材および第二部材を接着する工程である。
(3) Adhesion process The adhesion process in this embodiment is a process of foaming and curing the foamable adhesive sheet by heating and bonding the first member and the second member.
 本実施態様においては、接着工程における加熱温度を、150℃以上200℃未満であり、かつ、発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で加熱温度まで昇温し、変位を測定したときの、発泡性接着シートの初期厚さと、変位量との合計が、間隙設定値100%に対して、121%以上168%以下となるように設定する。中でも、接着工程における加熱温度を、150℃以上200℃未満であり、かつ、発泡性接着シートの初期厚さと、上記変位量との合計が、間隙設定値100%に対して、149%以上168%以下となるように設定することが好ましい。加熱温度が上記範囲内であることにより、間隙設定値に対して、接着工程における加熱条件を最適化することができる。 In this embodiment, the heating temperature in the bonding process is 150°C or more and less than 200°C, and the foam adhesive sheet is heated to the heating temperature at a predetermined heating rate by applying a compressive load according to thermomechanical measurements. When the temperature is raised and the displacement is measured, the total of the initial thickness of the foamable adhesive sheet and the amount of displacement is set to be 121% or more and 168% or less with respect to the gap setting value of 100%. Among them, the heating temperature in the bonding step is 150°C or more and less than 200°C, and the total of the initial thickness of the foamable adhesive sheet and the above displacement is 149% or more with respect to the gap setting value of 100%. % or less. By setting the heating temperature within the above range, the heating conditions in the bonding process can be optimized with respect to the gap setting value.
 ここで、熱機械測定は、以下の方法により行う。まず、発泡性接着シートを、φ4mmの治具で打ち抜き、サンプルを作製する。次に、φ5mmのアルミニウム容器にサンプルを入れ、サンプルの上にφ4mmのアルミニウムプレートを置く。次いで、温度:25℃から所定の加熱温度まで、昇温速度:20℃/min、荷重:10mN、圧縮モードの条件で、熱機械測定を行い、サンプルの膨張または収縮に伴う変位を測定する。熱機械測定装置としては、例えば、日立ハイテクサイエンス社製の熱機械分析装置TMA7100を用いる。 Here, the thermomechanical measurement is performed by the following method. First, a foam adhesive sheet is punched out using a jig with a diameter of 4 mm to prepare a sample. Next, the sample is placed in an aluminum container with a diameter of 5 mm, and an aluminum plate with a diameter of 4 mm is placed on top of the sample. Next, thermomechanical measurements are performed under the conditions of temperature: 25° C. to a predetermined heating temperature, heating rate: 20° C./min, load: 10 mN, compression mode, and displacement due to expansion or contraction of the sample is measured. As the thermomechanical measuring device, for example, a thermomechanical analyzer TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd. is used.
 具体的には、加熱温度は、160℃以上190℃以下であることが好ましい。加熱温度が上記範囲内であることにより、耐熱性を向上させることができる。そのため、自動車のエンジン回りやそれに近い耐熱性が必要とされる用途への適用が可能になる。 Specifically, the heating temperature is preferably 160°C or higher and 190°C or lower. When the heating temperature is within the above range, heat resistance can be improved. Therefore, it can be applied to applications that require heat resistance similar to that of automobile engines.
 また、上記間隙設定値は、上記「A.発泡性接着シート」の項に記載した間隙設定値と同様である。 Further, the above-mentioned gap setting value is the same as the gap setting value described in the section of "A. Foamable adhesive sheet" above.
 なお、本開示は、上記実施形態に限定されない。上記実施形態は、例示であり、本開示における特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本開示における技術的範囲に包含される。 Note that the present disclosure is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any configuration that has substantially the same technical idea as the claims of the present disclosure and provides similar effects is the present invention. within the technical scope of the disclosure.
[製造例I~II]
 まず、下記表1に示す組成の接着剤組成物を準備した。また、表1に記載した各材料の詳細を下記に示す。
[Production Examples I to II]
First, an adhesive composition having the composition shown in Table 1 below was prepared. Further, details of each material listed in Table 1 are shown below.
・アクリル樹脂:PMMA-PBuA-PMMA(一部にアクリルアミド基)、Tg:-20℃、120℃、Mw:150,000
・エポキシ樹脂A:ビスフェノールAノボラック型、常温固形、軟化温度:70℃、エポキシ当量:210g/eq、Mw:1300、150℃での溶融粘度:0.5Pa・s
・エポキシ樹脂B:BPAフェノキシ型、常温固形、軟化温度:110℃、エポキシ当量:8000g/eq、Mw:50,000
・エポキシ樹脂C:ビスフェノールA型、常温液状、エポキシ当量:184~194g/eq
・エポキシ樹脂D:ジアミノジフェニルメタン型、高粘調液体、エポキシ当量:110~130g/eq
・エポキシ樹脂E:シリコーン変性、エポキシ当量:1200g/mol
・硬化剤1:α-(ヒドロキシ(又はジヒドロキシ)フェニルメチル)-ω-ヒドロポリ[ビフェニル-4,4’-ジイルメチレン(ヒドロキシ(又はジヒドロキシ)フェニレンメチレン)]
・硬化剤2:2-フェニル-4,5-ジヒドロキシメチルイミダゾール、平均粒子径:3μm、融点:230℃、反応開始温度145℃~155℃、活性領域155℃~173℃(四国化成工業社製、2PHZ-PW)
・Acrylic resin: PMMA-PBuA-PMMA (acrylamide group in part), Tg: -20°C, 120°C, Mw: 150,000
・Epoxy resin A: Bisphenol A novolac type, solid at room temperature, softening temperature: 70°C, epoxy equivalent: 210g/eq, Mw: 1300, melt viscosity at 150°C: 0.5Pa・s
・Epoxy resin B: BPA phenoxy type, solid at room temperature, softening temperature: 110°C, epoxy equivalent: 8000g/eq, Mw: 50,000
・Epoxy resin C: bisphenol A type, liquid at room temperature, epoxy equivalent: 184 to 194 g/eq
・Epoxy resin D: Diaminodiphenylmethane type, high viscosity liquid, epoxy equivalent: 110 to 130 g/eq
・Epoxy resin E: silicone modification, epoxy equivalent: 1200 g/mol
・Curing agent 1: α-(hydroxy (or dihydroxy) phenylmethyl)-ω-hydropoly[biphenyl-4,4'-diylmethylene (hydroxy (or dihydroxy) phenylene methylene)]
・Curing agent 2: 2-phenyl-4,5-dihydroxymethylimidazole, average particle size: 3 μm, melting point: 230°C, reaction initiation temperature 145°C to 155°C, active area 155°C to 173°C (manufactured by Shikoku Kasei Kogyo Co., Ltd.) , 2PHZ-PW)
・熱発泡剤1:熱膨張性マイクロカプセル、平均粒径13μm、膨張開始温度123~133℃、最大膨張温度168~178℃、コア:炭化水素、シェル:熱可塑性高分子
・熱発泡剤2:熱膨張性マイクロカプセル、平均粒径21μm、膨張開始温度120~130℃、最大膨張温度175~190℃、コア:炭化水素、シェル:熱可塑性高分子
・シランカップリング剤:3-グリシドキシプロピルトリメトキシシラン
・溶剤:メチルエチルケトン
・Thermal foaming agent 1: thermally expandable microcapsules, average particle size 13 μm, expansion start temperature 123-133°C, maximum expansion temperature 168-178°C, core: hydrocarbon, shell: thermoplastic polymer ・Thermal foaming agent 2: Thermally expandable microcapsules, average particle size 21 μm, expansion start temperature 120-130°C, maximum expansion temperature 175-190°C, core: hydrocarbon, shell: thermoplastic polymer, silane coupling agent: 3-glycidoxypropyl Trimethoxysilane/Solvent: Methyl ethyl ketone
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[製造例1~9]
 基材として、一方の表面に厚さ5μm以下の中間層が配置されたポリエチレンナフタレート(PENフィルム、東洋紡フィルムソリューション社製、テオネックスQ51、厚さ25μm)を準備した。次に、上記基材の上記中間層とは反対側の面に、上記接着剤組成物を、乾燥後の厚さが45μmとなるように、アプリケーターを用いて塗布した。その後、オーブンにて100℃で3分間乾燥させて、第一接着層を形成した。
[Production Examples 1 to 9]
As a base material, polyethylene naphthalate (PEN film, manufactured by Toyobo Film Solutions Co., Ltd., Theonex Q51, thickness 25 μm) was prepared, with an intermediate layer having a thickness of 5 μm or less arranged on one surface. Next, the adhesive composition was applied to the surface of the substrate opposite to the intermediate layer using an applicator so that the thickness after drying was 45 μm. Thereafter, it was dried in an oven at 100° C. for 3 minutes to form a first adhesive layer.
 次に、上記中間層の上記基材とは反対側の面に、上記接着剤組成物を、乾燥後の厚さが45μmとなるように、アプリケーターを用いて塗布した。その後、オーブンにて100℃で3分間乾燥させて、第二接着層を形成した。 Next, the adhesive composition was applied to the surface of the intermediate layer opposite to the base material using an applicator so that the thickness after drying was 45 μm. Thereafter, it was dried in an oven at 100° C. for 3 minutes to form a second adhesive layer.
 次に、第一接着層、基材、中間層および第二接着層をこの順に有する積層体の第二接着層の面に、第二セパレータとして、離型フィルム(PETセパレータ、ニッパ社製、PET50×1-J2、厚さ50μm)をラミネートした。これにより、第一接着層、基材、中間層、第二接着層および第二セパレータがこの順に配置された発泡性接着シートを得た。 Next, a release film (PET separator, made by Nipper Co., Ltd., PET50 ×1-J2, thickness 50 μm) was laminated. Thereby, a foamable adhesive sheet was obtained in which the first adhesive layer, the base material, the intermediate layer, the second adhesive layer, and the second separator were arranged in this order.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価1]
(1)熱機械測定(TMA)
 熱機械測定装置として、日立ハイテクサイエンス社製の熱機械分析装置TMA7100を用いた。まず、発泡性接着シートを、φ4mmの治具で打ち抜き、サンプルを作製した。次に、φ5mmのアルミニウム容器にサンプルを第二接着層が底面になるように入れ、サンプルの上にφ4mmのアルミニウムプレートを置いた。この状態で、熱機械測定装置の膨張圧縮プローブを荷重100mNで接触させて、アルミニウムプレートとサンプルとを十分平滑に接触させた後のサンプルの厚さを発泡性接着シートの初期厚さとした。次いで、温度:25℃以上250℃以下、昇温速度:20℃/min、荷重:10mN、圧縮モードの条件で、熱機械測定を行い、サンプルの膨張または収縮に伴う変位を測定した。そして、各温度での変位量を求めた。
[Evaluation 1]
(1) Thermomechanical measurement (TMA)
As a thermomechanical measuring device, a thermomechanical analyzer TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd. was used. First, a sample was prepared by punching out a foam adhesive sheet using a jig with a diameter of 4 mm. Next, the sample was placed in an aluminum container with a diameter of 5 mm with the second adhesive layer facing the bottom, and an aluminum plate with a diameter of 4 mm was placed on top of the sample. In this state, the expansion and compression probe of the thermomechanical measuring device was brought into contact with a load of 100 mN, and the thickness of the sample after sufficiently smooth contact between the aluminum plate and the sample was defined as the initial thickness of the foamable adhesive sheet. Next, thermomechanical measurements were performed under the conditions of temperature: 25° C. or higher and 250° C. or lower, heating rate: 20° C./min, load: 10 mN, and compression mode, and displacement due to expansion or contraction of the sample was measured. Then, the amount of displacement at each temperature was determined.
(2)接着強度
 厚さ1.6mm、幅25mm、長さ100mmの金属板(冷間圧延鋼板SPCC-SD)を2枚用意した。そのうちの1枚の金属板の一方の先端にスペーサを15mmの間隔を設けて配置した。スペーサの厚さは、300μm(日東電工社製のカプトンテープP-221を5枚重ねた厚さ)または370μm(日東電工社製のカプトンテープP-221を2枚と、寺岡製作所製のフッ素樹脂粘着テープ8410を1枚重ねた厚さ)とした。また、発泡性接着シートを12.5mm×25mmの大きさに切り出した。発泡性接着シートは、セパレータを剥がした状態とした。次に、スペーサの間に発泡性接着シートを配置し、もう1枚の金属板を一方の先端が重なるように配置し、クリップにて固定し、試験片を得た。その後、試験片を熱オーブン(ヤマト科学社製、DN610)に入れ、加熱することで、発泡性接着シートの第一接着層および第二接着層を発泡硬化させた。この際、加熱条件は、昇温速度:20℃/min、加熱温度:160℃、180℃、200℃とした。
(2) Adhesive strength Two metal plates (cold rolled steel plate SPCC-SD) with a thickness of 1.6 mm, a width of 25 mm, and a length of 100 mm were prepared. Spacers were placed at one end of one of the metal plates at an interval of 15 mm. The thickness of the spacer is 300 μm (thickness of 5 layers of Kapton Tape P-221 manufactured by Nitto Denko Corporation) or 370 μm (thickness of 2 layers of Kapton Tape P-221 manufactured by Nitto Denko Corporation and fluororesin manufactured by Teraoka Manufacturing Co., Ltd.). The thickness was one layer of adhesive tape 8410). Further, the foam adhesive sheet was cut into a size of 12.5 mm x 25 mm. The foamable adhesive sheet was in a state with the separator removed. Next, a foam adhesive sheet was placed between the spacers, another metal plate was placed so that one tip overlapped with the other, and the sheet was fixed with a clip to obtain a test piece. Thereafter, the test piece was placed in a thermal oven (manufactured by Yamato Kagaku Co., Ltd., DN610) and heated to foam and harden the first adhesive layer and the second adhesive layer of the foamable adhesive sheet. At this time, the heating conditions were a temperature increase rate of 20°C/min and a heating temperature of 160°C, 180°C, and 200°C.
 加熱後の試験片を、JIS K6850:1999に準拠し、引張試験機テンシロンRTF1350(エーアンドデイ社製)にて、せん断強度(接着強度)を測定した。測定条件は、引張速度10mm/min、温度23℃とした。 The shear strength (adhesive strength) of the heated test piece was measured using a tensile tester Tensilon RTF1350 (manufactured by A&D Co., Ltd.) in accordance with JIS K6850:1999. The measurement conditions were a tensile speed of 10 mm/min and a temperature of 23°C.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験番号1~9に示すように、製造例1~6の発泡性接着シートにおいては、いずれも、発泡性接着シートの初期厚さと、TMAにより測定される、160℃以上200℃未満の所定温度での変位量との合計が、間隙設定値に対して所定の範囲内であった。これらの発泡性接着シートの場合、試験番号1~9と試験番号10~12との比較から、接着工程での加熱温度が、160℃以上190℃以下であるときに、接着強度が高くなることが分かった。 As shown in test numbers 1 to 9, in the foamable adhesive sheets of Production Examples 1 to 6, the initial thickness of the foamable adhesive sheet and a predetermined temperature of 160°C or higher and lower than 200°C, as measured by TMA. The total displacement amount was within a predetermined range with respect to the gap setting value. In the case of these foam adhesive sheets, from a comparison of test numbers 1 to 9 and test numbers 10 to 12, the adhesive strength increases when the heating temperature in the bonding process is 160°C or higher and 190°C or lower. I understand.
[評価2]
(1)熱機械測定(TMA)
 熱機械測定装置として、日立ハイテクサイエンス社製の熱機械分析装置TMA7100を用いた。まず、発泡性接着シートを、φ4mmの治具で打ち抜き、サンプルを作製した。次に、φ5mmのアルミニウム容器にサンプルを第二接着層が底面になるように入れ、サンプルの上にφ4mmのアルミニウムプレートを置いた。この状態で、熱機械測定装置の膨張圧縮プローブを荷重100mNで接触させて、アルミニウムプレートとサンプルとを十分平滑に接触させた後のサンプルの厚さを発泡性接着シートの初期厚さとした。次いで、温度:25℃から到達温度まで、昇温速度:20℃/min、荷重:10mN、圧縮モードの条件で、熱機械測定を行い、サンプルの膨張または収縮に伴う変位を測定した。この際、到達温度は、150℃、160℃、180℃、190℃、200℃とした。
[Evaluation 2]
(1) Thermomechanical measurement (TMA)
As a thermomechanical measuring device, a thermomechanical analyzer TMA7100 manufactured by Hitachi High-Tech Science Co., Ltd. was used. First, a sample was prepared by punching out a foamable adhesive sheet using a jig with a diameter of 4 mm. Next, the sample was placed in an aluminum container with a diameter of 5 mm with the second adhesive layer facing the bottom, and an aluminum plate with a diameter of 4 mm was placed on top of the sample. In this state, the expansion and compression probe of the thermomechanical measuring device was brought into contact with a load of 100 mN, and the thickness of the sample after sufficiently smooth contact between the aluminum plate and the sample was defined as the initial thickness of the foamable adhesive sheet. Next, thermomechanical measurements were performed under the conditions of temperature: 25° C. to the final temperature, heating rate: 20° C./min, load: 10 mN, compression mode, and displacement due to expansion or contraction of the sample was measured. At this time, the temperatures reached were 150°C, 160°C, 180°C, 190°C, and 200°C.
(2)接着強度
 評価1と同様にして、せん断強度(接着強度)を測定した。発泡性接着シートの加熱条件について、加熱温度は、150℃、160℃、180℃、190℃、200℃とした。
(2) Adhesive strength Shear strength (adhesive strength) was measured in the same manner as in Evaluation 1. Regarding the heating conditions for the foamable adhesive sheet, the heating temperatures were 150°C, 160°C, 180°C, 190°C, and 200°C.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、接着工程での加熱温度が、150℃以上200℃未満であり、かつ、発泡性接着シートの初期厚さと、TMAにより測定される変位量との合計が、間隙設定値に対して所定の範囲内となる温度であるときに、接着強度が高くなることが分かった。 From Table 4, the heating temperature in the bonding process is 150°C or more and less than 200°C, and the total of the initial thickness of the foam adhesive sheet and the amount of displacement measured by TMA is relative to the gap setting value. It has been found that adhesive strength increases when the temperature falls within a predetermined range.
 1 … 接着層
 1a … 第一接着層
 1b … 第二接着層
 2 … 基材
 3a … 第一中間層
 3b … 第二中間層
 10 … 発泡性接着シート
 11 … 発泡硬化後の接着シート
 20a … 第一部材
 20b … 第二部材
 100 … 構造体
1... Adhesive layer 1a... First adhesive layer 1b... Second adhesive layer 2... Base material 3a... First intermediate layer 3b... Second intermediate layer 10... Foamable adhesive sheet 11... Adhesive sheet after foaming and curing 20a... First Member 20b... Second member 100... Structure

Claims (7)

  1.  接着層を有する発泡性接着シートであって、
     前記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、
     前記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、前記発泡性接着シートの初期厚さと、160℃以上200℃未満の所定の温度での変位量との合計が、間隙設定値100%に対して、100%以上、308%以下である、発泡性接着シート。
    A foamable adhesive sheet having an adhesive layer,
    The adhesive layer contains a thermosetting adhesive and a foaming agent,
    In the foamable adhesive sheet, the initial thickness of the foamable adhesive sheet is determined by thermomechanical measurement when a compressive load is applied, the temperature is raised at a predetermined temperature increase rate, and the displacement is measured. A foamable adhesive sheet, wherein the total amount of displacement at a predetermined temperature of less than 100% is 100% or more and 308% or less with respect to a gap setting value of 100%.
  2.  前記接着層として、第一接着層および第二接着層を有し、
     前記第一接着層と基材と前記第二接着層とをこの順に有する、請求項1に記載の発泡性接着シート。
    The adhesive layer includes a first adhesive layer and a second adhesive layer,
    The foamable adhesive sheet according to claim 1, comprising the first adhesive layer, the base material, and the second adhesive layer in this order.
  3.  第一部材および第二部材の間に、接着層を有する発泡性接着シートを配置する配置工程と、
     前記発泡性接着シートを加熱により発泡硬化させ、前記第一部材および前記第二部材を接着する接着工程と、
    を有する構造体の製造方法であって、
     前記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、
     前記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で昇温し、変位を測定したときの、前記発泡性接着シートの初期厚さと、160℃以上200℃未満の所定の温度での変位量との合計が、間隙設定値100%に対して、100%以上、308%以下であり、
     前記間隙設定値が、前記第一部材および前記第二部材の間に前記発泡性接着シートを配置した後の間隙の距離である、構造体の製造方法。
    a step of arranging a foam adhesive sheet having an adhesive layer between the first member and the second member;
    an adhesion step of foaming and curing the foamable adhesive sheet by heating and adhering the first member and the second member;
    A method for manufacturing a structure having:
    The adhesive layer contains a thermosetting adhesive and a foaming agent,
    In the foamable adhesive sheet, the initial thickness of the foamable adhesive sheet is determined by thermomechanical measurement when a compressive load is applied, the temperature is raised at a predetermined temperature increase rate, and the displacement is measured. The total amount of displacement at a predetermined temperature of less than 100% and 308% or less with respect to the gap setting value of 100%,
    A method for manufacturing a structure, wherein the gap setting value is a gap distance after the foamable adhesive sheet is placed between the first member and the second member.
  4.  前記接着工程における加熱温度が、160℃以上190℃以下である、請求項3に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 3, wherein the heating temperature in the bonding step is 160°C or more and 190°C or less.
  5.  第一部材および第二部材の間に、接着層を有する発泡性接着シートを配置する配置工程と、
     前記発泡性接着シートを加熱により発泡硬化させ、前記第一部材および前記第二部材を接着する接着工程と、
    を有する構造体の製造方法であって、
     前記接着層が、熱硬化性の接着剤と、発泡剤とを含有し、
     前記接着工程における加熱温度を、150℃以上200℃未満であり、かつ、前記発泡性接着シートにおいて、熱機械測定により、圧縮荷重を加えて、所定の昇温速度で前記加熱温度まで昇温し、変位を測定したときの、前記発泡性接着シートの初期厚さと、変位量との合計が、間隙設定値100%に対して、121%以上、168%以下となるように設定し、
     前記間隙設定値が、前記第一部材および前記第二部材の間に前記発泡性接着シートを配置した後の間隙の距離である、構造体の製造方法。
    a step of arranging a foam adhesive sheet having an adhesive layer between the first member and the second member;
    an adhesion step of foaming and curing the foamable adhesive sheet by heating and adhering the first member and the second member;
    A method for manufacturing a structure having:
    The adhesive layer contains a thermosetting adhesive and a foaming agent,
    The heating temperature in the adhesion step is 150° C. or more and less than 200° C., and the foamable adhesive sheet is heated to the heating temperature at a predetermined heating rate by applying a compressive load according to thermomechanical measurement. , when the displacement is measured, the total of the initial thickness of the foamable adhesive sheet and the amount of displacement is set to be 121% or more and 168% or less with respect to the gap setting value of 100%,
    A method for manufacturing a structure, wherein the gap setting value is a gap distance after the foamable adhesive sheet is placed between the first member and the second member.
  6.  前記接着工程における加熱温度が、160℃以上190℃以下である、請求項5に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 5, wherein the heating temperature in the bonding step is 160°C or more and 190°C or less.
  7.  前記発泡性接着シートが、前記接着層として、第一接着層および第二接着層を有し、前記第一接着層と基材と前記第二接着層とをこの順に有する、請求項3から請求項6までのいずれかに記載の構造体の製造方法。 The method for manufacturing a structure according to any one of claims 3 to 6, wherein the foamable adhesive sheet has a first adhesive layer and a second adhesive layer as the adhesive layers, and has the first adhesive layer, a substrate, and the second adhesive layer in this order.
PCT/JP2023/033787 2022-09-20 2023-09-15 Foam adhesive sheet, and method for manufacturing structure WO2024063029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-149083 2022-09-20
JP2022149083A JP2024043866A (en) 2022-09-20 2022-09-20 Foamable adhesive sheet and method for producing structure

Publications (1)

Publication Number Publication Date
WO2024063029A1 true WO2024063029A1 (en) 2024-03-28

Family

ID=90454388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033787 WO2024063029A1 (en) 2022-09-20 2023-09-15 Foam adhesive sheet, and method for manufacturing structure

Country Status (2)

Country Link
JP (1) JP2024043866A (en)
WO (1) WO2024063029A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163514A1 (en) * 2015-04-10 2016-10-13 株式会社寺岡製作所 Adhesive sheet
WO2019035388A1 (en) * 2017-08-16 2019-02-21 Dic株式会社 Adhesive tape, article, and method for manufacturing article
WO2020067270A1 (en) * 2018-09-26 2020-04-02 大日本印刷株式会社 Adhesive composition and foamable adhesive sheet
WO2021193850A1 (en) * 2020-03-25 2021-09-30 大日本印刷株式会社 Foaming adhesive sheet and method for producing article
WO2022196354A1 (en) * 2021-03-17 2022-09-22 リンテック株式会社 Thermally expandable adhesive composition and thermally expandable bonding sheet
WO2022244535A1 (en) * 2021-05-20 2022-11-24 ニッカン工業株式会社 Thermally expandable sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163514A1 (en) * 2015-04-10 2016-10-13 株式会社寺岡製作所 Adhesive sheet
WO2019035388A1 (en) * 2017-08-16 2019-02-21 Dic株式会社 Adhesive tape, article, and method for manufacturing article
WO2020067270A1 (en) * 2018-09-26 2020-04-02 大日本印刷株式会社 Adhesive composition and foamable adhesive sheet
WO2021193850A1 (en) * 2020-03-25 2021-09-30 大日本印刷株式会社 Foaming adhesive sheet and method for producing article
WO2022196354A1 (en) * 2021-03-17 2022-09-22 リンテック株式会社 Thermally expandable adhesive composition and thermally expandable bonding sheet
WO2022244535A1 (en) * 2021-05-20 2022-11-24 ニッカン工業株式会社 Thermally expandable sheet

Also Published As

Publication number Publication date
JP2024043866A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP7414164B2 (en) Method for manufacturing foam adhesive sheets and articles
JP7064636B2 (en) Adhesive sheet
KR102472818B1 (en) Adhesive composition and adhesive sheet using same
JP2023134416A (en) Adhesive composition and foamable adhesive sheet
JP5888349B2 (en) Adhesive composition and adhesive sheet using the same
JP2022113240A (en) Expandable adhesive sheet and stator for dynamo-electric machine
WO2021193850A1 (en) Foaming adhesive sheet and method for producing article
JP7294023B2 (en) Adhesive composition and foamable adhesive sheet
JP2017128667A (en) Self-fusion resin composition and self-fusion insulated wire
WO2024063029A1 (en) Foam adhesive sheet, and method for manufacturing structure
JP7396335B2 (en) Method for manufacturing foam adhesive sheets and articles
WO2023176134A1 (en) Article, method for producing article, foamable adhesive sheet, and adhesive composition
JP7280986B1 (en) Article manufacturing method, adhesive composition and foamable adhesive sheet
WO2023132356A1 (en) Foaming adhesive sheet and article
WO2023145504A1 (en) Foaming adhesive sheet and article manufacturing method
JP7204971B1 (en) Expandable adhesive sheet and method for producing article
JP2023127119A (en) Foamable adhesive sheet and manufacturing method of article
WO2023167239A1 (en) Foaming adhesive sheet and production method for article
JP2022057769A (en) Adhesive composition, expandable adhesive sheet, and article manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868150

Country of ref document: EP

Kind code of ref document: A1