WO2024062918A1 - Saddled vehicle - Google Patents

Saddled vehicle Download PDF

Info

Publication number
WO2024062918A1
WO2024062918A1 PCT/JP2023/032441 JP2023032441W WO2024062918A1 WO 2024062918 A1 WO2024062918 A1 WO 2024062918A1 JP 2023032441 W JP2023032441 W JP 2023032441W WO 2024062918 A1 WO2024062918 A1 WO 2024062918A1
Authority
WO
WIPO (PCT)
Prior art keywords
grip
vehicle
saddle
sensor
throttle
Prior art date
Application number
PCT/JP2023/032441
Other languages
French (fr)
Japanese (ja)
Inventor
辰哉 岩崎
優太 小寺
憲太郎 金光
Original Assignee
株式会社デンソートリム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソートリム filed Critical 株式会社デンソートリム
Publication of WO2024062918A1 publication Critical patent/WO2024062918A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W50/16Tactile feedback to the driver, e.g. vibration or force feedback to the driver on the steering wheel or the accelerator pedal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/42Sensor arrangements; Mounting thereof characterised by mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K23/00Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips
    • B62K23/02Rider-operated controls specially adapted for cycles, i.e. means for initiating control operations, e.g. levers, grips hand actuated
    • B62K23/04Twist grips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M23/00Transmissions characterised by use of other elements; Other transmissions
    • B62M23/02Transmissions characterised by use of other elements; Other transmissions characterised by the use of two or more dissimilar sources of power, e.g. transmissions for hybrid motorcycles

Definitions

  • the description in this specification relates to a saddle riding vehicle such as a two-wheeled vehicle.
  • Patent Document 1 when an electric two-wheeled vehicle is turned on, a startup sound, a display on the meter, an audio buzzer, etc. are used to notify the user that the vehicle is ready to travel. Further, Patent Document 2 focuses on the push-and-walk mode of an electric two-wheeled vehicle, and discloses that an electric motor provides assistance in the push-and-walk mode.
  • Patent No. 6776455 Japanese Patent Application Publication No. 2006-51853
  • the electric two-wheeler described in Patent Document 1 only notifies the rider that the electric motor is ready to start the first time after it is started, so if the rider is not looking at the monitor after starting the electric two-wheeler and then stopping, there is a possibility that the rider will forget that the electric motor is ready to start. If the rider operates the throttle in this state, there is a risk that the two-wheeler will start moving unintentionally. In particular, if the rider operates the throttle by mistake while pushing the electric two-wheeler after stopping, the electric two-wheeler will start moving against the rider's intention.
  • the electric two-wheeled vehicle described in Patent Document 2 discloses that the electric motor assists in the pushing mode, this assumes that the rider receives the electric motor's assistance. Therefore, for example, if a rider loses their balance while not seated and accidentally operates the throttle when trying to regain their balance, the electric two-wheeled vehicle may move in push-walking mode against the rider's intentions. There is a possibility that it will start moving.
  • the present disclosure notifies the rider that the electric motor can be started not only when the electric motor is started, but also after the vehicle has stopped after driving, so that a saddle-riding vehicle such as an electric two-wheeler does not start moving against the rider's intention.
  • the challenge is to
  • a first aspect of the present disclosure includes a handle having a throttle grip and a grip grip on the left and right sides, a seat on which a passenger is seated, a drive wheel, and an electric motor that independently drives the drive wheel when the vehicle is running at least at a first predetermined vehicle speed or lower.
  • the present invention relates to a saddle vehicle equipped with a motor.
  • the throttle grip of the first saddle-riding vehicle of the present disclosure includes a grip sensor that detects that an occupant is gripping the throttle grip, a rotation angle sensor that detects the amount of rotation of the throttle grip, and a vibration that vibrates the throttle grip. Have a child. Then, after the saddle-riding vehicle has traveled and the vehicle speed is zero or below a second predetermined vehicle speed that is lower than the first predetermined vehicle speed, when the grip sensor detects that the occupant is gripping the throttle grip, the vibrator The engine is activated to vibrate the throttle grip.
  • the vehicle speed is zero or less than a second predetermined vehicle speed that is lower than the first predetermined vehicle speed. It is in a state of In addition, when the vehicle is held in position or when the vehicle is being pushed around, a grip sensor can detect whether the occupant is gripping the throttle grip. Therefore, by activating the vibrator and vibrating the throttle grip in this state, it becomes possible to intuitively notify the occupant that the electric motor can be activated. This makes it possible to prevent the saddle riding vehicle from starting against the intention of the occupant.
  • the saddle riding vehicle is often moved forward, but it is not limited to forward movement. As described above, this also includes a situation in which the rider holds the saddle vehicle in that position by gripping the handle on a slope. It also includes a situation in which the occupant pulls the saddle-riding vehicle backward.
  • the first aspect of the present disclosure is that it is only necessary to prevent the saddle-riding vehicle from moving contrary to the intention in the push-walking mode, and when an occupant gets on the saddle-riding vehicle and intends to start the saddle-riding vehicle, Alternatively, the vibrator may be activated to vibrate the throttle grip when the vehicle speed is zero or less than a second predetermined vehicle speed.
  • the seat is equipped with a seating sensor that detects whether an occupant is seated.
  • the seating sensor can determine whether an occupant is seated and intending to drive, or is intending to push the saddle-riding vehicle.
  • the vibrator is activated to vibrate the throttle grip when the seating sensor does not detect an occupant seated.
  • this includes a state in which an occupant is on board and intentionally operates the throttle.
  • it is also possible to prevent the vibrator from vibrating when an occupant is on board. That is, in the second disclosure, the state in which an occupant is pushing the saddle-riding vehicle by the occupant is actively detected. This makes it possible to prevent unintentional rotation of the throttle grip when pushing the vehicle.
  • the second aspect of the present disclosure only needs to be able to determine whether the driver is seated or manually pushed, and does not exclude starting the vibrator to vibrate the throttle grip while the driver is seated. It is also possible to make the vibrations of the throttle grip while the driver is seated different from the vibrations of the throttle grip while the driver is pushing the vehicle by hand. In this case, more detailed notifications can be given to the occupants.
  • the third saddle-riding vehicle of the present disclosure further includes a stand that maintains the saddle-riding vehicle in a stopped state.
  • This stand is provided with a stand sensor that detects the storage state of the stand.
  • the vibrator is activated to vibrate the throttle grip when the stand sensor detects the stowed state of the stand.
  • the stand is retracted in the pushing mode and running start mode. Therefore, by using the stand sensor, it is possible to determine whether the saddle-riding vehicle is in a pushing mode or starting running mode, or whether it is in a stopped state.
  • the grip sensor has a function of detecting that the occupant is pushing the saddle vehicle in the forward direction.
  • the electric motor When the grip sensor detects that the occupant is pushing the saddle vehicle in the forward direction, the electric motor generates a forward assist force that causes the saddle vehicle to advance at a speed equal to or lower than the second predetermined vehicle speed. Note that this forward assist force can also be used to maintain the position of the saddle riding vehicle on an uphill slope.
  • the grip sensor has a function of detecting that the occupant is pulling the saddle vehicle in the backward direction.
  • the electric motor When the grip sensor detects that the occupant is pulling the saddle vehicle in the backward direction, the electric motor generates a backward assist force that causes the saddle vehicle to proceed at a speed equal to or lower than the second predetermined vehicle speed. Similar to the fourth example, this backward assist force can also be used to maintain the position of the saddle riding vehicle on a downhill slope.
  • the grip includes a grip sensor that detects that the occupant is gripping the grip, and a grip vibrator that vibrates the grip. Then, when the grip sensor detects gripping of the grip by the occupant after the saddle-riding vehicle has traveled and the vehicle speed is zero or less than a second predetermined vehicle speed that is lower than the first predetermined vehicle speed, The grip vibrator is activated to vibrate the grip.
  • vibrations of the grip can be notified to the occupant by both the throttle grip and the grip.
  • the occupant can sense vibrations with both hands, and can more effectively prevent the saddle-riding vehicle from starting unintentionally.
  • the seventh saddle-riding vehicle of the present disclosure further includes an internal combustion engine that drives the drive wheels when the vehicle speed is equal to or higher than a first predetermined vehicle speed, and an electronic throttle that opens and closes a throttle valve of the internal combustion engine. That is, the seventh saddle-riding vehicle of the present disclosure is a hybrid vehicle in which the electric motor is driven at the time of starting, and the internal combustion engine is driven at vehicle speeds equal to or higher than the first predetermined vehicle speed.
  • the electronic throttle includes a throttle motor that drives a throttle valve to open and close.
  • the vibrator uses the driving force of the throttle motor.
  • FIG. 1 is a side view of a saddle-ride vehicle.
  • FIG. 2 is a perspective view showing the throttle grip.
  • FIG. 3 is a perspective view of the throttle grip shown in FIG. 2 with a part of the cover removed.
  • FIG. 4 is a perspective view showing the rotation angle sensor.
  • FIG. 5 is a perspective view showing the grip sensor.
  • FIG. 6 is a perspective view showing the sensor mounting position of the saddle riding vehicle.
  • FIG. 7 is a configuration diagram showing the drive system of the electric saddle riding vehicle.
  • FIG. 8 is a configuration diagram showing a control system of the electric saddle riding vehicle.
  • FIG. 9 is a diagram illustrating the relationship between the amount of rotation of the throttle grip and the assist force.
  • FIG. 10 is a flowchart illustrating the travel possible notification.
  • FIG. 10 is a flowchart illustrating the travel possible notification.
  • FIG. 11 is a configuration diagram showing a drive system of a hybrid saddle riding vehicle.
  • FIG. 12 is a configuration diagram showing a control system of a hybrid saddle riding vehicle.
  • FIG. 13 is a perspective view of the electronic throttle.
  • FIG. 14 is a configuration diagram showing another example of the vibrator.
  • FIG. 15 is an enlarged perspective view of a portion of FIG. 14.
  • FIG. 16 is a perspective view showing still another example of the vibrator.
  • FIG. 17 is a perspective view showing still another example of the vibrator.
  • FIG. 1 is a side view of a saddle vehicle 100.
  • the saddle riding vehicle in FIG. 1 is a two-wheeled scooter.
  • the two-wheel scooter is an example of the saddle vehicle 100, and the saddle vehicle may be a motorcycle, a snowmobile, or a four-wheel buggy (ATV).
  • the vehicle does not need to have two wheels, and may have a plurality of front wheels 101 or a plurality of rear wheels 102.
  • This disclosure relates to a saddle-riding vehicle in which the drive wheels are driven solely by an electric motor, at least in a running state at a first predetermined vehicle speed or lower.
  • the front wheel 101 is pivotally supported by a front fork 110.
  • the front fork 110 is supported by a head pipe 111.
  • the upper part of the front fork 110 is connected to a handle 112.
  • the front wheel 101 can be rotated left and right by the handle 112.
  • Grips are provided on the left and right sides of the handle 112 (as shown in FIG. 6).
  • the grip on the right is a throttle grip 200 that adjusts the driving force.
  • the rider accelerates the saddle vehicle 100 by rotating the throttle grip 200 clockwise. Conversely, when the occupant rotates the throttle grip 200 counterclockwise, the saddle-riding vehicle 100 decelerates.
  • the grip on the left is a gripping grip 113.
  • forward and backward directions refer to the direction in which the saddle riding vehicle 100 moves forward as the front and the backward direction as the rear.
  • the left-right direction refers to the right and left sides of the forward direction of the saddle riding vehicle 100.
  • the up-down direction refers to the top side of the saddle riding vehicle 100 and the bottom side.
  • a meter 115 is arranged approximately at the center of the handle 112.
  • a headlight 116 is arranged in front of this meter 115.
  • a start switch 300 is arranged on the handle 112.
  • a key switch 301 is arranged near the meter 115. Note that in the saddle vehicle 100 that is driven without using a key, a main switch is provided.
  • the key switch 301 in the present disclosure is a concept that includes a main switch.
  • the head pipe 111 forms part of the vehicle body frame 120.
  • the vehicle body frame 120 includes a front frame 121, an intermediate frame 122, and a rear frame 123.
  • the front frame 121 holds the above-mentioned head pipe 111.
  • the intermediate frame 122 is arranged substantially horizontally.
  • the intermediate frame 122 supports a footrest 130 on which the occupant rests his or her feet. Further, a stand 119 used for stopping the saddle vehicle 100 is rotatably attached to the intermediate frame 122.
  • the rear frame 123 extends obliquely upward and supports the power unit 140. Specifically, the rear frame 123 rotatably holds the front side of the power unit 140 with a support bolt 124. The rear frame 123 supports the rear of the power unit 140 with a shock absorber 125.
  • the power unit 140 includes an electric motor 141 and an inverter 142 (shown in FIG. 7). Electric motor 141 and inverter 142 are arranged in power unit 140.
  • the electric motor 141 rotationally drives the rear wheels 102 when the vehicle is running. Therefore, in this example, the rear wheel 102 becomes the driving wheel.
  • the rear wheels will be referred to as drive wheels 102.
  • electric motor 141 operates as a generator.
  • the number of rotations when the electric motor 141 is rotating is controlled by the inverter 142.
  • the inverter 142 converts the direct current of the battery 143 into three-phase alternating current.
  • the inverter 142 controls the rotation speed of the electric motor 141 by adjusting the frequency of the three-phase alternating current.
  • the inverter 142 can also control the rotational direction of the electric motor 141. Therefore, the saddle vehicle 100 can move both in the forward direction and in the backward direction.
  • inverter 142 converts three-phase alternating current into direct current, and charges battery 143 with the direct current.
  • the battery 143 can be provided in various types. Battery 143 may also be provided by a fuel cell.
  • the power unit 140 has a reduction mechanism including a reduction gear 144.
  • the rotation of the electric motor 141 is reduced to a predetermined ratio by the reduction gear 144 and transmitted to the drive wheels 102.
  • the drive torque of the electric motor 141 is increased by the reduction gear 144 and transmitted to the drive wheels 102.
  • the periphery of the rear frame 123 is covered by a vehicle body cover 190.
  • a seat 191 on which a passenger is seated is fixed to the upper part of the vehicle body cover 190 at approximately the center.
  • a utility space is provided below the seat 191 in which luggage such as a helmet can be stored.
  • a battery 143 is arranged below the utility space.
  • FIG. 2 is a perspective view of FIG. 2 with the grip cover 202 removed.
  • a rotation angle sensor 210 and a vibrator 220 are arranged inside the grip cover 202.
  • the vibrator 220 includes a vibrator motor 221, a small gear 222 rotated by the vibrator motor 221, and a large gear 223 that meshes with the small gear 222.
  • the vibrator motor 221 is rotationally controlled to rotate forward and backward. Rotation of the vibrator motor 221 is transmitted to the large gear 223 via the small gear 222.
  • the large gear 223 is fixed to the grip portion 201.
  • the grip portion 201 vibrates in accordance with the movement of the large gear 223.
  • the vibration of the grip portion 201 includes forward rotation (clockwise rotation) and reverse rotation (counterclockwise rotation) around the central axis of the throttle grip 200.
  • the vibration of the grip portion 201 is a vibration that repeats normal rotation and reverse rotation.
  • the vibration angle of the grip portion 201 is about 3 degrees to 10 degrees.
  • the number of vibrations of the grip portion 201 is about 5 times per second.
  • the vibration of the grip portion 201 includes, for example, a continuous vibration period of about 1 second and a stop period in which the vibration is stopped for about 1 second.
  • the pattern and cycle of the vibrations are merely examples, and it is sufficient that vibrations that can be sensed by the passenger holding the throttle grip 200 are transmitted to the passenger.
  • the rotation angle sensor 210 includes a first magnet 211 and a second magnet 212, as shown in FIG.
  • the rotation angle sensor 210 includes a Hall sensor 213 arranged between a first magnet 211 and a second magnet 212.
  • the first magnet 211 and the second magnet 212 are fixed to the grip part 201.
  • the positions of the first magnet 211 and the second magnet 212 move according to the rotation of the grip section 201.
  • Hall sensor 213 is fixed to handle 112.
  • the position of the Hall sensor 213 does not change depending on the rotation of the grip section 201. Therefore, when the occupant rotates the grip portion 201, the relative positions of the first magnet 211, the second magnet 212, and the Hall sensor 213 change.
  • the Hall sensor 213 detects the amount of rotation of the grip portion 201 by detecting a change in magnetic flux accompanying this position change.
  • the occupant can grasp the throttle grip 200. Furthermore, the occupant can rotate the throttle grip 200.
  • the throttle grip 200 is rotatable in a range from a zero position to a maximum position.
  • the throttle grip 200 has a dead zone in a small operation range including the zero position.
  • the dead zone extends approximately 10 degrees from the zero position.
  • the dead zone is also called the play of the throttle grip 200.
  • Rotation angle sensor 210 does not detect rotation of throttle grip 200 in the dead zone.
  • the play of the throttle grip 200 contributes to preventing the occupant's unconscious rotational operation of the grip portion 201 from being detected. In other words, the play of the throttle grip 200 contributes to suppressing the behavior of the saddle vehicle 100 that is not intended by the occupant.
  • the change in the rotation angle of the grip part 201 due to the vibration of the vibrator 220 is within the dead zone of the rotation angle sensor 210.
  • the rotation angle sensor 210 detects the rotation of the throttle grip 200 within the effective operation range from beyond the dead zone to the maximum position.
  • the detection angle (resolution) of the rotation angle sensor 210 is about 0.1 degree. Since the dead zone and the effective operation range do not overlap, the rotation angle change due to vibration of the vibrator 220 is not detected by the rotation angle sensor 210. Therefore, the control unit, which will be described later, will not misjudge the rotational angle change caused by the vibration of the vibrator 220 and the angle change caused by the rider operating the throttle grip 200 to adjust the driving force.
  • a grip sensor 230 is also arranged in the grip part 201.
  • the grip sensor 230 includes a first grip sensor 231 shown by a solid line in FIG. 3 and a second grip sensor 232 shown by a broken line.
  • the first grip sensor 231 is arranged at a position where the passenger's palm comes into contact.
  • the second grip sensor 232 is arranged at a position where the passenger's fingers come into contact with it.
  • the grip sensor 230 is a pressure sensor such as a strain gauge or a piezoelectric element.
  • the voltage between the input line 234 and the output line 235 changes depending on the pressure applied to the sensing section 233. Based on this change in voltage, it is detected whether or not the grip section 201 is being gripped, and with what force (gripping force) it is being gripped.
  • the grip sensor 230 disposed on the throttle grip 200 has been described.
  • the grip sensor 230 is also arranged on the grip grip 113.
  • the grip sensor 230 is the same for both the throttle grip 200 and the grip grip 113.
  • the grip sensor 230 of the grip 113 is referred to as a grip sensor.
  • a vibrator 220 is also arranged on the grip 113. In this embodiment, when the vibrator 220 vibrates, the left and right grips vibrate. Thereby, the vibration of the vibrator 220 can be accurately transmitted to the occupant.
  • the vibrator 220 of the grip 113 is also similar to the vibrator 220 of the throttle grip 200.
  • the vibrator 220 of the grip 113 is called a grip vibrator.
  • the vibration pattern and period of the grip vibrator are set to be the same as those of the vibrator 220 of the throttle grip 200.
  • the above describes the sensors arranged on the throttle grip 200 and the grip 113.
  • the saddle-riding vehicle 100 is also equipped with many other sensors. The locations of the various sensors and the sensing targets will be explained using Figure 6.
  • the start switch 300 is located near the throttle grip 200.
  • the start switch 300 is a button switch that is pressed by the rider when starting the saddle-riding vehicle 100.
  • the key switch 301 is located near the meter 115. To start the saddle-riding vehicle 100, both the key switch 301 and the start switch 300 must be turned on.
  • a seating sensor 302 is arranged on the seat 191 to detect whether or not an occupant is seated on the seat 191.
  • Seating sensor 302 may be provided by a pressure sensitive sensor similar to grip sensor 230. However, instead of the pressure sensor, a contact switch that detects on/off may be used. In this case, the switch is turned on when the occupant sits on the seat, and is turned off when the occupant gets off the seat.
  • a tilt angle sensor 303 is also arranged on the seat 191.
  • Tilt angle sensor 303 includes a gyro sensor.
  • the tilt angle sensor 303 detects whether the saddle-riding vehicle 100 is tilted in the left-right direction and to what extent it is tilted (the tilt angle).
  • a center of gravity position sensor 304 is arranged on the head pipe 111.
  • This center of gravity position sensor 304 also includes a gyro sensor.
  • the center of gravity position sensor 304 detects whether the center of gravity position of the saddle riding vehicle 100 has moved forward or backward.
  • the center of gravity position sensor 304 can detect whether the occupant is leaning forward.
  • a step sensor 305 is disposed on the footrest 130.
  • the step sensor 305 is also a pressure sensor.
  • the step sensor 305 determines whether or not the occupant's feet are resting on the footrest 130.
  • a contact switch or a photocell may be used instead of the pressure sensor. Either type of sensor will suffice as long as it can detect whether or not the occupant's feet are on the footrest.
  • a stand sensor 306 is arranged on the intermediate frame 122 to detect whether the stand 119 is in the parking position or the storage position.
  • This stand sensor 306 is a contact switch that detects the position of the stand 119.
  • the stand sensor 306 is turned on in either the parking position or the stowed position, and turned off in the other position.
  • a battery remaining amount sensor 307 that detects the remaining battery amount is arranged in the battery 143.
  • the battery remaining amount sensor 307 detects the voltage value or current value of the battery 143.
  • Vehicle speed measured by the vehicle speed sensor 308 is displayed on the meter 115.
  • Vehicle speed sensor 308 calculates the vehicle speed of saddle riding vehicle 100 based on the rotation speed of electric motor 141. Of course, the vehicle speed may be calculated from the rotation speed of the front wheels 101.
  • FIG. 8 is a block diagram showing the control system.
  • the control system includes a control unit 350 and a control section 351.
  • the control unit 351 includes an electronic controller.
  • the controller includes at least one processor circuit.
  • One example of a processor circuit is a processor circuit that executes a program as a collection of instructions.
  • the processor circuit is a so-called microprocessor and is provided as a chip.
  • the controller includes a non-temporary physical recording medium that records programs and data.
  • the processor circuit provides the functionality of the device according to this disclosure by executing a program.
  • Another example of a processor circuit is a processor circuit that includes multiple logic circuits or analog circuits.
  • a plurality of logic circuits or an analog circuit includes a plurality of substantial elements and their electrical connections so as to provide the functions of the device according to this disclosure.
  • Processor circuits have various names such as accelerators, gate arrays, and field-programmable gate arrays (FPGAs).
  • the controller is also called a microcontroller or
  • the control system includes multiple sensors and multiple actuators.
  • the plurality of sensors include a key switch 301, a start switch 300, a grip sensor 230, a rotation angle sensor 210, a seating sensor 302, a stand sensor 306, a step sensor 305, a remaining battery level sensor 307, a tilt angle sensor 303, a center of gravity position sensor 304, A vehicle speed sensor 308 is included. Signals from the plurality of sensors are input to the control section 351 of the control unit 350.
  • the control unit 351 determines whether the saddle riding vehicle 100 can be started based on the signals from the key switch 301 and the start switch 300.
  • control unit 351 calculates whether to increase or decrease the vehicle speed based on the signal from the rotation angle sensor 210 and outputs a speed signal to the inverter 142.
  • Inverter 142 controls the rotation speed of electric motor 141 based on instructions from control unit 351 .
  • the control unit 351 uses signals from various sensors to keep the saddle vehicle 100 in a stopped state so that the rider does not unintentionally operate the throttle grip 200 during periods other than normal driving. Determine whether or not.
  • the vibrator 220 is used to notify the occupant whether assistance is possible. Furthermore, even when the occupant is seated and about to start traveling, the vibrator 220 is used to notify the occupant that the vehicle is ready to travel.
  • FIG. 10 shows the flowchart. After the control start step S400, if the key switch 301 is on (S401), the control unit 351 is activated (S402). Next, it is determined whether the start switch 300 is on (S403). If the start switch 300 is off, running is prohibited (S404).
  • the start switch 300 If the start switch 300 is on, the signal from the grip sensor 230 is detected (S405). If no signal is detected, the vehicle is prohibited from driving because the occupant is not holding the steering wheel 112 (S404). When the signal from the grip sensor 230 confirms that the occupant is gripping the steering wheel 112, the process proceeds to next stop determination step S406.
  • step S406 is illustrated by a plurality of steps S406a, S406b, and S406c.
  • the stop determination step S406 it is determined whether the vehicle is in a movable state AS, a running state BS, or a running prohibited state CS.
  • the movable state AS includes a travel preparation state A-1 in which the saddle vehicle 100 is allowed to travel, and an assist preparation state A-2 in which the saddle vehicle 100 is assisted in moving by hand.
  • the assist preparation state A-2 includes a forward mode and a reverse mode.
  • Step S406a is a first determination step that determines whether or not the vehicle is in the running state BS. In step S406a, it is determined whether the saddle riding vehicle 100 is traveling based on the signal from the vehicle speed sensor 308. Step S406a may include determining whether the vehicle speed detected by vehicle speed sensor 308 exceeds a predetermined threshold. The threshold value can be zero or a low speed corresponding to a stop. Step S406a can include processing for determining that the vehicle is running when the stand is in the stowed state, and processing for determining that the vehicle is running when the passenger is seated on the seat.
  • step S406a If it is determined in step S406a that the vehicle is running, the process advances to step S409. If the determination in step S406a is NO, the process advances to step S406b.
  • Step S406b is a second determination step for determining whether or not the vehicle is in a traveling prohibited state CS. Step S406b determines that the vehicle is in a traveling prohibited state CS when the stand sensor 306 detects that the stand is extended. Step S406b may include a process for determining that the vehicle is in a traveling prohibited state CS when the inclination sensor 303 detects that the inclination of the vehicle body exceeds a predetermined threshold value.
  • step S406b If it is determined in step S406b that running is prohibited, the process advances to step S404. If the determination in step S406b is NO, it is determined that AS is in the movable state, and the process advances to step S406c.
  • Step S406c is a third determination step that determines whether the vehicle is in the travel preparation state A-1 or the assist preparation state A-2.
  • step S406c if the seating sensor 302 detects that the occupant is seated on the seat, it is determined that the vehicle is in the travel preparation state A-1.
  • step S406c if the seating sensor 302 detects that the occupant is not seated on the seat, it is determined that the assist preparation state A-2 is present.
  • step S406c If it is determined in step S406c that the travel preparation state is A-1, the process advances to step S4071. If it is determined in step S406c that the assist preparation state is A-2, the process advances to step S4072.
  • the travel preparation state A-1 in which the saddle riding vehicle 100 is permitted to travel will be described.
  • the stop determination step S406 it is determined based on the signal from the vehicle speed sensor 308 whether the vehicle speed of the saddle-riding vehicle 100 is zero or lower than a predetermined low speed.
  • This low predetermined speed is a second predetermined vehicle speed, and is, for example, about 1 kilometer per hour.
  • the stop determination step S406 it is confirmed using the signal from the stand sensor 306 that the stand 119 is in the storage position.
  • the seating sensor 302 confirms that the occupant is seated on the seat 191.
  • the stop determination step S406 it is confirmed by the inclination angle sensor 303 that the saddle riding vehicle 100 is not tilted significantly.
  • the saddle-riding vehicle 100 is neither stopped by the stand nor is the saddle-riding vehicle 100 tilted due to loss of balance, but is in a state where the rider is attempting to start by operating the throttle grip 200. can be determined.
  • a travel possible notification S4071 is given to the occupant.
  • This travel-ready notification S4071 is performed by activating the vibrator 220 and vibrating the throttle grip 200 and the grip grip 113.
  • As a vibration pattern the above-mentioned vibration for 1 second and stop for 1 second are repeated.
  • the saddle riding vehicle 100 is permitted to travel in S4081. The rider can start the saddle vehicle 100 by rotating the throttle grip 200 clockwise.
  • an assist preparation state A-2 for assisting manual movement of the saddle vehicle 100 will be explained.
  • stoppage determination step S406 it is determined that the signal from the vehicle speed sensor 308 is less than or equal to the second predetermined vehicle speed. Then, in the stop determination step S406, using the signal from the stand sensor 306, it is confirmed that the stand 119 is in the storage position. Further, in the stop determination step S406, the inclination angle sensor 303 confirms that the saddle riding vehicle 100 is not tilted significantly. However, the determination by the seating sensor 302 confirms that the occupant is not seated on the seat 191 in the stop determination step S406. This confirms that the occupant is not sitting on the seat 191 and attempting to start the vehicle. A typical state is detected when the occupant gets off the saddle vehicle 100 and tries to push the vehicle around. In addition, it is confirmed that the saddle riding vehicle 100 does not tilt due to the rider losing balance even when pushing the vehicle.
  • a manual push assist possibility notification S4072 is sent to the occupant.
  • This manual push assist possibility notification S4072 also includes a step of activating the vibrator 220.
  • the assist possible notification S4072 is executed by vibrating the throttle grip 200 and the grip grip 113.
  • the vibration pattern is different from that of the travel permission notification S4071. For example, vibration is repeated for 0.5 seconds and stopped for 0.5 seconds.
  • the travel permission notification S4071 and the hand-push assist possibility notification S4072 generate different vibrations that can be identified by the occupant.
  • the hand push assist possibility notification S4072 notifies the occupant that assistance by the electric motor 141 is possible. Further, the manual push assist possibility notification S4072 also serves as a notification that the electric motor 141 is rotatable. This can provide a notification that prevents the rider from unintentionally rotating the throttle grip 200 and starting the saddle vehicle 100.
  • the states of the hand-push assist permission S4082 include a forward mode and a reverse mode.
  • the forward mode assists the saddle-riding vehicle 100 in the forward direction FW.
  • the reverse mode assists the saddle-riding vehicle 100 in the reverse direction RV.
  • the control unit 351 determines in step S4083 whether the occupant is requesting movement in the forward direction FW or in the reverse direction RV.
  • the grip sensor 230 has a function of detecting that the occupant is pushing the saddle-riding vehicle 100 in the forward direction FW. If the control unit 351 determines in step S4083 that the occupant requests movement in the forward direction FW, the process proceeds to step S4084. Step S4084 provides forward mode. When the grip sensor 230 detects that the occupant is pushing the saddle vehicle 100 in the forward direction FW, the control unit 351 causes the electric motor 141 to apply a forward assist force FWA that causes the saddle vehicle 100 to move in the forward direction FW. cause
  • the grip sensor 230 has a function of detecting that the occupant is pulling the saddle vehicle 100 in the backward direction RV. If the control unit 351 determines in step S4083 that the occupant requests movement in the reverse direction RV, the process proceeds to step S4085. Step S4085 provides a reverse mode. When the grip sensor 230 detects that the occupant is pulling the saddle vehicle 100 in the reverse direction RV, the control unit 351 causes the electric motor 141 to apply a reverse assist force to move the saddle vehicle 100 backward in the reverse direction RV. Generate RVA.
  • the forward assist force FWA and the reverse assist force RVA can be set as fixed values or adjustable variable values.
  • the forward assist force FWA may be adjustable to be greater than the reverse assist force RVA.
  • the forward assist force FWA can be adjusted in stages.
  • control unit 351 performs three stages of assist as shown in FIG. 9, depending on the opening degree of the throttle grip 200.
  • the horizontal axis indicates the rotation amount TH (°) of the throttle grip 200.
  • the vertical axis indicates assist force ASS (N).
  • the assist stage ASS1 is a weak assist to prevent the saddle-riding vehicle 100 from rolling on a slope.
  • the control unit 351 calculates the necessary assist force from the grip force detected by the grip sensor 230 even if the throttle grip 200 is not rotating.
  • the control unit 351 detects whether the slope is uphill or downhill from the difference in pressure between the first gripping sensor 231 on the palm side and the second gripping sensor 232 on the finger side. Further, the control unit 351 calculates the inclination angle of the slope according to the pressure difference, and calculates the necessary assist force according to the inclination angle of the slope.
  • the control unit 351 can improve the calculation accuracy of the assist force by adding the signal from the center of gravity position sensor 304 in addition to the signals from the first grip sensor 231 and the second grip sensor 232.
  • the inverter 142 outputs a predetermined electric power to the electric motor 141 so that an assist force according to the calculation result of the control unit 351 is generated.
  • the control unit 351 periodically issues the hand push assist possible notification S4072 until the notification condition is resolved.
  • the basic vibration pattern of the hand push assist possible notification S4072 is a repetition of 0.5 second vibration and 0.5 second stop.
  • This basic pattern is emphasized by being executed with an emphasis pattern that includes a continuation of about 3 seconds and a stop of about 2 seconds. This emphasis pattern is repeated.
  • This periodically repeated pattern can be changed in various ways. For example, the vibration pattern may continue for 5 seconds and stop for 5 seconds. Vibration may also be continuous without periodic repetition.
  • the assist stage ASS2 is a speed that is slow enough to move the saddle vehicle 100 when parking it. Assist stage 2 is, for example, about 1 kilometer per hour.
  • the control unit 351 instructs the inverter 142 to set the vehicle speed to 1 kilometer per hour. Inverter 142 outputs electric power equivalent to 1 km/h to electric motor 141. Since this slow speed is less than the second predetermined vehicle speed, the control unit 351 also periodically issues manual push assist possible notification S4072 to the occupant. Since assist stage 2 is a weak assist force, there is a risk that the occupant may forget that he or she is receiving assistance. However, by periodically issuing the manual push assist possibility notification S4072, it is possible to prevent the occupant from rotating the throttle grip 200 unintentionally. The control unit 351 continues the manual push assist possible notification S4072 until the notification condition for the manual push assist possible notification S4072 is resolved.
  • Assist stage ASS3 is a speed at the level of pushing the vehicle in a residential area or the like. Assist stage 3 is a speed below 5 kilometers per hour, which is walking speed.
  • the control unit 351 instructs the inverter 142 to operate at a speed of less than 5 kilometers per hour according to the output of the rotation angle sensor 210. Inverter 142 rotates electric motor 141 according to the designated speed.
  • the control unit 351 since the vehicle is moving faster than the second predetermined vehicle speed, the control unit 351 does not issue the travel possible notification S4071. This is because the occupant understands that he/she is pushing the saddle-riding vehicle 100 while receiving the assist force, so the travel-ready notification S4071 is unnecessary. There is no need to issue the travel-ready notification S4071 to bother the occupants.
  • the second predetermined vehicle speed is set to about 6 kilometers per hour, it is possible to issue the travel possible notification S4071 even in the assist stage ASS3.
  • the rotation amount TH of the throttle grip 200 when transitioning from assist stage ASS2 to assist stage ASS3 is different from the rotation amount TH of throttle grip 200 when transitioning from assist stage ASS1 to assist stage ASS2. It's getting bigger.
  • the rotation amount TH of the throttle grip 200 when transitioning from the assist stage ASS2 to the assist stage ASS3 is set to a large rotation amount of about 45 degrees or more. Therefore, the occupant needs to intentionally rotate the throttle grip 200 significantly in order to shift to the assist stage ASS3. This is to prevent the transition from the assist stage ASS2 to the assist stage ASS3 against the occupant's will.
  • This running state BS is a state in which the vehicle speed obtained from the vehicle speed sensor 308 is faster than the second predetermined vehicle speed. Further, the stand sensor 306 detects the storage position of the stand, and the seating sensor 302 detects whether the occupant is seated. In the running state BS, the notification S4071 that driving is possible and the notification S4072 that manual push assist is possible are not performed, so the occupants are not bothered.
  • the control unit 351 calculates the vehicle speed according to the output of the rotation angle sensor 210, and instructs the inverter 142 about the calculation result.
  • the inverter 142 then rotates the electric motor 141 to achieve the instructed vehicle speed.
  • the vehicle speed is determined solely according to the output of the rotation angle sensor 210, but it is also possible to use the step sensor 305 or center of gravity position sensor 304 as auxiliary means for detecting whether the rider is attempting to accelerate further.
  • the step sensor 305 is used on scooters to confirm that the rider is in the correct riding position.
  • the center of gravity position sensor 304 is mainly used on motorcycles to confirm that the rider is in a forward-leaning position.
  • the control unit 351 determines that the moving state is enabled in the stop determination S406, determines that the traveling state is BS, or determines that the traveling state is prohibited (S404). , it is confirmed whether the key switch 301 remains on (S409). Here, if it is confirmed that the key switch 301 is on, the control unit 351 repeats the flow from step S403 for determining whether the start switch 300 is on. If the key switch 301 is turned off, the control unit 351 determines that the operation of the saddle riding vehicle 100 has ended, and ends the control flow (S410). However, even if the key switch 301 is turned off, it is possible to continue the determination by the control unit 351 for a while using the self-holding power supply.
  • the saddle vehicle 100 is an electric vehicle driven only by an electric motor 141.
  • the saddle vehicle 100 may be a hybrid vehicle driven by an electric motor 141 and an internal combustion engine 150.
  • a piston 152 reciprocates within a cylinder block 151.
  • the reciprocating movement of the piston 152 rotates the drive shaft 154 via the connecting rod 153.
  • the rotation of the drive shaft 154 is transmitted to the drive shaft 158 via a drive pulley 155, a belt 156, and a driven pulley 157.
  • the driving force from the internal combustion engine 150 and the driving force from the electric motor 141 can be input to the drive shaft 158, and a clutch 160 switches which driving force is used.
  • the driving force of the drive shaft 158 is transmitted to the drive wheels 102 via the reduction gear 144, similar to an electric vehicle.
  • FIG. 11 is an example of a driving force transmission mechanism of a hybrid vehicle.
  • the drive form of the hybrid vehicle may include other examples of power transmission.
  • the rotation of the internal combustion engine 150 is also transmitted to the second motor 170.
  • the second motor 170 functions as a starter, and the second motor 170 rotates to rotate the drive shaft 154 of the internal combustion engine 150.
  • the second inverter 171 converts the direct current from the battery 143 into three-phase alternating current to rotate the second motor.
  • the second motor functions as a generator.
  • the second inverter 171 converts alternating current into direct current and supplies power to battery 143 .
  • the remaining amount of the battery 143 is detected by a remaining battery amount sensor 307.
  • the control unit 351 determines whether the drive wheels 102 are driven only by the electric motor 141, only by the internal combustion engine 150, or by both the electric motor 141 and the internal combustion engine 150. do. This determination is made mainly based on the vehicle speed signal from the vehicle speed sensor 308 and the rotation of the throttle grip 200 by the occupant from the rotation angle sensor 210.
  • the drive wheels 102 are driven only by the electric motor 141.
  • the electric motor 141 has a higher torque than the internal combustion engine 150, so the electric motor 141 allows smooth starting.
  • the drive wheels 102 are driven only by the electric motor 141.
  • This predetermined low speed is, for example, about 10 to 15 kilometers per hour. This becomes the first predetermined vehicle speed. Therefore, the first predetermined vehicle speed is a predetermined low speed for the hybrid vehicle. In an electric vehicle, the first predetermined vehicle speed is all vehicle speeds at which the saddle-riding vehicle 100 can travel.
  • the saddle vehicle 100 when the vehicle speed is below the first predetermined speed, the saddle vehicle 100 is driven only by the electric motor 141.
  • This state includes a state in which the saddle vehicle 100 is seated and started, and a state in which the saddle vehicle 100 is pushed around.
  • the internal combustion engine 150 When using the internal combustion engine 150, the operating sound and vibrations of the internal combustion engine 150 can be tactilely felt by holding the steering wheel 112 or sitting on the seat 191.
  • the driving noise is low, and there is no operating noise or vibration like when the internal combustion engine 150 is in an idling state. Therefore, the occupant may not be aware that the saddle-riding vehicle 100 is ready for activation, and may unintentionally rotate the throttle grip 200.
  • the notification S4071 that driving is possible and the notification S4072 that manual push assistance is possible can be issued to attract the attention of the occupant.
  • the internal combustion engine 150 drives the drive shaft 158 instead of the electric motor 141. Since the internal combustion engine 150 is in an efficient operating state when operating at a high speed and a constant speed, the saddle-riding vehicle 100 can be operated with high efficiency.
  • the driving force from the electric motor 141 is utilized. be able to.
  • the driving force of the electric motor 141 is utilized by increasing the rotational speed of the internal combustion engine 150 and also rotating the electric motor 141 to add driving force.
  • the rotation speed of the drive shaft 158 can be increased by adding the driving force of the electric motor 141 while keeping the rotation speed of the internal combustion engine 150 constant.
  • the rotational speed of the internal combustion engine 150 is controlled by controlling the electronic throttle 180 to adjust the amount of intake air to the internal combustion engine 150. Further, the rotation speed of the internal combustion engine 150 is controlled by adjusting the amount of fuel supplied to the cylinder block 151. As shown in FIG. 13, the electronic throttle 180 controls the rotation of a throttle valve 181 to vary the area of the intake passage.
  • the throttle valve 181 is rotated by a throttle motor 183.
  • the throttle motor 183 is accommodated in a housing 184, and therefore, reference numeral 183 in FIG. Third Embodiment
  • the movement of the throttle motor 183 may be transmitted to the grip portion 201 of the throttle grip 200 by a mechanical wire 185.
  • the throttle motor 183 is vibrated.
  • the vibration of the throttle motor 183 is mechanically transmitted to the grip portion 201 of the throttle grip 200. This makes it possible for the throttle motor 183 of the electronic throttle 180 to assume the function of the vibrator motor 221.
  • the opening of the housing 184 is closed by a case 186.
  • the electronic throttle 180 is not always used.
  • the amount of rotation of the throttle grip 200 is transmitted to the throttle valve 181 using a mechanical wire.
  • the vibrator motor 221 is required.
  • a stop determination S406 is performed as in the example of FIG. 10.
  • the driving enable notification S4071 and the hand-push assist enable notification S4072 are performed by vibrating the throttle grip 200 and the grip grip 113.
  • the vibration of the driving enable notification S4071 and the hand-push assist enable notification S4072 may be performed using the vibrator motor 221 shown in FIG. 3, or the throttle motor 183 of the electronic throttle 180 shown in FIG. 13 may vibrate the throttle grip 200.
  • the vibration of the grip grip 113 is performed using the vibrator motor 221 in both electric and hybrid vehicles.
  • FIG. 14 shows an enlarged view of the link mechanism 225, and by using the link mechanism 225, the small gear 222 held at a predetermined position can be rotated forward or reverse.
  • adding the crank mechanism 225 increases costs, since the vibrator motor 221 only needs to rotate in a fixed direction, the vibrator motor 221 can be easily controlled.
  • a vibrator motor 221 may be arranged inside the grip section 201, and the eccentric weight 226 may be rotated by the vibrator motor 221. By rotating the eccentric weight 226, the grip portion 201 can be vibrated.
  • a vibrator solenoid 227 may be arranged inside the grip section 201.
  • the solenoid shaft 228 of the vibrator solenoid 227 is connected to the grip portion 201.
  • the grip portion 201 is locked to the handle 112 so as to be movable in the axial direction.
  • the vibrator solenoid 227 is energized, it is displaced in one direction by the excitation force, and when it is not energized, it is displaced in the other direction by the spring force.
  • the grip portion 201 can be vibrated in the axial direction of the handle 112.
  • the configuration of the vibrator 220 is the same for the grip grip 113. It is possible to use vibrator 220 of various structures in grasping grip 113. A passenger normally grips the handlebars 112 of the saddle vehicle 100 on both the left and right sides. Therefore, it is desirable to provide the grip sensor 230 for the grip grip 113 not only on the right throttle grip 200 but also on the left grip grip 113. This makes it possible to detect that the occupant is correctly holding the left and right grips.
  • the arrangement of the vibrator 220 is essential for the throttle grip 200.
  • a vibrator 220 may be arranged in the grip 113 as necessary. It is also possible to provide the grip 113 without the vibrator 220. By vibrating both the grip grip 113 and the throttle grip 200, the occupant can be more accurately notified of the travel-ready notification S4071. However, even if the notification is only from the throttle grip 200, it is possible for the occupant to sense the driving possible notification S4071.
  • the grip sensor 230 may be installed on the grip 113. Since the saddle riding vehicle 100 is usually pushed while holding the left and right grips, it is possible to accurately detect the pushing state. However, the grip sensor 230 of the grip 113 is not essential. It is also possible to arrange the grip sensor 230 only on the throttle grip 200.
  • the signal from the seating sensor 302 and the signal from the stand sensor 306 are used for the stop determination S406. This is desirable because it is possible to accurately detect a state in which the occupant is trying to push the saddle vehicle 100 around. However, even if the stand sensor 306 is abolished, it is still possible to determine whether the occupant is pushing the vehicle using the grip sensor 230, vehicle speed sensor 308, and seating sensor 302.
  • the seating sensor 302 may also be eliminated if necessary. In this case, it is difficult to determine whether the occupant is riding the saddle vehicle 100 or is trying to get off and push the saddle. However, the grip sensor 230 and the vehicle speed sensor 308 can detect at least a state in which the occupant is trying to push the vehicle. Furthermore, even in this case, if the occupant is riding in the saddle-riding vehicle 100 and the vehicle speed is less than or equal to the second predetermined vehicle speed, the travel possible notification S4071 will be notified. Therefore, even if the seating sensor 302 is abolished, the occupant is notified that the saddle riding vehicle 100 can be started. The effect of preventing unexpected activation can be demonstrated even while riding.
  • the saddle-riding vehicle 100 when the saddle-riding vehicle 100 is being pushed around, generally the saddle-riding vehicle 100 is pushed around once it has finished running, stopped, and then the saddle-riding vehicle 100 is pushed around.
  • the present disclosure does not exclude a usage mode in which the device is pushed and walked immediately after the key switch 301 and start switch 300 are turned on. If it is possible to prevent an unintentional rotation operation of the throttle grip 200 when pushing the saddle vehicle 100 after normal driving, the rider may be notified of the possibility of driving S4071 even when the saddle riding vehicle 100 is pushing the vehicle 100 before driving. good.
  • the first grip sensor 231 that can detect the pressing force in the forward direction
  • the second grip sensor 232 that can detect the tension state. It was. This is desirable in determining whether the assist force should be applied in the forward direction or in the backward direction. However, it is possible to use only one grip sensor 230 if necessary. In that case, it is reasonable to leave the first grip sensor 231 that easily detects pushing while walking.
  • the vibration patterns of the vibrator 220 were made different between the travel possible notification S4071 in the movable state AS and the manual push assist possible notification S4072. It is desirable for the occupants to know whether they are riding or pushing the vehicle. However, the vibration pattern of the vibrator 220 may be the same in the travel possible notification S4071 in the movable state AS and the manual push assist possible notification S4072.
  • the movable state AS was further divided into a travel preparation state A-1 and an assist preparation state A-2.
  • This configuration is desirable because it is possible to notify the passenger of the possibility of driving S4071 in the driving preparation state A-1.
  • what the present disclosure particularly requires is manual assist possible notification S4072. If necessary, the travel preparation state A-1 may be abolished.
  • the throttle grip includes a grip sensor that detects that an occupant is gripping the throttle grip, a rotation angle sensor that detects the amount of rotation of the throttle grip, and a vibrator that vibrates the throttle grip,
  • the gripping sensor detects gripping of the throttle grip by an occupant after the saddle-riding vehicle has traveled and the vehicle speed is zero or less than a second predetermined vehicle speed that is lower than the first predetermined vehicle speed
  • a saddle riding vehicle characterized in that the throttle grip is vibrated by activating a vibrator.
  • the saddle vehicle further includes a stand that maintains the stopped state of the saddle vehicle, and a stand sensor that detects a stored state of the stand,
  • the saddle riding vehicle according to technical idea 1 or 2, wherein the vibrator activates the vibrator to vibrate the throttle grip when it is detected that the stand sensor is in the stored state.
  • the grip sensor has a function of detecting that an occupant is pushing the saddle vehicle in a forward direction
  • the technical idea is characterized in that when the grip sensor detects that an occupant is pushing the saddle vehicle in a forward direction, the electric motor generates a forward assisting force that causes the saddle vehicle to advance.
  • the saddle-riding vehicle according to any one of 1 to 3.
  • the grip sensor has a function of detecting that the occupant is pulling the saddle vehicle in a backward direction
  • the technical feature is characterized in that when the grip sensor detects that the occupant is pulling the saddle vehicle in a backward direction, the electric motor generates a backward assist force that causes the saddle vehicle to move backward.
  • the saddle-riding vehicle according to any one of Ideas 1 to 4.
  • the grip includes a grip sensor that detects that an occupant is gripping the grip, and a grip vibrator that vibrates the grip, After the saddle-riding vehicle has traveled and the vehicle speed is zero or less than a second predetermined vehicle speed, when the grip sensor detects that the grip is gripped by the occupant, the grip vibrator is activated.
  • the saddle riding vehicle according to any one of technical ideas 1 to 5, characterized in that the grip is vibrated.
  • the saddle riding vehicle further includes an internal combustion engine that drives the driving wheels when the vehicle speed is equal to or higher than the first predetermined vehicle speed, and an electronic throttle that opens and closes a throttle valve of the internal combustion engine.
  • the saddle riding vehicle according to any one of technical ideas 1 to 6, characterized in that:
  • the electronic throttle includes a throttle motor that opens and closes the throttle valve, and The saddle riding vehicle according to technical idea 7, wherein the vibrator is the throttle motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This saddled vehicle comprises a grip sensor that detects that a rider is gripping a throttle grip, a rotation angle sensor that detects a rotation amount of the throttle grip, and a vibrator that vibrates the throttle grip. When the grip sensor detects gripping of the throttle grip while the vehicle speed is from zero to a second prescribed vehicle speed, which is a lower speed than a first prescribed vehicle speed which is a driving speed of an electric motor, the vibrator is activated and the throttle grip is vibrated. Thereby, it is possible to activate the vibrator and vibrate the throttle grip, intuitively informing the rider that the electric motor is activatable, while the rider is pushing handlebars so as to hold the position of the saddled vehicle on a sloped road or while the rider is walking and pushing the saddled vehicle, and it is made possible to prevent the saddled vehicle from starting against the rider's intention.

Description

鞍乗り車両saddle riding vehicle 関連出願の相互参照CROSS-REFERENCE TO RELATED APPLICATIONS
 この出願は、2022年9月19日に日本に出願された特許出願第2022-148661号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2022-148661 filed in Japan on September 19, 2022, and the content of the underlying application is incorporated by reference in its entirety.
 本明細書の記載は、例えば二輪車等の鞍乗り車両に関する。 The description in this specification relates to a saddle riding vehicle such as a two-wheeled vehicle.
 特許文献1では、電動二輪車で電源を入れた際に、起動音、メータ上への表示、音声ブザーなどでユーザに車両が走行可能状態であることを知らせている。また、特許文献2では、電動二輪車の押し歩きモードに着目し、押し歩きモードでは電動モータでアシストすることを開示している。 In Patent Document 1, when an electric two-wheeled vehicle is turned on, a startup sound, a display on the meter, an audio buzzer, etc. are used to notify the user that the vehicle is ready to travel. Further, Patent Document 2 focuses on the push-and-walk mode of an electric two-wheeled vehicle, and discloses that an electric motor provides assistance in the push-and-walk mode.
特許第6776455号公報Patent No. 6776455 特開2006-51853号公報Japanese Patent Application Publication No. 2006-51853
 特許文献1に記載の電動二輪車では、起動後初回しか走行可能通知をしない為、起動後に走行して、停車した時には、乗員はモニターを見ていないと電動モータが起動可能状態であることを忘れてしまう可能性がある。その状態で乗員がスロットル操作すると、二輪車が意図せず発進してしまう恐れがある。特に、停車後電動二輪車を押し歩きしている際に誤ってスロットル操作をすると、乗員の意図に反して電動二輪車が動き出すこととなる。 The electric two-wheeler described in Patent Document 1 only notifies the rider that the electric motor is ready to start the first time after it is started, so if the rider is not looking at the monitor after starting the electric two-wheeler and then stopping, there is a possibility that the rider will forget that the electric motor is ready to start. If the rider operates the throttle in this state, there is a risk that the two-wheeler will start moving unintentionally. In particular, if the rider operates the throttle by mistake while pushing the electric two-wheeler after stopping, the electric two-wheeler will start moving against the rider's intention.
 特許文献2に記載の電動二輪車は、押し歩きモードで電動モータのアシストは開示しているが、これは乗員が電動モータのアシストを受けることを前提としている。その為、例えば着座していない状態において、乗員がバランスを崩して、その状態から立て直す際に誤ってスロットル操作をしてしまった場合には、押し歩きモードで電動二輪車が乗員の意図に反して動き出してしまう恐れがある。 Although the electric two-wheeled vehicle described in Patent Document 2 discloses that the electric motor assists in the pushing mode, this assumes that the rider receives the electric motor's assistance. Therefore, for example, if a rider loses their balance while not seated and accidentally operates the throttle when trying to regain their balance, the electric two-wheeled vehicle may move in push-walking mode against the rider's intentions. There is a possibility that it will start moving.
 本開示は、起動時のみでなく、走行後停車した後でも乗員に電動モータが起動可能であることを通知して、電動二輪車等の鞍乗り車両が乗員の意図に反して動き出すことが無いようにすることを課題とする。 The present disclosure notifies the rider that the electric motor can be started not only when the electric motor is started, but also after the vehicle has stopped after driving, so that a saddle-riding vehicle such as an electric two-wheeler does not start moving against the rider's intention. The challenge is to
 本開示の第1は、スロットルグリップと把持グリップとを左右に有するハンドルと、乗員が着座するシートと、駆動輪と、少なくとも第1所定車速以下の走行状態では、駆動輪を単独で駆動する電動モータとを備える鞍乗り車両に関する。 A first aspect of the present disclosure includes a handle having a throttle grip and a grip grip on the left and right sides, a seat on which a passenger is seated, a drive wheel, and an electric motor that independently drives the drive wheel when the vehicle is running at least at a first predetermined vehicle speed or lower. The present invention relates to a saddle vehicle equipped with a motor.
 本開示の第1の鞍乗り車両のスロットルグリップは、乗員がスロットルグリップを把持していることを検知する把持センサと、スロットルグリップの回動量を検知する回転角センサと、スロットルグリップを振動させる振動子を備えている。そして、鞍乗り車両の走行後であって、車速が零ないし第1所定車速より低速である第2所定車速以下の状態で、把持センサが乗員によるスロットルグリップの把持を検知した際に、振動子を起動してスロットルグリップを振動させるようにしている。 The throttle grip of the first saddle-riding vehicle of the present disclosure includes a grip sensor that detects that an occupant is gripping the throttle grip, a rotation angle sensor that detects the amount of rotation of the throttle grip, and a vibration that vibrates the throttle grip. Have a child. Then, after the saddle-riding vehicle has traveled and the vehicle speed is zero or below a second predetermined vehicle speed that is lower than the first predetermined vehicle speed, when the grip sensor detects that the occupant is gripping the throttle grip, the vibrator The engine is activated to vibrate the throttle grip.
 乗員が坂道で鞍乗り車両の位置を保持するようにハンドルを押したり、鞍乗り車両を押し歩きしたりしている状態は、車速が零ないし第1所定車速より低速である第2所定車速以下の状態である。かつ、位置保持や押し歩きの状態は、把持センサで乗員によるスロットルグリップの把持を検知することができる。そこで、その状態で振動子を起動してスロットルグリップを振動させれば、乗員に電動モータが起動可能であることを直感的に知らせることが可能となる。これにより、乗員の意図に反して鞍乗り車両が発進することを防止することが可能となる。 If the occupant is pushing the steering wheel to maintain the position of the saddle-riding vehicle on a slope or pushing the saddle-riding vehicle while walking, the vehicle speed is zero or less than a second predetermined vehicle speed that is lower than the first predetermined vehicle speed. It is in a state of In addition, when the vehicle is held in position or when the vehicle is being pushed around, a grip sensor can detect whether the occupant is gripping the throttle grip. Therefore, by activating the vibrator and vibrating the throttle grip in this state, it becomes possible to intuitively notify the occupant that the electric motor can be activated. This makes it possible to prevent the saddle riding vehicle from starting against the intention of the occupant.
 なお、押し歩きモードは鞍乗り車両を前進させることが多いが、前進には限らない。上述のように、坂道で乗員がハンドルを握って鞍乗り車両をその位置に保持する状態も含む。かつ、乗員が鞍乗り車両を後方に引っ張る状態も含む。本開示の第1は、押し歩きモードでの意図に反する鞍乗り車両の移動を防ぐことができればよく、乗員が鞍乗り車両に乗車して意図して鞍乗り車両を発進させようとする際にも、車速が零ないし第2所定車速以下の状態である時に振動子を起動してスロットルグリップを振動させることがあっても良い。 Note that in the pushing mode, the saddle riding vehicle is often moved forward, but it is not limited to forward movement. As described above, this also includes a situation in which the rider holds the saddle vehicle in that position by gripping the handle on a slope. It also includes a situation in which the occupant pulls the saddle-riding vehicle backward. The first aspect of the present disclosure is that it is only necessary to prevent the saddle-riding vehicle from moving contrary to the intention in the push-walking mode, and when an occupant gets on the saddle-riding vehicle and intends to start the saddle-riding vehicle, Alternatively, the vibrator may be activated to vibrate the throttle grip when the vehicle speed is zero or less than a second predetermined vehicle speed.
 本開示の第2では、シートには乗員の着座を検知する着座センサを備えている。着座センサにより、乗員が着座して走行しようとしているのか、鞍乗り車両を手押ししようとしているのかを判断することができる。そして、振動子は着座センサが乗員の着座を検知していない時に振動子を起動してスロットルグリップを振動させるようにしている。本開示の第1では乗員が乗車しており意図的にスロットル操作を行う状態を含んでいた。一方、本開示の第2では、乗員が乗車している場合での振動子の振動は行わないようにすることも可能である。即ち、本開示の第2では、乗員による鞍乗り車両の押し歩き状態を積極的に検出している。これにより、押し歩き状態での意図しないスロットルグリップの回動を防ぐことができる。それと共に、乗員が乗車状態で意図してスロットル操作を行なおうとする際に振動子が振動する煩わしさを防ぐことも可能である。 In the second disclosure, the seat is equipped with a seating sensor that detects whether an occupant is seated. The seating sensor can determine whether an occupant is seated and intending to drive, or is intending to push the saddle-riding vehicle. The vibrator is activated to vibrate the throttle grip when the seating sensor does not detect an occupant seated. In the first disclosure, this includes a state in which an occupant is on board and intentionally operates the throttle. On the other hand, in the second disclosure, it is also possible to prevent the vibrator from vibrating when an occupant is on board. That is, in the second disclosure, the state in which an occupant is pushing the saddle-riding vehicle by the occupant is actively detected. This makes it possible to prevent unintentional rotation of the throttle grip when pushing the vehicle. At the same time, it is also possible to prevent the annoyance of the vibrator vibrating when an occupant is intentionally trying to operate the throttle while on board.
 但し、本開示の第2は着座か手押しかの判断ができればよく、着座中に振動子を起動してスロットルグリップを振動させることを除外していない。着座中のスロットルグリップの振動と手押し中のスロットルグリップの振動を異ならすことも可能である。この場合には、乗員に対してよりきめ細かな報知をすることができる。 However, the second aspect of the present disclosure only needs to be able to determine whether the driver is seated or manually pushed, and does not exclude starting the vibrator to vibrate the throttle grip while the driver is seated. It is also possible to make the vibrations of the throttle grip while the driver is seated different from the vibrations of the throttle grip while the driver is pushing the vehicle by hand. In this case, more detailed notifications can be given to the occupants.
 本開示の第3の鞍乗り車両は、鞍乗り車両の停車状態を保持するスタンドを更に備えている。そして、このスタンドにはスタンドの収納状態を検知するスタンドセンサが設けられている。振動子はスタンドセンサがスタンドの収納状態を検知している時に振動子を起動してスロットルグリップを振動させるようにしている。 The third saddle-riding vehicle of the present disclosure further includes a stand that maintains the saddle-riding vehicle in a stopped state. This stand is provided with a stand sensor that detects the storage state of the stand. The vibrator is activated to vibrate the throttle grip when the stand sensor detects the stowed state of the stand.
 押し歩きや走行開始のモードでは、スタンドは収納されている。その為、スタンドセンサを用いることで、鞍乗り車両が押し歩きや走行開始のモードであるのか、停車状態であるのかを判断することができる。 The stand is retracted in the pushing mode and running start mode. Therefore, by using the stand sensor, it is possible to determine whether the saddle-riding vehicle is in a pushing mode or starting running mode, or whether it is in a stopped state.
 本開示の第4では、把持センサは乗員が鞍乗り車両を前進方向に押していることを検知する機能を備えている。そして、把持センサが、乗員が鞍乗り車両を前進方向に押していることを検知した際には、電動モータに鞍乗り車両を第2所定車速以下の速度で進行させる前進アシスト力を生じさせる。なお、この前進アシスト力は上り坂で鞍乗り車両の位置を保持する際にも用いることができる。 In the fourth aspect of the present disclosure, the grip sensor has a function of detecting that the occupant is pushing the saddle vehicle in the forward direction. When the grip sensor detects that the occupant is pushing the saddle vehicle in the forward direction, the electric motor generates a forward assist force that causes the saddle vehicle to advance at a speed equal to or lower than the second predetermined vehicle speed. Note that this forward assist force can also be used to maintain the position of the saddle riding vehicle on an uphill slope.
 本開示の第5では、第4とは逆に把持センサは乗員が鞍乗り車両を後退方向に引いていることを検知する機能を備えている。そして、把持センサが、乗員が鞍乗り車両を後退方向に引いていることを検知した際には、電動モータに鞍乗り車両を第2所定車速以下の速度で進行させる後退アシスト力を生じさせる。この後退アシスト力も、第4と同様、下り坂で鞍乗り車両の位置を保持する際にも用いることができる。 In the fifth aspect of the present disclosure, contrary to the fourth aspect, the grip sensor has a function of detecting that the occupant is pulling the saddle vehicle in the backward direction. When the grip sensor detects that the occupant is pulling the saddle vehicle in the backward direction, the electric motor generates a backward assist force that causes the saddle vehicle to proceed at a speed equal to or lower than the second predetermined vehicle speed. Similar to the fourth example, this backward assist force can also be used to maintain the position of the saddle riding vehicle on a downhill slope.
 本開示の第6では、把持グリップは、乗員が把持グリップを把持していることを検知する把持グリップセンサと、把持グリップを振動させる把持グリップ振動子を備えている。そして、鞍乗り車両の走行後であって、車速が零ないし第1所定車速より低速である第2所定車速以下の状態で、把持グリップセンサが乗員による把持グリップの把持を検知した際に、把持グリップ振動子を起動して把持グリップを振動させる。 In the sixth aspect of the present disclosure, the grip includes a grip sensor that detects that the occupant is gripping the grip, and a grip vibrator that vibrates the grip. Then, when the grip sensor detects gripping of the grip by the occupant after the saddle-riding vehicle has traveled and the vehicle speed is zero or less than a second predetermined vehicle speed that is lower than the first predetermined vehicle speed, The grip vibrator is activated to vibrate the grip.
 本開示の第6では、スロットルグリップと把持グリップの双方により、乗員にグリップの振動を知らせることができる。乗員は両手で振動を感知することができ、意図しない鞍乗り車両の発進をより効果的に防止することができる。 In the sixth aspect of the present disclosure, vibrations of the grip can be notified to the occupant by both the throttle grip and the grip. The occupant can sense vibrations with both hands, and can more effectively prevent the saddle-riding vehicle from starting unintentionally.
 本開示の第7の鞍乗り車両は、第1所定車速以上の車速の際に駆動輪を駆動する内燃機関と、この内燃機関のスロットルバルブを開閉駆動する電子スロットルを更に備えている。即ち、本開示の第7の鞍乗り車両は、発進時電動モータが駆動し、第1所定車速以上の車速では内燃機関が駆動するハイブリッド車両である。 The seventh saddle-riding vehicle of the present disclosure further includes an internal combustion engine that drives the drive wheels when the vehicle speed is equal to or higher than a first predetermined vehicle speed, and an electronic throttle that opens and closes a throttle valve of the internal combustion engine. That is, the seventh saddle-riding vehicle of the present disclosure is a hybrid vehicle in which the electric motor is driven at the time of starting, and the internal combustion engine is driven at vehicle speeds equal to or higher than the first predetermined vehicle speed.
 本開示の第8では、電子スロットルはスロットルバルブを開閉駆動するスロットルモータを備えている。そして、振動子はスロットルモータの駆動力を利用している。内燃機関用に設置されたスロットルモータでスロットルグリップを振動させることで、モータの使用数を抑えることができる。 In the eighth aspect of the present disclosure, the electronic throttle includes a throttle motor that drives a throttle valve to open and close. The vibrator uses the driving force of the throttle motor. By vibrating the throttle grip using a throttle motor installed for an internal combustion engine, the number of motors used can be reduced.
図1は、鞍乗り車両の側面図である。FIG. 1 is a side view of a saddle-ride vehicle. 図2は、スロットルグリップを示す斜視図である。FIG. 2 is a perspective view showing the throttle grip. 図3は、図2図示スロットルグリップよりカバーの一部を外した斜視図である。FIG. 3 is a perspective view of the throttle grip shown in FIG. 2 with a part of the cover removed. 図4は、回転角センサを示す斜視図である。FIG. 4 is a perspective view showing the rotation angle sensor. 図5は、把持センサを示す斜視図である。FIG. 5 is a perspective view showing the grip sensor. 図6は、鞍乗り車両のセンサ搭載位置を示す斜視図である。FIG. 6 is a perspective view showing the sensor mounting position of the saddle riding vehicle. 図7は、電動鞍乗り車両の駆動系を示す構成図である。FIG. 7 is a configuration diagram showing the drive system of the electric saddle riding vehicle. 図8は、電動鞍乗り車両の制御系を示す構成図である。FIG. 8 is a configuration diagram showing a control system of the electric saddle riding vehicle. 図9は、スロットルグリップの回動量とアシスト力の関係を説明する図である。FIG. 9 is a diagram illustrating the relationship between the amount of rotation of the throttle grip and the assist force. 図10は、走行可能通知を説明するフローチャートである。FIG. 10 is a flowchart illustrating the travel possible notification. 図11は、ハイブリッド鞍乗り車両の駆動系を示す構成図である。FIG. 11 is a configuration diagram showing a drive system of a hybrid saddle riding vehicle. 図12は、ハイブリッド鞍乗り車両の制御系を示す構成図である。FIG. 12 is a configuration diagram showing a control system of a hybrid saddle riding vehicle. 図13は、電子スロットルの斜視図である。FIG. 13 is a perspective view of the electronic throttle. 図14は、振動子の他の例を示す構成図である。FIG. 14 is a configuration diagram showing another example of the vibrator. 図15は、図14の一部を拡大した斜視図である。FIG. 15 is an enlarged perspective view of a portion of FIG. 14. 図16は、振動子の更に他の例を示す斜視図である。FIG. 16 is a perspective view showing still another example of the vibrator. 図17は、振動子の更に他の例を示す斜視図である。FIG. 17 is a perspective view showing still another example of the vibrator.
 第1実施形態
 以下、本開示の第1実施形態を図に基づいて説明する。図1は、鞍乗り車両100の側面図である。図1の鞍乗り車両は二輪スクータである。ただし、二輪スクータは鞍乗り車両100の一例であって、鞍乗り車両はモータサイクルでも良く、スノーモービルでも良く、4輪バギー車(ATV)でも良い。また、二輪である必要はなく、複数の前輪101を有していても良く、複数の後輪102を有していても良い。この開示は、少なくとも第1所定車速以下の走行状態では、駆動輪を電動モータ単独で駆動する鞍乗り車両に関する。
First Embodiment Hereinafter, a first embodiment of the present disclosure will be described based on the drawings. FIG. 1 is a side view of a saddle vehicle 100. The saddle riding vehicle in FIG. 1 is a two-wheeled scooter. However, the two-wheel scooter is an example of the saddle vehicle 100, and the saddle vehicle may be a motorcycle, a snowmobile, or a four-wheel buggy (ATV). Further, the vehicle does not need to have two wheels, and may have a plurality of front wheels 101 or a plurality of rear wheels 102. This disclosure relates to a saddle-riding vehicle in which the drive wheels are driven solely by an electric motor, at least in a running state at a first predetermined vehicle speed or lower.
 前輪101はフロントフォーク110に軸支されている。フロントフォーク110はヘッドパイプ111に支持されている。フロントフォーク110の上部はハンドル112に連結している。ハンドル112により前輪101は左右に回動できる。ハンドル112の左右にはグリップが設けられ(図6図示)ている。右側のグリップは、駆動力の調整を行うスロットルグリップ200である。乗員がスロットルグリップ200を時計方向に回動させることで鞍乗り車両100を加速させる。逆に、乗員がスロットルグリップ200を反時計方向に回動させると鞍乗り車両100は減速する。左側のグリップは把持グリップ113である。 The front wheel 101 is pivotally supported by a front fork 110. The front fork 110 is supported by a head pipe 111. The upper part of the front fork 110 is connected to a handle 112. The front wheel 101 can be rotated left and right by the handle 112. Grips are provided on the left and right sides of the handle 112 (as shown in FIG. 6). The grip on the right is a throttle grip 200 that adjusts the driving force. The rider accelerates the saddle vehicle 100 by rotating the throttle grip 200 clockwise. Conversely, when the occupant rotates the throttle grip 200 counterclockwise, the saddle-riding vehicle 100 decelerates. The grip on the left is a gripping grip 113.
 なお、前後方向は鞍乗り車両100の進行方向を前、後退方向を後とする。また、左右方向は鞍乗り車両100の前進方向に対する右側と左側とである。上下方向は鞍乗り車両100に対する天側が上であり、地側が下である。 Note that the forward and backward directions refer to the direction in which the saddle riding vehicle 100 moves forward as the front and the backward direction as the rear. The left-right direction refers to the right and left sides of the forward direction of the saddle riding vehicle 100. The up-down direction refers to the top side of the saddle riding vehicle 100 and the bottom side.
 ハンドル112の略中央には、メータ115が配置されている。このメータ115の前方にはヘッドライト116が配置されている。また、ハンドル112にはスタートスイッチ300が配置されている。メータ115の近傍にはキースイッチ301が配置されている。なお、キーを用いずに駆動する鞍乗り車両100では、メインスイッチが配置されている。本開示におけるキースイッチ301はメインスイッチを含む概念である。 A meter 115 is arranged approximately at the center of the handle 112. A headlight 116 is arranged in front of this meter 115. Further, a start switch 300 is arranged on the handle 112. A key switch 301 is arranged near the meter 115. Note that in the saddle vehicle 100 that is driven without using a key, a main switch is provided. The key switch 301 in the present disclosure is a concept that includes a main switch.
 ヘッドパイプ111は、車体フレーム120の一部をなしている。車体フレーム120は、前方フレーム121、中間フレーム122、及び後方フレーム123を備える。前方フレーム121は上述のヘッドパイプ111を保持している。中間フレーム122は略水平に配置されている。中間フレーム122は、乗員が足を置くフットレスト130を支持している。また、中間フレーム122には、鞍乗り車両100を停車するために用いられるスタンド119が回動可能に取り付けられている。 The head pipe 111 forms part of the vehicle body frame 120. The vehicle body frame 120 includes a front frame 121, an intermediate frame 122, and a rear frame 123. The front frame 121 holds the above-mentioned head pipe 111. The intermediate frame 122 is arranged substantially horizontally. The intermediate frame 122 supports a footrest 130 on which the occupant rests his or her feet. Further, a stand 119 used for stopping the saddle vehicle 100 is rotatably attached to the intermediate frame 122.
 後方フレーム123は斜め上方に延び、パワーユニット140を支持している。具体的には、後方フレーム123はパワーユニット140の前方を支持ボルト124で回動自在に保持している。後方フレーム123は、パワーユニット140の後方をショックアブソーバー125により保持している。 The rear frame 123 extends obliquely upward and supports the power unit 140. Specifically, the rear frame 123 rotatably holds the front side of the power unit 140 with a support bolt 124. The rear frame 123 supports the rear of the power unit 140 with a shock absorber 125.
 パワーユニット140は、電動モータ141とインバータ142(図7図示)とを有する。電動モータ141とインバータ142とは、パワーユニット140に配置されている。電動モータ141は走行時に後輪102を回転駆動する。従って、この例では、後輪102が駆動輪となる。以下、後輪を駆動輪102と呼ぶ。鞍乗り車両100が回生ブレーキを作用させる際には、電動モータ141は発電機として作動する。 The power unit 140 includes an electric motor 141 and an inverter 142 (shown in FIG. 7). Electric motor 141 and inverter 142 are arranged in power unit 140. The electric motor 141 rotationally drives the rear wheels 102 when the vehicle is running. Therefore, in this example, the rear wheel 102 becomes the driving wheel. Hereinafter, the rear wheels will be referred to as drive wheels 102. When saddle riding vehicle 100 applies regenerative braking, electric motor 141 operates as a generator.
 電動モータ141が回転駆動している際の回転数はインバータ142により制御される。具体的には、インバータ142は、バッテリ143の直流電流を三相交流電流に変換している。インバータ142は、三相交流電流の周波数を調節することで電動モータ141の回転数を制御する。インバータ142は電動モータ141の回転方向も制御することができる。従って、鞍乗り車両100は前進方向にも後退方向にも移動することが可能である。電動モータ141が発電機として動作する際には、インバータ142は、三相交流電流を直流電流に変換し、直流電流によってバッテリ143に充電する。なお、バッテリ143には様々なタイプによって提供することができる。バッテリ143は、燃料電池によって提供される場合もある。 The number of rotations when the electric motor 141 is rotating is controlled by the inverter 142. Specifically, the inverter 142 converts the direct current of the battery 143 into three-phase alternating current. The inverter 142 controls the rotation speed of the electric motor 141 by adjusting the frequency of the three-phase alternating current. The inverter 142 can also control the rotational direction of the electric motor 141. Therefore, the saddle vehicle 100 can move both in the forward direction and in the backward direction. When electric motor 141 operates as a generator, inverter 142 converts three-phase alternating current into direct current, and charges battery 143 with the direct current. Note that the battery 143 can be provided in various types. Battery 143 may also be provided by a fuel cell.
 パワーユニット140は減速ギヤ144を含む減速機構を有する。電動モータ141の回転はこの減速ギヤ144で所定の比率に減速されて駆動輪102に伝達される。換言すれば、電動モータ141の駆動トルクは減速ギヤ144によって高められて駆動輪102に伝達される。 The power unit 140 has a reduction mechanism including a reduction gear 144. The rotation of the electric motor 141 is reduced to a predetermined ratio by the reduction gear 144 and transmitted to the drive wheels 102. In other words, the drive torque of the electric motor 141 is increased by the reduction gear 144 and transmitted to the drive wheels 102.
 後方フレーム123の周囲は車体カバー190によって覆われている。車体カバー190の略中央の上部は乗員が着座するシート191が固定されている。シート191の下方にはヘルメット等の荷物を収納することができるユーティリティスペースが設けられている。ユーティリティスペースの下方にはバッテリ143が配置されている。 The periphery of the rear frame 123 is covered by a vehicle body cover 190. A seat 191 on which a passenger is seated is fixed to the upper part of the vehicle body cover 190 at approximately the center. A utility space is provided below the seat 191 in which luggage such as a helmet can be stored. A battery 143 is arranged below the utility space.
 図2に示すように、スロットルグリップ200には円柱状のグリップ部201が配置されている。グリップ部201はハンドル112に対して回動可能である。図3は図2のグリップカバー202を外した斜視図である。図3に示すように、グリップカバー202内には、回転角センサ210と振動子220が配置されている。 As shown in FIG. 2, a cylindrical grip portion 201 is arranged on the throttle grip 200. The grip portion 201 is rotatable relative to the handle 112. FIG. 3 is a perspective view of FIG. 2 with the grip cover 202 removed. As shown in FIG. 3, a rotation angle sensor 210 and a vibrator 220 are arranged inside the grip cover 202.
 振動子220は振動子モータ221と、この振動子モータ221により回転する小ギヤ222と、この小ギヤ222と噛合する大ギヤ223とを備える。振動子モータ221は正転、逆転するように回転制御される。振動子モータ221の回転が小ギヤ222を介して大ギヤ223に伝達される。大ギヤ223はグリップ部201に固定されている。大ギヤ223の移動に応じてグリップ部201が振動する。 The vibrator 220 includes a vibrator motor 221, a small gear 222 rotated by the vibrator motor 221, and a large gear 223 that meshes with the small gear 222. The vibrator motor 221 is rotationally controlled to rotate forward and backward. Rotation of the vibrator motor 221 is transmitted to the large gear 223 via the small gear 222. The large gear 223 is fixed to the grip portion 201. The grip portion 201 vibrates in accordance with the movement of the large gear 223.
 グリップ部201の振動は、スロットルグリップ200の中心軸周りに回動方向の正転(時計方向回動)と逆転(反時計方向回動)とを含む。グリップ部201の振動は、正転と逆転とを繰り返す振動である。グリップ部201の振動の振動角度は3度~10度程度である。グリップ部201の振動の振動回数は1秒間に5回程度の速さである。グリップ部201の振動は、例えば、1秒程度連続する振動期間と、1秒程度振動を停止する停止期間とを含む。尤も、振動のパターンや周期は一例であり、スロットルグリップ200を握っている乗員に、乗員が感知可能な振動が伝わればよい。 The vibration of the grip portion 201 includes forward rotation (clockwise rotation) and reverse rotation (counterclockwise rotation) around the central axis of the throttle grip 200. The vibration of the grip portion 201 is a vibration that repeats normal rotation and reverse rotation. The vibration angle of the grip portion 201 is about 3 degrees to 10 degrees. The number of vibrations of the grip portion 201 is about 5 times per second. The vibration of the grip portion 201 includes, for example, a continuous vibration period of about 1 second and a stop period in which the vibration is stopped for about 1 second. Of course, the pattern and cycle of the vibrations are merely examples, and it is sufficient that vibrations that can be sensed by the passenger holding the throttle grip 200 are transmitted to the passenger.
 回転角センサ210は、図4に示すように、第1マグネット211と、第2マグネット212とを備える。回転角センサ210は、第1マグネット211及び第2マグネット212の間に配置されるホールセンサ213を備える。第1マグネット211及び第2マグネット212はグリップ部201に固定されている。第1マグネット211及び第2マグネット212の位置は、グリップ部201の回動に応じて移動する。ホールセンサ213はハンドル112に固定されている。ホールセンサ213の位置は、グリップ部201の回転に応じて変化しない。従って、乗員がグリップ部201を回動すると第1マグネット211及び第2マグネット212とホールセンサ213との相対位置が変化する。ホールセンサ213はこの位置変化に伴う磁束の変化を検知してグリップ部201の回動量を検出する。 The rotation angle sensor 210 includes a first magnet 211 and a second magnet 212, as shown in FIG. The rotation angle sensor 210 includes a Hall sensor 213 arranged between a first magnet 211 and a second magnet 212. The first magnet 211 and the second magnet 212 are fixed to the grip part 201. The positions of the first magnet 211 and the second magnet 212 move according to the rotation of the grip section 201. Hall sensor 213 is fixed to handle 112. The position of the Hall sensor 213 does not change depending on the rotation of the grip section 201. Therefore, when the occupant rotates the grip portion 201, the relative positions of the first magnet 211, the second magnet 212, and the Hall sensor 213 change. The Hall sensor 213 detects the amount of rotation of the grip portion 201 by detecting a change in magnetic flux accompanying this position change.
 乗員は、スロットルグリップ200を把持することができる。さらに、乗員は、スロットルグリップ200を回転させることができる。スロットルグリップ200は、ゼロ位置から最大位置までの範囲において回転可能である。スロットルグリップ200は、ゼロ位置を含む小操作範囲に不感帯を有している。不感帯は、ゼロ位置から約10度の範囲にわたっている。不感帯は、スロットルグリップ200の遊びとも呼ばれる。回転角センサ210は、不感帯におけるスロットルグリップ200の回転を検知しない。スロットルグリップ200の遊びは、乗員の無意識なグリップ部201の回転操作を検知しないようにするために貢献する。言い換えると、スロットルグリップ200の遊びは、乗員が意図しない鞍乗り車両100の挙動を抑制するために貢献する。さらに、振動子220がグリップ部201を振動させても、振動子220の振動によるグリップ部201の回転角度変化は回転角センサ210の不感帯内である。回転角センサ210は、不感帯を超えてから最大位置までの有効操作範囲において、スロットルグリップ200の回転を検知する。回転角センサ210の検出角度(分解能)は0.1度程度である。不感帯と有効操作範囲とは重複していないから、振動子220の振動による回転角度変化は、回転角センサ210により検知されない。よって、振動子220の振動による回転角度変化と、乗員がスロットルグリップ200を操作して駆動力を調整しようとしている角度変化とを、後述の制御部が誤判断することはない。 The occupant can grasp the throttle grip 200. Furthermore, the occupant can rotate the throttle grip 200. The throttle grip 200 is rotatable in a range from a zero position to a maximum position. The throttle grip 200 has a dead zone in a small operation range including the zero position. The dead zone extends approximately 10 degrees from the zero position. The dead zone is also called the play of the throttle grip 200. Rotation angle sensor 210 does not detect rotation of throttle grip 200 in the dead zone. The play of the throttle grip 200 contributes to preventing the occupant's unconscious rotational operation of the grip portion 201 from being detected. In other words, the play of the throttle grip 200 contributes to suppressing the behavior of the saddle vehicle 100 that is not intended by the occupant. Furthermore, even if the vibrator 220 vibrates the grip part 201, the change in the rotation angle of the grip part 201 due to the vibration of the vibrator 220 is within the dead zone of the rotation angle sensor 210. The rotation angle sensor 210 detects the rotation of the throttle grip 200 within the effective operation range from beyond the dead zone to the maximum position. The detection angle (resolution) of the rotation angle sensor 210 is about 0.1 degree. Since the dead zone and the effective operation range do not overlap, the rotation angle change due to vibration of the vibrator 220 is not detected by the rotation angle sensor 210. Therefore, the control unit, which will be described later, will not misjudge the rotational angle change caused by the vibration of the vibrator 220 and the angle change caused by the rider operating the throttle grip 200 to adjust the driving force.
 グリップ部201には把持センサ230も配置されている。把持センサ230は、図3に実線で示す第1把持センサ231と、破線で示す第2把持センサ232とで構成されている。第1把持センサ231は乗員の掌が当接する位置に配置されている。第2把持センサ232は乗員の指が当接する位置に配置されている。 A grip sensor 230 is also arranged in the grip part 201. The grip sensor 230 includes a first grip sensor 231 shown by a solid line in FIG. 3 and a second grip sensor 232 shown by a broken line. The first grip sensor 231 is arranged at a position where the passenger's palm comes into contact. The second grip sensor 232 is arranged at a position where the passenger's fingers come into contact with it.
 図5に示すように、把持センサ230はひずみゲージや圧電素子等の感圧センサである。センシング部233に受ける圧力に応じて、入力線234と出力線235との間の電圧が変化する。この電圧の変化により、グリップ部201が把持されているか否か、及び、どの程度の力(把持力)で把持されているのかを検出する。 As shown in FIG. 5, the grip sensor 230 is a pressure sensor such as a strain gauge or a piezoelectric element. The voltage between the input line 234 and the output line 235 changes depending on the pressure applied to the sensing section 233. Based on this change in voltage, it is detected whether or not the grip section 201 is being gripped, and with what force (gripping force) it is being gripped.
 図2及び図3では、スロットルグリップ200に配置された把持センサ230を説明した。これに加えて、把持センサ230は把持グリップ113にも配置されている。把持センサ230はスロットルグリップ200でも把持グリップ113でも同様である。把持グリップ113の把持センサ230を把持グリップセンサと呼ぶ。また、把持グリップ113には、振動子220も配置されている。この実施形態では、振動子220が振動する際には、左右のグリップが振動する。これにより、乗員に振動子220の振動を的確に伝達することができる。なお、把持グリップ113の振動子220もスロットルグリップ200の振動子220と同様である。把持グリップ113の振動子220を把持グリップ振動子と呼ぶ。把持グリップ振動子の振動のパターン及び周期はスロットルグリップ200の振動子220と同じに設定されている。 In FIGS. 2 and 3, the grip sensor 230 disposed on the throttle grip 200 has been described. In addition to this, the grip sensor 230 is also arranged on the grip grip 113. The grip sensor 230 is the same for both the throttle grip 200 and the grip grip 113. The grip sensor 230 of the grip 113 is referred to as a grip sensor. Further, a vibrator 220 is also arranged on the grip 113. In this embodiment, when the vibrator 220 vibrates, the left and right grips vibrate. Thereby, the vibration of the vibrator 220 can be accurately transmitted to the occupant. Note that the vibrator 220 of the grip 113 is also similar to the vibrator 220 of the throttle grip 200. The vibrator 220 of the grip 113 is called a grip vibrator. The vibration pattern and period of the grip vibrator are set to be the same as those of the vibrator 220 of the throttle grip 200.
 以上は、スロットルグリップ200及び把持グリップ113に配置されるセンサを説明した。鞍乗り車両100は他にも多くのセンサを備える。図6を用いて各種センサの配置位置と、センシング対象を説明する。スタートスイッチ300がスロットルグリップ200の近傍にあるのは上述の通りである。スタートスイッチ300は鞍乗り車両100をスタートさせる際に乗員が押圧するボタンスイッチである。また、メータ115の近傍にキースイッチ301が配置されるのも上述の通りである。鞍乗り車両100をスタートさせるには、キースイッチ301とスタートスイッチ300の両方をオンとする必要がある。 The above describes the sensors arranged on the throttle grip 200 and the grip 113. The saddle-riding vehicle 100 is also equipped with many other sensors. The locations of the various sensors and the sensing targets will be explained using Figure 6. As described above, the start switch 300 is located near the throttle grip 200. The start switch 300 is a button switch that is pressed by the rider when starting the saddle-riding vehicle 100. Also, as described above, the key switch 301 is located near the meter 115. To start the saddle-riding vehicle 100, both the key switch 301 and the start switch 300 must be turned on.
 シート191には乗員がシート191に着座しているか否かを検知する着座センサ302が配置されている。着座センサ302は把持センサ230と同様な感圧センサによって提供することができる。但し、感圧センサに代えて、オンオフを検知する接点スイッチを採用してもよい。この場合、乗員がシートに着座すればスイッチがオンとなり、乗員がシートから降りればオフとなる。 A seating sensor 302 is arranged on the seat 191 to detect whether or not an occupant is seated on the seat 191. Seating sensor 302 may be provided by a pressure sensitive sensor similar to grip sensor 230. However, instead of the pressure sensor, a contact switch that detects on/off may be used. In this case, the switch is turned on when the occupant sits on the seat, and is turned off when the occupant gets off the seat.
 シート191には、傾斜角センサ303も配置されている。傾斜角センサ303はジャイロセンサを含む。傾斜角センサ303は、鞍乗り車両100が左右方向に傾斜しているか否か、また、どの程度傾斜しているのか(傾斜角)を検出する。また、重心位置センサ304がヘッドパイプ111に配置されている。この重心位置センサ304もジャイロセンサを含む。重心位置センサ304は、鞍乗り車両100の重心位置が前方に移動したか後方に移動したかを検出する。重心位置センサ304により乗員が前傾姿勢となっているかどうかが検出できる。 A tilt angle sensor 303 is also arranged on the seat 191. Tilt angle sensor 303 includes a gyro sensor. The tilt angle sensor 303 detects whether the saddle-riding vehicle 100 is tilted in the left-right direction and to what extent it is tilted (the tilt angle). Further, a center of gravity position sensor 304 is arranged on the head pipe 111. This center of gravity position sensor 304 also includes a gyro sensor. The center of gravity position sensor 304 detects whether the center of gravity position of the saddle riding vehicle 100 has moved forward or backward. The center of gravity position sensor 304 can detect whether the occupant is leaning forward.
 フットレスト130にはステップセンサ305が配置されている。ステップセンサ305も感圧センサである。ステップセンサ305は、乗員の足がフットレスト130に載っているか否かを判断する。感圧センサに代えて接点スイッチを用いても良く、光電管を用いても良い。いずれのセンサでも、乗員の足がフットレストにあるか否かを検知できれば良い。 A step sensor 305 is disposed on the footrest 130. The step sensor 305 is also a pressure sensor. The step sensor 305 determines whether or not the occupant's feet are resting on the footrest 130. A contact switch or a photocell may be used instead of the pressure sensor. Either type of sensor will suffice as long as it can detect whether or not the occupant's feet are on the footrest.
 上述のように中間フレーム122には、鞍乗り車両100を駐車する際に用いるスタンド119が取り付けられている。そして、中間フレーム122にこのスタンド119が駐車位置にあるのか収納位置にあるのかを検知するスタンドセンサ306が配置されている。このスタンドセンサ306はスタンド119の位置を検知する接点スイッチである。スタンドセンサ306は、駐車位置か収納位置のいずれか一方でオンとなり、他方でオフとなる。 As described above, the stand 119 used when parking the saddle vehicle 100 is attached to the intermediate frame 122. A stand sensor 306 is arranged on the intermediate frame 122 to detect whether the stand 119 is in the parking position or the storage position. This stand sensor 306 is a contact switch that detects the position of the stand 119. The stand sensor 306 is turned on in either the parking position or the stowed position, and turned off in the other position.
 バッテリ143には、バッテリ残量を検知するバッテリ残量センサ307が配置されている。バッテリ残量センサ307はバッテリ143の電圧値若しくは電流値を検知する。 A battery remaining amount sensor 307 that detects the remaining battery amount is arranged in the battery 143. The battery remaining amount sensor 307 detects the voltage value or current value of the battery 143.
 車速センサ308で計測された車速は、メータ115に表示される。車速センサ308は電動モータ141の回転数に基づいて鞍乗り車両100の車速を計算する。尤も、前輪101の回転数から車速を計算しても良い。 The vehicle speed measured by the vehicle speed sensor 308 is displayed on the meter 115. Vehicle speed sensor 308 calculates the vehicle speed of saddle riding vehicle 100 based on the rotation speed of electric motor 141. Of course, the vehicle speed may be calculated from the rotation speed of the front wheels 101.
 図8は、制御系を示すブロック図である。制御系は、コントロールユニット350と制御部351とを備える。制御部351は、電子的なコントローラを備える。コントローラは、少なくともひとつのプロセッサ回路を備える。プロセッサ回路のひとつの例は、複数のインストラクションの集合体としてのプログラムを実行するプロセッサ回路である。プロセッサ回路は、いわゆるマイクロプロセッサであって、チップとして提供される。コントローラは、プログラム、および、データを記録する非一時的で実体的な記録媒体を備える。プロセッサ回路は、プログラムを実行することにより、この開示に係る装置の機能を提供する。プロセッサ回路の他のひとつの例は、複数の論理回路、または、アナログ回路を含むプロセッサ回路である。複数の論理回路、または、アナログ回路は、この開示に係る装置の機能を提供するように、実体的な複数の素子、および、それらの電気的な接続が構成されている。プロセッサ回路は、アクセラレータ、ゲートアレイ、FPGA(Field-programmable gate array)など多様な呼び名を有する。コントローラは、マイクロコントローラ、または、マイクロコンピュータとも呼ばれる。 FIG. 8 is a block diagram showing the control system. The control system includes a control unit 350 and a control section 351. The control unit 351 includes an electronic controller. The controller includes at least one processor circuit. One example of a processor circuit is a processor circuit that executes a program as a collection of instructions. The processor circuit is a so-called microprocessor and is provided as a chip. The controller includes a non-temporary physical recording medium that records programs and data. The processor circuit provides the functionality of the device according to this disclosure by executing a program. Another example of a processor circuit is a processor circuit that includes multiple logic circuits or analog circuits. A plurality of logic circuits or an analog circuit includes a plurality of substantial elements and their electrical connections so as to provide the functions of the device according to this disclosure. Processor circuits have various names such as accelerators, gate arrays, and field-programmable gate arrays (FPGAs). The controller is also called a microcontroller or a microcomputer.
 制御系は、図8に示すように、複数のセンサと、複数のアクチュエータとを備える。複数のセンサは、キースイッチ301、スタートスイッチ300、把持センサ230、回転角センサ210、着座センサ302、スタンドセンサ306、ステップセンサ305、バッテリ残量センサ307、傾斜角センサ303、重心位置センサ304、車速センサ308を含む。複数のセンサからの信号はコントロールユニット350の制御部351に入力される。制御部351は、キースイッチ301とスタートスイッチ300との信号に基づいて、鞍乗り車両100を起動して良いかを判断する。また、制御部351は、回転角センサ210からの信号に基づき、車速を上げるか下げるかを計算してインバータ142に速度信号を出力する。インバータ142は制御部351からの指示に基づいて電動モータ141の回転数を制御する。 As shown in FIG. 8, the control system includes multiple sensors and multiple actuators. The plurality of sensors include a key switch 301, a start switch 300, a grip sensor 230, a rotation angle sensor 210, a seating sensor 302, a stand sensor 306, a step sensor 305, a remaining battery level sensor 307, a tilt angle sensor 303, a center of gravity position sensor 304, A vehicle speed sensor 308 is included. Signals from the plurality of sensors are input to the control section 351 of the control unit 350. The control unit 351 determines whether the saddle riding vehicle 100 can be started based on the signals from the key switch 301 and the start switch 300. Further, the control unit 351 calculates whether to increase or decrease the vehicle speed based on the signal from the rotation angle sensor 210 and outputs a speed signal to the inverter 142. Inverter 142 controls the rotation speed of electric motor 141 based on instructions from control unit 351 .
 制御部351は、通常の走行時以外の期間において、乗員が意図せずにスロットルグリップ200を操作することが無いように、各種センサからの信号を利用して鞍乗り車両100が停車状態であるか否かを判断する。乗員が鞍乗り車両100を押し歩きしている状態では、アシスト可能であるか否かを、振動子220を用いて乗員に通知する。また、乗員が着座して走行開始しようとしている状態でも、振動子220を用いて走行可能であることを乗員に通知する。 The control unit 351 uses signals from various sensors to keep the saddle vehicle 100 in a stopped state so that the rider does not unintentionally operate the throttle grip 200 during periods other than normal driving. Determine whether or not. When the occupant is pushing the saddle vehicle 100 around, the vibrator 220 is used to notify the occupant whether assistance is possible. Furthermore, even when the occupant is seated and about to start traveling, the vibrator 220 is used to notify the occupant that the vehicle is ready to travel.
 図10にそのフローチャートを示す。制御開始ステップS400の後、キースイッチ301がオン(S401)であれば制御部351は起動する(S402)。次いで、スタートスイッチ300がオンであるかを判断する(S403)。スタートスイッチ300がオフであれば走行禁止となる(S404)。 FIG. 10 shows the flowchart. After the control start step S400, if the key switch 301 is on (S401), the control unit 351 is activated (S402). Next, it is determined whether the start switch 300 is on (S403). If the start switch 300 is off, running is prohibited (S404).
 スタートスイッチ300がオンであれば、把持センサ230の信号を検出する(S405)。信号が検出できなければ、乗員がハンドル112を握っていない状態であるので走行禁止となる(S404)。把持センサ230からの信号で、乗員がハンドル112を握っていることを確認すると、次に停車判定ステップS406に進む。 If the start switch 300 is on, the signal from the grip sensor 230 is detected (S405). If no signal is detected, the vehicle is prohibited from driving because the occupant is not holding the steering wheel 112 (S404). When the signal from the grip sensor 230 confirms that the occupant is gripping the steering wheel 112, the process proceeds to next stop determination step S406.
 図10では、ステップS406における分岐が3つ以上であるため、ステップS406は複数のステップS406a、S406b、S406cによって図示されている。停車判定ステップS406では、移動可能状態ASか、走行中状態BSか、走行禁止状態CSかを判断する。また、移動可能状態ASは、鞍乗り車両100の走行を許可する走行準備状態A-1と、鞍乗り車両100の手押し移動をアシストするアシスト準備状態A-2とを含む。さらに、アシスト準備状態A-2は、前進モードと、後進モードとを含む。 In FIG. 10, since there are three or more branches in step S406, step S406 is illustrated by a plurality of steps S406a, S406b, and S406c. In the stop determination step S406, it is determined whether the vehicle is in a movable state AS, a running state BS, or a running prohibited state CS. The movable state AS includes a travel preparation state A-1 in which the saddle vehicle 100 is allowed to travel, and an assist preparation state A-2 in which the saddle vehicle 100 is assisted in moving by hand. Furthermore, the assist preparation state A-2 includes a forward mode and a reverse mode.
 ステップS406aは、走行中状態BSであるか否かを判定する第1判定ステップである。ステップS406aは、車速センサ308の信号に基いて鞍乗り車両100が走行中であるか否かを判定する。ステップS406aは、車速センサ308により検出された車速が所定の閾値を超えるか否かの判定を含むことができる。閾値は、ゼロ、または、停車に相当する低速度とすることができる。ステップS406aは、スタンドが収納状態である場合に走行中と判定する処理、および、乗員がシートに着座している場合に走行中と判定する処理を含むことができる。 Step S406a is a first determination step that determines whether or not the vehicle is in the running state BS. In step S406a, it is determined whether the saddle riding vehicle 100 is traveling based on the signal from the vehicle speed sensor 308. Step S406a may include determining whether the vehicle speed detected by vehicle speed sensor 308 exceeds a predetermined threshold. The threshold value can be zero or a low speed corresponding to a stop. Step S406a can include processing for determining that the vehicle is running when the stand is in the stowed state, and processing for determining that the vehicle is running when the passenger is seated on the seat.
 ステップS406aにおいて走行中と判定された場合、ステップS409へ進む。ステップS406aにおいてNOと判定された場合、ステップS406bへ進む。 If it is determined in step S406a that the vehicle is running, the process advances to step S409. If the determination in step S406a is NO, the process advances to step S406b.
 ステップS406bは、走行禁止状態CSであるか否かを判定する第2判定ステップである。ステップS406bは、スタンドセンサ306によりスタンドが出ている状態が検出される場合に、走行禁止状態CSであると判定する。ステップS406bは、傾斜センサ303により車体の傾きが所定の閾値を超える場合に走行禁止状態CSであると判定する処理を含むことができる。 Step S406b is a second determination step for determining whether or not the vehicle is in a traveling prohibited state CS. Step S406b determines that the vehicle is in a traveling prohibited state CS when the stand sensor 306 detects that the stand is extended. Step S406b may include a process for determining that the vehicle is in a traveling prohibited state CS when the inclination sensor 303 detects that the inclination of the vehicle body exceeds a predetermined threshold value.
 ステップS406bにおいて走行禁止と判定された場合、ステップS404へ進む。ステップS406bにおいてNOと判定された場合、移動可能状態ASであると判定し、ステップS406cへ進む。 If it is determined in step S406b that running is prohibited, the process advances to step S404. If the determination in step S406b is NO, it is determined that AS is in the movable state, and the process advances to step S406c.
 ステップS406cは、走行準備状態A-1であるか、アシスト準備状態A-2であるかを判定する第3判定ステップである。ステップS406cは、着座センサ302により乗員がシートに着座している状態が検出される場合に、走行準備状態A-1であると判定する。ステップS406cは、着座センサ302により乗員がシートに着座していない状態が検出される場合に、アシスト準備状態A-2であると判定する。 Step S406c is a third determination step that determines whether the vehicle is in the travel preparation state A-1 or the assist preparation state A-2. In step S406c, if the seating sensor 302 detects that the occupant is seated on the seat, it is determined that the vehicle is in the travel preparation state A-1. In step S406c, if the seating sensor 302 detects that the occupant is not seated on the seat, it is determined that the assist preparation state A-2 is present.
 ステップS406cにおいて走行準備状態A-1と判定された場合、ステップS4071へ進む。ステップS406cにおいてアシスト準備状態A-2と判定された場合、ステップS4072へ進む。 If it is determined in step S406c that the travel preparation state is A-1, the process advances to step S4071. If it is determined in step S406c that the assist preparation state is A-2, the process advances to step S4072.
 (走行準備状態A-1)
 まず、鞍乗り車両100の走行を許可する走行準備状態A-1を説明する。停車判定ステップS406では、車速センサ308の信号に基づいて、鞍乗り車両100の車速が零であるか、若しくは、低速の所定車速より低い速度であるかを判断する。この低速の所定速度が、第2所定車速であり、例えば時速1キロメートル程度の速度である。また、停車判定ステップS406では、スタンドセンサ306からの信号を用いて、スタンド119が収納位置にあることを確認する。かつ、停車判定ステップS406では、着座センサ302により乗員がシート191に着座していることを確認する。また、停車判定ステップS406では、傾斜角センサ303で鞍乗り車両100が大きく傾いていないことを確認する。
(Running preparation state A-1)
First, the travel preparation state A-1 in which the saddle riding vehicle 100 is permitted to travel will be described. In the stop determination step S406, it is determined based on the signal from the vehicle speed sensor 308 whether the vehicle speed of the saddle-riding vehicle 100 is zero or lower than a predetermined low speed. This low predetermined speed is a second predetermined vehicle speed, and is, for example, about 1 kilometer per hour. Furthermore, in the stop determination step S406, it is confirmed using the signal from the stand sensor 306 that the stand 119 is in the storage position. In addition, in the stop determination step S406, the seating sensor 302 confirms that the occupant is seated on the seat 191. Furthermore, in the stop determination step S406, it is confirmed by the inclination angle sensor 303 that the saddle riding vehicle 100 is not tilted significantly.
 これにより、鞍乗り車両100がスタンドによって停車している状態でもなく、バランスを崩して鞍乗り車両100が傾いている状態でもなく、乗員がスロットルグリップ200を操作して発進しようとしている状態であることが判断できる。この場合には、走行可能通知S4071を乗員に対して行う。この走行可能通知S4071は振動子220を起動して、スロットルグリップ200及び把持グリップ113を振動させることで行う。振動パターンとしては、上述の1秒間振動、1秒間停止を繰り返す。走行可能通知S4071を行った後、鞍乗り車両100は走行許可S4081となる。乗員はスロットルグリップ200を時計方向に回動操作することで鞍乗り車両100を発進させることができる。 As a result, the saddle-riding vehicle 100 is neither stopped by the stand nor is the saddle-riding vehicle 100 tilted due to loss of balance, but is in a state where the rider is attempting to start by operating the throttle grip 200. can be determined. In this case, a travel possible notification S4071 is given to the occupant. This travel-ready notification S4071 is performed by activating the vibrator 220 and vibrating the throttle grip 200 and the grip grip 113. As a vibration pattern, the above-mentioned vibration for 1 second and stop for 1 second are repeated. After issuing the travel permission notification S4071, the saddle riding vehicle 100 is permitted to travel in S4081. The rider can start the saddle vehicle 100 by rotating the throttle grip 200 clockwise.
 (アシスト準備状態A-2)
 次に、鞍乗り車両100の手押し移動をアシストするアシスト準備状態A-2を説明する。停車判定ステップS406は、車速センサ308からの信号が第2所定車速以下であることを判断する。そして、停車判定ステップS406は、スタンドセンサ306からの信号を用いて、スタンド119が収納位置にあることを確認する。また、停車判定ステップS406は、傾斜角センサ303で鞍乗り車両100が大きく傾いてもいないことを確認する。しかし、着座センサ302による判断は、停車判定ステップS406は、乗員がシート191に着座していないことを確認する。これにより、乗員がシート191に着座してスタートさせようとしている状態でもないことを確認する。典型的な状態としては、乗員が鞍乗り車両100から降りて押し歩きしようとしている状態を検出する。かつ、押し歩き状態でも乗員がバランスを崩して鞍乗り車両100が傾いていないことを確認する。
(Assist preparation state A-2)
Next, an assist preparation state A-2 for assisting manual movement of the saddle vehicle 100 will be explained. In stoppage determination step S406, it is determined that the signal from the vehicle speed sensor 308 is less than or equal to the second predetermined vehicle speed. Then, in the stop determination step S406, using the signal from the stand sensor 306, it is confirmed that the stand 119 is in the storage position. Further, in the stop determination step S406, the inclination angle sensor 303 confirms that the saddle riding vehicle 100 is not tilted significantly. However, the determination by the seating sensor 302 confirms that the occupant is not seated on the seat 191 in the stop determination step S406. This confirms that the occupant is not sitting on the seat 191 and attempting to start the vehicle. A typical state is detected when the occupant gets off the saddle vehicle 100 and tries to push the vehicle around. In addition, it is confirmed that the saddle riding vehicle 100 does not tilt due to the rider losing balance even when pushing the vehicle.
 以上の確認ができれば、手押しアシスト可能通知S4072を乗員に対して行う。この手押しアシスト可能通知S4072も振動子220を起動する段階を含む。アシスト可能通知S4072は、スロットルグリップ200及び把持グリップ113を振動させることで実行される。但し、振動のパターンは走行許可通知S4071とは異なるパターンとしている。例えば、0.5秒振動と0.5秒停止の繰り返しとしている。走行許可通知S4071と手押しアシスト可能通知S4072とは、乗員が識別可能な異なる振動を生成する。 If the above can be confirmed, a manual push assist possibility notification S4072 is sent to the occupant. This manual push assist possibility notification S4072 also includes a step of activating the vibrator 220. The assist possible notification S4072 is executed by vibrating the throttle grip 200 and the grip grip 113. However, the vibration pattern is different from that of the travel permission notification S4071. For example, vibration is repeated for 0.5 seconds and stopped for 0.5 seconds. The travel permission notification S4071 and the hand-push assist possibility notification S4072 generate different vibrations that can be identified by the occupant.
 手押しアシスト可能通知S4072は乗員に電動モータ141によるアシストが可能であることの通知となる。また、手押しアシスト可能通知S4072は、電動モータ141が回転可能であることの通知ともなる。これにより、乗員が意図せずにスロットルグリップ200を回動させて鞍乗り車両100が発進するのを防止する通知とすることができる。 The hand push assist possibility notification S4072 notifies the occupant that assistance by the electric motor 141 is possible. Further, the manual push assist possibility notification S4072 also serves as a notification that the electric motor 141 is rotatable. This can provide a notification that prevents the rider from unintentionally rotating the throttle grip 200 and starting the saddle vehicle 100.
 制御部351は、手押しアシスト可能通知S4072を行った後に、手押しアシスト許可S4082の状態に移行する。 After the control unit 351 issues manual push assist permission notification S4072, the controller 351 shifts to a manual push assist permission state S4082.
 手押しアシスト許可S4082の状態は、前進モードと、後進モードとを含む。前進モードは、鞍乗り車両100を前進方向FWへアシストする。後進モードは、鞍乗り車両100を後進方向RVへアシストする。前進モードと後進モードとを識別するために、制御部351は、ステップS4083において乗員が前進方向FWへの移動を求めているか、乗員が後進方向RVへの移動を求めているかを判断する。 The states of the hand-push assist permission S4082 include a forward mode and a reverse mode. The forward mode assists the saddle-riding vehicle 100 in the forward direction FW. The reverse mode assists the saddle-riding vehicle 100 in the reverse direction RV. To distinguish between the forward mode and the reverse mode, the control unit 351 determines in step S4083 whether the occupant is requesting movement in the forward direction FW or in the reverse direction RV.
 把持センサ230は、乗員が鞍乗り車両100を前進方向FWに押していることを検知する機能を備える。制御部351は、ステップS4083において乗員が前進方向FWへの移動を求めていると判定した場合、ステップS4084へ進む。ステップS4084は、前進モードを提供する。把持センサ230が、乗員が鞍乗り車両100を前進方向FWに押していることを検知した際には、制御部351は、電動モータ141に鞍乗り車両100を前進方向FWへ進行させる前進アシスト力FWAを生じさせる。 The grip sensor 230 has a function of detecting that the occupant is pushing the saddle-riding vehicle 100 in the forward direction FW. If the control unit 351 determines in step S4083 that the occupant requests movement in the forward direction FW, the process proceeds to step S4084. Step S4084 provides forward mode. When the grip sensor 230 detects that the occupant is pushing the saddle vehicle 100 in the forward direction FW, the control unit 351 causes the electric motor 141 to apply a forward assist force FWA that causes the saddle vehicle 100 to move in the forward direction FW. cause
 把持センサ230は、乗員が鞍乗り車両100を後退方向RVに引いていることを検知する機能を備える。制御部351は、ステップS4083において乗員が後進方向RVへの移動を求めていると判定した場合、ステップS4085へ進む。ステップS4085は、後進モードを提供する。把持センサ230が、乗員が鞍乗り車両100を後退方向RVに引いていることを検知した際には、制御部351は、電動モータ141に鞍乗り車両100を後退方向RVへ後退させる後退アシスト力RVAを生じさせる。 The grip sensor 230 has a function of detecting that the occupant is pulling the saddle vehicle 100 in the backward direction RV. If the control unit 351 determines in step S4083 that the occupant requests movement in the reverse direction RV, the process proceeds to step S4085. Step S4085 provides a reverse mode. When the grip sensor 230 detects that the occupant is pulling the saddle vehicle 100 in the reverse direction RV, the control unit 351 causes the electric motor 141 to apply a reverse assist force to move the saddle vehicle 100 backward in the reverse direction RV. Generate RVA.
 前進アシスト力FWA、および、後退アシスト力RVAは、固定値、または、調節可能な可変値として設定可能である。鞍乗り車両100の操作性に配慮して、前進アシスト力FWAは、後退アシスト力RVA以上に調節可能な場合がある。以下の説明では、前進アシスト力FWAが段階的に調節可能である例が説明される。 The forward assist force FWA and the reverse assist force RVA can be set as fixed values or adjustable variable values. In consideration of the operability of the saddle-riding vehicle 100, the forward assist force FWA may be adjustable to be greater than the reverse assist force RVA. In the following description, an example will be described in which the forward assist force FWA can be adjusted in stages.
 手押しアシスト許可S4082の状態では、制御部351は、スロットルグリップ200の開度に応じて、図9に示すように、3段階のアシストを行う。横軸はスロットルグリップ200の回転量TH(°)を示す。縦軸はアシスト力ASS(N)を示す。 In the state of manual push assist permission S4082, the control unit 351 performs three stages of assist as shown in FIG. 9, depending on the opening degree of the throttle grip 200. The horizontal axis indicates the rotation amount TH (°) of the throttle grip 200. The vertical axis indicates assist force ASS (N).
 アシスト段階ASS1は、坂道で鞍乗り車両100が転がって行かないための弱いアシストである。制御部351は、スロットルグリップ200が回動していなくても、把持センサ230の検出した把持力から必要なアシスト力を計算する。制御部351は、掌側の第1把持センサ231と指側の第2把持センサ232との圧力の差から、坂道が上り坂であるのか、下り坂であるのかを検知する。また、制御部351は、圧力差に応じて坂の傾斜角を計算し、坂の傾斜角に応じて必要となるアシスト力を制御部351で計算する。制御部351は、第1把持センサ231及び第2把持センサ232からの信号に加え、重心位置センサ304からの信号も加えることでアシスト力の計算精度を高めることが可能である。制御部351の計算結果に応じたアシスト力が発生されるように、インバータ142は所定の電力を電動モータ141に出力する。 The assist stage ASS1 is a weak assist to prevent the saddle-riding vehicle 100 from rolling on a slope. The control unit 351 calculates the necessary assist force from the grip force detected by the grip sensor 230 even if the throttle grip 200 is not rotating. The control unit 351 detects whether the slope is uphill or downhill from the difference in pressure between the first gripping sensor 231 on the palm side and the second gripping sensor 232 on the finger side. Further, the control unit 351 calculates the inclination angle of the slope according to the pressure difference, and calculates the necessary assist force according to the inclination angle of the slope. The control unit 351 can improve the calculation accuracy of the assist force by adding the signal from the center of gravity position sensor 304 in addition to the signals from the first grip sensor 231 and the second grip sensor 232. The inverter 142 outputs a predetermined electric power to the electric motor 141 so that an assist force according to the calculation result of the control unit 351 is generated.
 この状態は、鞍乗り車両100の停車状態であるので、制御部351は、手押しアシスト可能通知S4072は通知条件が解消されるまで定期的に行う。本例では、手押しアシスト可能通知S4072の振動パターンは、0.5秒振動と0.5秒停止の繰り返しを基本パターンとしている。この基本パターンは、3秒程度の継続と、2秒程度の停止とを含む強調パターンによって実行されることで強調される。この強調パターンは、繰り返される。この定期的に繰り返されるパターンは種々に変更可能である。例えば、振動パターンを5秒継続、5秒停止としてもよい。また、定期的な繰り返しを行うことなく、振動が連続しても良い。 Since this state is a stopped state of the saddle riding vehicle 100, the control unit 351 periodically issues the hand push assist possible notification S4072 until the notification condition is resolved. In this example, the basic vibration pattern of the hand push assist possible notification S4072 is a repetition of 0.5 second vibration and 0.5 second stop. This basic pattern is emphasized by being executed with an emphasis pattern that includes a continuation of about 3 seconds and a stop of about 2 seconds. This emphasis pattern is repeated. This periodically repeated pattern can be changed in various ways. For example, the vibration pattern may continue for 5 seconds and stop for 5 seconds. Vibration may also be continuous without periodic repetition.
 アシスト段階ASS2は、鞍乗り車両100を駐車させるときに移動させる程度の遅いスピードである。アシスト段階2は、例えば時速1キロメートル程度である。制御部351は時速1キロメートルの車速をインバータ142に指示する。インバータ142は時速1キロメートルに相当する電力を電動モータ141に出力する。この遅いスピードでは、第2所定車速以下であるので、制御部351は、やはり定期的に手押しアシスト可能通知S4072を乗員に対して行う。アシスト段階2は弱いアシスト力であるので、乗員がアシストを受けていることを忘れる恐れもある。しかし、定期的に手押しアシスト可能通知S4072を行うことで、乗員が意図せずにスロットルグリップ200を回動させるのを防ぐことができる。制御部351は、手押しアシスト可能通知S4072の通知条件が解消されるまで手押しアシスト可能通知S4072を継続する。 The assist stage ASS2 is a speed that is slow enough to move the saddle vehicle 100 when parking it. Assist stage 2 is, for example, about 1 kilometer per hour. The control unit 351 instructs the inverter 142 to set the vehicle speed to 1 kilometer per hour. Inverter 142 outputs electric power equivalent to 1 km/h to electric motor 141. Since this slow speed is less than the second predetermined vehicle speed, the control unit 351 also periodically issues manual push assist possible notification S4072 to the occupant. Since assist stage 2 is a weak assist force, there is a risk that the occupant may forget that he or she is receiving assistance. However, by periodically issuing the manual push assist possibility notification S4072, it is possible to prevent the occupant from rotating the throttle grip 200 unintentionally. The control unit 351 continues the manual push assist possible notification S4072 until the notification condition for the manual push assist possible notification S4072 is resolved.
 アシスト段階ASS3は、住宅街等での押し歩きのレベルのスピードである。アシスト段階3は、歩行速度である時速5キロメートル未満の速度である。制御部351は回転角センサ210の出力に応じて時速5キロメートル未満の速度をインバータ142に指示する。インバータ142は指示速度に応じて電動モータ141を回転させる。この状態では、第2所定車速より早く移動しているので、制御部351は、走行可能通知S4071は行わない。乗員はアシスト力を受けて鞍乗り車両100を押し歩きしていることを理解しているので、走行可能通知S4071は不要であるからである。徒に走行可能通知S4071を行って、乗員を煩わせることもない。尤も、第2所定車速を時速6キロメートル程度として、アシスト段階ASS3であっても走行可能通知S4071を行うことは可能である。 Assist stage ASS3 is a speed at the level of pushing the vehicle in a residential area or the like. Assist stage 3 is a speed below 5 kilometers per hour, which is walking speed. The control unit 351 instructs the inverter 142 to operate at a speed of less than 5 kilometers per hour according to the output of the rotation angle sensor 210. Inverter 142 rotates electric motor 141 according to the designated speed. In this state, since the vehicle is moving faster than the second predetermined vehicle speed, the control unit 351 does not issue the travel possible notification S4071. This is because the occupant understands that he/she is pushing the saddle-riding vehicle 100 while receiving the assist force, so the travel-ready notification S4071 is unnecessary. There is no need to issue the travel-ready notification S4071 to bother the occupants. Of course, if the second predetermined vehicle speed is set to about 6 kilometers per hour, it is possible to issue the travel possible notification S4071 even in the assist stage ASS3.
 図9に示すように、アシスト段階ASS1からアシスト段階ASS2へ移行する際のスロットルグリップ200の回動量THに対して、アシスト段階ASS2からアシスト段階ASS3へ移行する際のスロットルグリップ200の回動量THは大きくなっている。例えば、アシスト段階ASS2からアシスト段階ASS3へ移行する際のスロットルグリップ200の回動量THを45度程度以上の大きな回動量に設定している。その為、乗員はアシスト段階ASS3に移行するには意図的に大きくスロットルグリップ200を回動させる必要がある。これは、乗員の意思に反してアシスト段階ASS2からアシスト段階ASS3に移行しないようにするためである。 As shown in FIG. 9, the rotation amount TH of the throttle grip 200 when transitioning from assist stage ASS2 to assist stage ASS3 is different from the rotation amount TH of throttle grip 200 when transitioning from assist stage ASS1 to assist stage ASS2. It's getting bigger. For example, the rotation amount TH of the throttle grip 200 when transitioning from the assist stage ASS2 to the assist stage ASS3 is set to a large rotation amount of about 45 degrees or more. Therefore, the occupant needs to intentionally rotate the throttle grip 200 significantly in order to shift to the assist stage ASS3. This is to prevent the transition from the assist stage ASS2 to the assist stage ASS3 against the occupant's will.
 (走行中状態BS)
 制御部351は、停車判定S406において移動可能状態ASでなく、鞍乗り車両100の走行中状態BSであることを判断すれば、乗員の意図に応じて車速を制御する。この走行中状態BSは、車速センサ308から得られる車速が、第2所定車速より早い状態である。また、スタンドセンサ306はスタンドの収納位置を検知し、着座センサ302は乗員の着座を検知している。走行中状態BSでは、走行可能通知S4071や手押しアシスト可能通知S4072は行わないので、乗員を煩わせることはない。
(Running state BS)
If the control unit 351 determines in the stop determination S406 that the saddle-riding vehicle 100 is not in the movable state AS but in the running state BS, it controls the vehicle speed according to the intention of the occupant. This running state BS is a state in which the vehicle speed obtained from the vehicle speed sensor 308 is faster than the second predetermined vehicle speed. Further, the stand sensor 306 detects the storage position of the stand, and the seating sensor 302 detects whether the occupant is seated. In the running state BS, the notification S4071 that driving is possible and the notification S4072 that manual push assist is possible are not performed, so the occupants are not bothered.
 乗員がスロットルグリップ200を回動させると、回転角センサ210の出力に応じて制御部351は車速を演算し、演算結果をインバータ142に指示する。そして、インバータ142は指示された車速となるよう電動モータ141を回転させる。 When the occupant rotates the throttle grip 200, the control unit 351 calculates the vehicle speed according to the output of the rotation angle sensor 210, and instructs the inverter 142 about the calculation result. The inverter 142 then rotates the electric motor 141 to achieve the instructed vehicle speed.
 車速は、専ら回転角センサ210の出力に応じて定められるが、乗員が更に加速をしようとしているのかを検知する補助手段として、ステップセンサ305や重心位置センサ304を用いることも可能である。ステップセンサ305は、スクータで用いられ、乗員が正しい乗車位置であることの確認を行う。重心位置センサ304は主にモータサイクルで用いられ、乗員が前傾姿勢であることの確認に用いられる。 The vehicle speed is determined solely according to the output of the rotation angle sensor 210, but it is also possible to use the step sensor 305 or center of gravity position sensor 304 as auxiliary means for detecting whether the rider is attempting to accelerate further. The step sensor 305 is used on scooters to confirm that the rider is in the correct riding position. The center of gravity position sensor 304 is mainly used on motorcycles to confirm that the rider is in a forward-leaning position.
 (走行禁止状態CS)
 停車判定S406において、走行準備状態A-1における走行許可S4081でもなく、アシスト準備状態A-2における手押しアシスト許可S4082でもなく、かつ、走行中状態BSでもない状態は、通常は想定されない状態である。センサが誤った信号を出力している可能性もある。この場合、制御部351は走行禁止状態CSとしての走行禁止S404に移行する。
(Running prohibited state CS)
In the stop determination S406, a state in which the vehicle is not allowed to travel in the travel preparation state A-1 in S4081, is not in the hand-push assist permission S4082 in the assist preparation state A-2, and is not in the running state BS is normally not expected. . It is also possible that the sensor is outputting an incorrect signal. In this case, the control unit 351 moves to a run prohibition S404 as a run prohibition state CS.
 図10の制御フローにおいて、制御部351は、停車判定S406で移動可能状態ASと判断したり、走行中状態BSであると判断したり、走行禁止状態CSを判断したり(S404)した後は、キースイッチ301がオンを維持しているかを確認する(S409)。ここで、キースイッチ301がオンしていることが確認できれば、制御部351は、スタートスイッチ300がオンであるかの判定ステップS403からのフローを繰り返す。キースイッチ301がオフとなっていれば、制御部351は、鞍乗り車両100の運転は終了したと判断して、制御フローを終了する(S410)。但し、キースイッチ301をオフとしても自己保持電源を用いて、制御部351の判断を暫くの間継続することも可能である。 In the control flow of FIG. 10, the control unit 351 determines that the moving state is enabled in the stop determination S406, determines that the traveling state is BS, or determines that the traveling state is prohibited (S404). , it is confirmed whether the key switch 301 remains on (S409). Here, if it is confirmed that the key switch 301 is on, the control unit 351 repeats the flow from step S403 for determining whether the start switch 300 is on. If the key switch 301 is turned off, the control unit 351 determines that the operation of the saddle riding vehicle 100 has ended, and ends the control flow (S410). However, even if the key switch 301 is turned off, it is possible to continue the determination by the control unit 351 for a while using the self-holding power supply.
 第2実施形態
 第1実施形態では、鞍乗り車両100が電動モータ141のみで駆動される電動車両である。これに代えて、鞍乗り車両100は、電動モータ141と内燃機関150とで駆動されるハイブリッド車両であっても良い。図11に示すように、内燃機関150はシリンダブロック151内をピストン152が往復移動する。ピストン152の往復移動は、コンロッド153を介して駆動軸154を回転させる。駆動軸154の回転は駆動プーリー155、ベルト156、従動プーリー157を介して駆動シャフト158に伝達される。駆動シャフト158には内燃機関150からの駆動力と電動モータ141からの駆動力が入力可能であり、いずれの駆動力を利用するかはクラッチ160により切替えられる。駆動シャフト158の駆動力は、電動車両と同様、減速ギヤ144を介して駆動輪102に伝達される。
Second Embodiment In the first embodiment, the saddle vehicle 100 is an electric vehicle driven only by an electric motor 141. Alternatively, the saddle vehicle 100 may be a hybrid vehicle driven by an electric motor 141 and an internal combustion engine 150. As shown in FIG. 11, in an internal combustion engine 150, a piston 152 reciprocates within a cylinder block 151. The reciprocating movement of the piston 152 rotates the drive shaft 154 via the connecting rod 153. The rotation of the drive shaft 154 is transmitted to the drive shaft 158 via a drive pulley 155, a belt 156, and a driven pulley 157. The driving force from the internal combustion engine 150 and the driving force from the electric motor 141 can be input to the drive shaft 158, and a clutch 160 switches which driving force is used. The driving force of the drive shaft 158 is transmitted to the drive wheels 102 via the reduction gear 144, similar to an electric vehicle.
 なお、図11はハイブリッド車両の駆動力伝達機構の一例である。電動モータ141と内燃機関150の双方で鞍乗り車両100を駆動できれば、ハイブリッド車両の駆動形態は他の動力伝達の例を含んでも良い。 Note that FIG. 11 is an example of a driving force transmission mechanism of a hybrid vehicle. As long as the saddle riding vehicle 100 can be driven by both the electric motor 141 and the internal combustion engine 150, the drive form of the hybrid vehicle may include other examples of power transmission.
 内燃機関150の回転は第2モータ170にも伝達される。内燃機関150を始動する際には第2モータ170はスタータとして機能し、第2モータ170が回転して内燃機関150の駆動軸154を回転させる。その際には、バッテリ143からの直流電流を第2インバータ171で三相交流電流に変換して第2モータを回転させる。バッテリ143の残量が減った際には、第2モータは発電機として機能する。第2インバータ171は交流電流を直流電流に変換して、バッテリ143に給電する。バッテリ143の残量はバッテリ残量センサ307で検知する。 The rotation of the internal combustion engine 150 is also transmitted to the second motor 170. When starting the internal combustion engine 150, the second motor 170 functions as a starter, and the second motor 170 rotates to rotate the drive shaft 154 of the internal combustion engine 150. At that time, the second inverter 171 converts the direct current from the battery 143 into three-phase alternating current to rotate the second motor. When the remaining capacity of the battery 143 decreases, the second motor functions as a generator. The second inverter 171 converts alternating current into direct current and supplies power to battery 143 . The remaining amount of the battery 143 is detected by a remaining battery amount sensor 307.
 図12に示すように、ハイブリッド車両では制御部351は、駆動輪102の駆動を電動モータ141のみで行うのか内燃機関150のみで行うのか、電動モータ141と内燃機関150の双方で行うのかを判断する。この判断は、車速センサ308からの車速信号と、回転角センサ210からの乗員によるスロットルグリップ200の回動を主な基準として行う。 As shown in FIG. 12, in a hybrid vehicle, the control unit 351 determines whether the drive wheels 102 are driven only by the electric motor 141, only by the internal combustion engine 150, or by both the electric motor 141 and the internal combustion engine 150. do. This determination is made mainly based on the vehicle speed signal from the vehicle speed sensor 308 and the rotation of the throttle grip 200 by the occupant from the rotation angle sensor 210.
 スタート時は電動モータ141のみで駆動輪102を駆動する。低速時には電動モータ141の方が内燃機関150よりトルクが高いので、電動モータ141によるスムーズな発進が可能である。スタートから所定の低速度までは、電動モータ141のみにより駆動輪102を駆動する。この所定の低速度は、例えば、時速10~15キロメートル程度である。これが、第1所定車速となる。従って、第1所定車速はハイブリッド車両での所定低速である。電動車両では第1所定車速は鞍乗り車両100の走行できる全ての車速となる。 At the start, the drive wheels 102 are driven only by the electric motor 141. At low speeds, the electric motor 141 has a higher torque than the internal combustion engine 150, so the electric motor 141 allows smooth starting. From the start to a predetermined low speed, the drive wheels 102 are driven only by the electric motor 141. This predetermined low speed is, for example, about 10 to 15 kilometers per hour. This becomes the first predetermined vehicle speed. Therefore, the first predetermined vehicle speed is a predetermined low speed for the hybrid vehicle. In an electric vehicle, the first predetermined vehicle speed is all vehicle speeds at which the saddle-riding vehicle 100 can travel.
 従って、ハイブリッド車両と電動車両の双方において第1所定車速以下の走行状態では電動モータ141のみによって鞍乗り車両100は走行されることとなる。この状態は鞍乗り車両100に着座して始動させる状態や、鞍乗り車両100を押し歩きしている状態を含んでいる。内燃機関150を用いる場合には、内燃機関150の作動音や振動を、ハンドル112を持ったりシート191に座ったりすることで触感的に感じることができる。それに対し、電動モータ141のみの駆動では駆動音が小さく、内燃機関150のアイドリング状態のような動作音や振動がない。その為、乗員は鞍乗り車両100が起動可能状態であることに気付かず、意図しないでスロットルグリップ200を回動させる恐れがある。しかし、上述のように、そのような状態では走行可能通知S4071や手押しアシスト可能通知S4072を行って、乗員の注意を喚起することができている。 Therefore, in both the hybrid vehicle and the electric vehicle, when the vehicle speed is below the first predetermined speed, the saddle vehicle 100 is driven only by the electric motor 141. This state includes a state in which the saddle vehicle 100 is seated and started, and a state in which the saddle vehicle 100 is pushed around. When using the internal combustion engine 150, the operating sound and vibrations of the internal combustion engine 150 can be tactilely felt by holding the steering wheel 112 or sitting on the seat 191. On the other hand, when only the electric motor 141 is driven, the driving noise is low, and there is no operating noise or vibration like when the internal combustion engine 150 is in an idling state. Therefore, the occupant may not be aware that the saddle-riding vehicle 100 is ready for activation, and may unintentionally rotate the throttle grip 200. However, as described above, in such a state, the notification S4071 that driving is possible and the notification S4072 that manual push assistance is possible can be issued to attract the attention of the occupant.
 ハイブリッド車両で車速が第1所定車速以上となると、電動モータ141に代わり内燃機関150が駆動シャフト158を駆動する。内燃機関150は高速で一定速度の運転とする運転状態が効率の良い運転状態であるので、鞍乗り車両100を高効率で運転することができる。 When the vehicle speed of a hybrid vehicle exceeds a first predetermined vehicle speed, the internal combustion engine 150 drives the drive shaft 158 instead of the electric motor 141. Since the internal combustion engine 150 is in an efficient operating state when operating at a high speed and a constant speed, the saddle-riding vehicle 100 can be operated with high efficiency.
 ハイブリッド車両が第1所定車速以上で内燃機関150によって運転されている状態で、乗員が鞍乗り車両100を加速させるためにスロットルグリップ200を更に回動させると、電動モータ141による駆動力を利用することができる。この電動モータ141の駆動力の利用には、内燃機関150の回転数を上昇させると共に、電動モータ141も回転させて駆動力を付加することで行う。若しくは、内燃機関150の回転数は一定回転を保持したまま、電動モータ141の駆動力を付加することで駆動シャフト158の回転数を高めることもできる。 When the hybrid vehicle is being driven by the internal combustion engine 150 at a first predetermined vehicle speed or higher and the occupant further rotates the throttle grip 200 to accelerate the saddle-riding vehicle 100, the driving force from the electric motor 141 is utilized. be able to. The driving force of the electric motor 141 is utilized by increasing the rotational speed of the internal combustion engine 150 and also rotating the electric motor 141 to add driving force. Alternatively, the rotation speed of the drive shaft 158 can be increased by adding the driving force of the electric motor 141 while keeping the rotation speed of the internal combustion engine 150 constant.
 内燃機関150の回転数は、電子スロットル180を制御して内燃機関150への吸入空気量を調整することで行う。且つ、シリンダブロック151への燃料の供給量を調整して、内燃機関150の回転数を制御する。電子スロットル180は、図13に示すように、スロットルバルブ181を回動制御して吸気通路の面積を可変する。 The rotational speed of the internal combustion engine 150 is controlled by controlling the electronic throttle 180 to adjust the amount of intake air to the internal combustion engine 150. Further, the rotation speed of the internal combustion engine 150 is controlled by adjusting the amount of fuel supplied to the cylinder block 151. As shown in FIG. 13, the electronic throttle 180 controls the rotation of a throttle valve 181 to vary the area of the intake passage.
 スロットルバルブ181の回動はスロットルモータ183により行う。スロットルモータ183はハウジング184の中に収納されているので、図13で示す符号183はスロットルモータの収納位置を表している。
 第3実施形態
 上記実施形態に代えて、スロットルモータ183の動きをメカニカルワイヤ185でスロットルグリップ200のグリップ部201に伝達してもよい。この場合、スロットルモータ183を振動させる。スロットルモータ183の振動は、機械的にスロットルグリップ200のグリップ部201に伝達される。これにより、振動子モータ221の機能を電子スロットル180のスロットルモータ183に担わせることも可能である。なお、ハウジング184の開口部はケース186により閉じられている。
The throttle valve 181 is rotated by a throttle motor 183. The throttle motor 183 is accommodated in a housing 184, and therefore, reference numeral 183 in FIG.
Third Embodiment Instead of the above embodiment, the movement of the throttle motor 183 may be transmitted to the grip portion 201 of the throttle grip 200 by a mechanical wire 185. In this case, the throttle motor 183 is vibrated. The vibration of the throttle motor 183 is mechanically transmitted to the grip portion 201 of the throttle grip 200. This makes it possible for the throttle motor 183 of the electronic throttle 180 to assume the function of the vibrator motor 221. The opening of the housing 184 is closed by a case 186.
 尤も、内燃機関150の場合、常に電子スロットル180を用いる訳ではない。メカニカルワイヤでスロットルグリップ200の回動量をスロットルバルブ181に伝達する例もある。そのような例では、スロットルモータ183を備えないので、振動子モータ221が必要となる。 However, in the case of the internal combustion engine 150, the electronic throttle 180 is not always used. There is also an example in which the amount of rotation of the throttle grip 200 is transmitted to the throttle valve 181 using a mechanical wire. In such an example, since the throttle motor 183 is not provided, the vibrator motor 221 is required.
 ハイブリッド車両であっても、鞍乗り車両100の車速が零か第2所定車速以下の時に、停車判定S406を行うことは、図10の例と同様である。また、走行可能通知S4071や手押しアシスト可能通知S4072を、スロットルグリップ200と把持グリップ113を振動させることで行うことも同様である。走行可能通知S4071や手押しアシスト可能通知S4072の振動に、図3に示す振動子モータ221を用いても良く、図13に示す電子スロットル180のスロットルモータ183でスロットルグリップ200を振動させても良い。但し、把持グリップ113の振動は、電動車両でもハイブリッド車両でも振動子モータ221を用いる。 Even in the case of a hybrid vehicle, when the vehicle speed of the saddle riding vehicle 100 is zero or equal to or lower than a second predetermined vehicle speed, a stop determination S406 is performed as in the example of FIG. 10. Similarly, the driving enable notification S4071 and the hand-push assist enable notification S4072 are performed by vibrating the throttle grip 200 and the grip grip 113. The vibration of the driving enable notification S4071 and the hand-push assist enable notification S4072 may be performed using the vibrator motor 221 shown in FIG. 3, or the throttle motor 183 of the electronic throttle 180 shown in FIG. 13 may vibrate the throttle grip 200. However, the vibration of the grip grip 113 is performed using the vibrator motor 221 in both electric and hybrid vehicles.
 第4実施形態
 スロットルグリップ200や把持グリップ113の振動には、振動子モータ221の正転、逆転以外にも色々な手段を用いることができる。図14に示すように、振動子モータ221を一定方向に回転させ、リンク機構225を用いて小ギヤ222を回動させても良い。図15はリンク機構225を拡大図示するが、リンク機構225を用いることで、所定位置に保持された小ギヤ222を正転、逆転させることができるようになっている。クランク機構225を追加はコストアップ要因となるが、振動子モータ221は一定方向の回転のみで済むので、振動子モータ221の制御は容易となる。
Fourth Embodiment Various means can be used to vibrate the throttle grip 200 and the grip grip 113 in addition to the forward and reverse rotation of the vibrator motor 221. As shown in FIG. 14, the vibrator motor 221 may be rotated in a fixed direction, and the small gear 222 may be rotated using the link mechanism 225. FIG. 15 shows an enlarged view of the link mechanism 225, and by using the link mechanism 225, the small gear 222 held at a predetermined position can be rotated forward or reverse. Although adding the crank mechanism 225 increases costs, since the vibrator motor 221 only needs to rotate in a fixed direction, the vibrator motor 221 can be easily controlled.
 第5実施形態
 また、図16に示すように、グリップ部201の内部に振動子モータ221を配置し、この振動子モータ221により偏芯ウェイト226を回転させるようにしても良い。偏芯ウェイト226が回転することで、グリップ部201を振動させることができる。
Fifth Embodiment Furthermore, as shown in FIG. 16, a vibrator motor 221 may be arranged inside the grip section 201, and the eccentric weight 226 may be rotated by the vibrator motor 221. By rotating the eccentric weight 226, the grip portion 201 can be vibrated.
 第6実施形態
 図17に示すように、グリップ部201の内部に振動子ソレノイド227を配置してもよい。この例では、振動子ソレノイド227のソレノイドシャフト228をグリップ部201と連結する。図17の例ではグリップ部201はハンドル112に対して軸方向に移動可能に係止されている。振動子ソレノイド227は通電すると励磁力で一方向に変位し、通電しない時はバネ力で他方向に変位する。振動子ソレノイド227への通電、遮断を所定間隔で繰り返すことで、グリップ部201をハンドル112の軸方向に振動させることができる。
Sixth Embodiment As shown in FIG. 17, a vibrator solenoid 227 may be arranged inside the grip section 201. In this example, the solenoid shaft 228 of the vibrator solenoid 227 is connected to the grip portion 201. In the example shown in FIG. 17, the grip portion 201 is locked to the handle 112 so as to be movable in the axial direction. When the vibrator solenoid 227 is energized, it is displaced in one direction by the excitation force, and when it is not energized, it is displaced in the other direction by the spring force. By repeating energization and interruption of the vibrator solenoid 227 at predetermined intervals, the grip portion 201 can be vibrated in the axial direction of the handle 112.
 他の実施形態
 なお、図14ないし図17では、スロットルグリップ200で説明しているが、振動子220の構成は、把持グリップ113でも同様である。様々な構造の振動子220を把持グリップ113に用いることが可能である。乗員は通常、鞍乗り車両100のハンドル112は左右両方で握っている。その為、右側のスロットルグリップ200のみでなく、左側の把持グリップ113にも把持グリップ113用の把持センサ230を設けるのが望ましい。これにより、乗員が正しく左右のグリップを把持していることを検知できる。
Other Embodiments Although the throttle grip 200 is described in FIGS. 14 to 17, the configuration of the vibrator 220 is the same for the grip grip 113. It is possible to use vibrator 220 of various structures in grasping grip 113. A passenger normally grips the handlebars 112 of the saddle vehicle 100 on both the left and right sides. Therefore, it is desirable to provide the grip sensor 230 for the grip grip 113 not only on the right throttle grip 200 but also on the left grip grip 113. This makes it possible to detect that the occupant is correctly holding the left and right grips.
 尤も、振動子220の配置が必須となるのは、スロットルグリップ200である。把持グリップ113は、必要に応じて振動子220を配置すればよい。振動子220を配置しない把持グリップ113とすることも可能である。把持グリップ113とスロットルグリップ200の双方を振動させた方が、乗員に走行可能通知S4071を的確に通知することができる。しかし、スロットルグリップ200のみの通知であっても、乗員は走行可能通知S4071を感知することは可能である。 Of course, the arrangement of the vibrator 220 is essential for the throttle grip 200. A vibrator 220 may be arranged in the grip 113 as necessary. It is also possible to provide the grip 113 without the vibrator 220. By vibrating both the grip grip 113 and the throttle grip 200, the occupant can be more accurately notified of the travel-ready notification S4071. However, even if the notification is only from the throttle grip 200, it is possible for the occupant to sense the driving possible notification S4071.
 振動子220を把持グリップ113に配置しない場合でも、把持センサ230を把持グリップ113に設置しても良い。鞍乗り車両100の押し歩きは、通常左右のグリップを握って行うので、押し歩き状態を的確に検知することが可能である。但し、把持グリップ113の把持センサ230は必須ではない。スロットルグリップ200のみに把持センサ230を配置することも可能である。 Even if the vibrator 220 is not placed on the grip 113, the grip sensor 230 may be installed on the grip 113. Since the saddle riding vehicle 100 is usually pushed while holding the left and right grips, it is possible to accurately detect the pushing state. However, the grip sensor 230 of the grip 113 is not essential. It is also possible to arrange the grip sensor 230 only on the throttle grip 200.
 また、上述の例では、停車判定S406に着座センサ302からの信号とスタンドセンサ306からの信号を用いた。乗員が鞍乗り車両100を押し歩きしようとしている状態を的確に検出でき、望ましい。ただ、スタンドセンサ306を廃止しても、把持センサ230と車速センサ308と着座センサ302で、乗員の押し歩きを判断することは可能である。 Furthermore, in the above example, the signal from the seating sensor 302 and the signal from the stand sensor 306 are used for the stop determination S406. This is desirable because it is possible to accurately detect a state in which the occupant is trying to push the saddle vehicle 100 around. However, even if the stand sensor 306 is abolished, it is still possible to determine whether the occupant is pushing the vehicle using the grip sensor 230, vehicle speed sensor 308, and seating sensor 302.
 更に、必要に応じて着座センサ302も廃止してもよい。この場合、乗員が鞍乗り車両100に乗っているのか、降りて押し歩きをしようとしているかの判別は困難となる。しかし、把持センサ230と車速センサ308から少なくとも乗員が押し歩きをしようとしている状態は検知することが可能である。また、この場合でも、乗員が鞍乗り車両100に乗車していて、第2所定車速以下であれば走行可能通知S4071が通知されることになる。従って、着座センサ302を廃止した場合であっても、乗員に対して鞍乗り車両100が起動可能な事の通知となる。予期せぬ起動を防ぐ効果は乗車中でも発揮できる。 Furthermore, the seating sensor 302 may also be eliminated if necessary. In this case, it is difficult to determine whether the occupant is riding the saddle vehicle 100 or is trying to get off and push the saddle. However, the grip sensor 230 and the vehicle speed sensor 308 can detect at least a state in which the occupant is trying to push the vehicle. Furthermore, even in this case, if the occupant is riding in the saddle-riding vehicle 100 and the vehicle speed is less than or equal to the second predetermined vehicle speed, the travel possible notification S4071 will be notified. Therefore, even if the seating sensor 302 is abolished, the occupant is notified that the saddle riding vehicle 100 can be started. The effect of preventing unexpected activation can be demonstrated even while riding.
 なお、鞍乗り車両100の押し歩き状態は、一般的には一旦走行を終え、停車してから鞍乗り車両100を押し歩くのが一般的である。ただ、本開示は、キースイッチ301及びスタートスイッチ300がオンになった後直ちに押し歩きを行う使用態様を除外するものではない。通常の走行後の押し歩きに意図しないスロットルグリップ200の回動操作が阻止できるのであれば、鞍乗り車両100の走行前の押し歩きでも走行可能通知S4071が乗員に知らされることとなっても良い。 Note that when the saddle-riding vehicle 100 is being pushed around, generally the saddle-riding vehicle 100 is pushed around once it has finished running, stopped, and then the saddle-riding vehicle 100 is pushed around. However, the present disclosure does not exclude a usage mode in which the device is pushed and walked immediately after the key switch 301 and start switch 300 are turned on. If it is possible to prevent an unintentional rotation operation of the throttle grip 200 when pushing the saddle vehicle 100 after normal driving, the rider may be notified of the possibility of driving S4071 even when the saddle riding vehicle 100 is pushing the vehicle 100 before driving. good.
 更に、上述の例では、把持センサ230を鞍乗り車両100の押し歩き状態で、前進方向の押圧力を検知できる第1把持センサ231と引張状態を検出できる第2把持センサ232との2つのセンサとしていた。これは、アシスト力を前進方向とするのか後退方向とするのかを判断する上で望ましい。しかし、必要に応じ、把持センサ230を一つとすることは可能である。その場合、押し歩きを検知しやすい第1把持センサ231を残すのが合理的である。 Furthermore, in the above example, when the saddle-riding vehicle 100 is being pushed while the saddle-riding vehicle 100 is being pushed, two sensors are used: the first grip sensor 231 that can detect the pressing force in the forward direction, and the second grip sensor 232 that can detect the tension state. It was. This is desirable in determining whether the assist force should be applied in the forward direction or in the backward direction. However, it is possible to use only one grip sensor 230 if necessary. In that case, it is reasonable to leave the first grip sensor 231 that easily detects pushing while walking.
 また、上述の例では、移動可能状態ASにおける走行可能通知S4071と手押しアシスト可能通知S4072とで、振動子220の振動パターンを異ならせていた。乗員には乗車中か手押し中かが分かり望ましい。ただ、振動子220の振動パターンを移動可能状態ASにおける走行可能通知S4071と手押しアシスト可能通知S4072で同じにしても良い。 Furthermore, in the above example, the vibration patterns of the vibrator 220 were made different between the travel possible notification S4071 in the movable state AS and the manual push assist possible notification S4072. It is desirable for the occupants to know whether they are riding or pushing the vehicle. However, the vibration pattern of the vibrator 220 may be the same in the travel possible notification S4071 in the movable state AS and the manual push assist possible notification S4072.
 また、上述の例では、移動可能状態ASを更に走行準備状態A-1とアシスト準備状態A-2とに区別していた。この構成は、走行準備状態A-1において走行可能通知S4071を乗員に対して行うことができて望ましい。しかし、本開示が特に必要としているのは、手押しアシスト可能通知S4072である。必要に応じ、走行準備状態A-1は廃止しても良い。 Furthermore, in the above example, the movable state AS was further divided into a travel preparation state A-1 and an assist preparation state A-2. This configuration is desirable because it is possible to notify the passenger of the possibility of driving S4071 in the driving preparation state A-1. However, what the present disclosure particularly requires is manual assist possible notification S4072. If necessary, the travel preparation state A-1 may be abolished.
 なお、この明細書には、以下に列挙する複数の技術的思想と、それらの複数の組み合わせが開示されている。 This specification discloses several technical ideas and several combinations of them, as listed below.
 (技術的思想1)
 スロットルグリップと把持グリップとを左右に有するハンドルと、
 乗員が着座するシートと、
 駆動輪と、
 少なくとも第1所定車速以下の走行状態では、前記駆動輪を単独で駆動する電動モータとを備える鞍乗り車両であって、
 前記スロットルグリップは、乗員が前記スロットルグリップを把持していることを検知する把持センサと、前記スロットルグリップの回動量を検知する回転角センサと、前記スロットルグリップを振動させる振動子を備え、
 鞍乗り車両の走行後であって、車速が零ないし前記第1所定車速より低速である第2所定車速以下の状態で、前記把持センサが乗員による前記スロットルグリップの把持を検知した際に、前記振動子を起動して前記スロットルグリップを振動させる
 ことを特徴とする鞍乗り車両。
(Technical thought 1)
a handle having a throttle grip and a grip grip on the left and right sides;
A seat for a passenger to sit on;
a driving wheel;
A saddle-riding vehicle comprising an electric motor that independently drives the drive wheels at least in a running state at a first predetermined vehicle speed or lower,
The throttle grip includes a grip sensor that detects that an occupant is gripping the throttle grip, a rotation angle sensor that detects the amount of rotation of the throttle grip, and a vibrator that vibrates the throttle grip,
When the gripping sensor detects gripping of the throttle grip by an occupant after the saddle-riding vehicle has traveled and the vehicle speed is zero or less than a second predetermined vehicle speed that is lower than the first predetermined vehicle speed, A saddle riding vehicle characterized in that the throttle grip is vibrated by activating a vibrator.
 (技術的思想2)
 前記シートには乗員の着座を検知する着座センサを備えている
 ことを特徴とする技術的思想1に記載の鞍乗り車両。
(Technical Concept 2)
The saddle-ride vehicle according to Technical Idea 1, characterized in that the seat is provided with a seating sensor for detecting whether a passenger is seated on the seat.
 (技術的思想3)
 前記鞍乗り車両は、前記鞍乗り車両の停車状態を保持するスタンドを更に備え、このスタンドの収納状態を検知するスタンドセンサが設けられ、
 前記振動子は前記スタンドセンサが収納状態であることを検知した場合に前記振動子を起動して前記スロットルグリップを振動させる
 ことを特徴とする技術的思想1若しくは2に記載の鞍乗り車両。
(Technical thought 3)
The saddle vehicle further includes a stand that maintains the stopped state of the saddle vehicle, and a stand sensor that detects a stored state of the stand,
The saddle riding vehicle according to technical idea 1 or 2, wherein the vibrator activates the vibrator to vibrate the throttle grip when it is detected that the stand sensor is in the stored state.
 (技術的思想4)
 前記把持センサは乗員が前記鞍乗り車両を前進方向に押していることを検知する機能を備え、
 前記把持センサが、乗員が前記鞍乗り車両を前進方向に押していることを検知した際には、前記電動モータに前記鞍乗り車両を進行させる前進アシスト力を生じさせる
 ことを特徴とする技術的思想1ないし3のいずれかに記載の鞍乗り車両。
(Technical thought 4)
The grip sensor has a function of detecting that an occupant is pushing the saddle vehicle in a forward direction,
The technical idea is characterized in that when the grip sensor detects that an occupant is pushing the saddle vehicle in a forward direction, the electric motor generates a forward assisting force that causes the saddle vehicle to advance. The saddle-riding vehicle according to any one of 1 to 3.
 (技術的思想5)
 前記把持センサは乗員が前記鞍乗り車両を後退方向に引いていることを検知する機能を備え、
 前記把持センサが、乗員が前記鞍乗り車両を後退方向に引いていることを検知した際には、前記電動モータに前記鞍乗り車両を後退させる後退アシスト力を生じさせる
 ことを特徴とする技術的思想1ないし4のいずれかに記載の鞍乗り車両。
(Technical Thought 5)
The grip sensor has a function of detecting that the occupant is pulling the saddle vehicle in a backward direction,
The technical feature is characterized in that when the grip sensor detects that the occupant is pulling the saddle vehicle in a backward direction, the electric motor generates a backward assist force that causes the saddle vehicle to move backward. The saddle-riding vehicle according to any one of Ideas 1 to 4.
 (技術的思想6)
 前記把持グリップは、乗員が前記把持グリップを把持していることを検知する把持グリップセンサと、前記把持グリップを振動させる把持グリップ振動子を備え、
 鞍乗り車両の走行後であって、車速が零ないし第2所定車速以下の状態で、前記把持グリップセンサが乗員による前記把持グリップの把持を検知した際に、前記把持グリップ振動子を起動して前記把持グリップを振動させる
 ことを特徴とする技術的思想1ないし5のいずれかに記載の鞍乗り車両。
(Technical Thought 6)
The grip includes a grip sensor that detects that an occupant is gripping the grip, and a grip vibrator that vibrates the grip,
After the saddle-riding vehicle has traveled and the vehicle speed is zero or less than a second predetermined vehicle speed, when the grip sensor detects that the grip is gripped by the occupant, the grip vibrator is activated. The saddle riding vehicle according to any one of technical ideas 1 to 5, characterized in that the grip is vibrated.
 (技術的思想7)
 前記鞍乗り車両は、前記第1所定車速以上の車速の際に前記駆動輪を駆動する内燃機関と、この内燃機関のスロットルバルブを開閉する電子スロットルを更に備える、
 ことを特徴とする技術的思想1ないし6のいずれかに記載の鞍乗り車両。
(Technical Thought 7)
The saddle riding vehicle further includes an internal combustion engine that drives the driving wheels when the vehicle speed is equal to or higher than the first predetermined vehicle speed, and an electronic throttle that opens and closes a throttle valve of the internal combustion engine.
The saddle riding vehicle according to any one of technical ideas 1 to 6, characterized in that:
 (技術的思想8)
 前記電子スロットルは前記スロットルバルブを開閉駆動するスロットルモータを備えており、
 前記振動子は、前記スロットルモータであることを特徴とする技術的思想7に記載の鞍乗り車両。

 
(Technical Thought 8)
The electronic throttle includes a throttle motor that opens and closes the throttle valve, and
The saddle riding vehicle according to technical idea 7, wherein the vibrator is the throttle motor.

Claims (8)

  1.  スロットルグリップと把持グリップとを左右に有するハンドルと、
     乗員が着座するシートと、
     駆動輪と、
     少なくとも第1所定車速以下の走行状態では、前記駆動輪を単独で駆動する電動モータとを備える鞍乗り車両であって、
     前記スロットルグリップは、
     乗員が前記スロットルグリップを把持していることを検知する把持センサと、
     前記スロットルグリップの回動量を検知する回転角センサと、
     前記スロットルグリップを振動させる振動子を備え、
     鞍乗り車両の走行後であって、車速が零ないし前記第1所定車速より低速である第2所定車速以下の状態で、前記把持センサが乗員による前記スロットルグリップの把持を検知した際に、前記振動子を起動して前記スロットルグリップを振動させる鞍乗り車両。
    a handle having a throttle grip and a grip grip on the left and right sides;
    A seat for a passenger to sit on;
    a driving wheel;
    A saddle riding vehicle comprising: an electric motor that independently drives the driving wheels at least in a running state at a first predetermined vehicle speed or lower;
    The throttle grip is
    a grip sensor that detects that an occupant is gripping the throttle grip;
    a rotation angle sensor that detects the amount of rotation of the throttle grip;
    comprising a vibrator that vibrates the throttle grip,
    When the gripping sensor detects gripping of the throttle grip by the occupant after the saddle-riding vehicle has traveled and the vehicle speed is zero or less than a second predetermined vehicle speed that is lower than the first predetermined vehicle speed, A saddle riding vehicle that activates a vibrator to vibrate the throttle grip.
  2.  前記シートには乗員の着座を検知する着座センサを備えている請求項1に記載の鞍乗り車両。 The saddle riding vehicle according to claim 1, wherein the seat is provided with a seating sensor that detects whether the occupant is seated.
  3.  前記鞍乗り車両は、前記鞍乗り車両の停車状態を保持するスタンドを更に備え、このスタンドの収納状態を検知するスタンドセンサが設けられ、
     前記振動子は前記スタンドセンサが収納状態であることを検知した場合に前記振動子を起動して前記スロットルグリップを振動させる請求項1に記載の鞍乗り車両。
    The saddle-riding vehicle further includes a stand that maintains the stopped state of the saddle-riding vehicle, and a stand sensor that detects a stored state of the stand,
    The saddle riding vehicle according to claim 1, wherein the vibrator activates the vibrator to vibrate the throttle grip when detecting that the stand sensor is in the stored state.
  4.  前記把持センサは乗員が前記鞍乗り車両を前進方向に押していることを検知する機能を備え、
     前記把持センサが、乗員が前記鞍乗り車両を前進方向に押していることを検知した際には、前記電動モータに前記鞍乗り車両を進行させる前進アシスト力を生じさせる請求項1に記載の鞍乗り車両。
    The grip sensor has a function of detecting that an occupant is pushing the saddle vehicle in a forward direction,
    The saddle ride according to claim 1, wherein when the grip sensor detects that the occupant is pushing the saddle ride vehicle in the forward direction, the electric motor generates a forward assisting force that causes the saddle ride vehicle to advance. vehicle.
  5.  前記把持センサは乗員が前記鞍乗り車両を後退方向に引いていることを検知する機能を備え、
     前記把持センサが、乗員が前記鞍乗り車両を後退方向に引いていることを検知した際には、前記電動モータに前記鞍乗り車両を後退させる後退アシスト力を生じさせる請求項1に記載の鞍乗り車両。
    The grip sensor has a function of detecting that the occupant is pulling the saddle vehicle in a backward direction,
    The saddle according to claim 1, wherein when the grip sensor detects that the occupant is pulling the saddle vehicle in a backward direction, the electric motor generates a backward assist force that causes the saddle vehicle to move backward. Riding vehicle.
  6.  前記把持グリップは、乗員が前記把持グリップを把持していることを検知する把持グリップセンサと、前記把持グリップを振動させる把持グリップ振動子を備え、
     鞍乗り車両の走行後であって、車速が零ないし第2所定車速以下の状態で、前記把持グリップセンサが乗員による前記把持グリップの把持を検知した際に、前記把持グリップ振動子を起動して前記把持グリップを振動させる請求項1に記載の鞍乗り車両。
    The grip includes a grip sensor that detects that an occupant is gripping the grip, and a grip vibrator that vibrates the grip,
    After the saddle-riding vehicle has traveled and the vehicle speed is zero or less than a second predetermined vehicle speed, when the grip sensor detects that the grip is gripped by the occupant, the grip vibrator is activated. The saddle riding vehicle according to claim 1, wherein the grip is vibrated.
  7.  前記鞍乗り車両は、前記第1所定車速以上の車速の際に前記駆動輪を駆動する内燃機関と、この内燃機関のスロットルバルブを開閉する電子スロットルを更に備える請求項1に記載の鞍乗り車両。 The saddle riding vehicle according to claim 1, further comprising an internal combustion engine that drives the drive wheels when the vehicle speed is equal to or higher than the first predetermined vehicle speed, and an electronic throttle that opens and closes a throttle valve of the internal combustion engine. .
  8.  前記電子スロットルは、前記スロットルバルブを開閉駆動するスロットルモータを備えており、
     前記振動子は、このスロットルモータである請求項7に記載の鞍乗り車両。

     
    The electronic throttle includes a throttle motor that opens and closes the throttle valve, and
    The saddle riding vehicle according to claim 7, wherein the vibrator is the throttle motor.

PCT/JP2023/032441 2022-09-19 2023-09-06 Saddled vehicle WO2024062918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-148661 2022-09-19
JP2022148661 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024062918A1 true WO2024062918A1 (en) 2024-03-28

Family

ID=90454227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032441 WO2024062918A1 (en) 2022-09-19 2023-09-06 Saddled vehicle

Country Status (1)

Country Link
WO (1) WO2024062918A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733066A (en) * 1993-06-22 1995-02-03 Casio Comput Co Ltd Motor-driven vehicle
JP2003320935A (en) * 2002-04-30 2003-11-11 Sanyo Electric Co Ltd Electric-motor vehicle
JP2007112316A (en) * 2005-10-20 2007-05-10 A Un:Kk Vibration information presenting part and navigation device, and lane departure warning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733066A (en) * 1993-06-22 1995-02-03 Casio Comput Co Ltd Motor-driven vehicle
JP2003320935A (en) * 2002-04-30 2003-11-11 Sanyo Electric Co Ltd Electric-motor vehicle
JP2007112316A (en) * 2005-10-20 2007-05-10 A Un:Kk Vibration information presenting part and navigation device, and lane departure warning device

Similar Documents

Publication Publication Date Title
JP5521994B2 (en) vehicle
JP6933885B2 (en) Electric auxiliary vehicle and auxiliary output control system
JP6014159B2 (en) Regenerative brake control system for electric vehicles
WO2014064730A1 (en) Regenerative brake control system for electric vehicle
JP7236799B2 (en) Bicycle control device and bicycle suspension system provided with the same
WO2014064728A1 (en) Regenerative brake control system for electric vehicle
EP0893338B1 (en) Assist force control device in motor-assisted bicycle
TWI823920B (en) Control devices for human-driven vehicles
JP2020147108A (en) Parking brake device for saddle-riding type vehicle
WO2019053889A1 (en) Power-assist system and power-assisted vehicle
JP2007210608A (en) Two-wheel vehicle with integral electric wheel drive
JP2010120599A (en) Electric bicycle
JPH1134966A (en) Auxiliary power controlling device in motor-assisted bicycle
JP7122683B2 (en) electric tricycle
WO2024062918A1 (en) Saddled vehicle
JPH04358985A (en) Small type electrically-driven vehicle
JPH11303953A (en) Driving force transmission device
US20230034333A1 (en) Shifting control device and electric shifting system
JP4230483B2 (en) Motorcycle
JP2012017009A (en) Vehicle
JP6181798B1 (en) Saddle-type vehicle travel status notification device and straddle-type vehicle travel status detection device
JP2022117218A (en) Electric assisted bicycle and motor control device
JP7474732B2 (en) bicycle
JP5598117B2 (en) vehicle
WO2023188222A1 (en) Electric saddle-type vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868042

Country of ref document: EP

Kind code of ref document: A1