WO2024062896A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2024062896A1
WO2024062896A1 PCT/JP2023/031846 JP2023031846W WO2024062896A1 WO 2024062896 A1 WO2024062896 A1 WO 2024062896A1 JP 2023031846 W JP2023031846 W JP 2023031846W WO 2024062896 A1 WO2024062896 A1 WO 2024062896A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
attached
imaging device
cameras
holding member
Prior art date
Application number
PCT/JP2023/031846
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 吉田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024062896A1 publication Critical patent/WO2024062896A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/40Systems for automatic generation of focusing signals using time delay of the reflected waves, e.g. of ultrasonic waves
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment

Definitions

  • the present invention relates to an imaging device, and more particularly, to an imaging device that acquires an image of the inner surface of a tunnel.
  • Patent Document 1 describes an imaging device that includes a plurality of cameras and a plurality of illumination devices that image the inner surface of a tunnel for inspecting the tunnel.
  • One embodiment according to the technology of the present disclosure provides an imaging device that includes a plurality of cameras and a plurality of illumination devices, and in which the plurality of cameras are arranged in an arc shape in different radial directions.
  • An imaging device that is one aspect of the present invention includes at least two first holding members and a plurality of cameras, the first holding members are arranged to face each other, and the plurality of cameras are arranged to face each other.
  • the plurality of cameras are arranged in an arc shape on the holding member, the shooting directions of the plurality of cameras are directed outward in the radial direction of the arc, and the shooting directions of at least adjacent cameras among the plurality of cameras are different.
  • the photographic fields of view of at least adjacent cameras among the plurality of cameras partially overlap.
  • the two first holding members have a plurality of first attachment parts arranged on the same circumference to which the plurality of second holding members are attached, and the plurality of second holding members each has a second mounting part to which a camera is attached, and by attaching the plurality of second holding members to which at least the cameras are attached to the two first holding members, the plurality of second holding members
  • the plurality of cameras respectively attached to the first holding member are arranged in an arc shape and in different radial directions with respect to the center of the first holding member, and are further arranged in different radial directions between the two first holding members. be done.
  • the plurality of second holding members each have a second mounting portion to which a camera and a lighting device are attached.
  • the radius of the arc can be changed by moving a plurality of cameras arranged in an arc.
  • the second mounting section includes at least a first camera mounting section and a second camera mounting section, and when a camera is attached to the first camera mounting section, the second camera mounting section The cameras are arranged in an arc with a larger radius than if the cameras were attached to the first camera mounting section.
  • the second mounting section includes a first lighting device mounting section, a second lighting device mounting section, a first camera mounting section, and a second camera mounting section, and the first camera mounting section
  • the lighting device is attached to the first lighting device mounting section
  • the camera is mounted to the second camera mounting section
  • the lighting device is attached to the first lighting device mounting section. Attach the lighting device to the mounting section.
  • the distance and arc between the cameras disposed on the two first holding members are smaller than when the camera is attached to the first camera attachment part.
  • the distance between the cameras in the circumferential direction becomes shorter.
  • the first attachment part is configured with an elongated hole extending along the circumferential direction of the arc in the first holding member, and the second holding member moves along the elongated hole to form an arc shape.
  • the spacing between placed cameras is changed.
  • the plurality of second holding members have a third mounting portion that is attached to the first mounting portion of the first holding member, the third mounting portion being configured as an elongated hole extending along the radial direction, and the second holding members slide radially relative to the first holding member.
  • the trolley is mounted on a trolley that travels in the tunnel, and at least one wheel of the trolley is provided with a sensor that detects the number of revolutions.
  • a distance sensor is provided to obtain information regarding the distance between the camera and the inner surface.
  • the distance sensor is held by a third holding member, and the third holding member is attached to the first holding member.
  • a control device having a processor is provided, and the processor controls the camera's shooting based on the distance information output from the distance sensor.
  • FIG. 1 is a front perspective view of the imaging device.
  • FIG. 2 is a side view of the imaging device.
  • FIG. 3 is a front view of the imaging device.
  • FIG. 4 is a rear view of the imaging device.
  • FIG. 5 is a diagram showing the camera unit.
  • FIG. 6 is a front perspective view of the first holding member.
  • FIG. 7 is a diagram illustrating how the camera unit and the first holding member are attached.
  • FIG. 8 is a front perspective view of the imaging device.
  • FIG. 9 is a diagram showing the camera unit.
  • FIG. 10 is a conceptual diagram showing a tunnel inspection device.
  • FIG. 11 is a diagram illustrating a camera unit for downward photography.
  • FIG. 12 is a conceptual diagram illustrating wheels.
  • FIG. 11 is a diagram illustrating a camera unit for downward photography.
  • FIG. 12 is a conceptual diagram illustrating wheels.
  • FIG. 11 is a diagram illustrating a camera unit for downward photography.
  • FIG. 12 is a conceptual
  • FIG. 13 is a block diagram showing an embodiment of a hardware configuration of a control device.
  • FIG. 14 is a block diagram illustrating functions implemented by the processor.
  • FIG. 15 is a diagram illustrating a specific example of inspecting a subway tunnel.
  • FIG. 16 is a diagram illustrating a specific example of inspecting a tunnel of a headrace.
  • FIG. 17 is a flow diagram illustrating a tunnel inspection method.
  • FIG. 18 is a diagram illustrating a tunnel inspection device according to modification 1.
  • FIG. 19 is a diagram illustrating a rotary arm according to modification 2.
  • the camera used in the imaging device should take into account variations in the shooting angle of view, the width of the crack to be detected (for example, cracks with a width of 1 mm or less may also be detected), vibration countermeasures when the trolley is running, etc.
  • a high-performance single-lens reflex camera (or a high-performance single-lens reflex camera) is preferably used.
  • a lighting device for each camera. Therefore, if the required number of cameras and illumination devices are laid out in an arcuate or circular shape so that the entire circumference or substantially the entire circumference of the inner surface of the tunnel can be imaged, the external size of the imaging device becomes large.
  • the diameter of the tunnel exceeds 6 m, sufficient space can be secured for the delivery route for the imaging device and the assembly work space on site.
  • the delivery route is too narrow to pass through, or the assembly space is too narrow to carry out work.
  • a small-diameter headrace tunnel with a tunnel diameter of 2 m or less there may be a problem that when the bogie is running, it meanderes and interferes with the inner surface of the tunnel. Therefore, conventionally, when inspecting small-diameter tunnels, workers would lie on their backs on a trolley while carrying a handheld camera to take images.
  • the present disclosure described below proposes an imaging device that can efficiently image the inner surface of tunnels from large diameters to small diameters.
  • Imaging apparatus for imaging a tunnel with a relatively large diameter will be described.
  • the large diameter tunnel here refers to a tunnel with a diameter of 3 m to 10 m, for example.
  • FIGS. 1 to 4 are diagrams illustrating an imaging device for imaging a large-diameter tunnel.
  • FIG. 1 is a front perspective view of the imaging device
  • FIG. 2 is a side view of the imaging device
  • FIG. 3 is a front view of the imaging device
  • FIG. 4 is a rear view of the imaging device.
  • the front is a surface viewed from the plus Z-axis side
  • the side surface is a surface viewed from the X-axis direction
  • the back surface is a surface viewed from the minus Z-axis side.
  • the imaging device 10 is mounted on a trolley 260 (see FIG. 10), and while moving in the traveling direction W, acquires an image of the inner surface of the tunnel to be inspected. Thereafter, a developed plan view of the inner surface of the tunnel is generated from the acquired images.
  • the imaging device 10 mainly includes a first holding member 105a on the front side, a first holding member 105b on the back side, and a plurality of camera units 12 (see FIG. 5) attached to the first holding members 105a and 105b. configured.
  • the camera unit 12 When capturing an image of the inner surface of a large-diameter tunnel, the camera unit 12 includes two lighting devices 103, one camera 101, and a second holding member 125 (see FIG. 5).
  • a camera unit 12 is provided (see FIG. 4).
  • the camera 101 attached to the camera unit 12 is arranged in an arc shape with respect to the center O (center portion) of the rotation base 111a and the rotation base 111b.
  • the camera 101 is arranged so that the photographing direction of the camera 101 is in the radial direction of the arc.
  • the illumination device 103 attached to the camera unit 12 is also arranged in an arc shape with respect to the center O (center portion) of the rotation base 111a and the rotation base 111b.
  • the circular arc (circular arc shape) formed by the camera 101 mentioned above is simply described as a circular arc (circular arc shape).
  • the radial direction and circumferential direction of the arc (circular arc shape) formed by the camera 101 described above are simply referred to as the radial direction and circumferential direction.
  • the photographing direction of the camera 101 is different between at least adjacent cameras 101.
  • the camera 101 attached to the first holding member 105a on the front side and the camera 101 attached to the first holding member 105b on the back side are provided so as to have different photographing directions.
  • the lighting device 103 is provided so that the irradiation direction is along the radial direction of the arc, and the lighting device 103 is attached to the first holding member 105a on the front side and the first holding member 105a on the back side.
  • the lighting devices 103 attached to the holding member 105b are provided so as to have different irradiation directions.
  • the camera 101 By arranging the camera 101 in this way, as shown in FIGS. 1 and 2, the camera 101 provided on the first holding member 105a on the front side and the first holding member 105b on the back side are connected to each other. Together with the provided camera 101, it forms a zigzag shape (staggered shape) (see line L in FIGS. 1 and 2). That is, as shown by the line L shown in FIGS. 1 and 2, the cameras 101 have a zigzag shape, and the cameras 101 connected by the line L have side overlaps S and overlaps T, so that the captured images are Partial overlap (the photographic fields of view partially overlap). This means that in each of the cameras 101, the photographing fields of adjacent cameras 101 partially overlap. In this way, by acquiring images so that they have partially overlapping parts, it is possible to synthesize a plurality of acquired images and generate a continuous plan development view.
  • the lighting device 103 has a zigzag shape (zigzag shape) with the lighting device 103 provided on the first holding member 105a on the front side and the lighting device 103 provided on the first holding member 105b on the back side. shape).
  • the external size of the imaging device 10 can be reduced, and a planar development view can also be generated from the acquired images.
  • FIG. 5 is a diagram showing the camera unit 12 attached to the imaging device 10 when imaging a large-diameter tunnel.
  • the camera unit 12 includes one camera 101, two lighting devices 103, and a second holding member 125.
  • the second holding member 125 includes a frame member 123 and a rotating arm 121.
  • the camera 101 is preferably configured with a high-performance single-lens reflex camera or a high-performance single-lens reflex camera, but the camera used is not particularly limited. By changing the sensor size and lens focal length of the camera 101, it is possible to adjust the pixel resolution according to the shooting angle of view and the minimum crack width that is desired to be confirmed during inspection.
  • the illumination device 103 has a light distribution angle that exceeds the angle of view of the camera 101 attached thereto. Further, the illumination device 103 needs not to have flicker at the same frequency as the photographing shutter speed of the camera 101.
  • the second holding member 125 is composed of a rotating arm 121 and a frame member 123.
  • the rotating arm 121 is inserted into and fixed to the window portion of the frame member 123.
  • the frame member 123 has a rectangular shape, and has a first lighting device mounting portion 123a and a second lighting device mounting portion 123b at opposite ends of the rectangular shape. It is preferable that a plurality of mounting holes be provided in the first lighting device mounting portion 123a and the second lighting device mounting portion 123b so that various types of lighting devices can be mounted depending on the required illuminance.
  • the lighting device 103 is detachably attached to the first lighting device mounting portion 123a and the second lighting device mounting portion 123b. Depending on the tunnel to be inspected, the lighting device 103 may not be necessary, and in that case, the lighting device 103 can be removed to reduce the weight of the imaging device 10.
  • the rotating arm 121 is connected to the frame member 123. Further, the rotating arm 121 has a screw 121a, and is attached to the rotating base 111a or the rotating base 111b by being tightened by the screw 121a (see FIG. 7). Further, the rotating arm 121 has a first camera attachment part 121b on one of both ends, to which the camera 101 is attached. The camera 101 is attached to the first camera attachment part 121b using a tripod screw provided on the bottom of the camera 101. By attaching the camera 101 to the first camera attachment part 121b, the layout is such that the battery cover and rear operation system of the camera 101 are accessible.
  • first camera mounting portion 121b, the first lighting device mounting portion 123a, and the second lighting device mounting portion 123b constitute a second mounting portion of the second holding member 125.
  • FIG. 6 and 7 are diagrams explaining the first holding member 105a (105b).
  • FIG. 6 is a front perspective view of the first holding member 105a (105b)
  • FIG. 7 is a diagram illustrating a state in which the camera unit 12 and the first holding member 105a are attached.
  • the first holding member 105a on the front side and the first holding member 105b on the back side are connected to each other by the connecting member 113 and the base plate 107 while facing each other and being spaced apart in the traveling direction W.
  • the base plate 107 is a plate on which the first holding member 105a on the front side and the first holding member 105b on the back side are mounted, and is connected to the trolley 260 (see FIG. 10).
  • the carriage 260 and the base plate 107 are fixed by manually tightening a knob (not shown). Thereby, the work of fixing the imaging device 10 to the trolley 260 can be completed manually without preparing any tools or the like.
  • the first holding member 105a on the front side is composed of a leg portion 109a, a rotation base 111a, and an angle adjustment plate 119a. Further, the first holding member 105b on the back side includes a leg portion 109b, a rotation base 111b, and an angle adjustment plate 119b (not shown). In the following description, the first holding member 105a on the front side will be explained, but the first holding member 105b on the back side has a similar configuration.
  • the leg portion 109a is attached perpendicularly to the base plate 107 at the lower end, and attached to the connecting member 113 at the upper end.
  • the rotation base 111a is attached to the upper end of the leg portion 109a together with the angle adjustment plate 119a.
  • the angle adjustment plate 119a can adjust the rotation angle of the rotation base 111a.
  • the adjustment angle pitch is determined from the viewpoint of workability and rigidity, and can be set arbitrarily or every several degrees. Further, the rotary base 111a is provided with a scale so that the angle adjustment amount can be visually confirmed.
  • the first holding member 105a and the camera unit 12 are connected by attaching the rotating arm 121 to the elongated hole 112 (first attachment part) of the rotating base 111a.
  • the first holding member 105a and the camera unit 12 are connected by an elongated hole 112 extending along the circumferential direction of the rotation base 111a and a screw 121a of the rotation arm 121.
  • the screw 121a has a structure that can be tightened manually without the need for tools. This makes it possible to connect the first holding member 105a and the camera unit 12 even in locations where inspection work is to be performed, where there is water or the like underneath and where it is difficult to perform work using tools.
  • the camera unit 12 can adjust the angle in the circumferential direction of the arc on the rotating base 111a. Thereby, the distance between the cameras 101 arranged in an arc shape can be changed.
  • a maximum of nine camera units 12 can be mounted in the circumferential direction of the imaging device 10.
  • the rotation base 111a and the rotation base 111b are installed in an offset state along the traveling direction W of the trolley 260. Further, in order to obtain high running stability of the trolley 260, it is preferable that the rotation base 111a and the rotation base 111b are laid out as low as possible in the center of gravity.
  • the illustrated rotating base 111a and rotating base 111b have a disk shape, they are not limited to this.
  • the rotation base 111a and the rotation base 111b may be formed of rectangular plate members.
  • the imaging device 10 attaches the camera 101 to the first camera attachment part 121b, and attaches the camera 101 to the first illumination device attachment part 123a and the second illumination device attachment part 123a.
  • the illumination device 103 is attached to the section 123b to image the inner surface of the tunnel. This makes it possible to efficiently image the inner surface of a large-diameter tunnel.
  • the acquired image can generate a plan development view that allows for appropriate inspection.
  • a small diameter tunnel here refers to a tunnel with a diameter of, for example, 1.5 m to 2 m. Also, the description of the same parts as those of the imaging device 10 when imaging a large diameter tunnel described above will be omitted.
  • FIGS. 8 and 9 are diagrams illustrating the imaging device 10 when imaging a small diameter tunnel.
  • FIG. 8 is a front perspective view of the imaging device 10 when capturing an image of a small-diameter tunnel
  • FIG. 9 is a diagram showing the camera unit 12 when capturing an image of a small-diameter tunnel.
  • the imaging device 10 is equipped with nine camera units 12 as in the case of imaging a large-diameter tunnel. Specifically, four types of camera units 12 are provided on the first holding member 105a on the front side, and five types of camera units 12 are provided on the first holding member 105b on the back side.
  • the camera 101 attached to the camera unit 12 is arranged in an arc shape with respect to the center O (center portion) of the rotation base 111a and the rotation base 111b. Further, like the camera 101, the illumination device 103 attached to the camera unit 12 is also arranged in an arc shape with respect to the center O (center portion) of the rotation base 111a and the rotation base 111b. Furthermore, the photographing directions of the cameras 101 are arranged in different radial directions, and further, the two first holding members 105a and 105b are arranged in different radial directions.
  • the camera unit 12 includes one camera 101, one lighting device 103, and a second holding member 125.
  • the second holding member 125 includes a frame member 123, a rotating arm 121, and an auxiliary member 203.
  • the camera 101 When photographing the inner surface of a small-diameter tunnel, the camera 101 is removed from the first camera attachment part 121b and attached to the auxiliary member 203. Furthermore, the lighting device 103 that was attached to the second lighting device attachment portion 123b is removed, and the auxiliary member 203 is attached to the second lighting device attachment portion 123b. One end of both ends of the auxiliary member 203 is connected to the second lighting device attachment part 123b, and the camera 101 is attached to the other end (second camera attachment part) of the auxiliary member 203. In this way, by attaching the camera 101 to the second camera attachment part, the radius of the arc formed by the camera 101 is shortened compared to when the camera 101 is attached to the first camera attachment part 121b. Ru.
  • the camera 101 is placed on the first holding member 105a on the front side, compared to when the camera 101 is attached to the first camera attachment part 121b.
  • the distance between the camera 101 and the camera 101 disposed on the first holding member 105b on the back side, and the distance between the cameras 101 in the circumferential direction are shortened.
  • the second camera attachment portion constitutes a second attachment portion of the second holding member 125.
  • the auxiliary member 203 members of various shapes are employed. For example, an L-shaped plate member is used as the auxiliary member 203.
  • the illumination device 103 attached to the second illumination device attachment part 123b is removed and the camera 101 is attached to the auxiliary member 203 (second camera attachment part). Accordingly, the radius of the arc formed by the camera 101 can be shortened, and the imaging device 10 is configured with a size that can image a tunnel with a small diameter. As a result, the imaging device 10 can image the inner surface of the tunnel while ensuring the angle of view and minimum object distance (MOD) of the camera 101 even in a small diameter tunnel. Furthermore, the obtained image makes it possible to generate a plan development view that can be properly inspected.
  • MOD minimum object distance
  • the assembly conditions of the imaging device 10 such as the imaging device 10 when imaging a large-diameter tunnel and the imaging device 10 when imaging a small-diameter tunnel are calculated based on the automatic calculation results using the "parameter calculation file". It's okay.
  • the parameter calculation file automatically outputs the type of lens (focal length, etc.), the number of cameras 101 installed, the mounting angle, etc. when the tunnel shape, the width of the crack to be detected, and the running conditions of the trolley 260 are input. do.
  • the diameter of the tunnels to be inspected varies from 1.5 to 10 m, so the photographing conditions of the camera 101 (lens type/number of units installed/installation angle) must be determined in advance.
  • the tunnel inspection device 11 equipped with the imaging device 10 will be explained.
  • the imaging device 10 is mounted on a trolley 260 that runs inside the tunnel and constitutes the tunnel inspection device 11, and images the inner surface of the tunnel.
  • the tunnel inspection device 11 is also one form of an imaging device.
  • FIG. 10 is a conceptual diagram showing the tunnel inspection device 11.
  • the tunnel inspection device 11 mainly includes an imaging device 10, a trolley 260, and a control device 20. Further, a third holding member 254 is attached to the imaging device 10. One end of the third holding member 254 is attached to the rotating base 111a, and the rider 252 is attached to the other end.
  • the lidar 252 is an example of a ranging sensor. The distance sensor only needs to be able to acquire information on the distance to the inner surface of the tunnel, and in addition to the lidar 252, a TOF (Time Of Flight) camera or the like can be used. Further, the camera unit 12 including the camera 101 for photographing the downward direction (minus Y-axis direction) is attached to the third holding member 254.
  • FIG. 11 is a diagram illustrating the camera unit 12 for downward photography.
  • the camera unit 12 for downward photography includes a camera 101 and two lighting devices 103.
  • the camera 101 images the area below (for example, the ground) when the tunnel inspection device 11 travels.
  • the configuration of the camera unit 12 has already been explained with reference to FIG. 5, so a detailed explanation will be omitted here.
  • the truck 260 has four wheels 270. By driving the wheels 270, the tunnel inspection device 11 travels inside the tunnel to be inspected. Note that, although the traveling of the trolley 260 in this example is controlled by the control device 20, it is not limited to this. For example, traveling of the trolley 260 may be controlled manually.
  • FIG. 12 is a conceptual diagram explaining the wheel 270. Note that in FIG. 12, only one wheel 270 is schematically illustrated. Furthermore, illustrations of a mechanism for attaching the positioning sensor 272 to the trolley 260 are omitted.
  • a positioning sensor 272 is attached to the wheel 270, and the moving distance of the trolley 260 is measured.
  • a magnetic body 270a is arranged on the circumferential surface of the wheel 270, and the magnetic body 270a is detected by a positioning sensor 272 provided on the main body of the cart 260.
  • the magnetic body 270a is detected every time the wheel 270 rotates, and the number of rotations of the wheel 270 can be measured from the number of pulses that rise each time the wheel 270 rotates, and the distance traveled can be calculated. Note that by associating the moving distance of the trolley 260 estimated by the positioning sensor 272 with the image acquired by the imaging device 10, it is possible to improve the efficiency of the inspection work.
  • coordinate position information of the displayed location can also be displayed.
  • the information from the positioning sensor 272 can be used as supplementary information for fine-tuning the synthesis position and extracting feature points when feature points cannot be extracted when composing a developed plan view.
  • the positioning sensor 272 may be attached to at least one wheel 270, or may be attached to a plurality of wheels 270. By attaching positioning sensors 272 to a plurality of wheels 270, a more accurate moving distance of trolley 260 can be obtained.
  • the positioning sensor 272 is configured with, for example, an electromagnetic proximity sensor.
  • FIG. 13 is a block diagram showing an embodiment of the hardware configuration of the control device 20 shown in FIG. 10.
  • the control device 20 shown in FIG. 13 includes a processor 200, a memory 210, a database 220, a display section 230, an input/output interface 240, and an operation section 250.
  • the processor 200 is composed of a CPU (Central Processing Unit), etc., and performs overall control of each part of the control device 20, as well as controlling photographing of a tunnel by the imaging device 10.
  • CPU Central Processing Unit
  • the memory 210 includes a flash memory, a ROM (Read-only Memory), a RAM (Random Access Memory), a hard disk device, and the like.
  • a flash memory, ROM, or hard disk device is a nonvolatile memory that stores various programs including an operating system.
  • the RAM functions as a work area for processing by the processor 200 and temporarily stores programs and the like stored in a flash memory or the like. Note that the processor 200 may include a part of the memory 210 (RAM).
  • the database 220 stores images captured by the imaging device 10.
  • the image acquired by the imaging device 10 may be stored in association with the moving distance of the trolley 260 acquired by the positioning sensor 272. Further, a plan development view obtained by combining images acquired by each camera 101 may be stored.
  • the display unit 230 displays images under the control of the processor 200.
  • the display unit 230 is also used as part of a GUI (Graphical User Interface) when receiving various information from the operation unit 250.
  • GUI Graphic User Interface
  • the input/output interface 240 includes a connection unit that can be connected to an external device, a communication unit that can be connected to a network, and the like.
  • the input/output interface 240 can connect to external devices and networks by wire or wirelessly.
  • the input/output interface 240 connects with the lidar 252 of the tunnel inspection device 11 and the positioning sensor 272 of the trolley 260, and acquires the output data of each.
  • the operation unit 250 includes a pointing device such as a mouse, a keyboard, and the like, and functions as part of a GUI that accepts input of various information and instructions by user operations. Further, the operation unit 250 may be configured with a joystick or the like to control the running of the trolley 260.
  • the user when inspecting a tunnel, when a user (inspector) visually finds a deformation, the user (inspector) can check the position of the deformation by operating the voice input device or switch that constitutes the operation unit 250.
  • the positioning data obtained by the positioning sensor 272 and the image are stored in association with each other. Thereby, visual inspection information and images can be stored in association with each other, and it is possible to prevent deformities from being overlooked.
  • FIG. 14 is a block diagram illustrating functions implemented by the processor 200.
  • the processor 200 constitutes an imaging condition control section 202. Furthermore, the processor 200 obtains information regarding the distance to the inner surface of the tunnel to be inspected, which is output from the lidar 252. Further, the processor 200 controls the camera 101. The processor 200 controls, for example, AF (Auto Focus) and focal length of the camera 101.
  • AF Auto Focus
  • the lidar 252 outputs point cloud information on the distance to the tunnel inner surface to the processor 200.
  • the photographing condition control unit 202 corrects the photographing conditions of the plurality of cameras 101 based on the information regarding the distance to the inner surface output from the lidar 252.
  • the photographing condition control unit 202 controls photographing conditions such as AF of the plurality of cameras 101 mounted on the imaging device 10 and focal length of the lens of the camera 101. This prevents the shooting distance from changing due to meandering of the trolley 260 or sudden changes in the tunnel cross section, and from insufficient pixel density based on the amount of overlap between adjacent images and the size of the crack to be inspected. , images suitable for inspection can be obtained.
  • image capturing by the camera 101 is performed under the control of the processor 200. Image capture by the camera 101 is performed at regular time intervals. Further, the image capturing by the camera 101 may be performed based on positioning data output from the positioning sensor 272.
  • 15 and 16 are diagrams illustrating a specific example of controlling the photographing conditions of the tunnel inspection device 11.
  • FIG. 15 is a diagram illustrating a specific example of inspecting a subway tunnel.
  • the case indicated by reference numeral 280 shows a case where the rider 252 is not mounted on the tunnel inspection device 11. Further, a case indicated by reference numeral 282 shows a case where a rider 252 is mounted on the tunnel inspection device 11.
  • the diameter of the subway tunnel 290 increases at point D.
  • the tunnel inspection device 11 travels in a straight line, but as the diameter of the tunnel increases, the quality of the image it obtains changes after passing point D.
  • the distance to the inner surface of the tunnel 290 is increased, resulting in insufficient pixel density in the acquired image, making it difficult to appropriately detect damage such as cracks.
  • the photographing condition control unit 202 can change the AF and focal length of the camera 101 based on the information regarding the distance. Therefore, in this case, insufficient pixel density in the acquired image is suppressed, and damage such as cracks can be appropriately detected.
  • FIG. 16 is a diagram illustrating a specific example of inspecting the tunnel of the headrace.
  • the case indicated by reference numeral 284 shows a case where the rider 252 is not mounted on the tunnel inspection device 11. Further, a case indicated by reference numeral 286 shows a case where the rider 252 is mounted on the tunnel inspection device 11.
  • the tunnel inspection device 11 is running in a meandering manner.
  • the distance from the tunnel 292 becomes shorter as shown in the figure, and the overlapping portions in the images acquired by each camera 101 become insufficient. That is, in adjacent images, areas that overlap each other end up being absent or small. In such a case, there will be parts in the acquired image that cannot be photographed, making it impossible to properly inspect the tunnel. Furthermore, it is not possible to generate an appropriate plan development view from the acquired image.
  • tunnel inspection method is performed by the processor 200 of the control device 20 executing a program stored in the memory 210.
  • FIG. 17 is a flow diagram illustrating a tunnel inspection method performed by the tunnel inspection device 11.
  • the distance to the inner surface of the tunnel is measured by the rider 252 (step S01).
  • the imaging condition control unit 202 determines whether the distance to the inner surface of the tunnel has been changed (step S02).
  • the camera 101 is controlled to change the photographing conditions (step S05).
  • an image of the inner surface of the tunnel is acquired by the camera 101 (step S03).
  • the processor 200 determines whether the tunnel inspection has been completed (step S04), and if the tunnel inspection has not been completed, the distance to the inner surface of the tunnel is measured again.
  • the tunnel inspection device 11 acquires information regarding the distance from the lidar 252 to the inner surface of the tunnel, and controls the photographing conditions of the camera 101 based on the information regarding the distance to acquire images. .
  • the distance to the inner surface of the tunnel changes, it is possible to obtain an image with an image quality that allows damage such as cracks to be detected.
  • this makes it possible to comprehensively image the inner surface of the tunnel and generate a developed plan view.
  • the hardware structure of the processing unit (for example, the imaging condition control unit 202) that executes various processes is the following various processors.
  • Various types of processors include CPUs (Central Processing Units) and FPGAs (Field Programmable Gate Arrays), which are general-purpose processors that execute software (programs) and function as various processing units.
  • the circuit configuration can be changed after manufacturing.
  • PLDs programmable logic devices
  • dedicated electric circuits which are processors with circuit configurations specifically designed to execute specific processes, such as ASICs (Application Specific Integrated Circuits). It will be done.
  • One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types (for example, multiple FPGAs, or a combination of a CPU and FPGA). It's okay. Further, the plurality of processing units may be configured with one processor. As an example of configuring multiple processing units with one processor, first, one processor is configured with a combination of one or more CPUs and software, as typified by computers such as clients and servers. There is a form in which a processor functions as multiple processing units. Second, there are processors that use a single IC (Integrated Circuit) chip to implement the functions of the entire system, including multiple processing units, as typified by System On Chip (SoC). be. In this way, various processing units are configured using one or more of the various processors described above as a hardware structure.
  • SoC System On Chip
  • the hardware structure of these various processors is an electrical circuit that combines circuit elements such as semiconductor elements.
  • the tunnel inspection device 11 described in FIG. 10 is an example in which the imaging device 10 is attached to the trolley 260.
  • the height from the cart 260 to the center of the rotating base 111a can be changed by arranging the spacer P.
  • the height from the trolley 260 to the center of the rotating base 111a can be adjusted within a range of 1 to 2.5 m.
  • FIG. 18 is a diagram illustrating the tunnel inspection device 11 of Modification 1. Note that in FIG. 18, illustration of the cart 260 that constitutes the tunnel inspection device 11 is omitted.
  • spacers P made of aluminum frames are stacked.
  • the spacers P have a rectangular parallelepiped shape and have a structure that allows them to be stacked upward.
  • the pitch can be adjusted by adjusting the height of the spacer P. For example, if the height of one spacer P is 150 mm, the adjustment pitch can be 150 mm.
  • Modification 2 Next, modification 2 will be explained.
  • a long hole 294 is provided in the rotary arm 121.
  • the rotary arm 121 can be slid in the radial direction, and the diameter of the circumference can be changed.
  • FIG. 19 is a diagram illustrating the rotating arm 121 of Modification 2.
  • the rotating arm 121 has an elongated hole 294 (third mounting portion) into which the screw 121a is tightened.
  • the rotating arm 121 is attached to the first holding member 105a (105b) by tightening the screw 121a into the elongated hole 294. This allows the rotating arm 121 to slide relative to the rotating base 111a (rotating base 111b) using the elongated hole 294, and the radial position of the camera 101 attached to the first camera mounting portion 121b can be adjusted.
  • the radial position of the camera 101 can be adjusted.
  • First invention comprising at least two first holding members and a plurality of cameras; the first holding members are arranged to face each other, The plurality of cameras are arranged in an arc shape on the first holding member, and the photographing directions of the plurality of cameras are directed outward in the radial direction of the arc, Among the plurality of cameras, at least adjacent cameras have different shooting directions; Imaging device.
  • (Second invention) at least two first holding members and a plurality of cameras, the first holding members are arranged to face each other, and the plurality of cameras are arranged in an arc shape on the first holding member,
  • An imaging device wherein the photographing directions of the plurality of cameras face outward in the radial direction of the circular arc, and the photographing directions of at least adjacent cameras among the plurality of cameras are different, a distance sensor that acquires information regarding the distance between the camera and the inner surface of the tunnel; a control device having a processor;
  • An imaging device wherein the processor controls photographing by the camera based on distance-related information output from the distance sensor.
  • the imaging device includes two first holding members, a plurality of second holding members, a plurality of cameras, and a plurality of illumination devices,
  • the two first holding members are a pair of plate-shaped members facing each other, and are arranged on the cart apart from each other in the running direction of the cart, and the plurality of second holding members are attached to the same plate. having a plurality of first attachment parts arranged on the circumference of the
  • the plurality of second holding members each include a second mounting part to which the camera and the lighting device are mounted, and a third mounting part to be mounted to the first mounting part of the first holding member.
  • the cameras respectively attached to the plurality of second holding members can be attached to the first holding members.
  • Imaging device 11 Tunnel inspection device 12: Camera unit 14: First holding member 20: Control device 101: Camera 103: Illumination device 105a: First holding member 105b: First holding member 107: Base plate 109a: Legs 109b: Legs 111a: Rotating base 111b: Rotating base 112: Elongated hole 113: Connection member 119a: Angle adjustment plate 119b: Angle adjustment plate 121: Rotating arm 121a: Screw 121b: First camera mounting portion 123: Frame Member 123a: First lighting device mounting section 123b: Second lighting device mounting section 125: Second holding member 200: Processor 202: Photographing condition control section 203: Auxiliary member 210: Memory 220: Database 230: Display section 240 : Input/output interface 250 : Operation unit 252 : Rider 254 : Third holding member 260 : Dolly 270 : Wheel 270a : Magnetic body 272 : Positioning sensor 294 : Oblong hole

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Studio Devices (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

Provided is an imaging device that includes: a plurality of cameras; and a plurality of illumination devices. The plurality of cameras are disposed in an arc shape in different radial directions. The imaging device (10) comprises: at least two first holding members (105a(105b)); and a plurality of cameras (101). The first holding members (105a(105b)) are disposed facing each other. The plurality of cameras (101) are disposed on the first holding members (105a(105b)) in an arc shape. The imaging direction of each of the plurality of cameras faces outward in a radial direction of an arc. Among the plurality of cameras (101), the imaging directions of at least adjacent cameras are different.

Description

撮像装置Imaging device
 本発明は、撮像装置に関し、トンネルの内面の画像を取得する撮像装置に関する。 The present invention relates to an imaging device, and more particularly, to an imaging device that acquires an image of the inner surface of a tunnel.
 従来、水力発電用施設の導水路や地下鉄のトンネルの内面は、定期的に目視点検が行われている。昨今、この目視点検は、カメラで撮像した画像を用いて行われるようになってきた。点検対象であるトンネルの内面の画像は、トンネルの内面の全周を効率良く撮像できる撮像装置により取得される。撮像装置は、複数のカメラと複数の照明装置とを有し、トンネルの内面の全周を撮影できるようにレイアウトされている。トンネルの内面を撮像する場合には、手動又は電動アシスト付きの台車に撮像装置を搭載し、その台車をトンネル内に走行させながら、一定のインターバルで静止画又は動画を撮像し、点検に用いる画像(動画像)の取得を行う。 Conventionally, visual inspections of the inner surfaces of hydroelectric power generation facilities' headrace channels and subway tunnels have been conducted on a regular basis. Recently, this visual inspection has come to be performed using images captured by a camera. An image of the inner surface of the tunnel to be inspected is acquired by an imaging device that can efficiently image the entire circumference of the inner surface of the tunnel. The imaging device has a plurality of cameras and a plurality of lighting devices, and is laid out so that it can photograph the entire circumference of the inner surface of the tunnel. When imaging the inner surface of a tunnel, an imaging device is mounted on a manual or electrically assisted trolley, and while the trolley is running inside the tunnel, still images or videos are taken at regular intervals and images used for inspection. (moving image).
 例えば、特許文献1には、トンネルの点検のためにトンネルの内面を撮像する複数のカメラ及び複数の照明装置を有する撮像装置が記載されている。 For example, Patent Document 1 describes an imaging device that includes a plurality of cameras and a plurality of illumination devices that image the inner surface of a tunnel for inspecting the tunnel.
特開2020-155902号公報Japanese Patent Application Publication No. 2020-155902
 本開示の技術にかかる一つの実施形態は、複数のカメラと複数の照明装置とを有し、複数のカメラが円弧状に異なる径方向に配置される撮像装置を提供する。 One embodiment according to the technology of the present disclosure provides an imaging device that includes a plurality of cameras and a plurality of illumination devices, and in which the plurality of cameras are arranged in an arc shape in different radial directions.
 本発明の一の態様である撮像装置は、少なくとも2つの第1の保持部材と、複数のカメラとを備え、第1の保持部材は、対向して配置され、複数のカメラは、第1の保持部材に円弧状に配置され、複数のカメラの撮影方向が円弧の径方向の外側に向き、複数のカメラのうち、少なくとも隣接するカメラの撮影方向が異なる。 An imaging device that is one aspect of the present invention includes at least two first holding members and a plurality of cameras, the first holding members are arranged to face each other, and the plurality of cameras are arranged to face each other. The plurality of cameras are arranged in an arc shape on the holding member, the shooting directions of the plurality of cameras are directed outward in the radial direction of the arc, and the shooting directions of at least adjacent cameras among the plurality of cameras are different.
 好ましくは、複数のカメラのうち、少なくとも隣接するカメラの撮影視野が一部重なる。 Preferably, the photographic fields of view of at least adjacent cameras among the plurality of cameras partially overlap.
 好ましくは、2つの第1の保持部材は、複数の第2の保持部材が取り付けられる、同一の円周上に配列された複数の第1の取付部を有し、複数の第2の保持部材は、それぞれカメラが取り付けられる第2の取付部を有し、少なくともカメラが取り付けられた複数の第2の保持部材を、2つの第1の保持部材に取り付けることにより、複数の第2の保持部材にそれぞれ取り付けられた複数のカメラは、第1の保持部材の中央部に対して円弧状に、かつそれぞれ異なる径方向に配置され、更に2つの第1の保持部材の間で異なる径方向に配置される。 Preferably, the two first holding members have a plurality of first attachment parts arranged on the same circumference to which the plurality of second holding members are attached, and the plurality of second holding members each has a second mounting part to which a camera is attached, and by attaching the plurality of second holding members to which at least the cameras are attached to the two first holding members, the plurality of second holding members The plurality of cameras respectively attached to the first holding member are arranged in an arc shape and in different radial directions with respect to the center of the first holding member, and are further arranged in different radial directions between the two first holding members. be done.
 好ましくは、複数の第2の保持部材は、それぞれカメラ及び照明装置が取り付けられる第2の取付部を有する。 Preferably, the plurality of second holding members each have a second mounting portion to which a camera and a lighting device are attached.
 好ましくは、円弧状に配置される複数のカメラが移動することにより、円弧の半径は変更可能である。 Preferably, the radius of the arc can be changed by moving a plurality of cameras arranged in an arc.
 好ましくは、第2の取付部は、少なくとも、第1のカメラ取付部、及び第2のカメラ取付部を備え、第1のカメラ取付部にカメラを取り付けた場合には、第2のカメラ取付部にカメラを取り付けた場合よりも、円弧の半径が大きい円弧状にカメラが配置される。 Preferably, the second mounting section includes at least a first camera mounting section and a second camera mounting section, and when a camera is attached to the first camera mounting section, the second camera mounting section The cameras are arranged in an arc with a larger radius than if the cameras were attached to the
 好ましくは、第2の取付部は、第1の照明装置取付部、第2の照明装置取付部、第1のカメラ取付部、及び第2のカメラ取付部から構成され、第1のカメラ取付部にカメラを取り付けた場合には、第1の照明装置取付部及び第2の照明装置取付部に照明装置を取り付け、第2のカメラ取付部にカメラを取り付けた場合には、第1の照明装置取付部に照明装置を取り付ける。 Preferably, the second mounting section includes a first lighting device mounting section, a second lighting device mounting section, a first camera mounting section, and a second camera mounting section, and the first camera mounting section When the camera is attached to the first lighting device mounting section and the second lighting device mounting section, the lighting device is attached to the first lighting device mounting section, and when the camera is mounted to the second camera mounting section, the lighting device is attached to the first lighting device mounting section. Attach the lighting device to the mounting section.
 好ましくは、第2のカメラ取付部にカメラを取り付けた場合には、第1のカメラ取付部にカメラを取り付けた場合よりも、2つの第1の保持部材に配置されるカメラ間の距離及び円弧の円周方向のカメラ間の距離が短くなる。 Preferably, when the camera is attached to the second camera attachment part, the distance and arc between the cameras disposed on the two first holding members are smaller than when the camera is attached to the first camera attachment part. The distance between the cameras in the circumferential direction becomes shorter.
 好ましくは、第1の取付部は、第1の保持部材における円弧の円周方向に沿って延びる長穴で構成され、第2の保持部材が長穴に沿って移動することにより、円弧状に配置されたカメラ間の間隔が変更される。 Preferably, the first attachment part is configured with an elongated hole extending along the circumferential direction of the arc in the first holding member, and the second holding member moves along the elongated hole to form an arc shape. The spacing between placed cameras is changed.
 好ましくは、複数の第2の保持部材は、第1の保持部材の第1の取付部に取り付けられる第3の取付部を有し、第3の取付部は、径方向に沿って延びる長穴で構成され、第2の保持部材は、第1の保持部材に対して径方向にスライドする。 Preferably, the plurality of second holding members have a third mounting portion that is attached to the first mounting portion of the first holding member, the third mounting portion being configured as an elongated hole extending along the radial direction, and the second holding members slide radially relative to the first holding member.
 好ましくは、トンネル内を走行する台車に搭載され、台車の少なくとも一つの車輪には、回転数を検出するセンサが設けられている。 Preferably, it is mounted on a trolley that travels in the tunnel, and at least one wheel of the trolley is provided with a sensor that detects the number of revolutions.
 好ましくは、カメラと内面との距離に関する情報を取得する距離センサを備える。 Preferably, a distance sensor is provided to obtain information regarding the distance between the camera and the inner surface.
 好ましくは、距離センサは、第3の保持部材に保持され、第3の保持部材は、第1の保持部材に取り付けられる。 Preferably, the distance sensor is held by a third holding member, and the third holding member is attached to the first holding member.
 好ましくは、プロセッサを有する制御装置を備え、プロセッサは、距離センサから出力される距離に関する情報に基づいて、カメラの撮影を制御する。 Preferably, a control device having a processor is provided, and the processor controls the camera's shooting based on the distance information output from the distance sensor.
図1は、撮像装置の正面斜視図である。FIG. 1 is a front perspective view of the imaging device. 図2は、撮像装置の側面図である。FIG. 2 is a side view of the imaging device. 図3は、撮像装置の正面図である。FIG. 3 is a front view of the imaging device. 図4は、撮像装置の背面図である。FIG. 4 is a rear view of the imaging device. 図5は、カメラユニットを示す図である。FIG. 5 is a diagram showing the camera unit. 図6は、第1の保持部材の正面斜視図である。FIG. 6 is a front perspective view of the first holding member. 図7は、カメラユニットと第1の保持部材との取り付け状態を説明する図である。FIG. 7 is a diagram illustrating how the camera unit and the first holding member are attached. 図8は、撮像装置の正面斜視図である。FIG. 8 is a front perspective view of the imaging device. 図9は、カメラユニットを示す図である。FIG. 9 is a diagram showing the camera unit. 図10は、トンネル点検装置を示す概念図である。FIG. 10 is a conceptual diagram showing a tunnel inspection device. 図11は、下方撮影用のカメラユニットを説明する図である。FIG. 11 is a diagram illustrating a camera unit for downward photography. 図12は、車輪を説明する概念図である。FIG. 12 is a conceptual diagram illustrating wheels. 図13は、制御装置のハードウェア構成の実施形態を示すブロック図である。FIG. 13 is a block diagram showing an embodiment of a hardware configuration of a control device. 図14は、プロセッサで実現される機能に関して説明するブロック図である。FIG. 14 is a block diagram illustrating functions implemented by the processor. 図15は、地下鉄のトンネルの点検の具体例に関して説明する図である。FIG. 15 is a diagram illustrating a specific example of inspecting a subway tunnel. 図16は、導水路のトンネルの点検の具体例に関して説明する図である。FIG. 16 is a diagram illustrating a specific example of inspecting a tunnel of a headrace. 図17は、トンネル検査方法に関して説明するフロー図である。FIG. 17 is a flow diagram illustrating a tunnel inspection method. 図18は、変形例1のトンネル点検装置に関して説明する図である。FIG. 18 is a diagram illustrating a tunnel inspection device according to modification 1. 図19は、変形例2の回転アームを説明する図である。FIG. 19 is a diagram illustrating a rotary arm according to modification 2.
 以下、添付図面にしたがって本発明に係る撮像装置の好ましい実施の形態について説明する。 Hereinafter, preferred embodiments of an imaging device according to the present invention will be described with reference to the accompanying drawings.
 先ず本発明に至った背景を説明する。トンネルの内壁面である内面の点検を、画像を利用して行う場合には、トンネルの内面を複数のカメラで撮像し、隣接画像同士がオーバーラップする範囲で特徴点を抽出して合成して一繋がりの平面展開図を生成する。そして、その平面展開図を用いて点検が行われる。調査員は、平面展開図を目視確認してひび割れなどを検出したり、平面展開図を活用して修繕計画を立案したりしている。また、平面展開図をAI(artificial intelligence)で構成させれた検出器に適用し、ひび割れの検出を行う場合もある。したがって、トンネルの内面の点検を行う場合には、ひび割れ等の損傷を検出可能な平面展開図を効率良く取得することが必要とされる。 First, the background that led to the present invention will be explained. When inspecting the inner surface of a tunnel using images, images are taken of the inner surface of the tunnel using multiple cameras, and feature points are extracted within the overlap between adjacent images and combined. Generate a continuous plan development view. Then, inspection is performed using the developed plan view. Investigators visually check the floor plans to detect cracks, etc., and use the floor plans to draw up repair plans. In addition, cracks may be detected by applying the plan development view to a detector configured with AI (artificial intelligence). Therefore, when inspecting the inner surface of a tunnel, it is necessary to efficiently obtain a developed plan view that can detect damage such as cracks.
 ここで、撮像装置で使用されるカメラは、撮影画角のバリエーション、検出したいひび割れの幅(例えば1mm以下の幅を有するひび割れも検出する場合もある)、台車走行時の振動対策なども考慮すると、高機能一眼レフカメラ(又は高機能一眼ミラーレスカメラ)が使用されることが好ましい。また、トンネル内は暗所が多いため、カメラごとに照明装置を併設する必要がある。したがって、トンネルの内面の全周又は略全周を撮像できるように、円弧状又は円状にカメラ及び照明装置を必要台数レイアウトすると、撮像装置の外形サイズは大きいものになる。 Here, the camera used in the imaging device should take into account variations in the shooting angle of view, the width of the crack to be detected (for example, cracks with a width of 1 mm or less may also be detected), vibration countermeasures when the trolley is running, etc. , a high-performance single-lens reflex camera (or a high-performance single-lens reflex camera) is preferably used. Additionally, since there are many dark places inside the tunnel, it is necessary to install a lighting device for each camera. Therefore, if the required number of cameras and illumination devices are laid out in an arcuate or circular shape so that the entire circumference or substantially the entire circumference of the inner surface of the tunnel can be imaged, the external size of the imaging device becomes large.
 ここでトンネルの直径が6mを超える場合には、撮像装置の搬入経路や現場での組立作業スペースなどを十分に確保できる。一方、トンネルの直径が2m以下の小径導水路トンネルになると、搬入経路が狭所で通れなかったり、組立スペースが狭く作業できなかったりする。さらに、トンネル直径が2m以下の小径導水路トンネルである場合には、台車が走行している際に、蛇行してしまいトンネル内面と干渉してしまうという問題が生じる場合がある。したがって、従来小径のトンネル点検を行う場合には、作業員が台車に仰向けに寝そべり移動しながら、カメラを手持ちして撮像するなどして対応していた。 Here, if the diameter of the tunnel exceeds 6 m, sufficient space can be secured for the delivery route for the imaging device and the assembly work space on site. On the other hand, in the case of small-diameter headrace tunnels with a diameter of 2 m or less, the delivery route is too narrow to pass through, or the assembly space is too narrow to carry out work. Furthermore, in the case of a small-diameter headrace tunnel with a tunnel diameter of 2 m or less, there may be a problem that when the bogie is running, it meanderes and interferes with the inner surface of the tunnel. Therefore, conventionally, when inspecting small-diameter tunnels, workers would lie on their backs on a trolley while carrying a handheld camera to take images.
 以上より、以下で説明する本開示では、大径から小径までのトンネルの内面の撮像を効率良く行うことができる撮像装置を提案する。 In view of the above, the present disclosure described below proposes an imaging device that can efficiently image the inner surface of tunnels from large diameters to small diameters.
 <大径のトンネルを撮像する場合の撮像装置>
 先ず、直径が比較的大きな径(大径)のトンネルを撮像する場合の撮像装置に関して説明する。なお、ここで大径のトンネルとは、例えば直径が3m~10mのトンネルのことをいう。
<Imaging device for imaging large diameter tunnels>
First, an imaging apparatus for imaging a tunnel with a relatively large diameter (large diameter) will be described. Note that the large diameter tunnel here refers to a tunnel with a diameter of 3 m to 10 m, for example.
 図1~図4は、大径のトンネルを撮像する場合の撮像装置を説明する図である。図1は撮像装置の正面斜視図であり、図2は撮像装置の側面図であり、図3は撮像装置の正面図であり、図4は撮像装置の背面図である。以下の説明では、正面とはプラスZ軸側から見た面であり、側面とはX軸方向から見た面であり、背面とはマイナスZ軸側から見た面である。なお、撮像装置10は、台車260(図10を参照)に搭載されて、走行方向Wに移動しながら検査対象のトンネルの内面の画像を取得する。その後、取得された画像により、トンネルの内面の平面展開図が生成される。 FIGS. 1 to 4 are diagrams illustrating an imaging device for imaging a large-diameter tunnel. FIG. 1 is a front perspective view of the imaging device, FIG. 2 is a side view of the imaging device, FIG. 3 is a front view of the imaging device, and FIG. 4 is a rear view of the imaging device. In the following description, the front is a surface viewed from the plus Z-axis side, the side surface is a surface viewed from the X-axis direction, and the back surface is a surface viewed from the minus Z-axis side. Note that the imaging device 10 is mounted on a trolley 260 (see FIG. 10), and while moving in the traveling direction W, acquires an image of the inner surface of the tunnel to be inspected. Thereafter, a developed plan view of the inner surface of the tunnel is generated from the acquired images.
 撮像装置10は主に、正面側の第1の保持部材105a、背面側の第1の保持部材105b、第1の保持部材105a及び105bに取り付けられる複数のカメラユニット12(図5を参照)から構成される。大径のトンネルの内面を撮像する場合には、カメラユニット12は、2つの照明装置103と1つのカメラ101、第2の保持部材125で構成される(図5参照)。 The imaging device 10 mainly includes a first holding member 105a on the front side, a first holding member 105b on the back side, and a plurality of camera units 12 (see FIG. 5) attached to the first holding members 105a and 105b. configured. When capturing an image of the inner surface of a large-diameter tunnel, the camera unit 12 includes two lighting devices 103, one camera 101, and a second holding member 125 (see FIG. 5).
 撮像装置10は、正面側の第1の保持部材105aに4つ(4式)のカメラユニット12が設けられ(図3参照)、背面側の第1の保持部材105bに5つ(5式)のカメラユニット12が設けられている(図4参照)。カメラユニット12に取り付けられたカメラ101は、回転ベース111a及び回転ベース111bの中心O(中央部)に対して円弧状になるように配置されている。この場合、カメラ101の撮影方向は、その円弧の径方向になるように、カメラ101が配置される。また、カメラユニット12に取り付けられた照明装置103も、カメラ101と同様に、回転ベース111a及び回転ベース111bの中心O(中央部)に対して円弧状になるように配置されている。なお、以下の説明では、上述したカメラ101で形作られる円弧(円弧状)のことを、単に円弧(円弧状)と記載する。また、上述したカメラ101で形作られる円弧(円弧状)の径方向及び円周方向のことを単に径方向及び円周方向という。 In the imaging device 10, four (4 types) camera units 12 are provided on the first holding member 105a on the front side (see FIG. 3), and five (5 types) are provided on the first holding member 105b on the back side. A camera unit 12 is provided (see FIG. 4). The camera 101 attached to the camera unit 12 is arranged in an arc shape with respect to the center O (center portion) of the rotation base 111a and the rotation base 111b. In this case, the camera 101 is arranged so that the photographing direction of the camera 101 is in the radial direction of the arc. Further, like the camera 101, the illumination device 103 attached to the camera unit 12 is also arranged in an arc shape with respect to the center O (center portion) of the rotation base 111a and the rotation base 111b. In addition, in the following description, the circular arc (circular arc shape) formed by the camera 101 mentioned above is simply described as a circular arc (circular arc shape). Furthermore, the radial direction and circumferential direction of the arc (circular arc shape) formed by the camera 101 described above are simply referred to as the radial direction and circumferential direction.
 また、カメラ101の撮影方向(カメラ101の光軸方向)は、少なくとも隣接するカメラ101では異なる。さらに、正面側の第1の保持部材105aに取り付けられているカメラ101及び背面側の第1の保持部材105bに取り付けられているカメラ101は、それぞれ異なる撮影方向を有するように設けられている。また同様に、照明装置103は、照射方向が、円弧の径方向に沿うように設けられており、正面側の第1の保持部材105aに取り付けられている照明装置103及び背面側の第1の保持部材105bに取り付けられている照明装置103は、それぞれ異なる照射方向を有するように設けられている。 Furthermore, the photographing direction of the camera 101 (optical axis direction of the camera 101) is different between at least adjacent cameras 101. Furthermore, the camera 101 attached to the first holding member 105a on the front side and the camera 101 attached to the first holding member 105b on the back side are provided so as to have different photographing directions. Similarly, the lighting device 103 is provided so that the irradiation direction is along the radial direction of the arc, and the lighting device 103 is attached to the first holding member 105a on the front side and the first holding member 105a on the back side. The lighting devices 103 attached to the holding member 105b are provided so as to have different irradiation directions.
 このように、カメラ101が配置されることにより、図1及び図2に示すように、正面側の第1の保持部材105aに設けられたカメラ101と、背面側の第1の保持部材105bに設けられたカメラ101とで、ジグザグ形状(千鳥形状)を成す(図1及び図2の線Lを参照)。すなわち、図1及び図2に示す線Lで示すように、カメラ101はジグザグ形状を成しており、線Lで結ばれたカメラ101はサイドラップS及びオーバーラップTにより、撮影された画像において部分的に重複する(撮影視野が一部重なる)。これは、カメラ101の各々において、隣接するカメラ101の撮影視野が一部で重なることは意味する。このように、部分的に重複する部分を有するように画像を取得することにより、取得された複数の画像を合成して一繋がりの平面展開図を生成することができる。 By arranging the camera 101 in this way, as shown in FIGS. 1 and 2, the camera 101 provided on the first holding member 105a on the front side and the first holding member 105b on the back side are connected to each other. Together with the provided camera 101, it forms a zigzag shape (staggered shape) (see line L in FIGS. 1 and 2). That is, as shown by the line L shown in FIGS. 1 and 2, the cameras 101 have a zigzag shape, and the cameras 101 connected by the line L have side overlaps S and overlaps T, so that the captured images are Partial overlap (the photographic fields of view partially overlap). This means that in each of the cameras 101, the photographing fields of adjacent cameras 101 partially overlap. In this way, by acquiring images so that they have partially overlapping parts, it is possible to synthesize a plurality of acquired images and generate a continuous plan development view.
 また、照明装置103も同様に、正面側の第1の保持部材105aに設けられた照明装置103と、背面側の第1の保持部材105bに設けられた照明装置103とで、ジグザグ形状(千鳥形状)を成している。 Similarly, the lighting device 103 has a zigzag shape (zigzag shape) with the lighting device 103 provided on the first holding member 105a on the front side and the lighting device 103 provided on the first holding member 105b on the back side. shape).
 以上で説明したように、カメラ101及び照明装置103をジグザグ形状に配置することにより、撮像装置10の外形サイズを小さくすることができ、また取得した画像により平面展開図を生成することもできる。 As explained above, by arranging the camera 101 and the illumination device 103 in a zigzag shape, the external size of the imaging device 10 can be reduced, and a planar development view can also be generated from the acquired images.
 次に、カメラユニット12に関して、詳しく説明をする。 Next, the camera unit 12 will be explained in detail.
 図5は、大径のトンネルを撮像する場合の撮像装置10に取り付けられるカメラユニット12を示す図である。カメラユニット12は、1つのカメラ101、2つの照明装置103、及び第2の保持部材125で構成されている。第2の保持部材125は、枠部材123、回転アーム121で構成される。 FIG. 5 is a diagram showing the camera unit 12 attached to the imaging device 10 when imaging a large-diameter tunnel. The camera unit 12 includes one camera 101, two lighting devices 103, and a second holding member 125. The second holding member 125 includes a frame member 123 and a rotating arm 121.
 カメラ101は、高機能の一眼レフカメラ又は高機能の一眼ミラーレスカメラで構成されることが望ましいが、使用されるカメラに関しては特に限定されるものではない。カメラ101のセンサーサイズやレンズの焦点距離を変更することで、撮影画角や、検査において確認したい最小ひび割れ幅に応じて画素分解能を調整することが可能である。 The camera 101 is preferably configured with a high-performance single-lens reflex camera or a high-performance single-lens reflex camera, but the camera used is not particularly limited. By changing the sensor size and lens focal length of the camera 101, it is possible to adjust the pixel resolution according to the shooting angle of view and the minimum crack width that is desired to be confirmed during inspection.
 照明装置103は、併設されるカメラ101の撮影画角を超えた配光角を有する。また、照明装置103は、カメラ101の撮影シャッタースピードと同じ周波数のフリッカを有さないことが必要である。 The illumination device 103 has a light distribution angle that exceeds the angle of view of the camera 101 attached thereto. Further, the illumination device 103 needs not to have flicker at the same frequency as the photographing shutter speed of the camera 101.
 第2の保持部材125は、回転アーム121と枠部材123とで構成される。回転アーム121は、枠部材123の窓部に挿通されて固定されている。枠部材123は矩形形状を有し、矩形形状の対向する端部には、第1の照明装置取付部123a及び第2の照明装置取付部123bを有する。第1の照明装置取付部123a及び第2の照明装置取付部123bには、必要な照度に応じて、様々なタイプのものを搭載できるように、取付穴が複数設けられていることが好ましい。また、照明装置103は、第1の照明装置取付部123a及び第2の照明装置取付部123bに着脱可能に取り付けられている。点検を行うトンネルによっては、照明装置103が必要ない場合があり、その場合には照明装置103を取り外し、撮像装置10の軽量化を図ることができる。 The second holding member 125 is composed of a rotating arm 121 and a frame member 123. The rotating arm 121 is inserted into and fixed to the window portion of the frame member 123. The frame member 123 has a rectangular shape, and has a first lighting device mounting portion 123a and a second lighting device mounting portion 123b at opposite ends of the rectangular shape. It is preferable that a plurality of mounting holes be provided in the first lighting device mounting portion 123a and the second lighting device mounting portion 123b so that various types of lighting devices can be mounted depending on the required illuminance. Further, the lighting device 103 is detachably attached to the first lighting device mounting portion 123a and the second lighting device mounting portion 123b. Depending on the tunnel to be inspected, the lighting device 103 may not be necessary, and in that case, the lighting device 103 can be removed to reduce the weight of the imaging device 10.
 回転アーム121は、枠部材123に接続されている。また、回転アーム121は、ネジ121aを有しており、ネジ121aにより締め付けられて回転ベース111aや回転ベース111bに取り付けられる(図7参照)。また、回転アーム121は、両端部の一方にカメラ101が取り付けられる第1のカメラ取付部121bを有している。カメラ101は、第1のカメラ取付部121bに、カメラ101の底面に設けられる三脚ネジを使用して取り付けられる。カメラ101が第1のカメラ取付部121bに取り付けられることにより、カメラ101の電池蓋、背面操作系へアクセスが可能な状態でレイアウトされる。 The rotating arm 121 is connected to the frame member 123. Further, the rotating arm 121 has a screw 121a, and is attached to the rotating base 111a or the rotating base 111b by being tightened by the screw 121a (see FIG. 7). Further, the rotating arm 121 has a first camera attachment part 121b on one of both ends, to which the camera 101 is attached. The camera 101 is attached to the first camera attachment part 121b using a tripod screw provided on the bottom of the camera 101. By attaching the camera 101 to the first camera attachment part 121b, the layout is such that the battery cover and rear operation system of the camera 101 are accessible.
 なお、第1のカメラ取付部121b、第1の照明装置取付部123a、及び第2の照明装置取付部123bは、第2の保持部材125における第2の取付部を構成する。 Note that the first camera mounting portion 121b, the first lighting device mounting portion 123a, and the second lighting device mounting portion 123b constitute a second mounting portion of the second holding member 125.
 次に、第1の保持部材105a(105b)に関して詳細に説明する。 Next, the first holding member 105a (105b) will be described in detail.
 図6及び図7は、第1の保持部材105a(105b)を説明する図である。図6は、第1の保持部材105a(105b)の正面斜視図であり、図7は、カメラユニット12と第1の保持部材105aとの取り付け状態を説明する図である。 6 and 7 are diagrams explaining the first holding member 105a (105b). FIG. 6 is a front perspective view of the first holding member 105a (105b), and FIG. 7 is a diagram illustrating a state in which the camera unit 12 and the first holding member 105a are attached.
 正面側の第1の保持部材105aと背面側の第1の保持部材105bとは、接続部材113及びベースプレート107で、走行方向Wに離間して対向した状態で接続されている。 The first holding member 105a on the front side and the first holding member 105b on the back side are connected to each other by the connecting member 113 and the base plate 107 while facing each other and being spaced apart in the traveling direction W.
 ベースプレート107は、正面側の第1の保持部材105aと背面側の第1の保持部材105bとが載るプレートであり、台車260(図10を参照)と接続する。台車260とベースプレート107との固定は、不図示のノブを手作業で締め込むことで行われる。これにより、工具等を準備せずに、手作業で台車260への撮像装置10の固定作業を完結することができる。 The base plate 107 is a plate on which the first holding member 105a on the front side and the first holding member 105b on the back side are mounted, and is connected to the trolley 260 (see FIG. 10). The carriage 260 and the base plate 107 are fixed by manually tightening a knob (not shown). Thereby, the work of fixing the imaging device 10 to the trolley 260 can be completed manually without preparing any tools or the like.
 正面側の第1の保持部材105aは、脚部109a、回転ベース111a、及び角度調整板119aから構成される。また、背面側の第1の保持部材105bは、脚部109b、回転ベース111b、及び角度調整板119b(不図示)から構成される。以下の説明では、正面側の第1の保持部材105aに関して説明を行うが、背面側の第1の保持部材105bも同様の構成である。 The first holding member 105a on the front side is composed of a leg portion 109a, a rotation base 111a, and an angle adjustment plate 119a. Further, the first holding member 105b on the back side includes a leg portion 109b, a rotation base 111b, and an angle adjustment plate 119b (not shown). In the following description, the first holding member 105a on the front side will be explained, but the first holding member 105b on the back side has a similar configuration.
 脚部109aは、下端でベースプレート107に対して垂直に取り付けられており、上端で接続部材113に取り付けられている。回転ベース111aは、角度調整板119aと共に、脚部109aの上端に取り付けられる。角度調整板119aは、回転ベース111aの回転角度を調整することができる。調整角度ピッチは、作業性や剛性の観点で決定し、任意又は数°毎とすることができる。また、回転ベース111aには目盛りを付して、角度調整量を目視確認できるようにする。 The leg portion 109a is attached perpendicularly to the base plate 107 at the lower end, and attached to the connecting member 113 at the upper end. The rotation base 111a is attached to the upper end of the leg portion 109a together with the angle adjustment plate 119a. The angle adjustment plate 119a can adjust the rotation angle of the rotation base 111a. The adjustment angle pitch is determined from the viewpoint of workability and rigidity, and can be set arbitrarily or every several degrees. Further, the rotary base 111a is provided with a scale so that the angle adjustment amount can be visually confirmed.
 第1の保持部材105aとカメラユニット12とは、回転ベース111aの長穴112(第1の取付部)に回転アーム121が取り付けられることにより、接続される。具体的には、回転ベース111aの円周方向に沿って延びる長穴112と回転アーム121のネジ121aにより、第1の保持部材105aとカメラユニット12とは接続される。ネジ121aは、手作業で締め込むなどして、工具を必要とせずに完結する構造とする。これにより、点検作業を行う場所において下に水等があり、工具を使った作業が難しい箇所においても、第1の保持部材105aとカメラユニット12とを接続することが可能となる。また、長穴112に沿って回転アーム121を移動させることにより、カメラユニット12は、回転ベース111a上で円弧の円周方向に角度調整を行うことができる。これにより、円弧状に配置されたカメラ101とカメラ101との間隔を変更することができる。 The first holding member 105a and the camera unit 12 are connected by attaching the rotating arm 121 to the elongated hole 112 (first attachment part) of the rotating base 111a. Specifically, the first holding member 105a and the camera unit 12 are connected by an elongated hole 112 extending along the circumferential direction of the rotation base 111a and a screw 121a of the rotation arm 121. The screw 121a has a structure that can be tightened manually without the need for tools. This makes it possible to connect the first holding member 105a and the camera unit 12 even in locations where inspection work is to be performed, where there is water or the like underneath and where it is difficult to perform work using tools. Further, by moving the rotating arm 121 along the elongated hole 112, the camera unit 12 can adjust the angle in the circumferential direction of the arc on the rotating base 111a. Thereby, the distance between the cameras 101 arranged in an arc shape can be changed.
 カメラユニット12は、撮像装置10の円周方向に最大で9式搭載可能である。また、回転ベース111a及び回転ベース111bは、台車260の走行方向Wに沿ってオフセットされた状態で設置されている。また、台車260の高い走行安定性を得るために、回転ベース111a及び回転ベース111bはなるべく低重心にレイアウトすることが好ましい。また、図示した回転ベース111a及び回転ベース111bは、円盤形状を有しているがこれに限定されるものではない。例えば、回転ベース111a及び回転ベース111bは矩形形状の板部材で構成されてもよい。 A maximum of nine camera units 12 can be mounted in the circumferential direction of the imaging device 10. Moreover, the rotation base 111a and the rotation base 111b are installed in an offset state along the traveling direction W of the trolley 260. Further, in order to obtain high running stability of the trolley 260, it is preferable that the rotation base 111a and the rotation base 111b are laid out as low as possible in the center of gravity. Furthermore, although the illustrated rotating base 111a and rotating base 111b have a disk shape, they are not limited to this. For example, the rotation base 111a and the rotation base 111b may be formed of rectangular plate members.
 以上で説明したように、大径のトンネルを撮像する場合には、撮像装置10はカメラ101を第1のカメラ取付部121bに取り付け、第1の照明装置取付部123a及び第2の照明装置取付部123bに照明装置103を取り付けて、トンネルの内面の撮像を行う。これにより、大径のトンネルの内面を効率良く撮像することができる。また、取得した画像により、適切に点検を行うことができる平面展開図を生成することができる。 As explained above, when imaging a large-diameter tunnel, the imaging device 10 attaches the camera 101 to the first camera attachment part 121b, and attaches the camera 101 to the first illumination device attachment part 123a and the second illumination device attachment part 123a. The illumination device 103 is attached to the section 123b to image the inner surface of the tunnel. This makes it possible to efficiently image the inner surface of a large-diameter tunnel. Moreover, the acquired image can generate a plan development view that allows for appropriate inspection.
 <小径のトンネルを撮像する場合の撮像装置>
 次に、直径が比較的小さな径(小径)のトンネルを撮像する場合の撮像装置10に関して説明する。なお、ここで小径のトンネルとは、例えば直径が1.5m~2mのトンネルのことをいう。また、上述した大径のトンネルを撮像する場合の撮像装置10と同じ箇所は説明を省略する。
<Imaging device for imaging a small tunnel>
Next, the imaging device 10 when imaging a tunnel with a relatively small diameter (small diameter) will be described. Note that a small diameter tunnel here refers to a tunnel with a diameter of, for example, 1.5 m to 2 m. Also, the description of the same parts as those of the imaging device 10 when imaging a large diameter tunnel described above will be omitted.
 図8及び図9は、小径のトンネルを撮像する場合の撮像装置10を説明する図である。図8は、小径のトンネルを撮像する場合の撮像装置10の正面斜視図であり、図9は、小径のトンネルを撮像する場合のカメラユニット12を示す図である。 FIGS. 8 and 9 are diagrams illustrating the imaging device 10 when imaging a small diameter tunnel. FIG. 8 is a front perspective view of the imaging device 10 when capturing an image of a small-diameter tunnel, and FIG. 9 is a diagram showing the camera unit 12 when capturing an image of a small-diameter tunnel.
 撮像装置10には、大径のトンネルを撮像する場合と同様に9式のカメラユニット12が搭載される。具体的には、正面側の第1の保持部材105aに4式のカメラユニット12が設けられ、背面側の第1の保持部材105bに5式のカメラユニット12が設けられる。 The imaging device 10 is equipped with nine camera units 12 as in the case of imaging a large-diameter tunnel. Specifically, four types of camera units 12 are provided on the first holding member 105a on the front side, and five types of camera units 12 are provided on the first holding member 105b on the back side.
 カメラユニット12に取り付けられたカメラ101は、回転ベース111a及び回転ベース111bの中心O(中央部)に対して円弧状になるように配置されている。また、カメラユニット12に取り付けられた照明装置103も、カメラ101と同様に、回転ベース111a及び回転ベース111bの中心O(中央部)に対して円弧状になるように配置されている。また、カメラ101の撮影方向は、それぞれ異なる径方向に配置され、さらに2つの第1の保持部材105a及び105bの間で異なる径方向に配置される。 The camera 101 attached to the camera unit 12 is arranged in an arc shape with respect to the center O (center portion) of the rotation base 111a and the rotation base 111b. Further, like the camera 101, the illumination device 103 attached to the camera unit 12 is also arranged in an arc shape with respect to the center O (center portion) of the rotation base 111a and the rotation base 111b. Furthermore, the photographing directions of the cameras 101 are arranged in different radial directions, and further, the two first holding members 105a and 105b are arranged in different radial directions.
 カメラユニット12は、1つのカメラ101、1つの照明装置103、及び第2の保持部材125で構成される。第2の保持部材125は、枠部材123、回転アーム121、補助部材203で構成される。 The camera unit 12 includes one camera 101, one lighting device 103, and a second holding member 125. The second holding member 125 includes a frame member 123, a rotating arm 121, and an auxiliary member 203.
 小径のトンネルの内面を撮像する場合には、カメラ101は、第1のカメラ取付部121bから取り外され、補助部材203に取り付けられる。また、第2の照明装置取付部123bに取り付けられていた照明装置103は取り外され、第2の照明装置取付部123bに補助部材203を取り付ける。補助部材203の両端部の一端部と第2の照明装置取付部123bとを接続し、補助部材203の他端(第2のカメラ取付部)にはカメラ101を取り付ける。このように、カメラ101を第2のカメラ取付部に取り付けることにより、カメラ101が第1のカメラ取付部121bに取り付けられた場合に比べて、カメラ101で形作られた円弧の半径は短く変更される。さらに、カメラ101を第2のカメラ取付部に取り付けることにより、カメラ101が第1のカメラ取付部121bに取り付けられた場合に比べて、正面側の第1の保持部材105aに配置されるカメラ101と背面側の第1の保持部材105bに配置されるカメラ101との距離、及び円周方向のカメラ101間の距離が短く変更される。なお、第2のカメラ取付部は、第2の保持部材125の第2の取付部を構成する。また、補助部材203としては、様々な形状の部材が採用される。例えば、補助部材203としてL字形状の板部材が用いられる。 When photographing the inner surface of a small-diameter tunnel, the camera 101 is removed from the first camera attachment part 121b and attached to the auxiliary member 203. Furthermore, the lighting device 103 that was attached to the second lighting device attachment portion 123b is removed, and the auxiliary member 203 is attached to the second lighting device attachment portion 123b. One end of both ends of the auxiliary member 203 is connected to the second lighting device attachment part 123b, and the camera 101 is attached to the other end (second camera attachment part) of the auxiliary member 203. In this way, by attaching the camera 101 to the second camera attachment part, the radius of the arc formed by the camera 101 is shortened compared to when the camera 101 is attached to the first camera attachment part 121b. Ru. Furthermore, by attaching the camera 101 to the second camera attachment part, the camera 101 is placed on the first holding member 105a on the front side, compared to when the camera 101 is attached to the first camera attachment part 121b. The distance between the camera 101 and the camera 101 disposed on the first holding member 105b on the back side, and the distance between the cameras 101 in the circumferential direction are shortened. Note that the second camera attachment portion constitutes a second attachment portion of the second holding member 125. Moreover, as the auxiliary member 203, members of various shapes are employed. For example, an L-shaped plate member is used as the auxiliary member 203.
 このように、小径のトンネルを撮影する場合には、第2の照明装置取付部123bに取り付けられている照明装置103を取り外し、カメラ101を補助部材203(第2のカメラ取付部)に取り付けることにより、カメラ101で形作られる円弧の半径を短くすることができ、小径のトンネルを撮像することが可能なサイズの撮像装置10を構成する。これにより、撮像装置10は、小径のトンネルであっても、カメラ101の撮影画角や最短撮影距離(MOD:Minimum Object Distance)を確保して、トンネルの内面の撮像を行うことができる。また、得られた画像により、適切に点検が可能な平面展開図を生成することが可能となる。 In this way, when photographing a tunnel with a small diameter, the illumination device 103 attached to the second illumination device attachment part 123b is removed and the camera 101 is attached to the auxiliary member 203 (second camera attachment part). Accordingly, the radius of the arc formed by the camera 101 can be shortened, and the imaging device 10 is configured with a size that can image a tunnel with a small diameter. As a result, the imaging device 10 can image the inner surface of the tunnel while ensuring the angle of view and minimum object distance (MOD) of the camera 101 even in a small diameter tunnel. Furthermore, the obtained image makes it possible to generate a plan development view that can be properly inspected.
 なお、上述では大径のトンネルを撮像する場合の撮像装置10及び小径のトンネルを撮像する場合の撮像装置10などの撮像装置10の組み立て条件は、「パラメータ計算ファイル」による自動計算結果に算出してもよい。例えば、パラメータ計算ファイルは、トンネル形状、検出したいひび割れの幅、及び台車260の走行条件が入力されると、レンズの種類(焦点距離など)、カメラ101の設置台数、取付角度などを自動で出力する。点検対象であるトンネルの径は1.5~10mまで様々であるので、点検対象のトンネルごとにCAD(computer-aided design)データを参照しながらカメラ101の撮影条件(レンズ種類/設置台数/取付角度)を事前に決める必要がある。しかし、トンネルの中心に撮像中心がない場合は、カメラ101ごとに条件設定が変わり非常に手間と時間を要する作業となる。したがって、パラメータ計算ファイルのようなソフトウェアを用いると、カメラ101の設定にあまり知識を有さないユーザでも、簡単に短時間でカメラ101の設定を行うことができる。 In addition, in the above, the assembly conditions of the imaging device 10 such as the imaging device 10 when imaging a large-diameter tunnel and the imaging device 10 when imaging a small-diameter tunnel are calculated based on the automatic calculation results using the "parameter calculation file". It's okay. For example, the parameter calculation file automatically outputs the type of lens (focal length, etc.), the number of cameras 101 installed, the mounting angle, etc. when the tunnel shape, the width of the crack to be detected, and the running conditions of the trolley 260 are input. do. The diameter of the tunnels to be inspected varies from 1.5 to 10 m, so the photographing conditions of the camera 101 (lens type/number of units installed/installation angle) must be determined in advance. However, if the imaging center is not located at the center of the tunnel, the condition settings will vary for each camera 101, resulting in a very labor-intensive and time-consuming task. Therefore, by using software such as a parameter calculation file, even a user who does not have much knowledge about setting the camera 101 can easily set the camera 101 in a short time.
 <トンネル点検装置>
 次に、撮像装置10を搭載したトンネル点検装置11に関して説明する。撮像装置10は、トンネル点検装置11を構成するトンネル内を走行する台車260に搭載され、トンネルの内面を撮像する。なお、トンネル点検装置11も撮像装置の一形態である。
<Tunnel inspection device>
Next, the tunnel inspection device 11 equipped with the imaging device 10 will be explained. The imaging device 10 is mounted on a trolley 260 that runs inside the tunnel and constitutes the tunnel inspection device 11, and images the inner surface of the tunnel. Note that the tunnel inspection device 11 is also one form of an imaging device.
 図10は、トンネル点検装置11を示す概念図である。 FIG. 10 is a conceptual diagram showing the tunnel inspection device 11.
 トンネル点検装置11は主に、撮像装置10、台車260、及び制御装置20で構成されている。また、撮像装置10には、第3の保持部材254が取り付けられている。第3の保持部材254の一端は、回転ベース111aに取り付けられており、他端にはライダ252が取り付けられている。ライダ252は、測距センサの一例である。距離センサとしてはトンネルの内面までの距離の情報が取得できればよく、ライダ252の他に、TOF(Time Of Flight)カメラなどを用いることができる。また、第3の保持部材254には、下方(マイナスY軸方向)を撮影するためのカメラ101を備えるカメラユニット12が取り付けられる。 The tunnel inspection device 11 mainly includes an imaging device 10, a trolley 260, and a control device 20. Further, a third holding member 254 is attached to the imaging device 10. One end of the third holding member 254 is attached to the rotating base 111a, and the rider 252 is attached to the other end. The lidar 252 is an example of a ranging sensor. The distance sensor only needs to be able to acquire information on the distance to the inner surface of the tunnel, and in addition to the lidar 252, a TOF (Time Of Flight) camera or the like can be used. Further, the camera unit 12 including the camera 101 for photographing the downward direction (minus Y-axis direction) is attached to the third holding member 254.
 図11は、下方撮影用のカメラユニット12を説明する図である。 FIG. 11 is a diagram illustrating the camera unit 12 for downward photography.
 下方撮影用のカメラユニット12は、カメラ101、2つの照明装置103を備える。カメラ101は、トンネル点検装置11が走行する際に下方(例えば地面)を撮像する。カメラユニット12の構成は、図5で既に説明をしているので、ここでは詳細な説明は省略する。 The camera unit 12 for downward photography includes a camera 101 and two lighting devices 103. The camera 101 images the area below (for example, the ground) when the tunnel inspection device 11 travels. The configuration of the camera unit 12 has already been explained with reference to FIG. 5, so a detailed explanation will be omitted here.
 台車260は、4つの車輪270を有する。車輪270が駆動することにより、トンネル点検装置11は、検査対象であるトンネル内を走行する。なお、本例の台車260の走行は制御装置20で制御されるがこれに限定されるものではない。例えば、手動により台車260の走行を制御してもよい。 The truck 260 has four wheels 270. By driving the wheels 270, the tunnel inspection device 11 travels inside the tunnel to be inspected. Note that, although the traveling of the trolley 260 in this example is controlled by the control device 20, it is not limited to this. For example, traveling of the trolley 260 may be controlled manually.
 図12は、車輪270を説明する概念図である。なお、図12では、模式的に1つの車輪270のみ図示を行っている。また、測位センサ272の台車260への取り付け機構等の図示は省略している。 FIG. 12 is a conceptual diagram explaining the wheel 270. Note that in FIG. 12, only one wheel 270 is schematically illustrated. Furthermore, illustrations of a mechanism for attaching the positioning sensor 272 to the trolley 260 are omitted.
 車輪270には、測位センサ272が取り付けられており、台車260の移動距離が測定される。具体的には、車輪270の円周面に磁性体270aを配置し、その磁性体270aを台車260の本体に設けられた測位センサ272により検出する。これにより、車輪270が回転する毎に磁性体270aを検出し、車輪270が回転する毎に立ち上がるパルス回数から車輪270の回転数を計測し移動距離を算出することができる。なお、測位センサ272で推定された台車260の移動距離と撮像装置10で取得された画像を関連付けることにより、点検作業の効率化を図ることができる。例えば、合成された平面展開図を表示する場合に、表示されている箇所の座標位置情報を合わせて表示することができる。また、測位センサ272の情報は、平面展開図を合成する際に、特徴点抽出ができなかった場合に、合成位置の微調整や特徴点抽出時の補足情報として活用できる。また、車輪270に備えた測位センサ272により、台車260の測位を行うことにより、GPS(Global Positioning System)が使用できない環境下においても測位が可能となり、取得した画像と対応する位置を把握することができる。なお、測位センサ272は、少なくとも一つの車輪270に取り付ければよく、複数の車輪270に取り付けてもよい。複数の車輪270に測位センサ272を取り付けることにより、より正確な台車260の移動距離を得ることができる。また、測位センサ272は、例えば電磁式近接センサで構成される。 A positioning sensor 272 is attached to the wheel 270, and the moving distance of the trolley 260 is measured. Specifically, a magnetic body 270a is arranged on the circumferential surface of the wheel 270, and the magnetic body 270a is detected by a positioning sensor 272 provided on the main body of the cart 260. Thereby, the magnetic body 270a is detected every time the wheel 270 rotates, and the number of rotations of the wheel 270 can be measured from the number of pulses that rise each time the wheel 270 rotates, and the distance traveled can be calculated. Note that by associating the moving distance of the trolley 260 estimated by the positioning sensor 272 with the image acquired by the imaging device 10, it is possible to improve the efficiency of the inspection work. For example, when displaying a combined plan development view, coordinate position information of the displayed location can also be displayed. In addition, the information from the positioning sensor 272 can be used as supplementary information for fine-tuning the synthesis position and extracting feature points when feature points cannot be extracted when composing a developed plan view. Furthermore, by positioning the trolley 260 using the positioning sensor 272 provided on the wheels 270, positioning is possible even in environments where GPS (Global Positioning System) cannot be used, and the position corresponding to the acquired image can be grasped. Can be done. Note that the positioning sensor 272 may be attached to at least one wheel 270, or may be attached to a plurality of wheels 270. By attaching positioning sensors 272 to a plurality of wheels 270, a more accurate moving distance of trolley 260 can be obtained. Furthermore, the positioning sensor 272 is configured with, for example, an electromagnetic proximity sensor.
 図13は、図10に示した制御装置20のハードウェア構成の実施形態を示すブロック図である。 FIG. 13 is a block diagram showing an embodiment of the hardware configuration of the control device 20 shown in FIG. 10.
 図13に示す制御装置20は、プロセッサ200、メモリ210、データベース220、表示部230、入出力インターフェース240、及び操作部250を備える。 The control device 20 shown in FIG. 13 includes a processor 200, a memory 210, a database 220, a display section 230, an input/output interface 240, and an operation section 250.
 プロセッサ200は、CPU(Central Processing Unit)等から構成され、制御装置20の各部を統括制御するとともに、撮像装置10でのトンネルの撮影の制御を行う。 The processor 200 is composed of a CPU (Central Processing Unit), etc., and performs overall control of each part of the control device 20, as well as controlling photographing of a tunnel by the imaging device 10.
 メモリ210は、フラッシュメモリ、ROM(Read-only Memory)、及びRAM(Random Access Memory)、ハードディスク装置等を含む。フラッシュメモリ、ROM又はハードディスク装置は、オペレーションシステムを含む各種のプログラム等を記憶する不揮発性メモリである。RAMは、プロセッサ200による処理の作業領域として機能するとともに、フラッシュメモリ等に格納されたプログラム等を一時的に記憶する。なお、プロセッサ200が、メモリ210の一部(RAM)を内蔵していてもよい。 The memory 210 includes a flash memory, a ROM (Read-only Memory), a RAM (Random Access Memory), a hard disk device, and the like. A flash memory, ROM, or hard disk device is a nonvolatile memory that stores various programs including an operating system. The RAM functions as a work area for processing by the processor 200 and temporarily stores programs and the like stored in a flash memory or the like. Note that the processor 200 may include a part of the memory 210 (RAM).
 データベース220は、撮像装置10で撮影された画像を記憶する。撮像装置10で取得された画像は、測位センサ272で得られた台車260の移動距離と関連づけて記憶されてもよい。また、各カメラ101で取得された画像を合成することにより得られる平面展開図を記憶してもよい。 The database 220 stores images captured by the imaging device 10. The image acquired by the imaging device 10 may be stored in association with the moving distance of the trolley 260 acquired by the positioning sensor 272. Further, a plan development view obtained by combining images acquired by each camera 101 may be stored.
 表示部230は、プロセッサ200の制御により画像を表示する。また、表示部230は、操作部250から各種の情報を受け付ける場合のGUI(Graphical User Interface)の一部としても使用される。 The display unit 230 displays images under the control of the processor 200. The display unit 230 is also used as part of a GUI (Graphical User Interface) when receiving various information from the operation unit 250.
 入出力インターフェース240は、外部機器と接続可能な接続部、及びネットワークと接続可能な通信部等を含む。入出力インターフェース240は、有線又は無線により、外部機器及びネットワークと接続を行うことができる。また、入出力インターフェース240は、トンネル点検装置11のライダ252及び台車260の測位センサ272と接続し、それぞれの出力データを取得する。 The input/output interface 240 includes a connection unit that can be connected to an external device, a communication unit that can be connected to a network, and the like. The input/output interface 240 can connect to external devices and networks by wire or wirelessly. In addition, the input/output interface 240 connects with the lidar 252 of the tunnel inspection device 11 and the positioning sensor 272 of the trolley 260, and acquires the output data of each.
 操作部250は、マウス等のポインティングデバイス、キーボード等を含み、ユーザ操作による各種の情報、指示の入力を受け付けるGUIの一部として機能する。また、操作部250を、ジョイスティック等で構成し、台車260の走行を制御してもよい。 The operation unit 250 includes a pointing device such as a mouse, a keyboard, and the like, and functions as part of a GUI that accepts input of various information and instructions by user operations. Further, the operation unit 250 may be configured with a joystick or the like to control the running of the trolley 260.
 また、トンネルの点検を行っている場合に、ユーザ(点検者)が目視で変状を見つけた際に、操作部250を構成する音声入力装置又はスイッチを操作することで、その変状位置、測位センサ272で得られる測位データ、及び画像を関連づけて記憶する。これにより、目視点検情報と画像とを関連付けて記憶することができ、変状の見落としを防げることができる。 Further, when inspecting a tunnel, when a user (inspector) visually finds a deformation, the user (inspector) can check the position of the deformation by operating the voice input device or switch that constitutes the operation unit 250. The positioning data obtained by the positioning sensor 272 and the image are stored in association with each other. Thereby, visual inspection information and images can be stored in association with each other, and it is possible to prevent deformities from being overlooked.
 図14は、プロセッサ200で実現される機能に関して説明するブロック図である。プロセッサ200は、撮影条件制御部202を構成する。また、プロセッサ200は、ライダ252から出力される検査対象であるトンネルの内面までの距離に関する情報を取得する。また、プロセッサ200は、カメラ101を制御する。プロセッサ200は、例えばカメラ101のAF(Auto Focus)や焦点距離を制御する。 FIG. 14 is a block diagram illustrating functions implemented by the processor 200. The processor 200 constitutes an imaging condition control section 202. Furthermore, the processor 200 obtains information regarding the distance to the inner surface of the tunnel to be inspected, which is output from the lidar 252. Further, the processor 200 controls the camera 101. The processor 200 controls, for example, AF (Auto Focus) and focal length of the camera 101.
 ライダ252は、プロセッサ200にトンネル内面までの距離の点群情報を出力する。そして、撮影条件制御部202は、ライダ252から出力された内面までの距離に関する情報に基づいて、複数のカメラ101の撮影条件を補正する。具体的には、撮影条件制御部202は、撮像装置10に搭載される複数のカメラ101のAF、カメラ101のレンズの焦点距離などの撮影条件の制御を行う。これにより、台車260の蛇行やトンネル断面の急な変化に伴い撮影距離が変わり、隣接画像のオーバーラップ量や点検したいひびの大きさに基づき設定した画素密度が不足することを抑制し安定的に、検査に適した画像を取得することができる。なお、カメラ101の撮像は、プロセッサ200の制御によって行われる。カメラ101の撮像は、一定の時間間隔によって行われる。また、カメラ101の撮像は、測位センサ272から出力される測位データに基づいて行われてもよい。 The lidar 252 outputs point cloud information on the distance to the tunnel inner surface to the processor 200. Then, the photographing condition control unit 202 corrects the photographing conditions of the plurality of cameras 101 based on the information regarding the distance to the inner surface output from the lidar 252. Specifically, the photographing condition control unit 202 controls photographing conditions such as AF of the plurality of cameras 101 mounted on the imaging device 10 and focal length of the lens of the camera 101. This prevents the shooting distance from changing due to meandering of the trolley 260 or sudden changes in the tunnel cross section, and from insufficient pixel density based on the amount of overlap between adjacent images and the size of the crack to be inspected. , images suitable for inspection can be obtained. Note that image capturing by the camera 101 is performed under the control of the processor 200. Image capture by the camera 101 is performed at regular time intervals. Further, the image capturing by the camera 101 may be performed based on positioning data output from the positioning sensor 272.
 図15及び図16は、トンネル点検装置11の撮影条件の制御に関して具体例を説明する図である。 15 and 16 are diagrams illustrating a specific example of controlling the photographing conditions of the tunnel inspection device 11.
 図15は、地下鉄のトンネルの点検の具体例に関して説明する図である。 FIG. 15 is a diagram illustrating a specific example of inspecting a subway tunnel.
 符号280に示した場合では、トンネル点検装置11にライダ252を搭載しない場合を示している。また、符号282に示した場合では、トンネル点検装置11にライダ252を搭載する場合を示している。 The case indicated by reference numeral 280 shows a case where the rider 252 is not mounted on the tunnel inspection device 11. Further, a case indicated by reference numeral 282 shows a case where a rider 252 is mounted on the tunnel inspection device 11.
 地下鉄のトンネル290は、地点Dにおいてトンネルの直径が大きくなる。トンネル点検装置11は、直線的に走行をしているが、トンネルの直径が大きくなることにより、地点D経過した後に、取得する画像の画質が変化してしまう。符号280に示す場合では、トンネル290の内面までの距離が長くなったことにより、取得した画像において画素密度が不足し、ひび割れなどの損傷を適切に検出することが難しくなる。 The diameter of the subway tunnel 290 increases at point D. The tunnel inspection device 11 travels in a straight line, but as the diameter of the tunnel increases, the quality of the image it obtains changes after passing point D. In the case indicated by reference numeral 280, the distance to the inner surface of the tunnel 290 is increased, resulting in insufficient pixel density in the acquired image, making it difficult to appropriately detect damage such as cracks.
 一方で、符号282に示す場合では、トンネル290の内面までの距離が地点Dで長くなったことを、トンネル点検装置11に搭載されるライダ252が出力する距離に関する情報により検出される。これにより、撮影条件制御部202は、距離に関する情報により、カメラ101のAF及び焦点距離の変更を行うことができる。したがってこの場合には、取得される画像において画素密度が不足することが抑制され、ひび割れなどの損傷を適切に検出することができる。 On the other hand, in the case indicated by reference numeral 282, it is detected that the distance to the inner surface of the tunnel 290 has become longer at point D based on the distance information output by the lidar 252 mounted on the tunnel inspection device 11. Thereby, the photographing condition control unit 202 can change the AF and focal length of the camera 101 based on the information regarding the distance. Therefore, in this case, insufficient pixel density in the acquired image is suppressed, and damage such as cracks can be appropriately detected.
 図16は、導水路のトンネルの点検の具体例に関して説明する図である。 FIG. 16 is a diagram illustrating a specific example of inspecting the tunnel of the headrace.
 符号284に示した場合では、トンネル点検装置11にライダ252を搭載しない場合を示している。また、符号286に示した場合では、トンネル点検装置11にライダ252を搭載する場合を示している。 The case indicated by reference numeral 284 shows a case where the rider 252 is not mounted on the tunnel inspection device 11. Further, a case indicated by reference numeral 286 shows a case where the rider 252 is mounted on the tunnel inspection device 11.
 導水路のトンネル292では、トンネル点検装置11は蛇行して走行している。トンネル点検装置11が蛇行することにより、図示するように、トンネル292との距離が短くなり、各カメラ101で取得される画像において重複する部分が不足してしまう。すなわち、隣接する画像において、互いに重なり合う領域が無い又は小さくなってしまう。このような場合には取得される画像においては、撮影できていない箇所が発生してしまい、適切なトンネルの検査を行うことができない。また、取得した画像により、適切な平面展開図を生成することができない。 In the headrace tunnel 292, the tunnel inspection device 11 is running in a meandering manner. As the tunnel inspection device 11 meanderes, the distance from the tunnel 292 becomes shorter as shown in the figure, and the overlapping portions in the images acquired by each camera 101 become insufficient. That is, in adjacent images, areas that overlap each other end up being absent or small. In such a case, there will be parts in the acquired image that cannot be photographed, making it impossible to properly inspect the tunnel. Furthermore, it is not possible to generate an appropriate plan development view from the acquired image.
 一方で、符号286に示す場合では、トンネル292の内面までの距離が長くなったことをライダ252が出力する距離に関する情報により検出し、撮影条件制御部202は、距離に関する情報により、カメラ101のAF及び焦点距離の変更を行う。これにより、取得される画像において重複する部分が不足することを抑制し、網羅的にトンネル292の画像を取得することができる。 On the other hand, in the case indicated by reference numeral 286, it is detected that the distance to the inner surface of the tunnel 292 has become longer based on the information regarding the distance outputted by the lidar 252, and the photographing condition control unit 202 controls the camera 101 based on the information regarding the distance. Change AF and focal length. Thereby, it is possible to suppress the lack of overlapping portions in the acquired images, and to comprehensively acquire images of the tunnel 292.
 次に、トンネル点検装置11を使用したトンネル検査方法に関して説明する。なお、トンネル検査方法は、制御装置20のプロセッサ200がメモリ210に保存されているプログラムを実行することにより行われる。 Next, a tunnel inspection method using the tunnel inspection device 11 will be explained. Note that the tunnel inspection method is performed by the processor 200 of the control device 20 executing a program stored in the memory 210.
 図17は、トンネル点検装置11で行われるトンネル検査方法に関して説明するフロー図である。 FIG. 17 is a flow diagram illustrating a tunnel inspection method performed by the tunnel inspection device 11.
 先ず、ライダ252によりトンネルの内面までの距離が測定される(ステップS01)。その後、撮影条件制御部202は、トンネルの内面までの距離が変更されたか否かの判定を行う(ステップS02)。トンネルの内面までの距離が変わった場合には、カメラ101を制御して撮影条件を変更する(ステップS05)。その後、カメラ101によりトンネルの内面の画像を取得する(ステップS03)。一方、トンネルの内面までの距離が変わっていない場合には、撮影条件を変えることなく、カメラ101により画像を取得する。その後、トンネル点検が終了したか否かの判定がプロセッサ200により行われ(ステップS04)、トンネルの点検が終了していない場合には、再度トンネルの内面までの距離を測定する。 First, the distance to the inner surface of the tunnel is measured by the rider 252 (step S01). After that, the imaging condition control unit 202 determines whether the distance to the inner surface of the tunnel has been changed (step S02). When the distance to the inner surface of the tunnel changes, the camera 101 is controlled to change the photographing conditions (step S05). After that, an image of the inner surface of the tunnel is acquired by the camera 101 (step S03). On the other hand, if the distance to the inner surface of the tunnel has not changed, the image is acquired by the camera 101 without changing the photographing conditions. Thereafter, the processor 200 determines whether the tunnel inspection has been completed (step S04), and if the tunnel inspection has not been completed, the distance to the inner surface of the tunnel is measured again.
 以上で説明したように、トンネル点検装置11では、ライダ252からのトンネルの内面までの距離に関する情報を取得し、その距離に関する情報に基づいて、カメラ101の撮影条件を制御して画像を取得する。これにより、トンネルの内面までの距離が変わった場合であっても、ひび割れなどの損傷の検出を行うことができる画質により画像を取得することができる。また、これにより、トンネルの内面までの距離が変わった場合であっても、トンネルの内面を網羅的に撮像し、平面展開図を生成することができる。 As explained above, the tunnel inspection device 11 acquires information regarding the distance from the lidar 252 to the inner surface of the tunnel, and controls the photographing conditions of the camera 101 based on the information regarding the distance to acquire images. . Thereby, even if the distance to the inner surface of the tunnel changes, it is possible to obtain an image with an image quality that allows damage such as cracks to be detected. Furthermore, even if the distance to the inner surface of the tunnel changes, this makes it possible to comprehensively image the inner surface of the tunnel and generate a developed plan view.
 上記実施形態において、各種の処理を実行する処理部(例えば撮影条件制御部202)(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。 In the above embodiment, the hardware structure of the processing unit (for example, the imaging condition control unit 202) that executes various processes is the following various processors. Various types of processors include CPUs (Central Processing Units) and FPGAs (Field Programmable Gate Arrays), which are general-purpose processors that execute software (programs) and function as various processing units.The circuit configuration can be changed after manufacturing. This includes programmable logic devices (PLDs), which are processors, and dedicated electric circuits, which are processors with circuit configurations specifically designed to execute specific processes, such as ASICs (Application Specific Integrated Circuits). It will be done.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。 One processing unit may be composed of one of these various processors, or may be composed of two or more processors of the same type or different types (for example, multiple FPGAs, or a combination of a CPU and FPGA). It's okay. Further, the plurality of processing units may be configured with one processor. As an example of configuring multiple processing units with one processor, first, one processor is configured with a combination of one or more CPUs and software, as typified by computers such as clients and servers. There is a form in which a processor functions as multiple processing units. Second, there are processors that use a single IC (Integrated Circuit) chip to implement the functions of the entire system, including multiple processing units, as typified by System On Chip (SoC). be. In this way, various processing units are configured using one or more of the various processors described above as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。 More specifically, the hardware structure of these various processors is an electrical circuit that combines circuit elements such as semiconductor elements.
 上述の各構成及び機能は、任意のハードウェア、ソフトウェア、或いは両者の組み合わせによって適宜実現可能である。例えば、上述の処理ステップ(処理手順)をコンピュータに実行させるプログラム、そのようなプログラムを記録したコンピュータ読み取り可能な記録媒体(非一時的記録媒体)、或いはそのようなプログラムをインストール可能なコンピュータに対しても本発明を適用することが可能である。 Each of the configurations and functions described above can be realized as appropriate using any hardware, software, or a combination of both. For example, a program that causes a computer to execute the above-mentioned processing steps (processing procedures), a computer-readable recording medium (non-temporary recording medium) recording such a program, or a computer capable of installing such a program. It is possible to apply the present invention to any case.
 <変形例1>
 次に、変形例1に関して説明する。図10で説明したトンネル点検装置11は、台車260に撮像装置10が取り付けられている例を説明した。本例のトンネル点検装置11は、台車260から、回転ベース111aの中心までの高さがスペーサPを配置することにより変更可能である。例えば、本例のトンネル点検装置11では、台車260から回転ベース111aの中心までの高さが、1~2.5mの範囲で調整可能である。
<Modification 1>
Next, Modification 1 will be explained. The tunnel inspection device 11 described in FIG. 10 is an example in which the imaging device 10 is attached to the trolley 260. In the tunnel inspection device 11 of this example, the height from the cart 260 to the center of the rotating base 111a can be changed by arranging the spacer P. For example, in the tunnel inspection device 11 of this example, the height from the trolley 260 to the center of the rotating base 111a can be adjusted within a range of 1 to 2.5 m.
 図18は、変形例1のトンネル点検装置11に関して説明する図である。なお、図18では、トンネル点検装置11を構成する台車260の図示は省略されている。 FIG. 18 is a diagram illustrating the tunnel inspection device 11 of Modification 1. Note that in FIG. 18, illustration of the cart 260 that constitutes the tunnel inspection device 11 is omitted.
 本例のトンネル点検装置11では、アルミフレームで構成されたスペーサPが積み上げられている。スペーサPは、直方体形状を有し、上方に積み上げることが可能な構造を有する。また、スペーサPの高さにより、ピッチを調整することができる。例えば、スペーサPの1つの高さを150mmとすると、調整ピッチを150mmとすることができる。 In the tunnel inspection device 11 of this example, spacers P made of aluminum frames are stacked. The spacers P have a rectangular parallelepiped shape and have a structure that allows them to be stacked upward. Furthermore, the pitch can be adjusted by adjusting the height of the spacer P. For example, if the height of one spacer P is 150 mm, the adjustment pitch can be 150 mm.
 以上で説明したように、撮像装置10と台車260との間にスペーサPを配置して、高さを調整可能とすることにより、様々な形状のトンネルの検査に対応することができる。 As explained above, by arranging the spacer P between the imaging device 10 and the trolley 260 and making the height adjustable, it is possible to correspond to inspections of tunnels of various shapes.
 <変形例2>
 次に、変形例2に関して説明する。変形例2では、回転アーム121に長穴294を設ける。これにより、回転アーム121を径方向にスライドさせることができ、円周の直径を変更することができる。
<Modification 2>
Next, modification 2 will be explained. In the second modification, a long hole 294 is provided in the rotary arm 121. Thereby, the rotary arm 121 can be slid in the radial direction, and the diameter of the circumference can be changed.
 図19は、変形例2の回転アーム121を説明する図である。 FIG. 19 is a diagram illustrating the rotating arm 121 of Modification 2.
 回転アーム121は、ネジ121aを締め込む長穴294(第3の取付部)を有する。回転アーム121は、長穴294にネジ121aを締め込むことで、第1の保持部材105a(105b)に取り付けられる。これにより、回転アーム121は、長穴294を利用して、回転ベース111a(回転ベース111b)に対してスライドすることができ、第1のカメラ取付部121bに取り付けたカメラ101の径方向の位置を調整することができる。 The rotating arm 121 has an elongated hole 294 (third mounting portion) into which the screw 121a is tightened. The rotating arm 121 is attached to the first holding member 105a (105b) by tightening the screw 121a into the elongated hole 294. This allows the rotating arm 121 to slide relative to the rotating base 111a (rotating base 111b) using the elongated hole 294, and the radial position of the camera 101 attached to the first camera mounting portion 121b can be adjusted.
 以上で説明したように、回転アーム121に長穴294を設けることにより、カメラ101の径方向の位置を調整することができる。 As explained above, by providing the elongated hole 294 in the rotary arm 121, the radial position of the camera 101 can be adjusted.
 <付記>
 以上で開示した内容には、例えば以下の発明の内容が含まれている。
<Additional notes>
The content disclosed above includes, for example, the content of the following inventions.
 (第1の発明)
 少なくとも2つの第1の保持部材と、複数のカメラとを備え、
 前記第1の保持部材は、対向して配置され、
 前記複数のカメラは、前記第1の保持部材に円弧状に配置され、前記複数のカメラの撮影方向が前記円弧の径方向の外側に向き、
 前記複数のカメラのうち、少なくとも隣接するカメラの撮影方向が異なる、
 撮像装置。
(First invention)
comprising at least two first holding members and a plurality of cameras;
the first holding members are arranged to face each other,
The plurality of cameras are arranged in an arc shape on the first holding member, and the photographing directions of the plurality of cameras are directed outward in the radial direction of the arc,
Among the plurality of cameras, at least adjacent cameras have different shooting directions;
Imaging device.
 (第2の発明)
 少なくとも2つの第1の保持部材と、複数のカメラとを備え、前記第1の保持部材は、対向して配置され、前記複数のカメラは、前記第1の保持部材に円弧状に配置され、前記複数のカメラの撮影方向が前記円弧の径方向の外側に向き、前記複数のカメラのうち、少なくとも隣接するカメラの撮影方向が異なる、撮像装置であって、
 前記カメラとトンネルの内面との距離に関する情報を取得する距離センサと、
 プロセッサを有する制御装置と、を備え、
 前記プロセッサは、前記距離センサから出力される距離に関する情報に基づいて、前記カメラの撮影を制御する、撮像装置。
(Second invention)
at least two first holding members and a plurality of cameras, the first holding members are arranged to face each other, and the plurality of cameras are arranged in an arc shape on the first holding member, An imaging device, wherein the photographing directions of the plurality of cameras face outward in the radial direction of the circular arc, and the photographing directions of at least adjacent cameras among the plurality of cameras are different,
a distance sensor that acquires information regarding the distance between the camera and the inner surface of the tunnel;
a control device having a processor;
An imaging device, wherein the processor controls photographing by the camera based on distance-related information output from the distance sensor.
 (第3の発明)
 トンネル内を走行する台車に搭載され、前記トンネルの内壁面を撮像する撮像装置において、
 前記撮像装置は、2つの第1の保持部材と、複数の第2の保持部材と、複数のカメラと、複数の照明装置とから構成され、
 前記2つの第1の保持部材は、互いに対向する一対の板状部材であり、前記台車の走行方向に離間して前記台車に配置され、かつ前記複数の第2の保持部材が取り付けられる、同一の円周上に配列された複数の第1の取付部を有し、
 前記複数の第2の保持部材は、それぞれ前記カメラ及び前記照明装置が取り付けられる第2の取付部と、前記第1の保持部材の前記第1の取付部に取り付けられる第3の取付部とを有し、
 少なくとも前記カメラが取り付けられた前記複数の第2の保持部材を、前記2つの第1の保持部材に取り付けることにより、前記複数の第2の保持部材にそれぞれ取り付けられた前記カメラは、前記第1の保持部材の中央部に対して円弧状に、かつそれぞれ異なる径方向に配置され、更に前記2つの第1の保持部材の間で異なる径方向に配置される、
 撮像装置。
(Third invention)
An imaging device that is mounted on a trolley running in a tunnel and captures an image of an inner wall surface of the tunnel,
The imaging device includes two first holding members, a plurality of second holding members, a plurality of cameras, and a plurality of illumination devices,
The two first holding members are a pair of plate-shaped members facing each other, and are arranged on the cart apart from each other in the running direction of the cart, and the plurality of second holding members are attached to the same plate. having a plurality of first attachment parts arranged on the circumference of the
The plurality of second holding members each include a second mounting part to which the camera and the lighting device are mounted, and a third mounting part to be mounted to the first mounting part of the first holding member. have,
By attaching the plurality of second holding members to which at least the cameras are attached to the two first holding members, the cameras respectively attached to the plurality of second holding members can be attached to the first holding members. are arranged in an arc shape and in different radial directions with respect to the central part of the holding member, and further arranged in different radial directions between the two first holding members,
Imaging device.
 以上で本発明の例に関して説明してきたが、本発明は上述した実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。 Although examples of the present invention have been described above, it goes without saying that the present invention is not limited to the embodiments described above, and that various modifications can be made without departing from the spirit of the present invention.
10   :撮像装置
11   :トンネル点検装置
12   :カメラユニット
14   :第1の保持部材
20   :制御装置
101  :カメラ
103  :照明装置
105a :第1の保持部材
105b :第1の保持部材
107  :ベースプレート
109a :脚部
109b :脚部
111a :回転ベース
111b :回転ベース
112  :長穴
113  :接続部材
119a :角度調整板
119b :角度調整板
121  :回転アーム
121a :ネジ
121b :第1のカメラ取付部
123  :枠部材
123a :第1の照明装置取付部
123b :第2の照明装置取付部
125  :第2の保持部材
200  :プロセッサ
202  :撮影条件制御部
203  :補助部材
210  :メモリ
220  :データベース
230  :表示部
240  :入出力インターフェース
250  :操作部
252  :ライダ
254  :第3の保持部材
260  :台車
270  :車輪
270a :磁性体
272  :測位センサ
294  :長穴
10: Imaging device 11: Tunnel inspection device 12: Camera unit 14: First holding member 20: Control device 101: Camera 103: Illumination device 105a: First holding member 105b: First holding member 107: Base plate 109a: Legs 109b: Legs 111a: Rotating base 111b: Rotating base 112: Elongated hole 113: Connection member 119a: Angle adjustment plate 119b: Angle adjustment plate 121: Rotating arm 121a: Screw 121b: First camera mounting portion 123: Frame Member 123a: First lighting device mounting section 123b: Second lighting device mounting section 125: Second holding member 200: Processor 202: Photographing condition control section 203: Auxiliary member 210: Memory 220: Database 230: Display section 240 : Input/output interface 250 : Operation unit 252 : Rider 254 : Third holding member 260 : Dolly 270 : Wheel 270a : Magnetic body 272 : Positioning sensor 294 : Oblong hole

Claims (14)

  1.  少なくとも2つの第1の保持部材と、複数のカメラとを備え、
     前記第1の保持部材は、対向して配置され、
     前記複数のカメラは、前記第1の保持部材に円弧状に配置され、前記複数のカメラの撮影方向が前記円弧の径方向の外側に向き、
     前記複数のカメラのうち、少なくとも隣接するカメラの撮影方向が異なる、
     撮像装置。
    comprising at least two first holding members and a plurality of cameras;
    the first holding members are arranged to face each other,
    The plurality of cameras are arranged in an arc shape on the first holding member, and the photographing directions of the plurality of cameras are directed outward in the radial direction of the arc,
    Among the plurality of cameras, at least adjacent cameras have different shooting directions;
    Imaging device.
  2.  前記複数のカメラのうち、少なくとも隣接するカメラの撮影視野が一部重なる、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the fields of view of at least adjacent cameras of the plurality of cameras overlap partially.
  3.  前記2つの第1の保持部材は、複数の第2の保持部材が取り付けられる、同一の円周上に配列された複数の第1の取付部を有し、
     前記複数の第2の保持部材は、それぞれ前記カメラが取り付けられる第2の取付部を有し、
     少なくとも前記カメラが取り付けられた前記複数の第2の保持部材を、前記2つの第1の保持部材に取り付けることにより、前記複数の第2の保持部材にそれぞれ取り付けられた前記複数のカメラは、前記第1の保持部材の中央部に対して前記円弧状に、かつそれぞれ異なる前記径方向に配置され、更に前記2つの第1の保持部材の間で異なる前記径方向に配置される、請求項2に記載の撮像装置。
    The two first holding members have a plurality of first attachment parts arranged on the same circumference to which the plurality of second holding members are attached,
    Each of the plurality of second holding members has a second attachment portion to which the camera is attached,
    By attaching the plurality of second holding members to which at least the cameras are attached to the two first holding members, the plurality of cameras respectively attached to the plurality of second holding members can be attached to the plurality of second holding members. Claim 2: The first holding member is arranged in the arc shape and in different radial directions with respect to the center portion of the first holding member, and further arranged in different radial directions between the two first holding members. The imaging device described in .
  4.  前記複数の第2の保持部材は、それぞれ前記カメラ及び照明装置が取り付けられる第2の取付部を有する、請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the plurality of second holding members each have a second attachment portion to which the camera and the lighting device are attached.
  5.  前記円弧状に配置される前記複数のカメラが移動することにより、前記円弧の半径は変更可能である請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the radius of the arc can be changed by moving the plurality of cameras arranged in an arc shape.
  6.  前記第2の取付部は、少なくとも、第1のカメラ取付部、及び第2のカメラ取付部を備え、
     前記第1のカメラ取付部に前記カメラを取り付けた場合には、前記第2のカメラ取付部に前記カメラを取り付けた場合よりも、前記円弧の半径が大きい前記円弧状に前記カメラが配置される請求項3に記載の撮像装置。
    the second mounting portion includes at least a first camera mounting portion and a second camera mounting portion;
    4. The imaging device of claim 3, wherein when the camera is attached to the first camera mounting portion, the camera is arranged on an arc having a larger radius than when the camera is attached to the second camera mounting portion.
  7.  前記第2の取付部は、第1の照明装置取付部、第2の照明装置取付部、第1のカメラ取付部、及び第2のカメラ取付部から構成され、
     前記第1のカメラ取付部に前記カメラを取り付けた場合には、前記第1の照明装置取付部及び前記第2の照明装置取付部に前記照明装置を取り付け、
     前記第2のカメラ取付部に前記カメラを取り付けた場合には、前記第1の照明装置取付部に前記照明装置を取り付ける請求項4に記載の撮像装置。
    The second mounting section includes a first lighting device mounting section, a second lighting device mounting section, a first camera mounting section, and a second camera mounting section,
    When the camera is attached to the first camera attachment section, the illumination device is attached to the first illumination device attachment section and the second illumination device attachment section,
    The imaging device according to claim 4, wherein when the camera is attached to the second camera attachment section, the illumination device is attached to the first illumination device attachment section.
  8.  前記第2のカメラ取付部に前記カメラを取り付けた場合には、前記第1のカメラ取付部に前記カメラを取り付けた場合よりも、前記2つの第1の保持部材に配置される前記カメラ間の距離及び前記円弧の円周方向のカメラ間の距離が短くなる請求項6又は7に記載の撮像装置。 When the camera is attached to the second camera attachment part, the distance between the cameras arranged on the two first holding members is greater than when the camera is attached to the first camera attachment part. The imaging device according to claim 6 or 7, wherein the distance and the distance between the cameras in the circumferential direction of the arc are shortened.
  9.  前記第1の取付部は、前記第1の保持部材における前記円弧の円周方向に沿って延びる長穴で構成され、
     前記第2の保持部材が前記長穴に沿って移動することにより、前記円弧状に配置された前記カメラ間の間隔が変更される請求項3に記載の撮像装置。
    The first attachment part is configured with an elongated hole extending along the circumferential direction of the arc in the first holding member,
    The imaging device according to claim 3, wherein the interval between the cameras arranged in the arc shape is changed by moving the second holding member along the elongated hole.
  10.  前記複数の第2の保持部材は、前記第1の保持部材の前記第1の取付部に取り付けられる第3の取付部を有し、
     前記第3の取付部は、前記径方向に沿って延びる長穴で構成され、
     前記第2の保持部材は、前記第1の保持部材に対して前記径方向にスライドする請求項3に記載の撮像装置。
    The plurality of second holding members have a third attachment part attached to the first attachment part of the first holding member,
    The third attachment portion is configured with an elongated hole extending along the radial direction,
    The imaging device according to claim 3, wherein the second holding member slides in the radial direction with respect to the first holding member.
  11.  トンネル内を走行する台車に搭載され、前記台車の少なくとも一つの車輪には、回転数を検出するセンサが設けられている請求項1に記載の撮像装置。 The imaging device according to claim 1, wherein the imaging device is mounted on a truck that travels in a tunnel, and at least one wheel of the truck is provided with a sensor that detects the number of revolutions.
  12.  前記カメラと前記内面との距離に関する情報を取得する距離センサを備える請求項1に記載の撮像装置。 The imaging device according to claim 1, further comprising a distance sensor that acquires information regarding the distance between the camera and the inner surface.
  13.  前記距離センサは、第3の保持部材に保持され、
     前記第3の保持部材は、前記第1の保持部材に取り付けられる請求項12に記載の撮像装置。
    The distance sensor is held by a third holding member,
    The imaging device according to claim 12, wherein the third holding member is attached to the first holding member.
  14.  プロセッサを有する制御装置を備え、
     前記プロセッサは、前記距離センサから出力される前記距離に関する情報に基づいて、前記カメラの撮影を制御する、
     請求項12又は13に記載の撮像装置。
    comprising a control device having a processor;
    The processor controls photographing by the camera based on information regarding the distance output from the distance sensor.
    The imaging device according to claim 12 or 13.
PCT/JP2023/031846 2022-09-22 2023-08-31 Imaging device WO2024062896A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022151194 2022-09-22
JP2022-151194 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024062896A1 true WO2024062896A1 (en) 2024-03-28

Family

ID=90454180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031846 WO2024062896A1 (en) 2022-09-22 2023-08-31 Imaging device

Country Status (1)

Country Link
WO (1) WO2024062896A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538763B1 (en) * 2014-08-26 2015-07-27 주식회사 엠텍 Apparatus and Method for Inspecting Crack in Tunnel
JP2016057579A (en) * 2014-09-12 2016-04-21 金川 典代 Wide area surface imaging device and wide area surface imaging method
CN108318488A (en) * 2017-01-17 2018-07-24 南京火眼猴信息科技有限公司 A kind of subway tunnel Defect inspection device and detection method
CN108593654A (en) * 2018-03-28 2018-09-28 北京交通大学 Tunnel image capturing system and method
KR102091165B1 (en) * 2019-04-09 2020-03-24 주식회사 한국건설방재연구원 Apparatus for inspecting tunnel crack
CN211122575U (en) * 2019-11-25 2020-07-28 苏州华兴致远电子科技有限公司 Comprehensive tunnel environment detection device
JP2020194145A (en) * 2019-05-30 2020-12-03 金川 典代 Road peripheral wall surface photographing device and road peripheral wall surface photographing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101538763B1 (en) * 2014-08-26 2015-07-27 주식회사 엠텍 Apparatus and Method for Inspecting Crack in Tunnel
JP2016057579A (en) * 2014-09-12 2016-04-21 金川 典代 Wide area surface imaging device and wide area surface imaging method
CN108318488A (en) * 2017-01-17 2018-07-24 南京火眼猴信息科技有限公司 A kind of subway tunnel Defect inspection device and detection method
CN108593654A (en) * 2018-03-28 2018-09-28 北京交通大学 Tunnel image capturing system and method
KR102091165B1 (en) * 2019-04-09 2020-03-24 주식회사 한국건설방재연구원 Apparatus for inspecting tunnel crack
JP2020194145A (en) * 2019-05-30 2020-12-03 金川 典代 Road peripheral wall surface photographing device and road peripheral wall surface photographing method
CN211122575U (en) * 2019-11-25 2020-07-28 苏州华兴致远电子科技有限公司 Comprehensive tunnel environment detection device

Similar Documents

Publication Publication Date Title
JP6631624B2 (en) X-ray inspection apparatus, X-ray inspection method and structure manufacturing method
US20200049489A1 (en) Three-dimensional imager
US20170054965A1 (en) Three-dimensional imager
US20150116691A1 (en) Indoor surveying apparatus and method
JP2013079960A (en) Method and apparatus for determining three-dimensional coordinate of object
JP2020052046A (en) Survey data processing device, survey data processing method, survey data processing program
JP2011124965A (en) Subject dimension measuring camera apparatus
JP2008241643A (en) Three-dimensional shape measuring device
US9157874B2 (en) System and method for automated x-ray inspection
WO2022078440A1 (en) Device and method for acquiring and determining space occupancy comprising moving object
GB2553148A (en) Modelling system and method
TW201835852A (en) Apparatus and method for three-dimensional inspection
WO2024062896A1 (en) Imaging device
KR101104450B1 (en) 3d image photographing apparatus for tunnel surveying
US20160287359A1 (en) Device and method for generating dental three-dimensional surface image
JP2017096654A (en) Imaging system
US20090087013A1 (en) Ray mapping
JP6690158B2 (en) Inner surface inspection device and positioning method
JP2008241609A (en) Distance measuring system and distance measuring method
EP2527822A1 (en) Method for correcting inspecting apparatus using correcting jig, and inspecting apparatus having correcting jig mounted thereon
CN210141980U (en) Calibration device
JP2008241716A (en) Device and method for surface inspection
TWI769423B (en) A method and device for monitoring attitude of photomask and device for detecting particle size of photomask
KR102217627B1 (en) Dron waytpoint creating system and method for monitoring road slope using dron
WO2024161822A1 (en) Imaging device, imaging method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868020

Country of ref document: EP

Kind code of ref document: A1