WO2024062667A1 - Gradient light interference microscope - Google Patents

Gradient light interference microscope Download PDF

Info

Publication number
WO2024062667A1
WO2024062667A1 PCT/JP2023/015723 JP2023015723W WO2024062667A1 WO 2024062667 A1 WO2024062667 A1 WO 2024062667A1 JP 2023015723 W JP2023015723 W JP 2023015723W WO 2024062667 A1 WO2024062667 A1 WO 2024062667A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wave
interference microscope
gradient
phase
Prior art date
Application number
PCT/JP2023/015723
Other languages
French (fr)
Japanese (ja)
Inventor
健一 仁坂
葵 大西
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2024062667A1 publication Critical patent/WO2024062667A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens

Definitions

  • the present invention relates to an imaging device and an imaging method for performing quantitative phase imaging based on gradient light interference microscopy.
  • Phase contrast microscopes and differential interference microscopes have been developed and used as technologies for imaging colorless and transparent objects such as cells.
  • the phase distribution obtained with these microscopes is a qualitative phase distribution, and quantitative information about cells cannot be obtained.
  • the light that irradiates the sample is separated into P-polarized light and S-polarized light whose polarization directions are orthogonal to each other using a differential interference prism such as a Wollaston prism or Nomarski prism. Shift the irradiation position.
  • the amount of deviation between the P polarized light and the S polarized light is referred to as the shear amount.
  • the transmitted light or reflected light from the sample of each polarized light wave is combined again by the prism to cause interference.
  • the interference intensity at this time changes depending on the phase difference with respect to the shear amount. This makes it possible to visualize the amount of change (differentiation) in shape of colorless and transparent cells and uneven objects.
  • this method can visualize the amount of change in shape and phase, it cannot acquire quantitative information.
  • GLIM Gradient Light Interference Microscopy
  • Non-Patent Document 1 a liquid crystal modulation element is used to add four different amounts of phase delay to one of the separated P-polarized light and S-polarized light whose irradiation positions are shifted. Then, the phase difference between the polarized lights is obtained from the interference intensity distribution in each of the four ways of multiplexing. Then, a local phase differential is calculated by dividing the phase difference between the polarized lights by the shear amount. Since the differential value of the phase is calculated at each position of the image, by integrating this, the phase distribution of the measurement target can be obtained.
  • Non-Patent Document 1 in order to perform imaging for four different amounts of phase delay, imaging must be performed four times. That is, since the imaging time is four times longer than that of a conventional differential interference microscope, the application to dynamic samples is limited.
  • the present invention was made in view of these circumstances, and an object of the present invention is to provide a technique for shortening the imaging time in gradient light interference microscopy.
  • the first invention of the present application is a gradient light interference microscope that performs phase imaging using polarized waves, which includes an incident path for making light incident from a light source to a sample placement position, and a path from the sample placement position to the sample placement position. an output path that makes the emitted transmitted light or reflected light enter the imaging device, and the input path includes a first polarization double image that sequentially separates the incident light into orthogonal first polarized light waves and second polarized light waves.
  • a prism disposed between the first polarizing double-image prism and the sample arrangement position, and the output path sequentially includes the transmitted light emitted from the sample arrangement position and the An objective lens into which the reflected light is incident, a second polarizing double-image prism that combines the first polarized light wave and the second polarized light wave, and a combined light emitted from the second polarized double-image prism into three paths.
  • a branching mechanism that branches into the plurality of paths, a phase delay mechanism that causes different phase delays in the second polarized waves of each of the plurality of branched lights, and a phase delay mechanism that causes the first polarized waves of each of the plurality of branched lights; and a polarizing plate that aligns the polarization direction of the second polarized light wave.
  • the second invention of this application is the gradient light interference microscope of the first invention, in which the branching mechanism is a diffraction grating.
  • a third invention of the present application is the gradient light interference microscope according to the second invention, in which the branching mechanism is a phase grating.
  • a fourth invention of the present application is the gradient light interference microscope according to the third invention, in which the phase grating is provided so that a Fourier spectrum distribution appears two-dimensionally in two rows and two columns on the imaging surface of the imaging element.
  • a fifth invention of the present application is the gradient light interference microscope according to the fourth invention, wherein the phase delay mechanism is four wave plates arranged two-dimensionally in two rows and two columns, and the four wave plates are , the amount of phase delay is different from each other.
  • a sixth invention of the present application is the gradient light interference microscope according to any one of the first to fifth inventions, in which the phase delay mechanism is a plurality of wavelength plates corresponding to each of the branched lights.
  • a seventh invention of the present application is the gradient light interference microscope according to any one of the first to sixth inventions, wherein the branching mechanism branches the combined light into four or more paths, and the phase delay mechanism includes: A phase delay of 0, ⁇ /2, ⁇ , and 3 ⁇ /2 is caused in the second polarized light wave of each of the four branched lights.
  • the gradient light interference microscopy method by splitting the separated first polarized light wave and the second polarized light wave and performing a phase delay on each, a plurality of phase delay amounts can be obtained. can be imaged simultaneously. Therefore, it is possible to shorten the imaging time in gradient light interference microscopy, which conventionally took a long time.
  • a predetermined phase delay can be caused in only one of the two polarized waves for each of the plurality of branched lights without increasing the size of the device.
  • FIG. 1 is a schematic diagram of a gradient light interference microscope according to a first embodiment.
  • FIG. 3 is a diagram showing the area distribution of the phase grating of the gradient light interference microscope according to the first embodiment.
  • FIG. 3 is a diagram showing the Fourier spectrum distribution of the phase grating of the gradient light interference microscope according to the first embodiment.
  • FIG. 3 is a diagram showing the arrangement of polarizing plates of the gradient light interference microscope according to the first embodiment.
  • FIG. 1 is a schematic diagram showing how a reflected wave from a sample surface is observed using a polarizing birefringent prism.
  • FIG. 3 is a schematic diagram of a gradient light interference microscope according to a second embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of a microscope 1.
  • this microscope 1 uses gradient light interference microscopy to add multiple amounts of phase delay to one of two polarized waves whose irradiation position is shifted. The phase difference between polarized lights is obtained from the intensity distribution of the combination of two polarized lights.
  • the microscope 1 includes a light source 20, an entrance path 30, a sample placement section 40, an exit path 50, an image sensor 60, and a calculation section 80.
  • the microscope 1 of this embodiment irradiates light onto a sample placed in a sample placement section 40 and observes the transmitted light using an imaging device 60. For this reason, the input path 30 from the light source 20 to the sample placement section 40 and the output path 50 from the sample placement section 40 to the image sensor 60 are arranged in a straight line.
  • the light source 20 supplies light to irradiate the sample.
  • the light emitted from the light source 20 is white light.
  • the incident path 30 is an optical system that allows light to enter the sample arrangement section 40 from the light source 20.
  • the optical axes in the incident path 30 are arranged in a straight line.
  • the incident path 30 includes a first polarizing plate 31, a first prism 32, and a condenser lens 33 in this order from the light source 20 toward the sample placement section 40.
  • the first polarizing plate 31 is an optical element that allows only light traveling in a specific direction to pass (transmit) among the light emitted from the light source 20.
  • the first prism 32 is a so-called differential interference prism (DIC prism) that separates incident light into two orthogonal polarized waves.
  • the first prism 32 is a "first polarization double-image prism" that separates incident light into a first polarization wave and a second polarization wave that are perpendicular to each other.
  • the first prism 32 converts the incident light into a first polarized light wave having a vibration direction in a first direction perpendicular to the optical axis and a first polarized light wave having a vibration direction in a second direction perpendicular to the optical axis and the first direction.
  • the second polarized light wave having a predetermined separation angle.
  • a Wollaston prism or a Nomarski prism is used as the first prism 32.
  • the polarization axis (transmission axis) of the first polarizing plate 31 and the first direction and the second direction of the first prism 32 are arranged to intersect at an angle of 45°, respectively. Thereby, the optical energy of the first direction component and the second direction component of the polarized light wave emitted from the first polarizing plate 31 becomes equal. That is, the first polarized light wave and the second polarized light wave emitted from the first prism 32 have substantially the same intensity.
  • the condenser lens 33 is a lens for appropriately irradiating the first polarized light wave and the second polarized light wave separated by the first prism 32 onto the sample arrangement section 40.
  • the focal plane P1 of the condenser lens 33 is arranged on a plane where the light transmitted through the first deflection plate 31 is separated into two polarized lights by the first prism 32 (that is, the localization plane of the first prism). Due to the condenser lens 33, the first polarized light wave and the second polarized light wave are shifted by a predetermined shear amount and travel in a direction perpendicular to the optical axis. The first polarized light wave and the second polarized light wave shifted by a predetermined shear amount are collectively referred to as "separation/combination.”
  • the sample placement section 40 is a mechanism for placing a sample, which is a biological specimen, at the sample placement position P2.
  • the sample placement section 40 is provided with a fixing mechanism for fixing a dish or a slide in which the sample is contained.
  • the sample placed in the sample placement section 40 is irradiated with the separated and combined light emitted from the condenser lens 33.
  • the microscope 1 of this embodiment is for observing transmitted light irradiated onto a sample.
  • Separated and multiplexed light incident on the sample from the light source 20 via the input path 30 passes through the sample and heads toward the output path 50 .
  • the first polarized light wave and the second polarized light wave included in the separation/combination are transmitted through the sample at positions shifted by a predetermined shear amount. For this reason, the light transmitted through the sample becomes a separated and multiplexed wave in which the first polarized light wave and the second polarized light wave are shifted by the amount of shear.
  • the output path 50 is an optical system that allows the transmitted light from the sample placement section 40 to enter the image sensor 60.
  • the exit path 50 includes an objective lens 51, a second prism 52, a color filter 53, a first imaging lens 54, a second imaging lens 55, a phase grating 56, and a second imaging lens 55 in order from the sample arrangement section 40 toward the imaging device 60.
  • 1 lens 57 a phase delay section 58 , a second lens 59 , a third lens 71 , and a second polarizing plate 72 .
  • the objective lens 51 is a lens that images the transmitted light (separated and combined waves including the separated first polarized light wave and the second polarized light wave) that has passed through the sample in the sample placement section 40.
  • the second prism 52 is arranged at the focal plane P3 of the objective lens 51.
  • the second prism 52 is a differential interference prism (DIC prism) similar to the first prism.
  • the second prism 52 is a "second polarized double-image prism" that combines the first polarized light wave and the second polarized light wave. Separated and combined waves in which the first polarized light wave and the second polarized light wave are shifted by a predetermined shear amount are incident on the second prism 52 .
  • the second prism 52 eliminates the deviation between the first polarized light wave and the second polarized light wave by shifting the separated first polarized light wave and the second polarized light wave in the opposite direction to the first prism 32 (the amount of shear is reduced). 0), and outputs a composite wave of the first polarized light wave and the second polarized light wave.
  • the second prism 52 is arranged on the focal plane P2 of the objective lens 51.
  • the color filter 53 passes only light in a predetermined wavelength range from the composite wave emitted from the second prism 52.
  • the separation angles at the first prism 32 and the second prism 52 differ depending on the wavelength, which may cause a difference in optical path length and cause the image to become blurred.
  • the first imaging lens 54 and the second imaging lens 55 are lenses for forming an image of the composite wave emitted from the second prism 52 and passing through the color filter 53.
  • the Fourier spectral distribution of the composite wave appears on the Fourier plane (pupil plane) P4 of the first imaging lens 54 and the second imaging lens 55.
  • the phase grating 56 is arranged on the Fourier plane (pupil plane) of the first imaging lens 54 and the second imaging lens 55.
  • the phase grating 56 is a type of diffraction grating.
  • the phase grating 56 of this embodiment is a transmission type phase grating that combines regions having different refractive indexes (modulating the phase). Note that the phase grating 56 may be formed by combining regions with different thicknesses.
  • FIG. 2 is a diagram showing the area distribution of the phase grating 56 of this embodiment.
  • FIG. 3 is a diagram showing the point spread intensity distribution of the phase grating 56 of this embodiment.
  • this phase grating 56 has a checkerboard pattern in which regions in which no phase delay is performed (the amount of phase delay is 0) and regions in which the amount of phase delay is ⁇ are alternated two-dimensionally. It is arranged in a shape.
  • the Fourier spectrum distribution of the phase grating 56 is a two-dimensional two-by-two distribution on the imaging plane of the second imaging lens 55 (or the imaging plane of the imaging element 60) as shown in FIG. The light waves from the sample appear convolved in the .
  • the phase grating 56 is a branching mechanism that branches the composite wave emitted from the second prism 52 into three or more routes.
  • the phase grating 56 of this embodiment separates the composite wave emitted from the second prism 52 and passed through the color filter 53 into four light waves arranged in two rows and two columns.
  • the four light waves separated by the phase grating 56 are respectively referred to as a first branch wave, a second branch wave, a third branch wave, and a fourth branch wave.
  • Each of the first branch wave, the second branch wave, the third branch wave, and the fourth branch wave includes a first polarized light wave having an amplitude in the first direction and a second polarized light wave having an amplitude in the second direction.
  • the first lens 57, the phase delay section 58, the second lens 59, the third lens 71, and the second polarizing plate 72 are arranged in this order between the phase grating 56 and the image sensor 60. Between the first lens 57 and the second lens 59, the first branched wave, the second branched wave, the third branched wave, and the fourth branched wave travel parallel to each other.
  • the phase delay unit 58 has a phase delay unit that causes different phase delays in second polarized waves included in each of the plurality of branched lights (a first branched wave, a second branched wave, a third branched wave, and a fourth branched wave). It is a delay mechanism. Note that the phase delay unit 58 applies a phase delay to the first polarized light included in each of the plurality of branched lights (first branched wave, second branched wave, third branched wave, and fourth branched wave). Don't let it happen.
  • the phase delay unit 58 of this embodiment includes a frame 580, a first wavelength plate 581, a second wavelength plate 582, a third wavelength plate 583, and a fourth wavelength plate 584.
  • the frame 580 holds a first wave plate 581, a second wave plate 582, a third wave plate 583, and a fourth wave plate 584.
  • the first wave plate 581, the second wave plate 582, the third wave plate 583, and the fourth wave plate 584 are arranged in two rows and two columns with intervals between them.
  • the first wave plate 581, the second wave plate 582, the third wave plate 583, and the fourth wave plate 584 have different amounts of phase delay. Specifically, in the first wave plate 581, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is 0 [rad]. In the second wave plate 582, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is ⁇ /2 [rad]. In the third wave plate 583, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is ⁇ [rad]. In the fourth wavelength plate 584, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is 3 ⁇ /2 [rad].
  • the four branched waves which are the second polarized waves with different phase delays, enter the image sensor 60 via the second lens 59, the third lens 71, and the second polarizing plate 72.
  • the image sensor 60 acquires an interference image by receiving the four branched waves on its imaging surface, and transmits data of the acquired interference image to the calculation unit 80 .
  • the image sensor 60 is, for example, an image sensor such as a CCD image sensor or a CMOS image sensor.
  • the second polarizing plate 72 is an optical element that allows only light traveling in a specific direction (referred to as a "third direction") to pass through (transmit) for each branched wave in which a mutually different phase delay is applied to the second polarized light wave. .
  • the polarization axis (transmission axis) in the second polarizing plate 72 and the first direction, which is the amplitude direction of the first polarized light wave, and the second direction, which is the amplitude direction of the second polarized light wave, are such that they intersect at an angle of 45°.
  • the ratio of light energy is equivalent to
  • the amplitude directions of the first polarized wave and the second polarized wave are aligned for each branch wave, and the first polarized wave and the second polarized wave interfere with each other.
  • the light wave obtained by the interference between the first polarized wave and the second polarized wave is called an interference wave.
  • the image sensor 60 has an interference wave of the first branched wave, an interference wave of the second branched wave, an interference wave of the third branched wave, and an interference wave of the fourth branched wave in each of the four areas arranged in 2 rows and 2 columns.
  • the interference wave of the branched wave is incident. Therefore, the image sensor 60 has an interference image with a phase delay amount of 0 as an interference wave of the first branch wave, an interference image with a phase delay amount of ⁇ /2 [rad] as an interference wave of the second branch wave, and an interference image of the third branch wave.
  • An interference image with a phase delay amount ⁇ [rad] as a wave and an interference image with a phase delay amount 3 ⁇ /2 [rad] as an interference wave of the fourth branched wave can be photographed.
  • the calculation unit 80 is electrically connected to the image sensor 60.
  • the calculation unit 80 acquires a quantitative phase distribution of the sample 90 based on the four interference images captured by the image sensor 60. Specifically, the calculation unit 80 acquires data of the four interference images based on the signal received from the image sensor 60, and acquires a quantitative phase distribution of the sample 90 by calculation using gradient optical interference microscopy based on these four interference images.
  • the specific calculation method used by the calculation unit 80 is described in, for example, the above-mentioned Non-Patent Document 1, and therefore details will be omitted.
  • the calculation unit 80 includes a storage unit that stores programs including algorithms for performing calculations based on gradient light interference microscopy, and a processor (for example, a CPU) that performs calculations according to the program.
  • the storage unit includes, for example, a hard disk drive (HDD), read-only memory (ROM), or random access memory (RAM). Further, the calculation unit 80 may display the calculation results on a display (not shown) that is provided so as to be able to communicate with the calculation unit 80.
  • FIG. 5 is a schematic diagram showing how reflected waves reflected from the sample surface are observed.
  • the incident light is separated by the differential interference prism 91 into a P-polarized light wave and an S-polarized light wave.
  • the P polarized light wave and the S polarized light wave are incident on the sample 90 by the condenser lens 92 with a shear amount ⁇ S shifted in a direction perpendicular to the optical axis.
  • the S-polarized light wave corresponding to the P-polarized light incident on a certain position A1 on the sample 90 is made incident on a position A2 shifted by a shear amount ⁇ S in a predetermined direction from the position A1.
  • the reflection height at position A1 is different from the reflection height at position A2.
  • a phase difference occurs between the P-polarized reflected wave and the S-polarized reflected wave due to the difference in reflection height.
  • the shear amount ⁇ S of the P-polarized reflected wave and the S-polarized reflected wave are aligned again, and the polarization directions are aligned to cause interference.
  • the interference intensity is maximum when the phase difference is 0, 2 ⁇ , and an integral multiple of 2 ⁇ , and is minimum when the phase difference is ⁇ , 3 ⁇ , and an integral multiple of 2 ⁇ + ⁇ .
  • the first prism 32 and the condenser lens 33 cause the first polarized light wave and the second polarized light wave to be sheared in the direction perpendicular to the optical axis.
  • the light is incident on the sample at a position shifted by ⁇ S and is transmitted through the sample.
  • a phase difference occurs between the first polarized light wave and the second polarized light wave due to the difference in the state of the sample at each position.
  • the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is assumed to be ⁇ .
  • the objective lens 51 and the second prism 52 produce a composite wave in which the positional deviation between the first polarized light wave and the second polarized light wave is eliminated.
  • the phase difference between the first polarized light wave and the second polarized light wave remains.
  • the second polarized waves of the branched waves (first branched wave, second branched wave, third branched wave, and fourth branched wave) in which the composite wave is branched into four by the phase grating 56 are each split into two polarized waves. , 0, ⁇ /2, ⁇ , 3 ⁇ /2 phase delays are given.
  • the amount of phase delay of the second polarized light wave with respect to the first polarized light wave in each branched wave becomes ⁇ , ⁇ + ⁇ /2, ⁇ + ⁇ , and ⁇ +3 ⁇ /2.
  • the polarization directions of the first polarized light wave and the second polarized light wave are aligned by the second polarizing plate 72, so that the first polarized light wave and the second polarized light wave included in the composite wave are and interfere.
  • the composite wave after irradiating the sample is branched into four light waves, and a mutually different amount of phase delay is added to each light wave. That is, in one imaging operation, imaging can be performed for four different amounts of phase delay. As a result, compared to conventional differential interference microscopes that can only perform qualitative evaluations, quantitative evaluations can be performed without increasing the imaging time.
  • FIG. 6 is a schematic diagram showing the configuration of the microscope 1A. Similar to the microscope 1 of the first embodiment, this microscope 1A uses gradient light interference microscopy to image colorless and transparent objects such as cells, and uses one of two polarized waves with a shifted irradiation position. A plurality of phase delay amounts are added to the waveform, and the phase difference between the polarized lights is obtained from the intensity distribution of the combination of the two polarized waves.
  • the microscope 1A includes a light source 20, an incident path 30A, a sample placement section 40, an exit path 50, an image sensor 60, and a calculation section 80.
  • the microscope 1A of this embodiment irradiates light onto a sample placed in a sample placement section 40, and observes the reflected light using an imaging device 60. For this reason, the input path 30A from the light source 20 to the sample placement section 40 and the output path 50 from the sample placement section 40 to the image sensor 60 are arranged on straight lines that are perpendicular to each other.
  • the microscope 1A of this embodiment is different from the microscope 1 of the first embodiment in that the entrance path 30A has a half mirror 34, and accordingly, the entrance path 30A and the exit path 50 are arranged on different straight lines.
  • the difference is that
  • the other configurations are equivalent to the microscope 1 of the first embodiment.
  • the reference numerals in FIG. 6 the same elements as the reference numerals in FIG. 1 are equivalent.
  • the half mirror 34 is arranged between the condenser lens 33 and the sample arrangement section 40.
  • the half mirror 34 transmits the light traveling from the condenser lens 33 toward the sample placement section 40, and reflects the light traveling from the sample placement section 40 toward the condenser lens 33 in the vertical direction.
  • the light emitted from the light source 20 and passing through the first polarizing plate 31, the first prism 32, and the condenser lens 33 passes through the half mirror 34 and is incident on the sample placed in the sample placement section 40.
  • the light reflected by the sample is then reflected vertically by the half mirror 34.
  • the configuration from the emission path 50 to the image sensor 60 is the same as the microscope 1 according to the first embodiment.
  • the reflected light of the sample can be observed using gradient light interference microscopy.
  • the branching mechanism that branches the combined light emitted from the second prism is a phase grating, but the present invention is not limited to this.
  • the branching mechanism may be a diffraction grating other than a phase grating, such as an amplitude grating.
  • the branching mechanism may branch the light waves using other optical elements such as a half mirror.
  • the phase delay mechanism that delays the phase of one polarized light wave for each of the plurality of branched lights is a plurality of wavelength plates, but the present invention is not limited to this.
  • a spatial optical phase modulator may be used to delay the phase of one polarized light wave.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

This gradient light interference microscope (1) includes an incidence path (30) in which light is made incident from a light source (20) to a sample arrangement position (40), and an emission path (50) in which transmitted light or reflected light emitted from the sample arrangement position (40) is made incident on an imaging element (60). The incidence path (30) has a first polarizing double-image prism (32) that splits incident light into a first polarized wave and a second polarized wave orthogonal to each other, and a condenser lens (33), in the stated order. The emission path (50) has an objective lens (51), a second polarizing double-image prism (52), a branching mechanism (56) that branches a composite beam emitted from the second polarizing double-image prism (52) into a plurality of paths, a phase delay mechanism (58) that causes mutually different phase delays in each second polarized wave of the plurality of branched beams, and a polarizing plate (72), in the stated order. By branching a light wave and applying a phase delay to each branch, an image can be captured for a plurality of phase delay amounts simultaneously, and image capture time can be shortened.

Description

勾配光干渉顕微鏡gradient light interference microscope
 本発明は、勾配光干渉顕微法に基づいて定量位相イメージングを行うための撮像装置および撮像方法に関する。 The present invention relates to an imaging device and an imaging method for performing quantitative phase imaging based on gradient light interference microscopy.
 細胞などの無色透明な物体をイメージングする技術として、従来、位相差顕微鏡や微分干渉顕微鏡が開発され、使用されている。これらの顕微鏡で得られる位相分布は定性的な位相分布であり、細胞に関する定量的な情報は得られない。 Phase contrast microscopes and differential interference microscopes have been developed and used as technologies for imaging colorless and transparent objects such as cells. The phase distribution obtained with these microscopes is a qualitative phase distribution, and quantitative information about cells cannot be obtained.
 例えば、微分干渉顕微鏡では、サンプルを照射する光を、ウォラストンプリズムやノマルスキプリズム等の微分干渉プリズムによって、偏光方向の直交するP偏光とS偏光とに分離するとともに、P偏光とS偏光との照射位置をずらす。このP偏光とS偏光とのずれ量をシア量と称する。そして、各偏光波のサンプルからの透過光または反射光を再度プリズムによって合波させ、干渉させる。このときの干渉強度は、シア量に対する位相差によって変化する。これにより、無色透明な細胞や凹凸のある物体について、形状の変化量(微分)を可視化することができる。しかしながら、この方法では、形状や位相の変化量を可視化できるものの、定量的な情報を取得できない。 For example, in a differential interference microscope, the light that irradiates the sample is separated into P-polarized light and S-polarized light whose polarization directions are orthogonal to each other using a differential interference prism such as a Wollaston prism or Nomarski prism. Shift the irradiation position. The amount of deviation between the P polarized light and the S polarized light is referred to as the shear amount. Then, the transmitted light or reflected light from the sample of each polarized light wave is combined again by the prism to cause interference. The interference intensity at this time changes depending on the phase difference with respect to the shear amount. This makes it possible to visualize the amount of change (differentiation) in shape of colorless and transparent cells and uneven objects. However, although this method can visualize the amount of change in shape and phase, it cannot acquire quantitative information.
 そこで、計測対象の位相情報を定量的に取得する定量位相イメージングを行うために、微分干渉顕微鏡に液晶変調素子を追加することにより定量位相を取得する、GLIM(Gradient Light Interference Microscopy)と呼ばれる勾配光干渉顕微法が提案されている。勾配光干渉顕微法については、例えば、非特許文献1に記載されている。 Therefore, in order to perform quantitative phase imaging that quantitatively acquires phase information of a measurement target, a gradient light called GLIM (Gradient Light Interference Microscopy) is used to acquire quantitative phase by adding a liquid crystal modulation element to a differential interference microscope. An interference microscopy method has been proposed. The gradient light interference microscopy method is described in, for example, Non-Patent Document 1.
 非特許文献1に記載の勾配光干渉顕微法では、液晶変調素子を用いて、分離され、照射位置がずれたP偏光とS偏光との一方に4通りの異なる位相遅延量を付加する。そして、4通りのそれぞれの合波における干渉強度分布から、偏光間の位相差を取得している。そして、偏光間の位相差をシア量で除算することによって、局所的な位相微分を算出する。位相の微分値が画像の各位置において算出されるため、これを積分することによって、計測対象の位相分布を取得することができる。 In the gradient light interference microscopy method described in Non-Patent Document 1, a liquid crystal modulation element is used to add four different amounts of phase delay to one of the separated P-polarized light and S-polarized light whose irradiation positions are shifted. Then, the phase difference between the polarized lights is obtained from the interference intensity distribution in each of the four ways of multiplexing. Then, a local phase differential is calculated by dividing the phase difference between the polarized lights by the shear amount. Since the differential value of the phase is calculated at each position of the image, by integrating this, the phase distribution of the measurement target can be obtained.
 ただし、非特許文献1に記載の勾配光干渉顕微法では、4通りの位相遅延量について撮像を行うためには、4回撮像を行わなければならない。すなわち、従来の微分干渉顕微鏡に比べて、撮像時間が4倍となるため、動的なサンプルへの適用が制限される。 However, in the gradient light interference microscopy method described in Non-Patent Document 1, in order to perform imaging for four different amounts of phase delay, imaging must be performed four times. That is, since the imaging time is four times longer than that of a conventional differential interference microscope, the application to dynamic samples is limited.
 本発明は、このような事情に鑑みなされたものであり、勾配光干渉顕微法において、撮像時間を短縮する技術を提供することを目的とする。 The present invention was made in view of these circumstances, and an object of the present invention is to provide a technique for shortening the imaging time in gradient light interference microscopy.
 上記課題を解決するため、本願の第1発明は、偏光波を用いて位相イメージングを行う勾配光干渉顕微鏡であって、光源からサンプル配置位置へ光を入射させる入射経路と、前記サンプル配置位置から出射される透過光または反射光を撮像素子へ入射させる出射経路と、を含み、前記入射経路は、順に、入射光を直交する第1偏光波および第2偏光波に分離する第1偏光複像プリズムと、前記第1偏光複像プリズムと前記サンプル配置位置との間に配置されるコンデンサレンズと、を有し、前記出射経路は、順に、前記サンプル配置位置から出射される前記透過光また前記反射光が入射される対物レンズと、前記第1偏光波および前記第2偏光波を合成する第2偏光複像プリズムと、前記第2偏光複像プリズムからの出射された合成光を、3経路以上の複数経路に分岐する分岐機構と、複数の分岐光のそれぞれの前記第2偏光波に、互いに異なる位相遅延を生じさせる位相遅延機構と、複数の分岐光のそれぞれの前記第1偏光波および前記第2偏光波の偏光方向を揃える偏光板と、を有する。 In order to solve the above problems, the first invention of the present application is a gradient light interference microscope that performs phase imaging using polarized waves, which includes an incident path for making light incident from a light source to a sample placement position, and a path from the sample placement position to the sample placement position. an output path that makes the emitted transmitted light or reflected light enter the imaging device, and the input path includes a first polarization double image that sequentially separates the incident light into orthogonal first polarized light waves and second polarized light waves. a prism; and a condenser lens disposed between the first polarizing double-image prism and the sample arrangement position, and the output path sequentially includes the transmitted light emitted from the sample arrangement position and the An objective lens into which the reflected light is incident, a second polarizing double-image prism that combines the first polarized light wave and the second polarized light wave, and a combined light emitted from the second polarized double-image prism into three paths. A branching mechanism that branches into the plurality of paths, a phase delay mechanism that causes different phase delays in the second polarized waves of each of the plurality of branched lights, and a phase delay mechanism that causes the first polarized waves of each of the plurality of branched lights; and a polarizing plate that aligns the polarization direction of the second polarized light wave.
 本願の第2発明は、第1発明の勾配光干渉顕微鏡であって、前記分岐機構は回折格子である。 The second invention of this application is the gradient light interference microscope of the first invention, in which the branching mechanism is a diffraction grating.
 本願の第3発明は、第2発明の勾配光干渉顕微鏡であって、前記分岐機構は位相格子である。 A third invention of the present application is the gradient light interference microscope according to the second invention, in which the branching mechanism is a phase grating.
 本願の第4発明は、第3発明の勾配光干渉顕微鏡であって、前記位相格子は、前記撮像素子の撮像面において2次元的に2行2列にフーリエスペクトル分布が現れるように設けられる。 A fourth invention of the present application is the gradient light interference microscope according to the third invention, in which the phase grating is provided so that a Fourier spectrum distribution appears two-dimensionally in two rows and two columns on the imaging surface of the imaging element.
 本願の第5発明は、第4発明の勾配光干渉顕微鏡であって、前記位相遅延機構は、2次元的に2行2列に配置された4つの波長板であり、4つの前記波長板は、位相遅延量が互いに異なる。 A fifth invention of the present application is the gradient light interference microscope according to the fourth invention, wherein the phase delay mechanism is four wave plates arranged two-dimensionally in two rows and two columns, and the four wave plates are , the amount of phase delay is different from each other.
 本願の第6発明は、第1発明ないし第5発明のいずれか一発明の勾配光干渉顕微鏡であって、前記位相遅延機構は、前記分岐光のそれぞれに対応する複数の波長板である。 A sixth invention of the present application is the gradient light interference microscope according to any one of the first to fifth inventions, in which the phase delay mechanism is a plurality of wavelength plates corresponding to each of the branched lights.
 本願の第7発明は、第1発明ないし第6発明のいずれか一発明の勾配光干渉顕微鏡であって、前記分岐機構は、前記合成光を4経路以上に分岐し、前記位相遅延機構は、4つの分岐光のそれぞれの前記第2偏光波に、0、π/2、π、3π/2の位相遅延を生じさせる。 A seventh invention of the present application is the gradient light interference microscope according to any one of the first to sixth inventions, wherein the branching mechanism branches the combined light into four or more paths, and the phase delay mechanism includes: A phase delay of 0, π/2, π, and 3π/2 is caused in the second polarized light wave of each of the four branched lights.
 本願の第1発明から第7発明によれば、勾配光干渉顕微法において、分離した第1偏光波と第2偏光波とを分岐させ、それぞれに位相遅延を行うことで、複数の位相遅延量について同時に撮像することができる。したがって、従来時間のかかっていた勾配光干渉顕微法において、撮像時間を短縮することができる。 According to the first to seventh inventions of the present application, in the gradient light interference microscopy method, by splitting the separated first polarized light wave and the second polarized light wave and performing a phase delay on each, a plurality of phase delay amounts can be obtained. can be imaged simultaneously. Therefore, it is possible to shorten the imaging time in gradient light interference microscopy, which conventionally took a long time.
 特に、本願の第2発明および第3発明によれば、装置を大型化することなく、光波を複数に分岐することができる。 In particular, according to the second and third inventions of the present application, it is possible to branch light waves into a plurality of light waves without increasing the size of the device.
 特に、本願の第5発明または第6発明によれば、装置を大型化すること無く、複数の分岐光のそれぞれについて、2つの偏向波の一方のみに所定の位相遅延を生じさせることができる。 In particular, according to the fifth or sixth invention of the present application, a predetermined phase delay can be caused in only one of the two polarized waves for each of the plurality of branched lights without increasing the size of the device.
第1実施形態にかかる勾配光干渉顕微鏡の概略図である。FIG. 1 is a schematic diagram of a gradient light interference microscope according to a first embodiment. 第1実施形態にかかる勾配光干渉顕微鏡の位相格子の領域分布を示した図である。FIG. 3 is a diagram showing the area distribution of the phase grating of the gradient light interference microscope according to the first embodiment. 第1実施形態にかかる勾配光干渉顕微鏡の位相格子のフーリエスペクトル分布を示した図である。FIG. 3 is a diagram showing the Fourier spectrum distribution of the phase grating of the gradient light interference microscope according to the first embodiment. 第1実施形態にかかる勾配光干渉顕微鏡の偏光板の配置を示した図である。FIG. 3 is a diagram showing the arrangement of polarizing plates of the gradient light interference microscope according to the first embodiment. 偏光複像プリズムを用いて試料表面で反射した反射波を観察する様子を示した概略図である。FIG. 1 is a schematic diagram showing how a reflected wave from a sample surface is observed using a polarizing birefringent prism. 第2実施形態にかかる勾配光干渉顕微鏡の概略図である。FIG. 3 is a schematic diagram of a gradient light interference microscope according to a second embodiment.
 以下、本発明の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 <1.第1実施形態>
 以下では、本発明の一実施形態に係る勾配光干渉顕微鏡である顕微鏡1について、図1を参照しつつ説明する。図1は、顕微鏡1の構成を示した概略図である。この顕微鏡1は、細胞などの無色透明な物体をイメージングするために、勾配光干渉顕微法を用いて、照射位置をシフトさせた2つの偏光波の一方に複数通りの位相遅延量を付加し、2つの偏光波の合波の強度分布から偏光間の位相差を取得するものである。
<1. First embodiment>
Below, a microscope 1, which is a gradient light interference microscope according to an embodiment of the present invention, will be described with reference to FIG. FIG. 1 is a schematic diagram showing the configuration of a microscope 1. In order to image colorless and transparent objects such as cells, this microscope 1 uses gradient light interference microscopy to add multiple amounts of phase delay to one of two polarized waves whose irradiation position is shifted. The phase difference between polarized lights is obtained from the intensity distribution of the combination of two polarized lights.
 図1に示すように、顕微鏡1は、光源20、入射経路30、サンプル配置部40、出射経路50、撮像素子60、および演算部80を有する。本実施形態の顕微鏡1は、サンプル配置部40に配置されたサンプルに光を照射し、その透過光を撮像素子60にて観察するものである。このため、光源20からサンプル配置部40へ向かう入射経路30と、サンプル配置部40から撮像素子60へ向かう出射経路50を一直線上に配置している。 As shown in FIG. 1, the microscope 1 includes a light source 20, an entrance path 30, a sample placement section 40, an exit path 50, an image sensor 60, and a calculation section 80. The microscope 1 of this embodiment irradiates light onto a sample placed in a sample placement section 40 and observes the transmitted light using an imaging device 60. For this reason, the input path 30 from the light source 20 to the sample placement section 40 and the output path 50 from the sample placement section 40 to the image sensor 60 are arranged in a straight line.
 光源20は、サンプルに照射する光を供給する。光源20から出射される光は白色光である。 The light source 20 supplies light to irradiate the sample. The light emitted from the light source 20 is white light.
 入射経路30は、光源20からサンプル配置部40へ光を入射させる光学系である。入射経路30における光軸は一直線上に配置されている。入射経路30は、光源20からサンプル配置部40へ向かって順に、第1偏光板31と、第1プリズム32と、コンデンサレンズ33とを有する。 The incident path 30 is an optical system that allows light to enter the sample arrangement section 40 from the light source 20. The optical axes in the incident path 30 are arranged in a straight line. The incident path 30 includes a first polarizing plate 31, a first prism 32, and a condenser lens 33 in this order from the light source 20 toward the sample placement section 40.
 第1偏光板31は、光源20から出射された光のうち、特定方向に進行する光のみを通過(透過)させる光学素子である。 The first polarizing plate 31 is an optical element that allows only light traveling in a specific direction to pass (transmit) among the light emitted from the light source 20.
 第1プリズム32は、入射光を直交する2つの偏光波に分離する、いわゆる微分干渉プリズム(DICプリズム)である。第1プリズム32は、入射光を直交する第1偏光波および第2偏光波に分離する「第1偏光複像プリズム」である。具体的には、第1プリズム32は、入射光を、光軸に直交する第1方向に振動方向を有する第1偏光波と、光軸および第1方向と直交する第2方向に振動方向を有する第2偏光波とを、所定の分離角度で分離させる。第1プリズム32には、例えば、ウォラストンプリズムやノマルスキプリズムが用いられる。 The first prism 32 is a so-called differential interference prism (DIC prism) that separates incident light into two orthogonal polarized waves. The first prism 32 is a "first polarization double-image prism" that separates incident light into a first polarization wave and a second polarization wave that are perpendicular to each other. Specifically, the first prism 32 converts the incident light into a first polarized light wave having a vibration direction in a first direction perpendicular to the optical axis and a first polarized light wave having a vibration direction in a second direction perpendicular to the optical axis and the first direction. and the second polarized light wave having a predetermined separation angle. For example, a Wollaston prism or a Nomarski prism is used as the first prism 32.
 第1偏光板31における偏光軸(透過軸)と、第1プリズム32の第1方向および第2方向とはそれぞれ、45°の角度で交わるように配置されている。これにより、第1偏光板31から出射された偏光波の第1方向成分と第2方向成分との光エネルギーが同等となる。すなわち、第1プリズム32から出射される第1偏光波と第2偏光波とが、ほぼ同等の強度となる。 The polarization axis (transmission axis) of the first polarizing plate 31 and the first direction and the second direction of the first prism 32 are arranged to intersect at an angle of 45°, respectively. Thereby, the optical energy of the first direction component and the second direction component of the polarized light wave emitted from the first polarizing plate 31 becomes equal. That is, the first polarized light wave and the second polarized light wave emitted from the first prism 32 have substantially the same intensity.
 コンデンサレンズ33は、第1プリズム32において分離した第1偏光波および第2偏光波を、サンプル配置部40へ適切に照射させるためのレンズである。コンデンサレンズ33の焦点面P1は、第1偏向板31を透過した光が、第1プリズム32により2つの偏光に分離する面(すなわち、第1プリズムのローカライズ面)に配置される。コンデンサレンズ33によって、第1偏光波と第2偏光波とは、光軸に対して直交する方向に、所定のシア量ずれて進行する。所定のシア量ずれた第1偏光波および第2偏光波を合わせて「分離合波」と称する。 The condenser lens 33 is a lens for appropriately irradiating the first polarized light wave and the second polarized light wave separated by the first prism 32 onto the sample arrangement section 40. The focal plane P1 of the condenser lens 33 is arranged on a plane where the light transmitted through the first deflection plate 31 is separated into two polarized lights by the first prism 32 (that is, the localization plane of the first prism). Due to the condenser lens 33, the first polarized light wave and the second polarized light wave are shifted by a predetermined shear amount and travel in a direction perpendicular to the optical axis. The first polarized light wave and the second polarized light wave shifted by a predetermined shear amount are collectively referred to as "separation/combination."
 サンプル配置部40は、生体試料であるサンプルを、サンプル配置位置P2に配置するための機構である。実際には、サンプル配置部40には、サンプルが収容されたディッシュやプレパラートを固定する固定機構が設けられている。サンプル配置部40に配置されたサンプルには、コンデンサレンズ33から出射される分離合波が照射される。 The sample placement section 40 is a mechanism for placing a sample, which is a biological specimen, at the sample placement position P2. In practice, the sample placement section 40 is provided with a fixing mechanism for fixing a dish or a slide in which the sample is contained. The sample placed in the sample placement section 40 is irradiated with the separated and combined light emitted from the condenser lens 33.
 本実施形態の顕微鏡1は、サンプルに照射された光の透過光を観察するものである。光源20から入射経路30を介してサンプルに入射された分離合波は、サンプルを透過して出射経路50へと向かう。このとき、分離合波に含まれる第1偏光波と第2偏光波とは、所定のシア量ずれた位置でサンプルを透過する。このため、サンプルの透過光は、第1偏光波と第2偏光波とがシア量ずれた分離合波となる。 The microscope 1 of this embodiment is for observing transmitted light irradiated onto a sample. Separated and multiplexed light incident on the sample from the light source 20 via the input path 30 passes through the sample and heads toward the output path 50 . At this time, the first polarized light wave and the second polarized light wave included in the separation/combination are transmitted through the sample at positions shifted by a predetermined shear amount. For this reason, the light transmitted through the sample becomes a separated and multiplexed wave in which the first polarized light wave and the second polarized light wave are shifted by the amount of shear.
 出射経路50は、サンプル配置部40からの透過光を撮像素子60へ入射させる光学系である。出射経路50は、サンプル配置部40から撮像素子60へ向かって順に、対物レンズ51、第2プリズム52、カラーフィルタ53、第1結像レンズ54、第2結像レンズ55、位相格子56、第1レンズ57、位相遅延部58、第2レンズ59、第3レンズ71、および第2偏光板72を有する。 The output path 50 is an optical system that allows the transmitted light from the sample placement section 40 to enter the image sensor 60. The exit path 50 includes an objective lens 51, a second prism 52, a color filter 53, a first imaging lens 54, a second imaging lens 55, a phase grating 56, and a second imaging lens 55 in order from the sample arrangement section 40 toward the imaging device 60. 1 lens 57 , a phase delay section 58 , a second lens 59 , a third lens 71 , and a second polarizing plate 72 .
 対物レンズ51は、サンプル配置部40においてサンプルを透過した透過光(分離した第1偏光波および第2偏光波を含む分離合波)を結像させるレンズである。 The objective lens 51 is a lens that images the transmitted light (separated and combined waves including the separated first polarized light wave and the second polarized light wave) that has passed through the sample in the sample placement section 40.
 第2プリズム52は、対物レンズ51の焦点面P3に配置される。第2プリズム52は、第1プリズムと同様の微分干渉プリズム(DICプリズム)である。第2プリズム52は、第1偏光波および第2偏光波を合成する「第2偏光複像プリズム」である。第2プリズム52には、第1偏光波と第2偏光波とが所定のシア量ずれた分離合波が入射される。第2プリズム52は、分離した第1偏光波と第2偏光波とを第1プリズム32と逆方向にずらすことにより、第1偏光波と第2偏光波とのずれを無くした(シア量を0とした)、第1偏光波と第2偏光波との合成波を出射する。第2プリズム52は、対物レンズ51の焦点面P2に配置される。 The second prism 52 is arranged at the focal plane P3 of the objective lens 51. The second prism 52 is a differential interference prism (DIC prism) similar to the first prism. The second prism 52 is a "second polarized double-image prism" that combines the first polarized light wave and the second polarized light wave. Separated and combined waves in which the first polarized light wave and the second polarized light wave are shifted by a predetermined shear amount are incident on the second prism 52 . The second prism 52 eliminates the deviation between the first polarized light wave and the second polarized light wave by shifting the separated first polarized light wave and the second polarized light wave in the opposite direction to the first prism 32 (the amount of shear is reduced). 0), and outputs a composite wave of the first polarized light wave and the second polarized light wave. The second prism 52 is arranged on the focal plane P2 of the objective lens 51.
 カラーフィルタ53は、第2プリズム52から出射された合成波から、所定の波長範囲の光のみを通過させる。光源20から出射される光が広い波長範囲である場合、波長の違いによって第1プリズム32および第2プリズム52における分離角が異なるため、光路長の差が生じて像がぼやける虞がある。カラーフィルタ53によって波長範囲を狭めることにより、撮像素子60において観察する像がぼやけるのを抑制できる。 The color filter 53 passes only light in a predetermined wavelength range from the composite wave emitted from the second prism 52. When the light emitted from the light source 20 has a wide wavelength range, the separation angles at the first prism 32 and the second prism 52 differ depending on the wavelength, which may cause a difference in optical path length and cause the image to become blurred. By narrowing the wavelength range using the color filter 53, blurring of the image observed on the image sensor 60 can be suppressed.
 第1結像レンズ54および第2結像レンズ55は、第2プリズム52から出射され、カラーフィルタ53を通過した合成波を結像させるためのレンズである。第1結像レンズ54および第2結像レンズ55のフーリエ面(瞳面)P4には、合成波のフーリエスペクトル分布が現れる。 The first imaging lens 54 and the second imaging lens 55 are lenses for forming an image of the composite wave emitted from the second prism 52 and passing through the color filter 53. The Fourier spectral distribution of the composite wave appears on the Fourier plane (pupil plane) P4 of the first imaging lens 54 and the second imaging lens 55.
 位相格子56は、第1結像レンズ54および第2結像レンズ55のフーリエ面(瞳面)に配置される。位相格子56は、回折格子の一種である。本実施形態の位相格子56は、屈折率の異なる(位相を変調する)領域を組み合わせた透過型の位相格子である。なお、位相格子56は、厚さの異なる領域を組み合わせて形成されてもよい。 The phase grating 56 is arranged on the Fourier plane (pupil plane) of the first imaging lens 54 and the second imaging lens 55. The phase grating 56 is a type of diffraction grating. The phase grating 56 of this embodiment is a transmission type phase grating that combines regions having different refractive indexes (modulating the phase). Note that the phase grating 56 may be formed by combining regions with different thicknesses.
 図2は、本実施形態の位相格子56の領域分布を示した図である。図3は、本実施形態の位相格子56の点像強度分布を示した図である。図2に示すように、この位相格子56は、位相遅延を行わない(位相遅延量が0である)領域と、位相遅延量がπである領域とが、2次元的に交互に、市松模様状に配置されている。このような位相格子56のフーリエスペクトル分布は、第2結像レンズ55の結像面(ないしは撮像素子60の撮像面)において、図3に示すような、2次元的に2行2列の分布にサンプルからの光波が畳み込まれて現れる。 FIG. 2 is a diagram showing the area distribution of the phase grating 56 of this embodiment. FIG. 3 is a diagram showing the point spread intensity distribution of the phase grating 56 of this embodiment. As shown in FIG. 2, this phase grating 56 has a checkerboard pattern in which regions in which no phase delay is performed (the amount of phase delay is 0) and regions in which the amount of phase delay is π are alternated two-dimensionally. It is arranged in a shape. The Fourier spectrum distribution of the phase grating 56 is a two-dimensional two-by-two distribution on the imaging plane of the second imaging lens 55 (or the imaging plane of the imaging element 60) as shown in FIG. The light waves from the sample appear convolved in the .
 すなわち、位相格子56は、第2プリズム52から出射された合成波を3経路以上の複数経路に分岐する分岐機構である。本実施形態の位相格子56は、第2プリズム52から出射され、カラーフィルタ53を通過した合成波を、2行2列の4つの光波に分離する。ここで、位相格子56によって分離された4つの光波をそれぞれ、第1分岐波、第2分岐波、第3分岐波および第4分岐波と称する。 That is, the phase grating 56 is a branching mechanism that branches the composite wave emitted from the second prism 52 into three or more routes. The phase grating 56 of this embodiment separates the composite wave emitted from the second prism 52 and passed through the color filter 53 into four light waves arranged in two rows and two columns. Here, the four light waves separated by the phase grating 56 are respectively referred to as a first branch wave, a second branch wave, a third branch wave, and a fourth branch wave.
 第1分岐波、第2分岐波、第3分岐波および第4分岐波のそれぞれには、第1方向に振幅を有する第1偏光波と、第2方向に振幅を有する第2偏光波とが含まれている。 Each of the first branch wave, the second branch wave, the third branch wave, and the fourth branch wave includes a first polarized light wave having an amplitude in the first direction and a second polarized light wave having an amplitude in the second direction. include.
 第1レンズ57、位相遅延部58、第2レンズ59、第3レンズ71、および第2偏光板72は、位相格子56と撮像素子60との間に順に配置される。第1レンズ57と第2レンズ59の間において、第1分岐波、第2分岐波、第3分岐波および第4分岐波は、互いに平行に進行する。 The first lens 57, the phase delay section 58, the second lens 59, the third lens 71, and the second polarizing plate 72 are arranged in this order between the phase grating 56 and the image sensor 60. Between the first lens 57 and the second lens 59, the first branched wave, the second branched wave, the third branched wave, and the fourth branched wave travel parallel to each other.
 位相遅延部58は、複数の分岐光(第1分岐波、第2分岐波、第3分岐波および第4分岐波)のそれぞれに含まれる第2偏光波に、互いに異なる位相遅延を生じさせる位相遅延機構である。なお、位相遅延部58は、複数の分岐光(第1分岐波、第2分岐波、第3分岐波および第4分岐波)のそれぞれに含まれる第1偏光波に対しては、位相遅延を生じさせない。 The phase delay unit 58 has a phase delay unit that causes different phase delays in second polarized waves included in each of the plurality of branched lights (a first branched wave, a second branched wave, a third branched wave, and a fourth branched wave). It is a delay mechanism. Note that the phase delay unit 58 applies a phase delay to the first polarized light included in each of the plurality of branched lights (first branched wave, second branched wave, third branched wave, and fourth branched wave). Don't let it happen.
 本実施形態の位相遅延部58は、図4に示すように、フレーム580、第1波長板581、第2波長板582、第3波長板583、および第4波長板584を有する。フレーム580は、第1波長板581、第2波長板582、第3波長板583、および第4波長板584を保持する。第1波長板581、第2波長板582、第3波長板583、および第4波長板584は、互いに間隔を空けて、2行2列に配置される。 As shown in FIG. 4, the phase delay unit 58 of this embodiment includes a frame 580, a first wavelength plate 581, a second wavelength plate 582, a third wavelength plate 583, and a fourth wavelength plate 584. The frame 580 holds a first wave plate 581, a second wave plate 582, a third wave plate 583, and a fourth wave plate 584. The first wave plate 581, the second wave plate 582, the third wave plate 583, and the fourth wave plate 584 are arranged in two rows and two columns with intervals between them.
 第1波長板581、第2波長板582、第3波長板583、および第4波長板584は、位相遅延量が互いに異なる。具体的には、第1波長板581において、第1偏光波に対する第2偏光波の位相遅延量は0[rad]である。第2波長板582において、第1偏光波に対する第2偏光波の位相遅延量はπ/2[rad]である。第3波長板583において、第1偏光波に対する第2偏光波の位相遅延量はπ[rad]である。第4波長板584において、第1偏光波に対する第2偏光波の位相遅延量は3π/2[rad]である。 The first wave plate 581, the second wave plate 582, the third wave plate 583, and the fourth wave plate 584 have different amounts of phase delay. Specifically, in the first wave plate 581, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is 0 [rad]. In the second wave plate 582, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is π/2 [rad]. In the third wave plate 583, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is π [rad]. In the fourth wavelength plate 584, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is 3π/2 [rad].
 第2偏光波に互いに異なる位相遅延がなされた4つの分岐波は、第2レンズ59、第3レンズ71および第2偏光板72を介して撮像素子60へと入射する。撮像素子60は、4つの分岐波を撮像面にて受けることにより干渉像を取得し、取得した干渉像のデータを演算部80へと送信する。撮像素子60は、例えばCCDイメージセンサ、もしくはCMOSイメージセンサなどのイメージセンサである。 The four branched waves, which are the second polarized waves with different phase delays, enter the image sensor 60 via the second lens 59, the third lens 71, and the second polarizing plate 72. The image sensor 60 acquires an interference image by receiving the four branched waves on its imaging surface, and transmits data of the acquired interference image to the calculation unit 80 . The image sensor 60 is, for example, an image sensor such as a CCD image sensor or a CMOS image sensor.
 第2偏光板72は、第2偏光波に互いに異なる位相遅延がなされた各分岐波について、特定方向(「第3方向」と称する)に進行する光のみを通過(透過)させる光学素子である。第2偏光板72における偏光軸(透過軸)と、第1偏光波の振幅方向である第1方向および第2偏光波の振幅方向である第2方向とはそれぞれ、45°の角度で交わるように配置されている。これにより、第2偏光板72入射前の第1偏光波の光エネルギーに対する第3方向成分の光エネルギーの割合と、第2偏光板72入射前の第2偏光波の光エネルギーに対する第3方向成分の光エネルギーの割合とが、同等となる。 The second polarizing plate 72 is an optical element that allows only light traveling in a specific direction (referred to as a "third direction") to pass through (transmit) for each branched wave in which a mutually different phase delay is applied to the second polarized light wave. . The polarization axis (transmission axis) in the second polarizing plate 72 and the first direction, which is the amplitude direction of the first polarized light wave, and the second direction, which is the amplitude direction of the second polarized light wave, are such that they intersect at an angle of 45°. It is located in Thereby, the ratio of the optical energy of the third direction component to the optical energy of the first polarized light wave before entering the second polarizing plate 72, and the ratio of the optical energy of the third direction component to the optical energy of the second polarized light wave before entering the second polarizing plate 72. The ratio of light energy is equivalent to
 第2偏光板72を通過することにより、各分岐波について、第1偏光波と第2偏光波の振幅方向が揃い、第1偏光波と第2偏光波とが干渉するようになる。第1偏光波と第2偏光波との干渉によって得られる光波を、干渉波と称する。 By passing through the second polarizing plate 72, the amplitude directions of the first polarized wave and the second polarized wave are aligned for each branch wave, and the first polarized wave and the second polarized wave interfere with each other. The light wave obtained by the interference between the first polarized wave and the second polarized wave is called an interference wave.
 これにより、撮像素子60には、2行2列の4つの領域のそれぞれに、第1分岐波の干渉波と、第2分岐波の干渉波と、第3分岐波の干渉波と、第4分岐波の干渉波とが入射される。したがって、撮像素子60は、第1分岐波の干渉波として位相遅延量0の干渉像、第2分岐波の干渉波として位相遅延量π/2[rad]の干渉像、第3分岐波の干渉波として位相遅延量π[rad]の干渉像、および、第4分岐波の干渉波として位相遅延量3π/2[rad]の干渉像を撮影することができる。 As a result, the image sensor 60 has an interference wave of the first branched wave, an interference wave of the second branched wave, an interference wave of the third branched wave, and an interference wave of the fourth branched wave in each of the four areas arranged in 2 rows and 2 columns. The interference wave of the branched wave is incident. Therefore, the image sensor 60 has an interference image with a phase delay amount of 0 as an interference wave of the first branch wave, an interference image with a phase delay amount of π/2 [rad] as an interference wave of the second branch wave, and an interference image of the third branch wave. An interference image with a phase delay amount π [rad] as a wave and an interference image with a phase delay amount 3π/2 [rad] as an interference wave of the fourth branched wave can be photographed.
 演算部80は、撮像素子60と電気的に接続されている。演算部80は、撮像素子60の撮影した4つの干渉像に基づいて、試料90の定量位相分布を取得する。具体的には、演算部80は、撮像素子60から受信した信号を基に、4つの干渉像のデータを取得し、これら4つの干渉像に基づいて勾配光干渉顕微法による計算により、試料90の定量位相分布を取得する。演算部80における具体的な計算手法については、例えば上述の非特許文献1に記載されているため、詳細は割愛する。 The calculation unit 80 is electrically connected to the image sensor 60. The calculation unit 80 acquires a quantitative phase distribution of the sample 90 based on the four interference images captured by the image sensor 60. Specifically, the calculation unit 80 acquires data of the four interference images based on the signal received from the image sensor 60, and acquires a quantitative phase distribution of the sample 90 by calculation using gradient optical interference microscopy based on these four interference images. The specific calculation method used by the calculation unit 80 is described in, for example, the above-mentioned Non-Patent Document 1, and therefore details will be omitted.
 演算部80は、勾配光干渉顕微法に基づく演算を実行するためのアルゴリズムを含んだプログラム等を記憶する記憶部と、プログラムに従って演算を実行するプロセッサ(例えばCPU)とを備える。記憶部は、例えばハードディスクドライブ(HDD)、リードオンリーメモリ(ROM)あるいはランダムアクセスメモリ(RAM)等により構成される。また、演算部80は、演算部80と通信可能に設けられたディスプレイ(図示省略)に、演算結果を表示してもよい。 The calculation unit 80 includes a storage unit that stores programs including algorithms for performing calculations based on gradient light interference microscopy, and a processor (for example, a CPU) that performs calculations according to the program. The storage unit includes, for example, a hard disk drive (HDD), read-only memory (ROM), or random access memory (RAM). Further, the calculation unit 80 may display the calculation results on a display (not shown) that is provided so as to be able to communicate with the calculation unit 80.
 ここで、この顕微鏡1の原理の基礎を、図5を参照しつつ説明する。図5は、試料表面で反射した反射波を観察する様子を示した概略図である。図5の例では、入射光が、微分干渉プリズム91によってP偏光波とS偏光波とに分離される。その後、コンデンサレンズ92によって、P偏光波およびS偏光波は、光軸に直交する方向にシア量ΔSずれた状態で試料90へ入射する。図5に示すように、試料90上のある位置A1に入射されたP偏光波に対応するS偏光波は、位置A1から所定の方向にシア量ΔSずれた位置A2に入射される。 Here, the basic principle of this microscope 1 will be explained with reference to FIG. 5. FIG. 5 is a schematic diagram showing how reflected waves reflected from the sample surface are observed. In the example of FIG. 5, the incident light is separated by the differential interference prism 91 into a P-polarized light wave and an S-polarized light wave. Thereafter, the P polarized light wave and the S polarized light wave are incident on the sample 90 by the condenser lens 92 with a shear amount ΔS shifted in a direction perpendicular to the optical axis. As shown in FIG. 5, the S-polarized light wave corresponding to the P-polarized light incident on a certain position A1 on the sample 90 is made incident on a position A2 shifted by a shear amount ΔS in a predetermined direction from the position A1.
 これにより、試料90の表面高さが一定でない場合、位置A1における反射高さと、位置A2における反射高さとが異なる。その結果、反射高さの違いに起因して、P偏光反射波とS偏光反射波とに位相差が生じる。その後、P偏光反射波とS偏光反射波とのシア量ΔSの位置を再び合わせるとともに、偏光方向を揃えて干渉させる。このとき、位相差が0、2π、および2πの整数倍である場合に干渉強度が最大となり、位相差がπ、3π、および2πの整数倍+πである場合に干渉強度が最小となる。 As a result, if the surface height of the sample 90 is not constant, the reflection height at position A1 is different from the reflection height at position A2. As a result, a phase difference occurs between the P-polarized reflected wave and the S-polarized reflected wave due to the difference in reflection height. Thereafter, the shear amount ΔS of the P-polarized reflected wave and the S-polarized reflected wave are aligned again, and the polarization directions are aligned to cause interference. At this time, the interference intensity is maximum when the phase difference is 0, 2π, and an integral multiple of 2π, and is minimum when the phase difference is π, 3π, and an integral multiple of 2π+π.
 この顕微鏡1では、サンプル配置部40において分離合波がサンプルを透過する際に、第1プリズム32およびコンデンサレンズ33によって第1偏光波と第2偏光波とが光軸に直交する方向にシア量ΔSずれた位置で、サンプルに入射され、サンプルを透過する。このとき、それぞれの位置におけるサンプルの状態の違いによって、第1偏光波と第2偏光波とに位相差が生じる。ここで、第1偏光波に対する第2偏光波の位相遅延量をθとする。 In this microscope 1, when the separation/combination is transmitted through the sample in the sample placement section 40, the first prism 32 and the condenser lens 33 cause the first polarized light wave and the second polarized light wave to be sheared in the direction perpendicular to the optical axis. The light is incident on the sample at a position shifted by ΔS and is transmitted through the sample. At this time, a phase difference occurs between the first polarized light wave and the second polarized light wave due to the difference in the state of the sample at each position. Here, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave is assumed to be θ.
 その後、対物レンズ51および第2プリズム52によって、第1偏光波と第2偏光波との位置ずれが解消された合成波となる。このとき、第1偏光波と第2偏光波とには位相差が生じた状態のままである。続いて、当該合成波が位相格子56によって4つに分岐された分岐波(第1分岐波、第2分岐波、第3分岐波、および第4分岐波)の第2偏光波には、それぞれ、0,π/2,π,3π/2の位相遅延が与えられる。これによって、それぞれの分岐波における第1偏光波に対する第2偏光波の位相遅延量は、θ,θ+π/2,θ+π,θ+3π/2となる。 Thereafter, the objective lens 51 and the second prism 52 produce a composite wave in which the positional deviation between the first polarized light wave and the second polarized light wave is eliminated. At this time, the phase difference between the first polarized light wave and the second polarized light wave remains. Subsequently, the second polarized waves of the branched waves (first branched wave, second branched wave, third branched wave, and fourth branched wave) in which the composite wave is branched into four by the phase grating 56 are each split into two polarized waves. , 0, π/2, π, 3π/2 phase delays are given. As a result, the amount of phase delay of the second polarized light wave with respect to the first polarized light wave in each branched wave becomes θ, θ+π/2, θ+π, and θ+3π/2.
 そして最後に、当該分岐波のそれぞれについて、第2偏光板72によって第1偏光波と第2偏光波との偏光方向が揃えられることにより、合成波に含まれる第1偏光波と第2偏光波とが干渉する。 Finally, for each of the branched waves, the polarization directions of the first polarized light wave and the second polarized light wave are aligned by the second polarizing plate 72, so that the first polarized light wave and the second polarized light wave included in the composite wave are and interfere.
 このとき、第1偏光波と第2偏光波との位相差がサンプルに依存したθのみでは、定性的な評価しかできない。これに対して、複数の既知の位相差0,π/2,π,3π/2をさらに付加することにより、定量的な評価を行うことができる。 At this time, only qualitative evaluation is possible using only θ, in which the phase difference between the first polarized light wave and the second polarized light wave depends on the sample. On the other hand, quantitative evaluation can be performed by further adding a plurality of known phase differences 0, π/2, π, and 3π/2.
 非特許文献1に記載の勾配光干渉顕微法では、4通りの位相遅延量について撮像を行うためには、4回撮像を行わなければならない。すなわち、従来の微分干渉顕微鏡に比べて、撮像時間が4倍となるため、動的なサンプルに適用することができない。 In the gradient light interference microscopy method described in Non-Patent Document 1, in order to perform imaging for four different amounts of phase delay, imaging must be performed four times. That is, since the imaging time is four times longer than that of the conventional differential interference microscope, it cannot be applied to dynamic samples.
 これに対し、この顕微鏡1では、サンプル照射後の合成波を4つの光波に分岐し、それぞれに対して互いに異なる位相遅延量を付加している。すなわち、1回の撮像で、4通りの位相遅延量について撮像を行うことができる。その結果、定性的な評価しか行えない従来の微分干渉顕微鏡に比べて、撮像時間が長くなることなく、定量的な評価を行うことができる。 On the other hand, in this microscope 1, the composite wave after irradiating the sample is branched into four light waves, and a mutually different amount of phase delay is added to each light wave. That is, in one imaging operation, imaging can be performed for four different amounts of phase delay. As a result, compared to conventional differential interference microscopes that can only perform qualitative evaluations, quantitative evaluations can be performed without increasing the imaging time.
 <2.第2実施形態>
 以下では、本発明の第2実施形態に係る勾配光干渉顕微鏡である顕微鏡1Aについて、図6を参照しつつ説明する。図6は、顕微鏡1Aの構成を示した概略図である。この顕微鏡1Aは、第1実施形態の顕微鏡1と同様に、細胞などの無色透明な物体をイメージングするために、勾配光干渉顕微法を用いて、照射位置をシフトさせた2つの偏光波の一方に複数通りの位相遅延量を付加し、2つの偏光波の合波の強度分布から偏光間の位相差を取得するものである。
<2. Second embodiment>
Below, a microscope 1A, which is a gradient light interference microscope according to a second embodiment of the present invention, will be described with reference to FIG. FIG. 6 is a schematic diagram showing the configuration of the microscope 1A. Similar to the microscope 1 of the first embodiment, this microscope 1A uses gradient light interference microscopy to image colorless and transparent objects such as cells, and uses one of two polarized waves with a shifted irradiation position. A plurality of phase delay amounts are added to the waveform, and the phase difference between the polarized lights is obtained from the intensity distribution of the combination of the two polarized waves.
 図6に示すように、顕微鏡1Aは、光源20、入射経路30A、サンプル配置部40、出射経路50、撮像素子60、および演算部80を有する。本実施形態の顕微鏡1Aは、サンプル配置部40に配置されたサンプルに光を照射し、その反射光を撮像素子60にて観察するものである。このため、光源20からサンプル配置部40へ向かう入射経路30Aと、サンプル配置部40から撮像素子60へ向かう出射経路50とがそれぞれ、互いに直交する直線上に配置している。 As shown in FIG. 6, the microscope 1A includes a light source 20, an incident path 30A, a sample placement section 40, an exit path 50, an image sensor 60, and a calculation section 80. The microscope 1A of this embodiment irradiates light onto a sample placed in a sample placement section 40, and observes the reflected light using an imaging device 60. For this reason, the input path 30A from the light source 20 to the sample placement section 40 and the output path 50 from the sample placement section 40 to the image sensor 60 are arranged on straight lines that are perpendicular to each other.
 本実施形態の顕微鏡1Aは、第1実施形態の顕微鏡1と比較して、入射経路30Aがハーフミラー34を有する点と、それに伴い、入射経路30Aと出射経路50とが異なる直線上に配置される点が相違する。その他の構成は、第1実施形態の顕微鏡1と同等である。図6中に付された符号について、図1中の符号と同じ要素については、同等である。 The microscope 1A of this embodiment is different from the microscope 1 of the first embodiment in that the entrance path 30A has a half mirror 34, and accordingly, the entrance path 30A and the exit path 50 are arranged on different straight lines. The difference is that The other configurations are equivalent to the microscope 1 of the first embodiment. Regarding the reference numerals in FIG. 6, the same elements as the reference numerals in FIG. 1 are equivalent.
 本実施形態の顕微鏡1Aにおいて、ハーフミラー34は、コンデンサレンズ33と、サンプル配置部40との間に配置される。ハーフミラー34は、コンデンサレンズ33からサンプル配置部40へ向かう光を透過するとともに、サンプル配置部40からコンデンサレンズ33へ向かう光を垂直方向に反射する。 In the microscope 1A of this embodiment, the half mirror 34 is arranged between the condenser lens 33 and the sample arrangement section 40. The half mirror 34 transmits the light traveling from the condenser lens 33 toward the sample placement section 40, and reflects the light traveling from the sample placement section 40 toward the condenser lens 33 in the vertical direction.
 これにより、顕微鏡1Aにおいて、光源20から出射し、第1偏光板31、第1プリズム32およびコンデンサレンズ33を介した光は、ハーフミラー34を透過し、サンプル配置部40に配置されたサンプルに入射される。そして、サンプルにおいて反射された反射光は、ハーフミラー34において垂直方向に反射される。 As a result, in the microscope 1A, the light emitted from the light source 20 and passing through the first polarizing plate 31, the first prism 32, and the condenser lens 33 passes through the half mirror 34 and is incident on the sample placed in the sample placement section 40. The light reflected by the sample is then reflected vertically by the half mirror 34.
 そして、当該反射光は、出射経路50の対物レンズ51に入射される。出射経路50から撮像素子60に至る構成は、第1実施形態に係る顕微鏡1と同様である。 Then, the reflected light enters the objective lens 51 on the output path 50. The configuration from the emission path 50 to the image sensor 60 is the same as the microscope 1 according to the first embodiment.
 このように、本実施形態の顕微鏡1Aでは、サンプルの反射光について勾配光干渉顕微法を用いて観察することができる。 In this way, with the microscope 1A of this embodiment, the reflected light of the sample can be observed using gradient light interference microscopy.
 <3.変形例>
 以上、本発明の実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。
<3. Modified example>
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments.
 上記の実施形態では、第2プリズムから出射された合成光を分岐させる分岐機構が位相格子であるが、本発明はこれに限られない。分岐機構は、振幅格子などの、位相格子以外の回折格子であってもよい。また、分岐機構は、ハーフミラー等のその他の光学素子を用いて光波を分岐させるものであってもよい。 In the above embodiment, the branching mechanism that branches the combined light emitted from the second prism is a phase grating, but the present invention is not limited to this. The branching mechanism may be a diffraction grating other than a phase grating, such as an amplitude grating. Moreover, the branching mechanism may branch the light waves using other optical elements such as a half mirror.
 また、上記の実施形態では、複数の分岐光のそれぞれについて一方の偏光波の位相を遅延させる位相遅延機構が、複数の波長板であったが、本発明はこれに限られない。例えば、複数の分岐光のそれぞれについて、空間光位相変調器を用いて、一方の偏光波の位相遅延がなされてもよい。 Furthermore, in the above embodiment, the phase delay mechanism that delays the phase of one polarized light wave for each of the plurality of branched lights is a plurality of wavelength plates, but the present invention is not limited to this. For example, for each of the plurality of branched lights, a spatial optical phase modulator may be used to delay the phase of one polarized light wave.
 また、上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。 Furthermore, the elements appearing in the above embodiments and modifications may be combined as appropriate to the extent that no contradiction occurs.
 1,1A 顕微鏡
 20 光源
 30,30A 入射経路
 31 第1偏光板
 32 第1プリズム
 33 コンデンサレンズ
 40 サンプル配置部
 50 出射経路
 51 対物レンズ
 52 第2プリズム
 53 カラーフィルタ
 54 第1結像レンズ
 55 第2結像レンズ
 56 位相格子
 58 位相遅延部(波長板)
 60 撮像素子
 72 第2偏光板
 581 第1波長板
 582 第2波長板
 583 第3波長板
 584 第4波長板
1, 1A Microscope 20 Light source 30, 30A Input path 31 First polarizing plate 32 First prism 33 Condenser lens 40 Sample placement section 50 Output path 51 Objective lens 52 Second prism 53 Color filter 54 First imaging lens 55 Second condenser Image lens 56 Phase grating 58 Phase delay section (wave plate)
60 Image sensor 72 Second polarizing plate 581 First wavelength plate 582 Second wavelength plate 583 Third wavelength plate 584 Fourth wavelength plate

Claims (7)

  1.  偏光波を用いて位相イメージングを行う勾配光干渉顕微鏡であって、
     光源からサンプル配置位置へ光を入射させる入射経路と、
     前記サンプル配置位置から出射される透過光または反射光を撮像素子へ入射させる出射経路と、
    を含み、
     前記入射経路は、順に、
      入射光を直交する第1偏光波および第2偏光波に分離する第1偏光複像プリズムと、
      前記第1偏光複像プリズムと前記サンプル配置位置との間に配置されるコンデンサレンズと、
    を有し、
     前記出射経路は、順に、
      前記サンプル配置位置から出射される前記透過光また前記反射光が入射される対物レンズと、
      前記第1偏光波および前記第2偏光波を合成する第2偏光複像プリズムと、
      前記第2偏光複像プリズムからの出射された合成光を、3経路以上の複数経路に分岐する分岐機構と、
      複数の分岐光のそれぞれの前記第2偏光波に、互いに異なる位相遅延を生じさせる位相遅延機構と、
      複数の分岐光のそれぞれの前記第1偏光波および前記第2偏光波の偏光方向を揃える偏光板と、
    を有する、勾配光干渉顕微鏡。
    A gradient light interference microscope that performs phase imaging using polarized waves,
    an incidence path that allows light to enter the sample placement position from the light source;
    an output path through which transmitted light or reflected light emitted from the sample placement position is incident on an image sensor;
    including;
    The incident path is, in order,
    a first polarizing double-image prism that separates incident light into orthogonal first and second polarized waves;
    a condenser lens disposed between the first polarizing double-image prism and the sample placement position;
    has
    The output path is, in order:
    an objective lens into which the transmitted light or the reflected light emitted from the sample placement position is incident;
    a second polarizing double-image prism that combines the first polarized light wave and the second polarized light wave;
    a branching mechanism that branches the combined light emitted from the second polarizing double-image prism into a plurality of paths of three or more;
    a phase delay mechanism that causes mutually different phase delays in the second polarized waves of each of the plurality of branched lights;
    a polarizing plate that aligns the polarization directions of the first polarized light wave and the second polarized light wave of each of the plurality of branched lights;
    Gradient light interference microscope.
  2.  請求項1に記載の勾配光干渉顕微鏡であって、
     前記分岐機構は回折格子である、勾配光干渉顕微鏡。
    The gradient light interference microscope according to claim 1,
    A gradient light interference microscope, wherein the branching mechanism is a diffraction grating.
  3.  請求項2に記載の勾配光干渉顕微鏡であって、
     前記分岐機構は位相格子である、勾配光干渉顕微鏡。
    The gradient light interference microscope according to claim 2,
    A gradient light interference microscope, wherein the branching mechanism is a phase grating.
  4.  請求項3に記載の勾配光干渉顕微鏡であって、
     前記位相格子は、前記撮像素子の撮像面において2次元的に2行2列にフーリエスペクトル分布が現れるように設けられる、勾配光干渉顕微鏡。
    4. The gradient light interference microscope according to claim 3,
    A gradient light interference microscope, wherein the phase grating is arranged so that a Fourier spectrum distribution appears two-dimensionally in two rows and two columns on the imaging surface of the imaging element.
  5.  請求項4に記載の勾配光干渉顕微鏡であって、
     前記位相遅延機構は、2次元的に2行2列に配置された4つの波長板であり、
     4つの前記波長板は、位相遅延量が互いに異なる、勾配光干渉顕微鏡。
    The gradient light interference microscope according to claim 4,
    The phase delay mechanism is four wave plates arranged two-dimensionally in two rows and two columns,
    A gradient light interference microscope in which the four wavelength plates have mutually different amounts of phase retardation.
  6.  請求項1ないし請求項5のいずれか一項に記載の勾配光干渉顕微鏡であって、
     前記位相遅延機構は、前記分岐光のそれぞれに対応する複数の波長板である、勾配光干渉顕微鏡。
    The gradient light interference microscope according to any one of claims 1 to 5,
    A gradient light interference microscope, wherein the phase delay mechanism is a plurality of wavelength plates corresponding to each of the branched lights.
  7.  請求項1ないし請求項6のいずれか一項に記載の勾配光干渉顕微鏡であって、
     前記分岐機構は、前記合成光を4経路以上に分岐し、
     前記位相遅延機構は、4つの分岐光のそれぞれの前記第2偏光波に、0、π/2、π、3π/2の位相遅延を生じさせる、勾配光干渉顕微鏡。
    The gradient light interference microscope according to any one of claims 1 to 6,
    The branching mechanism branches the combined light into four or more paths,
    The phase delay mechanism is a gradient light interference microscope, wherein the phase delay mechanism causes phase delays of 0, π/2, π, and 3π/2 in the second polarized light waves of each of the four branched lights.
PCT/JP2023/015723 2022-09-21 2023-04-20 Gradient light interference microscope WO2024062667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-149919 2022-09-21
JP2022149919A JP2024044416A (en) 2022-09-21 2022-09-21 Gradient light interference microscope

Publications (1)

Publication Number Publication Date
WO2024062667A1 true WO2024062667A1 (en) 2024-03-28

Family

ID=90454151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015723 WO2024062667A1 (en) 2022-09-21 2023-04-20 Gradient light interference microscope

Country Status (2)

Country Link
JP (1) JP2024044416A (en)
WO (1) WO2024062667A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121499A (en) * 2005-10-26 2007-05-17 Nikon Corp Differential interference observation method and microscope
US20180143001A1 (en) * 2016-11-22 2018-05-24 The Board Of Trustees Of The University Of Illinois Gradient Light Interference Microscopy for 3D Imaging of Unlabeled Specimens
US20200348500A1 (en) * 2019-05-03 2020-11-05 California Institute Of Technology Metasurface imager for quantitative phase gradient detection
JP2021167880A (en) * 2020-04-10 2021-10-21 浜松ホトニクス株式会社 Observation device and observation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121499A (en) * 2005-10-26 2007-05-17 Nikon Corp Differential interference observation method and microscope
US20180143001A1 (en) * 2016-11-22 2018-05-24 The Board Of Trustees Of The University Of Illinois Gradient Light Interference Microscopy for 3D Imaging of Unlabeled Specimens
US20200348500A1 (en) * 2019-05-03 2020-11-05 California Institute Of Technology Metasurface imager for quantitative phase gradient detection
JP2021167880A (en) * 2020-04-10 2021-10-21 浜松ホトニクス株式会社 Observation device and observation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NGUYEN TAN H., KANDEL MIKHAIL E., RUBESSA MARCELLO, WHEELER MATTHEW B., POPESCU GABRIEL: "Gradient light interference microscopy for 3D imaging of unlabeled specimens", NATURE COMMUNICATIONS, NATURE PUBLISHING GROUP, UK, vol. 8, no. 1, UK, XP093149325, ISSN: 2041-1723, DOI: 10.1038/s41467-017-00190-7 *

Also Published As

Publication number Publication date
JP2024044416A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP5888416B2 (en) Structured illumination microscope
CN108303020B (en) Double-channel phase shift phase measurement microscope combining digital holography and differential interference
JP6033798B2 (en) System and method for illumination phase control in fluorescence microscopy
US9316536B2 (en) Spatial frequency reproducing apparatus and optical distance measuring apparatus
US20120026311A1 (en) Structured illumination microscope apparatus and an image forming apparatus
US9383188B2 (en) Polarization-sensitive optical measurement instrument
JP2015535089A (en) Off-axis alignment system and alignment method
JP6916316B2 (en) Pattern Angle Space Selective Structured Illumination Imaging
JP2008292939A (en) Quantitative phase microscope
US20160259158A1 (en) Polarization-independent differential interference contrast optical arrangement
JP2020534553A (en) Dual Optical Lattice Slide Structured Illumination Imaging
CN109470173A (en) A kind of binary channels simultaneous phase shifting interference microscopic system
JP3943620B2 (en) Differential interference microscope
WO2013093975A1 (en) Quantitative phase measurement apparatus
JP4959590B2 (en) Observation device
IL269742B1 (en) Device and method for optical imaging by means of off-axis digital holography
WO2024062667A1 (en) Gradient light interference microscope
US20220390895A1 (en) Incoherent color holography lattice light-sheet (ichlls)
US11365961B2 (en) Polarization holographic microscope system and sample image acquisition method using the same
KR101789441B1 (en) Holographic microscope system
JP2015075340A (en) Optical distance measuring device
JP4072190B2 (en) Differential interference microscope
CN109844652B (en) Interferometer with multiple offsets
WO2019178822A1 (en) Methods and systems for measuring optical shear of birefringent devices beyond diffraction limit
RU124384U1 (en) DEVICE FOR RESEARCH OF OPTICAL ANISOTROPY OF OBJECT BY INTERFEROMETRIC METHOD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867798

Country of ref document: EP

Kind code of ref document: A1