WO2024062638A1 - Autonomous travel-type cleaner - Google Patents

Autonomous travel-type cleaner Download PDF

Info

Publication number
WO2024062638A1
WO2024062638A1 PCT/JP2023/000973 JP2023000973W WO2024062638A1 WO 2024062638 A1 WO2024062638 A1 WO 2024062638A1 JP 2023000973 W JP2023000973 W JP 2023000973W WO 2024062638 A1 WO2024062638 A1 WO 2024062638A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum cleaner
autonomous vacuum
lidar
control device
autonomous
Prior art date
Application number
PCT/JP2023/000973
Other languages
French (fr)
Japanese (ja)
Inventor
尚樹 加藤
耐治 吉田
将 矢野
貴啓 荒井
則和 伊藤
聡 藤林
啓 東野
謙三 野上
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2024062638A1 publication Critical patent/WO2024062638A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means

Definitions

  • the present invention relates to an autonomous vacuum cleaner that autonomously runs and cleans.
  • the autonomous vacuum cleaner is equipped with a detection means that detects obstacles around the casing of the autonomous vacuum cleaner.
  • LiDAR Light Detection and Ranging
  • LiDAR includes a light emitting part and a light receiving part, and detects obstacles around the housing by rotating the light emitting part and the light receiving part around the center of the LiDAR. In order to rotate the light emitting part and the light receiving part, LiDAR is installed so as to protrude from the top surface of the main body of the autonomous vacuum cleaner.
  • An autonomous vacuum cleaner drives a suction motor to generate suction force, and collects dust sucked in from the bottom surface of the housing into a dust collection container inside the housing.
  • the autonomous vacuum cleaner then avoids obstacles detected by LiDAR and cleans the entire room.
  • Such an autonomous vacuum cleaner is described in, for example, Patent Document 1.
  • Patent Document 1 provides a switch lever that is pressed by the LiDAR cover that protects the LiDAR and rotates about an axis, and a collision detection section that is pushed downward by the switch lever, so that the LiDAR cover protects the LiDAR.
  • the switch lever is pressed, and the switch lever rotates about its axis to push in the collision detection part, thereby detecting that the LiDAR cover has collided with the obstacle.
  • An object of the present invention is to provide an autonomous vacuum cleaner that solves the above problems and suppresses an increase in the number of parts.
  • an autonomous vacuum cleaner of the present invention includes a vacuum cleaner body including a drive wheel and a travel motor for driving the drive wheel, and a dust collector provided in the vacuum cleaner body to collect dust.
  • a fan motor that is included in the vacuum cleaner body and generates suction force
  • a storage battery that supplies power to the travel motor and the fan motor
  • a control device that controls the travel motor and the fan motor.
  • An autonomous vacuum cleaner comprising: a first distance measuring sensor installed on the vacuum cleaner body to protrude from the top surface of the vacuum cleaner body and measuring a distance between the autonomous vacuum cleaner and surroundings; , a sensor cover that covers the first ranging sensor, the control device includes a detection switch that detects that the sensor cover has come into contact with an obstacle, and the sensor cover includes a sensor cover that covers the first distance measurement sensor.
  • a rotation shaft that is provided integrally with the sensor cover and rotatably supports the sensor cover; and a detection switch that is provided integrally with the sensor cover and presses the detection switch as the sensor cover rotates. It is characterized by comprising a pressing part.
  • FIG. 1 is an external perspective view of an autonomous vacuum cleaner S according to a first embodiment of the present invention
  • FIG. 2 is a left side view in the traveling direction of the autonomous vacuum cleaner S according to the first embodiment of the present invention.
  • FIG. 2 is a bottom view of the autonomous vacuum cleaner S according to the first embodiment of the present invention.
  • 1 is a perspective view showing a state in which an upper case 1u is removed from an autonomous vacuum cleaner S according to a first embodiment of the present invention.
  • FIG. FIG. 2 is a sectional view taken along the line VV in FIG. 1; It is a sectional view taken along the line VI-VI in FIG. 1.
  • 4 is a perspective view showing a LiDAR unit 40.
  • FIG. 1 is an external perspective view of an autonomous vacuum cleaner S according to a first embodiment of the present invention
  • FIG. 2 is a left side view in the traveling direction of the autonomous vacuum cleaner S according to the first embodiment of the present invention.
  • FIG. 2 is a bottom view of the autonomous vacuum cleaner S according to the
  • FIG. 1 is a control block diagram showing an autonomous vacuum cleaner S according to a first embodiment of the present invention.
  • FIG. 3 is a flowchart showing a processing method of the control device 30 according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of an autonomous vacuum cleaner S.
  • FIG. 1 is a cross-sectional perspective view taken along line VV.
  • 1 is a configuration diagram of a cleaning system including an autonomous vacuum cleaner S according to a first embodiment of the present invention. It is a block diagram showing the composition of control device 30 concerning Example 2 of the present invention. It is a figure showing the correspondence table which made the first characteristic of a person and the operation of autonomous vacuum cleaner S correspond. It is a diagram showing human motion. It is a diagram showing the recognition state of the autonomous vacuum cleaner S.
  • FIG. 1 It is a figure which shows the movement state of autonomously running vacuum cleaner S. It is an external perspective view of drone D concerning Example 3 of the present invention. It is an external perspective view of the drone D seen from above in a state where the upper cover is removed from the drone D. It is an external perspective view of drone D seen from below. It is a diagram showing human motion. A figure showing the recognition state of drone D. It is a figure showing the moving state of drone D. It is a flowchart of the dust identification method based on Example 4 of this invention. 3 is a diagram showing an example of a display result of the information terminal device 100. FIG. It is a flowchart which shows the means for reducing power consumption based on Example 5 of this invention. FIG.
  • FIG. 7 is a schematic side sectional view of an autonomous vacuum cleaner S according to a sixth embodiment of the present invention, taken in a vertical section in the front-rear direction.
  • 11 is a schematic cross-sectional view of an autonomous vacuum cleaner S according to a sixth embodiment of the present invention, cut horizontally and viewed from above.
  • FIG. FIG. 7 is a schematic side sectional view of an autonomous vacuum cleaner S according to a modification of the sixth embodiment, taken in a vertical section in the front-rear direction.
  • FIG. 7 is a schematic sectional view of an autonomous vacuum cleaner S according to a modification of the sixth embodiment, taken in a horizontal direction and viewed from above.
  • 13 is a schematic diagram of an autonomous vacuum cleaner S according to a seventh embodiment of the present invention, seen from the side.
  • FIG. FIG. 7 is a schematic diagram of an autonomous vacuum cleaner S according to a seventh embodiment of the present invention viewed from above.
  • the various components of the present invention do not necessarily have to exist independently, and one component may be made up of multiple members, multiple components may be made of one member, or a certain component may be different from each other. It is allowed that a part of a certain component overlaps with a part of another component, etc.
  • the ceiling side is up
  • the floor side is down
  • the side in the direction of travel of the autonomous vacuum cleaner is the front
  • the side opposite the direction of travel of the autonomous vacuum cleaner is the back
  • the left side in the direction of travel of the autonomous vacuum cleaner is the left.
  • the right side in the direction of movement of the autonomous vacuum cleaner is defined as right.
  • FIG. 1 is an external perspective view of an autonomous vacuum cleaner S according to Embodiment 1 of the present invention.
  • FIG. 2 is a left side view in the traveling direction of the autonomous vacuum cleaner S according to the first embodiment of the present invention.
  • FIG. 3 is a bottom view of the autonomous vacuum cleaner S according to the first embodiment of the present invention.
  • FIG. 4 is a perspective view showing a state in which the upper case 1u is removed from the autonomous vacuum cleaner S according to the first embodiment of the present invention.
  • FIG. 5 is a sectional view taken along the line VV in FIG. 1. Note that in FIG. 5, the LiDAR cover 44 and some parts are not shown in cross section to make it easier to understand the positional relationship of the LiDAR unit 40 and other surrounding parts.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG.
  • FIG. 7 is a perspective view showing the LiDAR unit 40.
  • the autonomous vacuum cleaner S is an electrical device that automatically cleans a specified cleaning area (e.g., the floor surface Y of a room (see Figures 2 and 5)) while autonomously moving around the area.
  • the autonomous vacuum cleaner S also includes a vacuum cleaner main body 1, a bumper 2 that covers the sides of the vacuum cleaner main body 1, a pair of drive wheels 3, 4 (see Figure 3), auxiliary wheels 5 (see Figure 3), and a side brush 6.
  • the vacuum cleaner main body 1 has an upper case 1u forming an upper part and a lower case 1s forming a bottom part. Further, the cleaner body 1 includes a front body part 1f in front of the center part 1c in the front-rear direction, and a rear part 1r in the rear of the center part 1c in the front-rear direction. An upper cover 1v is provided on the main body front part 1f of the upper case 1u.
  • the upper surface of the vacuum cleaner main body 1 (upper case 1u) is formed in a step shape so that the heights in the vertical direction are different from each other with the center portion 1c in the front-rear direction as a boundary. Note that the front-rear direction central portion 1c does not necessarily mean the center position in the front-rear direction, but means a position where a step is formed.
  • a LiDAR unit 40 (Light Detection and Ranging) is installed on the front part 1f of the vacuum cleaner body 1.
  • the LiDAR unit 40 is provided so as to protrude upward from the upper surface 17a of the main body front part 1f.
  • the rear part 1r of the vacuum cleaner body 1 is provided with a plurality of operation buttons 7 (7a, 7b, 7c) for commanding to stop the operation of the autonomous vacuum cleaner S, and a dust case 8 for collecting dust. ing.
  • the dust case 8 is provided so as to be removable upward from the rear part 1r of the main body, and is attached with a rotatable handle 8a which becomes a handle for the user when removing it from the rear part 1r of the main body.
  • the upper surface 17b of the rear main body 1r is formed to be higher than the upper surface 17a of the front main body 1f.
  • the bumper 2 is provided on the front side of the central portion 1c of the cleaner body 1 in the longitudinal direction, and has an end portion 2a provided at the central portion 1c of the cleaner body 1 in the longitudinal direction. That is, the bumper 2 is integrally formed on the front surface and both left and right side surfaces of the cleaner main body 1 up to the end 2a of the central portion 1c in the front-rear direction. With this configuration, there is no gap in the bumper 2, and noise leaking from the bumper 2 is suppressed, making the autonomous vacuum cleaner S quieter.
  • the bumper 2 needs to be provided in such a way that at least the side periphery on the front side of the vacuum cleaner body 1 can move horizontally, particularly in the front-to-rear direction. Furthermore, when the autonomous vacuum cleaner S moves and comes into contact with an obstacle or the like, the bumper 2 can be pushed by the force of the contact and displaced toward the inside of the autonomous vacuum cleaner S (rearward if the bumper 2 comes into contact with the front side of the autonomous vacuum cleaner S).
  • the drive wheels 3 and 4 are wheels as an example of a drive unit, and are attached to the lower case 1s. Furthermore, by rotating the drive wheels 3 and 4 themselves, the autonomous vacuum cleaner S can move forward, backward, and turn (including a super-turn). Further, the driving wheels 3 and 4 are arranged on both the left and right sides, and are rotationally driven by wheel units each composed of traveling motors 3m and 4m (see FIG. 4) and deceleration mechanisms 3b and 4b (see FIG. 3). Further, the driving wheels 3 and 4 are provided approximately at the center in the front-rear direction and near the outer periphery (outside) of the lower case in the left-right direction.
  • the lower case 1s is provided with drive mechanism housing portions 11, 11 (see FIG. 3) that house drive mechanisms including travel motors 3m, 4m, arms 3a, 4a, and deceleration mechanisms 3b, 4b. It is being
  • a suction port 12 that houses the rotating brush 14 and sucks in dirt, a scraping brush 15, etc. are provided.
  • the rotating brush 14 is disposed approximately parallel to an axis (in the left-right direction) that passes through the rotation centers of the drive wheels 3 and 4.
  • the rotating brush 14 is driven by a rotating brush motor 14a (see FIG. 4).
  • the scraping brush 15 is arranged parallel to the rotation axis of the rotating brush 14. Further, the scraping brush 15 is composed of a so-called lint brush, and is configured to rotate within a predetermined angular range.
  • the auxiliary wheels 5 are driven wheels and are casters that rotate freely. Further, the auxiliary wheel 5 is provided on the front side of the autonomous vacuum cleaner S in the front-rear direction and approximately in the center in the left-right direction. Further, the auxiliary wheels 5, together with the drive wheels 3 and 4, contribute to keeping the lower case 1s at a predetermined height from the floor surface Y (see FIG. 5). In addition, the drive wheels 3 and 4 and the auxiliary wheels 5 allow the autonomous vacuum cleaner S to move smoothly. The auxiliary wheels 5 rotate due to the frictional force generated between the autonomous vacuum cleaner S and the floor surface Y as the autonomous vacuum cleaner S moves, and are pivoted on the lower case 1s so that the auxiliary wheels 5 can rotate 360° in the horizontal direction. ing.
  • the side brush 6 is placed to either the left or right from the center of the vacuum cleaner body 1 in the left-right direction, and a part of the side brush 6 is located outside the vacuum cleaner body 1 to scrape out dust from places that are difficult for the rotating brush 14 to reach, such as near walls. , a brush that leads to the mouthpiece 12. Further, the side brush 6 has three bundles of brushes extending radially at intervals of 120° in a plan view, and is arranged on the front side of the lower case 1s. Further, the base of the side brush 6 is fixed to the side brush holder 6a. In this embodiment, the side brush 6 is placed on the left side in the direction of travel, but it may be placed on the right side in the direction of travel. It may be placed at least on either the left or right side, or both.
  • floor distance measuring sensors 13a, 13b, 13c, and 13d are provided at four locations on the front, rear, left and right sides of the lower case 1s.
  • Floor distance measuring sensor 13a is located in front of the training wheels 5.
  • Floor distance measuring sensor 13c is located on the outer periphery between the drive wheels 4 and the left side brush 6.
  • Floor distance measuring sensor 13b is located symmetrically to floor distance measuring sensor 13c.
  • Floor distance measuring sensor 13d is located behind the scraping brush 15.
  • the lower case 1s is provided with a connecting portion 16 that is electrically connected to the charging stand.
  • the connecting portion 16 is located between the side brush holder 6a and the floor distance measuring sensor 13a.
  • the autonomous vacuum cleaner S includes a LiDAR unit 40 (first distance measurement sensor) as an example of a distance measurement sensor using light, a camera (image pickup ) 50, a distance measurement sensor 60 (second distance measurement sensor), a distance measurement sensor 61 (third distance measurement sensor), and an infrared light receiving section 70.
  • a LiDAR unit 40 first distance measurement sensor
  • a camera image pickup
  • a distance measurement sensor 60 second distance measurement sensor
  • a distance measurement sensor 61 third distance measurement sensor
  • an infrared light receiving section 70 infrared light receiving section
  • the LiDAR unit 40 (Light Detection and Ranging) is installed so as to protrude from the upper surface 17a of the main body front part 1f of the vacuum cleaner main body 1 that constitutes the outer shell of the autonomous vacuum cleaner S. As shown in FIG. 1, the camera 50, distance measuring sensor 60, and infrared light receiving section 70 are arranged in front of the main body front part 1f so as to face the front side.
  • the LiDAR unit 40 is covered by a LiDAR cover 44 (sensor cover), which will be described later.
  • the distance sensor 61 is arranged on the side surface of the cleaner main body 1 on the side where the side brush 6 is arranged, of the left and right sides in the direction of movement of the autonomous vacuum cleaner S.
  • the distance measurement sensor 61 is arranged so as to face the left side in the direction of movement of the autonomous vacuum cleaner S.
  • the infrared light receiving section 70 receives an infrared signal (charging stand return signal) transmitted from the charging stand.
  • the autonomous vacuum cleaner S of this embodiment includes drive wheels 3 and 4 that drive the cleaner body 1, a LiDAR unit 40 provided in the cleaner body 1, and a camera provided on the front and side surfaces of the cleaner body 1. (imaging unit) 50 and a camera (imaging unit) 50 provided in the cleaner body 1, it is possible to accurately create a map of the cleaning location.
  • the LiDAR unit 40 is divided into an upper rotating part 40a and a lower fixed part 40b.
  • a LiDAR 41 is configured, which is a distance measuring sensor that measures the distance between the autonomous vacuum cleaner S and the surroundings using light such as infrared rays.
  • the lower fixed part is composed of a rotary drive motor 42 for rotating the LiDAR 41, a belt 43 that transmits the rotation of the rotary drive motor 42 to the LiDAR 41, and a bearing that reduces the frictional force between the fixed part and the rotary part when it rotates. Ru.
  • the LiDAR 41 includes a light emitting section 41a and a light receiving section 41b, and measures the distance to an object using trigonometry based on the light emitting angle of the light emitting section 41a and the light receiving angle of the light receiving section 41b.
  • the light emitting section 41a is an infrared light emitting section
  • the light receiving section 41b is an infrared light receiving section, and these are configured as one unit.
  • the LiDAR cover 44 is formed with a notch opening 44c for allowing the infrared rays of the LiDAR 41 to pass through.
  • the opening may be omitted and it may be covered with a functional resin component that transmits infrared rays emitted from the LiDAR 41.
  • the position and speed vector of the cleaner body 1 on the map are specified while creating surrounding map information.
  • the long-range surrounding detection sensor may be any distance measuring sensor capable of measuring 1 m or more, such as a millimeter wave radar or an ultrasonic sensor, instead of the LiDAR 41.
  • the rotation angle of the rotating part of the LiDAR unit 40 is not limited to 360 degrees, and it is sufficient that the belt can be replaced with a link mechanism to measure 60 degrees or more. The rotation may be performed as a swinging motion.
  • the LiDAR distance measurement method may be a time-of-flight method that uses the phase difference between the light from the light emitting part and the light receiving part, instead of the trigonometric method.
  • the LiDAR unit 40 may be able to detect obstacles further away by changing the intensity of the light of the LiDAR 41.
  • the intensity of the light from the LiDAR 41 is always kept high, power consumption will increase, so it is better to lower the intensity when there is no need to detect distant obstacles.
  • the rotational speed of the rotary drive motor 42 obstacles can be detected in more detail.
  • the rotational speed of the rotary drive motor 42 is always kept high, the power consumption will increase, so when it is not necessary to detect an obstacle at a detailed angle, it is preferable to lower the rotational speed.
  • the camera (imaging unit) 50 is a monocular camera, and is located on the central axis of the front surface of the cleaner body 1.
  • camera 50 can detect the shape and position of objects more accurately than LiDAR unit 40, making it easier to avoid obstacles. Furthermore, camera 50 can take a wider angle of view in the vertical direction than LiDAR unit 40, making it possible to avoid obstacles on the floor. For example, this can prevent clothes on the floor from getting caught or cords from getting tangled in the brushes. In this way, by using camera 50 in conjunction with LiDAR unit 40, it is possible to clearly detect the shape and position of obstacles in close range while detecting the general location of obstacles over a wide range, making it possible to distinguish between obstacles.
  • the camera 50 is capable of changing the frame rate. For example, when detecting nearby obstacles, the frame rate is increased, and when moving in a large area with no obstacles, the frame rate is decreased. As a result, it is not necessary to constantly operate the camera 50 at a high frame rate, so that the power consumption of the camera 50 can be suppressed.
  • the LiDAR 41 and the camera 50 by using both the LiDAR 41 and the camera 50, it is possible to detect the distance information and shape information to the obstacle with high accuracy. More specifically, when creating a map of the cleaning area, the position information of detected obstacles etc. is detected and mapped mainly or exclusively using LiDAR 41, and the shape information is mainly or exclusively used using the camera. Can be detected and mapped. In order to make these connections highly accurate, in this embodiment, the LiDAR 41 and the camera are provided adjacent to each other (within a distance of 10 cm, 5 cm, or 3 cm).
  • the focal length of the camera may be adjusted or the moving speed of the cleaner body 1 may be changed (for example, decelerated) based on the distance information detected by the LiDAR 41.
  • the distance sensor 60 (second distance sensor) is an ultrasonic sensor that emits ultrasonic waves and measures the time it takes for the ultrasonic waves to return to measure the distance to the obstacle.
  • the distance measuring sensors 60 are provided at two locations on both the left and right sides of the front of the cleaner body 1.
  • a distance measurement sensor 61 (third distance measurement sensor) has a detection range that is, for example, about 1/10 or more shorter than that of LiDAR, and detects relatively nearby obstacles (for example, about 1 m, etc.). It is an infrared sensor that measures a distance (preferably up to about 50 cm or 30 cm or less), and is constituted by, for example, a PSD (Position Sensitive Detector) sensor.
  • the distance measurement sensor 61 includes a light emitting section that emits infrared rays and a light receiving section that receives reflected light that is returned after being reflected by an obstacle. The distance to the obstacle is calculated based on the reflected light detected by the light receiving section.
  • the distance to the obstacle is calculated based on the position where the reflected light is received, the time until the reflected light is received, the amount and intensity of the reflected light, etc.
  • the distance measurement sensor 61 is not limited to a PSD sensor, and may be an ultrasonic sensor.
  • the autonomous vacuum cleaner S is electrically connected to the charging stand via the connection part 16 and supplies power to the storage battery 21.
  • the autonomous vacuum cleaner S specifies the direction of the charging stand relative to the cleaner body 1 according to the type of received infrared rays by receiving three types of infrared LEDs emitted from the charging stand using the infrared receiver 70. do.
  • the autonomous vacuum cleaner S includes a storage battery 21, a fan motor 22, a dust sensor 80, a first control board 10a, and a second control board 10b.
  • the storage battery 21 is arranged in front of the fan motor 22, and connects various motors such as travel motors 3m and 4m (see FIG. 4), side brush motor 6b (see FIG. 4), rotary brush motor 14a, and fan motor 22, and a bumper sensor (not shown). Power is supplied to various sensors such as the camera 50, the distance measurement sensors 60 and 61, the floor distance measurement sensors 13a to 13d, and the LiDAR unit 40 (as shown in the figure).
  • the first control board 10a and the second control board 10b constitute a control device 30 (see FIG. 8), which will be described later.
  • the first control board 10a extends from a central position in the front-rear direction of the autonomous vacuum cleaner S toward the front, avoiding the LiDAR unit 40, and is disposed above the fan motor 22.
  • the first control board 10a includes a plurality of operation switches 46 (46a, 46b, 46c) corresponding to each of the plurality of operation buttons 7 (7a, 7b, 7c), and a LiDAR cover 44 (described later) that contacts an obstacle.
  • a detection switch 45 is provided to detect this.
  • the second control board 10b is disposed at the front of the autonomous vacuum cleaner S in the front-rear direction, and in front of the fan motor 22 (behind the camera 50 and the ranging sensors 60 and 61).
  • the first control board 10a is arranged to extend in the horizontal direction
  • the second control board 10b is arranged to extend in the vertical direction.
  • the first control board 10a controls the traveling motors 3m and 4m, the side brush motor 6b, the rotary brush motor 14a, the fan motor 22, the dust sensor 80, the floor distance measuring sensors 13a to 13d, and the like.
  • the second control board 10b controls the camera 50, distance measuring sensors 60, 61, LiDAR unit 40, and the like.
  • the control board is divided into the first control board 10a and the second control board 10b, for example, the camera 50, distance measuring sensors 60, 61, LiDAR unit 40, and second control board 10b are configured separately.
  • the wiring to be connected can be shortened, and the workability of assembling the autonomous vacuum cleaner S can be improved.
  • the storage battery 21 is composed of a plurality of cells 21a, 21b, and 21c, and the cells 21a and 21b are arranged one behind the other in a direction perpendicular to the longitudinal direction of the cells (see FIGS. 5), and the cells 21a and 21c are arranged in series along the longitudinal direction of the cells (see FIG. 6).
  • the side brush motor 6b and the storage battery 21 do not interfere with each other, and an increase in the height of the cleaner main body 1 can be suppressed.
  • the fan motor 22 (see FIG. 5) generates a suction force to collect the dust scraped by the rotating brush 14 into the dust case 8.
  • the fan motor 22 includes a motor section 22a, a fan 22b driven by the motor section 22a, and a rotating shaft 22c connecting the motor section 22a and the fan 22b. Further, the fan motor 22 is provided between the drive wheels 3 and 4 at the center in the front-rear direction.
  • the dust case 8 includes an inlet 8c that serves as an inlet for dust, a dust accommodating section 8d that accommodates dust, and a guide rib 8e that guides the dust flowing from the inlet 8c to the dust accommodating section 8d.
  • the guide ribs 8e are arranged to extend in the up-down direction (vertical direction). As shown by arrow A in FIG. 5, the dust flowing in from the inlet 8c moves upward along the guide rib 8e, changes its flow direction at the upper end of the guide rib 8e, and moves forward. The dust is stored in the dust storage section 8d.
  • a dust filter 8b is arranged between the dust case 8 and the fan motor 22.
  • the air taken into the dust case 8 together with dust is taken into the fan motor 22 via the dust collection filter 8b.
  • the exhaust air from the fan motor 22 is mainly discharged to the outside of the autonomous vacuum cleaner S from the exhaust port 1t (see Figure 4) formed in the lower case 1s, but a portion is discharged in the forward direction of the vacuum cleaner body 1 and is used to cool the rotary drive motor 42.
  • the rotation shaft 22c of the fan motor 22 of this embodiment is arranged to extend in the front-rear direction of the vacuum cleaner body 1, and the autonomous vacuum cleaner S is placed on the floor Y.
  • the dust collecting filter 8b side (rear side) is inclined and arranged so that it is higher.
  • the fan 22b attached to the rotating shaft 22c faces the dust filter 8b, and air flows smoothly from the inlet 8c, the guide rib 8e, the dust storage section 8d, to the dust filter 8b. This suppresses ventilation resistance and improves dust collection efficiency.
  • FIG. 8 is a control block diagram showing the autonomous vacuum cleaner S according to the first embodiment of the present invention.
  • the control device 30 controls the autonomous vacuum cleaner S in an integrated manner, and is configured by, for example, a microcomputer and peripheral circuits mounted on a board.
  • a microcomputer reads a control program stored in a ROM (Read Only Memory), expands it to a RAM (Random Access Memory), and executes it by a CPU (Central Processing Unit), thereby realizing various processes.
  • the peripheral circuit includes an A/D/D/A converter, a sensor drive circuit, a charging circuit for the storage battery 21, as well as a map creation section, an image processing section, a self-position determination section, a travel route creation section, and a travel control section. ing.
  • the control device 30 also operates the operation button 7 that allows the user to input commands, a bumper sensor (not shown), floor distance sensors 13a to 13d, a distance sensor 60, a camera 50, LiDAR 41, and a dust sensor. 80, performs arithmetic processing according to the signal input from the communication means 90, and outputs the signal after the arithmetic processing.
  • the communication means 90 is provided at an arbitrary position on the cleaner body 1.
  • the control device 30 controls the travel motors 3m, 4m, the side brush motor 6b, the rotary brush motor 14a, and the fan motor 22 based on the above-mentioned sensors.
  • the autonomous vacuum cleaner S starts running from the charging stand and cleans the floor, etc., for example, when instructed by the user or at a scheduled start time. When the cleaning is finished, the autonomous vacuum cleaner returns to the charging stand.
  • FIG. 9 is a flowchart showing a processing method of the control device 30 according to the first embodiment of the present invention.
  • Information captured by the camera 50 is processed by the control device 30 (second control board 10b).
  • the control device 30 contains information learned by machine learning about at least one piece of information such as the shape, hue, etc. of each object included in the object group, and whether each object included in the object group is to be cleaned. Information such as whether or not the cleaning is difficult is stored.
  • the object group refers to objects that the autonomous vacuum cleaner S wants to detect, selected by the manufacturer of the autonomous vacuum cleaner before shipping, or arbitrarily selected by the user and whose information is stored. Refers to a collection of at least one object. Based on this learned information, the control device 30 calculates the certainty C (probability) that the object photographed by the camera 50 is each object included in the object group and the position information of the object in the video. .
  • the camera 50 captures an image of an object (step S901), and the subject information of the captured object is transmitted to the control device 30.
  • the control device 30 determines whether the subject photographed by the camera 50 is a cleaning target based on the confidence level C (step S902).
  • control device 30 determines whether the confidence level C1 is greater than or equal to a predetermined threshold TV1 (step S903).
  • step S902 If it is determined that the object photographed by the camera 50 is not an object to be cleaned (No in step S902), the control device 30 executes the process in step S907.
  • the control device 30 estimates the distance L from the autonomous vacuum cleaner S to the subject, and the angle A at which the subject is positioned relative to the front of the autonomous vacuum cleaner S.
  • the distance L and angle A are estimated from the position information of the subject shown in the video. That is, the vertical position of the subject shown in the video is converted to distance L, and angle A is estimated using the horizontal position. Information from other sensors, such as the LiDAR 41 or the distance sensor 60, may also be used in these estimations.
  • step S901 is executed.
  • control device 30 drives the traveling motors 3m and 4m so that the autonomous vacuum cleaner S moves to the position of the subject, and uses the estimated distance L and angle A, and the autonomous vacuum cleaner
  • the time T required for S to reach the subject is calculated from the traveling speed of S (step S904).
  • the control device 30 determines whether the dust sensor 80 provided in the autonomous vacuum cleaner S has detected dust (step S905), and When the dust sensor 80 detects dust (YES in step S905), the control device 30 determines that the object has been cleaned (sucked into the dust case 8), and notifies the user.
  • the control device 30 determines whether the confidence level C1 is greater than or equal to a predetermined threshold TV2 (step S906).
  • a predetermined threshold TV2 TV1 ⁇ TV2 ⁇ C1
  • the control device 30 determines that the subject is an object, and displays the image and name of the subject, and the fact that the subject has been cleaned. (YES in step S906).
  • step S905 when the dust sensor 80 does not react after the time T has elapsed (NO in step S905), the control device 30 determines that the object has not been cleaned (unsucked), and the image of the object and the object cannot be cleaned. Notify the user of this.
  • control device 30 determines whether the confidence level C2 is greater than or equal to a predetermined threshold TV3 (step S907).
  • control device 30 causes the autonomous vacuum cleaner S to run to avoid the subject ( Step S908).
  • step S909 the control device 30 determines that the subject is an object, and The image and name of the object will be displayed, and the object will be notified that the object has been avoided.
  • the control device 30 does not determine that the subject is an object, and the image of the subject and the autonomous vacuum cleaner S are Notify that it has been avoided.
  • the notification means may be, for example, a display on an information terminal device 100 as shown in FIG. 12.
  • the notification content on the information terminal device 100 it is displayed on a map together with the location information.
  • it may be displayed as a pop-up on the information terminal device 100 without being linked to a map, or it may be a list of objects that have been cleaned and objects that could not be cleaned, or any other means that can provide information to the user.
  • FIG. 12 is a configuration diagram of a cleaning system including an autonomous vacuum cleaner S according to the first embodiment of the present invention.
  • the cleaning system of this embodiment includes an autonomous vacuum cleaner S, a wireless LAN router 200, an information terminal device 100, and a home appliance server 300.
  • the autonomous vacuum cleaner S can wirelessly connect to a home appliance server 300 outside the home via a wireless LAN router 200 installed inside the home. Furthermore, the autonomous vacuum cleaner S can communicate with the information terminal device 100 outside the home and inside the home via the wireless LAN router 200 and the home appliance server 300. When the autonomous vacuum cleaner S communicates with the information terminal device 100 in the house, the communication goes through the wireless LAN router 200, the home appliance server 300, the wireless LAN router 200, and the home appliance server 300.
  • the information terminal device 100 can instruct the autonomous vacuum cleaner S to schedule, start, and stop cleaning via the wireless LAN router 200 and the home appliance server 300.
  • the autonomous vacuum cleaner S that has received the schedule reservation starts cleaning at the set date and time. Furthermore, the autonomous vacuum cleaner S that has received the request to start cleaning leaves the charging stand and starts cleaning.
  • the autonomous vacuum cleaner S transmits map information created based on the information of the LiDAR 41 and the camera 50 to the information terminal device 100 via the wireless LAN router 200 and the home appliance server 300.
  • FIG. 13 is a block diagram showing the configuration of the control device 30 according to the first embodiment of the present invention.
  • the map creation unit 31 creates a map of the room in which the autonomous vacuum cleaner S is cleaning, based on the information detected by the LiDAR 41.
  • the map information created by the map creation unit 31 is a two-dimensional grid-like map.
  • the image processing unit 32 identifies obstacles from the image data captured by the camera 50, acquires information regarding the relative position of the obstacle, and transmits the information to the map creation unit 31.
  • the self-position determining unit 33 determines the self-position of the autonomous vacuum cleaner S based on the information detected by the LiDAR 41 and transmits it to the map creation unit 31.
  • the map creation unit 31 writes the obstacle identification result including the position information of the obstacle identified by the image processing unit 32 and the self-position of the autonomous vacuum cleaner S determined by the self-position determination unit 33 on the created map.
  • the map information and obstacle identification results created by the map creation section 31 are stored in the storage section of the control device 30.
  • the travel route creation unit 34 calculates the travelable range based on the self-position of the autonomous vacuum cleaner S determined by the self-position determination unit 33 and the map information stored in the storage unit, and determines the self-position.
  • a travel route for the autonomous vacuum cleaner S is created as a starting point and transmitted to the communication means 90 and the travel control unit 35.
  • the travel control unit 35 controls the travel motors 3m and 4m so that the autonomous vacuum cleaner S travels according to the created travel route.
  • the device control unit 36 controls the travel motors 3m and 4m, the side brush motor 6b, the rotary brush motor 14a, and the fan motor 22 as the autonomous vacuum cleaner S travels.
  • the communication means 90 transmits the travel route created by the travel route creation unit 34 to the home appliance server 300, and also transmits the self-position of the autonomous vacuum cleaner S determined by the self-position determination unit 33 and the map information stored in the storage unit. , periodically transmits the obstacle identification results stored in the storage unit to the home appliance server 300.
  • the top position of the LiDAR is the height dimension that is limited.
  • the housing of the autonomous vacuum cleaner is designed based on the top position of the LiDAR, so the height dimension of the housing is small, and there is a problem that the capacity of the dust collection container installed in the housing is small. Therefore, in this embodiment, the top surface 17b of the rear body 1r on which the dust case 8 is provided is formed so as to be higher than the top surface 17a of the front body 1f on which the LiDAR unit 40 is installed. In other words, the top surface 17a of the front body 1f is formed lower than the top surface 17b of the rear body 1r. The top surface 8u of the dust case 8 is formed flush with the top surface 17b of the rear body 1r.
  • the upper surface 17b of the rear body 1r where the dust case 8 is provided is formed to be higher than the upper surface 17a of the front body 1f where the LiDAR unit 40 is installed. Even with the autonomous vacuum cleaner S equipped with the unit 40, it is possible to clean by entering the gap under the bed, etc., and the dust collection capacity of the dust case 8 can be secured. Moreover, since the LiDAR unit 40 is provided so as to protrude from the upper surface 17a of the main body front part 1f, it is possible to suppress obstruction of obstacle detection by the LiDAR unit 40.
  • the top surface position of the LiDAR unit 40 is higher than the top surface 17b of the main body rear part 1r.
  • the top of the LiDAR unit 40 may get caught on the bed, etc., and the autonomous vacuum cleaner S may become unable to move.
  • the autonomous vacuum cleaner S needs to clean by entering, for example, a gap under the bed, its dimension in the height direction is limited by the gap under the bed.
  • a LiDAR cover 44 must be provided to cover the LiDAR 41 and protect it from being touched by the user.
  • the upper surface 44a of the LiDAR cover 44 has a limited height dimension. Therefore, an undetectable range 94 is created between the detection range 92 of the light emitting part 41a and the light receiving part 41b of the LiDAR 41 and the height direction of the cover top surface 44a, including other detection means (FIG. 5). For example, if there is a gap at the bottom of a bed or sofa, and the ranging sensor 60 or bumper 2 detects the space, if the top surface of the gap is within the above height dimension, the LiDAR unit 40 will not touch the bed or sofa. They end up colliding.
  • FIG. 10 is an exploded perspective view of the autonomous vacuum cleaner S.
  • the bumper 2 is shown attached to the upper case 1u.
  • FIG. 11 is a cross-sectional perspective view of FIG. 1 taken along line VV.
  • the LiDAR unit 40 and the first control board 10a are shown without being cross-sectional.
  • the autonomous vacuum cleaner S is assembled in the following order from the bottom: a lower case 1s, a LiDAR unit 40, a first control board 10a, an upper case 1u, a LiDAR cover 44, and an upper cover 1v.
  • the LiDAR unit 40 protrudes upward from the top surface 17a of the main body front part 1f, and a LiDAR cover 44 is arranged above the LiDAR unit 40 so as to cover the LiDAR unit 40.
  • the storage battery 21, LiDAR unit 40, first control board 10a, and LiDAR cover 44 are arranged so as to overlap in the height direction (vertical direction). ing.
  • the LiDAR cover 44 includes a rotation shaft 44b extending in the left-right direction and protruding outward from the outer peripheral surface of the LiDAR cover 44 to the left and right.
  • the rotation shaft 44b is located forward of the center position of the LiDAR cover 44 in the front-rear direction.
  • the upper case 1u is provided with a bearing portion 1w into which the rotation shaft 44b of the LiDAR cover 44 is inserted (FIGS. 5, 6, 10, and 11).
  • the rotation shaft 44b has an upper portion supported by the bearing portion 1w, and a lower portion supported by the first control board 10a.
  • the LiDAR cover 44 is integrally provided with a rotation shaft 44b that rotatably supports the LiDAR cover 44.
  • the LiDAR cover 44 is rotatable in the vertical direction on the rear side from the rotation shaft 44b by the rotation shaft 44b and the bearing portion 1w.
  • the rotation shaft 44b and the bearing portion 1w may be connected to each other by fixing with screws, or by fitting in projections and depressions.
  • the LiDAR cover 44 includes a detection switch pressing portion 44d that protrudes rearward from the outer peripheral surface of the LiDAR cover 44.
  • the detection switch pressing portion 44d is provided integrally with the LiDAR cover 44.
  • a detection switch 45 is provided on the first control board 10a.
  • a notch portion 1u1 is formed in the upper case 1u located above the detection switch 45.
  • the detection switch pressing part 44d When the LiDAR cover 44 is attached to the cleaner body 1, the detection switch pressing part 44d is arranged above the detection switch 45 through the notch 1u1. That is, the detection switch pressing portion 44d is arranged at a position where it contacts and opens the detection switch 45.
  • the detection switch 45 is biased upward, and when no load is applied to the LiDAR cover 44, the detection switch 45 supports the LiDAR cover 44 via the detection switch pressing portion 44d.
  • the control device 30 detects that the autonomous vacuum cleaner S has come into contact with an obstacle and controls the travel motors 3m and 4m to avoid the obstacle.
  • a contact type switch that contacts the detection switch pressing portion 44d is used as the detection switch 45, but the detection switch 45 may be replaced with a non-contact type such as a photointerrupter.
  • control device 30 when the control device 30 detects that the detection switch 45 is pressed, it may be configured to stop the driving motors 3m, 4m, rotary brush motor 14a, and fan motor 22. After stopping each motor, the control device 30 notifies an information terminal device owned by the user via the communication means 90 that the autonomous vacuum cleaner S has stopped in an emergency.
  • the LiDAR cover 44 is placed in the upper case 1u, but the LiDAR unit 40 and the storage battery 21 are placed in the lower case 1s. This is achieved by arranging electrical system components such as the LiDAR unit 40 that transmit signals and control to the first control board 10a via wiring in the same unit as the first control board 10a. This is because it makes it easier to perform wiring, suppresses wiring connection mistakes, and facilitates wiring confirmation.
  • the LiDAR cover 44 is a single component, the force applied when rotating the LiDAR cover 44 is small. Therefore, there is no need for parts such as springs to correct the posture of the LiDAR cover 44 or to return to the original posture when the detection switch 45 becomes free after being pressed, or the minimum number is required, and it is compact and does not require large force. This reduces the number of parts, reduces costs, improves ease of assembly, and makes the product more compact.
  • the detection switch pressing part 44d that presses the detection switch 45 is provided integrally with the LiDAR cover 44, it is possible to provide an autonomous vacuum cleaner that suppresses an increase in the number of parts.
  • Example 1 in order to hide the inside of the product housing and improve the design, the upper case 1u is placed on the front part 1f of the main body, so that the rotation axis 44b becomes visible and the aesthetic appearance is impaired.
  • the rotating shaft 44b may be hidden by other methods, or the rotating shaft 44b may be treated as an exterior design.
  • the user when changing the operation, the user electronically or radio waves the autonomous vacuum cleaner S or the autonomous vacuum cleaner S to operate the autonomous vacuum cleaner S. It is necessary to directly operate external terminals such as connected information terminal devices and remote controllers. In order to directly operate the autonomous vacuum cleaner S or the external terminal, the user must approach one or the other and operate it, which lacks convenience. Hereinafter, means for solving the above problem will be explained.
  • the camera 50 recognizes the person's characteristics and position, and moves the autonomous vacuum cleaner S to a position where the person can perform additional operations.
  • the camera 50 of the autonomous vacuum cleaner S can recognize a person's shape, color, movement, heat, bioelectricity, electromagnetic waves, or voice as the primary characteristics of a person.
  • the control device 30 is equipped with a determination unit that determines the first characteristic of the person.
  • the determination unit of the control device 30 determines the first operation of the autonomous vacuum cleaner S that corresponds to the first characteristic of the person.
  • FIG. 14 is a diagram showing a correspondence table that associates the first characteristics of a person with the actions of the autonomous vacuum cleaner S.
  • the first motion of the person is determined based on a correspondence table between the first characteristics of the person and the first motion of the autonomous vacuum cleaner S, which are set in advance, as shown in FIG.
  • a person's ⁇ action of waving their hand at a low position'' corresponds to the autonomous vacuum cleaner S ⁇ moving to a position where the person can perform additional operations
  • a person's ⁇ action of raising their hand'' corresponds to the autonomous vacuum cleaner S.
  • Machine S corresponds to "movement in the direction away from the person".
  • the human movement and the corresponding movement of the autonomous vacuum cleaner S are not limited to the above example.
  • these correspondence tables may be set in advance or may be set by the user himself/herself.
  • the control device 30 controls the autonomous vacuum cleaner S according to the first operation of the autonomous vacuum cleaner S determined by the determination unit. Specific examples are shown below in FIGS. 15 to 17.
  • FIG. 15 is a diagram showing human motion.
  • FIG. 16 is a diagram showing the recognition state of the autonomous vacuum cleaner S.
  • FIG. 17 is a diagram showing the moving state of the autonomous vacuum cleaner S.
  • a person waves their hand at a low position near the floor.
  • the camera 50 of the autonomous vacuum cleaner S captures the waving action and acquires it as a first characteristic of the person.
  • the autonomous vacuum cleaner S recognizes the position of the person using either the camera 50 or the distance measuring sensor, or both.
  • the determination unit of the control device 30 refers to the correspondence table of FIG. 14 and determines that the first action of the autonomous vacuum cleaner S corresponding to the action of the person waving their hand at a low position near the floor is movement to a position where the person can perform additional operations. Accordingly, the control device 30 generates a movement route with the range where the person's hand can reach the operation button 7 as the destination, and as shown in FIG. 17, the control device 30 drives the wheels to move the autonomous vacuum cleaner S along the generated movement route. The control device 30 stops the movement when the autonomous vacuum cleaner S arrives at the destination and waits until it is operated by a person.
  • the camera 50 acquires the second characteristic of the person as an additional operation by the person.
  • the determination unit of the control device 30 determines a second motion of the autonomous mobile device that corresponds to the second characteristic of the person, and the control device 30 causes the autonomous vacuum cleaner to execute the determined second motion. Control S.
  • the means for acquiring the first or second characteristics of a person is not limited to the camera 50, but may also be a heat sensitive device, an electromagnetic wave receiver, a sound collector, etc.
  • the means for acquiring the position information of a person is not limited to the camera 50 or a distance sensor, but also includes an electromagnetic wave receiver, a sound collector, a distance detector, a position detector, a speed detector, an acceleration detector, an angular velocity detector, and an angular acceleration detector. etc.
  • the autonomous vacuum cleaner S acquires the first characteristic and position information of the person, and controls the operation of the autonomous vacuum cleaner S according to the first characteristic of the person. Performs judgment and controls for execution. Specifically, by waving a hand from a low position, the autonomous vacuum cleaner S can be moved to a position where the person can perform additional operations. Thereby, the user's travel cost when operating the autonomous vacuum cleaner S can be reduced, and the autonomous vacuum cleaner S can be operated in a sophisticated manner.
  • Example 3 will be explained.
  • the third embodiment is an example in which a drone is used instead of the autonomous vacuum cleaner S of the second embodiment.
  • FIG. 18 is an external perspective view of a drone D according to Example 3 of the present invention.
  • FIG. 19 is an external perspective view of the drone D seen from above with the top cover removed from the drone D.
  • FIG. 20 is an external perspective view of the drone D seen from below. Drone D is capable of flying in the air, photographing the ground and its surroundings, and transporting cargo.
  • Drone D has a lower case 400 that serves as a base for assembling the parts that make up the device main body, and an upper cover 401 for storing the parts inside the main body.
  • the upper cover 401 is equipped with the minimum necessary operation switch 402 for the user to operate the drone D.
  • a control device 403 equipped with software (hereinafter also referred to as control software) for electronically controlling the drone D is provided inside the upper cover 401.
  • the control device 403 includes a determination section and a control section.
  • the control device 403 is provided with a pressure detection section, and is operated by pressing the operation switch 402.
  • the control device 403 uses a battery (not shown) mounted on the drone D as a power source to drive the control device 403 and distributes power for driving all other electronic devices mounted on the drone D.
  • the control device 403 may perform multiple functions such as movement control and image processing, and may be divided into multiple units for each function.
  • a vane wheel 404 is mounted around the lower case 400 as a means of transport for the drone D, and is driven by the control unit of the control device 403 so that the drone can freely control its movement.
  • a protective member 405 is provided around the vane wheel 404 to protect the vane wheel 404.
  • Support posts 406 are mounted around the lower case 400 and the protective member 405 to connect them to each other. Furthermore, a camera 407 is mounted on the lower front part of the lower case 400 to capture images of the surroundings of drone D.
  • drone D is also equipped with other components required for drone D to perform the minimum required operations, such as a drive system that drives the impeller 404, sensors that obtain various types of environmental information, a display unit such as an LED, a speaker, a radio transmitter/receiver, wiring, etc.
  • the imaging device 37 recognizes the person's characteristics and position, moves the drone D to a position where the person can perform additional operations, and receives the additional operation.
  • the various drive systems of the drone D may be stopped or may be operating before entering the main control.
  • the control unit holds information on the characteristics of a person who can be recognized in advance.
  • the camera 407 of Drone D can recognize a person's shape, color, movement, heat, bioelectricity, electromagnetic waves, and voice as the primary characteristics of a person.
  • the determination unit of the control device 403 determines the first motion of the drone D that corresponds to the first characteristic of the person.
  • the first motion is determined based on a correspondence table between preset human characteristics and the motion of the drone D, as shown in FIG. For example, a person's ⁇ motion of waving their hand next to their face'' will cause Drone D to ⁇ move to a position where a person can perform additional operations,'' and a person's ⁇ raise of their hand'' will cause Drone D to ⁇ move away from the person.'' It corresponds to "action".
  • the human motion and the corresponding motion of the drone D are not limited to these examples. Further, these correspondence tables may be set in advance or may be set by the user himself/herself.
  • the control device 403 controls the drone D according to the first motion of the drone D determined by the determination unit. Specific examples are shown below in FIGS. 21 to 23.
  • FIG. 21 is a diagram showing human motion.
  • FIG. 22 is a diagram showing the recognition state of the drone D.
  • FIG. 23 is a diagram showing the moving state of the drone D.
  • a person makes an action of waving their hand next to their face.
  • the camera 407 of the drone D captures the waving motion and acquires it as the first characteristic of the person.
  • the drone D recognizes the location of the person using either the camera 407 or the distance sensor (not shown), or both.
  • the determination unit of the control device 403 takes into account the correspondence table and determines that the motion of the drone D that corresponds to the motion of the person waving his or her hand next to the person's face is movement to a position where the person can perform additional operations. .
  • the control device 403 generates a travel route with a position where the second feature of the person is largely reflected in the imaging range as the destination, in order to obtain the second feature of the person. Furthermore, as shown in FIG. 23, the control device 403 drives the impeller 404 to move the drone D along the movement route, and stops moving when it reaches the destination until it is operated by a person. stand by.
  • the camera 407 acquires the second characteristic of the person as an additional operation by the person.
  • the determination unit of the control device 403 determines a second motion of the autonomous mobile device that corresponds to the second characteristic of the person, and the control unit of the control device 403 causes the drone D to execute the determined second motion. control.
  • the means for acquiring the first or second characteristics of a person is not limited to an imaging device, but may also be a heat sensitive device, an electromagnetic wave receiver, a sound collector, etc.
  • the means for acquiring a person's position information are not limited to imagers and distance sensors, but also electromagnetic wave receivers, sound collectors, distance detectors, position detectors, speed detectors, acceleration detectors, angular velocity detectors, and angular acceleration detectors. A detector may also be used.
  • the drone D acquires the first characteristic and position information of the person, determines the operation of the drone D according to the first characteristic of the person, and performs control to execute the operation. I do. Specifically, by waving a hand next to the person's face, the drone D can be moved to a position where the person can perform additional operations. Thereby, the user's movement cost when operating the drone D can be reduced, and the drone D can be operated in a sophisticated manner.
  • Example 4 a method for identifying garbage will be described. Since the autonomous vacuum cleaner S performs cleaning automatically, it is preferable to operate it according to the type of garbage. Furthermore, it is preferable that the user be able to grasp the type of garbage that the autonomous vacuum cleaner S has sucked in. The means for solving these problems will be explained.
  • FIG. 24 is a flowchart of the dust identification method according to the fourth embodiment of the present invention. The operation shown in FIG. 24 is executed by the control device 30 in FIG. 8.
  • the camera 50 photographs an object (step S1001), and subject information of the photographed object is transmitted to the control device 30.
  • the control device 30 determines whether the subject photographed by the camera 50 is to be cleaned (step S1002).
  • control device 30 identifies the type of garbage (step S1003).
  • Information about the type of garbage based on characteristics such as color and shape is stored in advance in control device 30, and the subject information of the object photographed by camera 50 is compared with information about the type of garbage to identify the type of garbage. If it is determined that the subject photographed by camera 50 is not an object to be cleaned (NO in step S1002), control device 30 executes the process of step S1001.
  • control device 30 determines whether the identified garbage has a predetermined weight or more (step S1004). For example, if the control device 30 determines that the garbage is metal, plastic, etc., it determines that the garbage has a predetermined weight or more.
  • control device 30 If it is determined that the identified garbage is equal to or greater than the predetermined weight (YES in step S1004), the control device 30 operates the fan motor 22 at high speed to increase the suction power (step S1005).
  • control device 30 drives the travel motors 3m and 4m to move the autonomous vacuum cleaner S to the location where the garbage is located (step S1006).
  • step S1004 if it is determined that the identified garbage is less than the predetermined weight (NO in step S1004), the control device 30 executes step S1006.
  • control device 30 determines whether the identified garbage has been sucked into the autonomous vacuum cleaner S (step S1007). In making this determination, the detection results of the dust sensor 80 are used.
  • step S1007 If the identified garbage is sucked into the autonomous vacuum cleaner S (YES in step S1007), the control device 30 transmits the result to the information terminal device 100 owned by the user via the communication means 90 (step S1008). ). If the identified dirt is not sucked into the autonomous vacuum cleaner S (No in step S1007), the control device 30 repeats the process in step S1007.
  • FIG. 25 is a diagram showing an example of a display result of the information terminal device 100.
  • the display screen 101 of the information terminal device 100 displays cleaning time, cleaning area, map, and cleaning completion date and time.
  • the map displayed on the display screen 101 shows the floor plan of the room, the type of surface to be cleaned, the travel trajectory of the autonomous vacuum cleaner S, and the position of the sucked garbage.
  • the type of garbage is identified, it is determined whether the garbage weighs more than a predetermined weight, and the fan motor is operated at high speed when the garbage weighs more than a predetermined weight. It is possible to suppress the amount of leftover suction. Further, according to this embodiment, the fan motor is not operated at high speed when the weight of the garbage is less than a predetermined weight, so power consumption can be reduced. Furthermore, since the position of the sucked-in garbage and the type of the sucked-in garbage are displayed on the information terminal device 100, it is possible to know what the autonomous vacuum cleaner S has accidentally sucked, such as a coin. .
  • Example 5 an example of a method for reducing power consumption will be described.
  • the autonomous vacuum cleaner S includes three or more sensors, such as a camera 50, ranging sensors 60 and 61, and a LiDAR unit 40.
  • the power consumption of the camera 50 for photographing objects is large. Means for reducing this will be explained below.
  • FIG. 26 is a flowchart showing means for reducing power consumption according to Example 5 of the present invention.
  • step S1101 When the autonomous vacuum cleaner S starts traveling (step S1101), the presence or absence of an obstacle is detected by the ranging sensors 60, 61 and the LiDAR unit 40 (step S1102).
  • step S1102 If the distance measuring sensors 60, 61 and the LiDAR unit 40 detect an obstacle (YES in step S1102), the control device 30 activates the camera 50 (step S1103). If the distance measuring sensors 60, 61 and the LiDAR unit 40 do not detect an obstacle (NO in step S1102), the process of step S1102 is repeated.
  • control device 30 After starting the camera 50, the control device 30 recognizes the captured image and determines whether it is an obstacle or suctionable garbage (step S1104).
  • the control device 30 drives the travel motors 3m and 4m, and causes the autonomous vacuum cleaner S to approach the dust and suction it (step S1106).
  • the control device 30 drives the traveling motors 3m and 4m to operate the autonomous vacuum cleaner S to avoid the obstacle (step S1108).
  • the control device 30 stops the camera 50 (step S1109).
  • control device 30 After stopping the camera 50, the control device 30 causes the autonomous vacuum cleaner S to start running again (step S1110).
  • Example 5 by installing three or more sensors, it becomes possible to detect obstacles and the distance from the autonomous vacuum cleaner S to obstacles that were previously undetectable. It can improve the driving performance inside. Further, power consumption can be reduced by limiting the activation time of the camera 50 to when an obstacle is detected by another sensor.
  • Example 6 a means for reducing noise generated from the autonomous vacuum cleaner S will be described.
  • the autonomous vacuum cleaner S has a plurality of components, such as a fan motor 22, a side brush motor 6b that drives a side brush, a rotating brush motor 14a that drives a rotating brush, and running motors 3m and 4m that drive drive wheels 3 and 4. They are equipped with motors, and these motors are the cause of noise generation.
  • the sides of the vacuum cleaner body are covered with bumpers, but in order for the bumpers to operate, the bumpers are attached with a gap from the vacuum cleaner body, and the motor noise leaks through this gap, creating noise.
  • the noise generated from the fan motor 22 and the rotating brush motor 14a which rotate at high speed, is noticeable. Means for reducing noise will be explained below.
  • FIG. 27 is a schematic side sectional view of the autonomous vacuum cleaner S according to the sixth embodiment of the present invention, taken in a vertical section in the front-rear direction.
  • FIG. 28 is a schematic cross-sectional view of the autonomous vacuum cleaner S according to the sixth embodiment of the present invention, taken in a horizontal direction and viewed from above.
  • the fan motor 22 and the rotary brush motor 14a mounted on the lower case 1s are placed closer to the rear side of the vacuum cleaner body 1, and the upper case 1u is placed so that there is no gap above the lower case 1s. are placed. Therefore, the bumper 2 disposed around the cleaner body 1 is disposed only at the front.
  • FIG. 29 is a schematic side sectional view of an autonomous vacuum cleaner S according to a modification of the sixth embodiment, taken in a vertical section in the front-rear direction.
  • FIG. 30 is a schematic sectional view of an autonomous vacuum cleaner S according to a modification of the sixth embodiment, taken in a horizontal direction and viewed from above.
  • the partition plate 500 by providing the partition plate 500, the degree of sealing in the rear space of the vacuum cleaner main body 1 is increased, and the effect of suppressing sound leakage can be further enhanced.
  • the sixth embodiment it is possible to suppress the sound generated from the fan motor 22 and the rotary brush motor 14a from leaking out of the vacuum cleaner main body 1, and to reduce noise.
  • Example 7 a means for suppressing lifting of the suction port 12 of the autonomous vacuum cleaner S will be described.
  • FIG. 31 is a schematic diagram of an autonomous vacuum cleaner S according to a seventh embodiment of the present invention, viewed from the side.
  • FIG. 32 is a schematic diagram of an autonomous vacuum cleaner S according to a seventh embodiment of the present invention viewed from above.
  • drive wheels 3 and 4 are arranged in the center of the cleaner body 1 in the front-rear direction, a side brush is arranged in the front, and a suction part 12 is arranged in the rear.
  • the center of gravity is located in front of the drive wheels 3 and 4, and when the cleaner body 1 is tilted forward using the drive wheels 3 and 4 as a fulcrum, the center of gravity is located at the rear of the cleaner body 1.
  • the suction part 12 may become separated from the floor surface Y, and the dust removal performance may deteriorate.
  • the weight 600 is arranged closer to the mouthpiece 12 (rearward side) than the drive wheels 3 and 4.
  • the weights 600 are arranged so as to be divided in the left-right direction of the cleaner body 1.
  • the weight of the weight is set to 10% or less of the total weight of the autonomous vacuum cleaner S.
  • the weight of a typical autonomous vacuum cleaner S is 2,300g to 2,500g (without weight), so the weight 600 installed on the autonomous vacuum cleaner S should be around 200g (total of left and right sides). is preferred.
  • the suction port 12 is prevented from moving away from the floor surface Y, and the cleaning performance is improved. can be improved.
  • Rotating brush 14a... Rotating brush motor, 15... Scraping brush, 16... Connection part, 17a, 17b... Top surface, 21... Storage battery, 21a, 21b, 21c... Cell, 22... Fan motor, 30... Control Device, 40... LiDAR unit, 40a... Rotating part, 40b... Fixed part, 41... LiDAR, 41a... Light emitting part, 41b... Light receiving part, 42... Rotation drive motor, 43... Belt, 44... LiDAR cover, 44a...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Vacuum Cleaner (AREA)

Abstract

The purpose of the present invention is to provide an autonomous travel-type cleaner which suppresses an increase in the number of components. An autonomous travel-type cleaner S according to the present invention comprises: traveling motors 3m, 4m; a cleaner body 1 comprising a fan motor 22; and a control device 30 which controls the traveling motors 3m, 4m, and the fan motor 22. The cleaner body 1 is provided with: a LiDAR unit 40 which protrudes from an upper surface of the cleaner body 1 and measures a distance; and a LiDAR cover 44 which covers the LiDAR unit 40. The control device 30 is provided with a detection switch 45 for detecting contact between the LiDAR cover 44 and an obstacle. The LiDAR cover 44 is provided with: a rotary shaft 44b which is integrally provided with the LiDAR cover 44 and rotatably supports the LiDAR cover 44; and a detection switch pressing part 44d which is integrally provided with the LiDAR cover 44 and presses the detection switch 45 accompanying a rotation of the LiDAR cover 44.

Description

自律走行型掃除機autonomous vacuum cleaner
 本発明は、自律走行して掃除を行う自律走行型掃除機に関する。 The present invention relates to an autonomous vacuum cleaner that autonomously runs and cleans.
 自律走行型掃除機には、自律走行型掃除機の筐体周囲の障害物を検知する検知手段が備えられている。障害物を検知する手段として、LiDAR(Light Detection and Ranging)がある。LiDARは発光部と受光部を備え、LiDARの中心を軸として発光部と受光部を回転させることにより、筐体周囲の障害物を検知する。LiDARは発光部と受光部を回転させるため、自律走行型掃除機の本体上面から突出するように設置される。 The autonomous vacuum cleaner is equipped with a detection means that detects obstacles around the casing of the autonomous vacuum cleaner. LiDAR (Light Detection and Ranging) is a means for detecting obstacles. LiDAR includes a light emitting part and a light receiving part, and detects obstacles around the housing by rotating the light emitting part and the light receiving part around the center of the LiDAR. In order to rotate the light emitting part and the light receiving part, LiDAR is installed so as to protrude from the top surface of the main body of the autonomous vacuum cleaner.
 自律走行型掃除機は、吸引モータを駆動して吸引力を発生させ、筐体の下面から吸込んだ塵埃を筐体内の集塵容器に集塵する。そして、自律走行型掃除機は、LiDARで検知した障害物を回避し、部屋全体の掃除を行う。このような自律走行型掃除機は、例えば特許文献1に記載されている。 An autonomous vacuum cleaner drives a suction motor to generate suction force, and collects dust sucked in from the bottom surface of the housing into a dust collection container inside the housing. The autonomous vacuum cleaner then avoids obstacles detected by LiDAR and cleans the entire room. Such an autonomous vacuum cleaner is described in, for example, Patent Document 1.
特開2021-112416号公報JP 2021-112416 Publication
 それゆえ、例えばベッド等の下の隙間に入り込んで掃除を行う必要がある場合を考慮しなければならない。前記隙間が、製品外形よりも余裕をもって高い場合は、スムーズに走行が行われ、一定以上低い場合は製品前方に設けられた接触センサ(バンパ)などにより隙間に入り込めず回避行動等をとる。LIDARを備えた自律走行型掃除機は、LiDARを回転させ各方位の距離を計測するため本体上部から突出するように設置しなければならない。そのため、バンパで検知できる高さ限界と、製品が走行できる隙間高さに差異が生じてしまう。この高さに近しい隙間の下に自律走行型掃除機が入り込むと、ベッド等と床に挟まれ、動作不可能な状態になってしまう。 Therefore, it is necessary to consider the case where, for example, it is necessary to get into the gap under the bed, etc. to clean it. If the gap is higher than the outer shape of the product by a margin, the vehicle will run smoothly, and if it is lower than a certain level, the product will not be able to enter the gap due to a contact sensor (bumper) installed in front of the product, and will take evasive action. An autonomous vacuum cleaner equipped with LIDAR must be installed so that it protrudes from the top of the main body in order to rotate the LiDAR and measure distance in each direction. Therefore, there is a difference between the height limit that can be detected by the bumper and the height of the gap in which the product can travel. If an autonomous vacuum cleaner were to fit under a gap close to this height, it would become stuck between the bed and the floor, rendering it inoperable.
 この課題を解決するために特許文献1では、LiDARを保護するLiDARカバーに押圧され、軸を支点として回動するスイッチレバーと、このスイッチレバーで下方に押し込まれる衝突検知部を設け、LiDARカバーが障害物に衝突した際にスイッチレバーを押圧し、スイッチレバーが軸を支点として回動して衝突検知部を押し込むことにより、LiDARカバーが障害物に衝突したことを検知するようにしている。 In order to solve this problem, Patent Document 1 provides a switch lever that is pressed by the LiDAR cover that protects the LiDAR and rotates about an axis, and a collision detection section that is pushed downward by the switch lever, so that the LiDAR cover protects the LiDAR. When the LiDAR cover collides with an obstacle, the switch lever is pressed, and the switch lever rotates about its axis to push in the collision detection part, thereby detecting that the LiDAR cover has collided with the obstacle.
 しかしながら、特許文献1に記載の技術においては、LiDARカバーが障害物に衝突した際に別部品であるスイッチレバーを介して衝突検知部を押し込むようにしているので、部品点数が多くなり、構造が複雑化するといった課題があった。 However, in the technology described in Patent Document 1, when the LiDAR cover collides with an obstacle, the collision detection unit is pushed in via a switch lever that is a separate component, which increases the number of parts and reduces the structure. There was an issue of increasing complexity.
 本発明の目的は、上記課題を解決し、部品点数の増加を抑制する自律走行型掃除機を提供することにある。 An object of the present invention is to provide an autonomous vacuum cleaner that solves the above problems and suppresses an increase in the number of parts.
 上記目的を達成するために本発明の自律走行型掃除機は、駆動輪及び前記駆動輪を駆動する走行モータを備えた掃除機本体と、前記掃除機本体に備えられ、塵埃を集塵するダストケースと、前記掃除機本体に備えられ、吸引力を発生させるファンモータと、前記走行モータ、前記ファンモータに電力を供給する蓄電池と、前記走行モータ、前記ファンモータを制御する制御装置と、を備えた自律走行型掃除機であって、前記掃除機本体には、前記掃除機本体の上面から突出して設置され、前記自律走行型掃除機と周囲との距離を測定する第1測距センサと、前記第1測距センサを覆うセンサカバーと、を備え、前記制御装置には、前記センサカバーが障害物に接触したことを検知する検知スイッチが備えられ、前記センサカバーには、前記センサカバーと一体的に設けられ、前記センサカバーを回動可能に軸支する回動軸と、前記センサカバーと一体的に設けられ、前記センサカバーの回動に伴って前記検知スイッチを押圧する検知スイッチ押圧部と、を備えたことを特徴とする。 In order to achieve the above object, an autonomous vacuum cleaner of the present invention includes a vacuum cleaner body including a drive wheel and a travel motor for driving the drive wheel, and a dust collector provided in the vacuum cleaner body to collect dust. A case, a fan motor that is included in the vacuum cleaner body and generates suction force, a storage battery that supplies power to the travel motor and the fan motor, and a control device that controls the travel motor and the fan motor. An autonomous vacuum cleaner comprising: a first distance measuring sensor installed on the vacuum cleaner body to protrude from the top surface of the vacuum cleaner body and measuring a distance between the autonomous vacuum cleaner and surroundings; , a sensor cover that covers the first ranging sensor, the control device includes a detection switch that detects that the sensor cover has come into contact with an obstacle, and the sensor cover includes a sensor cover that covers the first distance measurement sensor. a rotation shaft that is provided integrally with the sensor cover and rotatably supports the sensor cover; and a detection switch that is provided integrally with the sensor cover and presses the detection switch as the sensor cover rotates. It is characterized by comprising a pressing part.
 本発明によれば、部品点数の増加を抑制する自律走行型掃除機を提供することができる。 According to the present invention, it is possible to provide an autonomous vacuum cleaner that suppresses an increase in the number of parts.
本発明の実施例1に係る自律走行型掃除機Sの外観斜視図である。1 is an external perspective view of an autonomous vacuum cleaner S according to a first embodiment of the present invention; 本発明の実施例1に係る自律走行型掃除機Sの進行方向左側面図である。FIG. 2 is a left side view in the traveling direction of the autonomous vacuum cleaner S according to the first embodiment of the present invention. 本発明の実施例1に係る自律走行型掃除機Sの底面図である。FIG. 2 is a bottom view of the autonomous vacuum cleaner S according to the first embodiment of the present invention. 本発明の実施例1に係る自律走行型掃除機Sから上ケース1uを取り外した状態を示す斜視図である。1 is a perspective view showing a state in which an upper case 1u is removed from an autonomous vacuum cleaner S according to a first embodiment of the present invention. FIG. 図1のV-V線断面図である。FIG. 2 is a sectional view taken along the line VV in FIG. 1; 図1のVI-VI線断面図であるIt is a sectional view taken along the line VI-VI in FIG. 1. LiDARユニット40を示す斜視図である。4 is a perspective view showing a LiDAR unit 40. FIG. 本発明の実施例1に係る自律走行型掃除機Sを示す制御ブロック図である。1 is a control block diagram showing an autonomous vacuum cleaner S according to a first embodiment of the present invention. FIG. 本発明の実施例1に係る制御装置30の処理方法を示すフローチャートである。3 is a flowchart showing a processing method of the control device 30 according to the first embodiment of the present invention. 自律走行型掃除機Sの分解斜視図である。FIG. 2 is an exploded perspective view of an autonomous vacuum cleaner S. 図1をV-V線断面斜視図である。FIG. 1 is a cross-sectional perspective view taken along line VV. 本発明の実施例1に係る自律走行型掃除機Sを含む掃除システムの構成図である。1 is a configuration diagram of a cleaning system including an autonomous vacuum cleaner S according to a first embodiment of the present invention. 本発明の実施例2に係る制御装置30の構成を示すブロック図である。It is a block diagram showing the composition of control device 30 concerning Example 2 of the present invention. 人の第一の特徴と自律走行型掃除機Sの動作を対応させた対応表を示す図である。It is a figure showing the correspondence table which made the first characteristic of a person and the operation of autonomous vacuum cleaner S correspond. 人の動作を示す図である。It is a diagram showing human motion. 自律走行型掃除機Sの認識状態を示す図である。It is a diagram showing the recognition state of the autonomous vacuum cleaner S. 自律走行型掃除機Sの移動状態を示す図である。It is a figure which shows the movement state of autonomously running vacuum cleaner S. 本発明の実施例3に係るドローンDの外観斜視図である。It is an external perspective view of drone D concerning Example 3 of the present invention. ドローンDから上カバーを取外した状態においてドローンDを上方から見た外観斜視図である。It is an external perspective view of the drone D seen from above in a state where the upper cover is removed from the drone D. ドローンDを下方から見た外観斜視図である。It is an external perspective view of drone D seen from below. 人の動作を示す図である。It is a diagram showing human motion. ドローンDの認識状態を示す図である。A figure showing the recognition state of drone D. ドローンDの移動状態を示す図である。It is a figure showing the moving state of drone D. 本発明の実施例4に係るゴミ識別方法のフローチャートである。It is a flowchart of the dust identification method based on Example 4 of this invention. 情報端末装置100の表示結果の一例を示す図である。3 is a diagram showing an example of a display result of the information terminal device 100. FIG. 本発明の実施例5に係る消費電力を低減する手段を示すフローチャートである。It is a flowchart which shows the means for reducing power consumption based on Example 5 of this invention. 本発明の実施例6に係る自律走行型掃除機Sを前後方向に垂直断面した側方概略断面図である。FIG. 7 is a schematic side sectional view of an autonomous vacuum cleaner S according to a sixth embodiment of the present invention, taken in a vertical section in the front-rear direction. 本発明の実施例6に係る自律走行型掃除機Sを水平方向に断面し上方から見た概略断面図である。11 is a schematic cross-sectional view of an autonomous vacuum cleaner S according to a sixth embodiment of the present invention, cut horizontally and viewed from above. FIG. 実施例6の変形例に係る自律走行型掃除機Sを前後方向に垂直断面した側方概略断面図である。FIG. 7 is a schematic side sectional view of an autonomous vacuum cleaner S according to a modification of the sixth embodiment, taken in a vertical section in the front-rear direction. 実施例6の変形例に係る自律走行型掃除機Sを水平方向に断面し上方から見た概略断面図である。FIG. 7 is a schematic sectional view of an autonomous vacuum cleaner S according to a modification of the sixth embodiment, taken in a horizontal direction and viewed from above. 本発明の実施例7に係る自律走行型掃除機Sを側方から見た概略図である。13 is a schematic diagram of an autonomous vacuum cleaner S according to a seventh embodiment of the present invention, seen from the side. FIG. 本発明の実施例7に係る自律走行型掃除機Sを上方から見た概略図である。FIG. 7 is a schematic diagram of an autonomous vacuum cleaner S according to a seventh embodiment of the present invention viewed from above.
 以下、本発明の実施例について添付の図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Similar components are given the same reference numerals, and similar descriptions will not be repeated.
 本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素が別の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複すること、などを許容する。 The various components of the present invention do not necessarily have to exist independently, and one component may be made up of multiple members, multiple components may be made of one member, or a certain component may be different from each other. It is allowed that a part of a certain component overlaps with a part of another component, etc.
 図中、天井側を上、床面側を下、自律走行型掃除機の進行方向側を前、自律走行型掃除機の進行方向反対側を後、自律走行型掃除機の進行方向左側を左、自律走行型掃除機の進行方向右側を右と定義する。 In the diagram, the ceiling side is up, the floor side is down, the side in the direction of travel of the autonomous vacuum cleaner is the front, the side opposite the direction of travel of the autonomous vacuum cleaner is the back, and the left side in the direction of travel of the autonomous vacuum cleaner is the left. , the right side in the direction of movement of the autonomous vacuum cleaner is defined as right.
 図1は、本発明の実施例1に係る自律走行型掃除機Sの外観斜視図である。図2は、本発明の実施例1に係る自律走行型掃除機Sの進行方向左側面図である。図3は、本発明の実施例1に係る自律走行型掃除機Sの底面図である。図4は、本発明の実施例1に係る自律走行型掃除機Sから上ケース1uを取り外した状態を示す斜視図である。図5は、図1のV-V線断面図である。なお、図5では、LiDARユニット40、その他周囲部品の位置関係等をわかりやすくするため、LiDARカバー44や一部部品は断面表示していない。図6は、図1のVI-VI線断面図である。図7は、LiDARユニット40を示す斜視図である。 FIG. 1 is an external perspective view of an autonomous vacuum cleaner S according to Embodiment 1 of the present invention. FIG. 2 is a left side view in the traveling direction of the autonomous vacuum cleaner S according to the first embodiment of the present invention. FIG. 3 is a bottom view of the autonomous vacuum cleaner S according to the first embodiment of the present invention. FIG. 4 is a perspective view showing a state in which the upper case 1u is removed from the autonomous vacuum cleaner S according to the first embodiment of the present invention. FIG. 5 is a sectional view taken along the line VV in FIG. 1. Note that in FIG. 5, the LiDAR cover 44 and some parts are not shown in cross section to make it easier to understand the positional relationship of the LiDAR unit 40 and other surrounding parts. FIG. 6 is a sectional view taken along line VI-VI in FIG. FIG. 7 is a perspective view showing the LiDAR unit 40.
 自律走行型掃除機Sは、所定の掃除領域(例えば、部屋の床面Y(図2、図5参照))を自律的に移動しながら自動的に掃除する電気機器である。また、自律走行型掃除機Sは、掃除機本体1、掃除機本体1の側周を覆うバンパ2、一対の駆動輪3,4(図3参照)、補助輪5(図3参照)、及びサイドブラシ6を備えている。 The autonomous vacuum cleaner S is an electrical device that automatically cleans a specified cleaning area (e.g., the floor surface Y of a room (see Figures 2 and 5)) while autonomously moving around the area. The autonomous vacuum cleaner S also includes a vacuum cleaner main body 1, a bumper 2 that covers the sides of the vacuum cleaner main body 1, a pair of drive wheels 3, 4 (see Figure 3), auxiliary wheels 5 (see Figure 3), and a side brush 6.
 掃除機本体1は、上部を構成する上ケース1u及び底部を構成する下ケース1sを有する。また、掃除機本体1は、前後方向中央部1cよりも前方に本体前部1f、前後方向中央部1cよりも後方に本体後部1rを備えている。上ケース1uの本体前部1fには、上カバー1vが備えられている。掃除機本体1(上ケース1u)の上面は、前後方向中央部1cを境として上下方向の高さが異なるように段差状に形成されている。なお、前後方向中央部1cとは、必ずしも前後方向の中心位置を意味するものでは無く、段差が形成されている位置を意味するものである。 The vacuum cleaner main body 1 has an upper case 1u forming an upper part and a lower case 1s forming a bottom part. Further, the cleaner body 1 includes a front body part 1f in front of the center part 1c in the front-rear direction, and a rear part 1r in the rear of the center part 1c in the front-rear direction. An upper cover 1v is provided on the main body front part 1f of the upper case 1u. The upper surface of the vacuum cleaner main body 1 (upper case 1u) is formed in a step shape so that the heights in the vertical direction are different from each other with the center portion 1c in the front-rear direction as a boundary. Note that the front-rear direction central portion 1c does not necessarily mean the center position in the front-rear direction, but means a position where a step is formed.
 掃除機本体1の本体前部1fには、LiDARユニット40(Light Detection and Ranging)が設置されている。LiDARユニット40は、本体前部1fの上面17aから上方に突出するように設けられている。 A LiDAR unit 40 (Light Detection and Ranging) is installed on the front part 1f of the vacuum cleaner body 1. The LiDAR unit 40 is provided so as to protrude upward from the upper surface 17a of the main body front part 1f.
 また、掃除機本体1の本体後部1rには、自律走行型掃除機Sの運転停止を指令する複数の操作ボタン7(7a,7b,7c)と、塵埃を集塵するダストケース8が備えられている。ダストケース8は、本体後部1rから上方に向かって着脱可能に設けられ、本体後部1rから取り外す際に使用者の持ち手となる回動可能なハンドル8aが取り付けられている。詳細は後述するが、本体後部1rの上面17bは、本体前部1fの上面17aよりも高くなるように形成されている。 Further, the rear part 1r of the vacuum cleaner body 1 is provided with a plurality of operation buttons 7 (7a, 7b, 7c) for commanding to stop the operation of the autonomous vacuum cleaner S, and a dust case 8 for collecting dust. ing. The dust case 8 is provided so as to be removable upward from the rear part 1r of the main body, and is attached with a rotatable handle 8a which becomes a handle for the user when removing it from the rear part 1r of the main body. Although details will be described later, the upper surface 17b of the rear main body 1r is formed to be higher than the upper surface 17a of the front main body 1f.
 バンパ2は、掃除機本体1の前後方向中央部1cよりも前側に設けられており、掃除機本体1の前後方向中央部1cに端部2aが設けられている。すなわち、バンパ2は掃除機本体1の前面、左右両側面のうち前後方向中央部1cの端部2aまで一体で形成されている。このように構成することにより、バンパ2に隙間が無くなり、バンパ2から漏れる音を抑制し、自律走行型掃除機Sの静音化が図れる。 The bumper 2 is provided on the front side of the central portion 1c of the cleaner body 1 in the longitudinal direction, and has an end portion 2a provided at the central portion 1c of the cleaner body 1 in the longitudinal direction. That is, the bumper 2 is integrally formed on the front surface and both left and right side surfaces of the cleaner main body 1 up to the end 2a of the central portion 1c in the front-rear direction. With this configuration, there is no gap in the bumper 2, and noise leaking from the bumper 2 is suppressed, making the autonomous vacuum cleaner S quieter.
 バンパ2は、少なくとも掃除機本体1の前方側の側周が水平方向、特に前後方向に可動な態様で設けられていればよい。また、バンパ2は、自律走行型掃除機Sが移動して障害物等に接触した場合、接触に伴う力で押されることで自律走行型掃除機Sの内側(自律走行型掃除機Sの前方側でバンパ2に接触した場合は、後方)に向けて変位することができる。 The bumper 2 needs to be provided in such a way that at least the side periphery on the front side of the vacuum cleaner body 1 can move horizontally, particularly in the front-to-rear direction. Furthermore, when the autonomous vacuum cleaner S moves and comes into contact with an obstacle or the like, the bumper 2 can be pushed by the force of the contact and displaced toward the inside of the autonomous vacuum cleaner S (rearward if the bumper 2 comes into contact with the front side of the autonomous vacuum cleaner S).
 図3に示すように、駆動輪3,4は、駆動部の一例としての車輪であり、下ケース1sに取り付けられている。また、駆動輪3,4自体が回転することで自律走行型掃除機Sを前進、後退、旋回(超信地旋回を含む)させることができる。また、駆動輪3,4は左右両側に配置されており、それぞれ走行モータ3m,4m(図4参照)及び減速機構3b,4b(図3参照)で構成される車輪ユニットにより回転駆動される。また、駆動輪3,4は、前後方向において略中央で、左右方向について下ケースの外周寄りに(外側に)設けられている。 As shown in FIG. 3, the drive wheels 3 and 4 are wheels as an example of a drive unit, and are attached to the lower case 1s. Furthermore, by rotating the drive wheels 3 and 4 themselves, the autonomous vacuum cleaner S can move forward, backward, and turn (including a super-turn). Further, the driving wheels 3 and 4 are arranged on both the left and right sides, and are rotationally driven by wheel units each composed of traveling motors 3m and 4m (see FIG. 4) and deceleration mechanisms 3b and 4b (see FIG. 3). Further, the driving wheels 3 and 4 are provided approximately at the center in the front-rear direction and near the outer periphery (outside) of the lower case in the left-right direction.
 また、下ケース1sには、走行モータ3m,4m、アーム3a,4a、及び減速機構3b,4bを含んで構成される駆動機構を収容する駆動機構収容部11,11(図3参照)が設けられている。 Further, the lower case 1s is provided with drive mechanism housing portions 11, 11 (see FIG. 3) that house drive mechanisms including travel motors 3m, 4m, arms 3a, 4a, and deceleration mechanisms 3b, 4b. It is being
 また、駆動輪3,4および駆動機構収容部11,11よりも後側には、回転ブラシ14を収容すると共にごみを吸い込む吸口部12、掻取りブラシ15などが設けられている。 Further, on the rear side of the drive wheels 3, 4 and the drive mechanism housing parts 11, 11, a suction port 12 that houses the rotating brush 14 and sucks in dirt, a scraping brush 15, etc. are provided.
 回転ブラシ14は、駆動輪3,4の回転中心を通る軸(左右方向)に略並行に配置されている。また、回転ブラシ14は、回転ブラシモータ14a(図4参照)によって駆動される。 The rotating brush 14 is disposed approximately parallel to an axis (in the left-right direction) that passes through the rotation centers of the drive wheels 3 and 4. The rotating brush 14 is driven by a rotating brush motor 14a (see FIG. 4).
 掻取りブラシ15は、回転ブラシ14の回転軸と平行に配置されている。また、掻取りブラシ15は、いわゆるリントブラシで構成され、所定の角度範囲内で回動するようになっている。 The scraping brush 15 is arranged parallel to the rotation axis of the rotating brush 14. Further, the scraping brush 15 is composed of a so-called lint brush, and is configured to rotate within a predetermined angular range.
 補助輪5は、従動輪であり、自由回転するキャスタである。また、補助輪5は、前後方向において自律走行型掃除機Sの前方側、左右方向について略中央に設けられている。また、補助輪5は、駆動輪3,4とともに下ケース1sを床面Y(図5参照)から所定高さに保たせることに寄与する。また、駆動輪3,4及び補助輪5によって、自律走行型掃除機Sを円滑に移動させることができる。補助輪5は、自律走行型掃除機Sの移動に伴い床面Yとの間で生じる摩擦力によって従動回転し、さらに向きが水平方向に360°公転できるように、下ケース1sに軸支されている。 The auxiliary wheels 5 are driven wheels and are casters that rotate freely. Further, the auxiliary wheel 5 is provided on the front side of the autonomous vacuum cleaner S in the front-rear direction and approximately in the center in the left-right direction. Further, the auxiliary wheels 5, together with the drive wheels 3 and 4, contribute to keeping the lower case 1s at a predetermined height from the floor surface Y (see FIG. 5). In addition, the drive wheels 3 and 4 and the auxiliary wheels 5 allow the autonomous vacuum cleaner S to move smoothly. The auxiliary wheels 5 rotate due to the frictional force generated between the autonomous vacuum cleaner S and the floor surface Y as the autonomous vacuum cleaner S moves, and are pivoted on the lower case 1s so that the auxiliary wheels 5 can rotate 360° in the horizontal direction. ing.
 サイドブラシ6は、掃除機本体1の左右方向中心から左右の何れかに寄せて配置され、一部が掃除機本体1よりも外側にあり、壁際等回転ブラシ14が届き難い場所の塵埃を掻き出し、吸口部12に導くブラシである。また、サイドブラシ6は、平面視において120°間隔で放射状に延びる3束のブラシを有し、下ケース1sの前側に配置されている。また、サイドブラシ6は、その根元がサイドブラシホルダ6aに固定されている。本実施例ではサイドブラシ6を進行方向左側に配置しているが、進行方向右側であっても良い。少なくとも左右の何れか一方、または両方に配置すれば良い。 The side brush 6 is placed to either the left or right from the center of the vacuum cleaner body 1 in the left-right direction, and a part of the side brush 6 is located outside the vacuum cleaner body 1 to scrape out dust from places that are difficult for the rotating brush 14 to reach, such as near walls. , a brush that leads to the mouthpiece 12. Further, the side brush 6 has three bundles of brushes extending radially at intervals of 120° in a plan view, and is arranged on the front side of the lower case 1s. Further, the base of the side brush 6 is fixed to the side brush holder 6a. In this embodiment, the side brush 6 is placed on the left side in the direction of travel, but it may be placed on the right side in the direction of travel. It may be placed at least on either the left or right side, or both.
 また、図3に示すように下ケース1sには、前後左右の4箇所に床面用測距センサ13a,13b,13c,13dが設けられている。床面用測距センサ13aは、補助輪5の前方に位置している。床面用測距センサ13cは、駆動輪4と左側のサイドブラシ6との間の外周側に位置している。床面用測距センサ13bは、床面用測距センサ13cに対して左右対称に位置している。床面用測距センサ13dは、掻取りブラシ15の後方に位置している。 Furthermore, as shown in FIG. 3, floor distance measuring sensors 13a, 13b, 13c, and 13d are provided at four locations on the front, rear, left and right sides of the lower case 1s. Floor distance measuring sensor 13a is located in front of the training wheels 5. Floor distance measuring sensor 13c is located on the outer periphery between the drive wheels 4 and the left side brush 6. Floor distance measuring sensor 13b is located symmetrically to floor distance measuring sensor 13c. Floor distance measuring sensor 13d is located behind the scraping brush 15.
 また、下ケース1sには、充電台と電気的に接続される接続部16が設けられている。接続部16は、サイドブラシホルダ6aと床面用測距センサ13aとの間に位置している。 Furthermore, the lower case 1s is provided with a connecting portion 16 that is electrically connected to the charging stand. The connecting portion 16 is located between the side brush holder 6a and the floor distance measuring sensor 13a.
 図1、図2、図4、図5に示すように、自律走行型掃除機Sは、光を用いた測距センサの一例としてのLiDARユニット40(第1測距センサ)、カメラ(撮像部)50、測距センサ60(第2測距センサ),測距センサ61(第3測距センサ)、赤外線受光部70を備えている。 As shown in FIGS. 1, 2, 4, and 5, the autonomous vacuum cleaner S includes a LiDAR unit 40 (first distance measurement sensor) as an example of a distance measurement sensor using light, a camera (image pickup ) 50, a distance measurement sensor 60 (second distance measurement sensor), a distance measurement sensor 61 (third distance measurement sensor), and an infrared light receiving section 70.
 LiDARユニット40(Light Detection and Ranging)は、自律走行型掃除機Sの外郭を構成する掃除機本体1の本体前部1fの上面17aから突出して設置される。カメラ50及び測距センサ60、赤外線受光部70は、図1に示すように、それぞれが正面側を向くように本体前部1fの前方に配置されている。LiDARユニット40は、後述するLiDARカバー44(センサカバー)によって覆われている。 The LiDAR unit 40 (Light Detection and Ranging) is installed so as to protrude from the upper surface 17a of the main body front part 1f of the vacuum cleaner main body 1 that constitutes the outer shell of the autonomous vacuum cleaner S. As shown in FIG. 1, the camera 50, distance measuring sensor 60, and infrared light receiving section 70 are arranged in front of the main body front part 1f so as to face the front side. The LiDAR unit 40 is covered by a LiDAR cover 44 (sensor cover), which will be described later.
 測距センサ61は、自律走行型掃除機Sの進行方向の左右のうち、サイドブラシ6が配置されている側の掃除機本体1の側面に配置されている。本実施例では、測距センサ61は、自律走行型掃除機Sの進行方向左側を向くように配置されている。 The distance sensor 61 is arranged on the side surface of the cleaner main body 1 on the side where the side brush 6 is arranged, of the left and right sides in the direction of movement of the autonomous vacuum cleaner S. In this embodiment, the distance measurement sensor 61 is arranged so as to face the left side in the direction of movement of the autonomous vacuum cleaner S.
 赤外線受光部70は、充電台から発信される赤外線信号(充電台帰還信号)を受光する。 The infrared light receiving section 70 receives an infrared signal (charging stand return signal) transmitted from the charging stand.
 本実施例の自律走行型掃除機Sは、掃除機本体1を駆動させる駆動輪3,4と、掃除機本体1に設けられるLiDARユニット40と、掃除機本体1の前面および側面に設けられるカメラ(撮像部)50と、掃除機本体1に設けられるカメラ(撮像部)50と、を備えることにより、清掃場所の地図を正確に作成することができる。 The autonomous vacuum cleaner S of this embodiment includes drive wheels 3 and 4 that drive the cleaner body 1, a LiDAR unit 40 provided in the cleaner body 1, and a camera provided on the front and side surfaces of the cleaner body 1. (imaging unit) 50 and a camera (imaging unit) 50 provided in the cleaner body 1, it is possible to accurately create a map of the cleaning location.
 図7に示すように、LiDARユニット40は上側の回転部40aと下側の固定部40bに分けられる。上側には赤外線等の光を用いて自律走行型掃除機Sと周囲との距離を測定する測距センサであるLiDAR41が構成されている。下側の固定部はLiDAR41を回転させるための回転駆動モータ42、回転駆動モータ42の回転をLiDAR41に伝えるベルト43と回転部が回転する際の固定部との摩擦力を軽減するベアリングで構成される。LiDAR41は発光部41aと受光部41bで構成され、発光部41aの発光角度と受光部41bの受光角度に基づいて三角法で物体との距離を測定する。本実施例では、発光部41aは赤外線の発光部であり、受光部41bは赤外線の受光部であり、これらが一つのユニットで構成されている。また、LiDARカバー44には、LiDAR41の赤外線を通過させるための切欠き開口44cが形成されている。また、開口を無くし、LiDAR41から発行される赤外線を透過する機能性樹脂の部品で覆われていても良い。赤外線を透過する機能性樹脂は、LiDAR41から発せられる赤外線の波長のみを透過する樹脂にすることで、様々な波長が混ざっている太陽光などの外乱を防ぐことができる。 As shown in FIG. 7, the LiDAR unit 40 is divided into an upper rotating part 40a and a lower fixed part 40b. On the upper side, a LiDAR 41 is configured, which is a distance measuring sensor that measures the distance between the autonomous vacuum cleaner S and the surroundings using light such as infrared rays. The lower fixed part is composed of a rotary drive motor 42 for rotating the LiDAR 41, a belt 43 that transmits the rotation of the rotary drive motor 42 to the LiDAR 41, and a bearing that reduces the frictional force between the fixed part and the rotary part when it rotates. Ru. The LiDAR 41 includes a light emitting section 41a and a light receiving section 41b, and measures the distance to an object using trigonometry based on the light emitting angle of the light emitting section 41a and the light receiving angle of the light receiving section 41b. In this embodiment, the light emitting section 41a is an infrared light emitting section, and the light receiving section 41b is an infrared light receiving section, and these are configured as one unit. Moreover, the LiDAR cover 44 is formed with a notch opening 44c for allowing the infrared rays of the LiDAR 41 to pass through. Alternatively, the opening may be omitted and it may be covered with a functional resin component that transmits infrared rays emitted from the LiDAR 41. By using a functional resin that transmits infrared rays to transmit only the wavelength of infrared rays emitted from the LiDAR 41, it is possible to prevent disturbances such as sunlight that contains a mixture of various wavelengths.
 LiDARユニット40で測定した掃除機本体1の水平面上の角度と障害物との距離に基づいて、周囲の地図情報を作成しながら、地図上の掃除機本体1の位置、速度ベクトルを特定する。なお、長距離周囲検出センサはLiDAR41に替えて、ミリ波レーダや超音波センサなど1m以上測定できる測距センサであればよい。また、LiDARユニット40の回転部の回転角度は360°に限らず、ベルトをリンク機構に置き換えて、60°以上測定できればよい。回転は首振り動作としても良い。LiDARの距離の測定方法は三角法でなく発光部と受光部の光の位相差を利用したTime of Flight方式でもよい。 Based on the angle of the cleaner body 1 on the horizontal plane measured by the LiDAR unit 40 and the distance to the obstacle, the position and speed vector of the cleaner body 1 on the map are specified while creating surrounding map information. Note that the long-range surrounding detection sensor may be any distance measuring sensor capable of measuring 1 m or more, such as a millimeter wave radar or an ultrasonic sensor, instead of the LiDAR 41. Further, the rotation angle of the rotating part of the LiDAR unit 40 is not limited to 360 degrees, and it is sufficient that the belt can be replaced with a link mechanism to measure 60 degrees or more. The rotation may be performed as a swinging motion. The LiDAR distance measurement method may be a time-of-flight method that uses the phase difference between the light from the light emitting part and the light receiving part, instead of the trigonometric method.
 また、LiDARユニット40は、LiDAR41の光の強度を変更することで、より遠方の障害物を検出できるものであっても良い。しかし、LiDAR41の光の強度を常に高くしておくと消費電力が増加するので、遠方の障害物を検出する必要がないときには、強度を低くするようにすると良い。また、回転駆動モータ42の回転数を上げることで、より詳細に障害物の検出を行うことができる。しかし、回転駆動モータ42も常に回転数を高くしておくと消費電力が増加するので、障害物を詳細な角度で検出する必要がないときには、回転数を低くするようにすると良い。 Furthermore, the LiDAR unit 40 may be able to detect obstacles further away by changing the intensity of the light of the LiDAR 41. However, if the intensity of the light from the LiDAR 41 is always kept high, power consumption will increase, so it is better to lower the intensity when there is no need to detect distant obstacles. Furthermore, by increasing the rotational speed of the rotary drive motor 42, obstacles can be detected in more detail. However, if the rotational speed of the rotary drive motor 42 is always kept high, the power consumption will increase, so when it is not necessary to detect an obstacle at a detailed angle, it is preferable to lower the rotational speed.
 カメラ(撮像部)50は、単眼カメラであり、掃除機本体1の前面の中心軸に位置している。 The camera (imaging unit) 50 is a monocular camera, and is located on the central axis of the front surface of the cleaner body 1.
 また、カメラ50は、LiDARユニット40に比べて、物の形状や位置を正確に検知することができるので、障害物を避け易くなる。また、カメラ50は、LiDARユニット40に比べて上下方向の画角を広く取ることができるので、床面の障害物を避けることができる。例えば、床面にある衣服を巻き込んだり、コードがブラシに絡まったりするのを防止できる。このように、カメラ50をLiDARユニット40と併用することにより、広範囲の障害物の大まかな配置を検知しながら、近距離の障害物の形状と位置を明確に検知することができ、障害物を判別することが可能になる。 Furthermore, camera 50 can detect the shape and position of objects more accurately than LiDAR unit 40, making it easier to avoid obstacles. Furthermore, camera 50 can take a wider angle of view in the vertical direction than LiDAR unit 40, making it possible to avoid obstacles on the floor. For example, this can prevent clothes on the floor from getting caught or cords from getting tangled in the brushes. In this way, by using camera 50 in conjunction with LiDAR unit 40, it is possible to clearly detect the shape and position of obstacles in close range while detecting the general location of obstacles over a wide range, making it possible to distinguish between obstacles.
 また、カメラ50は、フレームレートを変化させることができるものである。例えば、近くの障害物を検知する際にはフレームレートを上げ、障害物が何もない広い場所を移動する際にはフレームレートを下げる。これにより、カメラ50を、常にフレームレートを上げた状態で作動させる必要がないのでカメラ50の消費電力を抑えることができる。 Furthermore, the camera 50 is capable of changing the frame rate. For example, when detecting nearby obstacles, the frame rate is increased, and when moving in a large area with no obstacles, the frame rate is decreased. As a result, it is not necessary to constantly operate the camera 50 at a high frame rate, so that the power consumption of the camera 50 can be suppressed.
 このように、本実施例ではLiDAR41とカメラ50との両者を利用することで、障害物までの距離情報と形状情報とを高精度に検知可能である。より具体的には、掃除領域の地図を作成するに際して、検知した障害物等の位置情報を主に又は専らLiDAR41を利用して検知及びマッピングし、形状情報を主に又は専らカメラを利用して検知及びマッピングすることができる。これらの連関を高精度にするため、本実施形態ではLiDAR41とカメラとを互いに隣接させて(離間距離が10cm、5cm又は3cm以内)設けている。 In this way, in this embodiment, by using both the LiDAR 41 and the camera 50, it is possible to detect the distance information and shape information to the obstacle with high accuracy. More specifically, when creating a map of the cleaning area, the position information of detected obstacles etc. is detected and mapped mainly or exclusively using LiDAR 41, and the shape information is mainly or exclusively used using the camera. Can be detected and mapped. In order to make these connections highly accurate, in this embodiment, the LiDAR 41 and the camera are provided adjacent to each other (within a distance of 10 cm, 5 cm, or 3 cm).
 さらに、LiDAR41によって検知した距離情報に基づいてカメラの焦点距離を調整したり掃除機本体1の移動速度を変更(例えば減速)したりしてもよい。 Furthermore, the focal length of the camera may be adjusted or the moving speed of the cleaner body 1 may be changed (for example, decelerated) based on the distance information detected by the LiDAR 41.
 測距センサ60(第2測距センサ)は、超音波センサであり、超音波を発して、その返ってくるまでの時間を計測して障害物との距離を測定する。測距センサ60は、掃除機本体1の正面左右両側の2箇所に設けられている。 The distance sensor 60 (second distance sensor) is an ultrasonic sensor that emits ultrasonic waves and measures the time it takes for the ultrasonic waves to return to measure the distance to the obstacle. The distance measuring sensors 60 are provided at two locations on both the left and right sides of the front of the cleaner body 1.
 また、掃除機本体1の進行方向左側には、測距センサ61(第3測距センサ)は、LiDARより検知範囲が例えば1/10程度以上短く、比較的近傍の障害物(例えば1m程度、好ましくは50cm又は30cm程度まで以下)までの距離を測定する赤外線センサであり、例えばPSD(Position Sensitive Detector)センサによって構成される。測距センサ61は、赤外線を発光させる発光部と、赤外線が障害物で反射して戻ってくる反射光を受光する受光部とを有している。受光部によって検出される反射光に基づいて、障害物までの距離が算出される。具体的には反射光を受ける位置、反射光を受けるまでの時間、反射光の量、強さ等に基づいて、障害物までの距離が算出される。なお、測距センサ61は、PSDセンサに限定されるものではなく、超音波センサとしてもよい。このようにサイドブラシ6が配置されている側に測距センサ61を設けることにより、自律走行型掃除機Sを壁際まで寄せてサイドブラシ6を壁際に接触することができ、壁際に沿った掃除を行うことができる。 Further, on the left side in the direction of movement of the vacuum cleaner body 1, a distance measurement sensor 61 (third distance measurement sensor) has a detection range that is, for example, about 1/10 or more shorter than that of LiDAR, and detects relatively nearby obstacles (for example, about 1 m, etc.). It is an infrared sensor that measures a distance (preferably up to about 50 cm or 30 cm or less), and is constituted by, for example, a PSD (Position Sensitive Detector) sensor. The distance measurement sensor 61 includes a light emitting section that emits infrared rays and a light receiving section that receives reflected light that is returned after being reflected by an obstacle. The distance to the obstacle is calculated based on the reflected light detected by the light receiving section. Specifically, the distance to the obstacle is calculated based on the position where the reflected light is received, the time until the reflected light is received, the amount and intensity of the reflected light, etc. Note that the distance measurement sensor 61 is not limited to a PSD sensor, and may be an ultrasonic sensor. By providing the distance sensor 61 on the side where the side brush 6 is arranged in this way, the autonomous vacuum cleaner S can be brought close to the wall and the side brush 6 can be brought into contact with the wall, allowing cleaning along the wall. It can be performed.
 自律走行型掃除機Sは、接続部16を介して充電台と電気的に接続され、蓄電池21に給電する。また自律走行型掃除機Sは、充電台から発信される3種類の赤外線LEDを赤外線受光部70で受信することで、受信した赤外線の種類に応じて掃除機本体1に対する充電台の方向を特定する。 The autonomous vacuum cleaner S is electrically connected to the charging stand via the connection part 16 and supplies power to the storage battery 21. In addition, the autonomous vacuum cleaner S specifies the direction of the charging stand relative to the cleaner body 1 according to the type of received infrared rays by receiving three types of infrared LEDs emitted from the charging stand using the infrared receiver 70. do.
 図5に示すように、自律走行型掃除機Sは、蓄電池21、ファンモータ22、塵埃センサ80、第1制御基板10a、第2制御基板10bを内部に備えている。 As shown in FIG. 5, the autonomous vacuum cleaner S includes a storage battery 21, a fan motor 22, a dust sensor 80, a first control board 10a, and a second control board 10b.
 蓄電池21は、ファンモータ22の前方に配置され、走行モータ3m,4m(図4参照)、サイドブラシモータ6b(図4参照)、回転ブラシモータ14a、ファンモータ22などの各種モータ、バンパセンサ(不図示)、カメラ50、測距センサ60,61、床面用測距センサ13a~13d、LiDARユニット40などの各種センサに電力を供給する。 The storage battery 21 is arranged in front of the fan motor 22, and connects various motors such as travel motors 3m and 4m (see FIG. 4), side brush motor 6b (see FIG. 4), rotary brush motor 14a, and fan motor 22, and a bumper sensor (not shown). power is supplied to various sensors such as the camera 50, the distance measurement sensors 60 and 61, the floor distance measurement sensors 13a to 13d, and the LiDAR unit 40 (as shown in the figure).
 第1制御基板10a及び第2制御基板10bは、後述する制御装置30(図8参照)を構成する。第1制御基板10aは、自律走行型掃除機Sの前後方向に中央部の位置からLiDARユニット40を避けて前方に向かって延び、ファンモータ22の上方に配置されている。第1制御基板10aには、複数の操作ボタン7(7a,7b,7c)のそれぞれに対応した複数の操作スイッチ46(46a,46b,46c)と、後述するLiDARカバー44が障害物に接触したことを検知する検知スイッチ45が備えられている。 The first control board 10a and the second control board 10b constitute a control device 30 (see FIG. 8), which will be described later. The first control board 10a extends from a central position in the front-rear direction of the autonomous vacuum cleaner S toward the front, avoiding the LiDAR unit 40, and is disposed above the fan motor 22. The first control board 10a includes a plurality of operation switches 46 (46a, 46b, 46c) corresponding to each of the plurality of operation buttons 7 (7a, 7b, 7c), and a LiDAR cover 44 (described later) that contacts an obstacle. A detection switch 45 is provided to detect this.
 第2制御基板10bは、自律走行型掃除機Sの前後方向に前方の位置で、ファンモータ22の前方(カメラ50、測距センサ60,61の後方)に配置されている。第1制御基板10aは、水平方向に延びるように配置され、第2制御基板10bは鉛直方向に延びるように配置されている。 The second control board 10b is disposed at the front of the autonomous vacuum cleaner S in the front-rear direction, and in front of the fan motor 22 (behind the camera 50 and the ranging sensors 60 and 61). The first control board 10a is arranged to extend in the horizontal direction, and the second control board 10b is arranged to extend in the vertical direction.
 第1制御基板10aは、走行モータ3m,4m、サイドブラシモータ6b、回転ブラシモータ14a、ファンモータ22、塵埃センサ80、床面用測距センサ13a~13dなどを制御する。第2制御基板10bは、カメラ50、測距センサ60,61、LiDARユニット40などを制御する。本実施例では、制御基板を第1制御基板10a及び第2制御基板10bに分けて構成しているので、例えばカメラ50、測距センサ60,61、LiDARユニット40と第2制御基板10bとを接続する配線が短くすることができ、自律走行型掃除機Sの組み立て作業性を向上することができる。 The first control board 10a controls the traveling motors 3m and 4m, the side brush motor 6b, the rotary brush motor 14a, the fan motor 22, the dust sensor 80, the floor distance measuring sensors 13a to 13d, and the like. The second control board 10b controls the camera 50, distance measuring sensors 60, 61, LiDAR unit 40, and the like. In this embodiment, since the control board is divided into the first control board 10a and the second control board 10b, for example, the camera 50, distance measuring sensors 60, 61, LiDAR unit 40, and second control board 10b are configured separately. The wiring to be connected can be shortened, and the workability of assembling the autonomous vacuum cleaner S can be improved.
 図5及び図6に示すように、蓄電池21は複数のセル21a,21b,21cから構成されており、セルの長手方向と直交する方向にセル21a,21bが前後に並ぶように配置され(図5参照)、セルの長手方向に沿ってセル21a,21cが直列に配置されている(図6参照)。本実施例では、サイドブラシモータ6bと蓄電池21が干渉すること無く、掃除機本体1の高さ寸法が増加することを抑制できる。 As shown in FIGS. 5 and 6, the storage battery 21 is composed of a plurality of cells 21a, 21b, and 21c, and the cells 21a and 21b are arranged one behind the other in a direction perpendicular to the longitudinal direction of the cells (see FIGS. 5), and the cells 21a and 21c are arranged in series along the longitudinal direction of the cells (see FIG. 6). In this embodiment, the side brush motor 6b and the storage battery 21 do not interfere with each other, and an increase in the height of the cleaner main body 1 can be suppressed.
 ファンモータ22(図5参照)は、吸引力を発生させて、回転ブラシ14によって掻き取られた塵埃をダストケース8内に集塵させるものである。ファンモータ22は、モータ部22aと、モータ部22aによって駆動されるファン22bと、モータ部22aとファン22bを繋ぐ回転軸22cを備えている。また、ファンモータ22は、前後方向中央において駆動輪3,4間に設けられている。 The fan motor 22 (see FIG. 5) generates a suction force to collect the dust scraped by the rotating brush 14 into the dust case 8. The fan motor 22 includes a motor section 22a, a fan 22b driven by the motor section 22a, and a rotating shaft 22c connecting the motor section 22a and the fan 22b. Further, the fan motor 22 is provided between the drive wheels 3 and 4 at the center in the front-rear direction.
 ダストケース8は、塵埃の入口となる流入口8cと、塵埃を収容する塵埃収容部8dと、流入口8cから流入した塵埃を塵埃収容部8dに案内するガイドリブ8eを備えている。ガイドリブ8eは上下方向(鉛直方向)に延びるように配置されている。図5の矢印Aで示すように、流入口8cから流入した塵埃は、ガイドリブ8eに沿って上方へ移動し、ガイドリブ8eの上端部の位置で流れ方向が変更され、前方に向かって移動し、塵埃収容部8dに収容される。ダストケース8とファンモータ22との間には集塵フィルタ8bが配置されている。 The dust case 8 includes an inlet 8c that serves as an inlet for dust, a dust accommodating section 8d that accommodates dust, and a guide rib 8e that guides the dust flowing from the inlet 8c to the dust accommodating section 8d. The guide ribs 8e are arranged to extend in the up-down direction (vertical direction). As shown by arrow A in FIG. 5, the dust flowing in from the inlet 8c moves upward along the guide rib 8e, changes its flow direction at the upper end of the guide rib 8e, and moves forward. The dust is stored in the dust storage section 8d. A dust filter 8b is arranged between the dust case 8 and the fan motor 22.
 ダストケース8に塵埃とともに取り込まれた空気は、集塵フィルタ8bを介してファンモータ22内に取り込まれる。ファンモータ22の排気は主に下ケース1sに形成された排気口1t(図4参照)から自律走行型掃除機Sの外部に排出されるが、一部が掃除機本体1の前方方向に排出し、排気を回転駆動モータ42の冷却に利用する。 The air taken into the dust case 8 together with dust is taken into the fan motor 22 via the dust collection filter 8b. The exhaust air from the fan motor 22 is mainly discharged to the outside of the autonomous vacuum cleaner S from the exhaust port 1t (see Figure 4) formed in the lower case 1s, but a portion is discharged in the forward direction of the vacuum cleaner body 1 and is used to cool the rotary drive motor 42.
 図5に示すように、本実施例のファンモータ22の回転軸22cは、掃除機本体1の前後方向に延びるように配置されると共に、自律走行型掃除機Sを床面Yに載置した状態で集塵フィルタ8b側(後方側)が高くなるように傾斜して配置している。回転軸22cに取り付けられたファン22bは、集塵フィルタ8bを向くようになり、流入口8c、ガイドリブ8e、塵埃収容部8d、集塵フィルタ8bへと流れる空気流れがスムーズになる。これにより、通風抵抗が抑止され、塵埃の捕集効率を向上することができる。 As shown in FIG. 5, the rotation shaft 22c of the fan motor 22 of this embodiment is arranged to extend in the front-rear direction of the vacuum cleaner body 1, and the autonomous vacuum cleaner S is placed on the floor Y. In this state, the dust collecting filter 8b side (rear side) is inclined and arranged so that it is higher. The fan 22b attached to the rotating shaft 22c faces the dust filter 8b, and air flows smoothly from the inlet 8c, the guide rib 8e, the dust storage section 8d, to the dust filter 8b. This suppresses ventilation resistance and improves dust collection efficiency.
 図8は、本発明の実施例1に係る自律走行型掃除機Sを示す制御ブロック図である。図8に示すように、制御装置30は、自律走行型掃除機Sを統括的に制御するものであり、例えばマイコン(Microcomputer)と周辺回路とが基板に実装されることで構成される。マイコンは、ROM(Read Only Memory)に記憶された制御プログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が実行することで各種処理が実現される。周辺回路は、A/D・D/A変換器、センサ駆動回路、蓄電池21の充電回路のほか、地図作成部、画像処理部、自己位置判定部、走行経路作成部、走行制御部を有している。 FIG. 8 is a control block diagram showing the autonomous vacuum cleaner S according to the first embodiment of the present invention. As shown in FIG. 8, the control device 30 controls the autonomous vacuum cleaner S in an integrated manner, and is configured by, for example, a microcomputer and peripheral circuits mounted on a board. A microcomputer reads a control program stored in a ROM (Read Only Memory), expands it to a RAM (Random Access Memory), and executes it by a CPU (Central Processing Unit), thereby realizing various processes. The peripheral circuit includes an A/D/D/A converter, a sensor drive circuit, a charging circuit for the storage battery 21, as well as a map creation section, an image processing section, a self-position determination section, a travel route creation section, and a travel control section. ing.
 また、制御装置30は、利用者による命令を入力可能な操作ボタン7の操作や、バンパセンサ(不図示)、床面用測距センサ13a~13d、測距センサ60、カメラ50、LiDAR41、塵埃センサ80、通信手段90から入力される信号に応じて演算処理を実行し、演算処理後の信号を出力する。図示はしないが、通信手段90は掃除機本体1の任意の位置に備えられている。制御装置30は、上記各センサに基づいて、走行モータ3m,4m、サイドブラシモータ6b、回転ブラシモータ14a、ファンモータ22、を制御する。 The control device 30 also operates the operation button 7 that allows the user to input commands, a bumper sensor (not shown), floor distance sensors 13a to 13d, a distance sensor 60, a camera 50, LiDAR 41, and a dust sensor. 80, performs arithmetic processing according to the signal input from the communication means 90, and outputs the signal after the arithmetic processing. Although not shown, the communication means 90 is provided at an arbitrary position on the cleaner body 1. The control device 30 controls the travel motors 3m, 4m, the side brush motor 6b, the rotary brush motor 14a, and the fan motor 22 based on the above-mentioned sensors.
 自律走行型掃除機Sは、例えば使用者の指示、或いは予約された開始時間になると充電台から走行を開始し、床面等の掃除を実行する。掃除が終了すると、自律走行型掃除機は、充電台に帰還する。 The autonomous vacuum cleaner S starts running from the charging stand and cleans the floor, etc., for example, when instructed by the user or at a scheduled start time. When the cleaning is finished, the autonomous vacuum cleaner returns to the charging stand.
 次に、制御装置30の処理方法について説明する。図9は、本発明の実施例1に係る制御装置30の処理方法を示すフローチャートである。 Next, the processing method of the control device 30 will be explained. FIG. 9 is a flowchart showing a processing method of the control device 30 according to the first embodiment of the present invention.
 カメラ50で撮影された情報は制御装置30(第2制御基板10b)で処理される。制御装置30には、物体群に含まれる各物体それぞれの形状、色相、その他について少なくとも1つ以上の情報について機械学習によって学習された情報と、物体群に含まれる各物体が清掃対象であるか否か、清掃難易度といった情報が記憶されている。ここで、物体群とは、自律走行型掃除機Sに検出させたい物体を当該自律走行型掃除機を生産する製造者が出荷前に選択、または使用者が任意に選択し情報を記憶させた少なくとも1つ以上の物体の集合を指す。制御装置30は、この学習された情報を基に、カメラ50で撮影された被写体が物体群に含まれる各物体である確信度C(確率)と映像中における被写体の位置情報を計算している。 Information captured by the camera 50 is processed by the control device 30 (second control board 10b). The control device 30 contains information learned by machine learning about at least one piece of information such as the shape, hue, etc. of each object included in the object group, and whether each object included in the object group is to be cleaned. Information such as whether or not the cleaning is difficult is stored. Here, the object group refers to objects that the autonomous vacuum cleaner S wants to detect, selected by the manufacturer of the autonomous vacuum cleaner before shipping, or arbitrarily selected by the user and whose information is stored. Refers to a collection of at least one object. Based on this learned information, the control device 30 calculates the certainty C (probability) that the object photographed by the camera 50 is each object included in the object group and the position information of the object in the video. .
 図9に示すように、カメラ50が物体を撮影し(ステップS901)、撮影した物体の被写体情報が制御装置30に送信される。 As shown in FIG. 9, the camera 50 captures an image of an object (step S901), and the subject information of the captured object is transmitted to the control device 30.
 制御装置30は、確信度Cに基づきカメラ50で撮影された被写体が清掃対象か否か判断する(ステップS902)。 The control device 30 determines whether the subject photographed by the camera 50 is a cleaning target based on the confidence level C (step S902).
 カメラ50で撮影された被写体が清掃対象の物体であると判定された場合(ステップS902のYES)、制御装置30は、確信度C1が所定の閾値TV1以上か否か判断する(ステップS903)。 If it is determined that the subject photographed by the camera 50 is an object to be cleaned (YES in step S902), the control device 30 determines whether the confidence level C1 is greater than or equal to a predetermined threshold TV1 (step S903).
 カメラ50で撮影された被写体が清掃対象の物体でないと判定された場合(ステップS902のNo)、制御装置30はステップS907の処理を実行する。 If it is determined that the object photographed by the camera 50 is not an object to be cleaned (No in step S902), the control device 30 executes the process in step S907.
 確信度C1が所定の閾値TV1以上であると判定された場合(ステップS903のYES)、制御装置30は、自律走行型掃除機Sから被写体までの距離Lと、被写体の自律走行型掃除機Sの正面に対して位置する角度Aを推定する。距離Lおよび角度Aは、映像中に映った被写体の位置情報から推定する。すなわち、映像中に映る被写体の上下方向位置を距離Lに変換し、また、左右方向位置を使い角度Aを推定する。また、これらの推定にLiDAR41や測距センサ60など他のセンサ情報を用いても良い。 If it is determined that the confidence level C1 is equal to or greater than the predetermined threshold value TV1 (YES in step S903), the control device 30 estimates the distance L from the autonomous vacuum cleaner S to the subject, and the angle A at which the subject is positioned relative to the front of the autonomous vacuum cleaner S. The distance L and angle A are estimated from the position information of the subject shown in the video. That is, the vertical position of the subject shown in the video is converted to distance L, and angle A is estimated using the horizontal position. Information from other sensors, such as the LiDAR 41 or the distance sensor 60, may also be used in these estimations.
 確信度C1が所定の閾値TV1以上でないと判定された場合(ステップS903のNo)、ステップS901を実行する。 If it is determined that the confidence level C1 is not equal to or greater than the predetermined threshold TV1 (No in step S903), step S901 is executed.
 制御装置30は、被写体を掃除すべく、被写体の位置に自律走行型掃除機Sが移動するように走行モータ3m,4mを駆動し、推定された距離Lと角度Aと、自律走行型掃除機Sの走行速度から、被写体に到達するまでの時間Tを計算する(ステップS904)。 In order to clean the subject, the control device 30 drives the traveling motors 3m and 4m so that the autonomous vacuum cleaner S moves to the position of the subject, and uses the estimated distance L and angle A, and the autonomous vacuum cleaner The time T required for S to reach the subject is calculated from the traveling speed of S (step S904).
 所定の時間T経過後、制御装置30は、自律走行型掃除機Sに設けられた塵埃センサ80がゴミを検知したか否かを判断し(ステップS905)、自律走行型掃除機Sに設けられた塵埃センサ80がゴミを検知したとき(ステップS905のYES)、制御装置30は、被写体が清掃された(ダストケース8内に吸引された)と判定し、使用者に報知する。 After the predetermined time T has elapsed, the control device 30 determines whether the dust sensor 80 provided in the autonomous vacuum cleaner S has detected dust (step S905), and When the dust sensor 80 detects dust (YES in step S905), the control device 30 determines that the object has been cleaned (sucked into the dust case 8), and notifies the user.
 報知するにあたって制御装置30は、確信度C1が所定の閾値TV2以上か否か判断する(ステップS906)。制御装置30は、確信度C1が任意の第二閾値TV2以上(TV1<TV2≦C1)のとき(ステップS906のYES)、被写体を物体と判定し、被写体のイメージと名称、被写体を清掃したことを報知する(ステップS906のYES)。このとき、制御装置30に記憶された物体の清掃難易度に応じて、ファンモータ22や回転ブラシモータ14aへの入力を変更し清掃することが可能である。 In making the notification, the control device 30 determines whether the confidence level C1 is greater than or equal to a predetermined threshold TV2 (step S906). When the confidence level C1 is greater than or equal to an arbitrary second threshold TV2 (TV1<TV2≦C1) (YES in step S906), the control device 30 determines that the subject is an object, and displays the image and name of the subject, and the fact that the subject has been cleaned. (YES in step S906). At this time, it is possible to change the input to the fan motor 22 and the rotary brush motor 14a to perform cleaning according to the cleaning difficulty level of the object stored in the control device 30.
 一方、確信度Cが第二閾値TV2未満(TV1<C1<TV2)のときには、被写体を物体と判定せず、被写体51のイメージと、清掃したことのみを報知する(ステップS906のNo)。 On the other hand, when the confidence level C is less than the second threshold TV2 (TV1<C1<TV2), the subject is not determined to be an object, and only the image of the subject 51 and the fact that it has been cleaned are notified (No in step S906).
 これにより、使用者は自律走行型掃除機Sが何を清掃したか(吸引したか)を具体的に知ることができ、使用者自身が不在時に自律走行型掃除機Sがどれだけ部屋を綺麗に掃除したかを知ることができる。また、意図せず床に落としてしまった所有物をもし吸引してしまった場合も、報知によって把握することが可能である。 This allows the user to know specifically what the autonomous vacuum cleaner S has cleaned (suctioned), and how well the autonomous vacuum cleaner S cleans the room when the user is not present. You can tell if it has been cleaned in the past. Furthermore, even if the user inhales a property that was accidentally dropped on the floor, it is possible to know by notification.
 また、時間T経過後、塵埃センサ80が反応しなかったとき(ステップS905のNO)、制御装置30は、被写体が清掃されなかった(吸い残した)と判定し、被写体のイメージと清掃できなかったことを使用者に報知する。 Further, when the dust sensor 80 does not react after the time T has elapsed (NO in step S905), the control device 30 determines that the object has not been cleaned (unsucked), and the image of the object and the object cannot be cleaned. Notify the user of this.
 また、カメラ50で撮影された被写体が清掃非対象物体と判定された場合(ステップS902のNO)、制御装置30は、確信度C2が所定の閾値TV3以上か否か判断する(ステップS907)。 Furthermore, if the object photographed by the camera 50 is determined to be a non-cleaning object (NO in step S902), the control device 30 determines whether the confidence level C2 is greater than or equal to a predetermined threshold TV3 (step S907).
 被写体が清掃非対象物体である確信度C2が任意の閾値TV3以上と判断されたとき(ステップS907のYES)、制御装置30は、自律走行型掃除機Sが被写体を回避するように走行させる(ステップS908)。 When it is determined that the confidence level C2 that the subject is a non-cleaning object is greater than or equal to the arbitrary threshold TV3 (YES in step S907), the control device 30 causes the autonomous vacuum cleaner S to run to avoid the subject ( Step S908).
 自律走行型掃除機Sが被写体を回避後、確信度C2が任意の閾値TV4以上(TV3<TV4≦C2)のとき(ステップS909のYES)、制御装置30は、被写体を物体と判定し、被写体のイメージと名称、被写体を回避したことを報知する。一方、確信度C2が閾値TV4未満(TV3<C2<TV4)のとき(ステップS909のNO)、制御装置30は、被写体を物体と判定せず、被写体のイメージと、自律走行型掃除機Sが回避したことを報知する。 After the autonomous vacuum cleaner S avoids the subject, when the confidence level C2 is equal to or higher than the arbitrary threshold value TV4 (TV3<TV4≦C2) (YES in step S909), the control device 30 determines that the subject is an object, and The image and name of the object will be displayed, and the object will be notified that the object has been avoided. On the other hand, when the confidence level C2 is less than the threshold TV4 (TV3<C2<TV4) (NO in step S909), the control device 30 does not determine that the subject is an object, and the image of the subject and the autonomous vacuum cleaner S are Notify that it has been avoided.
 ここで、報知手段としては、例えば図12に示すような情報端末装置100に表示する。情報端末装置100に報知内容を表示するにあたっては、地図上に位置情報と共に表示する。または、地図と連動せず情報端末装置100にポップアップとして表示してもよいし、清掃された物体や清掃できなかった物体として一覧にするなど、使用者に情報を提供できる任意の手段とする。 Here, the notification means may be, for example, a display on an information terminal device 100 as shown in FIG. 12. When displaying the notification content on the information terminal device 100, it is displayed on a map together with the location information. Alternatively, it may be displayed as a pop-up on the information terminal device 100 without being linked to a map, or it may be a list of objects that have been cleaned and objects that could not be cleaned, or any other means that can provide information to the user.
 図12及び図13を用いて、自律走行型掃除機Sを含む掃除システムの構成及び地図作成方法について説明する。図12は、本発明の実施例1に係る自律走行型掃除機Sを含む掃除システムの構成図である。 The configuration of the cleaning system including the autonomous vacuum cleaner S and the map creation method will be explained using FIGS. 12 and 13. FIG. 12 is a configuration diagram of a cleaning system including an autonomous vacuum cleaner S according to the first embodiment of the present invention.
 図12において、本実施例の掃除システムは、自律走行型掃除機S、無線LANルーター200、情報端末装置100、家電サーバー300により構成されている。 In FIG. 12, the cleaning system of this embodiment includes an autonomous vacuum cleaner S, a wireless LAN router 200, an information terminal device 100, and a home appliance server 300.
 自律走行型掃除機Sは、宅内に設置された無線LANルーター200を介して、宅外の家電サーバー300に無線で接続することができる。また、自律走行型掃除機Sは、無線LANルーター200、家電サーバー300を介して、宅外及び宅内の情報端末装置100と通信を行うことができる。自律走行型掃除機Sは、宅内の情報端末装置100と通信を行う場合には、無線LANルーター200、家電サーバー300、無線LANルーター200、家電サーバー300を経由する。 The autonomous vacuum cleaner S can wirelessly connect to a home appliance server 300 outside the home via a wireless LAN router 200 installed inside the home. Furthermore, the autonomous vacuum cleaner S can communicate with the information terminal device 100 outside the home and inside the home via the wireless LAN router 200 and the home appliance server 300. When the autonomous vacuum cleaner S communicates with the information terminal device 100 in the house, the communication goes through the wireless LAN router 200, the home appliance server 300, the wireless LAN router 200, and the home appliance server 300.
 情報端末装置100は、無線LANルーター200、家電サーバー300を介して、自律走行型掃除機Sのスケジュール予約、掃除開始、停止の指示を行うことができる。スケジュール予約を受け付けた自律走行型掃除機Sは、設定された日時に掃除を開始する。また、掃除開始を受け付けた自律走行型掃除機Sは、充電台を離れ掃除を開始する。 The information terminal device 100 can instruct the autonomous vacuum cleaner S to schedule, start, and stop cleaning via the wireless LAN router 200 and the home appliance server 300. The autonomous vacuum cleaner S that has received the schedule reservation starts cleaning at the set date and time. Furthermore, the autonomous vacuum cleaner S that has received the request to start cleaning leaves the charging stand and starts cleaning.
 さらに、自律走行型掃除機Sは、LiDAR41と、カメラ50の情報に基づいて作成された地図情報を無線LANルーター200、家電サーバー300を介して、情報端末装置100に送信する。 Further, the autonomous vacuum cleaner S transmits map information created based on the information of the LiDAR 41 and the camera 50 to the information terminal device 100 via the wireless LAN router 200 and the home appliance server 300.
 図13は、本発明の実施例1に係る制御装置30の構成を示すブロック図である。図13において、地図作成部31は、LiDAR41が検出した情報に基づいて自律走行型掃除機Sが掃除を行っている部屋の地図を作成する。地図作成部31で作成される地図情報は、二次元の格子状の地図である。 FIG. 13 is a block diagram showing the configuration of the control device 30 according to the first embodiment of the present invention. In FIG. 13, the map creation unit 31 creates a map of the room in which the autonomous vacuum cleaner S is cleaning, based on the information detected by the LiDAR 41. The map information created by the map creation unit 31 is a two-dimensional grid-like map.
 画像処理部32は、カメラ50が撮影した画像データから障害物を識別し、障害物の相対位置に関する情報を取得して地図作成部31に送信する。 The image processing unit 32 identifies obstacles from the image data captured by the camera 50, acquires information regarding the relative position of the obstacle, and transmits the information to the map creation unit 31.
 自己位置判定部33は、LiDAR41が検出した情報に基づいて自律走行型掃除機Sの自己位置を判定し、地図作成部31に送信する。 The self-position determining unit 33 determines the self-position of the autonomous vacuum cleaner S based on the information detected by the LiDAR 41 and transmits it to the map creation unit 31.
 地図作成部31では、画像処理部32が特定した障害物の位置情報を含む障害物識別結果、自己位置判定部33が判定した自律走行型掃除機Sの自己位置を作成した地図上に書き込む。地図作成部31で作成された地図情報、障害物識別結果は、制御装置30の記憶部に記憶される。 The map creation unit 31 writes the obstacle identification result including the position information of the obstacle identified by the image processing unit 32 and the self-position of the autonomous vacuum cleaner S determined by the self-position determination unit 33 on the created map. The map information and obstacle identification results created by the map creation section 31 are stored in the storage section of the control device 30.
 走行経路作成部34は、自己位置判定部33が判定した自律走行型掃除機Sの自己位置、及び記憶部に記憶された地図情報に基づいて、走行可能な範囲を計算すると共に、自己位置を起点とした自律走行型掃除機Sの走行経路を作成し、通信手段90、走行制御部35に送信する。 The travel route creation unit 34 calculates the travelable range based on the self-position of the autonomous vacuum cleaner S determined by the self-position determination unit 33 and the map information stored in the storage unit, and determines the self-position. A travel route for the autonomous vacuum cleaner S is created as a starting point and transmitted to the communication means 90 and the travel control unit 35.
 走行制御部35は、作成された走行経路に従って自律走行型掃除機Sが走行するよう走行モータ3m,4mを制御する。 The travel control unit 35 controls the travel motors 3m and 4m so that the autonomous vacuum cleaner S travels according to the created travel route.
 デバイス制御部36は、自律走行型掃除機Sの走行に伴い、走行モータ3m,4m、サイドブラシモータ6b、回転ブラシモータ14a、ファンモータ22を制御する。 The device control unit 36 controls the travel motors 3m and 4m, the side brush motor 6b, the rotary brush motor 14a, and the fan motor 22 as the autonomous vacuum cleaner S travels.
 通信手段90は、走行経路作成部34が作成した走行経路を家電サーバー300に送信すると共に、自己位置判定部33が判定した自律走行型掃除機Sの自己位置、記憶部に記憶された地図情報、記憶部に記憶された障害物識別結果を定期的に家電サーバー300に送信する。 The communication means 90 transmits the travel route created by the travel route creation unit 34 to the home appliance server 300, and also transmits the self-position of the autonomous vacuum cleaner S determined by the self-position determination unit 33 and the map information stored in the storage unit. , periodically transmits the obstacle identification results stored in the storage unit to the home appliance server 300.
 さて、自律走行型掃除機は、例えばベッドの下の隙間に入り込んで掃除を行う必要があるため、ベッドの下の隙間に合わせ高さ方向の寸法が制限される。自律走行型掃除機の筐体の上部にLiDARを備えたものにおいては、LiDARの上部位置が制限を受ける高さ方向の寸法となる。このため、自律走行型掃除機では、LiDARの上部位置をベースとして自律走行型掃除機の筐体を設計しているので、筐体の高さ方向の寸法が小さくなり、筐体内に設置される集塵容器の容量が小さくなるという課題があった。そのため、本実施例では、ダストケース8が備えられる本体後部1rの上面17bが、LiDARユニット40が設置される本体前部1fの上面17aよりも高くなるように形成されている。換言すると、本体前部1fの上面17aは、本体後部1rの上面17bよりも低く形成されている。ダストケース8の上面8uは、本体後部1rの上面17bと面一に形成されている。 Now, since an autonomous vacuum cleaner needs to enter the gap under a bed, for example, to clean, the height dimension is limited to fit the gap under the bed. In an autonomous vacuum cleaner equipped with LiDAR on the top of the housing, the top position of the LiDAR is the height dimension that is limited. For this reason, in an autonomous vacuum cleaner, the housing of the autonomous vacuum cleaner is designed based on the top position of the LiDAR, so the height dimension of the housing is small, and there is a problem that the capacity of the dust collection container installed in the housing is small. Therefore, in this embodiment, the top surface 17b of the rear body 1r on which the dust case 8 is provided is formed so as to be higher than the top surface 17a of the front body 1f on which the LiDAR unit 40 is installed. In other words, the top surface 17a of the front body 1f is formed lower than the top surface 17b of the rear body 1r. The top surface 8u of the dust case 8 is formed flush with the top surface 17b of the rear body 1r.
 本実施例によれば、ダストケース8が備えられる本体後部1rの上面17bを、LiDARユニット40が設置される本体前部1fの上面17aよりも高くなるように形成するようにしているので、LiDARユニット40を搭載した自律走行型掃除機Sであっても、ベッド等の下の隙間に入り込んで掃除を行うことができると共に、ダストケース8の集塵容量を確保することができる。また、LiDARユニット40は本体前部1fの上面17aから突出するように設けているので、LiDARユニット40による障害物検知が阻害されることを抑制することができる。 According to this embodiment, the upper surface 17b of the rear body 1r where the dust case 8 is provided is formed to be higher than the upper surface 17a of the front body 1f where the LiDAR unit 40 is installed. Even with the autonomous vacuum cleaner S equipped with the unit 40, it is possible to clean by entering the gap under the bed, etc., and the dust collection capacity of the dust case 8 can be secured. Moreover, since the LiDAR unit 40 is provided so as to protrude from the upper surface 17a of the main body front part 1f, it is possible to suppress obstruction of obstacle detection by the LiDAR unit 40.
 本実施例の自律走行型掃除機Sでは、LiDARユニット40の上面位置が、本体後部1rの上面17bよりも高くなっている。家具の種類によっては、自律走行型掃除機Sがベッド等の下の隙間に入り込んだ際、LiDARユニット40の上部がベッド等に引っ掛かり、自律走行型掃除機Sが走行不能となる可能性がある。
 自律走行型掃除機Sは、例えばベッドの下の隙間に入り込んで掃除を行う必要があるため、ベッドの下の隙間に合わせ高さ方向の寸法が制限される。また、回転などの動作をするLiDARユニット40では使用者が触れてしまう等の危険があるため、LiDAR41を覆い、使用者からの接触を保護するLiDARカバー44を設けなくてはならない。よって、自律走行型掃除機Sの筐体の上部にLiDARを備えたものにおいては、LiDARカバー44の上面44aが制限を受ける高さ方向の寸法となる。そのため、LiDAR41の発光部41aと受光部41bの検知範囲92と、カバー上面44aの高さ方向の間に、その他検知手段含め、検知不可範囲94ができてしまう(図5)。例えばベッドやソファなど、下側に隙間があり、測距センサ60やバンパ2では空間を検知してしまう場合、隙間の上面が前記高さ寸法の範囲にあるとLiDARユニット40がベッドやソファに衝突してしまう。このため、自律走行型掃除機では、LiDAR41を覆うLiDARカバー44を可動式にし、干渉する箇所に検知スイッチ45やそれに類するものを配置することで対応をしてきた。しかしながら、LiDARユニット40やLiDARカバー44など、検知に関係する部品が増えると製品高さが高くなってしまう。また、前記構造を解消するためには、方法のひとつとして前記構造の高さ方向で上下に部品等を配置せず高さを抑えることもできるが、その場合、製品の水平方向の寸法が大きくなってしまい、狭いスペースの掃除ができなくなってしまう。これを解決するための手段について図5、図10、図11を用いて説明する。
In the autonomous vacuum cleaner S of this embodiment, the top surface position of the LiDAR unit 40 is higher than the top surface 17b of the main body rear part 1r. Depending on the type of furniture, when the autonomous vacuum cleaner S enters the gap under the bed, etc., the top of the LiDAR unit 40 may get caught on the bed, etc., and the autonomous vacuum cleaner S may become unable to move. .
Since the autonomous vacuum cleaner S needs to clean by entering, for example, a gap under the bed, its dimension in the height direction is limited by the gap under the bed. Furthermore, since the LiDAR unit 40 that rotates and performs operations such as rotation poses a risk of being touched by the user, a LiDAR cover 44 must be provided to cover the LiDAR 41 and protect it from being touched by the user. Therefore, in an autonomous vacuum cleaner S having LiDAR on the upper part of the casing, the upper surface 44a of the LiDAR cover 44 has a limited height dimension. Therefore, an undetectable range 94 is created between the detection range 92 of the light emitting part 41a and the light receiving part 41b of the LiDAR 41 and the height direction of the cover top surface 44a, including other detection means (FIG. 5). For example, if there is a gap at the bottom of a bed or sofa, and the ranging sensor 60 or bumper 2 detects the space, if the top surface of the gap is within the above height dimension, the LiDAR unit 40 will not touch the bed or sofa. They end up colliding. For this reason, autonomous vacuum cleaners have responded by making the LiDAR cover 44 that covers the LiDAR 41 movable and arranging a detection switch 45 or something similar at the location where it interferes. However, if the number of components related to detection, such as the LiDAR unit 40 and the LiDAR cover 44, increases, the product height will increase. In addition, one way to solve the above structure is to reduce the height by not placing parts etc. above and below the structure in the height direction, but in that case, the horizontal dimension of the product becomes large. This makes it impossible to clean small spaces. Means for solving this problem will be explained using FIGS. 5, 10, and 11.
 図10は、自律走行型掃除機Sの分解斜視図である。図10では、上ケース1uにバンパ2を取り付けている状態で示している。図11は、図1をV-V線断面斜視図である。なお、図11では、LiDARユニット40、第1制御基板10aは断面していない状態で表示している。 FIG. 10 is an exploded perspective view of the autonomous vacuum cleaner S. In FIG. 10, the bumper 2 is shown attached to the upper case 1u. FIG. 11 is a cross-sectional perspective view of FIG. 1 taken along line VV. In addition, in FIG. 11, the LiDAR unit 40 and the first control board 10a are shown without being cross-sectional.
 自律走行型掃除機Sは、下から下ケース1s、LiDARユニット40、第1制御基板10a、上ケース1u、LiDARカバー44、上カバー1vの順で組み立てられている。 The autonomous vacuum cleaner S is assembled in the following order from the bottom: a lower case 1s, a LiDAR unit 40, a first control board 10a, an upper case 1u, a LiDAR cover 44, and an upper cover 1v.
 LiDARユニット40は、本体前部1fの上面17aから上方に向かって突出しており、LiDARユニット40の上部にはLiDARユニット40を覆うようにLiDARカバー44が配置されている。また、水平方向の製品外形抑制、ダストケース8の集塵容量確保のため、蓄電池21、LiDARユニット40、第1制御基板10a、LiDARカバー44を高さ方向(上下方向)に重ねるように配置している。 The LiDAR unit 40 protrudes upward from the top surface 17a of the main body front part 1f, and a LiDAR cover 44 is arranged above the LiDAR unit 40 so as to cover the LiDAR unit 40. In addition, in order to suppress the product external shape in the horizontal direction and ensure the dust collection capacity of the dust case 8, the storage battery 21, LiDAR unit 40, first control board 10a, and LiDAR cover 44 are arranged so as to overlap in the height direction (vertical direction). ing.
 LiDARカバー44は、左右方向に伸びLiDARカバー44の外周面より左右外側に向かって突出した回動軸44bを備えている。回動軸44bは、LiDARカバー44の前後方向の中心位置よりも前方に位置している。 The LiDAR cover 44 includes a rotation shaft 44b extending in the left-right direction and protruding outward from the outer peripheral surface of the LiDAR cover 44 to the left and right. The rotation shaft 44b is located forward of the center position of the LiDAR cover 44 in the front-rear direction.
 上ケース1uには、LiDARカバー44の回動軸44bを挿入する軸受部1wが備えられている(図5、図6、図10、図11)。回動軸44bは、上部が軸受部1wに支持され、下部が第1制御基板10aにより支持される。 The upper case 1u is provided with a bearing portion 1w into which the rotation shaft 44b of the LiDAR cover 44 is inserted (FIGS. 5, 6, 10, and 11). The rotation shaft 44b has an upper portion supported by the bearing portion 1w, and a lower portion supported by the first control board 10a.
 LiDARカバー44には、LiDARカバー44を回動可能に軸支する回動軸44bが一体的に設けられている。LiDARカバー44は、回動軸44bと軸受部1wにより、回動軸44bより後方側が上下方向に回動可能となっている。回動軸44bと軸受部1wの接続はネジによる固定であってもよいし、凹凸のはめ込みなどであっても良い。 The LiDAR cover 44 is integrally provided with a rotation shaft 44b that rotatably supports the LiDAR cover 44. The LiDAR cover 44 is rotatable in the vertical direction on the rear side from the rotation shaft 44b by the rotation shaft 44b and the bearing portion 1w. The rotation shaft 44b and the bearing portion 1w may be connected to each other by fixing with screws, or by fitting in projections and depressions.
 また、LiDARカバー44は、LiDARカバー44の外周面より後方に向かって突出した検知スイッチ押圧部44dを備えている。検知スイッチ押圧部44dは、LiDARカバー44に一体的に設けられている。 Additionally, the LiDAR cover 44 includes a detection switch pressing portion 44d that protrudes rearward from the outer peripheral surface of the LiDAR cover 44. The detection switch pressing portion 44d is provided integrally with the LiDAR cover 44.
 第1制御基板10aには、検知スイッチ45が設けられている。検知スイッチ45の上方に位置する上ケース1uには、切欠き部1u1が形成されている。 A detection switch 45 is provided on the first control board 10a. A notch portion 1u1 is formed in the upper case 1u located above the detection switch 45.
 LiDARカバー44を掃除機本体1に装着した状態において検知スイッチ押圧部44dは、切欠き部1u1を通して検知スイッチ45の上方に位置するように配置されている。すなわち、検知スイッチ押圧部44dは、検知スイッチ45と接触、開放となる位置に配置されている。検知スイッチ45は、上方に向かって付勢されており、LiDARカバー44に負荷が加わっていない状態においては検知スイッチ45が検知スイッチ押圧部44dを介してLiDARカバー44を支持している。 When the LiDAR cover 44 is attached to the cleaner body 1, the detection switch pressing part 44d is arranged above the detection switch 45 through the notch 1u1. That is, the detection switch pressing portion 44d is arranged at a position where it contacts and opens the detection switch 45. The detection switch 45 is biased upward, and when no load is applied to the LiDAR cover 44, the detection switch 45 supports the LiDAR cover 44 via the detection switch pressing portion 44d.
 そして、自律走行型掃除機Sが走行中、ベッド等の下の隙間に入り込み、LiDARカバー44の前方や上方が障害物に接触すると、LiDARカバー44が回動軸44bを支点として回動し、回動軸44bより後方側のLiDARカバー44が下方に移動する。LiDARカバー44と一体に形成された検知スイッチ押圧部44dは、LiDARカバー44と共に下方に移動し、検知スイッチ45を押圧する。 Then, while the autonomous vacuum cleaner S is running, if it enters a gap under a bed or the like and the front or upper part of the LiDAR cover 44 comes into contact with an obstacle, the LiDAR cover 44 rotates about the rotation axis 44b, The LiDAR cover 44 on the rear side of the rotation shaft 44b moves downward. A detection switch pressing portion 44d formed integrally with the LiDAR cover 44 moves downward together with the LiDAR cover 44 and presses the detection switch 45.
 検知スイッチ45が押圧されると、制御装置30は自律走行型掃除機Sが障害物に接触したことを検知し、障害物を回避するように走行モータ3m,4mを制御する。 When the detection switch 45 is pressed, the control device 30 detects that the autonomous vacuum cleaner S has come into contact with an obstacle and controls the travel motors 3m and 4m to avoid the obstacle.
 このようにすることにより、その他センサなどで検知できない障害物を回避したり、ベッドの下の隙間で床と隙間上面に挟み込まれ走行できなくなる状態になることを回避できる。 By doing this, it is possible to avoid other obstacles that cannot be detected by sensors, etc., and to avoid being stuck in the gap under the bed between the floor and the top of the gap, making it impossible to drive.
 本実施例では、検知スイッチ45として検知スイッチ押圧部44dと接触する接触式のスイッチを用いたが、検知スイッチ45をフォトインタラプタなどのように非接触型のものに置き換えても良い。 In this embodiment, a contact type switch that contacts the detection switch pressing portion 44d is used as the detection switch 45, but the detection switch 45 may be replaced with a non-contact type such as a photointerrupter.
 また、制御装置30は検知スイッチ45が押圧されたことを検知した際、走行モータ3m,4m、回転ブラシモータ14a、ファンモータ22の運転を停止させるようにしても良い。そして、制御装置30は、各モータを停止後、通信手段90を介して使用者が所有する情報端末装置等に自律走行型掃除機Sが緊急停止したことを報知する。 Furthermore, when the control device 30 detects that the detection switch 45 is pressed, it may be configured to stop the driving motors 3m, 4m, rotary brush motor 14a, and fan motor 22. After stopping each motor, the control device 30 notifies an information terminal device owned by the user via the communication means 90 that the autonomous vacuum cleaner S has stopped in an emergency.
 LiDARカバー44は前述したとおり上ケース1uに配置されているが、LiDARユニット40や蓄電池21は下ケース1sに配置されている。これは、LiDARユニット40など、第1制御基板10aに配線を介して信号や制御を伝達する電気系統の部品を第1制御基板10aと同一ユニットに配置することで、第1制御基板10aに配線をしやすくし、また配線の接続ミスの抑制や、配線確認を容易にしているためである。 As described above, the LiDAR cover 44 is placed in the upper case 1u, but the LiDAR unit 40 and the storage battery 21 are placed in the lower case 1s. This is achieved by arranging electrical system components such as the LiDAR unit 40 that transmit signals and control to the first control board 10a via wiring in the same unit as the first control board 10a. This is because it makes it easier to perform wiring, suppresses wiring connection mistakes, and facilitates wiring confirmation.
 LiDARカバー44は単一部品であるため、LiDARカバー44を回転移動させるときにかかる力は小さくて済む。そのため、LiDARカバー44の姿勢補正や、検知スイッチ45押下後にフリーになった際、元の姿勢に戻すためのスプリングの様な部品が不要、または最小限の数で良く、大きな力が要らない小型で済むため、部品点数が少なく、原価の抑制、組立性の向上、製品の小型化をすることができる。 Since the LiDAR cover 44 is a single component, the force applied when rotating the LiDAR cover 44 is small. Therefore, there is no need for parts such as springs to correct the posture of the LiDAR cover 44 or to return to the original posture when the detection switch 45 becomes free after being pressed, or the minimum number is required, and it is compact and does not require large force. This reduces the number of parts, reduces costs, improves ease of assembly, and makes the product more compact.
 実施例1によれば、検知スイッチ45を押圧する検知スイッチ押圧部44dをLiDARカバー44と一体に設けるようにしたので、部品点数の増加を抑制する自律走行型掃除機を提供することができる。 According to the first embodiment, since the detection switch pressing part 44d that presses the detection switch 45 is provided integrally with the LiDAR cover 44, it is possible to provide an autonomous vacuum cleaner that suppresses an increase in the number of parts.
 なお、実施例1では、製品筐体内部の目隠しやデザイン性の向上のため、本体前部1fに上ケース1uを配置することで、回動軸44bが見えてしまうことにより美観が損なわれることを回避しているが、その他方法により回動軸44bを隠す、または回動軸44bを外観としたデザインとして扱っても良い。 In addition, in Example 1, in order to hide the inside of the product housing and improve the design, the upper case 1u is placed on the front part 1f of the main body, so that the rotation axis 44b becomes visible and the aesthetic appearance is impaired. However, the rotating shaft 44b may be hidden by other methods, or the rotating shaft 44b may be treated as an exterior design.
 自律走行型掃除機Sでは、動作を変更する際に、使用者は自律走行型掃除機Sの操作のために自律走行型掃除機S、または、自律走行型掃除機Sに電子または電波的に接続された情報端末装置やリモートコントローラなどの外部端末を直接操作する必要がある。自律走行型掃除機S、または、外部端末を直接操作するためには、どちらかに使用者自ら近づき操作しなくてはならず、利便性を欠いていた。以下、上記課題を解決するための手段について説明する。 In the autonomous vacuum cleaner S, when changing the operation, the user electronically or radio waves the autonomous vacuum cleaner S or the autonomous vacuum cleaner S to operate the autonomous vacuum cleaner S. It is necessary to directly operate external terminals such as connected information terminal devices and remote controllers. In order to directly operate the autonomous vacuum cleaner S or the external terminal, the user must approach one or the other and operate it, which lacks convenience. Hereinafter, means for solving the above problem will be explained.
 実施例2では、カメラ50が人の特徴や位置を認識し、人が追加操作可能な位置に自律走行型掃除機Sを移動させるようにしている。 In the second embodiment, the camera 50 recognizes the person's characteristics and position, and moves the autonomous vacuum cleaner S to a position where the person can perform additional operations.
 自律走行型掃除機Sのカメラ50は人の第一の特徴として、人の形状や色、動作、熱、生体電気、電磁波、または、声を認識することができる。次に、制御装置30には、上記人の第一の特徴を判定する判定部が備えられている。制御装置30の判定部では、人の第一の特徴と対応した自律走行型掃除機Sの第一の動作を判定する。 The camera 50 of the autonomous vacuum cleaner S can recognize a person's shape, color, movement, heat, bioelectricity, electromagnetic waves, or voice as the primary characteristics of a person. Next, the control device 30 is equipped with a determination unit that determines the first characteristic of the person. The determination unit of the control device 30 determines the first operation of the autonomous vacuum cleaner S that corresponds to the first characteristic of the person.
 図14は、人の第一の特徴と自律走行型掃除機Sの動作を対応させた対応表を示す図である。 FIG. 14 is a diagram showing a correspondence table that associates the first characteristics of a person with the actions of the autonomous vacuum cleaner S.
 人の第一の動作の判定は、図14に示すように予め設定された人の第一の特徴と、自律走行型掃除機Sの第一の動作の対応表に基づいて判定される。例えば、人が「低い位置で手を振る動作」は自律走行型掃除機Sが「人が追加操作可能な位置への移動」に対応し、人が「手を上げる動作」は自律走行型掃除機Sが「人から離れる方向への移動」に対応する。ここで、人の動作とそれに対応した自律走行型掃除機Sの動作は上記の例に限定されるものではない。また、これらの対応表は、予め設定されたものでも良く、使用者が自ら設定したものでも良い。 The first motion of the person is determined based on a correspondence table between the first characteristics of the person and the first motion of the autonomous vacuum cleaner S, which are set in advance, as shown in FIG. For example, a person's ``action of waving their hand at a low position'' corresponds to the autonomous vacuum cleaner S ``moving to a position where the person can perform additional operations,'' and a person's ``action of raising their hand'' corresponds to the autonomous vacuum cleaner S. Machine S corresponds to "movement in the direction away from the person". Here, the human movement and the corresponding movement of the autonomous vacuum cleaner S are not limited to the above example. Further, these correspondence tables may be set in advance or may be set by the user himself/herself.
 制御装置30は判定部にて判定された自律走行型掃除機Sの第一の動作に応じて自律走行型掃除機Sを制御する。以下図15乃至図17に具体例を示す。 The control device 30 controls the autonomous vacuum cleaner S according to the first operation of the autonomous vacuum cleaner S determined by the determination unit. Specific examples are shown below in FIGS. 15 to 17.
 図15は、人の動作を示す図である。図16は、自律走行型掃除機Sの認識状態を示す図である。図17は、自律走行型掃除機Sの移動状態を示す図である。 FIG. 15 is a diagram showing human motion. FIG. 16 is a diagram showing the recognition state of the autonomous vacuum cleaner S. FIG. 17 is a diagram showing the moving state of the autonomous vacuum cleaner S.
 図15において、例えば人が床面近くの低い位置で手を振る動作を行う。自律走行型掃除機Sのカメラ50は、手を振る動作を撮像し、人の第一の特徴として取得する。次に、図16に示すように自律走行型掃除機Sは、人がいる位置をカメラ50や測距センサの何れか若しくは両方を利用して認識する。その後、制御装置30の判定部は、図14の対応表を参酌し、人が床面近くの低い位置で手を振る動作に対応する自律走行型掃除機Sの第一の動作は、人が追加操作可能な位置への移動であると判定する。それに伴い、制御装置30は人の手が操作ボタン7に届く範囲を目的地として移動経路を生成し、図17に示すように制御装置30は生成した移動経路に沿って自律走行型掃除機Sを動かすように車輪を駆動させる。制御装置30は自律走行型掃除機Sが目的地に到着した時点で移動を停止させ、人に操作されるまで待機する。 In FIG. 15, for example, a person waves their hand at a low position near the floor. The camera 50 of the autonomous vacuum cleaner S captures the waving action and acquires it as a first characteristic of the person. Next, as shown in FIG. 16, the autonomous vacuum cleaner S recognizes the position of the person using either the camera 50 or the distance measuring sensor, or both. After that, the determination unit of the control device 30 refers to the correspondence table of FIG. 14 and determines that the first action of the autonomous vacuum cleaner S corresponding to the action of the person waving their hand at a low position near the floor is movement to a position where the person can perform additional operations. Accordingly, the control device 30 generates a movement route with the range where the person's hand can reach the operation button 7 as the destination, and as shown in FIG. 17, the control device 30 drives the wheels to move the autonomous vacuum cleaner S along the generated movement route. The control device 30 stops the movement when the autonomous vacuum cleaner S arrives at the destination and waits until it is operated by a person.
 ここでカメラ50は、人による追加操作として、人の第二の特徴を取得する。制御装置30の判定部は、人の第二の特徴と対応する自立移動装置の第二の動作を判定し、制御装置30は判定された第二の動作を実行するように自律走行型掃除機Sを制御する。 Here, the camera 50 acquires the second characteristic of the person as an additional operation by the person. The determination unit of the control device 30 determines a second motion of the autonomous mobile device that corresponds to the second characteristic of the person, and the control device 30 causes the autonomous vacuum cleaner to execute the determined second motion. Control S.
 人の第一または第二の特徴を取得する手段は、カメラ50に限らず、感熱機、電磁波受信機、収音機などでもよい。 The means for acquiring the first or second characteristics of a person is not limited to the camera 50, but may also be a heat sensitive device, an electromagnetic wave receiver, a sound collector, etc.
 人の位置情報を取得手段はカメラ50や測距センサに限らず、電磁波受信機、収音機、距離検知機、位置検知機、速度検知機、加速度検知機、角速度検知機、角加速度検知機などでもよい。 The means for acquiring the position information of a person is not limited to the camera 50 or a distance sensor, but also includes an electromagnetic wave receiver, a sound collector, a distance detector, a position detector, a speed detector, an acceleration detector, an angular velocity detector, and an angular acceleration detector. etc.
 以上で説明したように、実施例2では、自律走行型掃除機Sは人の第一の特徴および位置情報を取得し、人の第一の特徴に応じた自律走行型掃除機Sの動作を判定し、実行させるための制御を行う。具体的には、人が低い位置で手を振る動作をすることで自律走行型掃除機Sを人が追加操作可能な位置に移動させることができる。これにより、使用者が自律走行型掃除機Sを操作する際の使用者の移動コストを削減することができ、かつ、自律走行型掃除機Sに高度な操作ができる。 As explained above, in the second embodiment, the autonomous vacuum cleaner S acquires the first characteristic and position information of the person, and controls the operation of the autonomous vacuum cleaner S according to the first characteristic of the person. Performs judgment and controls for execution. Specifically, by waving a hand from a low position, the autonomous vacuum cleaner S can be moved to a position where the person can perform additional operations. Thereby, the user's travel cost when operating the autonomous vacuum cleaner S can be reduced, and the autonomous vacuum cleaner S can be operated in a sophisticated manner.
 次に実施例3について説明する。実施例3は、実施例2の自律走行型掃除機Sに代えて、ドローンを用いた例である。 Next, Example 3 will be explained. The third embodiment is an example in which a drone is used instead of the autonomous vacuum cleaner S of the second embodiment.
 図18は、本発明の実施例3に係るドローンDの外観斜視図である。図19は、ドローンDから上カバーを取外した状態においてドローンDを上方から見た外観斜視図である。図20はドローンDを下方から見た外観斜視図である。ドローンDは、空中を飛行し、地上や周囲の撮影の他、貨物の運搬等ができるものである。 FIG. 18 is an external perspective view of a drone D according to Example 3 of the present invention. FIG. 19 is an external perspective view of the drone D seen from above with the top cover removed from the drone D. FIG. 20 is an external perspective view of the drone D seen from below. Drone D is capable of flying in the air, photographing the ground and its surroundings, and transporting cargo.
 ドローンDには装置本体を構成する部品を組み付けるベースとなる下ケース400があり、部品を本体内部に格納するための上カバー401が取り付けられている。上カバー401には、使用者がドローンDを操作するために最低限必要な操作スイッチ402を備えている。上カバー401の内側には、ドローンDを電子的に制御するためのソフトウェア(以下、制御ソフトと記述される場合もある)を搭載した制御装置403を備えている。 Drone D has a lower case 400 that serves as a base for assembling the parts that make up the device main body, and an upper cover 401 for storing the parts inside the main body. The upper cover 401 is equipped with the minimum necessary operation switch 402 for the user to operate the drone D. A control device 403 equipped with software (hereinafter also referred to as control software) for electronically controlling the drone D is provided inside the upper cover 401.
 制御装置403は、判定部及び制御部を備えている。制御装置403には圧力検知部が設けられ、操作スイッチ402を押下することを介して操作される。制御装置403はドローンDに搭載された電池(不図示)を電源として、制御装置403を駆動させる他、ドローンDに搭載された他の全ての電子機器を駆動するための電力を分配する。制御装置403は移動制御や画像処理等、複数機能を果たす場合もあり、機能毎に複数個に分けられていても良い。 The control device 403 includes a determination section and a control section. The control device 403 is provided with a pressure detection section, and is operated by pressing the operation switch 402. The control device 403 uses a battery (not shown) mounted on the drone D as a power source to drive the control device 403 and distributes power for driving all other electronic devices mounted on the drone D. The control device 403 may perform multiple functions such as movement control and image processing, and may be divided into multiple units for each function.
 下ケース400周囲にはドローンDの移動手段として、羽根車404が搭載されており、制御装置403の制御部によって任意の移動制御ができるように駆動される。羽根車404の周囲には羽根車404を保護するための保護部材405が備えられている。 A vane wheel 404 is mounted around the lower case 400 as a means of transport for the drone D, and is driven by the control unit of the control device 403 so that the drone can freely control its movement. A protective member 405 is provided around the vane wheel 404 to protect the vane wheel 404.
 下ケース400、及び保護部材405の周囲には、それぞれを接続するための支柱406が搭載されている。さらに下ケース400前方下部には、ドローンDの周囲を撮像するために、カメラ407が搭載されている。ドローンDには、図示しないがその他に、羽根車404を駆動させる駆動系、各種環境情報を取得するセンサ、LED等の表示部、スピーカ、電波送受信機、配線等、ドローンDが最低限必要動作するための部品を搭載されている。 Support posts 406 are mounted around the lower case 400 and the protective member 405 to connect them to each other. Furthermore, a camera 407 is mounted on the lower front part of the lower case 400 to capture images of the surroundings of drone D. Although not shown, drone D is also equipped with other components required for drone D to perform the minimum required operations, such as a drive system that drives the impeller 404, sensors that obtain various types of environmental information, a display unit such as an LED, a speaker, a radio transmitter/receiver, wiring, etc.
 次に、撮像機37が人の特徴や位置を認識し、人が追加操作可能な位置にドローンDを移動させ、追加の操作を受けるまでの自律移動制御方法について説明する。本制御に入る前のドローンDの各種駆動系は停止していても良いし、動作していても良い。制御部はあらかじめ、認識できる人の特徴の情報を保持している。 Next, an autonomous movement control method will be described in which the imaging device 37 recognizes the person's characteristics and position, moves the drone D to a position where the person can perform additional operations, and receives the additional operation. The various drive systems of the drone D may be stopped or may be operating before entering the main control. The control unit holds information on the characteristics of a person who can be recognized in advance.
 ドローンDのカメラ407は人の第一の特徴として、人の形状や色、動作、熱、生体電気、電磁波、声を認識することができる。次に制御装置403の判定部において、人の第一の特徴と対応したドローンDの第一の動作を判定する。第一の動作の判定は、図14に示すような予め設定された人の特徴とドローンDの動作の対応表に基づいて判定される。例えば、人が「顔の横で手を振る動作」はドローンDが「人が追加操作可能な位置への移動」に対応し、人が「手を上げる動作」はドローンDが「人から遠ざかる動作」と対応する。ここで、人の動作とそれに対応したドローンDの動作はこれらの例に限定されない。また、これらの対応表は、予め設定されたものでもよいし、使用者が自ら設定したものでもよい。 The camera 407 of Drone D can recognize a person's shape, color, movement, heat, bioelectricity, electromagnetic waves, and voice as the primary characteristics of a person. Next, the determination unit of the control device 403 determines the first motion of the drone D that corresponds to the first characteristic of the person. The first motion is determined based on a correspondence table between preset human characteristics and the motion of the drone D, as shown in FIG. For example, a person's ``motion of waving their hand next to their face'' will cause Drone D to ``move to a position where a person can perform additional operations,'' and a person's ``raise of their hand'' will cause Drone D to ``move away from the person.'' It corresponds to "action". Here, the human motion and the corresponding motion of the drone D are not limited to these examples. Further, these correspondence tables may be set in advance or may be set by the user himself/herself.
 制御装置403は判定部にて判定されたドローンDの第一の動作に応じてドローンDを制御する。以下図21乃至図23に具体例を示す。 The control device 403 controls the drone D according to the first motion of the drone D determined by the determination unit. Specific examples are shown below in FIGS. 21 to 23.
 図21は、人の動作を示す図である。図22は、ドローンDの認識状態を示す図である。図23は、ドローンDの移動状態を示す図である。 FIG. 21 is a diagram showing human motion. FIG. 22 is a diagram showing the recognition state of the drone D. FIG. 23 is a diagram showing the moving state of the drone D.
 図21において、例えば人が顔の横で手を振る動作を行う。ドローンDのカメラ407は、手を振る動作を撮像し、人の第一の特徴として取得する。次に、図22に示すようにドローンDは、人がいる位置をカメラ407や測距センサ(不図示)の何れか若しく両方を利用して認識する。その後、制御装置403の判定部は、対応表を参酌し、人が顔の横で手を振る動作に対応するドローンDの動作は、人が追加操作可能な位置への移動であると判定する。それに伴い、制御装置403は追加の操作として、人の第二の特徴を得るために、撮像範囲に人の第二の特徴が大きく映る位置を目的地として、移動経路を生成する。さらに、図23に示すように、制御装置403は前記移動経路に沿ってドローンDを動かすように羽根車404を駆動させ、目的地に到着した時点で移動を停止し、人に操作されるまで待機する。ここでカメラ407は、人による追加操作として、人の第二の特徴を取得する。制御装置403の判定部は、人の第二の特徴と対応する自立移動装置の第二の動作を判定し、制御装置403の制御部は判定された第二の動作を実行するようにドローンDを制御する。 In FIG. 21, for example, a person makes an action of waving their hand next to their face. The camera 407 of the drone D captures the waving motion and acquires it as the first characteristic of the person. Next, as shown in FIG. 22, the drone D recognizes the location of the person using either the camera 407 or the distance sensor (not shown), or both. Thereafter, the determination unit of the control device 403 takes into account the correspondence table and determines that the motion of the drone D that corresponds to the motion of the person waving his or her hand next to the person's face is movement to a position where the person can perform additional operations. . Accordingly, as an additional operation, the control device 403 generates a travel route with a position where the second feature of the person is largely reflected in the imaging range as the destination, in order to obtain the second feature of the person. Furthermore, as shown in FIG. 23, the control device 403 drives the impeller 404 to move the drone D along the movement route, and stops moving when it reaches the destination until it is operated by a person. stand by. Here, the camera 407 acquires the second characteristic of the person as an additional operation by the person. The determination unit of the control device 403 determines a second motion of the autonomous mobile device that corresponds to the second characteristic of the person, and the control unit of the control device 403 causes the drone D to execute the determined second motion. control.
 人の第一または第二の特徴を取得する手段は、撮像機に限らず、感熱機、電磁波受信機、収音機などでもよい。また、人の位置情報を取得手段は撮像機や測距センサに限らず、電磁波受信機、収音機、距離検知機、位置検知機、速度検知機、加速度検知機、角速度検知機、角加速度検知機などでもよい。 The means for acquiring the first or second characteristics of a person is not limited to an imaging device, but may also be a heat sensitive device, an electromagnetic wave receiver, a sound collector, etc. In addition, the means for acquiring a person's position information are not limited to imagers and distance sensors, but also electromagnetic wave receivers, sound collectors, distance detectors, position detectors, speed detectors, acceleration detectors, angular velocity detectors, and angular acceleration detectors. A detector may also be used.
 以上で説明したように、実施例3では、ドローンDは人の第一の特徴および位置情報を取得し、人の第一の特徴に応じたドローンDの動作を判定し、実行させるための制御を行う。具体的には、人が顔の横で手を振っている動作をすることで、ドローンDを人が追加操作可能な位置に移動させることができる。これにより、使用者がドローンDを操作する際の使用者の移動コストを削減することができ、かつ、ドローンDに高度な操作ができる。 As explained above, in the third embodiment, the drone D acquires the first characteristic and position information of the person, determines the operation of the drone D according to the first characteristic of the person, and performs control to execute the operation. I do. Specifically, by waving a hand next to the person's face, the drone D can be moved to a position where the person can perform additional operations. Thereby, the user's movement cost when operating the drone D can be reduced, and the drone D can be operated in a sophisticated manner.
 次に実施例4について説明する。実施例4では、ごみの識別方法について説明する。自律走行型掃除機Sは、自動で掃除を行うため、ごみの種類に応じて動作させることが好ましい。また、自律走行型掃除機Sが吸込んだごみの種類を使用者が把握できることが好ましい。これらを解決するための手段について説明する。 Next, Example 4 will be described. In Example 4, a method for identifying garbage will be described. Since the autonomous vacuum cleaner S performs cleaning automatically, it is preferable to operate it according to the type of garbage. Furthermore, it is preferable that the user be able to grasp the type of garbage that the autonomous vacuum cleaner S has sucked in. The means for solving these problems will be explained.
 図24は、本発明の実施例4に係るゴミ識別方法のフローチャートである。図24に示す動作は、図8の制御装置30により実行される。 FIG. 24 is a flowchart of the dust identification method according to the fourth embodiment of the present invention. The operation shown in FIG. 24 is executed by the control device 30 in FIG. 8.
 図24に示すように、カメラ50が物体を撮影し(ステップS1001)、撮影した物体の被写体情報が制御装置30に送信される。 As shown in FIG. 24, the camera 50 photographs an object (step S1001), and subject information of the photographed object is transmitted to the control device 30.
 制御装置30は、カメラ50で撮影された被写体が清掃対象か否か判断する(ステップS1002)。 The control device 30 determines whether the subject photographed by the camera 50 is to be cleaned (step S1002).
 カメラ50で撮影された被写体が清掃対象の物体であると判定された場合(ステップS1002のYES)、制御装置30は、ごみの種類を識別する(ステップS1003)。制御装置30には、色、形といった特徴からごみの種類に関する情報が予め保存されており、カメラ50で撮影した物体の被写体情報とごみの種類に関する情報とを比較し、ごみの種類を識別する。カメラ50で撮影された被写体が清掃対象の物体でないと判定された場合(ステップS1002のNO)、制御装置30は、ステップS1001の処理を実行する。 If it is determined that the subject photographed by camera 50 is an object to be cleaned (YES in step S1002), control device 30 identifies the type of garbage (step S1003). Information about the type of garbage based on characteristics such as color and shape is stored in advance in control device 30, and the subject information of the object photographed by camera 50 is compared with information about the type of garbage to identify the type of garbage. If it is determined that the subject photographed by camera 50 is not an object to be cleaned (NO in step S1002), control device 30 executes the process of step S1001.
 次に、制御装置30は、識別したごみが所定の重量以上であるか否かを判断する(ステップS1004)。例えば、制御装置30は、ごみが金属、プラスチック等と判断した場合にはごみが所定の重量以上であると判断する。 Next, the control device 30 determines whether the identified garbage has a predetermined weight or more (step S1004). For example, if the control device 30 determines that the garbage is metal, plastic, etc., it determines that the garbage has a predetermined weight or more.
 識別したごみが所定の重量以上であると判断した場合(ステップS1004のYES)、制御装置30は、ファンモータ22を強運転し、吸引力を上げる(ステップS1005)。 If it is determined that the identified garbage is equal to or greater than the predetermined weight (YES in step S1004), the control device 30 operates the fan motor 22 at high speed to increase the suction power (step S1005).
 ファンモータ22を強運転した後、制御装置30は、走行モータ3m,4mを駆動させ、ごみがある位置に自律走行型掃除機Sを移動させる(ステップS1006)。 After strongly operating the fan motor 22, the control device 30 drives the travel motors 3m and 4m to move the autonomous vacuum cleaner S to the location where the garbage is located (step S1006).
 ステップS1004において、識別したごみが所定の重量未満であると判断した場合(ステップS1004のNO)、制御装置30は、ステップS1006を実行する。 In step S1004, if it is determined that the identified garbage is less than the predetermined weight (NO in step S1004), the control device 30 executes step S1006.
 次に、制御装置30は、識別したごみが自律走行型掃除機Sに吸引されたか否か判断する(ステップS1007)。この判断にあたっては、塵埃センサ80の検知結果を使用する。 Next, the control device 30 determines whether the identified garbage has been sucked into the autonomous vacuum cleaner S (step S1007). In making this determination, the detection results of the dust sensor 80 are used.
 識別したごみが自律走行型掃除機Sに吸引された場合(ステップS1007のYES)、制御装置30は、通信手段90を介して使用者が保有する情報端末装置100に結果を送信する(ステップS1008)。識別したごみが自律走行型掃除機Sに吸引されていない場合(ステップS1007のNo)、制御装置30は、ステップS1007の処理を繰り返す。 If the identified garbage is sucked into the autonomous vacuum cleaner S (YES in step S1007), the control device 30 transmits the result to the information terminal device 100 owned by the user via the communication means 90 (step S1008). ). If the identified dirt is not sucked into the autonomous vacuum cleaner S (No in step S1007), the control device 30 repeats the process in step S1007.
 実施例4では、ごみが吸引された結果を情報端末装置100に送信するようにしている。図25は、情報端末装置100の表示結果の一例を示す図である。 In the fourth embodiment, the result of dust being sucked is sent to the information terminal device 100. FIG. 25 is a diagram showing an example of a display result of the information terminal device 100.
 情報端末装置100の表示画面101には、掃除時間、掃除面積、マップ、掃除完了日時が表示されている。表示画面101に表示されるマップには、部屋の見取り図、被掃除面の種類、自律走行型掃除機Sの走行軌跡、吸込んだごみの位置が表示されている。 The display screen 101 of the information terminal device 100 displays cleaning time, cleaning area, map, and cleaning completion date and time. The map displayed on the display screen 101 shows the floor plan of the room, the type of surface to be cleaned, the travel trajectory of the autonomous vacuum cleaner S, and the position of the sucked garbage.
 吸込んだごみの種類を確認したい場合には、情報端末装置100の表示画面101に表示されているごみの位置をタッチすると、ポップアップ画面102,103が表示され、吸込んだごみの種類が表示される。図25では、一例として情報端末装置100に表示されているごみの位置をタッチすると、コイン、紙屑が表示される。 If you want to check the type of garbage that has been sucked in, touch the position of the garbage displayed on the display screen 101 of the information terminal device 100, and pop-up screens 102 and 103 will be displayed, displaying the type of garbage that has been sucked in. . In FIG. 25, as an example, when the location of trash displayed on the information terminal device 100 is touched, coins and waste paper are displayed.
 実施例4によれば、ごみの種類を識別し、そのごみが所定の重量以上であるかを判断し、ごみが所定の重量以上の場合にファンモータを強運転するようにしているので、ごみの吸い残しを抑制できる。また、本実施例によれば、ごみが所定の重量未満の場合には、ファンモータを強運転しないようにしているので、消費電力を低減できる。さらに、吸込んだごみの位置と、吸込んだごみの種類を情報端末装置100に表示するようにしているので、コインのように自律走行型掃除機Sが誤って吸込んだものを把握することができる。 According to the fourth embodiment, the type of garbage is identified, it is determined whether the garbage weighs more than a predetermined weight, and the fan motor is operated at high speed when the garbage weighs more than a predetermined weight. It is possible to suppress the amount of leftover suction. Further, according to this embodiment, the fan motor is not operated at high speed when the weight of the garbage is less than a predetermined weight, so power consumption can be reduced. Furthermore, since the position of the sucked-in garbage and the type of the sucked-in garbage are displayed on the information terminal device 100, it is possible to know what the autonomous vacuum cleaner S has accidentally sucked, such as a coin. .
 次に実施例5について説明する。実施例5では、消費電力低減方法の一例について説明する。自律走行型掃除機Sは、カメラ50、測距センサ60,61、LiDARユニット40等、3つ以上の複数のセンサを備えている。特に物体を撮影するカメラ50は消費電力が大きい。これを低減する手段について以下説明する。 Next, Example 5 will be described. In Example 5, an example of a method for reducing power consumption will be described. The autonomous vacuum cleaner S includes three or more sensors, such as a camera 50, ranging sensors 60 and 61, and a LiDAR unit 40. In particular, the power consumption of the camera 50 for photographing objects is large. Means for reducing this will be explained below.
 図26は、本発明の実施例5に係る消費電力を低減する手段を示すフローチャートである。 FIG. 26 is a flowchart showing means for reducing power consumption according to Example 5 of the present invention.
 自律走行型掃除機Sが走行を開始すると(ステップS1101)、測距センサ60,61、LiDARユニット40で障害物の有無を検知する(ステップS1102)。 When the autonomous vacuum cleaner S starts traveling (step S1101), the presence or absence of an obstacle is detected by the ranging sensors 60, 61 and the LiDAR unit 40 (step S1102).
 測距センサ60,61、LiDARユニット40が障害物を検知すると(ステップS1102のYES)、制御装置30は、カメラ50を起動する(ステップS1103)。測距センサ60,61、LiDARユニット40が障害物を検知しない場合(ステップS1102のNO)、ステップS1102の処理を繰り返す。 If the distance measuring sensors 60, 61 and the LiDAR unit 40 detect an obstacle (YES in step S1102), the control device 30 activates the camera 50 (step S1103). If the distance measuring sensors 60, 61 and the LiDAR unit 40 do not detect an obstacle (NO in step S1102), the process of step S1102 is repeated.
 カメラ50を起動後、制御装置30は、撮影した画像を認識し、障害物か吸引可能なごみかを判別する(ステップS1104)。 After starting the camera 50, the control device 30 recognizes the captured image and determines whether it is an obstacle or suctionable garbage (step S1104).
 撮影した画像が吸引可能なごみの場合(ステップS1105)、制御装置30は、走行モータ3m,4mを駆動し、自律走行型掃除機Sをごみに接近させて吸引する(ステップS1106)。 If the photographed image is of dust that can be sucked (step S1105), the control device 30 drives the travel motors 3m and 4m, and causes the autonomous vacuum cleaner S to approach the dust and suction it (step S1106).
 一方、撮影した画像が障害物の場合(ステップS1107)、制御装置30は、走行モータ3m,4mを駆動し、自律走行型掃除機Sが障害物を回避するように動作させる(ステップS1108)。 On the other hand, if the photographed image is an obstacle (step S1107), the control device 30 drives the traveling motors 3m and 4m to operate the autonomous vacuum cleaner S to avoid the obstacle (step S1108).
 自律走行型掃除機Sがごみを吸引後、若しくは自律走行型掃除機Sが障害物を回避した後、制御装置30は、カメラ50を停止させる(ステップS1109)。 After the autonomous vacuum cleaner S sucks up dirt or the autonomous vacuum cleaner S avoids an obstacle, the control device 30 stops the camera 50 (step S1109).
 カメラ50を停止後、制御装置30は、自律走行型掃除機Sを再度走行開始させる(ステップS1110)。 After stopping the camera 50, the control device 30 causes the autonomous vacuum cleaner S to start running again (step S1110).
 実施例5によれば、3つ以上のセンサを搭載することで、今まで検知不可能であった障害物や障害物に対する自律走行型掃除機Sからの距離を検知できるようになり、自走中の走行性能を向上させることができる。また、カメラ50の起動時間を他センサで障害物を検知した時に限定することで、消費電力を抑えることができる。 According to Example 5, by installing three or more sensors, it becomes possible to detect obstacles and the distance from the autonomous vacuum cleaner S to obstacles that were previously undetectable. It can improve the driving performance inside. Further, power consumption can be reduced by limiting the activation time of the camera 50 to when an obstacle is detected by another sensor.
 次に実施例6について説明する。実施例6では、自律走行型掃除機Sから発生する騒音を低減する手段について説明する。自律走行型掃除機Sは、ファンモータ22、サイドブラシを駆動するサイドブラシモータ6b、回転ブラシを駆動する回転ブラシモータ14a、駆動輪3,4を駆動する走行モータ3m,4mといったように複数のモータを備えており、これらモータが騒音発生の原因となっている。掃除機本体の側面はバンパで覆われているが、バンパを稼働させるためにバンパは掃除機本体から隙間を開けて取り付けられており、この隙間かモータ音が漏れ出し、騒音となっている。特に、高速回転するファンモータ22、回転ブラシモータ14aから発生する騒音が顕著である。騒音を低減する手段について以下説明する。 Next, Example 6 will be described. In Example 6, a means for reducing noise generated from the autonomous vacuum cleaner S will be described. The autonomous vacuum cleaner S has a plurality of components, such as a fan motor 22, a side brush motor 6b that drives a side brush, a rotating brush motor 14a that drives a rotating brush, and running motors 3m and 4m that drive drive wheels 3 and 4. They are equipped with motors, and these motors are the cause of noise generation. The sides of the vacuum cleaner body are covered with bumpers, but in order for the bumpers to operate, the bumpers are attached with a gap from the vacuum cleaner body, and the motor noise leaks through this gap, creating noise. In particular, the noise generated from the fan motor 22 and the rotating brush motor 14a, which rotate at high speed, is noticeable. Means for reducing noise will be explained below.
 図27は、本発明の実施例6に係る自律走行型掃除機Sを前後方向に垂直断面した側方概略断面図である。図28は、本発明の実施例6に係る自律走行型掃除機Sを水平方向に断面し上方から見た概略断面図である。 FIG. 27 is a schematic side sectional view of the autonomous vacuum cleaner S according to the sixth embodiment of the present invention, taken in a vertical section in the front-rear direction. FIG. 28 is a schematic cross-sectional view of the autonomous vacuum cleaner S according to the sixth embodiment of the present invention, taken in a horizontal direction and viewed from above.
 実施例6では、下ケース1sに載置したファンモータ22,回転ブラシモータ14aを掃除機本体1の後方側に寄せて配置すると共に、下ケース1sの上方に隙間が生じないように上ケース1uを配置している。そのため、掃除機本体1の周囲に配置するバンパ2を前方のみに配置している。 In the sixth embodiment, the fan motor 22 and the rotary brush motor 14a mounted on the lower case 1s are placed closer to the rear side of the vacuum cleaner body 1, and the upper case 1u is placed so that there is no gap above the lower case 1s. are placed. Therefore, the bumper 2 disposed around the cleaner body 1 is disposed only at the front.
 ファンモータ22及び回転ブラシモータ14aを駆動すると騒音が発生するが、下ケース1sと上ケース1uは隙間なく接続されているので、ファンモータ22及び回転ブラシモータ14aから発生した音は、上ケース1u内で反射される。 When the fan motor 22 and the rotary brush motor 14a are driven, noise is generated, but because the lower case 1s and the upper case 1u are connected without any gaps, the sounds generated by the fan motor 22 and the rotary brush motor 14a are reflected within the upper case 1u.
 次に、実施例6の変形例について説明する。図29は、実施例6の変形例に係る自律走行型掃除機Sを前後方向に垂直断面した側方概略断面図である。図30は、実施例6の変形例に係る自律走行型掃除機Sを水平方向に断面し上方から見た概略断面図である。 Next, a modification of the sixth embodiment will be described. FIG. 29 is a schematic side sectional view of an autonomous vacuum cleaner S according to a modification of the sixth embodiment, taken in a vertical section in the front-rear direction. FIG. 30 is a schematic sectional view of an autonomous vacuum cleaner S according to a modification of the sixth embodiment, taken in a horizontal direction and viewed from above.
 図27、図28の構成と異なるところは、掃除機本体1の内部空間を仕切板500によって前後に仕切り、仕切板500によって仕切られた後方の空間にファンモータ22及び回転ブラシモータ14aを配置した点にある。 The difference from the configurations in Figures 27 and 28 is that the internal space of the vacuum cleaner body 1 is divided into front and rear spaces by a partition plate 500, and the fan motor 22 and rotary brush motor 14a are arranged in the rear space divided by the partition plate 500.
 変形例では、仕切板500を設けたことにより、掃除機本体1の後方空間に密閉度が高まり、音が漏れ出し抑制効果をより高めることができる。 In the modified example, by providing the partition plate 500, the degree of sealing in the rear space of the vacuum cleaner main body 1 is increased, and the effect of suppressing sound leakage can be further enhanced.
 実施例6によれば、ファンモータ22及び回転ブラシモータ14aから発生した音が掃除機本体1の外に漏れ出すことを抑制し、騒音を低減することができる。 According to the sixth embodiment, it is possible to suppress the sound generated from the fan motor 22 and the rotary brush motor 14a from leaking out of the vacuum cleaner main body 1, and to reduce noise.
 次に実施例7について説明する。実施例7では、自律走行型掃除機Sの吸口部12の浮き上がりを抑制する手段について説明する。 Next, Example 7 will be described. In Example 7, a means for suppressing lifting of the suction port 12 of the autonomous vacuum cleaner S will be described.
 図31は、本発明の実施例7に係る自律走行型掃除機Sを側方から見た概略図である。図32は、本発明の実施例7に係る自律走行型掃除機Sを上方から見た概略図である。 FIG. 31 is a schematic diagram of an autonomous vacuum cleaner S according to a seventh embodiment of the present invention, viewed from the side. FIG. 32 is a schematic diagram of an autonomous vacuum cleaner S according to a seventh embodiment of the present invention viewed from above.
 自律走行型掃除機Sは、掃除機本体1の前後方向の中央部に駆動輪3,4が配置され、前方にサイドブラシ、後方に吸口部12が配置されている。自律走行型掃除機Sは、重心が駆動輪3,4よりも前方にあり、この駆動輪3,4を支点に掃除機本体1が前傾した場合、掃除機本体1の後方に配置された吸口部12が床面Yから離れ、ごみ取り性能が低下することがある。 In the autonomous vacuum cleaner S, drive wheels 3 and 4 are arranged in the center of the cleaner body 1 in the front-rear direction, a side brush is arranged in the front, and a suction part 12 is arranged in the rear. In the autonomous vacuum cleaner S, the center of gravity is located in front of the drive wheels 3 and 4, and when the cleaner body 1 is tilted forward using the drive wheels 3 and 4 as a fulcrum, the center of gravity is located at the rear of the cleaner body 1. The suction part 12 may become separated from the floor surface Y, and the dust removal performance may deteriorate.
 そこで、実施例7では、駆動輪3,4よりも吸口部12側(後方側)に錘600を配置している。錘600は、掃除機本体1の左右方向に分割して配置している。掃除機本体1に錘600を配置すると、自律走行型掃除機Sの重量が増加し、駆動輪3,4を駆動する走行モータ3m,4mの負荷が増加し、消費電力が増加する。そのため、本実施例では自律走行型掃除機Sの全体重量に対し、錘の重量を10%以下にしている。一般的な自律走行型掃除機Sの重量は2300g~2500g(錘を搭載していない重量)であるので、自律走行型掃除機Sに搭載する錘600は200g程度(左右の合計)とするのが好ましい。 Therefore, in the seventh embodiment, the weight 600 is arranged closer to the mouthpiece 12 (rearward side) than the drive wheels 3 and 4. The weights 600 are arranged so as to be divided in the left-right direction of the cleaner body 1. When the weight 600 is placed on the vacuum cleaner body 1, the weight of the autonomous vacuum cleaner S increases, the load on the travel motors 3m and 4m that drive the drive wheels 3 and 4 increases, and the power consumption increases. Therefore, in this embodiment, the weight of the weight is set to 10% or less of the total weight of the autonomous vacuum cleaner S. The weight of a typical autonomous vacuum cleaner S is 2,300g to 2,500g (without weight), so the weight 600 installed on the autonomous vacuum cleaner S should be around 200g (total of left and right sides). is preferred.
 実施例7によれば、駆動輪3,4よりも吸口部12側(後方側)に錘600を配置するようにしているので、吸口部12が床面Yから離れるのを抑制し、掃除性能を向上することができる。 According to the seventh embodiment, since the weight 600 is arranged closer to the suction port 12 (rear side) than the drive wheels 3 and 4, the suction port 12 is prevented from moving away from the floor surface Y, and the cleaning performance is improved. can be improved.
 なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。 Note that the present invention is not limited to the embodiments described above, and includes various modifications. The embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the configurations described.
 S…自律走行型掃除機、1…掃除機本体、1c…前後方向中央部、1f…本体前部、1r…本体後部、1s…下ケース、1t…排気口、1u…上ケース、1v…上カバー、1w…軸受部、2…バンパ、2a…端部、3…駆動輪、3a…アーム、3b…減速機構、3m…走行モータ、4…駆動輪、4a…アーム、4b…減速機構、4m…走行モータ、5…補助輪、6…サイドブラシ、6a…サイドブラシホルダ、6b…サイドブラシモータ、7…操作ボタン、8…ダストケース、8a…ハンドル、8b…集塵フィルタ、8c…流入口、8d…塵埃収容部、8e…ガイドリブ、10a…第1制御基板、10b…第2制御基板、11…駆動機構収容部、12…吸口部、13a,13b,13c,13d…床面用測距センサ、14…回転ブラシ、14a…回転ブラシモータ、15…掻取りブラシ、16…接続部、17a,17b…上面、21…蓄電池、21a,21b,21c…セル、22…ファンモータ、30…制御装置、40…LiDARユニット、40a…回転部、40b…固定部、41…LiDAR、41a…発光部、41b…受光部、42…回転駆動モータ、43…ベルト、44…LiDARカバー、44a…上面、44b…回動軸、44c…切欠き開口、44d…検知スイッチ押圧部、45…検知スイッチ、50…カメラ、60,61…測距センサ、70…赤外線受光部、80…塵埃センサ、90…通信手段、92…検知範囲、94…検知不可範囲、100…情報端末装置、101…表示画面、102,103…ポップアップ画面、200…無線LANルーター、300…家電サーバー、D…ドローン、400…下ケース、401…上カバー、402…操作スイッチ、403…制御装置、404…羽根車、405…保護部材、406…支柱、407…カメラ、500…仕切板、600…錘 S...autonomous vacuum cleaner, 1...vacuum cleaner body, 1c...front-back center part, 1f...main body front, 1r...main body rear, 1s...lower case, 1t...exhaust port, 1u...upper case, 1v...upper Cover, 1w...Bearing part, 2...Bumper, 2a...End part, 3...Drive wheel, 3a...Arm, 3b...Deceleration mechanism, 3m...Travel motor, 4...Drive wheel, 4a...Arm, 4b...Deceleration mechanism, 4m ...Travel motor, 5...Auxiliary wheel, 6...Side brush, 6a...Side brush holder, 6b...Side brush motor, 7...Operation button, 8...Dust case, 8a...Handle, 8b...Dust collection filter, 8c...Inflow port , 8d...Dust storage section, 8e...Guide rib, 10a...First control board, 10b...Second control board, 11...Drive mechanism storage section, 12...Suction port, 13a, 13b, 13c, 13d...Distance measurement for floor surface Sensor, 14... Rotating brush, 14a... Rotating brush motor, 15... Scraping brush, 16... Connection part, 17a, 17b... Top surface, 21... Storage battery, 21a, 21b, 21c... Cell, 22... Fan motor, 30... Control Device, 40... LiDAR unit, 40a... Rotating part, 40b... Fixed part, 41... LiDAR, 41a... Light emitting part, 41b... Light receiving part, 42... Rotation drive motor, 43... Belt, 44... LiDAR cover, 44a... Top surface, 44b...Rotation axis, 44c...Notch opening, 44d...Detection switch pressing part, 45...Detection switch, 50...Camera, 60, 61...Distance sensor, 70...Infrared light receiving part, 80...Dust sensor, 90...Communication Means, 92...Detection range, 94...Undetectable range, 100...Information terminal device, 101...Display screen, 102, 103...Pop-up screen, 200...Wireless LAN router, 300...Home appliance server, D...Drone, 400...Lower case , 401... Upper cover, 402... Operation switch, 403... Control device, 404... Impeller, 405... Protective member, 406... Support column, 407... Camera, 500... Partition plate, 600... Weight

Claims (4)

  1.  駆動輪及び前記駆動輪を駆動する走行モータを備えた掃除機本体と、前記掃除機本体に備えられ、塵埃を集塵するダストケースと、前記掃除機本体に備えられ、吸引力を発生させるファンモータと、前記走行モータ、前記ファンモータに電力を供給する蓄電池と、前記走行モータ、前記ファンモータを制御する制御装置と、を備えた自律走行型掃除機であって、
     前記掃除機本体には、前記掃除機本体の上面から突出して設置され、前記自律走行型掃除機と周囲との距離を測定する第1測距センサと、前記第1測距センサを覆うセンサカバーと、を備え、
     前記制御装置には、前記センサカバーが障害物に接触したことを検知する検知スイッチが備えられ、
     前記センサカバーには、前記センサカバーと一体的に設けられ、前記センサカバーを回動可能に軸支する回動軸と、前記センサカバーと一体的に設けられ、前記センサカバーの回動に伴って前記検知スイッチを押圧する検知スイッチ押圧部と、を備えたことを特徴とする自律走行型掃除機。
    A vacuum cleaner body including a drive wheel and a travel motor that drives the drive wheel, a dust case included in the vacuum cleaner body to collect dust, and a fan included in the vacuum cleaner body to generate suction force. An autonomous vacuum cleaner comprising a motor, a storage battery that supplies power to the travel motor and the fan motor, and a control device that controls the travel motor and the fan motor,
    The vacuum cleaner body includes a first distance measurement sensor that is installed to protrude from the top surface of the vacuum cleaner body and measures the distance between the autonomous vacuum cleaner and the surroundings, and a sensor cover that covers the first distance measurement sensor. and,
    The control device includes a detection switch that detects that the sensor cover has contacted an obstacle,
    The sensor cover includes a rotation shaft that is provided integrally with the sensor cover and rotatably supports the sensor cover, and a rotation shaft that is provided integrally with the sensor cover and that rotates as the sensor cover rotates. An autonomous vacuum cleaner, comprising: a detection switch pressing section that presses the detection switch by pressing the detection switch.
  2.  請求項1において、
     前記回動軸は、前記掃除機本体の左右方向に伸び、前記センサカバーの前後方向の中心位置よりも前方に位置し、
     前記検知スイッチ押圧部は、前記センサカバーの外周面より後方に向かって突出して設けたことを特徴とする自律走行型掃除機。
    In claim 1,
    The rotation axis extends in the left-right direction of the vacuum cleaner main body, and is located forward of the center position of the sensor cover in the front-rear direction,
    The autonomous vacuum cleaner is characterized in that the detection switch pressing portion is provided to protrude rearward from the outer peripheral surface of the sensor cover.
  3.  請求項2において、
     前記回動軸は、前記掃除機本体の上部を構成する上ケースに形成した軸受部と、前記上ケースによって覆われ、前記制御装置を構成する制御基板とにより支持することを特徴とする自律走行型掃除機。
    In claim 2,
    The autonomous running system is characterized in that the rotation shaft is supported by a bearing formed in an upper case that constitutes an upper part of the vacuum cleaner body, and a control board that is covered by the upper case and constitutes the control device. type vacuum cleaner.
  4.  請求項3において、
     前記上ケースには、切欠き部が形成され、
     前記検知スイッチ押圧部は、前記切欠き部を通して前記検知スイッチの上方に位置するように配置したことを特徴とする自律走行型掃除機。
    In claim 3,
    A notch is formed in the upper case,
    The autonomous vacuum cleaner is characterized in that the detection switch pressing section is arranged above the detection switch through the notch.
PCT/JP2023/000973 2022-09-21 2023-01-16 Autonomous travel-type cleaner WO2024062638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022150469A JP2024044740A (en) 2022-09-21 2022-09-21 Autonomous Vacuum Cleaner
JP2022-150469 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024062638A1 true WO2024062638A1 (en) 2024-03-28

Family

ID=90454214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000973 WO2024062638A1 (en) 2022-09-21 2023-01-16 Autonomous travel-type cleaner

Country Status (2)

Country Link
JP (1) JP2024044740A (en)
WO (1) WO2024062638A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021094118A (en) * 2019-12-16 2021-06-24 日立グローバルライフソリューションズ株式会社 Autonomously travelling type cleaner
JP2021112416A (en) * 2020-01-20 2021-08-05 パナソニックIpマネジメント株式会社 Autonomous travel type vacuum cleaner
JP2022127548A (en) * 2021-02-19 2022-08-31 パナソニックIpマネジメント株式会社 Autonomous travel type cleaner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021094118A (en) * 2019-12-16 2021-06-24 日立グローバルライフソリューションズ株式会社 Autonomously travelling type cleaner
JP2021112416A (en) * 2020-01-20 2021-08-05 パナソニックIpマネジメント株式会社 Autonomous travel type vacuum cleaner
JP2022127548A (en) * 2021-02-19 2022-08-31 パナソニックIpマネジメント株式会社 Autonomous travel type cleaner

Also Published As

Publication number Publication date
JP2024044740A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
TWI757570B (en) Robot cleaners and controlling method thereof
CN112654472B (en) Multiple autonomous mobile robots and control method thereof
CN110313867B (en) Autonomous mobile cleaner, cleaning method for autonomous mobile cleaner, and recording medium
CN110313863B (en) Autonomous mobile cleaning machine, cleaning method for autonomous mobile cleaning machine, and program
KR102314637B1 (en) Robot cleaner, and robot cleaning system
KR101772084B1 (en) Moving robot and controlling method thereof
RU2318652C2 (en) Movable robot
EP2839769B1 (en) Robot cleaner and method for controlling the same
EP2413772B1 (en) Mobile robot with single camera and method for recognizing 3d surroundings of the same
KR102427015B1 (en) A plurality of autonomous mobile robots and a controlling method for the same
KR101974870B1 (en) Artificial intelligence robot cleaner and robot cleaning system
JP6850107B2 (en) Autonomous electric cleaner
US20160316982A1 (en) Robot cleaner
US10845819B2 (en) Cleaner and control method thereof
CN210277064U (en) Cleaning robot and buffer assembly for cleaning robot
JP6200822B2 (en) Learning remote control device, self-propelled electronic device equipped with the same, and remote control learning method
EP3895593A1 (en) Robot cleaner and method for operating same
WO2024062638A1 (en) Autonomous travel-type cleaner
JP6155100B2 (en) Self-propelled electronic device
JP2013246589A (en) Space information generation device, space information use system, space information generation method, control program, and recording medium
KR102293657B1 (en) Moving Robot
JP2020518062A (en) Mobile robot and control method thereof
EP4079467A1 (en) Mobile robot and control method therefor
JP2023127087A (en) autonomous vacuum cleaner
KR20200115691A (en) A moving-robot and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867770

Country of ref document: EP

Kind code of ref document: A1