WO2024062563A1 - Lighting optical device and inspection device - Google Patents
Lighting optical device and inspection device Download PDFInfo
- Publication number
- WO2024062563A1 WO2024062563A1 PCT/JP2022/035197 JP2022035197W WO2024062563A1 WO 2024062563 A1 WO2024062563 A1 WO 2024062563A1 JP 2022035197 W JP2022035197 W JP 2022035197W WO 2024062563 A1 WO2024062563 A1 WO 2024062563A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- lens
- condensing optical
- lenses
- light
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 174
- 238000007689 inspection Methods 0.000 title claims abstract description 65
- 239000000463 material Substances 0.000 claims abstract description 11
- 238000005286 illumination Methods 0.000 claims description 53
- 230000014509 gene expression Effects 0.000 claims description 25
- 230000004907 flux Effects 0.000 claims description 15
- 238000004458 analytical method Methods 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 4
- 239000011521 glass Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 11
- 239000000758 substrate Substances 0.000 abstract description 11
- 230000007547 defect Effects 0.000 abstract description 9
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- 230000007613 environmental effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 9
- 239000010436 fluorite Substances 0.000 description 9
- 239000010453 quartz Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000004044 response Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
Definitions
- the present invention relates to an illumination optical device and an inspection device.
- the illumination optical system and substrate inspection device are used to detect foreign objects on the object to be inspected by irradiating the surface of the object with light and detecting the reflected or scattered light from the object.
- Inspection for defects can be performed using an inspection device.
- Patent Document 1 addresses the problem of wanting to flexibly change the beam spot diameter in the longitudinal direction according to inspection conditions and stage operation while maintaining the focus of the beam spot. It is disclosed that the beam spot is controlled in the longitudinal direction using a condensing optical system including a cylindrical parabolic mirror and a condensing lens.
- Patent Document 1 does not take into account beam spot position shift due to environmental temperature changes at all.
- the present disclosure provides an illumination optical system and an illumination optical system that flexibly changes the beam spot diameter of illumination light according to inspection conditions and stage operation while maintaining highly accurate focusing performance in response to environmental temperature changes.
- a board inspection device equipped with the same is provided.
- the present disclosure provides an illumination optical device that expands a luminous flux and focuses it on an object, which includes a light source that emits a luminous flux, and a variable luminous flux diameter unit that enlarges the diameter of the luminous flux from the light source.
- a condensing optical system that condenses a beam whose diameter has been expanded onto a target object, the variable beam diameter unit includes at least four lenses, and at least one lens of the variable beam diameter unit satisfies the conditions.
- Formula (1) is satisfied, at least one lens in the variable beam diameter unit other than the lens that satisfies conditional formula (1) satisfies conditional formula (2), and the condensing optical system has at least two at least two lenses satisfy conditional expression (3), at least one lens of the condensing optical system satisfies conditional expression (1), and at least one lens of the condensing optical system satisfies conditional expression (3).
- lenses other than the lenses satisfying conditional expression (1) satisfy conditional expression (2).
- dn/dt is the temperature coefficient of refractive index
- m is the number of lenses included in the condensing optical system
- f i is the focal length of the i-th lens in the condensing optical system
- dn i /dt is the condensing optical system.
- the refractive index temperature coefficient of the i-th lens in the system is the focal length of the condensing optical system
- MAX_dn i /dt is the maximum absolute value of the refractive index temperature coefficient of the lens included in the condensing optical system. .
- the technology disclosed herein makes it possible to maintain high-precision focusing performance even when the temperature changes.
- FIG. 2 is a diagram illustrating a configuration example of an illumination optical system OP1 according to a first embodiment of the present disclosure.
- FIG. 2 is a diagram illustrating a schematic internal configuration example of a variable beam diameter unit 4 according to the present disclosure.
- FIG. 3 is a diagram illustrating a schematic configuration example of a condensing optical system 5 according to the first embodiment. 3 is a diagram showing an example of the configuration of a support structure 6.
- FIG. 1 is a diagram showing an example of a schematic configuration of a board inspection apparatus 100.
- FIG. It is a figure showing an example of composition of illumination optical system OP1 concerning a 2nd embodiment.
- 3 is a diagram showing an example of the arrangement of two spherical lenses 25c and 25d in the condensing optical system 25.
- Increasing the output of the light source based on the increased sensitivity of defect detection, as well as the heat generated by the motors used to drive high-speed rotation stages and other motors used to adjust the amount of light and the optical axis, may cause damage to the vicinity of the illumination optical system (configuration shown in Figure 1). (near the element) changes frequently. However, it is necessary to maintain highly sensitive defect detection even when the temperature changes, and for this purpose, it is extremely important to maintain the focusing performance of the beam spot formed on the wafer.
- Embodiments of the present disclosure propose a technique that makes it possible to maintain focus performance of a beam spot formed on a wafer. Embodiments of the present invention will be described below based on the accompanying drawings.
- FIG. 1 is a diagram illustrating a configuration example of an illumination optical system OP1 according to a first embodiment of the present disclosure.
- the illumination optical system OP1 includes a DUV light source (Deep Ultra Violet light source: wavelength range is 200 to 300 nm) 1, an attenuator 2, a mirror 3, a variable beam diameter unit (expander) 4, and a condensing optical system.
- the illumination optical system OP1 includes a system 5, a support structure 6, and a control section 8 (the control section 8 may be provided outside the illumination optical system OP1).
- the DUV light source 1 emits parallel light (which may be called linear light). Note that in FIG. 1, parallel light is schematically shown as a straight line. Further, in this embodiment, the DUV light source 1 is used as a light source, but the present invention is not limited to this, and a light source that emits light of any wavelength can be used.
- the support structure 6 can fix a group of elements (the attenuator 2, the mirror 3, the variable beam diameter unit 4, the condensing optical system 5, etc.) for guiding the light from the DUV light source 1 to the inspection object 7. It has a structure.
- the support structure 6 may be composed of a single fixed member or support member, or may be a mechanical structure made up of a plurality of members combined.
- the control unit 8 changes the position on the optical axis of the cylindrical lenses 5a and 5b of the condensing optical system 5 supported by the support structure 6 (moves on the optical axis) in response to an instruction input by the user. can be done.
- the light emitted from the DUV light source 1 undergoes light intensity adjustment by the attenuator 2.
- the light whose quantity has been adjusted is reflected by the mirror 3, its course direction is changed, and it is guided to the beam diameter variable unit 4.
- the variable beam diameter unit 4 enlarges the beam diameter of the light reflected by the mirror 3 and guides it to the condensing optical system 5 .
- the condensing optical system 5 condenses the light whose beam diameter has been expanded, and irradiates the condensed light onto the inspection object 7 .
- the internal configuration of the variable beam diameter unit 4 and the internal configuration of the condensing optical system 5 are devised to maintain focus performance even when the temperature changes.
- FIG. 2 is a diagram showing a schematic internal configuration example of the variable beam diameter unit 4 according to this embodiment.
- the variable beam diameter unit 4 includes a positive lens group (at least one positive lens) 4a, a negative lens group (at least one negative lens) 4b, and a positive lens group (consisting of two positive lenses) 4c group. (composed of at least four lenses).
- a positive lens group 4a is arranged on the DUV light source 1 side, and a positive lens group 4c is arranged on the inspection object 7 side.
- Parallel light enters the variable beam diameter unit 4, and light emitted therefrom is also parallel light. However, the light is emitted with a diameter of the luminous flux that is enlarged relative to the diameter of the incident luminous flux.
- the variable beam diameter unit 4 is configured such that any or all of the groups constituting it can operate in the optical axis direction, thereby changing the diameter of the emitted beam.
- the refractive index becomes higher (lower) due to temperature changes, and the light flux diameter variable unit 4
- the emitted light beam converges (diverges).
- the light beam emitted from the variable beam diameter unit 4 needs to be parallel light.
- Synthetic quartz (dn/dt>0) and fluorite (dn/dt ⁇ 0) can be cited as an example of a combination of materials having refractive index temperature coefficients (dn/dt) of opposite signs. If synthetic quartz (dn/dt > 0) or fluorite (dn/dt ⁇ 0) is used as the material of the lens constituting the variable beam diameter unit 4, it is possible to suppress defocusing when the environmental temperature changes based on the above-mentioned theory. be.
- the positive lens group 4a and the negative lens group 4b are made of synthetic quartz, and one of the two positive lenses included in the lens group 4c is made of synthetic quartz and the other is made of fluorite. , it becomes possible to suppress the focus fluctuation when the environmental temperature changes as described above. Note that similar effects can be expected when the positive lens group 4a and the negative lens group 4b are made of fluorite, and of the two positive lenses included in the lens group 4c, one is made of quartz and the other is made of fluorite.
- FIG. 3 is a diagram showing a schematic configuration example of the condensing optical system 5.
- the condensing optical system 5 includes, in order from the variable beam diameter unit 4 side (light incident side), at least two cylindrical lenses 5a and 5b, two folding mirrors 5c and 5d, and one cylindrical parabolic mirror 5e. Equipped with. Note that depending on the angle at which the light is irradiated onto the inspection object 7, the mirrors 5c and 5d may not be essential components.
- the parallel light from the variable beam diameter unit 4 is focused onto the inspection object 7 by the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e.
- What is condensed by the cylindrical lenses 5a and 5b is the light flux in the vertical direction of the paper in FIG.
- the light beam in the depth direction of the paper is focused onto the inspection object 7 by the cylindrical parabolic mirror 5e.
- each character or character expression is m: number of lenses included in the condensing optical system; f i : focal length of the i-th lens of the condensing optical system; dn i /dt: refractive index temperature coefficient of the i-th lens of the condensing optical system; f: focal length of condensing optical system; MAX_dn i /dt: maximum absolute value of refractive index temperature coefficient in the lens included in the condensing optical system; It shows.
- the right side of equation (3) indicates the amount of focus variation if the condensing optical system 5 were composed of lenses made of a single material. If the left side of equation (3) is smaller than the right side of equation (3), it means that the optical system is capable of suppressing focus fluctuations due to temperature changes.
- the two cylindrical lenses 5a and 5b are made of the same glass material (same optical glass) and have different signs of power (refractive power), then formula (3) can be satisfied. This makes it possible to realize an optical system with small focus fluctuations.
- the power of the cylindrical lens 5a is positive (convex lens)
- the power of the cylindrical lens 5b is negative (concave lens)
- both glass materials are fluorite
- the environmental temperature rises the refractive power of the cylindrical lens 5a weakens due to the temperature rise, but the refractive power of the cylindrical lens 5b strengthens, making it possible to cancel (at least partially offset) the overall refractive power fluctuations. As a result, it becomes possible to suppress focus fluctuations on the inspection object 7.
- the focal length of each lens can be optimized by moving the cylindrical lenses 5a and/or 5b on the optical axis.
- a camera (not shown) acquires an image of the beam spot size on the inspection object (for example, a wafer) 7, and the user confirms it.
- the control unit 8 moves the cylindrical lenses 5a and/or 5b on the optical axis, so that the beam spot size can be adjusted as appropriate.
- a low expansion metal such as Invar
- focus performance during temperature changes is improved. can be further increased.
- the focal lengths of the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e are each optimized so that the light is focused on the inspection object 7.
- the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e have different focal lengths, so that the beam spot diameter on the inspection object 7 is linear (linear: the beam spot shape is such that the major axis is the minor axis). It is constructed so that it can be formed into a very large elliptical shape (compared to the elliptical shape).
- the linear shape (elliptical shape) is used to increase the throughput by increasing the scanning width when performing beam scanning while rotating or moving the stage (not shown) on which the inspection object 7 (wafer) is placed. This is to do so.
- the combined focal length of the cylindrical lenses 5a and 5b is fA
- the focal length of the cylindrical parabolic mirror 5e is fB
- the angle of elevation of light beam incidence on the inspection object 7 is ⁇
- the wavelength of the DUV light source 1 is ⁇
- the condensing optical system 5 is If the diameter of the incident beam (luminous flux) in the longitudinal direction is DA, and the diameter of the beam in the lateral direction is DB, then the beam diameter ⁇ A formed in the horizontal direction on the inspection object 7 in FIG. 3 and the beam diameter formed in the depth direction.
- the relationship between the beam diameter ⁇ B and the beam diameter ⁇ B is expressed by the following equations (4) and (5).
- ⁇ A 1.22*fA* ⁇ /(DA*sin ⁇ )... (4)
- ⁇ B 1.22*fB* ⁇ /(DA*sin ⁇ )... (5)
- the beam spot diameter and beam aspect ratio are adjusted by adjusting the beam diameter (DA and DB) incident on the condensing optical system 5, the combined focal length of the cylindrical lenses 5a and 5b, and the focal length of the cylindrical parabolic mirror 5e. It can be seen that control is possible by doing this. Note that in this embodiment, the combined focal length of the cylindrical lenses 5a and 5b is longer than the focal length of the cylindrical parabolic mirror 5e, so on the inspection object 7, the long axis is in the left-right direction in the plane of the paper, and the long axis is short in the depth direction in the plane of the paper. An axis is formed.
- the control unit 8 controls the lens drive unit (the lens drive unit itself is not shown) that moves the cylindrical lenses 5a and 5b in response to instructions input by the user, thereby moving the cylindrical lenses.
- the position of 5a and/or 5b on the optical axis can be moved.
- the configuration shown in FIG. 3 makes it possible to realize an illumination optical system OP1 that controls the aspect ratio of the beam spot and suppresses focus deviations caused by changes in the environmental temperature.
- FIG. 4 is a diagram showing a configuration example of the support structure 6.
- the support structure 6 can be configured by, for example, a base 6a and element support members 6b_1 to 6b_4.
- the support structure 6 may be configured by fixing a plurality of elements on the same base 6a, or may be configured by a plurality of bases.
- the element supporting members 6b_1 to 6b_4 may be formed of a single member, or may be a mechanical structure formed by combining a plurality of members.
- FIG. 5 is a diagram showing a schematic configuration example of the board inspection apparatus 100.
- the substrate inspection apparatus 100 shown in FIG. 5 is equipped with the illumination optical system OP1 according to the first embodiment, it may be equipped with an illumination optical system OP2 according to the second embodiment described later.
- the substrate inspection apparatus 100 includes an illumination optical system OP1, a stage 111 on which the inspection object 7 is placed, a light receiving lens 112, a light receiving element 113, and an analysis unit 114.
- the inspection object 7 is fixed on a stage 111.
- This stage 111 is rotatable around a rotation axis in the vertical direction in the plane of FIG. 5, and can also be translated in a direction perpendicular to the rotation axis (for example, in the horizontal direction in the plane of FIG. 5).
- the longitudinal direction of the linear beam spot formed by the illumination optical system OP1 also coincides with this.
- the inspection object 7 has a disk shape (for example, a wafer), and can be rotated and translated in parallel by the stage 111. This makes it possible to irradiate the entire surface of the disk (inspection object 7) with light.
- the light-receiving lens 112 condenses a portion of the diffusely reflected light that is generated when a defect or foreign object on the inspection object 7 is hit by light.
- the light receiving element 113 converts the light collected by the light receiving lens 112 into an electrical signal.
- Analysis unit 114 receives the electrical signal from light receiving element 113 and analyzes it.
- the analysis unit 114 also outputs the analysis result as a test result, for example, on a display screen of a display device (not shown).
- the analysis unit 114 may include a computer.
- the board inspection apparatus 100 inspects the inspection object 7 (foreign object inspection, defect inspection).
- the beam outputted by the illumination optical system OP1 is highly accurately focused in a linear manner, so that inspection can be performed with higher accuracy.
- the analysis unit 114 may also have a function of appropriately arranging optical elements (for example, a condensing optical system or a variable beam diameter unit) placed on the optical path (the control unit in FIG. (It may also have the functions of 8). This function may be performed in response to user input of the board inspection apparatus 100, or may be performed automatically by the analysis unit 114.
- the analysis unit 114 automatically controls the arrangement of optical elements, the optical elements may be selected so that the electrical signal obtained by the light receiving element 113 is in the optimal state for the target inspection. good.
- FIG. 5 shows one light receiving lens 112 and one light receiving element 113, a plurality of either or both of these may be provided.
- FIG. 6 is a diagram showing a configuration example of the illumination optical system OP1 according to the second embodiment.
- the condensing optical system 5 is composed of an axially symmetrical spherical lens instead of a cylindrical lens.
- the light is focused to the left and right of the page by the cylindrical lenses 5a and 5b, and to the depth of the page by the cylindrical parabolic mirror 5e.
- the aspect ratio of the beam spot is controlled by providing a difference in focal length between the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e.
- the illumination optical system OP2 includes a DUV light source (Deep Ultra Violet light source) 21, an attenuator 22, a mirror 23, and an anamorphic prism 28. , a variable beam diameter unit (expander) 24, a condensing optical system 25, a support structure 26, and a control section 29 (the control section 29 may be provided outside the illumination optical system OP2). Be prepared.
- the condensing optical system 25 instead of the cylindrical lenses 5a and 5b according to the first embodiment, axially symmetrical spherical lenses 25c and 25d are responsible for image formation in the left-right direction and the depth direction in the drawing. ing.
- an anamorphic prism 28 is provided on the optical path to control the aspect ratio of the beam spot.
- the condensing optical system 25 includes, in order when viewed from the DUV light source 21 side, two mirrors 25a and 25b and two spherical lenses 25c and 25d. Even when the condensing optical system 25 is configured with an axially symmetrical spherical lens, it is possible to suppress out of focus due to changes in environmental temperature by satisfying the condition shown in equation (3) above.
- FIG. 7 is a diagram showing an example of the arrangement of the two spherical lenses 25c and 25d in the condensing optical system 25.
- the condensing optical system 25 when one of the two spherical lenses 25c and 25d is made of synthetic quartz and the other is made of fluorite, the condition shown in equation (3) can be satisfied. Therefore, similarly to the first embodiment, it is possible to realize a condensing optical system 25 that suppresses focus fluctuations.
- the spherical lens 25c is made of synthetic quartz and the spherical lens 25d is made of fluorite, and the environmental temperature rises, the refractive power of 5c will become stronger but the refractive power of 5d will weaken as the temperature rises, resulting in an overall change in refractive power. It becomes possible to cancel (or at least partially offset) As a result, it becomes possible to suppress focus fluctuations on the inspection object 7.
- the circular light beam from the DUV light source 21 becomes elliptical after passing through the anamorphic prism 28.
- the longitudinal direction of the elliptical beam emitted from the anamorphic prism 28 corresponds to the depth direction of the paper
- the lateral direction corresponds to the left-right direction of the paper.
- the pupil diameter D of the beam before entering the condensing optical system 25 is smaller in the horizontal direction (DB) of the drawing than in the depth direction (DA) of the drawing. Since the beam diameters ⁇ A and ⁇ B on the inspection object 27 are as shown in equations (4) and (5) above, a linear (elliptical) beam spot is formed on the inspection object 27.
- the length of the beam spot corresponds to the horizontal direction of the paper
- the short length of the beam spot corresponds to the depth direction of the paper.
- variable beam diameter unit 24 disposed downstream of the anamorphic prism 28 an internal optical element moves in the optical axis direction under the control of the control unit 29 (a lens drive unit (not shown) is controlled by the control unit 29). (by moving an optical element in response to a signal), it is possible to change the size of the elliptical beam.
- the focus can be varied by optimizing the focal length of each of the spherical lenses 25c and 25d so that the left side of equation (3) becomes extremely small (so as to cancel out the difference in the temperature coefficient of refraction between synthetic quartz and fluorite). It is possible to enhance the suppressive effect.
- the condensing optical system 25 has two lenses, but the number of lenses is not limited as long as it satisfies equation (3).
- the distance between two lenses is the distance between the optical elements that is the widest among the optical element intervals included in the condensing optical system 5 or 25 (in the condensing optical system 5, the distance between the cylindrical lens 5a and the cylindrical parabolic mirror 5e).
- DR_max is set, focus fluctuation can be suppressed more efficiently by setting DR to less than 1/10 of DR_max (DR ⁇ DR_max/10).
- f_max indicates the focal length of the lens with the longest focal length among the target lenses
- f_min indicates the focal length of the lens with the shortest focal length among the target lenses.
- the illumination optical device includes a variable beam diameter unit (expander) 4 or 24 and a condensing optical system 5 or 25.
- the variable beam diameter unit at least one lens is configured to satisfy dn/dt ⁇ 0 (conditional expression (1)), and at least one other lens is configured to satisfy dn/dt>0 (conditional expression (2)). be done.
- At least two lenses in the condensing optical system are configured to satisfy conditional expression (3).
- at least one lens in the condensing optical system is configured to satisfy conditional expression (1), and at least one other lens is configured to satisfy conditional expression (2).
- dn/dt is the temperature coefficient of refractive index
- m is the number of lenses included in the condensing optical system
- f i is the focal length of the i-th lens in the condensing optical system
- dn i /dt is the condensing optical system.
- the refractive index temperature coefficient of the i-th lens in the system is the focal length of the condensing optical system
- MAX_dn i /dt is the maximum absolute value of the refractive index temperature coefficient of the lens included in the condensing optical system.
- a DUV light source that emits linear light and has a wavelength range of 200 nm to 300 nm can be used.
- Using linear light makes it easier to control the aspect ratio of the beam spot of the light irradiated onto the inspection target. Furthermore, by using beam spots with different aspect ratios, it is possible to increase the throughput when inspecting an object to be inspected.
- DR is the interval between two lenses included in the condensing optical system
- DR_max is the interval between the optical elements that is the widest among the optical element intervals included in the condensing optical system
- the condensing optical system 5 or 25 is It is preferable to configure so that DR ⁇ DR_max/10 is satisfied. By doing so, it becomes possible to flexibly change the beam spot diameter on the object to be inspected according to the inspection conditions and stage operation.
- the two lenses included in the condensing optical system 5 according to the first embodiment are cylindrical lenses arranged with their power directions facing each other.
- the two lenses included in the condensing optical system 25 according to the second embodiment are spherical lenses arranged with their power directions facing each other.
- ⁇ 50mm It can be configured as follows. By doing so, it becomes possible to flexibly change the beam spot diameter on the object to be inspected according to the inspection conditions and stage operation.
- the illumination optical device includes a control section 29 that moves at least one lens included in the variable beam diameter unit 24 in the optical axis direction.
- the control unit 29 controls the beam diameter by expanding or reducing the diameter of the beam by moving at least one lens of the variable beam diameter unit 24 in the optical axis direction. By doing so, it becomes possible to flexibly adjust the beam spot diameter.
- the support structure 6 holds at least the variable beam diameter unit 4 or 24 and the condensing optical system 5 or 25.
- the support structure can be constructed from a low expansion metal.
- each optical element can be stably arranged in the illumination optical device, so that highly accurate focus control can be achieved without being affected by external factors other than environmental temperature changes. Can be done. Further, by configuring the support structure 6 using a low expansion metal, focusing performance during temperature changes can be further improved.
- the illumination optical device variably controls the focal length of the condensing optical system 5 by moving the optical elements of the condensing optical system 5 on the optical axis, so that the object is irradiated.
- the controller 8 includes a control unit 8 that adjusts the aspect ratio of the beam spot (provided that the configuration requirement (i) above is provided).
- an optical element that changes the aspect ratio of the beam spot irradiated onto the inspection object. This makes it possible to easily generate a linear (elliptical) beam.
- the illumination optical device according to this embodiment can be applied to a substrate inspection device.
- focus control can be performed with high precision without being affected by environmental temperature changes, so that inspection of the substrate (object to be inspected) can be performed with high precision.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
In substrate inspection devices, the size of defects and foreign matter which need to be detected has decreased, and use of a high-power deep ultraviolet laser light source to form a beam spot with high precision has increased detection sensitivity. Thus, there is a need to further increase the stability of size and position of a beam spot. Furthermore, it is important that variations in focus position does are not caused when there is a change in ambient temperature during device operation. To this end, provided is a lighting optical system that flexibly changes the beam spot diameter of lighting light in accordance with inspection conditions and stage movement, while also maintaining high-precision focus performance which can handle changes in ambient temperature. More specifically, suppression of variations in focus position is made possible by optimizing the arrangement and materials of an optical element of a transparent optical system constituting a device (see fig. 1).
Description
本発明は、照明光学装置、および検査装置に関する。
The present invention relates to an illumination optical device and an inspection device.
照明光学系および基板検査装置は、検査対象物の表面に光を照射し、検査対象物からの反射光または散乱光を検出することにより、検査対象物上の異物を検出するために使用される。
The illumination optical system and substrate inspection device are used to detect foreign objects on the object to be inspected by irradiating the surface of the object with light and detecting the reflected or scattered light from the object.
半導体基板や薄膜基板等の製造ラインにおいて、製品の歩留まりの維持または向上のために、半導体基板や薄膜基板等の表面に存在する欠陥の検査が行われている。欠陥の検査は、検査装置を用いて行うことができる。
In manufacturing lines for semiconductor substrates, thin film substrates, etc., defects present on the surfaces of semiconductor substrates, thin film substrates, etc. are inspected in order to maintain or improve product yield. Inspection for defects can be performed using an inspection device.
検査装置に用いられる照明光学装置について、特許文献1は、ビームスポットのフォーカスを維持したまま、長手方向のビームスポット径を検査条件やステージ動作に応じて柔軟に変化させたいという課題に対して、シリンドリカル放物面ミラーと集光レンズを備えた集光光学系を用いてビームスポットの長手方向の制御をすることを開示している。
Regarding an illumination optical device used in an inspection device, Patent Document 1 addresses the problem of wanting to flexibly change the beam spot diameter in the longitudinal direction according to inspection conditions and stage operation while maintaining the focus of the beam spot. It is disclosed that the beam spot is controlled in the longitudinal direction using a condensing optical system including a cylindrical parabolic mirror and a condensing lens.
しかしながら、特許文献1に記載の技術では環境温度変化によるビームスポット位置ずれについて全く考慮されていない。
However, the technique described in Patent Document 1 does not take into account beam spot position shift due to environmental temperature changes at all.
また、近年の技術革新により、検出が求められる欠陥や異物のサイズはより小さくなっている。このため、高出力な深紫外レーザ光源を用いてビームスポットを高精度に形成することで検出感度を高めている。そして、検出感度を高めるため、ビームスポットのサイズや位置に関する安定性をより一層高めることが求められてきている。従って、環境温度変化によるビームスポットの位置ずれに対処しなければ高精度な検査結果を得ることができない。
Additionally, due to recent technological innovations, the size of defects and foreign objects that need to be detected has become smaller. For this reason, detection sensitivity is increased by forming a beam spot with high precision using a high-output deep ultraviolet laser light source. In order to increase detection sensitivity, there is a need to further improve the stability regarding the size and position of the beam spot. Therefore, highly accurate inspection results cannot be obtained unless the positional shift of the beam spot due to environmental temperature changes is dealt with.
上述のような欠陥検出の高感度化要求に基づく光源の高出力化、短波長化、およびビームスポット位置の高安定性の要求に伴い、照明光の波長領域(例えば、深紫外領域)においてビームスポットのフォーカス性能を高める工夫が必要となってきている。
In line with the above-mentioned demand for higher sensitivity in defect detection, higher power output of light sources, shorter wavelengths, and higher stability of beam spot positions, beam It has become necessary to devise ways to improve spot focusing performance.
本開示は、このような状況に鑑み、照明光のビームスポット径を検査条件やステージ動作に応じて柔軟に変化させつつ、環境温度変化に対応した高精度なフォーカス性能を維持する照明光学系およびそれを備える基板検査装置を提供する。
In view of this situation, the present disclosure provides an illumination optical system and an illumination optical system that flexibly changes the beam spot diameter of illumination light according to inspection conditions and stage operation while maintaining highly accurate focusing performance in response to environmental temperature changes. A board inspection device equipped with the same is provided.
上記課題を解決するために、本開示は、光束を拡大し、対象物に集光させる照明光学装置であって、光束を発する光源と、光源からの光束の径を拡大する光束径可変ユニットと、径が拡大された光束を対象物上に集光する集光光学系と、を備え、光束径可変ユニットは、少なくとも4つのレンズを含み、光束径可変ユニットのうち少なくとも1つのレンズは、条件式(1)を満たし、光束径可変ユニットのうち少なくとも1つのレンズであって、条件式(1)を満たすレンズ以外のレンズは、条件式(2)を満たし、集光光学系は、少なくとも2つのレンズを含み、少なくとも2つのレンズは、条件式(3)を満たし、集光光学系のうち少なくとも1つのレンズは、条件式(1)を満たし、集光光学系のうち少なくとも1つのレンズであって、条件式(1)を満たすレンズ以外のレンズは、条件式(2)を満たす、照明光学装置。
dn/dt<0 ・・・(1)
dn/dt>0 ・・・(2)
In order to solve the above problems, the present disclosure provides an illumination optical device that expands a luminous flux and focuses it on an object, which includes a light source that emits a luminous flux, and a variable luminous flux diameter unit that enlarges the diameter of the luminous flux from the light source. , a condensing optical system that condenses a beam whose diameter has been expanded onto a target object, the variable beam diameter unit includes at least four lenses, and at least one lens of the variable beam diameter unit satisfies the conditions. Formula (1) is satisfied, at least one lens in the variable beam diameter unit other than the lens that satisfies conditional formula (1) satisfies conditional formula (2), and the condensing optical system has at least two at least two lenses satisfy conditional expression (3), at least one lens of the condensing optical system satisfies conditional expression (1), and at least one lens of the condensing optical system satisfies conditional expression (3). In the illumination optical device, lenses other than the lenses satisfying conditional expression (1) satisfy conditional expression (2).
dn/dt<0...(1)
dn/dt>0...(2)
dn/dt<0 ・・・(1)
dn/dt>0 ・・・(2)
In order to solve the above problems, the present disclosure provides an illumination optical device that expands a luminous flux and focuses it on an object, which includes a light source that emits a luminous flux, and a variable luminous flux diameter unit that enlarges the diameter of the luminous flux from the light source. , a condensing optical system that condenses a beam whose diameter has been expanded onto a target object, the variable beam diameter unit includes at least four lenses, and at least one lens of the variable beam diameter unit satisfies the conditions. Formula (1) is satisfied, at least one lens in the variable beam diameter unit other than the lens that satisfies conditional formula (1) satisfies conditional formula (2), and the condensing optical system has at least two at least two lenses satisfy conditional expression (3), at least one lens of the condensing optical system satisfies conditional expression (1), and at least one lens of the condensing optical system satisfies conditional expression (3). In the illumination optical device, lenses other than the lenses satisfying conditional expression (1) satisfy conditional expression (2).
dn/dt<0...(1)
dn/dt>0...(2)
ここで、dn/dtは屈折率の温度係数、mは集光光学系に含まれるレンズの数、fiは集光光学系のi番目のレンズの焦点距離、dni/dtは集光光学系i番目のレンズの屈折率温度係数、fは集光光学系の焦点距離、MAX_dni/dtは集光光学系に含まれるレンズの屈折率温度係数絶対値の最大値、をそれぞれ表している。
Here, dn/dt is the temperature coefficient of refractive index, m is the number of lenses included in the condensing optical system, f i is the focal length of the i-th lens in the condensing optical system, and dn i /dt is the condensing optical system. The refractive index temperature coefficient of the i-th lens in the system, f is the focal length of the condensing optical system, and MAX_dn i /dt is the maximum absolute value of the refractive index temperature coefficient of the lens included in the condensing optical system. .
本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される請求の範囲の様態により達成され実現される。
本明細書の記述は典型的な例示に過ぎず、本開示の請求の範囲又は適用例を如何なる意味においても限定するものではない。 Further features related to the present disclosure will become apparent from the description herein and the accompanying drawings. In addition, aspects of the present disclosure may be realized and realized by means of the elements and combinations of various elements and aspects of the following detailed description and appended claims.
The descriptions herein are merely typical examples and do not limit the scope of claims or applications of the present disclosure in any way.
本明細書の記述は典型的な例示に過ぎず、本開示の請求の範囲又は適用例を如何なる意味においても限定するものではない。 Further features related to the present disclosure will become apparent from the description herein and the accompanying drawings. In addition, aspects of the present disclosure may be realized and realized by means of the elements and combinations of various elements and aspects of the following detailed description and appended claims.
The descriptions herein are merely typical examples and do not limit the scope of claims or applications of the present disclosure in any way.
本開示の技術によれば、温度変化時に高精度なフォーカス性能を維持することができる。
The technology disclosed herein makes it possible to maintain high-precision focusing performance even when the temperature changes.
欠陥検出の高感度化に基づく光源の高出力化、また高速回転ステージ等の駆動に用いるモータ、その他光量や光軸調整に使用するモータ等の熱により、照明光学系付近(図1に示す構成要素付近)の温度は頻繁に変化する。しかし、温度変化時にも高感度な欠陥検出を維持する必要があり、そのためにはウェーハ上に形成されるビームスポットのフォーカス性能を維持することが極めて重要となる。
Increasing the output of the light source based on the increased sensitivity of defect detection, as well as the heat generated by the motors used to drive high-speed rotation stages and other motors used to adjust the amount of light and the optical axis, may cause damage to the vicinity of the illumination optical system (configuration shown in Figure 1). (near the element) changes frequently. However, it is necessary to maintain highly sensitive defect detection even when the temperature changes, and for this purpose, it is extremely important to maintain the focusing performance of the beam spot formed on the wafer.
本開示の実施形態は、ウェーハ上に形成されるビームスポットのフォーカス性能を維持することを可能にする技術を提案する。以下、本発明の実施形態について添付図面に基づいて説明する。
Embodiments of the present disclosure propose a technique that makes it possible to maintain focus performance of a beam spot formed on a wafer. Embodiments of the present invention will be described below based on the accompanying drawings.
(1)第1の実施形態
<照明光学系の構成例>
図1は、本開示の第1の実施形態に係る照明光学系OP1の構成例を示す図である。照明光学系OP1は、DUV光源(Deep Ultra Violet光源:深紫外光源:波長域は200~300nm)1と、アッテネータ2と、ミラー3と、光束径可変ユニット(エキスパンダ)4と、集光光学系5と、支持構造体6と、制御部8(制御部8は、照明光学系OP1の外部に設けてもよい)と、を備える。 (1) First embodiment <Configuration example of illumination optical system>
FIG. 1 is a diagram illustrating a configuration example of an illumination optical system OP1 according to a first embodiment of the present disclosure. The illumination optical system OP1 includes a DUV light source (Deep Ultra Violet light source: wavelength range is 200 to 300 nm) 1, anattenuator 2, a mirror 3, a variable beam diameter unit (expander) 4, and a condensing optical system. The illumination optical system OP1 includes a system 5, a support structure 6, and a control section 8 (the control section 8 may be provided outside the illumination optical system OP1).
<照明光学系の構成例>
図1は、本開示の第1の実施形態に係る照明光学系OP1の構成例を示す図である。照明光学系OP1は、DUV光源(Deep Ultra Violet光源:深紫外光源:波長域は200~300nm)1と、アッテネータ2と、ミラー3と、光束径可変ユニット(エキスパンダ)4と、集光光学系5と、支持構造体6と、制御部8(制御部8は、照明光学系OP1の外部に設けてもよい)と、を備える。 (1) First embodiment <Configuration example of illumination optical system>
FIG. 1 is a diagram illustrating a configuration example of an illumination optical system OP1 according to a first embodiment of the present disclosure. The illumination optical system OP1 includes a DUV light source (Deep Ultra Violet light source: wavelength range is 200 to 300 nm) 1, an
DUV光源1は、平行光(線状光と呼ばれるものであってもよい)を射出する。なお、図1では平行光を模式的に直線で示している。また、本実施形態では光源としてDUV光源1を用いているが、これに限定されず任意の波長の光を発する光源を用いることができる。
The DUV light source 1 emits parallel light (which may be called linear light). Note that in FIG. 1, parallel light is schematically shown as a straight line. Further, in this embodiment, the DUV light source 1 is used as a light source, but the present invention is not limited to this, and a light source that emits light of any wavelength can be used.
支持構造体6は、DUV光源1からの光を検査対象物7に導くための素子群(アッテネータ2、ミラー3、光束径可変ユニット4、および集光光学系5等)を固定することができる構造を有している。支持構造体6は、単一の固定部材または支持部材から構成されても良く、複数の部材が組み合わされた機械的構造体であっても良い。制御部8は、例えば、ユーザが入力する指示に応答して、支持構造体6が支持する集光光学系5のシリンドリカルレンズ5aおよび5bの光軸上の位置を変化(光軸上を移動)させることができる。
The support structure 6 can fix a group of elements (the attenuator 2, the mirror 3, the variable beam diameter unit 4, the condensing optical system 5, etc.) for guiding the light from the DUV light source 1 to the inspection object 7. It has a structure. The support structure 6 may be composed of a single fixed member or support member, or may be a mechanical structure made up of a plurality of members combined. For example, the control unit 8 changes the position on the optical axis of the cylindrical lenses 5a and 5b of the condensing optical system 5 supported by the support structure 6 (moves on the optical axis) in response to an instruction input by the user. can be done.
例えば、DUV光源1から発せられた光は、アッテネータ2で光量調整を受ける。光量調整された光は、ミラー3で反射され、その進路方向が変更され、光束径可変ユニット4に導かれる。光束径可変ユニット4は、ミラー3で反射された光の光束径を拡大して集光光学系5に導く。集光光学系5は、光束径が拡大された光を集光し、当該集光された光を検査対象物7上に照射する。
For example, the light emitted from the DUV light source 1 undergoes light intensity adjustment by the attenuator 2. The light whose quantity has been adjusted is reflected by the mirror 3, its course direction is changed, and it is guided to the beam diameter variable unit 4. The variable beam diameter unit 4 enlarges the beam diameter of the light reflected by the mirror 3 and guides it to the condensing optical system 5 . The condensing optical system 5 condenses the light whose beam diameter has been expanded, and irradiates the condensed light onto the inspection object 7 .
図1に示す照明光学系OP1においては、光束径可変ユニット4の内部構成および集光光学系5の内部構成を工夫することにより、温度変化時におけるフォーカス性能の維持を実現している。
In the illumination optical system OP1 shown in FIG. 1, the internal configuration of the variable beam diameter unit 4 and the internal configuration of the condensing optical system 5 are devised to maintain focus performance even when the temperature changes.
<光束径可変ユニット4の内部構成例>
図2は、本実施形態による光束径可変ユニット4の概略内部構成例を示す図である。光束径可変ユニット4は、正レンズ群(少なくとも1つの正レンズ)4aと、負レンズ群(少なくとも1つの負レンズ)4bと、正レンズ群(2つの正レンズで構成される)4c群と、を含んでいる(少なくとも4つのレンズで構成される)。 <Example of internal configuration of variable beam diameter unit 4>
FIG. 2 is a diagram showing a schematic internal configuration example of the variable beam diameter unit 4 according to this embodiment. The variable beam diameter unit 4 includes a positive lens group (at least one positive lens) 4a, a negative lens group (at least one negative lens) 4b, and a positive lens group (consisting of two positive lenses) 4c group. (composed of at least four lenses).
図2は、本実施形態による光束径可変ユニット4の概略内部構成例を示す図である。光束径可変ユニット4は、正レンズ群(少なくとも1つの正レンズ)4aと、負レンズ群(少なくとも1つの負レンズ)4bと、正レンズ群(2つの正レンズで構成される)4c群と、を含んでいる(少なくとも4つのレンズで構成される)。 <Example of internal configuration of variable beam diameter unit 4>
FIG. 2 is a diagram showing a schematic internal configuration example of the variable beam diameter unit 4 according to this embodiment. The variable beam diameter unit 4 includes a positive lens group (at least one positive lens) 4a, a negative lens group (at least one negative lens) 4b, and a positive lens group (consisting of two positive lenses) 4c group. (composed of at least four lenses).
DUV光源1側に正レンズ群4aが、検査対象物7側に正レンズ群4cが配置される。光束径可変ユニット4には平行光が入射し、そこから射出される光も平行光である。ただし、入射光束径に対して拡大された光束径で光が射出される。光束径可変ユニット4は、それを構成する各群のいずれか、または全ての群が光軸方向に稼働し、これにより射出される光束径を変化させることができるように構成されている。
A positive lens group 4a is arranged on the DUV light source 1 side, and a positive lens group 4c is arranged on the inspection object 7 side. Parallel light enters the variable beam diameter unit 4, and light emitted therefrom is also parallel light. However, the light is emitted with a diameter of the luminous flux that is enlarged relative to the diameter of the incident luminous flux. The variable beam diameter unit 4 is configured such that any or all of the groups constituting it can operate in the optical axis direction, thereby changing the diameter of the emitted beam.
正レンズ群4cに含まれる少なくとも2つのレンズを屈折率温度係数(dn/dt)が共に同符号の材料で構成した場合、温度変化により屈折率が高く(低く)なり、光束径可変ユニット4から射出される光束は収束(発散)する。しかし、光源1から発生られた光をウェーハ(検査対象物7)上に集光させるためには光束径可変ユニット4から射出される光束は平行光である必要がある。
When at least two lenses included in the positive lens group 4c are made of materials having the same sign of refractive index temperature coefficient (dn/dt), the refractive index becomes higher (lower) due to temperature changes, and the light flux diameter variable unit 4 The emitted light beam converges (diverges). However, in order to condense the light generated from the light source 1 onto the wafer (object to be inspected 7), the light beam emitted from the variable beam diameter unit 4 needs to be parallel light.
一方、正レンズ群4cに含まれる少なくとも2つのレンズを屈折率温度係数(dn/dt)が互いに異符号の材料で構成した場合、環境温度上昇時に式(1)で示される屈折率温度係数のレンズで屈折力が高まるが、もう一方の式(2)で示される屈折率温度係数のレンズでは屈折力が弱まるため温度上昇時のデフォーカス変化を小さくする(少なくとも一部を相殺する)ことができる。その結果、環境温度変化時においても光束径可変ユニット4から射出される光を略平行光とすることが可能となる。
dn/dt>0 ・・・ (1)
dn/dt<0 ・・・ (2) On the other hand, if at least two lenses included in thepositive lens group 4c are made of materials with refractive index temperature coefficients (dn/dt) of opposite signs, when the environmental temperature rises, the refractive index temperature coefficient shown by equation (1) The refractive power of the lens increases, but the refractive power of the lens with the temperature coefficient of refraction expressed by equation (2) weakens, so it is possible to reduce (at least partially cancel out) the defocus change when the temperature rises. can. As a result, even when the environmental temperature changes, the light emitted from the variable beam diameter unit 4 can be made into substantially parallel light.
dn/dt>0... (1)
dn/dt<0... (2)
dn/dt>0 ・・・ (1)
dn/dt<0 ・・・ (2) On the other hand, if at least two lenses included in the
dn/dt>0... (1)
dn/dt<0... (2)
屈折率温度係数(dn/dt)が互いに異符号の材料の組み合わせの一例として、合成石英(dn/dt>0)と蛍石(dn/dt<0)を挙げることができる。光束径可変ユニット4を構成するレンズの材料に合成石英(dn/dt>0)や蛍石(dn/dt<0)を用いると前述の理屈により環境温度変化時のフォーカスずれの抑制が可能である。
Synthetic quartz (dn/dt>0) and fluorite (dn/dt<0) can be cited as an example of a combination of materials having refractive index temperature coefficients (dn/dt) of opposite signs. If synthetic quartz (dn/dt > 0) or fluorite (dn/dt < 0) is used as the material of the lens constituting the variable beam diameter unit 4, it is possible to suppress defocusing when the environmental temperature changes based on the above-mentioned theory. be.
図2に示す構成の場合、例えば、正レンズ群4aおよび負レンズ群4bを合成石英、レンズ群4cに含まれる2つの正レンズのうちどちらか一方を合成石英、もう一方を蛍石とした場合、前述した環境温度変化時のフォーカス変動を抑制することが可能になる。なお、正レンズ群4aおよび負レンズ群4bを蛍石、レンズ群4cに含まれる2つの正レンズのうちどちらか一方を石英、もう一方を蛍石とした場合にも同様の効果が期待できる。
In the case of the configuration shown in FIG. 2, for example, the positive lens group 4a and the negative lens group 4b are made of synthetic quartz, and one of the two positive lenses included in the lens group 4c is made of synthetic quartz and the other is made of fluorite. , it becomes possible to suppress the focus fluctuation when the environmental temperature changes as described above. Note that similar effects can be expected when the positive lens group 4a and the negative lens group 4b are made of fluorite, and of the two positive lenses included in the lens group 4c, one is made of quartz and the other is made of fluorite.
<集光光学系5の構成例>
図3は、集光光学系5の概略構成例を示す図である。集光光学系5は、光束径可変ユニット4側(光の入射側)から順に少なくとも2つのシリンドリカルレンズ5aおよび5bと、2つの折り返しミラー5cおよび5dと、1つのシリンドリカル放物面ミラー5eと、を備える。なお、検査対象物7に対する光の照射角度によっては、ミラー5cおよび5dは必須の構成要素とはならない。 <Example of configuration of condensingoptical system 5>
FIG. 3 is a diagram showing a schematic configuration example of the condensingoptical system 5. As shown in FIG. The condensing optical system 5 includes, in order from the variable beam diameter unit 4 side (light incident side), at least two cylindrical lenses 5a and 5b, two folding mirrors 5c and 5d, and one cylindrical parabolic mirror 5e. Equipped with. Note that depending on the angle at which the light is irradiated onto the inspection object 7, the mirrors 5c and 5d may not be essential components.
図3は、集光光学系5の概略構成例を示す図である。集光光学系5は、光束径可変ユニット4側(光の入射側)から順に少なくとも2つのシリンドリカルレンズ5aおよび5bと、2つの折り返しミラー5cおよび5dと、1つのシリンドリカル放物面ミラー5eと、を備える。なお、検査対象物7に対する光の照射角度によっては、ミラー5cおよび5dは必須の構成要素とはならない。 <Example of configuration of condensing
FIG. 3 is a diagram showing a schematic configuration example of the condensing
光束径可変ユニット4からの平行光は、シリンドリカルレンズ5aおよび5bとシリンドリカル放物面ミラー5eにより検査対象物7上に集光する。シリンドリカルレンズ5aおよび5bで集光するのは、図3における紙面上下方向の光束である。紙面奥行き方向の光束は、シリンドリカル放物面ミラー5eにより検査対象物7上に集光する。
The parallel light from the variable beam diameter unit 4 is focused onto the inspection object 7 by the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e. What is condensed by the cylindrical lenses 5a and 5b is the light flux in the vertical direction of the paper in FIG. The light beam in the depth direction of the paper is focused onto the inspection object 7 by the cylindrical parabolic mirror 5e.
温度変化時のフォーカス変動量(焦点位置の変化)は、レンズの屈折力(=焦点距離の逆数)と屈折率温度係数(dn/dt)の積から見積もることが可能である。光学系を構成する各々のレンズの焦点距離と屈折率温度係数の積の総和が小さければフォーカス変動も小さい。よって下記の式を満たすことが重要となる。
The amount of focus variation (change in focal position) when the temperature changes can be estimated from the product of the lens' refractive power (=reciprocal of focal length) and refractive index temperature coefficient (dn/dt). If the sum of the products of the focal length and the temperature coefficient of refractive index of each lens constituting the optical system is small, the focus fluctuation is also small. Therefore, it is important to satisfy the following formula.
ここで、文字あるいは文字式はそれぞれ、
m:集光光学系に含まれるレンズの数;
fi:集光光学系のi番目のレンズの焦点距離;
dni/dt:集光光学系i番目のレンズの屈折率温度係数;
f:集光光学系の焦点距離;
MAX_dni/dt:集光光学系に含まれるレンズにおける屈折率温度係数の絶対値の最大値;
を示している。 where each character or character expression is
m: number of lenses included in the condensing optical system;
f i : focal length of the i-th lens of the condensing optical system;
dn i /dt: refractive index temperature coefficient of the i-th lens of the condensing optical system;
f: focal length of condensing optical system;
MAX_dn i /dt: maximum absolute value of refractive index temperature coefficient in the lens included in the condensing optical system;
It shows.
m:集光光学系に含まれるレンズの数;
fi:集光光学系のi番目のレンズの焦点距離;
dni/dt:集光光学系i番目のレンズの屈折率温度係数;
f:集光光学系の焦点距離;
MAX_dni/dt:集光光学系に含まれるレンズにおける屈折率温度係数の絶対値の最大値;
を示している。 where each character or character expression is
m: number of lenses included in the condensing optical system;
f i : focal length of the i-th lens of the condensing optical system;
dn i /dt: refractive index temperature coefficient of the i-th lens of the condensing optical system;
f: focal length of condensing optical system;
MAX_dn i /dt: maximum absolute value of refractive index temperature coefficient in the lens included in the condensing optical system;
It shows.
式(3)における右辺は、集光光学系5が仮に単一材料のレンズで構成されていた場合のフォーカス変動量を示している。式(3)の左辺が同式右辺よりも小さければ温度変化時のフォーカス変動量が抑えられた光学系であることを意味する。
The right side of equation (3) indicates the amount of focus variation if the condensing optical system 5 were composed of lenses made of a single material. If the left side of equation (3) is smaller than the right side of equation (3), it means that the optical system is capable of suppressing focus fluctuations due to temperature changes.
2つのシリンドリカルレンズ5aおよび5bを同一硝材(同一光学ガラス)で構成し、パワー(屈折力)の符号が異なる構成とした場合、式(3)を満たすことができる。このためフォーカス変動が小さい光学系を実現することが可能になる。ここで、仮に、シリンドリカルレンズ5aのパワーが正(凸レンズ)、シリンドリカルレンズ5bのパワーを負(凹レンズ)、硝材は共に蛍石とし、環境温度が上昇した場合を考える。この場合、温度上昇によりシリンドリカルレンズ5aの屈折力は弱まるが、シリンドリカルレンズ5bの屈折力が強まるため全体としての屈折力変動をキャンセル(少なくとも一部相殺)することが可能となる。その結果、検査対象物7上におけるフォーカス変動を抑制することが可能となる。
If the two cylindrical lenses 5a and 5b are made of the same glass material (same optical glass) and have different signs of power (refractive power), then formula (3) can be satisfied. This makes it possible to realize an optical system with small focus fluctuations. Here, let us assume that the power of the cylindrical lens 5a is positive (convex lens), the power of the cylindrical lens 5b is negative (concave lens), both glass materials are fluorite, and the environmental temperature rises. In this case, the refractive power of the cylindrical lens 5a weakens due to the temperature rise, but the refractive power of the cylindrical lens 5b strengthens, making it possible to cancel (at least partially offset) the overall refractive power fluctuations. As a result, it becomes possible to suppress focus fluctuations on the inspection object 7.
さらに、式(3)における左辺が極めて小さくなるようにそれぞれのレンズの焦点距離を最適化することでフォーカス変動抑制効果を高めることが可能である。また、2つのシリンドリカルレンズはパワーを持つ面を向かい合わせて配置すると収差補正上好適である。例えば、検査中(集光光学系5の使用中)において、光軸上でシリンドリカルレンズ5aおよび/または5bを移動させることにより焦点距離を最適化することができる。例えば、検査対象物(例えば、ウェーハ)7上のビームスポットサイズの画像をカメラ(図示せず)で取得し、ユーザがそれを確認する。そして、ユーザの指示に応答して、制御部8がシリンドリカルレンズ5aおよび/または5bを光軸上で移動させることにより、ビームスポットサイズを適宜調整することができる。
Further, by optimizing the focal length of each lens so that the left side of equation (3) becomes extremely small, it is possible to enhance the effect of suppressing focus fluctuations. Further, it is preferable for aberration correction to arrange two cylindrical lenses with their power surfaces facing each other. For example, during an inspection (while the condensing optical system 5 is in use), the focal length can be optimized by moving the cylindrical lenses 5a and/or 5b on the optical axis. For example, a camera (not shown) acquires an image of the beam spot size on the inspection object (for example, a wafer) 7, and the user confirms it. Then, in response to a user's instruction, the control unit 8 moves the cylindrical lenses 5a and/or 5b on the optical axis, so that the beam spot size can be adjusted as appropriate.
また、シリンドリカルレンズ5aおよび5bやシリンドリカル放物面ミラー5eを含む光学要素を保持する支持構造体6を構成する材料として低膨張金属(例えば、インバーなど)を用いることにより、温度変化時のフォーカス性能をさらに高めることが可能となる。
Furthermore, by using a low expansion metal (such as Invar) as a material constituting the support structure 6 that holds the optical elements including the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e, focus performance during temperature changes is improved. can be further increased.
シリンドリカルレンズ5aおよび5bとシリンドリカル放物面ミラー5eの焦点距離は光が検査対象物7上に集光するようにそれぞれ最適化されている。また、シリンドリカルレンズ5aおよび5bとシリンドリカル放物面ミラー5eとは、焦点距離に差を持たせることにより検査対象物7上のビームスポット径を線状(線状:ビームスポット形状を長径が短径に比べて非常に大きい楕円形状)に形成することができるように構成されている。線状(楕円形状)とするのは、検査対象物7(ウェーハ)を載せたステージ(図示せず)を回転させたり移動させたりしながらビームスキャンする際のスキャン幅を大きくしてスループットを高くするためである。
The focal lengths of the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e are each optimized so that the light is focused on the inspection object 7. In addition, the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e have different focal lengths, so that the beam spot diameter on the inspection object 7 is linear (linear: the beam spot shape is such that the major axis is the minor axis). It is constructed so that it can be formed into a very large elliptical shape (compared to the elliptical shape). The linear shape (elliptical shape) is used to increase the throughput by increasing the scanning width when performing beam scanning while rotating or moving the stage (not shown) on which the inspection object 7 (wafer) is placed. This is to do so.
シリンドリカルレンズ5aおよび5bの合成焦点距離をfA、シリンドリカル放物面ミラー5eの焦点距離をfB、検査対象物7への光線入射仰角をθ、DUV光源1の波長をλ、集光光学系5に入射するビーム(光束)の長手方向の径をDA、同ビームの短手方向の径をDBとすると、図3の検査対象物7上左右方向に形成されるビーム径φAと奥行き方向に形成されるビーム径φBとの関係は、以下の式(4)および(5)で表される。
φA=1.22*fA*λ/(DA*sinθ) ・・・ (4)
φB=1.22*fB*λ/(DA*sinθ) ・・・ (5) The combined focal length of the cylindrical lenses 5a and 5b is fA, the focal length of the cylindrical parabolic mirror 5e is fB, the angle of elevation of light beam incidence on the inspection object 7 is θ, the wavelength of the DUV light source 1 is λ, and the condensing optical system 5 is If the diameter of the incident beam (luminous flux) in the longitudinal direction is DA, and the diameter of the beam in the lateral direction is DB, then the beam diameter φA formed in the horizontal direction on the inspection object 7 in FIG. 3 and the beam diameter formed in the depth direction. The relationship between the beam diameter φB and the beam diameter φB is expressed by the following equations (4) and (5).
φA=1.22*fA*λ/(DA*sinθ)... (4)
φB=1.22*fB*λ/(DA*sinθ)... (5)
φA=1.22*fA*λ/(DA*sinθ) ・・・ (4)
φB=1.22*fB*λ/(DA*sinθ) ・・・ (5) The combined focal length of the
φA=1.22*fA*λ/(DA*sinθ)... (4)
φB=1.22*fB*λ/(DA*sinθ)... (5)
よって、ビームスポット径、およびビーム縦横比は、集光光学系5に入射する光束径(DAおよびDB)、シリンドリカルレンズ5aおよび5bの合成焦点距離、およびシリンドリカル放物面ミラー5eの焦点距離を調整することにより制御可能であることが分かる。なお、本実施形態ではシリンドリカル放物面ミラー5eの焦点距離よりシリンドリカルレンズ5aおよび5bの合成焦点距離の方が長いため、検査対象物7上では紙面左右方向に長軸が、紙面奥行き方向に短軸が形成される。
Therefore, the beam spot diameter and beam aspect ratio are adjusted by adjusting the beam diameter (DA and DB) incident on the condensing optical system 5, the combined focal length of the cylindrical lenses 5a and 5b, and the focal length of the cylindrical parabolic mirror 5e. It can be seen that control is possible by doing this. Note that in this embodiment, the combined focal length of the cylindrical lenses 5a and 5b is longer than the focal length of the cylindrical parabolic mirror 5e, so on the inspection object 7, the long axis is in the left-right direction in the plane of the paper, and the long axis is short in the depth direction in the plane of the paper. An axis is formed.
上述したように、シリンドリカルレンズ5aおよび5bの一方あるいはそれぞれを光軸方向に移動させることにより、ビームスポット長手側に対応する焦点距離を変化させることができる。このため、検査対象物7に照射するビームスポットの縦横比を制御することが可能となる。なお、上述したように、制御部8は、ユーザが入力する指示に応答してシリンドリカルレンズ5aおよび5bを移動させるレンズ駆動部(レンズ駆動部自体は図示せず)を制御することにより、シリンドリカルレンズ5aおよび/または5bの光軸上の位置を移動させることができる。
As described above, by moving one or each of the cylindrical lenses 5a and 5b in the optical axis direction, the focal length corresponding to the longitudinal side of the beam spot can be changed. Therefore, it is possible to control the aspect ratio of the beam spot irradiated onto the inspection object 7. Note that, as described above, the control unit 8 controls the lens drive unit (the lens drive unit itself is not shown) that moves the cylindrical lenses 5a and 5b in response to instructions input by the user, thereby moving the cylindrical lenses. The position of 5a and/or 5b on the optical axis can be moved.
単一の検査対象物を操作して異物の検出を行う基板検査装置の場合には、長手方向のビームスポット径をより大きくすると、走査回数が少なく済むためより短時間で検査対象物全面の検査が可能になる。一方で、異物の位置精度は劣化してしまう。そのため、1つの照明光学系において、検査対象物の材質、検査対象物の大きさ、検査速度等に応じて長手方向のビームスポット径を変更できるようにすることが望ましい。
図3に示す構成にすることで、ビームスポットの縦横比の制御と環境温度変化時のフォーカスずれを抑制した照明光学系OP1を実現することができる。 In the case of a substrate inspection device that detects foreign objects by manipulating a single inspection object, if the beam spot diameter in the longitudinal direction is made larger, the number of scans required is reduced, and the entire surface of the inspection object can be inspected in a shorter time. On the other hand, the positional accuracy of the foreign object is deteriorated. Therefore, it is desirable to be able to change the beam spot diameter in the longitudinal direction in one illumination optical system according to the material of the inspection object, the size of the inspection object, the inspection speed, etc.
The configuration shown in FIG. 3 makes it possible to realize an illumination optical system OP1 that controls the aspect ratio of the beam spot and suppresses focus deviations caused by changes in the environmental temperature.
図3に示す構成にすることで、ビームスポットの縦横比の制御と環境温度変化時のフォーカスずれを抑制した照明光学系OP1を実現することができる。 In the case of a substrate inspection device that detects foreign objects by manipulating a single inspection object, if the beam spot diameter in the longitudinal direction is made larger, the number of scans required is reduced, and the entire surface of the inspection object can be inspected in a shorter time. On the other hand, the positional accuracy of the foreign object is deteriorated. Therefore, it is desirable to be able to change the beam spot diameter in the longitudinal direction in one illumination optical system according to the material of the inspection object, the size of the inspection object, the inspection speed, etc.
The configuration shown in FIG. 3 makes it possible to realize an illumination optical system OP1 that controls the aspect ratio of the beam spot and suppresses focus deviations caused by changes in the environmental temperature.
<支持構造体6の構成例>
図4は、支持構造体6の構成例を示す図である。支持構造体6は、例えば、ベース6aと、素子支持部材6b_1から6b_4と、によって構成することができる。支持構造体6は、同一ベース6a上に複数の素子を固定して構成しても良いし、複数のベースで構成してもよい。
また、素子支持部材6b_1から6b_4は、単一の部材で構成してもよく、複数の部材を組み合わされて構成した機械的構造体であってもよい。 <Example of configuration ofsupport structure 6>
FIG. 4 is a diagram showing a configuration example of thesupport structure 6. As shown in FIG. The support structure 6 can be configured by, for example, a base 6a and element support members 6b_1 to 6b_4. The support structure 6 may be configured by fixing a plurality of elements on the same base 6a, or may be configured by a plurality of bases.
Further, the element supporting members 6b_1 to 6b_4 may be formed of a single member, or may be a mechanical structure formed by combining a plurality of members.
図4は、支持構造体6の構成例を示す図である。支持構造体6は、例えば、ベース6aと、素子支持部材6b_1から6b_4と、によって構成することができる。支持構造体6は、同一ベース6a上に複数の素子を固定して構成しても良いし、複数のベースで構成してもよい。
また、素子支持部材6b_1から6b_4は、単一の部材で構成してもよく、複数の部材を組み合わされて構成した機械的構造体であってもよい。 <Example of configuration of
FIG. 4 is a diagram showing a configuration example of the
Further, the element supporting members 6b_1 to 6b_4 may be formed of a single member, or may be a mechanical structure formed by combining a plurality of members.
<基板検査装置の構成例>
図5は、基板検査装置100の概略構成例を示す図である。図5に示す基板検査装置100は、第1の実施形態による照明光学系OP1を搭載しているが、これに代えて後述の第2の実施形態による照明光学系OP2を搭載してもよい。 <Example of configuration of board inspection device>
FIG. 5 is a diagram showing a schematic configuration example of theboard inspection apparatus 100. Although the substrate inspection apparatus 100 shown in FIG. 5 is equipped with the illumination optical system OP1 according to the first embodiment, it may be equipped with an illumination optical system OP2 according to the second embodiment described later.
図5は、基板検査装置100の概略構成例を示す図である。図5に示す基板検査装置100は、第1の実施形態による照明光学系OP1を搭載しているが、これに代えて後述の第2の実施形態による照明光学系OP2を搭載してもよい。 <Example of configuration of board inspection device>
FIG. 5 is a diagram showing a schematic configuration example of the
基板検査装置100は、照明光学系OP1と、検査対象物7を載置するステージ111と、受光レンズ112と、受光素子113と、解析ユニット114と、を備える。
The substrate inspection apparatus 100 includes an illumination optical system OP1, a stage 111 on which the inspection object 7 is placed, a light receiving lens 112, a light receiving element 113, and an analysis unit 114.
基板検査装置100において、検査対象物7は、ステージ111上に固定されている。このステージ111は、図5の紙面上下方向の回転軸周りに回転可能であり、また、その回転軸と垂直な方向(例えば、図5の紙面左右方向)に平行移動が可能である。当該構成例では、照明光学系OP1によって形成される線状のビームスポットの長手方向もこれと一致するとする。
In the board inspection apparatus 100, the inspection object 7 is fixed on a stage 111. This stage 111 is rotatable around a rotation axis in the vertical direction in the plane of FIG. 5, and can also be translated in a direction perpendicular to the rotation axis (for example, in the horizontal direction in the plane of FIG. 5). In this configuration example, it is assumed that the longitudinal direction of the linear beam spot formed by the illumination optical system OP1 also coincides with this.
また、検査対象物7は、円盤状の形状をしており(例えば、ウェーハ)、ステージ111によって回転しつつ平行移動することができる。これにより、円盤(検査対象物7)全面に光を照射することが可能となっている。
Further, the inspection object 7 has a disk shape (for example, a wafer), and can be rotated and translated in parallel by the stage 111. This makes it possible to irradiate the entire surface of the disk (inspection object 7) with light.
受光レンズ112は、検査対象物7上の欠陥や異物が光に当たった際に発生する拡散反射光線の一部を集光する。受光素子113は、受光レンズ112で集光された光を電気信号に変換する。解析ユニット114は、受光素子113からの電気信号を受信してそれを解析する。また、解析ユニット114は、解析結果を検査結果とし、それを例えば表示装置(図示せず)の表示画面上に出力する。このため、解析ユニット114はコンピュータを備えてもよい。
The light-receiving lens 112 condenses a portion of the diffusely reflected light that is generated when a defect or foreign object on the inspection object 7 is hit by light. The light receiving element 113 converts the light collected by the light receiving lens 112 into an electrical signal. Analysis unit 114 receives the electrical signal from light receiving element 113 and analyzes it. The analysis unit 114 also outputs the analysis result as a test result, for example, on a display screen of a display device (not shown). For this purpose, the analysis unit 114 may include a computer.
このようにして、基板検査装置100は検査対象物7の検査(異物検査、欠陥検査)を行う。ここで、上述のように照明光学系OP1が出力するビームの光線は、線状によって高精度に集光されているので、より高精度の検査を行うことができる。
In this way, the board inspection apparatus 100 inspects the inspection object 7 (foreign object inspection, defect inspection). Here, as described above, the beam outputted by the illumination optical system OP1 is highly accurately focused in a linear manner, so that inspection can be performed with higher accuracy.
解析ユニット114は、信号解析機能に加え、光路上に配置される光学素子(例えば集光光学系や光束径可変ユニット)を適切に配置する機能も持つようにしてもよい(図1の制御部8の機能も併せ持つようにしてもよい)。この機能は基板検査装置100のユーザ入力に応じて行われてもよいし、解析ユニット114が自動的に実行してもよい。解析ユニット114が自動的に光学素子の配置制御を行う場合には、受光素子113で得られた電気信号が、対象とする検査に対して最適な状態となるように光学素子を選択してもよい。なお、図5では受光レンズ112および受光素子113はそれぞれ1つずつ示されているが、これらのいずれかまたは双方を複数設けるようにしてもよい。
In addition to the signal analysis function, the analysis unit 114 may also have a function of appropriately arranging optical elements (for example, a condensing optical system or a variable beam diameter unit) placed on the optical path (the control unit in FIG. (It may also have the functions of 8). This function may be performed in response to user input of the board inspection apparatus 100, or may be performed automatically by the analysis unit 114. When the analysis unit 114 automatically controls the arrangement of optical elements, the optical elements may be selected so that the electrical signal obtained by the light receiving element 113 is in the optimal state for the target inspection. good. Although FIG. 5 shows one light receiving lens 112 and one light receiving element 113, a plurality of either or both of these may be provided.
(2)第2の実施形態
<照明光学系の構成例>
図6は、第2の実施形態に係る照明光学系OP1の構成例を示す図である。第2の実施形態による照明光学系OP2は、第1の実施形態による照明光学系OP1において、集光光学系5をシリンドリカルレンズではなく軸対称な球面レンズで構成したものである。 (2) Second embodiment <Configuration example of illumination optical system>
FIG. 6 is a diagram showing a configuration example of the illumination optical system OP1 according to the second embodiment. In the illumination optical system OP2 according to the second embodiment, in the illumination optical system OP1 according to the first embodiment, the condensingoptical system 5 is composed of an axially symmetrical spherical lens instead of a cylindrical lens.
<照明光学系の構成例>
図6は、第2の実施形態に係る照明光学系OP1の構成例を示す図である。第2の実施形態による照明光学系OP2は、第1の実施形態による照明光学系OP1において、集光光学系5をシリンドリカルレンズではなく軸対称な球面レンズで構成したものである。 (2) Second embodiment <Configuration example of illumination optical system>
FIG. 6 is a diagram showing a configuration example of the illumination optical system OP1 according to the second embodiment. In the illumination optical system OP2 according to the second embodiment, in the illumination optical system OP1 according to the first embodiment, the condensing
つまり、第1の実施形態では紙面左右方向をシリンドリカルレンズ5aおよび5bで、紙面奥行き方向をシリンドリカル放物面ミラー5eで集光した。また、シリンドリカルレンズ5aおよび5bとシリンドリカル放物面ミラー5eの焦点距離に差を持たせることでビームスポットの縦横比を制御していた。
In other words, in the first embodiment, the light is focused to the left and right of the page by the cylindrical lenses 5a and 5b, and to the depth of the page by the cylindrical parabolic mirror 5e. Also, the aspect ratio of the beam spot is controlled by providing a difference in focal length between the cylindrical lenses 5a and 5b and the cylindrical parabolic mirror 5e.
一方、第2の実施形態による照明光学系OP2は、図6に示されるように、DUV光源(Deep Ultra Violet光源:深紫外光源)21と、アッテネータ22と、ミラー23と、アナモルフィックプリズム28と、光束径可変ユニット(エキスパンダ)24と、集光光学系25と、支持構造体26と、制御部29(制御部29は、照明光学系OP2の外部に設けてもよい)と、を備える。第2の実施形態では、集光光学系25において、第1の実施形態によるシリンドリカルレンズ5aおよび5bの代わりに、軸対称な球面レンズ25cおよび25dが紙面左右方向および奥行き方向の結像を共に担っている。また、ビームスポットの縦横比の制御するために光路上にアナモルフィックプリズム28が設けられている。
On the other hand, as shown in FIG. 6, the illumination optical system OP2 according to the second embodiment includes a DUV light source (Deep Ultra Violet light source) 21, an attenuator 22, a mirror 23, and an anamorphic prism 28. , a variable beam diameter unit (expander) 24, a condensing optical system 25, a support structure 26, and a control section 29 (the control section 29 may be provided outside the illumination optical system OP2). Be prepared. In the second embodiment, in the condensing optical system 25, instead of the cylindrical lenses 5a and 5b according to the first embodiment, axially symmetrical spherical lenses 25c and 25d are responsible for image formation in the left-right direction and the depth direction in the drawing. ing. Further, an anamorphic prism 28 is provided on the optical path to control the aspect ratio of the beam spot.
集光光学系25は、DUV光源21側から見て順に、2つのミラー25aおよび25bと、2つの球面レンズ25cおよび25dと、を含む。集光光学系25を軸対称な球面レンズで構成した場合でも、上記式(3)に示す条件を満たすことで環境温度の変化によるフォーカスずれの抑制が可能である。
The condensing optical system 25 includes, in order when viewed from the DUV light source 21 side, two mirrors 25a and 25b and two spherical lenses 25c and 25d. Even when the condensing optical system 25 is configured with an axially symmetrical spherical lens, it is possible to suppress out of focus due to changes in environmental temperature by satisfying the condition shown in equation (3) above.
図7は、集光光学系25における2つの球面レンズ25cおよび25dの配置例を示す図である。集光光学系25において、2つの球面レンズ25cおよび25dの一方を合成石英、もう一方を蛍石で構成した場合、式(3)に示す条件を満たすことが可能となる。従って、第1の実施形態と同様に、フォーカス変動を抑えた集光光学系25を実現することが可能になる。仮に球面レンズ25cを合成石英、球面レンズ25dを蛍石とし、環境温度が上昇した場合を考えると、温度上昇により5cの屈折力は強まるが5dの屈折力が弱まるため、全体としての屈折力変動をキャンセル(少なくとも一部相殺)することが可能となる。その結果、検査対象物7上におけるフォーカス変動を抑制することが可能となる。
FIG. 7 is a diagram showing an example of the arrangement of the two spherical lenses 25c and 25d in the condensing optical system 25. In the condensing optical system 25, when one of the two spherical lenses 25c and 25d is made of synthetic quartz and the other is made of fluorite, the condition shown in equation (3) can be satisfied. Therefore, similarly to the first embodiment, it is possible to realize a condensing optical system 25 that suppresses focus fluctuations. If we assume that the spherical lens 25c is made of synthetic quartz and the spherical lens 25d is made of fluorite, and the environmental temperature rises, the refractive power of 5c will become stronger but the refractive power of 5d will weaken as the temperature rises, resulting in an overall change in refractive power. It becomes possible to cancel (or at least partially offset) As a result, it becomes possible to suppress focus fluctuations on the inspection object 7.
DUV光源21からの円状の光束は、アナモルフィックプリズム28を透過後に楕円形状になる。図6に示す例では、アナモルフィックプリズム28から射出する楕円形状ビームの長手方向が紙面奥行き方向、短手方向が紙面左右方向に対応するとする。集光光学系25の入射前のビームの瞳径Dは、紙面奥行き方向(DA)に比べて紙面左右方向(DB)の方が小さくなる。検査対象物27上のビーム径φA、φBは上記式(4)および(5)の通りであるため、検査対象物27上では線状(楕円形状)のビームスポットが形成される。ここでは、ビームスポットの長手が紙面左右方向、短手が紙面奥行き方向に対応する。
The circular light beam from the DUV light source 21 becomes elliptical after passing through the anamorphic prism 28. In the example shown in FIG. 6, it is assumed that the longitudinal direction of the elliptical beam emitted from the anamorphic prism 28 corresponds to the depth direction of the paper, and the lateral direction corresponds to the left-right direction of the paper. The pupil diameter D of the beam before entering the condensing optical system 25 is smaller in the horizontal direction (DB) of the drawing than in the depth direction (DA) of the drawing. Since the beam diameters φA and φB on the inspection object 27 are as shown in equations (4) and (5) above, a linear (elliptical) beam spot is formed on the inspection object 27. Here, the length of the beam spot corresponds to the horizontal direction of the paper, and the short length of the beam spot corresponds to the depth direction of the paper.
また、アナモルフィックプリズム28の下流に配置される光束径可変ユニット24は、制御部29の制御により内部の光学素子が光軸方向に移動し(図示しないレンズ駆動部が制御部29からの制御信号に応答して光学素子を移動させる)、楕円ビームのサイズの変更が可能である。
Further, in the variable beam diameter unit 24 disposed downstream of the anamorphic prism 28, an internal optical element moves in the optical axis direction under the control of the control unit 29 (a lens drive unit (not shown) is controlled by the control unit 29). (by moving an optical element in response to a signal), it is possible to change the size of the elliptical beam.
さらに、式(3)における左辺が極めて小さくなるように(合成石英と蛍石の屈折率温度係数の差を打ち消すように)それぞれの球面レンズ25cおよび25dの焦点距離を最適化することでフォーカス変動抑制効果を高めることが可能である。なお、ここでは集光光学系25におけるレンズを2枚構成としたが、式(3)を満たすのであれはレンズの数に限定は無い。
Furthermore, the focus can be varied by optimizing the focal length of each of the spherical lenses 25c and 25d so that the left side of equation (3) becomes extremely small (so as to cancel out the difference in the temperature coefficient of refraction between synthetic quartz and fluorite). It is possible to enhance the suppressive effect. Here, the condensing optical system 25 has two lenses, but the number of lenses is not limited as long as it satisfies equation (3).
(3)その他
(i)集光光学系におけるレンズ間隔についての条件について
集光光学系5あるいは25において、2つのレンズ間隔(DR:シリンドリカルレンズ5aと5bとの距離、あるいは球面レンズ25cと25dとの距離)は、集光光学系5あるいは25に含まれる光学素子間隔のうち最も間隔が広い光学素子間隔(集光光学系5では、シリンドリカルレンズ5aとシリンドリカル放物面ミラー5eとの間隔)をDR_maxとすると、DRをDR_maxの1/10未満(DR<DR_max/10)に設定するとさらに効率よくフォーカス変動を抑制することができる。 (3) Others (i) Conditions regarding the distance between lenses in the condensing optical system In the condensing optical system 5 or 25, the distance between two lenses (DR: the distance between cylindrical lenses 5a and 5b, or the distance between spherical lenses 25c and 25d) ) is the distance between the optical elements that is the widest among the optical element intervals included in the condensing optical system 5 or 25 (in the condensing optical system 5, the distance between the cylindrical lens 5a and the cylindrical parabolic mirror 5e). When DR_max is set, focus fluctuation can be suppressed more efficiently by setting DR to less than 1/10 of DR_max (DR<DR_max/10).
(i)集光光学系におけるレンズ間隔についての条件について
集光光学系5あるいは25において、2つのレンズ間隔(DR:シリンドリカルレンズ5aと5bとの距離、あるいは球面レンズ25cと25dとの距離)は、集光光学系5あるいは25に含まれる光学素子間隔のうち最も間隔が広い光学素子間隔(集光光学系5では、シリンドリカルレンズ5aとシリンドリカル放物面ミラー5eとの間隔)をDR_maxとすると、DRをDR_maxの1/10未満(DR<DR_max/10)に設定するとさらに効率よくフォーカス変動を抑制することができる。 (3) Others (i) Conditions regarding the distance between lenses in the condensing optical system In the condensing
(ii)光束径可変ユニット4および集光光学系5あるいは25におけるレンズの焦点距離に関する条件について
光束径可変ユニット4および集光光学系5あるいは25に含まれるレンズが上記式(1)および(2)を満たす場合、さらに式(6)を満たすようにレンズを構成してもよい。
|f_max|-|f_min|<50mm ・・・ (6) (ii) Conditions regarding the focal length of the lens in the variable beam diameter unit 4 and the condensing optical system 5 or 25 The lenses included in the variable beam diameter unit 4 and the condensing optical system 5 or 25 are determined by the above equations (1) and (2). ), the lens may be configured to further satisfy equation (6).
|f_max|-|f_min|<50mm... (6)
光束径可変ユニット4および集光光学系5あるいは25に含まれるレンズが上記式(1)および(2)を満たす場合、さらに式(6)を満たすようにレンズを構成してもよい。
|f_max|-|f_min|<50mm ・・・ (6) (ii) Conditions regarding the focal length of the lens in the variable beam diameter unit 4 and the condensing
|f_max|-|f_min|<50mm... (6)
ここで、f_maxは対象となるレンズのうち焦点距離が一番長いレンズの焦点距離を示し、f_minは対象となるレンズのうち焦点距離が一番短いレンズの焦点距離を示している。
Here, f_max indicates the focal length of the lens with the longest focal length among the target lenses, and f_min indicates the focal length of the lens with the shortest focal length among the target lenses.
(4)まとめ
(i)本実施形態による照明光学装置は、光束径可変ユニット(エキスパンダ)4あるは24と、集光光学系5あるいは25と、を備える。光束径可変ユニットにおいて、少なくとも1つのレンズはdn/dt<0(条件式(1))を満たし、少なくとも1つの別のレンズはdn/dt>0(条件式(2))を満たすように構成される。集光光学系における少なくとも2つのレンズは、条件式(3)を満たすように構成される。また、集光光学系のうち少なくとも1つのレンズは条件式(1)を満たし、少なくとも1つの別のレンズは条件式(2)を満たすように構成される。 (4) Summary (i) The illumination optical device according to this embodiment includes a variable beam diameter unit (expander) 4 or 24 and a condensing optical system 5 or 25. In the variable beam diameter unit, at least one lens is configured to satisfy dn/dt<0 (conditional expression (1)), and at least one other lens is configured to satisfy dn/dt>0 (conditional expression (2)). be done. At least two lenses in the condensing optical system are configured to satisfy conditional expression (3). Furthermore, at least one lens in the condensing optical system is configured to satisfy conditional expression (1), and at least one other lens is configured to satisfy conditional expression (2).
(i)本実施形態による照明光学装置は、光束径可変ユニット(エキスパンダ)4あるは24と、集光光学系5あるいは25と、を備える。光束径可変ユニットにおいて、少なくとも1つのレンズはdn/dt<0(条件式(1))を満たし、少なくとも1つの別のレンズはdn/dt>0(条件式(2))を満たすように構成される。集光光学系における少なくとも2つのレンズは、条件式(3)を満たすように構成される。また、集光光学系のうち少なくとも1つのレンズは条件式(1)を満たし、少なくとも1つの別のレンズは条件式(2)を満たすように構成される。 (4) Summary (i) The illumination optical device according to this embodiment includes a variable beam diameter unit (expander) 4 or 24 and a condensing
ここで、dn/dtは屈折率の温度係数、mは集光光学系に含まれるレンズの数、fiは集光光学系のi番目のレンズの焦点距離、dni/dtは集光光学系i番目のレンズの屈折率温度係数、fは集光光学系の焦点距離、MAX_dni/dtは集光光学系に含まれるレンズの屈折率温度係数絶対値の最大値、をそれぞれ表している。このように照明光学装置を構成することにより、環境温度変化があったとしても高精度に照明光のフォーカス性能を維持することが可能となる。なお、照明光学装置においては、線状光を発する光源であって、波長域が200nmから300nmのDUV光源を用いることができる。線状光を用いると、検査対象物に照射する光のビームスポットの縦横比を制御しやすくなる。また、縦横比の異なるビームスポットを用いれば検査対象物を検査する際のスループットを高くすることが可能となる。
Here, dn/dt is the temperature coefficient of refractive index, m is the number of lenses included in the condensing optical system, f i is the focal length of the i-th lens in the condensing optical system, and dn i /dt is the condensing optical system. The refractive index temperature coefficient of the i-th lens in the system, f is the focal length of the condensing optical system, and MAX_dn i /dt is the maximum absolute value of the refractive index temperature coefficient of the lens included in the condensing optical system. . By configuring the illumination optical device in this manner, it is possible to maintain the focusing performance of the illumination light with high precision even if there is a change in the environmental temperature. Note that in the illumination optical device, a DUV light source that emits linear light and has a wavelength range of 200 nm to 300 nm can be used. Using linear light makes it easier to control the aspect ratio of the beam spot of the light irradiated onto the inspection target. Furthermore, by using beam spots with different aspect ratios, it is possible to increase the throughput when inspecting an object to be inspected.
(ii)DRを集光光学系に含まれる2つのレンズ間隔、DR_maxを集光光学系に含まれる光学素子間隔のうち最も間隔が広い光学素子間隔とすると、集光光学系5または25は、DR<DR_max/10を満足するように構成するとよい。このようにすることにより、検査対象物上におけるビームスポット径を検査条件やステージ動作に応じて柔軟に変化させることが可能となる。
(ii) If DR is the interval between two lenses included in the condensing optical system, and DR_max is the interval between the optical elements that is the widest among the optical element intervals included in the condensing optical system, then the condensing optical system 5 or 25 is It is preferable to configure so that DR<DR_max/10 is satisfied. By doing so, it becomes possible to flexibly change the beam spot diameter on the object to be inspected according to the inspection conditions and stage operation.
(iii)第1の実施形態による集光光学系5に含まれる2つのレンズは、パワー方向を向かい合わせに配置されたシリンドリカルレンズである。第2の実施形態による集光光学系25に含まれる2つのレンズは、パワー方向を向かい合わせに配置された球面レンズである。このようにすることにより、検査対象物上におけるビームスポット径を検査条件やステージ動作に応じて柔軟に変化させることが可能となる。
(iii) The two lenses included in the condensing optical system 5 according to the first embodiment are cylindrical lenses arranged with their power directions facing each other. The two lenses included in the condensing optical system 25 according to the second embodiment are spherical lenses arranged with their power directions facing each other. By doing so, it becomes possible to flexibly change the beam spot diameter on the object to be inspected according to the inspection conditions and stage operation.
(iv)f_maxをレンズのうち焦点距離が一番長いレンズの焦点距離、f_maxをレンズのうち焦点距離が一番短いレンズの焦点距離とすると、光束径可変ユニット4または24、および集光光学系5または25に含まれ、上記dn/dt<0(条件式(1))およびdn/dt>0(条件式(2))を満たすレンズは、|f_max|-|f_min|<50mmを満足するように構成することができる。このようにすることにより、検査対象物上におけるビームスポット径を検査条件やステージ動作に応じて柔軟に変化させることが可能となる。
(iv) If f_max is the focal length of the lens with the longest focal length among the lenses, and f_max is the focal length of the lens with the shortest focal length among the lenses, then the variable beam diameter unit 4 or 24 and the condensing optical system 5 or 25 and which satisfies the above dn/dt<0 (conditional expression (1)) and dn/dt>0 (conditional expression (2)) satisfies |f_max|-|f_min|<50mm It can be configured as follows. By doing so, it becomes possible to flexibly change the beam spot diameter on the object to be inspected according to the inspection conditions and stage operation.
(v)第2の実施形態による照明光学装置は、光束径可変ユニット24に含まれる少なくとも1つのレンズを光軸方向に移動する制御部29を備える。制御部29は、光束径可変ユニット24の少なくとも1つのレンズを光軸方向に移動することにより、光束径を拡大あるいは縮小してビーム径を制御する。このようにすることにより、ビームスポット径を柔軟に調整することが可能となる。
(v) The illumination optical device according to the second embodiment includes a control section 29 that moves at least one lens included in the variable beam diameter unit 24 in the optical axis direction. The control unit 29 controls the beam diameter by expanding or reducing the diameter of the beam by moving at least one lens of the variable beam diameter unit 24 in the optical axis direction. By doing so, it becomes possible to flexibly adjust the beam spot diameter.
(vi)支持構造体6は、少なくとも光束径可変ユニット4または24および集光光学系5または25を保持する。当該支持構造体は、低膨張金属で構成することができる。支持構造体6を設けることにより、各光学素子を安定的に照明光学装置に配置することができるので、環境温度変化以外の外的要因の影響を受けることなく高精度なフォーカス制御を実現することができる。また、低膨張金属を用いて支持構造体6を構成することにより、温度変化時のフォーカス性能をさらに高めることができる。
(vi) The support structure 6 holds at least the variable beam diameter unit 4 or 24 and the condensing optical system 5 or 25. The support structure can be constructed from a low expansion metal. By providing the support structure 6, each optical element can be stably arranged in the illumination optical device, so that highly accurate focus control can be achieved without being affected by external factors other than environmental temperature changes. Can be done. Further, by configuring the support structure 6 using a low expansion metal, focusing performance during temperature changes can be further improved.
(vii)第1の実施形態による照明光学装置は、集光光学系5の光学素子を光軸上で移動させることにより集光光学系5の焦点距離を可変に制御し、対象物に照射されるビームスポットの縦横比を調整する制御部8を備える(上記(i)の構成要件を備えることが前提)。これにより、検査対象物上のビームスポットの縦横比の制御と環境温度変化時のフォーカスずれを抑制した照明光学系を実現することができるようになる。
(vii) The illumination optical device according to the first embodiment variably controls the focal length of the condensing optical system 5 by moving the optical elements of the condensing optical system 5 on the optical axis, so that the object is irradiated. The controller 8 includes a control unit 8 that adjusts the aspect ratio of the beam spot (provided that the configuration requirement (i) above is provided). As a result, it is possible to realize an illumination optical system that controls the aspect ratio of the beam spot on the object to be inspected and suppresses defocusing when the environmental temperature changes.
(viii)第2の実施形態では、検査対象物に照射されるビームスポットの縦横比を変化させる光学素子(アナモルフィックプリズム28)を設けるようにしている。これにより、線状(楕円形状)のビームを容易に生成することが可能となる。
(viii) In the second embodiment, an optical element (anamorphic prism 28) that changes the aspect ratio of the beam spot irradiated onto the inspection object is provided. This makes it possible to easily generate a linear (elliptical) beam.
(ix)本実施形態による照明光学装置は、基板検査装置に適用することができる。これにより、環境温度変化に左右されることなくフォーカス制御を高精度に実行することができるので、基板(検査対象物)の検査を高精度に実施することができるようになる。
(ix) The illumination optical device according to this embodiment can be applied to a substrate inspection device. As a result, focus control can be performed with high precision without being affected by environmental temperature changes, so that inspection of the substrate (object to be inspected) can be performed with high precision.
1、21 DUV光源
2、22 アッテネータ
3、23 ミラー
4、24 光束径可変ユニット
4a 正レンズ群
4b 負レンズ群
4c 正レンズ群
5、25 集光光学系
5a、5b シリンドリカルレンズ
5c、5d、25a、25b ミラー
5e シリンドリカル放物面ミラー
6、26 支持構造体
6a ベース
6b_1 素子支持部材1
6b_2 素子支持部材2
6b_3 素子支持部材3
6b_4 素子支持部材4
7、27 検査対象物
8、29 制御部
25c、25d 球面レンズ
28 アナモルフィックプリズム
100 基板検査装置
111 ステージ
112 受光レンズ
113 受光素子
114 解析ユニット 1, 21 DUV light sources 2, 22 Attenuators 3, 23 Mirrors 4, 24 Luminous flux diameter variable unit 4a Positive lens group 4b Negative lens group 4c Positive lens group 5, 25 Condensing optical system 5a, 5b Cylindrical lens 5c, 5d, 25a, 25b Mirror 5e Cylindrical parabolic mirror 6, 26 Support structure 6a Base 6b_1 Element support member 1
6b_2Element support member 2
6b_3Element support member 3
6b_4 Element support member 4
7, 27Inspection object 8, 29 Control unit 25c, 25d Spherical lens 28 Anamorphic prism 100 Board inspection device 111 Stage 112 Light receiving lens 113 Light receiving element 114 Analysis unit
2、22 アッテネータ
3、23 ミラー
4、24 光束径可変ユニット
4a 正レンズ群
4b 負レンズ群
4c 正レンズ群
5、25 集光光学系
5a、5b シリンドリカルレンズ
5c、5d、25a、25b ミラー
5e シリンドリカル放物面ミラー
6、26 支持構造体
6a ベース
6b_1 素子支持部材1
6b_2 素子支持部材2
6b_3 素子支持部材3
6b_4 素子支持部材4
7、27 検査対象物
8、29 制御部
25c、25d 球面レンズ
28 アナモルフィックプリズム
100 基板検査装置
111 ステージ
112 受光レンズ
113 受光素子
114 解析ユニット 1, 21
6b_2
6b_3
6b_4 Element support member 4
7, 27
Claims (12)
- 光束を拡大し、対象物に集光させる照明光学装置であって、
前記光束を発する光源と、
前記光源からの光束の径を拡大する光束径可変ユニットと、
径が拡大された光束を前記対象物上に集光する集光光学系と、を備え、
前記光束径可変ユニットは、少なくとも4つのレンズを含み、
前記光束径可変ユニットのうち少なくとも1つのレンズは、条件式(1)を満たし、
前記光束径可変ユニットのうち少なくとも1つのレンズであって、前記条件式(1)を満たすレンズ以外のレンズは、条件式(2)を満たし、
前記集光光学系は、少なくとも2つのレンズを含み、
前記集光光学系における少なくとも2つのレンズは、条件式(3)を満たし、
前記集光光学系のうち少なくとも1つのレンズは、条件式(1)を満たし、
前記集光光学系のうち少なくとも1つのレンズであって、条件式(1)を満たすレンズ以外のレンズは、条件式(2)を満たす、照明光学装置。
dn/dt<0 ・・・(1)
dn/dt>0 ・・・(2)
ここで、dn/dtは屈折率の温度係数、mは前記集光光学系に含まれるレンズの数、fiは前記集光光学系のi番目のレンズの焦点距離、dni/dtは前記集光光学系i番目のレンズの屈折率温度係数、fは前記集光光学系の焦点距離、MAX_dni/dtは前記集光光学系に含まれるレンズの屈折率温度係数絶対値の最大値、をそれぞれ表している。 An illumination optical device that expands a luminous flux and focuses it on an object,
a light source that emits the luminous flux;
a variable beam diameter unit that expands the diameter of the beam from the light source;
a condensing optical system that condenses a luminous flux with an expanded diameter onto the object,
The variable beam diameter unit includes at least four lenses,
At least one lens of the variable beam diameter unit satisfies conditional expression (1),
At least one lens in the variable beam diameter unit other than the lens that satisfies conditional expression (1) satisfies conditional expression (2),
The condensing optical system includes at least two lenses,
At least two lenses in the condensing optical system satisfy conditional expression (3),
At least one lens of the condensing optical system satisfies conditional expression (1),
In the illumination optical device, at least one lens in the condensing optical system other than the lens satisfying conditional expression (1) satisfies conditional expression (2).
dn/dt<0...(1)
dn/dt>0...(2)
Here, dn/dt is the temperature coefficient of refractive index, m is the number of lenses included in the condensing optical system, f i is the focal length of the i-th lens of the condensing optical system, and dn i /dt is the The refractive index temperature coefficient of the i-th lens of the condensing optical system, f is the focal length of the condensing optical system, MAX_dn i /dt is the maximum absolute value of the refractive index temperature coefficient of the lens included in the condensing optical system, each represents. - 請求項1において、
前記光源は、線状光を出射する光源である、照明光学装置。 In claim 1,
The illumination optical device, wherein the light source is a light source that emits linear light. - 請求項1において、
前記集光光学系は、条件式(4)を満たす、照明光学装置。
DR<DR_max/10 ・・・(4)
ここで、DRは集光光学系に含まれる2つのレンズ間隔、DR_maxは集光光学系に含まれる光学素子間隔のうち最も間隔が広い光学素子間隔、をそれぞれ表している。 In claim 1,
The condensing optical system is an illumination optical device that satisfies conditional expression (4).
DR<DR_max/10...(4)
Here, DR represents the interval between two lenses included in the condensing optical system, and DR_max represents the widest interval between the optical elements included in the condensing optical system. - 請求項1において、
前記集光光学系に含まれる2つのレンズは、パワー方向を向かい合わせに配置されたシリンドリカルレンズである、照明光学装置。 In claim 1,
In the illumination optical device, the two lenses included in the condensing optical system are cylindrical lenses arranged with their power directions facing each other. - 請求項1において、
前記光束径可変ユニットおよび集光光学系に含まれ、条件式(1)および(2)を満たすレンズは、さらに、条件式(5)を満たす、照明光学装置。
|f_max|-|f_min|<50mm・・・(5)
ここで、f_maxは該当レンズのうち焦点距離が一番長いレンズの焦点距離、f_maxは該当レンズのうち焦点距離が一番短いレンズの焦点距離、をそれぞれ表している。 In claim 1,
An illumination optical device in which the lens included in the variable beam diameter unit and the condensing optical system and satisfying conditional expressions (1) and (2) further satisfies conditional expression (5).
|f_max|-|f_min|<50mm...(5)
Here, f_max represents the focal length of the lens with the longest focal length among the applicable lenses, and f_max represents the focal length of the lens with the shortest focal length among the applicable lenses. - 請求項1において、
前記光源は、波長域が200~300nmの光を発する、照明光学装置。 In claim 1,
The light source is an illumination optical device that emits light in a wavelength range of 200 to 300 nm. - 請求項1において、
前記光束径可変ユニットに含まれる、前記条件式(1)を満たす少なくとも1つのレンズと前記条件式(2)を満たす少なくとも1つのレンズとは、同一硝材で構成されている、照明光学装置。 In claim 1,
An illumination optical device, wherein at least one lens satisfying the conditional expression (1) and at least one lens satisfying the conditional expression (2) included in the variable beam diameter unit are made of the same glass material. - 請求項1において、さらに、
前記光束径可変ユニットに含まれる少なくとも1つのレンズを光軸方向に移動する制御部を備え、
前記制御部は、前記光束径可変ユニットに含まれる少なくとも1つのレンズを光軸方向に移動することにより、光束径を変更してビーム径を制御する、照明光学装置。 In claim 1, further:
comprising a control unit that moves at least one lens included in the variable beam diameter unit in the optical axis direction,
The illumination optical device is configured such that the control unit controls the beam diameter by changing the diameter of the luminous flux by moving at least one lens included in the variable luminous flux diameter unit in the optical axis direction. - 請求項1において、さらに、
少なくとも前記光束径可変ユニットおよび集光光学系を保持する支持構造体を備え、
前記支持構造体は、低膨張金属で構成される、照明光学装置。 In claim 1, further:
comprising a support structure that holds at least the variable beam diameter unit and the condensing optical system;
The illumination optical device, wherein the support structure is made of a low expansion metal. - 請求項1において、さらに、
前記集光光学系の光学素子を光軸上で移動させることにより前記集光光学系の焦点距離を可変に制御し、前記対象物に照射されるビームスポットの縦横比を調整する制御部を備える、照明光学装置。 In claim 1, further:
A control unit that variably controls the focal length of the focusing optical system by moving an optical element of the focusing optical system on the optical axis and adjusts the aspect ratio of the beam spot irradiated onto the object. , illumination optical equipment. - 請求項1において、さらに、
前記対象物に照射されるビームスポットの縦横比を変化させる光学素子を備える、照明光学装置。 In claim 1, further:
An illumination optical device comprising an optical element that changes the aspect ratio of a beam spot irradiated onto the object. - 請求項1に記載の照明光学装置と、
前記照明光学装置による光が前記対象物に当たった際に発生する拡散反射光の一部を集光する受光レンズと、
前記受光レンズによって集光された光と電気信号に変換する受光素子と、
前記電気信号を解析する解析部と、
前記解析部による解析結果を出力する出力部と、
を備える、検査装置。 An illumination optical device according to claim 1;
a light receiving lens that collects a part of the diffusely reflected light generated when the light from the illumination optical device hits the target object;
a light-receiving element that converts the light focused by the light-receiving lens into an electrical signal;
an analysis unit that analyzes the electrical signal;
an output unit that outputs an analysis result by the analysis unit;
An inspection device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/035197 WO2024062563A1 (en) | 2022-09-21 | 2022-09-21 | Lighting optical device and inspection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/035197 WO2024062563A1 (en) | 2022-09-21 | 2022-09-21 | Lighting optical device and inspection device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024062563A1 true WO2024062563A1 (en) | 2024-03-28 |
Family
ID=90454020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/035197 WO2024062563A1 (en) | 2022-09-21 | 2022-09-21 | Lighting optical device and inspection device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024062563A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013011547A1 (en) * | 2011-07-15 | 2013-01-24 | 株式会社オーク製作所 | Projection optical system and projection exposure device |
JP2019174848A (en) * | 2019-07-11 | 2019-10-10 | 株式会社タムロン | Image capturing lens and image capturing device |
JP2019199397A (en) * | 2018-05-10 | 2019-11-21 | Hoya株式会社 | Optical glass and optical element |
JP2020122992A (en) * | 2017-04-26 | 2020-08-13 | 京セラ株式会社 | Image capturing lens |
-
2022
- 2022-09-21 WO PCT/JP2022/035197 patent/WO2024062563A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013011547A1 (en) * | 2011-07-15 | 2013-01-24 | 株式会社オーク製作所 | Projection optical system and projection exposure device |
JP2020122992A (en) * | 2017-04-26 | 2020-08-13 | 京セラ株式会社 | Image capturing lens |
JP2019199397A (en) * | 2018-05-10 | 2019-11-21 | Hoya株式会社 | Optical glass and optical element |
JP2019174848A (en) * | 2019-07-11 | 2019-10-10 | 株式会社タムロン | Image capturing lens and image capturing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6080877B2 (en) | Spin wafer inspection system and high-frequency high-speed autofocus mechanism | |
JP4762593B2 (en) | External laser introduction device | |
JP2015222434A (en) | Inspection system using small catadioptric objective | |
US20070033680A1 (en) | Optical inspection system and its illumination method | |
JP5868396B2 (en) | Extending the lifetime of deep UV lasers in wafer inspection tools | |
TWI699842B (en) | Method of improving lateral resolution for height sensor using differential detection technology for semiconductor inspection and metrology | |
KR20240027641A (en) | Apparatus and method for characterizing a microlithographic mask | |
WO2024062563A1 (en) | Lighting optical device and inspection device | |
JP6238177B2 (en) | Projection exposure apparatus having highly flexible manipulator | |
TWI476537B (en) | Imaging microoptics for measuring the position of an aerial image | |
TWI723289B (en) | Optical system with compensation lens and method for operating optical system | |
JP2004109219A (en) | Scanning optical microscope | |
US9958257B2 (en) | Increasing dynamic range of a height sensor for inspection and metrology | |
US20090323176A1 (en) | Single wavelength ultraviolet laser device | |
JP2004226939A (en) | Defect inspection apparatus, defect inspection method and method for manufacturing semiconductor device using the same | |
JP2008261829A (en) | Surface measuring device | |
JP4723842B2 (en) | Scanning optical microscope | |
WO2021205650A1 (en) | Lighting optical system and substrate inspecting device | |
JP3256865B2 (en) | Defect inspection device and optical scanning device | |
JP2007101310A (en) | Position detector | |
US9170414B2 (en) | Method and apparatus for producing a super-magnified wide-field image | |
CN112697397B (en) | DMD stray light detection device and detection method | |
CN116408539A (en) | Laser processing device | |
US20230191533A1 (en) | Laser processing apparatus and laser processing method | |
KR20230138871A (en) | Optical device, exposure apparatus and exposure method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22959527 Country of ref document: EP Kind code of ref document: A1 |