WO2024062555A1 - Failure determination device for transaxle oil temperature sensor - Google Patents

Failure determination device for transaxle oil temperature sensor Download PDF

Info

Publication number
WO2024062555A1
WO2024062555A1 PCT/JP2022/035179 JP2022035179W WO2024062555A1 WO 2024062555 A1 WO2024062555 A1 WO 2024062555A1 JP 2022035179 W JP2022035179 W JP 2022035179W WO 2024062555 A1 WO2024062555 A1 WO 2024062555A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil temperature
transaxle
temperature sensor
failure determination
vehicle
Prior art date
Application number
PCT/JP2022/035179
Other languages
French (fr)
Japanese (ja)
Inventor
良 小笠原
佐藤 英信
徹 三浦
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to PCT/JP2022/035179 priority Critical patent/WO2024062555A1/en
Priority to JP2023525000A priority patent/JP7428295B1/en
Publication of WO2024062555A1 publication Critical patent/WO2024062555A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/64Atmospheric temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/74Inputs being a function of engine parameters
    • F16H59/78Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures

Definitions

  • the present invention relates to a technology for determining failure of an oil temperature sensor that detects oil temperature in a vehicle transaxle.
  • a transaxle included in a vehicle's drive system is filled with lubricating oil (hydraulic oil). Since the operating characteristics of a transmission change depending on the viscosity of the lubricating oil contained therein, it is necessary to accurately detect the temperature of the lubricating oil.
  • the temperature of lubricating oil is generally detected by a temperature sensor.
  • a common failure of an oil temperature sensor is, for example, a stuck state in which the oil temperature sensor outputs a constant temperature even though the oil temperature has changed.
  • Patent Document 1 describes a failure determination device for an oil temperature sensor of an automatic transmission.
  • Patent Document 1 describes a determination device that determines that an oil temperature sensor is malfunctioning when the oil temperature of an automatic transmission does not rise even if the vehicle travels at a predetermined vehicle speed or higher for a predetermined time.
  • the transaxle oil temperature at the start of driving and the oil temperature after driving for a predetermined period of time may be approximately the same, and the oil temperature sensor (transaxle oil temperature sensor) may be incorrectly determined to be malfunctioning.
  • the present invention has been made to solve these problems, and its purpose is to provide a failure determination device for a transaxle oil temperature sensor that can accurately determine failure.
  • the transaxle oil temperature sensor failure determination device of the present invention is provided in a vehicle equipped with a transaxle that transmits power between a drive device that outputs power and a drive shaft.
  • a failure determination device for a transaxle oil temperature sensor that detects the oil temperature of a transaxle, the device detecting a failure of the transaxle oil temperature sensor based on the oil temperature of the transaxle from the time of starting the vehicle until the establishment of a predetermined driving condition.
  • the failure determining section is configured to determine whether the difference between the oil temperature of the transaxle at the time of starting the vehicle and the oil temperature of the transaxle when the driving condition is satisfied is a predetermined first value.
  • a second determination is made to determine that the transaxle oil temperature sensor is less than the first determination, and if both the first determination and the second determination are satisfied, it is determined that the transaxle oil temperature sensor is malfunctioning. Thereby, it can be generally determined by the first determination that the transaxle oil temperature sensor is stuck.
  • the second decision will be made even if the first determination is met. is not established and a failure is not determined. Therefore, it is possible to avoid determining that a normal transaxle oil temperature sensor has failed.
  • the running condition is such that the cumulative time during which the running speed of the vehicle is at least a predetermined speed since the start is at least a predetermined time.
  • the running conditions can be quickly met by increasing the vehicle speed to the predetermined speed or higher, and the transaxle oil It is possible to shorten the time required for determining a failure of the temperature sensor.
  • the vehicle includes a generator disposed adjacent to the transaxle, and a generator oil temperature detection section that detects an oil temperature of the generator, and the failure determination section is configured to detect the It is preferable to perform a failure determination of the transaxle oil temperature sensor when the oil temperature of the generator is below a predetermined third threshold value.
  • the oil temperature of the transaxle and the oil temperature of the generator adjacent to the transaxle have similar oil temperature movements, so the oil temperature of the generator at the time of startup is a prerequisite for determining the failure of the transaxle oil temperature sensor.
  • the reliability of failure determination is improved by performing failure determination of the transaxle oil temperature sensor in an environment where a large change in generator oil temperature can be ensured from the time of startup until the predetermined running conditions are met. can be done.
  • the vehicle includes a generator disposed adjacent to the transaxle, and a generator oil temperature detection section that detects an oil temperature of the generator, and the failure determination section is configured to detect the If the difference between the oil temperature of the generator and the oil temperature of the generator when the driving condition is satisfied exceeds a fourth predetermined threshold value, a failure determination of the transaxle oil temperature sensor may be performed.
  • the oil temperature of the generator is used as a prerequisite for failure determination of the transaxle oil temperature sensor, and the transaxle oil temperature is By performing failure determination of the axle oil temperature sensor, the reliability of failure determination can be improved.
  • the vehicle includes an outside temperature detection section that detects an outside temperature of the vehicle, and the failure determination section changes at least one of the first threshold value and the second threshold value based on the outside temperature.
  • the failure determination section changes at least one of the first threshold value and the second threshold value based on the outside temperature.
  • the vehicle includes an outside temperature detection section that detects outside temperature of the vehicle, and the failure determination section changes the predetermined time based on the outside temperature.
  • the failure determination section changes the predetermined time based on the outside temperature.
  • the failure of the transaxle oil temperature sensor is determined when both the first determination and the second determination are satisfied, so that the transaxle oil temperature is normal. It is possible to suppress erroneous determination that the sensor is malfunctioning and improve the accuracy of malfunction determination.
  • 1 is an overall configuration diagram of a travel drive system of a vehicle in which a transaxle oil temperature sensor failure determination device of the present embodiment is adopted.
  • 3 is a flowchart showing a procedure of failure determination control executed in the oil temperature sensor failure determination device.
  • 5 is a time chart showing an example of changes in various data when determining whether an oil temperature sensor is stuck.
  • FIG. 1 is an overall configuration diagram of a travel drive system of a vehicle 1 in which an oil temperature sensor failure determination device of this embodiment is adopted.
  • the vehicle 1 of this embodiment is a hybrid vehicle that includes a front motor 2 (driving device), a rear motor 5, and an engine 3 (driving device) as traveling drive sources.
  • the vehicle 1 is a four-wheel drive vehicle configured such that the front wheels 4 are driven by the output of the front motor 2 or the outputs of the front motor 2 and the engine 3, and the rear wheels 6 are driven by the output of the rear motor 5.
  • the output shaft of the engine 3 is connected to a drive shaft 8, which is a drive shaft for the front wheels 4, via a transaxle 7.
  • the transaxle 7 has a built-in clutch 9 that can connect and disconnect a differential 7b and a power transmission path in a case 7a, and also contains lubricating oil.
  • the clutch 9 When the clutch 9 is engaged, the driving force of the engine 3 is transmitted to the front wheels 4 via the transaxle 7 and the drive shaft 8, and when the clutch 9 is disengaged, the engine 3 and the front wheels 4 are disconnected.
  • the drive shaft of the front motor 2 is connected to a drive shaft 8 via a transaxle 7, and the driving force of the front motor 2 is transmitted from the transaxle 7 via the drive shaft 8 to the front wheels 4.
  • a motor generator 10 generator
  • the motor generator 10 also functions as a starter motor that starts the engine 3 when the clutch 9 is disengaged.
  • the rear motor 5 is connected to a drive shaft 12 of the rear wheel 6 via a reduction gear 11, and its driving force is transmitted from the reduction gear 11 to the rear wheel 6 via the drive shaft 12.
  • case 7a of the transaxle 7 and the case of the motor generator 10 of this embodiment are connected to be integrated, and the transaxle 7 and the motor generator 10 have a structure that facilitates mutual heat conduction. There is.
  • An engine control unit 14 composed of an input/output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a central processing unit (CPU), etc. is connected to the engine 3.
  • the throttle opening, fuel injection amount, ignition timing, etc. are controlled.
  • the front motor 2, the rear motor 5, and the motor generator 10 are, for example, three-phase AC motors, and are provided with a storage battery 15 for running drive as their power source.
  • the storage battery 15 is composed of a secondary battery such as a lithium ion battery, and includes a battery monitoring unit 15a that calculates its charging rate and detects its temperature.
  • the front motor 2 and motor generator 10 are connected to a storage battery 15 via a front motor control unit 16.
  • the front motor control unit 16 includes a front motor inverter 16a and a motor generator inverter 16b.
  • the DC power of the storage battery 15 is converted into three-phase AC power by a front motor inverter 16a and a motor generator inverter 16b, and is supplied to the front motor 2 and the motor generator 10.
  • the regenerated power by the front motor 2 and the power generated by the motor generator 10 are converted into DC power by the front motor inverter 16 a and the motor generator inverter 16 b, and the storage battery 15 is charged with the DC power.
  • the rear motor 5 is connected to a storage battery 15 via a rear motor control unit 17.
  • the rear motor control unit 17 is equipped with a rear motor inverter 17a.
  • the DC power of the storage battery 15 is converted to three-phase AC power by the rear motor inverter 17a and supplied to the rear motor 5, and the regenerated power by the rear motor 5 is converted to DC power by the rear motor inverter 17a and charged to the storage battery 15. .
  • the vehicle 1 is also equipped with a charger 13 that charges the storage battery 15 using an external power source.
  • the vehicle 1 is equipped with a hybrid control unit 18 that is a control device for comprehensively controlling the vehicle 1.
  • the hybrid control unit 18 includes an input/output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like.
  • the hybrid control unit 18 controls the operating states of the engine 3, front motor 2, motor generator 10, and rear motor 5, as well as the engagement/disengagement state of the clutch 9 of the transaxle 7.
  • An accelerator opening sensor is connected to detect the accelerator opening when the accelerator opening does not occur, and detection and operation information from these devices is input.
  • a front motor control unit 16, a rear motor control unit 17, a clutch 9 of the transaxle 7, and an engine control unit 14 are connected to the output side of the hybrid control unit 18.
  • the hybrid control unit 18 switches the driving mode of the vehicle 1 between the EV mode, series mode, and parallel mode based on various detected amounts from the accelerator opening sensor, vehicle speed sensor 20, and the like. For example, in a region where the efficiency of the engine 3 is high, such as a high speed region, the running mode is set to the parallel mode. Further, in the medium and low speed range, switching is performed between the EV mode and the series mode based on the charging rate SOC of the storage battery 15, the required torque for driving the vehicle, etc.
  • the clutch 9 of the transaxle 7 is disengaged, the engine 3 is stopped, and the front motor 2 and rear motor 5 are driven by electric power from the storage battery 15 to cause the vehicle 1 to travel.
  • the clutch 9 of the transaxle 7 is connected and the engine 3 is operated to transmit driving force from the transaxle 7 to the front wheels 4. If there is surplus engine driving force, the front motor 2 regenerates the driving force. However, when the engine driving force is insufficient, electric power from the storage battery 15 is used to assist the front motor 2.
  • the hybrid control unit 18 calculates the total required output necessary for running the vehicle 1 based on the various detected amounts and operation information, and applies the total required output to the front motor 2 side and rear motor 5 in the EV mode and series mode.
  • the power is distributed to the front motor 2 side, the engine 3 side, and the rear motor 5 side.
  • the required output distributed to each, the gear ratio of the transaxle 7 from the front motor 2 to the front wheels 4, the gear ratio of the transaxle 7 from the engine 3 to the front wheels 4, and the reduction gear 11 from the rear motor 5 to the rear wheels 6. Based on the gear ratio of Output a signal.
  • the front motor control unit 16 and rear motor control unit 17 calculate target current values that should be passed through the coils of each phase of the front motor 2 and rear motor 5 in order to achieve the required torque. . Then, switching control is performed on the front motor inverter 16a and the rear motor inverter 17a based on the target current value to control the current value of each coil to the target current value and achieve each required torque. The same applies when the motor generator 10 generates power, and the motor generator inverter 16b is switched and controlled based on the target current value determined from the negative required torque, thereby achieving the target current value.
  • the engine control unit 14 calculates target values for throttle opening, fuel injection amount, ignition timing, etc. to achieve the required torque based on the command signal from the hybrid control unit 18, and performs control based on these target values to request the torque. Achieve torque.
  • the vehicle 1 of this embodiment is equipped with a T/A oil temperature sensor 30 (transaxle oil temperature sensor) that detects the lubricating oil temperature (oil temperature) of the transaxle 7. Further, a generator oil temperature sensor (hereinafter referred to as GEN oil temperature sensor 32 (generator oil temperature detection section)) that detects the temperature of oil for cooling the motor generator 10 is provided.
  • GEN oil temperature sensor 32 generator oil temperature detection section
  • the hybrid control unit 18 includes a failure determination section 31 that determines whether the T/A oil temperature sensor 30 has failed.
  • the oil temperature sensor failure determination control in the failure determination section 31 will be described below with reference to FIGS. 2 and 3.
  • the T/A oil temperature sensor 30 is fixed when the detected value of the T/A oil temperature sensor 30 remains at a constant value even though the oil temperature of the transaxle 7 has actually changed. It is determined that this is a failure.
  • the failure determination unit 31 inputs the oil temperature Tt/a of the transaxle 7 from the T/A oil temperature sensor 30 and the oil temperature Tge of the motor generator 10 from the GEN oil temperature sensor 32 when the vehicle is powered on. At the same time, the cumulative value of the amount of change in the oil temperature Tt/a of the transaxle 7 for each unit time set as appropriate is stored.
  • FIG. 2 is a flowchart showing a procedure of oil temperature sensor failure determination control executed by the failure determination unit 31.
  • the oil temperature sensor failure determination control of this embodiment is executed when the power supply of the vehicle is ON.
  • step S20 it is determined whether the ignition switch (IG switch), which is the power switch of the vehicle, is ON. If the IG switch is ON, the process advances to step S20. If the IG switch is OFF, the process advances to step S120. In step S20, it is determined whether the power supply voltage of the hybrid control unit 18 is 10V or more. This threshold value of 10V is a value near the lower limit of the power supply voltage within a range in which the hybrid control unit 18 operates normally. If the power supply voltage is 10V or higher, the process advances to step S30. If the power supply voltage is less than 10V, the process advances to step S120.
  • IG switch ignition switch
  • step S30 it is determined whether the detection information of the T/A oil temperature sensor 30 can be used. Regarding whether or not the detection information of the T/A oil temperature sensor 30 can be used, for example, when the hybrid control unit 18 starts up (when the power is turned on), the detected value of the T/A oil temperature sensor 30 is If it is determined that there is no failure in the D-converting circuit, it is determined that the detection information of the T/A oil temperature sensor 30 can be used, or based on the output value of the T/A oil temperature sensor 30. and make judgments.
  • the oil temperature Tt/a which is the output value of the T/A oil temperature sensor 30, is greater than the output value T1 at the time of a ground fault and the wire is disconnected. Or, it can be used when the output value at the time of a power supply fault is less than T2 (see the graph of Tt/a in Figure 3), and the output value at the time of a ground fault is less than or equal to T1, or the output value at the time of a disconnection or power supply fault is greater than or equal to T2. In this case, it is considered unusable. If the detection information of the T/A oil temperature sensor 30 is usable, the process advances to step S40. If the detection information of the T/A oil temperature sensor 30 is unusable, the process advances to step S120.
  • step S40 it is determined whether the circuit of the T/A oil temperature sensor 30 is in failure. In this step, for example, if the determination based on the output value of the T/A oil temperature sensor 30 performed in step S30 continues for a certain period of time (several 100 msec), it is determined that the circuit of the T/A oil temperature sensor 30 is not in failure. All you have to do is judge. If the circuit of the T/A oil temperature sensor 30 is not out of order, the process advances to step S50. If the circuit of the T/A oil temperature sensor 30 is out of order, the process advances to step S120.
  • step S50 the oil temperature Tge of the motor generator 10 at the time of starting the vehicle is input from the GEN oil temperature sensor 32, and it is determined whether the oil temperature Tgea at the time of starting is equal to or lower than a third threshold value (45° C.).
  • This third threshold value of 45° C. is a value close to the highest value of oil temperature Tge of motor generator 10 after soaking. If the oil temperature Tgea at startup is 45° C. or lower, the process advances to step S60. If the oil temperature Tgea at the time of startup exceeds 45° C., the process advances to step S120.
  • step S60 it is determined whether the running conditions are satisfied.
  • the driving condition is that the cumulative time ⁇ tv during which the vehicle speed V has been 40 km/h or more since the start has exceeded a predetermined time (300 seconds). If the running conditions are satisfied, the process advances to step S70. If the running conditions are not met, step S60 is repeated.
  • step S70 the oil temperature Tge of the motor generator 10 is input from the GEN oil temperature sensor 32, and the oil temperature Tgeb of the motor generator 10 when this running condition is satisfied and the oil temperature Tgeb of the motor generator 10 at the time of startup stored in the storage device are input. It is determined whether the absolute value of the difference between the oil temperature Tgea and the oil temperature Tgea (
  • the fourth threshold value of 10° C. may be set to a temperature difference of the motor generator 10 such that the oil temperature of the transaxle 7 reliably changes more than the first threshold value of 2° C. in step S80 below.
  • step S80 If the absolute value of the difference in oil temperature of motor generator 10 (
  • step S80 the oil temperature Tt/a of the transaxle 7 is input from the T/A oil temperature sensor 30, and the oil temperature Tt/ab of the transaxle 7 when this running condition is satisfied is stored in the storage device. It is determined whether the absolute value of the difference from the oil temperature Tt/aa of the transaxle 7 at the time of startup is less than a first threshold value (2° C.). This first threshold value of 2° C. may be set to a value such that the oil temperature of the transaxle 7 changes reliably when the driving conditions are met. If the absolute value of the difference in oil temperature of the transaxle 7 (
  • a first threshold value of 2° C. may be set to a value such that the oil temperature of the transaxle 7 changes reliably when the driving conditions are met. If the absolute value of the difference in oil temperature of the transaxle 7 (
  • step S110 If the absolute value of the difference in oil temperature of the transaxle 7 (
  • step S90 the value ( ⁇
  • step S100 it is determined that the T/A oil temperature sensor 30 is stuck. Then, this routine ends.
  • step S110 it is determined that the T/A oil temperature sensor 30 is normal. Then, this routine ends.
  • step S120 in the oil temperature sensor failure determination control during the current startup, it is determined that the determination is incomplete because it has not been possible to determine whether or not the T/A oil temperature sensor 30 is normal. Then, this routine ends.
  • the hybrid control unit 18 controls the warning display and the output of the engine 3 and each motor 2 and 5 based on the determination result of the failure determination control in the failure determination section 31.
  • the T/A oil temperature sensor 30 is determined to be malfunctioning, there is a possibility that the oil temperature will be erroneously determined to be high and control will be performed to suppress the output of the front side (engine 3 and front motor 2).
  • the oil temperature of the transaxle 7 is set at 80°C.
  • the running condition is satisfied when the cumulative time ⁇ tv becomes equal to or longer than a predetermined time (300 seconds).
  • a predetermined time 300 seconds.
  • the absolute value of the difference in the oil temperature of the motor generator 10
  • 10°C when the running conditions are satisfied
  • the absolute value of the difference in the oil temperature of the transaxle 7
  • FIG. 3 shows a case where the vehicle stops running after determining that the T/A oil temperature sensor 30 has failed.
  • the hybrid control unit 18 of the vehicle 1 includes the failure determination section 31 that determines a failure of the T/A oil temperature sensor 30 that detects the oil temperature of the transaxle 7.
  • the failure determination unit 31 determines the absolute value of the difference (
  • the driving conditions are that the cumulative time ⁇ tv during which the vehicle speed V has been 40 km/h or more since the start has exceeded a predetermined time (300 seconds), and the oil temperature of the transaxle 7 has risen by a first threshold value or more. Therefore, it can be determined by the first determination that the T/A oil temperature sensor 30 is in a fixed state.
  • the failure determination unit 31 determines that the T/A oil temperature sensor 30 is stuck when not only the first determination but also the second determination is satisfied. As a result, even if the oil temperature of the transaxle 7 at the time of starting and when the running conditions are satisfied is coincidentally almost the same, the second determination can be made if the oil temperature of the transaxle 7 increases or decreases from the time of starting until the running conditions are met. Failure is not determined because it does not hold true. Therefore, erroneous failure determination can be avoided, and the accuracy of failure determination of the T/A oil temperature sensor 30 can be improved.
  • the running condition is not the elapsed time since the start, but the cumulative time ⁇ tv during which the vehicle speed V has been 40 km/h or more since the start has exceeded a predetermined time (300 seconds). Even if the vehicle speed temporarily becomes less than 40 km/h before the driving condition is established, the driving condition can be quickly established by increasing the vehicle speed V to 40 km/h or more after that, and the T/A oil temperature sensor 30 The determination time required for failure determination can be shortened.
  • the failure determination unit 31 inputs the oil temperature Tge of the motor generator 10 from the GEN oil temperature sensor 32, and when the oil temperature Tgea of the motor generator 10 is equal to or lower than a third threshold value (45° C.) at the time of starting, /A Execute failure determination of the oil temperature sensor 30.
  • the transaxle 7 at the time of starting
  • the reliability of failure determination of the T/A oil temperature sensor 30 can be improved.
  • the failure determination of the T/A oil temperature sensor 30 is not executed, so that the T/A oil temperature sensor 30 is determined to be normal. Nevertheless, it is possible to avoid erroneously determining that the transaxle 7 is malfunctioning due to the inability to obtain a large change in the oil temperature, thereby improving the reliability of the failure determination of the T/A oil temperature sensor 30.
  • the T/A oil temperature sensor 30 failure determinations are performed.
  • the oil temperature Tgea of the motor generator 10 at the time of starting and the oil temperature Tgeb of the motor generator 10 when the driving condition is satisfied are used as prerequisites for failure determination of the T/A oil temperature sensor 30, and a predetermined value is set from the time of starting.
  • failure determination of the T/A oil temperature sensor 30 is not performed when there is little change in the oil temperature of the motor generator 10 from start to when the running conditions are met, that is, when there is little change in the oil temperature of the transaxle 7. This makes it possible to improve the reliability of failure determination of the T/A oil temperature sensor 30.
  • the failure determination unit 31 changes at least one of the first threshold value and the second threshold value based on the outside air temperature, good. For example, as the outside air temperature at startup increases, the oil temperature in the transaxle 7 at startup increases, making it difficult for the temperature of the transaxle 7 to rise during driving, so it is recommended to set the first threshold value and the second threshold value small. . Thereby, the failure determination accuracy of the T/A oil temperature sensor 30 can be improved.
  • the driving conditions may be changed based on the outside temperature.
  • the predetermined time period may be set to be longer as the outside air temperature at the time of startup becomes higher.
  • the present invention may perform at least determinations in steps S60, S80, and S90.
  • the present invention is applied to a hybrid vehicle that can switch between EV mode, series mode, and parallel mode, but the present invention can be widely applied to vehicles having a transaxle oil temperature sensor. Furthermore, it is applicable to plug-in hybrid vehicles (PHEVs) that can be externally charged or externally powered.
  • PHEVs plug-in hybrid vehicles

Abstract

A failure determination device for a T/A oil temperature sensor 30 that detects the oil temperature of a transaxle 7 of a vehicle 1 includes a failure determination unit 31 that determines a failure of the T/A oil temperature sensor 30 on the basis of the oil temperature of the transaxle 7 from the start of the vehicle 1 until a predetermined running condition is established. The failure determination unit 31 makes a first determination to determine that the difference between the oil temperature of the transaxle 7 at the start of the vehicle 1 and the oil temperature of the transaxle 7 when the predetermined running condition is established is less than a first threshold value, and a second determination to determine that an integrated value of the absolute value of the amount of change in the oil temperature of the transaxle 7 per unit time from the start of the vehicle until when the predetermined running condition is established is less than a second threshold value, and where both the first determination and the second determination are satisfied, it is determined that the T/A oil temperature sensor 30 is stuck abnormally.

Description

トランスアクスル油温センサの故障判定装置Transaxle oil temperature sensor failure determination device
 本発明は、車両のトランスアクスルの油温を検出する油温センサの故障を判定する技術に関する。 The present invention relates to a technology for determining failure of an oil temperature sensor that detects oil temperature in a vehicle transaxle.
 車両の駆動系に備えられたトランスアクスルには、潤滑油(作動油)が封入されている。変速機は、封入されている潤滑油の粘性によって作動特性が変化するため、潤滑油の温度を精度良く検出することが必要である。潤滑油の温度は、一般的に温度センサによって検出されている。
 油温センサ(温度センサ)の故障としては、例えば油温が変化したにも拘わらず油温センサの出力が一定の温度を出力する固着状態が多い。
A transaxle included in a vehicle's drive system is filled with lubricating oil (hydraulic oil). Since the operating characteristics of a transmission change depending on the viscosity of the lubricating oil contained therein, it is necessary to accurately detect the temperature of the lubricating oil. The temperature of lubricating oil is generally detected by a temperature sensor.
A common failure of an oil temperature sensor (temperature sensor) is, for example, a stuck state in which the oil temperature sensor outputs a constant temperature even though the oil temperature has changed.
 特許文献1には、自動変速機の油温センサの故障判定装置が記載されている。特許文献1には、車両が所定車速以上で所定時間走行しても自動変速機の油温が上昇しないときに油温センサが故障であると判定する判定装置が記載されている。 Patent Document 1 describes a failure determination device for an oil temperature sensor of an automatic transmission. Patent Document 1 describes a determination device that determines that an oil temperature sensor is malfunctioning when the oil temperature of an automatic transmission does not rise even if the vehicle travels at a predetermined vehicle speed or higher for a predetermined time.
特開平9-329222号公報Japanese Patent Application Publication No. 9-329222
 しかしながら、気温等の変化や走行開始からの車速の推移によっては、走行開始におけるトランスアクスルの油温と所定時間走行後の油温とが略一致する場合があり、油温センサ(トランスアクスル油温センサ)が故障であることを誤判定する可能性がある。
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、精度良く故障判定が可能なトランスアクスル油温センサの故障判定装置を提供することにある。
However, depending on changes in temperature, etc. and changes in vehicle speed from the start of driving, the transaxle oil temperature at the start of driving and the oil temperature after driving for a predetermined period of time may be approximately the same, and the oil temperature sensor (transaxle oil temperature sensor) may be incorrectly determined to be malfunctioning.
The present invention has been made to solve these problems, and its purpose is to provide a failure determination device for a transaxle oil temperature sensor that can accurately determine failure.
 上記の目的を達成するため、本発明のトランスアクスル油温センサの故障判定装置は、動力を出力する駆動機器とドライブシャフトとの間に動力を伝達するトランスアクスルを備えた車両に設けられ、前記トランスアクスルの油温を検出するトランスアクスル油温センサの故障判定装置であって、前記車両の始動時から所定の走行条件成立までの前記トランスアクスルの油温に基づいて前記トランスアクスル油温センサの故障を判定する故障判定部を備え、前記故障判定部は、前記車両の始動時の前記トランスアクスルの油温と、前記走行条件成立時の前記トランスアクスルの油温との差が所定の第1閾値未満であることを判定する第1判定と、前記始動時から前記走行条件成立時までの、前記トランスアクスルの油温の単位時間当たりの変化量の絶対値の積算値が所定の第2閾値未満であることを判定する第2判定を行い、前記第1判定と前記第2判定がいずれも成立した場合に前記トランスアクスル油温センサが故障であると判定することを特徴とする。
 これにより、第1判定によって、トランスアクスル油温センサが固着状態であることを概ね判定することができる。但し、車両の始動時から走行条件成立までにトランスアクスルの油温が上下して始動時と走行条件成立時とで略同一であった場合には、第1判定が成立しても第2判定が成立せずに故障判定されない。したがって、正常なトランスアクスル油温センサが故障判定されることを回避することができる。
In order to achieve the above object, the transaxle oil temperature sensor failure determination device of the present invention is provided in a vehicle equipped with a transaxle that transmits power between a drive device that outputs power and a drive shaft. A failure determination device for a transaxle oil temperature sensor that detects the oil temperature of a transaxle, the device detecting a failure of the transaxle oil temperature sensor based on the oil temperature of the transaxle from the time of starting the vehicle until the establishment of a predetermined driving condition. The failure determining section is configured to determine whether the difference between the oil temperature of the transaxle at the time of starting the vehicle and the oil temperature of the transaxle when the driving condition is satisfied is a predetermined first value. a first determination to determine that the temperature is less than a threshold; and a second threshold in which an integrated value of an absolute value of an amount of change in the oil temperature of the transaxle per unit time from the start to the time the driving condition is satisfied is a predetermined second threshold. A second determination is made to determine that the transaxle oil temperature sensor is less than the first determination, and if both the first determination and the second determination are satisfied, it is determined that the transaxle oil temperature sensor is malfunctioning.
Thereby, it can be generally determined by the first determination that the transaxle oil temperature sensor is stuck. However, if the oil temperature of the transaxle rises and falls between the time the vehicle is started and the running conditions are met, and the oil temperature at the transaxle is approximately the same at startup and when the running conditions are met, the second decision will be made even if the first determination is met. is not established and a failure is not determined. Therefore, it is possible to avoid determining that a normal transaxle oil temperature sensor has failed.
 好ましくは、前記走行条件は、前記始動時からの前記車両の走行速度が所定速度以上である累積時間が所定時間以上であるとよい。
 これにより、車両の走行速度が走行条件成立前に一時的に所定速度未満になったとしても、その後に車速が所定速度以上になることで迅速に走行条件を成立させることができ、トランスアクスル油温センサの故障判定の判定時間を短縮させることができる。
Preferably, the running condition is such that the cumulative time during which the running speed of the vehicle is at least a predetermined speed since the start is at least a predetermined time.
As a result, even if the running speed of the vehicle temporarily falls below a predetermined speed before the running conditions are met, the running conditions can be quickly met by increasing the vehicle speed to the predetermined speed or higher, and the transaxle oil It is possible to shorten the time required for determining a failure of the temperature sensor.
 好ましくは、前記車両は、前記トランスアクスルに隣接して配置された発電機と、前記発電機の油温を検出する発電機油温検出部とを備え、前記故障判定部は、前記始動時において前記発電機の油温が所定の第3閾値以下の場合に、前記トランスアクスル油温センサの故障判定を実行するとよい。
 これにより、トランスアクスルの油温とトランスアクスルと隣接するジェネレータの油温は同じような油温の動きをするため、トランスアクスル油温センサの故障判定の前提条件として始動時の発電機の油温を使用し、始動時から所定走行条件が成立するまでに発電機の油温変化を大きく確保できるような環境でトランスアクスル油温センサの故障判定を実行することで、故障判定の信頼性を向上させることができる。
Preferably, the vehicle includes a generator disposed adjacent to the transaxle, and a generator oil temperature detection section that detects an oil temperature of the generator, and the failure determination section is configured to detect the It is preferable to perform a failure determination of the transaxle oil temperature sensor when the oil temperature of the generator is below a predetermined third threshold value.
As a result, the oil temperature of the transaxle and the oil temperature of the generator adjacent to the transaxle have similar oil temperature movements, so the oil temperature of the generator at the time of startup is a prerequisite for determining the failure of the transaxle oil temperature sensor. The reliability of failure determination is improved by performing failure determination of the transaxle oil temperature sensor in an environment where a large change in generator oil temperature can be ensured from the time of startup until the predetermined running conditions are met. can be done.
 好ましくは、前記車両は、前記トランスアクスルに隣接して配置された発電機と、前記発電機の油温を検出する発電機油温検出部とを備え、前記故障判定部は、前記始動時の前記発電機の油温と、前記走行条件成立時の前記発電機の油温との差が所定の第4閾値を超えている場合には、前記トランスアクスル油温センサの故障判定を実行するとよい。
 これにより、トランスアクスル油温センサの故障判定の前提条件として発電機の油温を使用し、始動時から所定走行条件が成立するまでにトランスアクスルの油温変化が大きく得られるような場合にトランスアクスル油温センサの故障判定を実行することで、故障判定の信頼性を向上させることができる。
Preferably, the vehicle includes a generator disposed adjacent to the transaxle, and a generator oil temperature detection section that detects an oil temperature of the generator, and the failure determination section is configured to detect the If the difference between the oil temperature of the generator and the oil temperature of the generator when the driving condition is satisfied exceeds a fourth predetermined threshold value, a failure determination of the transaxle oil temperature sensor may be performed.
As a result, the oil temperature of the generator is used as a prerequisite for failure determination of the transaxle oil temperature sensor, and the transaxle oil temperature is By performing failure determination of the axle oil temperature sensor, the reliability of failure determination can be improved.
 好ましくは、前記車両の外気温度を検出する外気温度検出部を備え、前記故障判定部は、外気温度に基づいて、前記第1閾値及び前記第2閾値の少なくともいずれか一方を変更するとよい。
 これにより、第1閾値及び前記第2閾値の少なくともいずれか一方を適切に設定して、トランスアクスル油温センサの故障判定の信頼性を向上させることができる。
Preferably, the vehicle includes an outside temperature detection section that detects an outside temperature of the vehicle, and the failure determination section changes at least one of the first threshold value and the second threshold value based on the outside temperature.
Thereby, it is possible to appropriately set at least one of the first threshold value and the second threshold value, thereby improving the reliability of failure determination of the transaxle oil temperature sensor.
 好ましくは、前記車両の外気温度を検出する外気温度検出部を備え、前記故障判定部は、外気温度に基づいて前記所定時間を変更するとよい。
 これにより、走行条件を適切に設定して、トランスアクスル油温センサの故障判定の信頼性を向上させることができる。
Preferably, the vehicle includes an outside temperature detection section that detects outside temperature of the vehicle, and the failure determination section changes the predetermined time based on the outside temperature.
Thereby, it is possible to appropriately set the driving conditions and improve the reliability of failure determination of the transaxle oil temperature sensor.
 本発明のトランスアクスル油温センサの故障判定装置によれば、第1判定及び第2判定の両方が成立した場合に、トランスアクスル油温センサの故障が判定されるので、正常なトランスアクスル油温センサが故障であると誤判定することを抑制して、故障判定の精度を高めることができる。 According to the transaxle oil temperature sensor failure determination device of the present invention, the failure of the transaxle oil temperature sensor is determined when both the first determination and the second determination are satisfied, so that the transaxle oil temperature is normal. It is possible to suppress erroneous determination that the sensor is malfunctioning and improve the accuracy of malfunction determination.
本実施形態のトランスアクスルの油温センサ故障判定装置が採用された車両の走行駆動系の全体構成図である。1 is an overall configuration diagram of a travel drive system of a vehicle in which a transaxle oil temperature sensor failure determination device of the present embodiment is adopted. 油温センサ故障判定装置において実行される故障判定制御の手順を示すフローチャートである。3 is a flowchart showing a procedure of failure determination control executed in the oil temperature sensor failure determination device. 油温センサ固着判定時における各種データの推移例を示すタイムチャートである。5 is a time chart showing an example of changes in various data when determining whether an oil temperature sensor is stuck.
 以下、本発明をハイブリッド車両(以下、車両1という)に適用した実施形態を説明する。
 図1は本実施形態の油温センサ故障判定装置が採用された車両1の走行駆動系の全体構成図である。
Hereinafter, an embodiment in which the present invention is applied to a hybrid vehicle (hereinafter referred to as vehicle 1) will be described.
FIG. 1 is an overall configuration diagram of a travel drive system of a vehicle 1 in which an oil temperature sensor failure determination device of this embodiment is adopted.
 本実施形態の車両1は、走行駆動源としてフロントモータ2(駆動機器)、リヤモータ5及びエンジン3(駆動機器)を備えたハイブリッド車である。
 車両1は、フロントモータ2の出力またはフロントモータ2及びエンジン3の出力により前輪4を駆動し、リヤモータ5の出力により後輪6を駆動するように構成された4輪駆動車である。
The vehicle 1 of this embodiment is a hybrid vehicle that includes a front motor 2 (driving device), a rear motor 5, and an engine 3 (driving device) as traveling drive sources.
The vehicle 1 is a four-wheel drive vehicle configured such that the front wheels 4 are driven by the output of the front motor 2 or the outputs of the front motor 2 and the engine 3, and the rear wheels 6 are driven by the output of the rear motor 5.
 エンジン3の出力軸はトランスアクスル7を介して前輪4の駆動軸であるドライブシャフト8と連結されている。トランスアクスル7は、ケース7a内にデフ7bと動力伝達経路を断接可能なクラッチ9とが内蔵されるとともに、潤滑油が封入されている。クラッチ9の接続時にはエンジン3の駆動力がトランスアクスル7及びドライブシャフト8を経て前輪4に伝達され、クラッチ9の切断時にはエンジン3と前輪4との連結が切り離される。 The output shaft of the engine 3 is connected to a drive shaft 8, which is a drive shaft for the front wheels 4, via a transaxle 7. The transaxle 7 has a built-in clutch 9 that can connect and disconnect a differential 7b and a power transmission path in a case 7a, and also contains lubricating oil. When the clutch 9 is engaged, the driving force of the engine 3 is transmitted to the front wheels 4 via the transaxle 7 and the drive shaft 8, and when the clutch 9 is disengaged, the engine 3 and the front wheels 4 are disconnected.
 フロントモータ2の駆動軸はトランスアクスル7を介してドライブシャフト8と連結されて、フロントモータ2の駆動力がトランスアクスル7からドライブシャフト8を経て前輪4に伝達されるように構成されている。また、トランスアクスル7のクラッチ9より動力伝達方向の上流側(エンジン3側)にはモータジェネレータ10(発電機)が連結され、エンジン3の駆動により発電する。また、モータジェネレータ10は、クラッチ9の切断時において、エンジン3を始動するスタータモータとしても機能する。リヤモータ5は減速機11を介して後輪6のドライブシャフト12と連結され、その駆動力が減速機11からドライブシャフト12を経て後輪6に伝達されるようになっている。 The drive shaft of the front motor 2 is connected to a drive shaft 8 via a transaxle 7, and the driving force of the front motor 2 is transmitted from the transaxle 7 via the drive shaft 8 to the front wheels 4. Further, a motor generator 10 (generator) is connected to the upstream side (engine 3 side) of the clutch 9 of the transaxle 7 in the power transmission direction, and generates electricity by driving the engine 3. Furthermore, the motor generator 10 also functions as a starter motor that starts the engine 3 when the clutch 9 is disengaged. The rear motor 5 is connected to a drive shaft 12 of the rear wheel 6 via a reduction gear 11, and its driving force is transmitted from the reduction gear 11 to the rear wheel 6 via the drive shaft 12.
 また、本実施形態のトランスアクスル7のケース7aとモータジェネレータ10のケースとは一体化するように接続されており、トランスアクスル7とモータジェネレータ10とが相互に熱伝導がし易い構造になっている。 Further, the case 7a of the transaxle 7 and the case of the motor generator 10 of this embodiment are connected to be integrated, and the transaxle 7 and the motor generator 10 have a structure that facilitates mutual heat conduction. There is.
 エンジン3には、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央演算処理装置(CPU)等から構成されたエンジンコントロールユニット14が接続され、このエンジンコントロールユニット14によりエンジン3のスロットル開度、燃料噴射量、点火時期等が制御される。 An engine control unit 14 composed of an input/output device, a storage device (ROM, RAM, non-volatile RAM, etc.), a central processing unit (CPU), etc. is connected to the engine 3. The throttle opening, fuel injection amount, ignition timing, etc. are controlled.
 フロントモータ2、リヤモータ5及びモータジェネレータ10は例えば三相交流電動機であり、それらの電源として走行駆動用の蓄電池15が備えられている。蓄電池15は、例えばリチウムイオン電池等の二次電池から構成され、その充電率の算出や温度の検出を行うバッテリモニタリングユニット15aを内蔵している。 The front motor 2, the rear motor 5, and the motor generator 10 are, for example, three-phase AC motors, and are provided with a storage battery 15 for running drive as their power source. The storage battery 15 is composed of a secondary battery such as a lithium ion battery, and includes a battery monitoring unit 15a that calculates its charging rate and detects its temperature.
 フロントモータ2及びモータジェネレータ10はフロントモータコントロールユニット16を介して蓄電池15に接続されている。フロントモータコントロールユニット16には、フロントモータ用インバータ16a及びモータジェネレータ用インバータ16bが備えられている。蓄電池15の直流電力は、フロントモータ用インバータ16a及びモータジェネレータ用インバータ16bにより三相交流電力に変換されてフロントモータ2やモータジェネレータ10に供給される。また、フロントモータ2による回生電力やモータジェネレータ10による発電電力は、フロントモータ用インバータ16a及びモータジェネレータ用インバータ16bにより直流電力に変換されて蓄電池15に充電される。 The front motor 2 and motor generator 10 are connected to a storage battery 15 via a front motor control unit 16. The front motor control unit 16 includes a front motor inverter 16a and a motor generator inverter 16b. The DC power of the storage battery 15 is converted into three-phase AC power by a front motor inverter 16a and a motor generator inverter 16b, and is supplied to the front motor 2 and the motor generator 10. Furthermore, the regenerated power by the front motor 2 and the power generated by the motor generator 10 are converted into DC power by the front motor inverter 16 a and the motor generator inverter 16 b, and the storage battery 15 is charged with the DC power.
 リヤモータ5はリヤモータコントロールユニット17を介して蓄電池15に接続されている。リヤモータコントロールユニット17には、リヤモータ用インバータ17aが備えられている。蓄電池15の直流電力は、リヤモータ用インバータ17aにより三相交流電力に変換されてリヤモータ5に供給され、リヤモータ5による回生電力は、リヤモータ用インバータ17aにより直流電力に変換されて蓄電池15に充電される。
 また、車両1には、蓄電池15を外部電源によって充電する充電機13が備えられている。
The rear motor 5 is connected to a storage battery 15 via a rear motor control unit 17. The rear motor control unit 17 is equipped with a rear motor inverter 17a. The DC power of the storage battery 15 is converted to three-phase AC power by the rear motor inverter 17a and supplied to the rear motor 5, and the regenerated power by the rear motor 5 is converted to DC power by the rear motor inverter 17a and charged to the storage battery 15. .
The vehicle 1 is also equipped with a charger 13 that charges the storage battery 15 using an external power source.
 車両1には、車両1の総合的な制御を行うための制御装置であるハイブリッドコントロールユニット18が備えられている。ハイブリッドコントロールユニット18は、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央演算処理装置(CPU)等から構成されている。このハイブリッドコントロールユニット18により、エンジン3、フロントモータ2、モータジェネレータ10、リヤモータ5の各運転状態、及びトランスアクスル7のクラッチ9の断接状態等が制御される。ハイブリッドコントロールユニット18の入力側には、バッテリモニタリングユニット15a、フロントモータコントロールユニット16、リヤモータコントロールユニット17、エンジンコントロールユニット14、車両1の走行速度(車速V)を検出する車速センサ20、及び図示しないアクセル開度を検出するアクセル開度センサが接続されており、これらの機器からの検出及び作動情報が入力される。 The vehicle 1 is equipped with a hybrid control unit 18 that is a control device for comprehensively controlling the vehicle 1. The hybrid control unit 18 includes an input/output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like. The hybrid control unit 18 controls the operating states of the engine 3, front motor 2, motor generator 10, and rear motor 5, as well as the engagement/disengagement state of the clutch 9 of the transaxle 7. On the input side of the hybrid control unit 18, there are a battery monitoring unit 15a, a front motor control unit 16, a rear motor control unit 17, an engine control unit 14, a vehicle speed sensor 20 that detects the traveling speed (vehicle speed V) of the vehicle 1, and the components shown in the figure. An accelerator opening sensor is connected to detect the accelerator opening when the accelerator opening does not occur, and detection and operation information from these devices is input.
 また、ハイブリッドコントロールユニット18の出力側には、フロントモータコントロールユニット16、リヤモータコントロールユニット17、トランスアクスル7のクラッチ9、及びエンジンコントロールユニット14が接続されている。
 そして、ハイブリッドコントロールユニット18は、アクセル開度センサや車速センサ20等の各種検出量等に基づき、車両1の走行モードをEVモード、シリーズモード、パラレルモードの間で切り換える。例えば、高速領域のようにエンジン3の効率が高い領域では、走行モードをパラレルモードとする。また、中低速領域では、蓄電池15の充電率SOCや車両走行駆動用の要求トルク等に基づきEVモードとシリーズモードとの間で切り換える。
Furthermore, a front motor control unit 16, a rear motor control unit 17, a clutch 9 of the transaxle 7, and an engine control unit 14 are connected to the output side of the hybrid control unit 18.
Then, the hybrid control unit 18 switches the driving mode of the vehicle 1 between the EV mode, series mode, and parallel mode based on various detected amounts from the accelerator opening sensor, vehicle speed sensor 20, and the like. For example, in a region where the efficiency of the engine 3 is high, such as a high speed region, the running mode is set to the parallel mode. Further, in the medium and low speed range, switching is performed between the EV mode and the series mode based on the charging rate SOC of the storage battery 15, the required torque for driving the vehicle, etc.
 EVモードでは、トランスアクスル7のクラッチ9を切断すると共にエンジン3を停止し、蓄電池15からの電力によりフロントモータ2やリヤモータ5を駆動して車両1を走行させる。 In the EV mode, the clutch 9 of the transaxle 7 is disengaged, the engine 3 is stopped, and the front motor 2 and rear motor 5 are driven by electric power from the storage battery 15 to cause the vehicle 1 to travel.
 シリーズモードでは、トランスアクスル7のクラッチ9を切断した上で、エンジン3を運転してモータジェネレータ10を駆動し、その発電電力及び蓄電池15からの電力によりフロントモータ2やリヤモータ5を駆動して車両1を走行させる。なお、モータジェネレータ10による発電電力のうち余剰電力は、蓄電池15に充電される。 In the series mode, the clutch 9 of the transaxle 7 is disengaged, the engine 3 is operated to drive the motor generator 10, and the generated power and the power from the storage battery 15 drive the front motor 2 and rear motor 5 to drive the vehicle. Run 1. Note that surplus power of the power generated by the motor generator 10 is charged into a storage battery 15.
 パラレルモードでは、トランスアクスル7のクラッチ9を接続した上で、エンジン3を運転して駆動力をトランスアクスル7から前輪4に伝達すると共に、エンジン駆動力に余剰があるときには、フロントモータ2で回生し、エンジン駆動力が足りないときには、蓄電池15の電力を使ってフロントモータ2でアシストする。 In the parallel mode, the clutch 9 of the transaxle 7 is connected and the engine 3 is operated to transmit driving force from the transaxle 7 to the front wheels 4. If there is surplus engine driving force, the front motor 2 regenerates the driving force. However, when the engine driving force is insufficient, electric power from the storage battery 15 is used to assist the front motor 2.
 また、ハイブリッドコントロールユニット18は、上記各種検出量及び作動情報に基づき車両1の走行に必要な総要求出力を算出し、その総要求出力を、EVモード及びシリーズモードではフロントモータ2側とリヤモータ5側とに配分し、パラレルモードではフロントモータ2側とエンジン3側とリヤモータ5側とに配分する。そして、それぞれに配分した要求出力、及びフロントモータ2から前輪4までのトランスアクスル7のギヤ比、エンジン3から前輪4までのトランスアクスル7のギヤ比、リヤモータ5から後輪6までの減速機11のギヤ比に基づき、フロントモータ2、エンジン3、リヤモータ5のそれぞれの要求トルクを設定し、各要求トルクを達成するようにフロントモータコントロールユニット16、リヤモータコントロールユニット17及びエンジンコントロールユニット14に指令信号を出力する。 Further, the hybrid control unit 18 calculates the total required output necessary for running the vehicle 1 based on the various detected amounts and operation information, and applies the total required output to the front motor 2 side and rear motor 5 in the EV mode and series mode. In the parallel mode, the power is distributed to the front motor 2 side, the engine 3 side, and the rear motor 5 side. Then, the required output distributed to each, the gear ratio of the transaxle 7 from the front motor 2 to the front wheels 4, the gear ratio of the transaxle 7 from the engine 3 to the front wheels 4, and the reduction gear 11 from the rear motor 5 to the rear wheels 6. Based on the gear ratio of Output a signal.
 フロントモータコントロールユニット16及びリヤモータコントロールユニット17ではハイブリッドコントロールユニット18からの指令信号に基づき、要求トルクを達成するためにフロントモータ2及びリヤモータ5の各相のコイルに流すべき目標電流値を算出する。そして、目標電流値に基づきフロントモータ用インバータ16a及びリヤモータ用インバータ17aをスイッチング制御して各コイルの電流値を目標電流値に制御し、それぞれの要求トルクを達成する。尚、モータジェネレータ10の発電時も同様であり、負側の要求トルクから求めた目標電流値に基づきモータジェネレータ用インバータ16bをスイッチング制御し、これにより目標電流値を達成する。 Based on the command signal from the hybrid control unit 18, the front motor control unit 16 and rear motor control unit 17 calculate target current values that should be passed through the coils of each phase of the front motor 2 and rear motor 5 in order to achieve the required torque. . Then, switching control is performed on the front motor inverter 16a and the rear motor inverter 17a based on the target current value to control the current value of each coil to the target current value and achieve each required torque. The same applies when the motor generator 10 generates power, and the motor generator inverter 16b is switched and controlled based on the target current value determined from the negative required torque, thereby achieving the target current value.
 エンジンコントロールユニット14ではハイブリッドコントロールユニット18からの指令信号に基づき、要求トルクの達成のためのスロットル開度、燃料噴射量、点火時期等の目標値を算出し、それらの目標値に基づく制御により要求トルクを達成する。
 本実施形態の車両1には、トランスアクスル7の潤滑油温度(油温)を検出するT/A油温センサ30(トランスアクスル油温センサ)が備えられている。また、モータジェネレータ10の冷却用の油温を検出するジェネレータ油温センサ(以下、GEN油温センサ32という(発電機油温検出部))が備えられている。
The engine control unit 14 calculates target values for throttle opening, fuel injection amount, ignition timing, etc. to achieve the required torque based on the command signal from the hybrid control unit 18, and performs control based on these target values to request the torque. Achieve torque.
The vehicle 1 of this embodiment is equipped with a T/A oil temperature sensor 30 (transaxle oil temperature sensor) that detects the lubricating oil temperature (oil temperature) of the transaxle 7. Further, a generator oil temperature sensor (hereinafter referred to as GEN oil temperature sensor 32 (generator oil temperature detection section)) that detects the temperature of oil for cooling the motor generator 10 is provided.
 ハイブリッドコントロールユニット18には、T/A油温センサ30の故障を判定する故障判定部31が備えられている。
 以下、図2、3を用いて、故障判定部31における油温センサ故障判定制御について説明する。本実施形態では、トランスアクスル7の油温が実際に変化したにも拘わらずT/A油温センサ30の検出値が一定の値のまま変化しない状態である固着をT/A油温センサ30の故障であると判定する。
The hybrid control unit 18 includes a failure determination section 31 that determines whether the T/A oil temperature sensor 30 has failed.
The oil temperature sensor failure determination control in the failure determination section 31 will be described below with reference to FIGS. 2 and 3. In this embodiment, the T/A oil temperature sensor 30 is fixed when the detected value of the T/A oil temperature sensor 30 remains at a constant value even though the oil temperature of the transaxle 7 has actually changed. It is determined that this is a failure.
 なお、故障判定部31は、車両の電源ON時に、T/A油温センサ30からトランスアクスル7の油温Tt/aを、またGEN油温センサ32からモータジェネレータ10の油温Tgeを入力して記憶するとともに、適宜設定された単位時間毎のトランスアクスル7の油温Tt/aの変化量の積算値を記憶する。 The failure determination unit 31 inputs the oil temperature Tt/a of the transaxle 7 from the T/A oil temperature sensor 30 and the oil temperature Tge of the motor generator 10 from the GEN oil temperature sensor 32 when the vehicle is powered on. At the same time, the cumulative value of the amount of change in the oil temperature Tt/a of the transaxle 7 for each unit time set as appropriate is stored.
 図2は、故障判定部31において実行される油温センサ故障判定制御の手順を示すフローチャートである。
 本実施形態の油温センサ故障判定制御は、車両の電源ON時に実行される。
FIG. 2 is a flowchart showing a procedure of oil temperature sensor failure determination control executed by the failure determination unit 31.
The oil temperature sensor failure determination control of this embodiment is executed when the power supply of the vehicle is ON.
 始めに、車両の電源スイッチであるイグニッションスイッチ(IGスイッチ)がONであるか否かを判別する。IGスイッチがONである場合には、ステップS20に進む。IGスイッチがOFFである場合には、ステップS120に進む。
 ステップS20では、ハイブリッドコントロールユニット18の電源電圧が10V以上であるか否かを判別する。この閾値である10Vは、ハイブリッドコントロールユニット18が正常に作動する範囲での電源電圧の下限値付近の値である。電源電圧が10V以上である場合には、ステップS30に進む。電源電圧が10V未満である場合には、ステップS120に進む。
First, it is determined whether the ignition switch (IG switch), which is the power switch of the vehicle, is ON. If the IG switch is ON, the process advances to step S20. If the IG switch is OFF, the process advances to step S120.
In step S20, it is determined whether the power supply voltage of the hybrid control unit 18 is 10V or more. This threshold value of 10V is a value near the lower limit of the power supply voltage within a range in which the hybrid control unit 18 operates normally. If the power supply voltage is 10V or higher, the process advances to step S30. If the power supply voltage is less than 10V, the process advances to step S120.
 ステップS30では、T/A油温センサ30の検出情報が使用可能であるか否かを判別する。T/A油温センサ30の検出情報が使用可能であるか否かについては、例えば、ハイブリッドコントロールユニット18において起動時(電源ON時)に、T/A油温センサ30の検出値をA/D変換している回路にて故障していないことを判定した場合にT/A油温センサ30の検出情報が使用可能であると判定したり、T/A油温センサ30の出力値に基づいて判定したりする。T/A油温センサ30の出力値に基づいて判定する場合には、例えばT/A油温センサ30の出力値である油温Tt/aが、地絡時の出力値T1より大きくかつ断線または天絡時の出力値T2未満である場合に使用可能であり(図3のTt/aのグラフ参照)、地絡時の出力値T1以下あるいは断線または天絡時の出力値T2以上である場合には使用不能であるとする。T/A油温センサ30の検出情報が使用可能である場合には、ステップS40に進む。T/A油温センサ30の検出情報が使用不能である場合には、ステップS120に進む。 In step S30, it is determined whether the detection information of the T/A oil temperature sensor 30 can be used. Regarding whether or not the detection information of the T/A oil temperature sensor 30 can be used, for example, when the hybrid control unit 18 starts up (when the power is turned on), the detected value of the T/A oil temperature sensor 30 is If it is determined that there is no failure in the D-converting circuit, it is determined that the detection information of the T/A oil temperature sensor 30 can be used, or based on the output value of the T/A oil temperature sensor 30. and make judgments. When making a determination based on the output value of the T/A oil temperature sensor 30, for example, if the oil temperature Tt/a, which is the output value of the T/A oil temperature sensor 30, is greater than the output value T1 at the time of a ground fault and the wire is disconnected. Or, it can be used when the output value at the time of a power supply fault is less than T2 (see the graph of Tt/a in Figure 3), and the output value at the time of a ground fault is less than or equal to T1, or the output value at the time of a disconnection or power supply fault is greater than or equal to T2. In this case, it is considered unusable. If the detection information of the T/A oil temperature sensor 30 is usable, the process advances to step S40. If the detection information of the T/A oil temperature sensor 30 is unusable, the process advances to step S120.
 ステップS40では、T/A油温センサ30の回路が故障中でないか否かを判別する。本ステップでは、例えば、ステップS30において行ったT/A油温センサ30の出力値による判定を一定時間(数100msec)継続している場合にT/A油温センサ30の回路が故障中でないと判定すればよい。T/A油温センサ30の回路が故障中でない場合には、ステップS50に進む。T/A油温センサ30の回路が故障中である場合には、ステップS120に進む。 In step S40, it is determined whether the circuit of the T/A oil temperature sensor 30 is in failure. In this step, for example, if the determination based on the output value of the T/A oil temperature sensor 30 performed in step S30 continues for a certain period of time (several 100 msec), it is determined that the circuit of the T/A oil temperature sensor 30 is not in failure. All you have to do is judge. If the circuit of the T/A oil temperature sensor 30 is not out of order, the process advances to step S50. If the circuit of the T/A oil temperature sensor 30 is out of order, the process advances to step S120.
 ステップS50では、GEN油温センサ32から車両始動時のモータジェネレータ10の油温Tgeを入力し、当該始動時の油温Tgeaが第3閾値(45℃)以下であるか否かを判別する。この第3閾値45℃は、ソーク後のモータジェネレータ10の油温Tgeの最高値に近い値である。始動時の油温Tgeaが45℃以下である場合には、ステップS60に進む。始動時の油温Tgeaが45℃を超えている場合には、ステップS120に進む。 In step S50, the oil temperature Tge of the motor generator 10 at the time of starting the vehicle is input from the GEN oil temperature sensor 32, and it is determined whether the oil temperature Tgea at the time of starting is equal to or lower than a third threshold value (45° C.). This third threshold value of 45° C. is a value close to the highest value of oil temperature Tge of motor generator 10 after soaking. If the oil temperature Tgea at startup is 45° C. or lower, the process advances to step S60. If the oil temperature Tgea at the time of startup exceeds 45° C., the process advances to step S120.
 ステップS60では、走行条件成立したか否かを判別する。走行条件は、始動時から車速Vが40km/h以上となった累積時間Σtvが所定時間(300秒)以上になったことである。走行条件が成立した場合には、ステップS70に進む。走行条件が成立していない場合には、ステップS60を繰り返す。 In step S60, it is determined whether the running conditions are satisfied. The driving condition is that the cumulative time Σtv during which the vehicle speed V has been 40 km/h or more since the start has exceeded a predetermined time (300 seconds). If the running conditions are satisfied, the process advances to step S70. If the running conditions are not met, step S60 is repeated.
 ステップS70では、GEN油温センサ32からモータジェネレータ10の油温Tgeを入力し、この走行条件成立時のモータジェネレータ10の油温Tgebと、記憶装置に記憶しておいた始動時のモータジェネレータ10の油温Tgeaとの差の絶対値(|Tgeb-Tgea|)が第4閾値(10℃)より大きいか否かを判別する。この第4閾値10℃は、トランスアクスル7の油温が確実に下記のステップS80における第1閾値の2℃より大きく変化するようなモータジェネレータ10の温度差に設定すればよい。モータジェネレータ10の油温の差の絶対値(|Tgeb-Tgea|)が10℃より大きい場合には、ステップS80に進む。モータジェネレータ10の油温の差の絶対値(|Tgeb-Tgea|)が10℃以下の場合には、ステップS120に進む。 In step S70, the oil temperature Tge of the motor generator 10 is input from the GEN oil temperature sensor 32, and the oil temperature Tgeb of the motor generator 10 when this running condition is satisfied and the oil temperature Tgeb of the motor generator 10 at the time of startup stored in the storage device are input. It is determined whether the absolute value of the difference between the oil temperature Tgea and the oil temperature Tgea (|Tgeb−Tgea|) is larger than a fourth threshold value (10° C.). The fourth threshold value of 10° C. may be set to a temperature difference of the motor generator 10 such that the oil temperature of the transaxle 7 reliably changes more than the first threshold value of 2° C. in step S80 below. If the absolute value of the difference in oil temperature of motor generator 10 (|Tgeb−Tgea|) is greater than 10° C., the process advances to step S80. If the absolute value of the oil temperature difference (|Tgeb−Tgea|) of motor generator 10 is 10° C. or less, the process advances to step S120.
 ステップS80では、T/A油温センサ30からトランスアクスル7の油温Tt/aを入力し、この走行条件成立時のトランスアクスル7の油温Tt/abと、記憶装置に記憶しておいた始動時のトランスアクスル7の油温Tt/aaとの差分の絶対値が第1閾値(2℃)未満であるか否かを判別する。この第1閾値2℃は、走行条件成立した際にトランスアクスル7の油温が確実に変化するような値に設定すればよい。トランスアクスル7の油温の差分の絶対値(|Tt/ab-Tt/aa|)が2℃未満の場合には、ステップS90に進む。トランスアクスル7の油温の差分の絶対値(|Tt/ab-Tt/aa|)が2℃以上の場合には、ステップS110に進む。なお、本ステップにおける判定は、本発明の第1判定に該当する。 In step S80, the oil temperature Tt/a of the transaxle 7 is input from the T/A oil temperature sensor 30, and the oil temperature Tt/ab of the transaxle 7 when this running condition is satisfied is stored in the storage device. It is determined whether the absolute value of the difference from the oil temperature Tt/aa of the transaxle 7 at the time of startup is less than a first threshold value (2° C.). This first threshold value of 2° C. may be set to a value such that the oil temperature of the transaxle 7 changes reliably when the driving conditions are met. If the absolute value of the difference in oil temperature of the transaxle 7 (|Tt/ab−Tt/aa|) is less than 2° C., the process advances to step S90. If the absolute value of the difference in oil temperature of the transaxle 7 (|Tt/ab−Tt/aa|) is 2° C. or higher, the process advances to step S110. Note that the determination in this step corresponds to the first determination of the present invention.
 ステップS90では、トランスアクスル7の油温Tt/aの単位時間内での変化量の絶対値を始動時から積算した値(Σ|Tt/aの変化量|)が、第2閾値(2℃)未満であるか否かを判別する。油温Tt/aの変化量の絶対値の積算値(Σ|Tt/aの変化量|)が2℃未満である場合には、ステップS100に進む。油温Tt/aの変化量の絶対値の積算値(Σ|Tt/aの変化量|)が2℃以上である場合には、ステップS110に進む。なお、本ステップにおける判定は、本発明の第2判定に該当する。 In step S90, the value (Σ|change amount of Tt/a|) obtained by integrating the absolute value of the amount of change in the oil temperature Tt/a of the transaxle 7 within a unit time from the time of startup is determined to be a second threshold value (2° C. ). If the integrated value of the absolute value of the amount of change in oil temperature Tt/a (Σ|amount of change in Tt/a|) is less than 2° C., the process advances to step S100. If the integrated value of the absolute value of the amount of change in oil temperature Tt/a (Σ|change amount in Tt/a|) is 2° C. or more, the process advances to step S110. Note that the determination in this step corresponds to the second determination of the present invention.
 ステップS100では、T/A油温センサ30が固着状態である故障判定をする。そして、本ルーチンを終了する。
 ステップS110では、T/A油温センサ30が正常である正常判定をする。そして、本ルーチンを終了する。
 ステップS120では、今回の始動時における油温センサ故障判定制御において、T/A油温センサ30が正常であるか否かを判定できなかった判定未完了とする。そして、本ルーチンを終了する。
In step S100, it is determined that the T/A oil temperature sensor 30 is stuck. Then, this routine ends.
In step S110, it is determined that the T/A oil temperature sensor 30 is normal. Then, this routine ends.
In step S120, in the oil temperature sensor failure determination control during the current startup, it is determined that the determination is incomplete because it has not been possible to determine whether or not the T/A oil temperature sensor 30 is normal. Then, this routine ends.
 そして、ハイブリッドコントロールユニット18は、故障判定部31における故障判定制御の判定結果に基づいて、警告表示やエンジン3、各モータ2、5の出力を制御する。例えば、T/A油温センサ30が故障判定された場合には、高油温と誤判定してフロント側(エンジン3やフロントモータ2)の出力を抑制する制御を行う可能性があるため、トランスアクスル7の油温を80℃として設定する。 Then, the hybrid control unit 18 controls the warning display and the output of the engine 3 and each motor 2 and 5 based on the determination result of the failure determination control in the failure determination section 31. For example, if the T/A oil temperature sensor 30 is determined to be malfunctioning, there is a possibility that the oil temperature will be erroneously determined to be high and control will be performed to suppress the output of the front side (engine 3 and front motor 2). The oil temperature of the transaxle 7 is set at 80°C.
 本実施形態の故障判定部31を備えた車両では、例えば図3に示すように、車両1の電源をON(IGスイッチON)にして走行を開始して、車速Vが40km/h以上となった時間の累積時間Σtvが所定時間(300秒)以上となった時点で走行条件が成立する。走行条件成立時にモータジェネレータ10の油温の差分の絶対値(|Tgeb-Tgea|)が10℃より大きいことを条件として、トランスアクスル7の油温の差の絶対値(|Tt/ab-Tt/aa|)が2℃未満の場合、かつ油温Tt/aの変化量の絶対値の積算値(Σ|Tt/aの変化量|)が2℃未満である場合に、T/A油温センサ30の故障判定(固着異常判定)をする。なお、図3では、T/A油温センサ30の故障判定後に、走行を停止した場合を示している。 In the vehicle equipped with the failure determination unit 31 of this embodiment, for example, as shown in FIG. The running condition is satisfied when the cumulative time Σtv becomes equal to or longer than a predetermined time (300 seconds). Under the condition that the absolute value of the difference in the oil temperature of the motor generator 10 (|Tgeb - Tgea|) is greater than 10°C when the running conditions are satisfied, the absolute value of the difference in the oil temperature of the transaxle 7 (|Tt/ab - Tt T/A oil A failure determination (sticking abnormality determination) of the temperature sensor 30 is made. Note that FIG. 3 shows a case where the vehicle stops running after determining that the T/A oil temperature sensor 30 has failed.
 以上のように、本実施形態の車両1のハイブリッドコントロールユニット18は、トランスアクスル7の油温を検出するT/A油温センサ30の故障を判定する故障判定部31を備えている。 As described above, the hybrid control unit 18 of the vehicle 1 according to the present embodiment includes the failure determination section 31 that determines a failure of the T/A oil temperature sensor 30 that detects the oil temperature of the transaxle 7.
 故障判定部31は、車両1の始動時のトランスアクスル7の油温Tt/aaと、所定の走行条件成立時のトランスアクスル7の油温Tt/abとの差の絶対値(|Tt/ab-Tt/aa|)が第1閾値(2℃)未満であることを判定する第1判定と、始動時から走行条件成立時までの、トランスアクスル7の油温の単位時間当たりの変化量の絶対値の積算値(Σ|Tt/aの変化量|)が第2閾値(2℃)未満であることを判定する第2判定を行い、第1判定と第2判定がいずれも成立した場合にT/A油温センサ30が固着状態であると判定する。 The failure determination unit 31 determines the absolute value of the difference (|Tt/ab -Tt/aa|) is less than the first threshold value (2°C), and the amount of change in the oil temperature of the transaxle 7 per unit time from the time of startup to the time when the running conditions are satisfied. If the second judgment is made to determine that the integrated value of the absolute value (Σ|change amount of Tt/a|) is less than the second threshold (2°C), and both the first judgment and the second judgment are satisfied. It is determined that the T/A oil temperature sensor 30 is stuck.
 走行条件は、始動時から車速Vが40km/h以上となった累積時間Σtvが所定時間(300秒)以上となったことであって、トランスアクスル7の油温が第1閾値以上上昇するような条件であるので、第1判定によって、T/A油温センサ30が固着状態であることを判定することができる。 The driving conditions are that the cumulative time Σtv during which the vehicle speed V has been 40 km/h or more since the start has exceeded a predetermined time (300 seconds), and the oil temperature of the transaxle 7 has risen by a first threshold value or more. Therefore, it can be determined by the first determination that the T/A oil temperature sensor 30 is in a fixed state.
 故障判定部31は、第1判定だけでなく第2判定が成立した場合に、T/A油温センサ30が固着状態であると判定する。これにより、始動時と走行条件成立時のトランスアクスル7の油温が偶然に略同一であった場合でも、始動時から走行条件成立までにトランスアクスル7の油温が上下すれば第2判定が成立せずに故障判定されない。したがって、故障判定の誤判定を回避することができ、T/A油温センサ30の故障判定の精度を高めることができる。 The failure determination unit 31 determines that the T/A oil temperature sensor 30 is stuck when not only the first determination but also the second determination is satisfied. As a result, even if the oil temperature of the transaxle 7 at the time of starting and when the running conditions are satisfied is coincidentally almost the same, the second determination can be made if the oil temperature of the transaxle 7 increases or decreases from the time of starting until the running conditions are met. Failure is not determined because it does not hold true. Therefore, erroneous failure determination can be avoided, and the accuracy of failure determination of the T/A oil temperature sensor 30 can be improved.
 また、走行条件は、始動時からの経過時間ではなく、始動時から車速Vが40km/h以上となった累積時間Σtvが所定時間(300秒)以上となったことであるので、車速Vが走行条件成立前に一時的に40km/h未満になったとしても、その後に車速Vが40km/h以上になることで迅速に走行条件を成立させることができ、T/A油温センサ30の故障判定に必要とする判定時間を短縮させることができる。 また、故障判定部31は、GEN油温センサ32からモータジェネレータ10の油温Tgeを入力しており、始動時にモータジェネレータ10の油温Tgeaが第3閾値(45℃)以下の場合に、T/A油温センサ30の故障判定を実行する。 In addition, the running condition is not the elapsed time since the start, but the cumulative time Σtv during which the vehicle speed V has been 40 km/h or more since the start has exceeded a predetermined time (300 seconds). Even if the vehicle speed temporarily becomes less than 40 km/h before the driving condition is established, the driving condition can be quickly established by increasing the vehicle speed V to 40 km/h or more after that, and the T/A oil temperature sensor 30 The determination time required for failure determination can be shortened. Further, the failure determination unit 31 inputs the oil temperature Tge of the motor generator 10 from the GEN oil temperature sensor 32, and when the oil temperature Tgea of the motor generator 10 is equal to or lower than a third threshold value (45° C.) at the time of starting, /A Execute failure determination of the oil temperature sensor 30.
 これにより、トランスアクスル7と一体化して構成され(隣接して配置され)略同一温度となるモータジェネレータ10の油温を検出をするGEN油温センサ32を利用して、始動時のトランスアクスル7の油温が低い状態であって、始動時から走行条件成立までの間にトランスアクスル7の油温変化が大きく得られるような環境でT/A油温センサ30の故障判定を実行することで、T/A油温センサ30の故障判定の信頼性を向上させることができる。 As a result, by using the GEN oil temperature sensor 32 that is integrated with the transaxle 7 (arranged adjacent to it) and detects the oil temperature of the motor generator 10 that has substantially the same temperature, the transaxle 7 at the time of starting By performing failure determination of the T/A oil temperature sensor 30 in an environment where the oil temperature of the T/A oil temperature sensor 30 is low and the oil temperature of the transaxle 7 changes significantly between the time of starting and the establishment of driving conditions. , the reliability of failure determination of the T/A oil temperature sensor 30 can be improved.
 また、始動時にモータジェネレータ10の油温Tgeaが第3閾値を超えている場合に、T/A油温センサ30の故障判定を実行しないことで、T/A油温センサ30が正常であるにも拘わらず、トランスアクスル7の油温変化が大きく得られずに故障であると誤判定することを回避し、T/A油温センサ30の故障判定の信頼性を向上させることができる。 Further, if the oil temperature Tgea of the motor generator 10 exceeds the third threshold value at the time of starting, the failure determination of the T/A oil temperature sensor 30 is not executed, so that the T/A oil temperature sensor 30 is determined to be normal. Nevertheless, it is possible to avoid erroneously determining that the transaxle 7 is malfunctioning due to the inability to obtain a large change in the oil temperature, thereby improving the reliability of the failure determination of the T/A oil temperature sensor 30.
 また、始動時のモータジェネレータ10の油温Tgeaと、走行条件成立時のモータジェネレータ10の油温Tgeaとの差が第4閾値(10℃)を超えている場合に、T/A油温センサ30の故障判定を実行する。 Further, if the difference between the oil temperature Tgea of the motor generator 10 at the time of starting and the oil temperature Tgea of the motor generator 10 when the driving condition is satisfied exceeds a fourth threshold value (10°C), the T/A oil temperature sensor 30 failure determinations are performed.
 これにより、T/A油温センサ30の故障判定の前提条件として、始動時におけるモータジェネレータ10の油温Tgeaと走行条件成立時のモータジェネレータ10の油温Tgebとを使用し、始動時から所定走行条件が成立するまでにモータジェネレータ10の油温変化が大きく得られた場合にT/A油温センサ30の故障判定を実行することで、故障判定の信頼性を向上させることができる。 As a result, the oil temperature Tgea of the motor generator 10 at the time of starting and the oil temperature Tgeb of the motor generator 10 when the driving condition is satisfied are used as prerequisites for failure determination of the T/A oil temperature sensor 30, and a predetermined value is set from the time of starting. By executing the failure determination of the T/A oil temperature sensor 30 when a large change in oil temperature of the motor generator 10 is obtained before the driving condition is satisfied, the reliability of the failure determination can be improved.
 また、始動から走行条件の成立時までにモータジェネレ-タ10の油温変化が少ない場合、即ちトランスアクスル7の油温変化が少ない場合でのT/A油温センサ30の故障判定を実行しないことで、T/A油温センサ30の故障判定の信頼性を向上させることができる。 Also, failure determination of the T/A oil temperature sensor 30 is not performed when there is little change in the oil temperature of the motor generator 10 from start to when the running conditions are met, that is, when there is little change in the oil temperature of the transaxle 7. This makes it possible to improve the reliability of failure determination of the T/A oil temperature sensor 30.
 以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。
 例えば、車両1に外気温度を検出する外気温度センサ40(外気温度検出部)を備え、故障判定部31は、外気温度に基づいて、第1閾値及び第2閾値の少なくともいずれか一方を変更するとよい。例えば、始動時の外気温度が高くなるに伴って、始動時のトランスアクスル7の油温が高く、走行によってトランスアクスル7が温度上昇し難いので、第1閾値や第2閾値を小さく設定するとよい。これにより、T/A油温センサ30の故障判定精度を向上させることができる。
This concludes the description of the embodiment, but aspects of the present invention are not limited to this embodiment.
For example, if the vehicle 1 is equipped with an outside air temperature sensor 40 (an outside air temperature detection unit) that detects outside air temperature, and the failure determination unit 31 changes at least one of the first threshold value and the second threshold value based on the outside air temperature, good. For example, as the outside air temperature at startup increases, the oil temperature in the transaxle 7 at startup increases, making it difficult for the temperature of the transaxle 7 to rise during driving, so it is recommended to set the first threshold value and the second threshold value small. . Thereby, the failure determination accuracy of the T/A oil temperature sensor 30 can be improved.
 また、外気温度に基づいて走行条件を変更してもよい。例えば始動時の外気温度が高くなるに伴って所定時間を長く設定するとよい。これにより、走行によってトランスアクスル7が温度上昇し難い状況に応じて、T/A油温センサ30の固着異常時に確実に走行条件成立時における第1判定及び第2判定を成立させ、T/A油温センサ30の故障判定精度を向上させることができる。 Additionally, the driving conditions may be changed based on the outside temperature. For example, the predetermined time period may be set to be longer as the outside air temperature at the time of startup becomes higher. As a result, in accordance with the situation where the temperature of the transaxle 7 is difficult to rise due to driving, when the T/A oil temperature sensor 30 is stuck abnormally, the first judgment and the second judgment when the driving condition is satisfied are reliably established, and the T/A The failure determination accuracy of the oil temperature sensor 30 can be improved.
 また、油温センサ故障判定制御における判定用の各種閾値等の詳細については適宜変更してもよい。本発明は、上記の油温センサ故障判定制御において、少なくともステップS60、S80、S90の判定を行えばよい。 Further, the details of various threshold values for determination in the oil temperature sensor failure determination control may be changed as appropriate. In the oil temperature sensor failure determination control described above, the present invention may perform at least determinations in steps S60, S80, and S90.
 また、上記実施形態は、EVモード、シリーズモード、パラレルモードを切り替え可能なハイブリッド車に本発明を適用しているが、トランスアクスルの油温センサを有する車両に本発明を広く適用できる。
 また、外部充電又は外部給電が可能なプラグインハイブリッド車両(PHEV)に適用可能である。
Further, in the above embodiment, the present invention is applied to a hybrid vehicle that can switch between EV mode, series mode, and parallel mode, but the present invention can be widely applied to vehicles having a transaxle oil temperature sensor.
Furthermore, it is applicable to plug-in hybrid vehicles (PHEVs) that can be externally charged or externally powered.
  1  車両
  2  フロントモータ(駆動機器)
  3  エンジン(駆動機器)
  7 トランスアクスル
  8 ドライブシャフト
 10  モータジェネレータ(発電機)
 18  ハイブリッドコントロールユニット
 30  T/A油温センサ(トランスアクスル油温センサ)
 31  故障判定部
 32  GEN油温センサ(発電機温度検出部)
 40  外気温度センサ(外気温度検出部)
1 Vehicle 2 Front motor (drive equipment)
3 Engine (drive equipment)
7 Transaxle 8 Drive shaft 10 Motor generator (generator)
18 Hybrid control unit 30 T/A oil temperature sensor (transaxle oil temperature sensor)
31 Failure determination section 32 GEN oil temperature sensor (generator temperature detection section)
40 Outside air temperature sensor (outside air temperature detection section)

Claims (6)

  1.  動力を出力する駆動機器とドライブシャフトとの間に動力を伝達するトランスアクスルを備えた車両に設けられ、前記トランスアクスルの油温を検出するトランスアクスル油温センサの故障判定装置であって、
     前記車両の始動時から所定の走行条件成立までの前記トランスアクスルの油温に基づいて前記トランスアクスル油温センサの故障を判定する故障判定部を備え、
     前記故障判定部は、
     前記車両の始動時の前記トランスアクスルの油温と、前記走行条件成立時の前記トランスアクスルの油温との差が所定の第1閾値未満であることを判定する第1判定と、
     前記始動時から前記走行条件成立時までの、前記トランスアクスルの油温の単位時間当たりの変化量の絶対値の積算値が所定の第2閾値未満であることを判定する第2判定を行い、
     前記第1判定と前記第2判定がいずれも成立した場合に前記トランスアクスル油温センサが故障であると判定する
    ことを特徴とするトランスアクスル油温センサの故障判定装置。
    A failure determination device for a transaxle oil temperature sensor that is installed in a vehicle equipped with a transaxle that transmits power between a drive device that outputs power and a drive shaft, and that detects the oil temperature of the transaxle,
    comprising a failure determination unit that determines a failure of the transaxle oil temperature sensor based on the oil temperature of the transaxle from the time of starting the vehicle until the establishment of a predetermined running condition;
    The failure determination unit includes:
    a first determination that determines that a difference between an oil temperature of the transaxle when the vehicle is started and an oil temperature of the transaxle when the driving condition is satisfied is less than a predetermined first threshold;
    performing a second determination to determine that an integrated value of the absolute value of the amount of change in the oil temperature of the transaxle per unit time from the time of the start to the time the driving condition is satisfied is less than a predetermined second threshold;
    A failure determination device for a transaxle oil temperature sensor, characterized in that the transaxle oil temperature sensor is determined to be in failure when both the first determination and the second determination are satisfied.
  2.  前記走行条件は、前記始動時からの前記車両の走行速度が所定速度以上である累積時間が所定時間以上である
    ことを特徴とする請求項1に記載のトランスアクスル油温センサの故障判定装置。
    2. The failure determination device for a transaxle oil temperature sensor according to claim 1, wherein the running condition is that the cumulative time during which the running speed of the vehicle has been at least a predetermined speed since the start of the vehicle is at least a predetermined time.
  3.  前記車両は、前記トランスアクスルに隣接して配置された発電機と、前記発電機の油温を検出する発電機油温検出部とを備え、
     前記故障判定部は、前記始動時において前記発電機の油温が所定の第3閾値以下の場合に、前記トランスアクスル油温センサの故障判定を実行する
    ことを特徴とする請求項1に記載のトランスアクスル油温センサの故障判定装置。
    The vehicle includes a generator disposed adjacent to the transaxle, and a generator oil temperature detection unit that detects oil temperature of the generator,
    The failure determination unit executes failure determination of the transaxle oil temperature sensor when the oil temperature of the generator is equal to or lower than a predetermined third threshold value at the time of the start-up. Failure determination device for transaxle oil temperature sensor.
  4.  前記車両は、前記トランスアクスルに隣接して配置された発電機と、前記発電機の油温を検出する発電機油温検出部とを備え、
     前記故障判定部は、前記始動時の前記発電機の油温と、前記走行条件成立時の前記発電機の油温との差の絶対値が所定の第4閾値を超えている場合には、前記トランスアクスル油温センサの故障判定を実行する
    ことを特徴とする請求項1に記載のトランスアクスル油温センサの故障判定装置。
    The vehicle includes a generator disposed adjacent to the transaxle, and a generator oil temperature detection unit that detects oil temperature of the generator,
    When the absolute value of the difference between the oil temperature of the generator at the time of the startup and the oil temperature of the generator when the driving condition is satisfied exceeds a fourth predetermined threshold value, the failure determination unit: The transaxle oil temperature sensor failure determination device according to claim 1, wherein the transaxle oil temperature sensor failure determination device executes failure determination of the transaxle oil temperature sensor.
  5.  前記車両の外気温度を検出する外気温度検出部を備え、
     前記故障判定部は、外気温度に基づいて、前記第1閾値及び前記第2閾値の少なくともいずれか一方を変更する
    ことを特徴とする請求項1に記載のトランスアクスル油温センサの故障判定装置。
    comprising an outside air temperature detection section that detects outside air temperature of the vehicle,
    The failure determination device for a transaxle oil temperature sensor according to claim 1, wherein the failure determination unit changes at least one of the first threshold value and the second threshold value based on outside temperature.
  6.  前記車両の外気温度を検出する外気温度検出部を備え、
     前記故障判定部は、外気温度に基づいて前記所定時間を変更する
    ことを特徴とする請求項2に記載のトランスアクスル油温センサの故障判定装置。

     
    comprising an outside air temperature detection unit that detects outside air temperature of the vehicle,
    3. The transaxle oil temperature sensor failure determination device according to claim 2, wherein the failure determination section changes the predetermined time based on outside air temperature.

PCT/JP2022/035179 2022-09-21 2022-09-21 Failure determination device for transaxle oil temperature sensor WO2024062555A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/035179 WO2024062555A1 (en) 2022-09-21 2022-09-21 Failure determination device for transaxle oil temperature sensor
JP2023525000A JP7428295B1 (en) 2022-09-21 2022-09-21 Transaxle oil temperature sensor failure determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035179 WO2024062555A1 (en) 2022-09-21 2022-09-21 Failure determination device for transaxle oil temperature sensor

Publications (1)

Publication Number Publication Date
WO2024062555A1 true WO2024062555A1 (en) 2024-03-28

Family

ID=89771135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035179 WO2024062555A1 (en) 2022-09-21 2022-09-21 Failure determination device for transaxle oil temperature sensor

Country Status (2)

Country Link
JP (1) JP7428295B1 (en)
WO (1) WO2024062555A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056815A (en) * 2005-08-25 2007-03-08 Honda Motor Co Ltd Trouble determination device for temperature sensor
JP2010116994A (en) * 2008-11-13 2010-05-27 Fujitsu Ten Ltd Control device and control method
JP2012112312A (en) * 2010-11-25 2012-06-14 Hino Motors Ltd Failure determining device of water temperature sensor
JP2013019484A (en) * 2011-07-12 2013-01-31 Suzuki Motor Corp Failure diagnosis device for oil temperature sensor
JP2017044191A (en) * 2015-08-28 2017-03-02 日野自動車株式会社 Failure prevention device for exhaust gas sensor
JP2020146885A (en) * 2019-03-12 2020-09-17 芝浦機械株式会社 Injection molder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056815A (en) * 2005-08-25 2007-03-08 Honda Motor Co Ltd Trouble determination device for temperature sensor
JP2010116994A (en) * 2008-11-13 2010-05-27 Fujitsu Ten Ltd Control device and control method
JP2012112312A (en) * 2010-11-25 2012-06-14 Hino Motors Ltd Failure determining device of water temperature sensor
JP2013019484A (en) * 2011-07-12 2013-01-31 Suzuki Motor Corp Failure diagnosis device for oil temperature sensor
JP2017044191A (en) * 2015-08-28 2017-03-02 日野自動車株式会社 Failure prevention device for exhaust gas sensor
JP2020146885A (en) * 2019-03-12 2020-09-17 芝浦機械株式会社 Injection molder

Also Published As

Publication number Publication date
JP7428295B1 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
US10160441B2 (en) Power controller of hybrid vehicle
JP5360306B2 (en) Control device for hybrid vehicle
JP5233725B2 (en) Control device for electric vehicle
EP3225451B1 (en) Controller of hybrid vehicle
US9428060B2 (en) Method for controlling a hybrid vehicle electrical system
EP3053793B1 (en) Device and method for controlling hybrid vehicle
US10155448B2 (en) Method and system for controlling an isolated HV circuit
JP6860424B2 (en) Electric vehicle control device
JP5644080B2 (en) Battery abnormality determination device and method
US20200290427A1 (en) Control device of vehicle cooling device
KR101234657B1 (en) Apparatus for estimation motor speed of hybrid vehicle and method thereof
JP7428295B1 (en) Transaxle oil temperature sensor failure determination device
WO2024062747A1 (en) Malfunction determination device for transaxle oil temperature sensor
JP7417208B1 (en) Transaxle oil temperature sensor failure determination device
JP2016116276A (en) Battery protection device
JP7439628B2 (en) Vehicle control device
EP4227133A1 (en) Control device of hybrid vehicle
US20240067160A1 (en) Redundant low voltage battery charging control system for a vehicle
EP4242496A1 (en) Control device of vehicle
KR102644580B1 (en) Control method of HEV corresponding to BMS power disconnection
KR20170071030A (en) Apparatus and method for managing HEV battery
KR20220027378A (en) Apparatus for controlling starting of engine in electronic 4 wheel drive hybrid electric vehicle and method thereof
JP2015067125A (en) Hybrid vehicle diagnostic device and diagnostic method
JP2022090326A (en) Control device of hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959519

Country of ref document: EP

Kind code of ref document: A1