WO2024061376A1 - 一种针对排水管网水质采样的装置及方法 - Google Patents

一种针对排水管网水质采样的装置及方法 Download PDF

Info

Publication number
WO2024061376A1
WO2024061376A1 PCT/CN2023/123665 CN2023123665W WO2024061376A1 WO 2024061376 A1 WO2024061376 A1 WO 2024061376A1 CN 2023123665 W CN2023123665 W CN 2023123665W WO 2024061376 A1 WO2024061376 A1 WO 2024061376A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
water
water quality
water inlet
drainage pipe
Prior art date
Application number
PCT/CN2023/123665
Other languages
English (en)
French (fr)
Inventor
张俊
朱向东
张超
Original Assignee
长江生态环保集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长江生态环保集团有限公司 filed Critical 长江生态环保集团有限公司
Publication of WO2024061376A1 publication Critical patent/WO2024061376A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • the present invention relates to the field of water quality detection in pipe networks, and in particular to a device and method for sampling water quality in drainage pipe networks.
  • the water sample collected by the rope water quality sampler is the water level height H; see Figure 2 for details.
  • H water level height
  • the rope water quality sampler collects water samples with a water level of H1, and the requirements actually require the collection of the original water sample with a water level of H. This results in the water level collected twice being not at the same height.
  • sediments are often stirred during the adoption process, so each sampling will have different amounts of sediment, affecting the quality of water quality data.
  • CN210322446U a sampling device for drainage pipe networks, which uses a bucket at the end of a telescopic rod to sample the drainage pipe network. During the sampling process, the depth of each sampling cannot be accurately controlled.
  • CN209356242U a sewage and wastewater water quality sampling device
  • the purpose of the present invention is to propose a device and method for water quality sampling in drainage pipe networks.
  • This device can be well adapted to water quality sampling of pipe networks with sediments of different thicknesses, ensuring that during the sampling process, each Water samples at the same set depth can be collected every time, ensuring sampling accuracy, thereby ensuring subsequent calculation accuracy and results.
  • a device for sampling water quality in a drainage pipe network which includes a sampling bucket for collecting water samples
  • the sampling bucket includes a water inlet part located at the upper part and a water discharge part located at the lower part;
  • the sampling barrel can be installed on the supporter with lift adjustment, and can be locked at the specified height of the supporter according to the sampling depth requirements. degree to achieve sampling of water quality at a set water level elevation;
  • the top of the supporter is fixedly installed with a lifting mechanism that can be assembled and assembled in multiple sections to adjust the length, thereby adapting to water quality sampling in inspection wells of different depths.
  • the water inlet part includes a water inlet box.
  • the shape of the water inlet box is a rectangular parallelepiped.
  • the water inlet box includes 6 surfaces, the top surface is closed, and the 4 sides are symmetrically arranged.
  • a symmetrically arranged first inlet is provided on a pair of sides.
  • the water inlet and the second water inlet are respectively provided with two sets of first and second fixing bolts with different heights on the other pair of sides. Nuts are respectively installed on the first and second fixing bolts, and an outlet is provided on the bottom surface. Water mouth.
  • the water inlet tank is made of transparent organic glass
  • the first water inlet and the second water inlet adopt rectangular openings and are arranged in the upper middle part of the side of the water inlet box, with a height less than half of the height of the side and a width greater than half of the width of the side;
  • the first fixing bolt or the second fixing bolt on the same side is aligned vertically, and the first fixing bolt and the second fixing bolt on the two sides are arranged vertically staggered in the same plane, and the first fixing bolt and the second fixing bolt are processed with external threads for matching with nuts.
  • the water discharging part includes a conical barrel.
  • the top of the conical barrel is provided with an external thread interface.
  • the external thread interface matches the internal thread interface provided at the bottom of the water inlet tank.
  • the internal thread interface is provided at the location of the water outlet.
  • the conical The bottom end of the barrel is provided with a water release control valve for controlling water outlet.
  • the supporter includes a cylindrical rod, the lower center of the cylindrical rod is processed with a chute arranged along its axial direction, the outer wall of the chute is provided with a scale mark, and the top of the cylindrical rod is provided with a first nut sleeve; the chute and the third One fixing bolt cooperates with the second fixing bolt.
  • the chute is 2/3 of the length of the cylindrical rod, and the other 1/3 length maintains the original shape of the cylindrical rod; the scale line is arranged from the bottom of the groove to the top of the groove.
  • the lifting mechanism includes a vertical rod, a second nut sleeve is fixed at the top of the vertical rod, and a threaded column is provided at the bottom end of the vertical rod.
  • the threaded column matches the second nut sleeve of another vertical rod.
  • a pair of perforations are processed on the vertical rod, and the pair of perforations match the horizontal rod.
  • the two ends of the horizontal rod are equipped with external threads for matching with the locking nut.
  • a method of water quality sampling using a device for water quality sampling in drainage pipe networks includes the following steps:
  • Step 1 sediment depth detection
  • Step 2 set the sampling height:
  • the required sampling depth A is set in advance.
  • the sampling depth A is the height from the bottom of the inspection well to the sampling point. Degree value;
  • Step 3 Calibration of the installation height of the sampling barrel:
  • This marking position should ensure that after the sampling bucket is installed, the distance D between the bottom of the conical barrel and the bottom of the cylindrical rod is greater than the distance D between the bottom of the conical barrel and the bottom of the cylindrical rod. Thickness h of the object, thereby preventing the bottom end of the conical barrel from touching the sediment, that is, D ⁇ h;
  • Step 4 Determine the installation height of the sampling bucket:
  • this sampling depth A uses the tops of the first water inlet and the second water inlet of the sampling barrel as marking lines. Set the installation height of the sampling barrel on the supporter as A, and ensure that A-C ⁇ h, C is the height of the sampling bucket;
  • Step 5 Install and fix the sampling bucket:
  • step 4 install the sampling barrel on the cylindrical rod of the support, and then lock the sampling barrel on the support with a nut;
  • Step 6 Assembling the lifting mechanism:
  • the lifting mechanism According to the depth of the inspection well, assemble the lifting mechanism, install the multiple vertical rods section by section to the working height through the threaded fit between the threaded column and the second nut sleeve, then assemble the lifting mechanism and the supporter, and then install the horizontal rods , forming an improvement mechanism;
  • Step seven water quality sampling:
  • Step eight take out the water sample:
  • the entire sampling device is lifted out of the inspection well, and the interfering sediments at the bottom of the sedimentation body at the bottom of the sampling barrel are first discharged, and then the water sample is injected into the storage bottle and sent to the laboratory for testing;
  • Step nine recycling of sampling device:
  • the device of the present invention can be well applied to water quality sampling in pipe networks with sediments of different thicknesses, ensuring that during the sampling process, water samples at the same set depth can be collected every time, ensuring sampling accuracy. , thus ensuring the accuracy and results of subsequent calculations.
  • the invention overcomes the shortcomings of conventional rope water quality samplers and constructs a type of equipment assembly suitable for water quality sampling in drainage pipe networks, which has high industrial utilization value.
  • first fixing bolt and second fixing bolt facilitate the installation of the sampling barrel and the supporter.
  • the above-mentioned water discharge part facilitates subsequent water discharge.
  • the installation height of the sampling bucket can be easily adjusted through the above chute.
  • the lifting mechanism facilitates height adjustment to adapt to inspection wells of different heights.
  • Figure 1 shows the water level height when there is no sediment in the inspection well.
  • Figure 2 shows the water level changes when there is sediment in the inspection well.
  • FIG. 3 is an overall structural diagram of the sampling device of the present invention.
  • Figure 4 is a structural diagram of the water inlet part of the present invention.
  • FIG. 5 is a structural diagram of a nut according to the present invention.
  • Figure 6 is a structural diagram of the water discharge part of the present invention.
  • Figure 7 is a structural diagram of the supporter of the present invention.
  • Figure 8 is a structural diagram of the lifting mechanism of the present invention.
  • Figure 9 is a structural diagram of step 1 of the present invention.
  • Figure 10 is a schematic diagram of the specific measurement process of the present invention.
  • a device for sampling water quality in a drainage pipe network includes a sampling bucket 1 for collecting water samples; the sampling bucket 1 includes a water inlet part located at the upper part and a water discharge part located at the lower part;
  • the length of the lifting mechanism 3 is further adapted to the water quality sampling of inspection wells of different depths.
  • the device of the invention can be well applied to water quality sampling in pipe networks with sediments of different thicknesses, ensuring that during the sampling process, water samples at the same set depth position can be collected every time, ensuring sampling accuracy, and thus The accuracy and results of subsequent calculations are guaranteed.
  • the invention overcomes the shortcomings of conventional rope water quality samplers and constructs a type of equipment assembly suitable for water quality sampling in drainage pipe networks, which has high industrial utilization value.
  • the water inlet part includes a water inlet box 108.
  • the shape of the water inlet box 108 is a rectangular parallelepiped.
  • the water inlet box 108 includes 6 surfaces, the top surface is closed, and the 4 sides are symmetrically arranged, and are arranged on a pair of sides.
  • the symmetrically arranged first water inlet 101 and the second water inlet 105 are respectively provided with two sets of first fixing bolts 102 and second fixing bolts 106 with different heights on the other pair of sides.
  • Nuts 103 are respectively installed on the bolts 106, and a water outlet 107 is provided on the bottom surface.
  • the water inlet box 108 is made of transparent organic glass.
  • the shape of the collected water samples can be easily observed through transparent organic glass, which facilitates subsequent control of sediment discharge.
  • first water inlet 101 and the second water inlet 105 are rectangular openings and are arranged at the middle and upper part of the side of the water inlet box 108, with a height less than half of the side height and a width greater than half of the side width.
  • the first water inlet 101 and the second water inlet 105 facilitate the water intake process.
  • first fixing bolts 102 or the second fixing bolts 106 located on the same side are aligned up and down, and the first fixing bolts 102 and the second fixing bolts 106 on both sides are arranged in an up-and-down staggered manner on the same plane.
  • the two fixing bolts 106 are processed with external threads for matching with the nuts 103.
  • the above-mentioned first fixing bolt 102 and second fixing bolt 106 facilitate the installation of the sampling barrel 1 and the supporter 2 .
  • the water discharge part includes a conical barrel 109.
  • the top of the conical barrel 109 is provided with an external thread interface 111.
  • the external thread interface 111 matches the internal thread interface 104 provided at the bottom of the water inlet tank 108.
  • the internal thread The interface 104 is provided at the location of the water outlet 107, and the bottom end of the conical barrel 109 is provided with a water release control valve 110 for controlling the water outlet.
  • the above-mentioned water discharge part facilitates subsequent water discharge.
  • the supporter 2 includes a cylindrical rod 201.
  • the lower center of the cylindrical rod 201 is processed with a chute 203 arranged along its axial direction.
  • the outer wall of the chute 203 is provided with a scale mark 202.
  • the top end of the cylindrical rod 201 is provided with a chute 203.
  • the installation height of the sampling bucket 1 can be easily adjusted through the above-mentioned chute 203 .
  • the chute 203 is 2/3 of the length of the cylindrical rod 201, and the other 1/3 length maintains the original shape of the cylindrical rod; the scale line 202 is arranged from the bottom of the groove to the top of the groove.
  • the lifting mechanism 3 includes a vertical rod 301.
  • the top end of the vertical rod 301 is fixed with a second nut sleeve 306.
  • the bottom end of the vertical rod 301 is provided with a threaded column 303.
  • the threaded column 303 is connected to the second nut sleeve 306 of another vertical rod 301.
  • the two nut sets 306 match each other.
  • the lifting mechanism 3 facilitates height adjustment, thereby adapting to inspection wells of different heights.
  • the vertical rod 301 is processed with a pair of perforations 302, and the pair of perforations 302 matches the horizontal rod 304.
  • the two ends of the horizontal rod 304 are equipped with external threads for matching with the locking nut 305.
  • the above-mentioned cross bar 304 enhances the connection strength between the two.
  • a method of water quality sampling using a device for water quality sampling in drainage pipe networks includes the following steps:
  • Step 1 depth detection of sediment 6:
  • Step 2 set the sampling height:
  • the required sampling depth A is set in advance.
  • the sampling depth A is the height value from the bottom of the inspection well 5 to the sampling point;
  • Step 3 Calibration of the installation height of sampling barrel 1:
  • This marking position should ensure that after the sampling bucket 1 is installed, the distance between the bottom of the cone-shaped barrel 109 and the cylindrical rod 201 The distance D between the bottom ends should be greater than the thickness h of the sediment 6, so as to prevent the bottom end of the conical barrel 109 from touching the sediment 6, that is, D ⁇ h;
  • Step 4 Determine the installation height of sampling bucket 1:
  • sampling depth A set in step 2 with the tops of the first water inlet 101 and the second water inlet 105 of the sampling barrel 1 as marking lines, install the sampling barrel 1 on the supporter 2 at a fixed height. is A, and ensure that A-C ⁇ h, C is the height of sampling bucket 1;
  • Step 5 Install and fix sampling bucket 1:
  • the sampling barrel 1 is installed on the cylindrical rod 201 of the support 2, and then the sampling barrel 1 is locked on the support 2 by the nut 103;
  • Step six assembly of lifting mechanism 3:
  • the lifting mechanism 3 According to the depth of the inspection well 5, assemble the lifting mechanism 3, install the multiple vertical rods 301 to the working height section by section through the threaded fit between the threaded column 303 and the second nut sleeve 306, and then connect the lifting mechanism 3 and the supporter 2 Assemble them together, and then install the crossbar 304 to form a lifting mechanism;
  • Step seven water quality sampling:
  • Step eight take out the water sample:
  • the entire sampling device is lifted out of the inspection well, and the interfering sediments at the bottom of the sedimentation body at the bottom of the sampling bucket 1 are first discharged, and then the water sample is injected into the storage bottle and sent to the laboratory for testing;
  • Step nine recycling of sampling device:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种针对排水管网水质采样的装置及方法,包括用于对水样进行收集的采样桶(1);采样桶(1)包括位于上部的进水部和位于下部的放水部;采样桶(1)可升降调节地安装在支撑器(2)上,并能够根据采样深度要求锁定在支撑器(2)的指定高度,以达到对设定水位高程的水质进行采样;支撑器(2)的顶部固定安装有能够多节拼装组合以调节长度的提升机构(3),进而来适应不同深度检查井的水质采样。该装置能够很好地适用于管网有不同厚度沉积物的水质采样,保证了在采样过程中,每次都能够采集到设定好的同一深度位置的水样,保证了采样精度,进而保证了后续计算精度和结果。

Description

一种针对排水管网水质采样的装置及方法 技术领域
本发明涉及管网水质检测领域,尤其涉及一种针对排水管网水质采样的装置及方法。
背景技术
定期检测排水管网检查井内的水质,是诊断排水管网是否有地下水渗入的重要手段,为形成较好的对照结果,要求每次能采集到同一位置要求的水样。但随着管网的运行,检查井内部会逐渐的堆积形成沉积物,且检查井内沉积物的深度分布不同,这样在后续对同一位置进行水质采样时,常规市售水质采样器主要采用绳索水质采样器,其工作深度不易控制,无法很好的保证每次所采集到的水样为同一取样深度的水样,进而影响后续检测的结果,导致检测结果出现偏差;具体参见图1,为检查井没有沉积物时的水位高度,此时采用绳索水质采样器所采集的是水位高度为H的水样;具体参见图2,当检查井内有沉积物时,检查井内的水位会增加,此时采用绳索水质采样器所采集的是水位高度为H1的水样,而采用的要求实质上需要采集原有的水位为H的水样,这样就导致了两次采集到的水位并非同一高度水位。此外,在采用过程中常常因搅动沉积物,而使得每次采样都会因不同含量的沉积物而影响到水质数据质量。
例如现有的,CN210322446U,一种排水管网用采样装置,其通过在伸缩杆的末端设置吊桶来进行排水管网的采样,在采样过程中,无法精确控制每次取样的深度。
虽然在CN209356242U,一种污废水水质采样装置,其通过在斜杆段的末端设置采样容器,进而达到采用的效果,但是在采样过程中,同样无法精确控制每次取样的深度。
发明内容
针对上述问题,本发明的目的在于提出一种针对排水管网水质采样的装置及方法,此装置能够很好的适用于管网有不同厚度沉积物的水质采样,保证了在采样过程中,每次都能够采集到设定好的同一深度位置的水样,保证了采样精度,进而保证了后续计算精度和结果。
为了实现上述的技术特征,本发明的目的是这样实现的:一种针对排水管网水质采样的装置,它包括用于对水样进行收集的采样桶;
所述采样桶包括位于上部的进水部和位于下部的放水部;
所述采样桶可升降调节的安装在支撑器上,并能够根据采样深度要求锁定在支撑器的指定高 度,以达到对设定水位高程的水质进行采样;
所述支撑器的顶部固定安装有能够多节拼装组合以调节长度的提升机构,进而来适应不同深度检查井的水质采样。
所述进水部包括进水箱,进水箱的外形呈长方体型,进水箱包括6个面,顶面封闭,4个侧面为对称设置,在一对侧面上设置对称布置的第一进水口和第二进水口,在另一对侧面上分别设置有两组高度不同的第一固定栓和第二固定栓,第一固定栓和第二固定栓上分别安装有螺母,底面设置有出水口。
所述进水箱材质为透明的有机玻璃;
所述第一进水口和第二进水口采用矩形口,且设置在进水箱的侧面中上部,设置高度小于侧面高度的一半,设置宽度大于侧面宽度的一半;
位于同一侧的第一固定栓或第二固定栓上下对齐,且两侧面的第一固定栓和第二固定栓呈同一平面上下错位布置,第一固定栓和第二固定栓上加工有用于和螺母相配合的外螺纹。
所述放水部包括锥形桶体,锥形桶体的顶端设置有外螺纹接口,外螺纹接口与设置在进水箱底端的内螺纹接口相配合,内螺纹接口设置在出水口所在位置,锥形桶体的底端设置有用于控制出水的放水控制阀。
所述支撑器包括圆柱杆,圆柱杆的下部中心部位加工有沿其轴线方向布置的滑槽,滑槽的外壁上设置有刻度线,圆柱杆的顶端设置有第一螺母套;滑槽与第一固定栓和第二固定栓相配合。
所述滑槽为圆柱杆杆长的2/3,另1/3长度保持圆柱杆的原状;所述刻度线自槽底向槽顶布置。
所述提升机构包括竖杆,竖杆的顶端固定有第二螺母套,竖杆的底端设置有螺纹柱,螺纹柱与另一根竖杆的第二螺母套相配合。
所述竖杆上加工有对穿孔,对穿孔与横杆相配合,横杆的两个端头安装有用于和锁紧螺母相配合的外螺纹。
采用一种针对排水管网水质采样的装置进行水质采样的方法,包括以下步骤:
步骤一,沉积物的深度检测:
采用市售的沉积物柱状采样器测定检查井内沉积物的深度,将沉积物的厚度计为h;同时测定检查井内部水位高度为B;
步骤二,设定采样高度:
预先根据采样要求,设定需要的采样深度A,采样深度A是从检查井的底部到采样点的高 度值;
步骤三,采样桶安装高度的标定:
取出支撑器,根据所测定沉积物的厚度h,在支撑器的刻度线上作出标识位置,此标识位置要保证安装采样桶后,锥形桶体底端距离圆柱杆底端的距离D要大于沉积物的厚度h,进而避免锥形桶体的底端碰触沉积物,即D≥h;
步骤四,采样桶的安装高度确定:
根据步骤二中所设定的采样深度A,此采样深度A以采样桶的第一进水口和第二进水口的顶端作为标记线,将采样桶在支撑器上安装高度定为A,并保证A-C≥h,C为采样桶的高度;
步骤五,采样桶的安装固定:
根据步骤四中所确定的安装高度,将采样桶安装在支撑器的圆柱杆上,再通过螺母将采样桶锁定在支撑器上;
步骤六,提升机构的组装:
根据检查井的深度,组装提升机构,将多根竖杆通过螺纹柱和第二螺母套之间的螺纹配合,逐节安装至工作高度,再将提升机构与支撑器相组装,再安装横杆,形成提升机构;
步骤七,水质采样:
带采样装置安装完成之后,手握提升机构将采样装置插入检查井内,并使得圆柱杆插入到检查井的底端,然后采集固定深度A位置的水样;
步骤八,水样取出:
采样后,将整个采样装置提出检查井,先将采样桶底部的沉淀体底部的干扰性沉积物排出,再将水样注入储存瓶送实验室检验;
步骤九,采样装置的回收:
完成采样后,将采样装置组件逐个拆解,安放于组件箱内,便于下次使用。
当A-C<h时,换用另一型号的采样桶,选取采样桶的高度为C1,并保证A-C1≥h。
本发明有如下有益效果:
1、本发明装置能够很好的适用于管网有不同厚度沉积物的水质采样,保证了在采样过程中,每次都能够采集到设定好的同一深度位置的水样,保证了采样精度,进而保证了后续计算精度和结果。本发明克服了常规绳索水质采样器的缺点,构建一种型的适用于排水管网水质采样的设备组件,具有高度产业利用价值。
2、通过设置进水部能够方便在采样过程中,将水样流入到进水箱的内部。
3、通过透明的有机玻璃便于观察所收集的水样形态,进而便于后续控制沉积物的排出。
4、通过上述的第一固定栓和第二固定栓便于将采样桶与支撑器进行安装。
5、通过上述的放水部便于后续进行放水。
6、通过上述的滑槽便于调节采样桶的安装高度。
7、通过提升机构便于调节高度,进而适应不同高度的检查井。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1为检查井没有沉积物时的水位高度。
图2为当检查井内有沉积物时的水位变化。
图3为本发明采样装置整体结构图。
图4为本发明进水部结构图。
图5为本发明螺母结构图。
图6为本发明放水部结构图。
图7为本发明支撑器结构图。
图8为本发明提升机构结构图。
图9为本发明步骤一结构图。
图10为本发明具体测量过程中的示意图。
图中:采样桶1、支撑器2、提升机构3、沉积物柱状采样器4、检查井5、沉积物6、采样水位线7、沉积物高度线8、采样桶底端线9;第一进水口101、第一固定栓102、螺母103、内螺纹接口104、第二进水口105、第二固定栓106、出水口107、进水箱108、锥形桶体109、放水控制阀110、外螺纹接口111;圆柱杆201、刻度线202、滑槽203、第一螺母套204;竖杆301、对穿孔302、螺纹柱303、横杆304。
具体实施方式
下面结合附图对本发明的实施方式做进一步的说明。
实施例1:
参见图3-10,一种针对排水管网水质采样的装置,它包括用于对水样进行收集的采样桶1;所述采样桶1包括位于上部的进水部和位于下部的放水部;所述采样桶1可升降调节的安装 在支撑器2上,并能够根据采样深度要求锁定在支撑器2的指定高度,以达到对设定水位高程的水质进行采样;所述支撑器2的顶部固定安装有能够多节拼装组合以调节长度的提升机构3,进而来适应不同深度检查井的水质采样。本发明装置能够很好的适用于管网有不同厚度沉积物的水质采样,保证了在采样过程中,每次都能够采集到设定好的同一深度位置的水样,保证了采样精度,进而保证了后续计算精度和结果。本发明克服了常规绳索水质采样器的缺点,构建一种型的适用于排水管网水质采样的设备组件,具有高度产业利用价值。
进一步的,所述进水部包括进水箱108,进水箱108的外形呈长方体型,进水箱108包括6个面,顶面封闭,4个侧面为对称设置,在一对侧面上设置对称布置的第一进水口101和第二进水口105,在另一对侧面上分别设置有两组高度不同的第一固定栓102和第二固定栓106,第一固定栓102和第二固定栓106上分别安装有螺母103,底面设置有出水口107。通过设置进水部能够方便在采样过程中,将水样流入到进水箱108的内部。
进一步的,所述进水箱108材质为透明的有机玻璃。通过透明的有机玻璃便于观察所收集的水样形态,进而便于后续控制沉积物的排出。
进一步的,所述第一进水口101和第二进水口105采用矩形口,且设置在进水箱108的侧面中上部,设置高度小于侧面高度的一半,设置宽度大于侧面宽度的一半。通过上述的第一进水口101和第二进水口105方便了进水过程。
进一步的,位于同一侧的第一固定栓102或第二固定栓106上下对齐,且两侧面的第一固定栓102和第二固定栓106呈同一平面上下错位布置,第一固定栓102和第二固定栓106上加工有用于和螺母103相配合的外螺纹。通过上述的第一固定栓102和第二固定栓106便于将采样桶1与支撑器2进行安装。
进一步的,所述放水部包括锥形桶体109,锥形桶体109的顶端设置有外螺纹接口111,外螺纹接口111与设置在进水箱108底端的内螺纹接口104相配合,内螺纹接口104设置在出水口107所在位置,锥形桶体109的底端设置有用于控制出水的放水控制阀110。通过上述的放水部便于后续进行放水。
进一步的,所述支撑器2包括圆柱杆201,圆柱杆201的下部中心部位加工有沿其轴线方向布置的滑槽203,滑槽203的外壁上设置有刻度线202,圆柱杆201的顶端设置有第一螺母套204;滑槽203与第一固定栓102和第二固定栓106相配合。通过上述的滑槽203便于调节采样桶1的安装高度。
进一步的,所述滑槽203为圆柱杆201杆长的2/3,另1/3长度保持圆柱杆的原状;所述刻度线202自槽底向槽顶布置。
进一步的,所述提升机构3包括竖杆301,竖杆301的顶端固定有第二螺母套306,竖杆301的底端设置有螺纹柱303,螺纹柱303与另一根竖杆301的第二螺母套306相配合。通过提升机构3便于调节高度,进而适应不同高度的检查井。
进一步的,所述竖杆301上加工有对穿孔302,对穿孔302与横杆304相配合,横杆304的两个端头安装有用于和锁紧螺母305相配合的外螺纹。通过上述的横杆304增强了两者连接强度。
实施例2:
采用一种针对排水管网水质采样的装置进行水质采样的方法,包括以下步骤:
步骤一,沉积物6的深度检测:
采用市售的沉积物柱状采样器4测定检查井5内沉积物6的深度,将沉积物6的厚度计为h;同时测定检查井5内部水位高度为B;
步骤二,设定采样高度:
预先根据采样要求,设定需要的采样深度A,采样深度A是从检查井5的底部到采样点的高度值;
步骤三,采样桶1安装高度的标定:
取出支撑器2,根据所测定沉积物6的厚度h,在支撑器2的刻度线202上作出标识位置,此标识位置要保证安装采样桶1后,锥形桶体109底端距离圆柱杆201底端的距离D要大于沉积物6的厚度h,进而避免锥形桶体109的底端碰触沉积物6,即D≥h;
步骤四,采样桶1的安装高度确定:
根据步骤二中所设定的采样深度A,此采样深度A以采样桶1的第一进水口101和第二进水口105的顶端作为标记线,将采样桶1在支撑器2上安装高度定为A,并保证A-C≥h,C为采样桶1的高度;
步骤五,采样桶1的安装固定:
根据步骤四中所确定的安装高度,将采样桶1安装在支撑器2的圆柱杆201上,再通过螺母103将采样桶1锁定在支撑器2上;
步骤六,提升机构3的组装:
根据检查井5的深度,组装提升机构3,将多根竖杆301通过螺纹柱303和第二螺母套306之间的螺纹配合,逐节安装至工作高度,再将提升机构3与支撑器2相组装,再安装横杆304,形成提升机构;
步骤七,水质采样:
带采样装置安装完成之后,手握提升机构将采样装置插入检查井内,并使得圆柱杆201插入到检查井5的底端,然后采集固定深度A位置的水样;
步骤八,水样取出:
采样后,将整个采样装置提出检查井,先将采样桶1底部的沉淀体底部的干扰性沉积物排出,再将水样注入储存瓶送实验室检验;
步骤九,采样装置的回收:
完成采样后,将采样装置组件逐个拆解,安放于组件箱内,便于下次使用。
进一步的,当A-C<h时,换用另一型号的采样桶1,选取采样桶1的高度为C1,并保证A-C1≥h。通过上述的布置,以防止采样桶1底端对沉积物产生扰动。

Claims (10)

  1. 一种针对排水管网水质采样的装置,其特征在于,它包括用于对水样进行收集的采样桶(1);
    所述采样桶(1)包括位于上部的进水部和位于下部的放水部;
    所述采样桶(1)可升降调节的安装在支撑器(2)上,并能够根据采样深度要求锁定在支撑器(2)的指定高度,以达到对设定水位高程的水质进行采样;
    所述支撑器(2)的顶部固定安装有能够多节拼装组合以调节长度的提升机构(3),进而来适应不同深度检查井的水质采样。
  2. 根据权利要求1所述一种针对排水管网水质采样的装置,其特征在于:所述进水部包括进水箱(108),进水箱(108)的外形呈长方体型,进水箱(108)包括6个面,顶面封闭,4个侧面为对称设置,在一对侧面上设置对称布置的第一进水口(101)和第二进水口(105),在另一对侧面上分别设置有两组高度不同的第一固定栓(102)和第二固定栓(106),第一固定栓(102)和第二固定栓(106)上分别安装有螺母(103),底面设置有出水口(107)。
  3. 根据权利要求2所述一种针对排水管网水质采样的装置,其特征在于:所述进水箱(108)材质为透明的有机玻璃;
    所述第一进水口(101)和第二进水口(105)采用矩形口,且设置在进水箱(108)的侧面中上部,设置高度小于侧面高度的一半,设置宽度大于侧面宽度的一半;
    位于同一侧的第一固定栓(102)或第二固定栓(106)上下对齐,且两侧面的第一固定栓(102)和第二固定栓(106)呈同一平面上下错位布置,第一固定栓(102)和第二固定栓(106)上加工有用于和螺母(103)相配合的外螺纹。
  4. 根据权利要求2所述一种针对排水管网水质采样的装置,其特征在于:所述放水部包括锥形桶体(109),锥形桶体(109)的顶端设置有外螺纹接口(111),外螺纹接口(111)与设置在进水箱(108)底端的内螺纹接口(104)相配合,内螺纹接口(104)设置在出水口(107)所在位置,锥形桶体(109)的底端设置有用于控制出水的放水控制阀(110)。
  5. 根据权利要求2所述一种针对排水管网水质采样的装置,其特征在于:所述支撑器(2)包括圆柱杆(201),圆柱杆(201)的下部中心部位加工有沿其轴线方向布置的滑槽(203),滑槽(203)的外壁上设置有刻度线(202),圆柱杆(201)的顶端设置有第一螺母套(204);滑槽(203)与第一固定栓(102)和第二固定栓(106)相配合。
  6. 根据权利要求5所述一种针对排水管网水质采样的装置,其特征在于:所述滑槽(203)为圆柱杆(201)杆长的2/3,另1/3长度保持圆柱杆的原状;所述刻度线(202)自槽底向 槽顶布置。
  7. 根据权利要求1所述一种针对排水管网水质采样的装置,其特征在于:所述提升机构(3)包括竖杆(301),竖杆(301)的顶端固定有第二螺母套(306),竖杆(301)的底端设置有螺纹柱(303),螺纹柱(303)与另一根竖杆(301)的第二螺母套(306)相配合。
  8. 根据权利要求7所述一种针对排水管网水质采样的装置,其特征在于:所述竖杆(301)上加工有对穿孔(302),对穿孔(302)与横杆(304)相配合,横杆(304)的两个端头安装有用于和锁紧螺母(305)相配合的外螺纹。
  9. 采用权利要求1-8任意一项所述一种针对排水管网水质采样的装置进行水质采样的方法,其特征在于,包括以下步骤:
    步骤一,沉积物(6)的深度检测:
    采用市售的沉积物柱状采样器(4)测定检查井(5)内沉积物(6)的深度,将沉积物(6)的厚度计为h;同时测定检查井(5)内部水位高度为B;
    步骤二,设定采样高度:
    预先根据采样要求,设定需要的采样深度A,采样深度A是从检查井(5)的底部到采样点的高度值;
    步骤三,采样桶(1)安装高度的标定:
    取出支撑器(2),根据所测定沉积物(6)的厚度h,在支撑器(2)的刻度线(202)上作出标识位置,此标识位置要保证安装采样桶(1)后,锥形桶体(109)底端距离圆柱杆(201)底端的距离D要大于沉积物(6)的厚度h,进而避免锥形桶体(109)的底端碰触沉积物(6),即D≥h;
    步骤四,采样桶(1)的安装高度确定:
    根据步骤二中所设定的采样深度A,此采样深度A以采样桶(1)的第一进水口(101)和第二进水口(105)的顶端作为标记线,将采样桶(1)在支撑器(2)上安装高度定为A,并保证A-C≥h,C为采样桶(1)的高度;
    步骤五,采样桶(1)的安装固定:
    根据步骤四中所确定的安装高度,将采样桶(1)安装在支撑器(2)的圆柱杆(201)上,再通过螺母(103)将采样桶(1)锁定在支撑器(2)上;
    步骤六,提升机构(3)的组装:
    根据检查井(5)的深度,组装提升机构(3),将多根竖杆(301)通过螺纹柱(303)和第二螺母套(306)之间的螺纹配合,逐节安装至工作高度,再将提升机构(3)与支撑器 (2)相组装,再安装横杆(304),形成提升机构;
    步骤七,水质采样:
    带采样装置安装完成之后,手握提升机构将采样装置插入检查井内,并使得圆柱杆(201)插入到检查井(5)的底端,然后采集固定深度A位置的水样;
    步骤八,水样取出:
    采样后,将整个采样装置提出检查井,先将采样桶(1)底部的沉淀体底部的干扰性沉积物排出,再将水样注入储存瓶送实验室检验;
    步骤九,采样装置的回收:
    完成采样后,将采样装置组件逐个拆解,安放于组件箱内,便于下次使用。
  10. 根据权利要求9所述一种针对排水管网水质采样的装置进行水质采样的方法,其特征在于,当A-C<h时,换用另一型号的采样桶(1),选取采样桶(1)的高度为C1,并保证A-C1≥h。
PCT/CN2023/123665 2023-05-12 2023-10-10 一种针对排水管网水质采样的装置及方法 WO2024061376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310536506.3 2023-05-12
CN202310536506.3A CN116718420B (zh) 2023-05-12 2023-05-12 一种针对排水管网水质采样的装置及方法

Publications (1)

Publication Number Publication Date
WO2024061376A1 true WO2024061376A1 (zh) 2024-03-28

Family

ID=87870511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123665 WO2024061376A1 (zh) 2023-05-12 2023-10-10 一种针对排水管网水质采样的装置及方法

Country Status (2)

Country Link
CN (1) CN116718420B (zh)
WO (1) WO2024061376A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116718420B (zh) * 2023-05-12 2024-07-09 长江生态环保集团有限公司 一种针对排水管网水质采样的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180578A1 (en) * 2011-01-18 2012-07-19 Guanghou Institute of Geochemistry, Chinese Acedmy of Sciences Multi-section sediment pore water sampler
CN103267654A (zh) * 2013-05-17 2013-08-28 河海大学 一种软布封底式浅水域原状表层沉积物采样器
CN203758777U (zh) * 2014-01-08 2014-08-06 中国人民解放军疾病预防控制所 一种便携式水质采样器
CN205067138U (zh) * 2015-10-09 2016-03-02 苏州工业园区清源华衍水务有限公司 一种便携式采样器
CN207937218U (zh) * 2018-03-01 2018-10-02 重庆以伯环境监测咨询有限公司 一种深水采样器和深水采样系统
CN217155946U (zh) * 2022-04-25 2022-08-09 广西速竟科技有限公司 一种用于水质监测的样品采集装置
CN116718420A (zh) * 2023-05-12 2023-09-08 长江生态环保集团有限公司 一种针对排水管网水质采样的装置及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI493090B (zh) * 2012-07-10 2015-07-21 Nat Univ Chung Hsing River Suspension Sampling System and Its Auxiliary Equipment
CN203350066U (zh) * 2013-05-14 2013-12-18 中国科学院、水利部成都山地灾害与环境研究所 深塘库沉积泥沙采样器
CN207717418U (zh) * 2017-12-27 2018-08-10 江苏省有色金属华东地质勘查局地球化学勘查与海洋地质调查研究院 多功能便携式取水器
US11162876B2 (en) * 2018-07-09 2021-11-02 Guangzhou Marine Geological Survey Long-term in-situ sampling and analysis device for sediment pore water and method thereof
BR102019002749B1 (pt) * 2019-02-11 2024-03-12 Petróleo Brasileiro S.A. - Petrobras Amostrador para coleta de amostras de líquidos e sólidos
CN114354261B (zh) * 2021-12-29 2024-01-09 长江生态环保集团有限公司 一种水环境治理用分类采样装置及使用方法
CN114858518A (zh) * 2022-03-18 2022-08-05 温州医科大学 一种水污染检测用水样采集检测装置及其实施方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180578A1 (en) * 2011-01-18 2012-07-19 Guanghou Institute of Geochemistry, Chinese Acedmy of Sciences Multi-section sediment pore water sampler
CN103267654A (zh) * 2013-05-17 2013-08-28 河海大学 一种软布封底式浅水域原状表层沉积物采样器
CN203758777U (zh) * 2014-01-08 2014-08-06 中国人民解放军疾病预防控制所 一种便携式水质采样器
CN205067138U (zh) * 2015-10-09 2016-03-02 苏州工业园区清源华衍水务有限公司 一种便携式采样器
CN207937218U (zh) * 2018-03-01 2018-10-02 重庆以伯环境监测咨询有限公司 一种深水采样器和深水采样系统
CN217155946U (zh) * 2022-04-25 2022-08-09 广西速竟科技有限公司 一种用于水质监测的样品采集装置
CN116718420A (zh) * 2023-05-12 2023-09-08 长江生态环保集团有限公司 一种针对排水管网水质采样的装置及方法

Also Published As

Publication number Publication date
CN116718420A (zh) 2023-09-08
CN116718420B (zh) 2024-07-09

Similar Documents

Publication Publication Date Title
WO2024061376A1 (zh) 一种针对排水管网水质采样的装置及方法
CN202033216U (zh) 一种用于常温下液体取样的密闭取样装置
CN207456843U (zh) 一种用于野外采集沉积物的堆叠式圆柱标本取样装置
CN111811977B (zh) 一种径流泥沙含量与流量测量装置及测量方法
CN208937372U (zh) 一种可同时采集多层水样的水样采集设备
US20210396567A1 (en) Method and Device for Accurately Monitoring Evaporation Capacity of Water Surface Evaporator in Whole Process
CN206722827U (zh) 一种油田采油专业取样桶
CN210128872U (zh) 一种用于环保水质检测取样器
CN216978897U (zh) 一种用于石油产品中总氢含量核磁检测的进料装置
CN214309590U (zh) 一种便携式低扰动沉积物取样装置
CN210690134U (zh) 一种环保监测用湖水取样装置
CN218956417U (zh) 多重过滤高精度水质重金属检测仪
CN105547753B (zh) 生物污泥原态采样器及使用方法
CN208307359U (zh) 一种液体食品检测用深度可调节式取样装置
CN212254216U (zh) 一种径流流量测量装置
CN206454315U (zh) 一种废油除杂油水分离装置
CN206818567U (zh) 原油沉积规律实验装置
CN213689024U (zh) 一种防渗观察渠
CN213842727U (zh) 一种泥样采集器
CN112946233A (zh) 一种组合式环保检测设备
CN212514585U (zh) 一种测试砂浆分层度组合仪器
CN116559250B (zh) 一种火电厂脱硫浆液氯离子在线检测装置和方法
CN221078164U (zh) 水质分析仪取样装置
CN107764596A (zh) 用于检测绝缘油时的取样工具
CN215727141U (zh) 一种直推式定深土壤气取样装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867661

Country of ref document: EP

Kind code of ref document: A1