WO2024061218A1 - Organic polysulfide, preparation method and use thereof - Google Patents

Organic polysulfide, preparation method and use thereof Download PDF

Info

Publication number
WO2024061218A1
WO2024061218A1 PCT/CN2023/119737 CN2023119737W WO2024061218A1 WO 2024061218 A1 WO2024061218 A1 WO 2024061218A1 CN 2023119737 W CN2023119737 W CN 2023119737W WO 2024061218 A1 WO2024061218 A1 WO 2024061218A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl chain
organic
chain containing
sulfur
formula
Prior art date
Application number
PCT/CN2023/119737
Other languages
French (fr)
Inventor
Feng Gao
Chunjie ZHOU
Xiaocong WAN
Hualong PENG
Xiang Yao
Original Assignee
Jiangsu Cheeshine Performance Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Cheeshine Performance Materials Co., Ltd. filed Critical Jiangsu Cheeshine Performance Materials Co., Ltd.
Publication of WO2024061218A1 publication Critical patent/WO2024061218A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/14Polysulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/22Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides
    • C07C319/24Preparation of thiols, sulfides, hydropolysulfides or polysulfides of hydropolysulfides or polysulfides by reactions involving the formation of sulfur-to-sulfur bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/12Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention relates to the technical field of special vulcanizing agent for rubber, in particular to an organic polysulfide, preparation method and use thereof.
  • Organic polysulfides are mostly used as raw materials for special oil resistant rubber, gratings, sealant additives, etc. However, organic polysulfides are often used as vulcanizing agents in rubber products. When vulcanizing rubber with sulfur, the number of polysulfide bonds is greater than that of monosulfide bonds and disulfide bonds. Rubber is prone to aging and reversion, and has poor heat resistance and aging resistance.
  • Organic polysulfides can be used as vulcanizing agents in the rubber composition to completely or partially replace sulfur, and monosulfide bond, disulfide bond and carbon-sulfur bond can replace part of polysulfide bond, which can effectively improve the material properties and durability of vulcanized rubber, and can optimize the reversion of rubber, but the fatigue resistance will suffer certain loss.
  • Disodium hexamethylene 1, 6-dithiosulfate dihydrate can improve the thermal stability and aging resistance of vulcanized rubber, inhibit the occurrence of reversion, and make the vulcanized rubber have good tensile properties, fatigue resistance and flexibility.
  • the only part of this kind of structure that can effectively participate in the crosslinking reaction of rubber macromolecules is dithiohexamethylene, with low content of effective components and low utilization rate.
  • the residual materials may also affect the mechanical properties of vulcanized rubber, and the vulcanization rate is slow.
  • a cyclic alkyl polysulfide polymer which contains polysulfide bonds, can partially or completely replace sulfur, and has improved durability, rolling resistance, resistance to vulcanization reversion and other properties.
  • more solvents are used and cyclization is difficult. A large amount of water and toluene are needed as the solvent for cyclization.
  • the invention provides an organic polysulfide and a preparation method and use thereof.
  • the organic polysulfide provided by the invention can be applied to rubber to maintain the fatigue resistance and flexibility of rubber, while improving the thermal stability, aging resistance and resistance to vulcanization reversion of the vulcanized rubber.
  • the method of preparing the organic polysulfide is simple, environmental friendly and less polluting.
  • R 1 is an alkyl chain of C 2 -C 20 , preferably an alkyl chain of C 2 -C 8 , the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen, or aromatic hydrocarbons (i.e., said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons)
  • R 2 is an alkyl chain ofC 2 -C 8 , the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen, or aromatic hydrocarbons (i.e., said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons)
  • R 2 is a C 2
  • R 1 is an alkyl chain of C 2 -C 20 , preferably an alkyl chain of C 2 -C 8 , the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen, or aromatic hydrocarbons (i.e., said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons) ;
  • R 2 is one or more of a halogen , a polysulfide metal salt, a dithiocarbamate group, a xanthate group, 2-mercaptobenzo group; n is 2-6, x is 2-8, S is sulfur.
  • R 2 when R 2 is an alkyl chain, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, or nitrogen (i.e., said alkyl chain is a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond or an alkyl chain containing nitrogen)
  • the structural formula ofR 2 is
  • R 2 is one or more of propenyl, acryloyl, and methacryloyl.
  • R 2 when R 2 is an alkyl chain, the carbon in the alkyl chain is replaced by aromatic hydrocarbon (i.e., said alkyl chain isan alkyl chain containing aromatic hydrocarbons) , the structural formula of R 2 is
  • R 4 is one of hydrogen, methyl, ethyl, methoxy, ethoxy or methyl mercapto
  • R 5 is one of methyl, hydrogen, methyl, ethyl, methoxy or ethoxy.
  • R 2 may be a halogen
  • R 2 when R 2 is a polysulfide metal salt, R 2 may be one or more of sodium polysulfide, chlorine atom or bromine atom;
  • R 2 when R 2 is a dithiocarbamate group, R 2 may be dimethyl dithiocarbamate group, diethyl dithiocarbamate group, dibenzyl dithiocarbamate group, diphenyl dithiocarbamate group, dibutyl dithiocarbamate group or N-ethyl-N-phenyl dithiocarbamate group;
  • R 2 when R 2 is a xanthate group, R 2 may be isopropyl xanthate group, n-butyl xanthate group, and ethyl xanthate group; or
  • R 2 may be a 2-mercaptobenzo group.
  • R 1 when R 1 is an alkyl chain, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, or nitrogen (i.e., said alkyl chain is a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond or an alkyl chain containing nitrogen) , the structural formula ofR 1 is
  • Y is one or more of C, O, S or N.
  • R 1 is an alkyl chain
  • the carbon in the alkyl chain is replaced by aromatic hydrocarbon (i.e., said alkyl chain isan alkyl chain containing aromatic hydrocarbons)
  • the structural formula ofR 1 is
  • R 6 is methyl or hydrogen
  • the invention also provides a method of preparing the organic polysulfide, comprising the following steps:
  • the metal hydroxide is at least one of sodium hydroxide or potassium hydroxide.
  • the mass concentration of metal hydroxide solution is 20-50%, preferably 30-40%.
  • step S1 the molar ratio of metal hydroxide in metal hydroxide solution to sulfur powder is 1: (1-2) .
  • step S2 the molar ratio of ZR 1 Z to ZR 2 /the sulfur-containing organic sodium salt is 1: (0-1) .
  • the molar weight ratio of ZR 1 Z to ZR 2 /the sulfur-containing organic sodium salt will affect the molecular weight of the product, thus affecting the final properties of the product.
  • the molar ratio of the sum of the molar amounts of ZR 1 Z and ZR 2 /the sulfur-containing organic sodium salt to the metal hydroxide is (0.3-0.5) : 1. If the molar ratio of the sum of the molar amounts ofZR 1 Z and ZR 2 /the sulfur-containing organic sodium salt to the metal hydroxide is lower than 0.3: 1 or higher than 0.5: 1, small molecules will be formed, and the target product of the invention cannot be obtained.
  • R 1 of ZR 1 Z is an alkyl chain of C 2 -C 20 , preferably an alkyl chain of C 2 -C 8 , the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen, or aromatic hydrocarbons, preferably an alkyl chain of C 2 -C 8 , and Z is independently one of fluorine, chlorine, bromine and iodine, preferably chlorine or bromine.
  • R 1 is an alkyl chain
  • the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, or nitrogen
  • the structural formula of R 1 is
  • Y is one or more of C, O, S or N.
  • R 1 is an alkyl chain
  • the carbon in the alkyl chain is replaced by aromatic hydrocarbons
  • R 6 is methyl or hydrogen
  • R 2 of ZR 2 is an alkyl chain of C 2 -C 8 , the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen or aromatic hydrocarbons, Z is independently one of fluorine, chlorine, bromine and iodine, preferably chlorine or bromine.
  • R 2 is an alkyl chain
  • the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, or nitrogen
  • the structural formula of R 2 is
  • R 2 is one or more of propenyl, acryloyl, and methacryloyl.
  • R 2 is an alkyl chain
  • the carbon in the alkyl chain is replaced by aromatic hydrocarbon
  • R 4 is one of hydrogen, methyl, ethyl, methoxy, ethoxy or methyl mercapto
  • R 5 is one of methyl, hydrogen, methyl, ethyl, methoxy or ethoxy.
  • the modifier when it is a sulfur containing organic sodium salt, it is selected from sodium methyldithiocarbamate, sodium diethyldithiocarbamate, sodium dibenzyldithiocarbamate, sodium diphenyldithiocarbamate, sodium dibutyldithiocarbamate, sodium N-ethyl-N-phenyldithiocarbamate, sodium isopropyl xanthate, sodium n-butyl xanthate, sodium ethyl xanthate, 2-mercaptobenzo sodium salt.
  • step S1 the reaction temperature is 75-85 °C and the reaction time is 1-2h.
  • step S2 the temperature of heating to reflux is 85-95 °C, and the dropwise addition of reactant lasts for 2-4h.
  • step S2 the reaction temperature is 85-95 °C and the reaction time is 4-6 h.
  • step S3 the temperature is raised to about 80-85 °C, distillation is conducted under negative pressure to 95 °C, the vacuum is greater than 0.08 MPa, and the distillation is conducted for 30-60 min.
  • the product when the reactant is ZR 1 Z, the product is capped by halogen or polysulfide metal or accelerator, consistent withR 2 being halogen or polysulfide in the general formula,
  • the organic part of the sulfur-containing organic sodium salt plays the role of capping.
  • ZR 2 plays the role of capping
  • the invention also provides the use of the organic polysulfide in preparing rubber compositions.
  • the structure of the organic polysulfide provided by the invention is changeable and adjustable, and the content of polysulfide, disulfide and monosulfide bond and the flexibility of the molecular structure can be adjusted according to the needs.
  • the benzyl end capping plays a role in catalyzing vulcanization.
  • the molecular structure of the organic polysulfide of the invention has a plurality of thioalkyl chain segments, participates in the vulcanization reaction of the rubber compound, forms polysulfide bonds in the rubber compound, and at the same timestably generates monosulfide bonds or disulfide bonds, and at the same time can access flexible alkyl chains in the macromolecules of the rubber compound to form a composite cross-linking structure with the rubber macromolecules, thus maintaining the fatigue resistance and flexibility of the rubber, and at the same time, it can improve the thermal stability, aging resistance and resistance to vulcanization reversion of vulcanized rubber.
  • the structure of the organic polysulfide can also be adjusted according to the needs, and rigid groups can be inserted into the macromolecule of the rubber compound to improve the strength of the rubber compound while maintaining a low heat generation.
  • the method of preparing the organic polysulfide provided by the invention is simple, the reaction condition is mild, the yield is high, and has less “three wastes” .
  • Figure 1 is a flow diagram of the method of preparing the organic polysulfide provided by the invention.
  • Figure 2 shows the structural formula and nuclear magnetic spectrum of the organic polysulfide prepared in Example 1.
  • Figure 3 shows the structural formula and the nuclear magnetic spectrum of the organic polysulfide prepared in Example 5.
  • Figure 4 shows the structural formula and the nuclear magnetic spectrum of the organic polysulfide prepared in Example 8.
  • Figure 5 is an enlarged view of the circled portion of Figure 4.
  • Figure 6 shows the IR curve of the organic polysulfides in Example 5.
  • Figure 7 shows the IR curve of the organic polysulfides in Example 8.
  • the organic phase was distilled.
  • the temperature was raised to about 80-85 °C, distillation was conducted under negative pressure to 95 °C, the vacuum was 0.08 MPa, and the distillation was carried out for 30 min. After the distillation, the temperature was lowered and the vacuum was broken to obtain the organic polysulfide.
  • Example 1 The organic polysulfides in Example 1 were determined by nuclear magnetic nuclear magnetic resonance (NMR) according to GB/T 34247.2-2018.
  • Example 5 The organic polysulfides in Example 5 were determined by nuclear magnetic nuclear magnetic resonance (NMR) according to GB/T 34247.2-2018.
  • the molecular polymerization degree n for the remaining embodiments was calculated in the same manner as in Example 1 and Example 5.
  • the viscosity of the organic polysulfide in Example 5 is 6323 MPa. s.
  • the sulfur content of the organic polysulfide in Example 5 was determined according to ASTMD 4239-04, and the measured sulfur content was 47.8%.
  • Example 5 The infrared similarity of the organic polysulfides in Example 5 was determined according to GB/T 6040-2002, and the infrared spectrum was obtained as in Fig. 6. In the infrared spectrum, the peak of ether bond at wave number of 1100cm -1 and the hydrocarbon peak around 2900cm -1 belonging to polyether alkyl polysulfide were very obvious.
  • Example 5 By combining IR spectra, and H NMR spectra, the organic polysulfides in Example 5 were characterized as polyether alkyl polysulfide polymers.
  • the organic polysulfides in Example 8 were determined by nuclear magnetic nuclear magnetic resonance (NMR) according to GB/T 34247.2-2018.
  • Peak area (D) 28.08 (4n+12) ;
  • A, B, C The peak position of H on the C connected to the polysulfide bond is A, B, and C (different values of x are taken in Sx and errors occur in the position of the peaks) ;
  • E, F the peak position of the methylene group between oxygen and sulfur, near oxygen.
  • the first step of the reaction is actually a sulfur disproportionation reaction under alkaline conditions, and the equation after balancing is as follows:
  • Equation (1) is the disproportionation reaction of sodium hydroxide with sulfur
  • Equation (1) 6 parts of sodium hydroxide and 2+2x parts of sulfur produce 2 parts of sodium polysulfide and 1 part of sodium thiosulfite and 3 parts of water, and the elemental sulfur is disproportionated to 2 parts of S x 2- and 1 part of S 2 O 3 2- .
  • the method for calculating X is deduced from formula (1) .
  • x of sodium polysulfide produced by 3 mol of sulfur and 3 mol of sodium hydroxide is
  • x is any number from 1 to 6, and the relatively stable values are 1, 2, 4, and 6 (taking 1 cannot be used as a crosslinking agent in this invention) .
  • the invention requires x to be 2 to 6, and if decimals occur, this is the average result caused by different proportions.
  • the viscosity of the organic polysulfide in Example 8 is 6700 MPa. s.
  • the sulfur content of the organic polysulfide in Example 8 was determined in accordance with ASTMD 4239-04, and the measured sulfur content was 48.1% (the final product of Example 8 was a halogen capped product) .
  • Example 8 The infrared similarity of the organic polysulfide in Example 8 was determined according to GB/T 6040-2002, and the infrared spectrum was obtained as in Fig. 7 below. In the infrared spectrum, the peak of ether bond at wave number of 1100 cm -1 and the hydrocarbon peak around 2900cm -1 belonging to the polyether alkyl polysulfide were very obvious.
  • Example 8 By combining IR spectra and H NMR spectra, the organic polysulfides in Example 8 were characterized as polyether alkyl polysulfide polymers.
  • the organic polysulfide prepared in Examples 1-8 was added to the rubber to make a rubber composition. See Table 2 for the formulation.
  • the steps of preparing the rubber composition are as follows:
  • the rubber components were mixed in Farrel mixer at about 160°C to produce the master batch.
  • the vulcanizing components were mixed into the master batch obtained by the Farrel mixer at a temperature of about 90-100°C.
  • the modified vulcanized rubber mixture the product obtained from mixing, was left overnight at a constant temperature of about 23-25°C and relative humidity of 40-80%.
  • the vulcanization properties were then determined by a rheometer, and the rubber sheet was vulcanized at 160°C for 20min in a mold of 15 ⁇ 15 ⁇ 0.2cm.
  • the properties of the rubber sheet were determined according to the following test methods. The test results are shown in Table 3-5.
  • the rubber composition using organic polysulfides of Examples 1-8 (corresponding to #2 ⁇ #9 of Table 3-5) has significantly different properties from the rubber composition vulcanized with sulfur (corresponding to #1 of Table 3-5) .
  • the replacement of sulfur with the organic polysulfide provided by the invention can significantly optimize the heat-aging resistance, resistance to vulcanization reversion and flexibility of the rubber composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

An organic polysulfide and preparation method and use thereof. The preparation method comprises the following steps: S1: adding metal hydroxide solution into a reactor, adding sulfur to react, and lowering the temperature at the end of the reaction to obtain metal sulfide solution; S2: adding ethanol solution into the metal sulfide solution system, increasing the temperature to reflux, adding dropwisely reactant 1 or a modifier to react, where reactant 1 is ZR1Z, the modifier is ZR2 or a sulfur-containing organic sodium salt; S3: lowering the temperature at the end of the reaction, followed by extraction, washing, and then subjecting the organic phase to distillation, and lowering the temperature after distillation to obtain the organic polysulfide. The organic polysulfide provided can be applied to rubber to maintain the fatigue resistance and flexibility of rubber, while improving the thermal stability, aging resistance and resistance to vulcanization reversion of the vulcanized rubber.

Description

ORGANIC POLYSULFIDE, PREPARATION METHOD AND USE THEREOF FIELD OF THE INVENTION
The invention relates to the technical field of special vulcanizing agent for rubber, in particular to an organic polysulfide, preparation method and use thereof.
BACKGROUND
Organic polysulfides are mostly used as raw materials for special oil resistant rubber, gratings, sealant additives, etc. However, organic polysulfides are often used as vulcanizing agents in rubber products. When vulcanizing rubber with sulfur, the number of polysulfide bonds is greater than that of monosulfide bonds and disulfide bonds. Rubber is prone to aging and reversion, and has poor heat resistance and aging resistance. Organic polysulfides can be used as vulcanizing agents in the rubber composition to completely or partially replace sulfur, and monosulfide bond, disulfide bond and carbon-sulfur bond can replace part of polysulfide bond, which can effectively improve the material properties and durability of vulcanized rubber, and can optimize the reversion of rubber, but the fatigue resistance will suffer certain loss.
Disodium hexamethylene 1, 6-dithiosulfate dihydrate can improve the thermal stability and aging resistance of vulcanized rubber, inhibit the occurrence of reversion, and make the vulcanized rubber have good tensile properties, fatigue resistance and flexibility. However, the only part of this kind of structure that can effectively participate in the crosslinking reaction of rubber macromolecules is dithiohexamethylene, with low content of effective  components and low utilization rate. At the same time, the residual materials may also affect the mechanical properties of vulcanized rubber, and the vulcanization rate is slow.
On this basis, researchers conducted in-depth research, and proposed an organic sulfur compound, 1, 6-bis (N, N-dibenzylthiocarbamoyldithio) hexane. The hexamethylene disulfide group is introduced into the sulfur-carbon network for anti-reversion to improve the thermal stability of the cross-linked bond, thereby improving the flexibility of the rubber compound under dynamic operation and the resistance to vulcanization reversion of the rubber compound. The structural capping of dithiocarbamate accelerator is used to replace the ineffective salt capping of hexamethylene 1, 6-dithiosulfate disodium salt (HTS) dihydrate in the molecule to accelerate the vulcanization of rubber compound. However, the synthesis process is relatively complex, and there are many “three wastes” in the synthesis process.
Also, the prior art discloses a cyclic alkyl polysulfide polymer, which contains polysulfide bonds, can partially or completely replace sulfur, and has improved durability, rolling resistance, resistance to vulcanization reversion and other properties. However, in the preparation method of the polymer, more solvents are used and cyclization is difficult. A large amount of water and toluene are needed as the solvent for cyclization.
Therefore, maintaining the fatigue resistance and flexibility of rubber, as well as improving the thermal stability, aging resistance and resistance to vulcanization reversion of vulcanized rubber are urgent problems to be solved, and the preparation method is required to be simple and environmental friendly.
SUMMARY OF THE INVENTION
In view of the defects in the prior art, the invention provides an organic polysulfide and a preparation method and use thereof. The organic polysulfide  provided by the invention can be applied to rubber to maintain the fatigue resistance and flexibility of rubber, while improving the thermal stability, aging resistance and resistance to vulcanization reversion of the vulcanized rubber. The method of preparing the organic polysulfide is simple, environmental friendly and less polluting.
This is achieved through the following technical solutions:
An organic polysulfide, represented by structural formula (1) :
in formula (1) , R1 is an alkyl chain of C2-C20, preferably an alkyl chain of C2-C8, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen, or aromatic hydrocarbons (i.e., said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons) , R2 is an alkyl chain ofC2-C8, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen, or aromatic hydrocarbons (i.e., said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons) , or R2 is a C2-C8 olefinic unsaturated segment; n is 2-6, x is 2-8, S is sulfur;
in formula (2) , R1is an alkyl chain of C2-C20, preferably an alkyl chain of  C2-C8, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen, or aromatic hydrocarbons (i.e., said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons) ; R2 is one or more of a halogen , a polysulfide metal salt, a dithiocarbamate group, a xanthate group, 2-mercaptobenzo group; n is 2-6, x is 2-8, S is sulfur.
In one embodiment, in formula (1) , when R2is an alkyl chain, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, or nitrogen (i.e., said alkyl chain is a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond or an alkyl chain containing nitrogen) , the structural formula ofR2is
where R3 is methyl or ethyl, n = 1-3, X is independently C, O, S or N.
In one embodiment, in formula (1) , R2 is one or more of propenyl, acryloyl, and methacryloyl.
In one embodiment, in formula (1) , when R2is an alkyl chain, the carbon in the alkyl chain is replaced by aromatic hydrocarbon (i.e., said alkyl chain isan alkyl chain containing aromatic hydrocarbons) , the structural formula of R2 is
where R4 is one of hydrogen, methyl, ethyl, methoxy, ethoxy or methyl mercapto, and R5is one of methyl, hydrogen, methyl, ethyl, methoxy or  ethoxy.
In one embodiment, in formula (2) ,
R2 may be a halogen;
when R2 is a polysulfide metal salt, R2 may be one or more of sodium polysulfide, chlorine atom or bromine atom;
when R2 is a dithiocarbamate group, R2 may be dimethyl dithiocarbamate group, diethyl dithiocarbamate group, dibenzyl dithiocarbamate group, diphenyl dithiocarbamate group, dibutyl dithiocarbamate group or N-ethyl-N-phenyl dithiocarbamate group;
when R2 is a xanthate group, R2 may be isopropyl xanthate group, n-butyl xanthate group, and ethyl xanthate group; or
R2may be a 2-mercaptobenzo group.
In one embodiment, in formula (1) and formula (2) , when R1is an alkyl chain, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, or nitrogen (i.e., said alkyl chain is a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond or an alkyl chain containing nitrogen) , the structural formula ofR1is
where m = 1-3, Y is one or more of C, O, S or N.
In one embodiment, in formula (1) and formula (2) , when R1is an alkyl chain, the carbon in the alkyl chain is replaced by aromatic hydrocarbon (i.e., said alkyl chain isan alkyl chain containing aromatic hydrocarbons) , the structural formula ofR1is
where R6is methyl or hydrogen.
The invention also provides a method of preparing the organic polysulfide, comprising the following steps:
S1: adding metal hydroxide solution into a reactor, adding sulfur to react, and lowering the temperature after the reaction to obtain metal sulfide solution;
S2: adding ethanol solution into the metal sulfide solution system, increasing the temperature to reflux, adding dropwisely reactant 1 and a modifier to react, where reactant 1 is ZR1Z, the modifieris ZR2 or a sulfur-containing organic sodium salt;
S3: lowering the temperature at the end of the reaction, followed by addition of dichloromethane for extraction, washing, and then subjecting the organic phase to distillation, and lowering the temperature and breaking the vacuum after distillation to obtain the organic polysulfide.
In one embodiment, in step S1, the metal hydroxide is at least one of sodium hydroxide or potassium hydroxide. The mass concentration of metal hydroxide solution is 20-50%, preferably 30-40%.
In one embodiment, in step S1, the molar ratio of metal hydroxide in metal hydroxide solution to sulfur powder is 1: (1-2) .
In one embodiment, in step S2, the molar ratio of ZR1Z to ZR2/the sulfur-containing organic sodium salt is 1: (0-1) . The molar weight ratio of ZR1Z to ZR2/the sulfur-containing organic sodium salt will affect the  molecular weight of the product, thus affecting the final properties of the product.
In one embodiment, the molar ratio of the sum of the molar amounts of ZR1Z and ZR2/the sulfur-containing organic sodium salt to the metal hydroxide is (0.3-0.5) : 1. If the molar ratio of the sum of the molar amounts ofZR1Z and ZR2/the sulfur-containing organic sodium salt to the metal hydroxide is lower than 0.3: 1 or higher than 0.5: 1, small molecules will be formed, and the target product of the invention cannot be obtained.
In one embodiment, in step S2, R1 of ZR1Z is an alkyl chain of C2-C20, preferably an alkyl chain of C2-C8, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen, or aromatic hydrocarbons, preferably an alkyl chain of C2-C8, and Z is independently one of fluorine, chlorine, bromine and iodine, preferably chlorine or bromine.
In one embodiment, when R1 is an alkyl chain, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, or nitrogen, the structural formula of R1 is
where m = 1-3, Y is one or more of C, O, S or N.
In one embodiment, when R1is an alkyl chain, the carbon in the alkyl chain is replaced by aromatic hydrocarbons, the structural formula of R1is
where R6 is methyl or hydrogen.
In one embodiment, in step S2, R2 of ZR2 is an alkyl chain of C2-C8, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, nitrogen or aromatic hydrocarbons, Z is independently one of fluorine, chlorine, bromine and iodine, preferably chlorine or bromine.
In one embodiment, when R2 is an alkyl chain, the carbon in the alkyl chain is optionally replaced by oxygen, sulfur, or nitrogen, the structural formula of R2 is
where R3 is methyl or ethyl, n = 1-3, X is independently C, O, S or N.
In one embodiment, R2 is one or more of propenyl, acryloyl, and methacryloyl.
In one embodiment, when R2 is an alkyl chain, the carbon in the alkyl chain is replaced by aromatic hydrocarbon, the structural formula of R2 is 
where R4 is one of hydrogen, methyl, ethyl, methoxy, ethoxy or methyl mercapto, and R5 is one of methyl, hydrogen, methyl, ethyl, methoxy or ethoxy. In one embodiment, when the modifier is a sulfur containing organic sodium salt, it is selected from sodium methyldithiocarbamate, sodium diethyldithiocarbamate, sodium dibenzyldithiocarbamate, sodium diphenyldithiocarbamate, sodium dibutyldithiocarbamate, sodium N-ethyl-N-phenyldithiocarbamate, sodium isopropyl xanthate, sodium n-butyl xanthate, sodium ethyl xanthate, 2-mercaptobenzo sodium salt.
In one embodiment, in step S1, the reaction temperature is 75-85 ℃ and  the reaction time is 1-2h.
In one embodiment, in step S2, the temperature of heating to reflux is 85-95 ℃, and the dropwise addition of reactant lasts for 2-4h.
In one embodiment, in step S2, the reaction temperature is 85-95 ℃ and the reaction time is 4-6 h.
In one embodiment, in step S3, the temperature is raised to about 80-85 ℃, distillation is conducted under negative pressure to 95 ℃, the vacuum is greater than 0.08 MPa, and the distillation is conducted for 30-60 min.
In one embodiment, when the reactant is ZR1Z, the product is capped by halogen or polysulfide metal or accelerator, consistent withR2being halogen or polysulfide in the general formula,
In one embodiment, when the reactant is ZR1Z and the modifier is a sulfur-containing organic sodium salt, the organic part of the sulfur-containing organic sodium salt plays the role of capping.
In one embodiment, when the reactant is ZR1Z and the modifier is a mixture of ZR1Zand ZR2, ZR2plays the role of capping,
The invention also provides the use of the organic polysulfide in preparing rubber compositions.
In summary, compared with the prior art, the invention achieves the following technical effects:
1. The structure of the organic polysulfide provided by the invention is changeable and adjustable, and the content of polysulfide, disulfide and monosulfide bond and the flexibility of the molecular structure can be adjusted according to the needs. The benzyl end capping plays a role in catalyzing vulcanization.
2. The molecular structure of the organic polysulfide of the invention has a plurality of thioalkyl chain segments, participates in the vulcanization reaction of the rubber compound, forms polysulfide bonds in the rubber compound, and at the same timestably generates monosulfide bonds or disulfide bonds, and at the same time can access flexible alkyl chains in the macromolecules of the rubber compound to form a composite cross-linking structure with the rubber macromolecules, thus maintaining the fatigue resistance and flexibility of the rubber, and at the same time, it can improve the thermal stability, aging resistance and resistance to vulcanization reversion of vulcanized rubber. The structure of the organic polysulfide can also be adjusted according to the needs, and rigid groups can be inserted into the macromolecule of the rubber compound to improve the strength of the rubber compound while maintaining a low heat generation.
3. The method of preparing the organic polysulfide provided by the invention is simple, the reaction condition is mild, the yield is high, and has less “three wastes” .
BRIEF DESCRIPTION OF THE DRAWINGS
In order to more clearly explain the technical solution of the Examples of the invention, the following will give a brief introduction to the appended drawings needed in the Examples. It should be understood that the appended drawings show only certain Examples of the invention and should not  therefore be regarded as limiting the scope. For ordinary technicians in this field, other related drawings can be obtained according to these drawings without any creative effort.
Figure 1 is a flow diagram of the method of preparing the organic polysulfide provided by the invention;
Figure 2 shows the structural formula and nuclear magnetic spectrum of the organic polysulfide prepared in Example 1.
Figure 3 shows the structural formula and the nuclear magnetic spectrum of the organic polysulfide prepared in Example 5.
Figure 4 shows the structural formula and the nuclear magnetic spectrum of the organic polysulfide prepared in Example 8.
Figure 5 is an enlarged view of the circled portion of Figure 4.
Figure 6 shows the IR curve of the organic polysulfides in Example 5;
Figure 7 shows the IR curve of the organic polysulfides in Example 8.
DETAILED DESCRIPTION
In order to make people in the technical field better understand the technical solution of the invention, the technical solution in the Examples of the invention will be described clearly and completely in combination with the appended drawings in the Examples of the invention. Obviously, the Examples described are only partial examples of the invention and not all examples. Based on the Examples of the invention, all other examples acquired by ordinary technicians in the field without creative labor shall fall within the scope of protection of the invention.
Preparation Examples
The following specific preparations were carried out following the flow diagram of the method for the preparation of organic polysulfides of the present invention provided in FIG. 1.
140g of 32%sodium hydroxide solution was added into a1000ml reactor, and sulfur powder was added while stirring, subjected to heating, the temperature was controlled at 75-85℃ to react for 1-2h. After the reaction, sodium polysulfide solution was obtained after cooling. 10ml ethanol solution was added into the sodium polysulfide solution system, heated up, the temperature was controlled at 85-95℃ to reflux. The mixture of 1, 6-dichlorohexane and benzyl chloride was dropwisely added within 2-4h. After addition, the temperature was controlled at 85-95℃ to react for 4-6h. After the reaction, 50ml dichloromethane was added at room temperature for extraction. The organic phase was washed twice using 50ml water. After that, the organic phase was distilled. The temperature was raised to about 80-85 ℃, distillation was conducted under negative pressure to 95 ℃, the vacuum was 0.08 MPa, and the distillation was carried out for 30 min. After the distillation, the temperature was lowered and the vacuum was broken to obtain the organic polysulfide.
The amounts of reactants in Examples 1-8 are shown in Table 1.
Table 1
The organic polysulfides in Example 1 were determined by nuclear magnetic nuclear magnetic resonance (NMR) according to GB/T 34247.2-2018.
FIG. 2 shows the structural formula and the NMR spectrum of the organic polysulfide in Example 1, and the value of n was calculated. According to FIG. 2, it can be seen that the characteristic peak of the intermediate polymerization unit {δ (1.6-1.9 ppm) } = 4*n and the characteristic peak of the capping group {δ (7.25-7.32 ppm) } = 10. n= (area integral of the characteristic peak of the intermediate polymerization monomer D/4) / (area integral of the characteristic peak of the capping groupA/10) = [the characteristic peak of the intermediate polymerization monomer {δ (1.6-1.9 ppm) } /4] / [the characteristic peak of the capping group {δ (7.25-7.32 ppm) } /10] = [23.28/4] / [12.4/10] ≈ 5. Therefore, the degree of molecular polymerization n of the organic polysulfide made in Example 1 is 5.
The organic polysulfides in Example 5 were determined by nuclear magnetic nuclear magnetic resonance (NMR) according to GB/T 34247.2-2018.
FIG. 3 shows the structural formula and the NMR spectrum of the organic polysulfide in Example 5, and the value of n was calculated as n= (area integral of the characteristic peak of the intermediate polymerization monomer d) /4) / (area integral of the characteristic peak of the capping group a) /10) = (10/4) / (5/10) = 5, and therefore the degree of molecular polymerization, n, of the organic polysulfide made in Example 5was 5.
The molecular polymerization degree n for the remaining embodiments was calculated in the same manner as in Example 1 and Example 5.
The viscosity of the organic polysulfide in Example 5 is 6323 MPa. s.
The sulfur content of the organic polysulfide in Example 5 was determined according to ASTMD 4239-04, and the measured sulfur content was 47.8%.
The infrared similarity of the organic polysulfides in Example 5 was determined according to GB/T 6040-2002, and the infrared spectrum was obtained as in Fig. 6. In the infrared spectrum, the peak of ether bond at wave number of 1100cm-1 and the hydrocarbon peak around 2900cm-1 belonging to polyether alkyl polysulfide were very obvious.
By combining IR spectra, and H NMR spectra, the organic polysulfides in Example 5 were characterized as polyether alkyl polysulfide polymers.
The organic polysulfides in Example 8 were determined by nuclear magnetic nuclear magnetic resonance (NMR) according to GB/T 34247.2-2018. FIG. 4 shows the structural formula and the NMR spectrum of the organic polysulfide in Example 8, and the value of n was calculated as n= (integral of methylene peaks E, F between oxygen and sulfur, near oxygen/2) / ( (area integral of characteristic peaks of the intermediate polymerization monomer D -integral of methylene peaks E, F between oxygen and sulfur, near oxygen) /6) = ( (13.73) /2) / ( (28.08-13.73) /6) = 3, and the degree of molecular polymerization, n, in the figure is 3.
The specific calculation process is as follows:
The structural formula of the organic polysulfide in Example 8 is as follows:
Write its end in the following form:
Peak area (E, F) = 4* (n-1) +2*2 {repeating segment 4* (n-1) + two ends 2*2} = 4n;
Peak area (D) = 4* (n-1) + (4+4) *2 {repeating segment 4* (n-1) + two ends (4+4) *2} = 4n+12;
Peak area (A, B, C) = 4* (n-1) +2*2 {repeating segment 4* (n-1) + two ends 2*2} = 4n;
The actual integral shows that:
Peak area (E, F) = 8.19+5.54 = 13.73 (4n) ;
Peak area (D) = 28.08 (4n+12) ;
Peak area (A, B, C) = 4.00+4.83+4.55 = 13.38 (4n) {close to peak area (E, F) } ;
(peak area (D) ) / (peak area (E, F) ) = (4n+12) /4n = (2n+6) /2n = (n+3) /n;
(peak area (D) ) / (peak area (E, F) ) = (2n+6) /2n;
(peak area (D) -peak area (E, F) ) / (peak area (E, F) ) = 6/2n;
n= (peak area (E, F) /2) / ( (peak area (D) -peak area (E, F) ) /6) = (13.73/2) / ( (28.08-13.73) /6) ≈3.
A, B, C: The peak position of H on the C connected to the polysulfide bond is A, B, and C (different values of x are taken in Sx and errors occur in the position of the peaks) ;
D: The positions of the two methylene peak between two oxygens, the positions of the two methylene peak of the capping group;
E, F: the peak position of the methylene group between oxygen and sulfur, near oxygen.
The first step of the reaction is actually a sulfur disproportionation reaction under alkaline conditions, and the equation after balancing is as follows:
6NaOH+ (2+2x) S= 2Na2Sx +Na2S2O3+3H2O--------- (1)
Equation (1) is the disproportionation reaction of sodium hydroxide with sulfur
In equation (1) 6 parts of sodium hydroxide and 2+2x parts of sulfur produce 2 parts of sodium polysulfide and 1 part of sodium thiosulfite and 3 parts of water, and the elemental sulfur is disproportionated to 2 parts of Sx 2-and 1 part of S2O3 2-. The method for calculating X is deduced from formula (1) .
6NaOH + (2+2x) S= 2Na2Sx + Na2S2O3 + 3H2O
n (NaOH)   n (S)

For example, x of sodium polysulfide produced by 3 mol of sulfur and 3 mol of sodium hydroxide is
x = 3* {n (S) /n (NaOH) } -1 --------------------------- (2)
= 3-1=2.
The actual value of x is any number from 1 to 6, and the relatively stable values are 1, 2, 4, and 6 (taking 1 cannot be used as a crosslinking agent in this invention) . The invention requires x to be 2 to 6, and if decimals occur, this is the average result caused by different proportions. In the invention, n (S) : n (NaOH) =1.5: 1 generates x=3 *1.5-1=3.5, which can be Na2S2: Na2S4=1: 3 (the average value of x is x= (2+3 *4) / (1+3) =3.5) .
The values of x in each example are calculated from the amounts of sulfur powder and sodium hydroxide solution in Table 1 of the specification and Eq. 2 as shown in the table below.
The viscosity of the organic polysulfide in Example 8 is 6700 MPa. s.
The sulfur content of the organic polysulfide in Example 8 was determined in accordance with ASTMD 4239-04, and the measured sulfur content was 48.1% (the final product of Example 8 was a halogen capped product) .
The infrared similarity of the organic polysulfide in Example 8 was determined according to GB/T 6040-2002, and the infrared spectrum was obtained as in Fig. 7 below. In the infrared spectrum, the peak of ether bond at wave number of 1100 cm-1and the hydrocarbon peak around 2900cm-1belonging to the polyether alkyl polysulfide were very obvious.
By combining IR spectra and H NMR spectra, the organic polysulfides in Example 8 were characterized as polyether alkyl polysulfide polymers.
Experimental examples
The organic polysulfide prepared in Examples 1-8 was added to the rubber to make a rubber composition. See Table 2 for the formulation.
Table 2
The steps of preparing the rubber composition are as follows:
In the first step, the rubber components were mixed in Farrel mixer at about 160℃ to produce the master batch.
In the second step, the vulcanizing components were mixed into the master batch obtained by the Farrel mixer at a temperature of about 90-100℃.
In the third step, the modified vulcanized rubber mixture, the product obtained from mixing, was left overnight at a constant temperature of about 23-25℃ and relative humidity of 40-80%. The vulcanization properties were then determined by a rheometer, and the rubber sheet was vulcanized at 160℃ for 20min in a mold of 15×15×0.2cm. The properties of the rubber sheet were determined according to the following test methods. The test results are shown in Table 3-5.
Mooney viscosity: GB/T 1232.1-2000;
Mooney Scorch: GB/T 1233-2008;
Rheological properties: GB/T 16584-1996;
Initial tensile test: GB/T528-2009;
Hardness: GB/T531.1-2008;
Flex cracking: GB/T 13934-2006;
Hot air aging: GB/T 3512-2001;
Dynamic performance test: GB/T 9870.1-2006.
Table 3.

Table 4.
Table 5.
The rubber composition using organic polysulfides of Examples 1-8 (corresponding to #2~#9 of Table 3-5) has significantly different properties from the rubber composition vulcanized with sulfur (corresponding to #1 of Table 3-5) . The replacement of sulfur with the organic polysulfide provided by the invention can significantly optimize the heat-aging resistance, resistance to vulcanization reversion and flexibility of the rubber composition.
The above are only preferred Examples of the invention, and are not intended to limit the invention. Any modification, equivalent substitution, improvement, etc. made within the spirit and principle of the invention shall be included in the protection scope of the invention.

Claims (15)

  1. An organic polysulfide, represented by structural formula (1) :
    in formula (1) , R1 is an alkyl chain of C2-C20, preferably an alkyl chain of C2-C8, said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons; R2 is an alkyl chain of C2-C8, said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons, or R2 is a C2-C8 olefinic unsaturated segment; n is 2-6, x is 2-8;
    in formula (2) , R1is an alkyl chain of C2-C20, preferably an alkyl chain of C2-C8, said alkyl chain is one or more of a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond, an alkyl chain containing nitrogen or an alkyl chain containing aromatic hydrocarbons; R2 is one or more of a halogen, a polysulfide metal salt, a dithiocarbamate group, a xanthate group, a 2-mercaptobenzo group; n is 2-6, x is 2-8.
  2. The organic polysulfide according to claim 1, characterized in that, in formula (1) , when R2is a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond or an alkyl chain containing nitrogen, the structural formula of R2is
    where R3 is methyl or ethyl, n = 1-3, X is independently C, O, S or N.
  3. The organic polysulfide according to claim 1, characterized in that, in formula (1) , R2 is one or more of propenyl, acryloyl, and methacryloyl.
  4. The organic polysulfide according to claim 1, characterized in that, in formula (1) , when R2 is an alkyl chain containing aromatic hydrocarbons, the structural formula of R2 is
    where R4 is one of hydrogen, methyl, ethyl, methoxy, ethoxy or methyl mercapto, and R5 is one of methyl, hydrogen, methyl, ethyl, methoxy or ethoxy.
  5. The organic polysulfide according to claim 1, characterized in that, in formula (2) , when R2 is a dithiocarbamate group, it is selected from the groups consisting of dimethyl dithiocarbamate group, diethyl dithiocarbamate group, dibenzyl dithiocarbamate group, diphenyl dithiocarbamate group, dibutyl dithiocarbamate group, and N-ethyl-N-phenyl dithiocarbamate group.
  6. The organic polysulfide according to claim 1, characterized in that, in formula (2) , when R2is a xanthate group, it is selected from isopropyl xanthate group, n-butyl xanthate group, and ethyl xanthate group.
  7. The organic polysulfide according to claim 1, characterized in that, in formula (1) and formula (2) , when R1 is a full carbon alkyl chain, an alkyl chain containing oxygen ether bond, an alkyl chain containing sulfur ether bond or an alkyl chain containing nitrogen, the structural formula of R1 is
    where m = 1-3, Y is one or more of C, O, S or N.
  8. The organic polysulfide according to claim 1, characterized in that, in formula (1) and formula (2) , when R1 is an alkyl chain containing aromatic hydrocarbons, the structural formula of R1 is
    where R6 is methyl or hydrogen.
  9. A method of preparing the organic polysulfide according to any one of claims 1-8, comprising the following steps:
    S1: adding metal hydroxide solution into a reactor, adding sulfur to react, and lowering the temperature after the reaction to obtain metal sulfide  solution;
    S2: adding ethanol solution into the metal sulfide solution system, increasing the temperature to reflux, adding dropwisely reactant 1 and a modifier to react, where reactant 1 is ZR1Z, the modifier is ZR2or a sulfur-containing organic sodium salt; R1 is R1 in claim 1, R2 is R2 in claim 1, Z is independently one of fluorine, chlorine, bromine and iodine, preferably chlorine or bromine;
    S3: lowering the temperature at the end of the reaction, followed by extraction, washing, and then subjecting the organic phase to distillation, and lowering the temperature after distillation to obtain the organic polysulfide.
  10. The method of preparing the organic polysulfide according to claim 9, characterized in that, in step S1, the metal hydroxide is at least one of sodium hydroxide or potassium hydroxide.
  11. The method of preparing the organic polysulfide according to claim 9, characterized in that, in step S2, the molar ratio of ZR1Zto ZR2/the sulfur-containing organic sodium salt is 1: (0-1) .
  12. The method of preparing the organic polysulfide according to claim 9, characterized in that, the molar ratio of the sum of the molar amounts of ZR1Zand ZR2/the sulfur-containing organic sodium salt to the metal hydroxide is (0.3-0.5) : 1.
  13. The method of preparing the organic polysulfide according to claim 9, characterized in that, in step S1, the reaction temperature is 75-85℃ and the reaction time is 1-2h.
  14. The method of preparing the organic polysulfide according to claim 9,  characterized in that, in step S2, the reaction temperature is 85-95℃ and the reaction time is 4-6 h.
  15. Use of the organic polysulfide according to any one of claims 1-8 in the preparation of rubber compositions.
PCT/CN2023/119737 2022-09-22 2023-09-19 Organic polysulfide, preparation method and use thereof WO2024061218A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211155393.4A CN115477601A (en) 2022-09-22 2022-09-22 Organic polysulfide and preparation method and application thereof
CN202211155393.4 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024061218A1 true WO2024061218A1 (en) 2024-03-28

Family

ID=84424210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119737 WO2024061218A1 (en) 2022-09-22 2023-09-19 Organic polysulfide, preparation method and use thereof

Country Status (2)

Country Link
CN (1) CN115477601A (en)
WO (1) WO2024061218A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477601A (en) * 2022-09-22 2022-12-16 江苏麒祥高新材料有限公司 Organic polysulfide and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322931A (en) * 1998-05-18 1999-11-26 Toray Thiokol Co Ltd Polysulfide polymer and its production
US20140163150A1 (en) * 2011-07-29 2014-06-12 Toray Fine Chemicals Co., Ltd. Halogen-terminated sulfer-containing polymer
CN105273190A (en) * 2015-11-11 2016-01-27 大连理工大学 Polysulfide rubber nanoparticles and preparing method and application thereof
US20190023879A1 (en) * 2017-07-19 2019-01-24 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
CN114105904A (en) * 2021-11-25 2022-03-01 蔚林新材料科技股份有限公司 Preparation method of rubber organic polysulfide
CN115477601A (en) * 2022-09-22 2022-12-16 江苏麒祥高新材料有限公司 Organic polysulfide and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB614389A (en) * 1943-10-29 1948-12-15 Thiokol Corp Improvements in or relating to the preparation of polysulphide polymers
GB1145999A (en) * 1965-09-03 1969-03-19 Dunlop Co Ltd Process for the preparation of polymeric polysulphides
JP3761552B2 (en) * 2004-03-01 2006-03-29 横浜ゴム株式会社 Process for producing polysulfide compound and rubber composition containing the same
WO2010010760A1 (en) * 2008-07-22 2010-01-28 株式会社クレハ Process for production of polyarylene sulfide having reduced terminal halogen group content
US9631055B2 (en) * 2013-06-17 2017-04-25 Akzo Nobel Chemicals International B.V. Process for the preparation of a polysulfide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11322931A (en) * 1998-05-18 1999-11-26 Toray Thiokol Co Ltd Polysulfide polymer and its production
US20140163150A1 (en) * 2011-07-29 2014-06-12 Toray Fine Chemicals Co., Ltd. Halogen-terminated sulfer-containing polymer
CN105273190A (en) * 2015-11-11 2016-01-27 大连理工大学 Polysulfide rubber nanoparticles and preparing method and application thereof
US20190023879A1 (en) * 2017-07-19 2019-01-24 Sumitomo Rubber Industries, Ltd. Rubber composition and pneumatic tire
CN114105904A (en) * 2021-11-25 2022-03-01 蔚林新材料科技股份有限公司 Preparation method of rubber organic polysulfide
CN115477601A (en) * 2022-09-22 2022-12-16 江苏麒祥高新材料有限公司 Organic polysulfide and preparation method and application thereof

Also Published As

Publication number Publication date
CN115477601A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
WO2024061218A1 (en) Organic polysulfide, preparation method and use thereof
CN107805308B (en) Dynamic polymer with hybrid cross-linked network and application thereof
AU2002221777B2 (en) Synthetic polyisoprenes and their preparation method
US3051684A (en) Organosiloxane polymers containing polydiene blocks
Wang et al. Crosslink network evolution of BIIR/EPDM blends during peroxide vulcanization
CN107955321A (en) Automotive upholstery uvioresistant plastics
CN109354685B (en) Ultralow-temperature-resistant liquid polythioether rubber
CN109111604A (en) A kind of selfreparing rubber material and preparation method thereof
JP5459116B2 (en) Polybutadiene rubber, process for producing the same, and composition
CN112210046B (en) High-temperature-resistant polythioether sealant and sealing method
CN110183668B (en) Silicon-carbon copolymer and preparation method and application thereof
CN106928600A (en) The preparation method of the rubber-coated seal of polytetrafluoroethylene (PTFE)
CN103360525A (en) Polymerization method
CN104311904A (en) Wear-resisting water seal rubber used for high water head, and preparation method of same
CN111057461B (en) Preparation method of single-component water-curing polyurethane waterproof coating
Cao et al. Recyclable Sulfur-Cured Rubbers with Enhanced Creep Resistance and Retained Mechanical Properties by Terminal Metal Coordination
CN105801923A (en) Preparation method of non-migratory rubber plasticizer based on ricinoleic acid homopolymerisation
US2919262A (en) Process for making polysulfide liquid polymers
CN109422879B (en) Modified polysiloxane and synthetic method thereof, elastic daub and preparation method thereof
CN107629340A (en) A kind of composite modified chlorinated butyl damping rubber of silicon rubber/hindered phenol and preparation method thereof
CN117603431B (en) TPU protection film
CN115181196B (en) Method for processing modified gutta-percha by in-situ plastication reaction
CN117683184B (en) Reversible cross-linked covalent sulfur-containing polymer elastomer and preparation method thereof
US3632563A (en) Essentially cis rubbery polyisoprene and method for making same
CN115703914B (en) Acrylic rubber composition and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867505

Country of ref document: EP

Kind code of ref document: A1