WO2024060832A1 - 射频功率放大器、射频芯片及无线通讯设备 - Google Patents

射频功率放大器、射频芯片及无线通讯设备 Download PDF

Info

Publication number
WO2024060832A1
WO2024060832A1 PCT/CN2023/109797 CN2023109797W WO2024060832A1 WO 2024060832 A1 WO2024060832 A1 WO 2024060832A1 CN 2023109797 W CN2023109797 W CN 2023109797W WO 2024060832 A1 WO2024060832 A1 WO 2024060832A1
Authority
WO
WIPO (PCT)
Prior art keywords
power amplifier
capacitor
radio frequency
transformer
frequency power
Prior art date
Application number
PCT/CN2023/109797
Other languages
English (en)
French (fr)
Inventor
祁威
郭嘉帅
Original Assignee
深圳飞骧科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳飞骧科技股份有限公司 filed Critical 深圳飞骧科技股份有限公司
Publication of WO2024060832A1 publication Critical patent/WO2024060832A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/42Modifications of amplifiers to extend the bandwidth
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the utility model relates to the field of circuit technology, and in particular to a radio frequency power amplifier, radio frequency chip and wireless communication equipment.
  • 5GNR is a global 5G standard based on the new air interface design of OFDM. It is also a very important foundation for the next generation of cellular mobile technology. 5G technology will achieve ultra-low latency and high reliability. Due to faster data transmission and high linearity requirements, the RF power amplifier in the RF front-end module has become an important component.
  • the radio frequency power amplifier in the related art generally includes a first-stage power amplifier, a second power amplifier and an output matching network connected in sequence.
  • Figure 1 is a schematic circuit structure diagram of a radio frequency power amplifier in related technology.
  • the output matching network includes an inductor LA, a capacitor CA, an inductor LB and a capacitor CB.
  • the radio frequency signal is input from the radio frequency signal input terminal RFin, and is amplified by the first stage power amplifier PA and the second power amplifier PB. After passing through the output matching network, it is fed from the radio frequency signal output terminal RFout to the external antenna for emission.
  • radio frequency power amplifier is 4G technology.
  • the main advantage of 5G networks is that data transmission rates are much higher than previous cellular networks, up to 10Gbit/s, which is faster than current wired Internet and 100 times faster than previous 4G LTE cellular networks.
  • Another advantage is lower network latency (faster response time), below 1 millisecond compared to 30-70 milliseconds for 4G.
  • the RF power amplifier of the 4G LTE RF front-end module can no longer meet the linearity requirements of 5G-NR.
  • the communication network will be a situation where 4G and 5G coexist.
  • 5G the construction of 5G will not be that fast;
  • 5G technically sets the corresponding frequency band at ultra-high frequency, which makes it difficult for one person to conquer the world and requires cooperation with 4G to form a network.
  • the 5G protocol has two networking methods, namely: NSA non-Standalone (4G and 5G joint networking) and SA Standalone (5G separate networking).
  • RF power amplification that requires related technologies based on existing 4G RF semiconductors
  • the device also supports the 5G-NR standard.
  • the radio frequency power amplifier of related technologies needs to work at a voltage above 4.5V. This requires an additional boost chip to supply power to the radio frequency power amplifier of related technologies, which increases the overall cost. The cost of wafer assembly and the difficulty of stocking the machine system.
  • the present utility model proposes a radio frequency power amplifier, radio frequency chip and wireless power amplifier with high power and high linearity under normal pressure, a simple circuit structure and few components, and a low complexity of the whole system. Communication equipment.
  • an embodiment of the present invention provides a radio frequency power amplifier.
  • the radio frequency power amplifier includes a first power amplifier, a second power amplifier, a third power amplifier, a first transformer, and a third power amplifier.
  • the output terminals are respectively connected to the first terminal of the inductor and the first terminal of the first capacitor; the second terminal of the first capacitor is connected to ground; the second terminal of the inductor is connected to the first terminal of the first transformer.
  • the first end of the primary coil and the second end of the primary coil of the first transformer are grounded; the first end of the secondary coil of the first transformer is respectively connected to the input end of the second power amplifier and the third The first end of the two capacitors; the second end of the secondary coil of the first transformer is respectively connected to the input end of the third power amplifier and the second end of the second capacitor; the second end of the second power amplifier
  • the output terminals are respectively connected to the first terminal of the primary coil of the second transformer and the first terminal of the third capacitor; the output terminals of the third power amplifier are respectively connected to the third terminal of the primary coil of the second transformer.
  • the capacitance value of the first capacitor is adjustable, and the inductance value of the inductor is Parameters are adjustable.
  • the capacitance parameter of the second capacitor is adjustable.
  • the capacitance parameter of the third capacitor is adjustable.
  • the capacitance parameter of the fourth capacitor is adjustable; the capacitance parameter of the fifth capacitor is adjustable.
  • the first power amplifier, the second power amplifier and the third power amplifier are all implemented using transistors.
  • embodiments of the present invention provide a radio frequency chip, which includes the above-mentioned radio frequency power amplifier as provided in embodiments of the present invention.
  • an embodiment of the present invention provides a wireless communication device, which includes the above-mentioned radio frequency power amplifier as provided in an embodiment of the present invention.
  • the radio frequency power amplifier, radio frequency chip and wireless communication equipment of the present invention configure the circuit of the radio frequency power amplifier: a first capacitor and an inductor are provided between the first power amplifier and the first transformer, so that the first The circuit of capacitors and inductors resonates with the primary coil of the first transformer and increases the bandwidth.
  • the second capacitor resonates with the secondary coil of the first transformer to generate a small impedance, so that the output of the first power amplifier has greater power and high linearity.
  • the third capacitor resonates with the primary coil of the second transformer to generate another small impedance. impedance, thereby enabling the radio frequency power amplifier of the present invention to output larger power and high linearity.
  • the circuit composed of the fourth capacitor and the fifth capacitor resonates with the primary coil of the second transformer and increases the bandwidth.
  • the circuit of the above radio frequency power amplifier The arrangement enables the radio frequency power amplifier of the present invention to meet the circuit power and linearity requirements of 5G-NR standards.
  • the first power amplifier serves as the first-stage power amplifier
  • the second power amplifier and the third power amplifier serve as the second-stage power amplifier.
  • After the externally input radio frequency signal is amplified by the first power amplifier it is coupled to the third power amplifier through the first transformer.
  • the two-stage power amplifier synthesizes the radio frequency signals respectively output by the second power amplifier and the third power amplifier in the second-stage power amplifier into one signal and outputs it to the external antenna through the second transformer.
  • the circuit structure of this circuit is simple and has few components.
  • radio frequency power amplifier circuits can all work under normal voltage. There is no need to add an additional booster chip to the first power amplifier, the second power amplifier and the third power amplifier.
  • the use of three power amplifiers reduces the complexity of the entire system, thereby reducing costs while easing system complexity and stocking difficulty requirements.
  • FIG1 is a schematic diagram of a circuit structure of a radio frequency power amplifier of the related art
  • Figure 2 is a schematic diagram of the circuit structure of the radio frequency power amplifier of the present invention.
  • An embodiment of the present invention provides a radio frequency power amplifier 100.
  • the application of the radio frequency power amplifier 100 meets the 1005G-NR standard.
  • the working power supply of the radio frequency power amplifier 100 is lower than 4.5V.
  • the working power supply of the radio frequency power amplifier 100 is 3.4V.
  • the working power supply of the radio frequency power amplifier 100 made by using a low-voltage process can be lower, such as 1.8V or 1.2V.
  • FIG. 2 is a schematic circuit structure diagram of the radio frequency power amplifier 100 of the present invention.
  • the radio frequency power amplifier 100 of the present invention includes a first power amplifier 1, a second power amplifier 2, a third power amplifier 3, a first transformer 4, a second transformer 5, a first capacitor C1, a second capacitor C2, and a third capacitor C3. , the fourth capacitor C4, the fifth capacitor C5 and the inductor L1.
  • the first power amplifier 1 and the second power amplifier 2 and the third power amplifier 3 are implemented using transistors.
  • the first power amplifier 1, the second power amplifier 2 and the third power amplifier 3 are all made of transistors, which is conducive to the integration of the radio frequency power amplifier 100 of the present invention into the chip, and meets the 5G technical indicators, and is The performance of N40/N41 frequency band is good.
  • the specific circuit connection relationship of the radio frequency power amplifier 100 of the present invention is:
  • the input terminal RFIN of the first power amplifier 1 serves as the input terminal of the radio frequency power amplifier 100 .
  • the output terminal of the first power amplifier 1 is connected to the first terminal of the inductor L1 and the first terminal of the first capacitor C1 respectively.
  • the second terminal of the first capacitor C1 is connected to the ground GND.
  • a second end of the inductor L1 is connected to a first end of the primary coil of the first transformer 4 , and a second end of the primary coil of the first transformer 4 is grounded GND.
  • the first end of the secondary coil of the first transformer 4 is connected to the input end of the second power amplifier 2 and the first end of the second capacitor C2 respectively.
  • the second end of the secondary coil of the first transformer 4 is connected to the input end of the third power amplifier 3 and the second end of the second capacitor C2 respectively.
  • the output terminal of the second power amplifier 2 is connected to the first terminal of the primary coil of the second transformer 5 and the first terminal of the third capacitor C3 respectively.
  • the output terminal of the third power amplifier 3 is respectively connected to the second terminal of the primary coil of the second transformer 5 and the second terminal of the second capacitor C2.
  • the first end of the secondary coil of the second transformer 5 serves as the output end of the radio frequency power amplifier 100, and the first end of the secondary coil of the second transformer 5 is respectively connected to the fourth capacitor C4.
  • the second terminal of the fourth capacitor C4 and the second terminal of the fifth capacitor C5 are both connected to the ground GND.
  • the second end of the secondary coil of the second transformer 5 is connected to the ground GND.
  • the working principle of the radio frequency power amplifier is:
  • the radio frequency power amplifier 100 is configured with a two-stage power amplifier structure, that is, the first power amplifier 1 serves as the first-stage power amplifier, and the second power amplifier The converter 2 and the third power amplifier 3 serve as the second stage power amplifier.
  • the input terminal RFIN of the first power amplifier 1 receives an external radio frequency signal. After the externally input radio frequency signal is amplified by the first power amplifier 1, it is coupled to the second-stage power amplifier 2 through the first transformer 4, and then The radio frequency signals output by the second power amplifier 2 and the third power amplifier 3 in the second stage power amplifier are combined into one signal through the second transformer 5 and output to an external antenna, and then emitted by the antenna.
  • the circuit structure of this circuit is simple and has few components.
  • the circuit of the above-mentioned radio frequency power amplifier 100 can all work under normal voltage. There is no need to add an additional booster chip to the first power amplifier 1, the second power amplifier 2 and the third power amplifier.
  • the use of 3 amplifiers makes the overall system less complex, thereby reducing costs while easing the need for system complexity and difficulty in stocking.
  • the first capacitor C1 and the inductor L1 are arranged between the first power amplifier 1 and the first transformer 4, so that the circuit composed of the first capacitor C1 and the inductor L1 is in contact with the first transformer.
  • the primary coil of 4 resonates and increases the bandwidth.
  • the first capacitor C1 and the inductor L1 are properly matched, they can play a role of high power and high linearity. This arrangement enables the radio frequency power amplifier 100 of the present invention to meet the 5G-NR standard with high circuit power and high linearity.
  • the capacitance parameter of the first capacitor C1 is adjustable, and the inductance parameter of the inductor L1 is adjustable.
  • This structure allows the circuit composed of the first capacitor C1 and the inductor L1 to adjust the bandwidth, so that the radio frequency power amplifier 100 of the present invention meets the 5G-NR standard and has good electrical indicators due to its high linearity.
  • the second capacitor C2 resonates with the secondary coil of the first transformer 4 to generate a small impedance.
  • This structure is conducive to impedance matching between the input terminals of the second power amplifier 2 and the third power amplifier 3, so that The output power of the first power amplifier 1 is relatively large and the linearity is high, so that the radio frequency power amplifier 100 of the present invention meets the circuit power and linearity of the 5G-NR standard.
  • the capacitance parameter of the second capacitor C2 is adjustable, so that the radio frequency power amplifier 100 of the present invention meets the 5G-NR standard and has good electrical indicators due to its high linearity.
  • the third capacitor C3 resonates with the primary coil of the second transformer 5 to generate another A small impedance (the small impedance is the lower impedance) enables the radio frequency power amplifier 100 of the present invention to output larger power and high linearity.
  • This structure is beneficial to the impedance matching of the output terminals of the second power amplifier 2 and the third power amplifier 3, so that the radio frequency power amplifier 100 of the present invention meets the 5G-NR standard with high circuit power and high linearity.
  • the capacitance parameter of the second capacitor C3 is adjustable, so that the radio frequency power amplifier 100 of the present invention meets the 5G-NR standard and has good electrical indicators due to its high linearity.
  • the circuit composed of the fourth capacitor C4 and the fifth capacitor C5 resonates with the primary coil of the second transformer 5 and increases the bandwidth.
  • This structure makes the circuit composed of the fourth capacitor C4 and the fifth capacitor C5
  • the bandwidth is adjusted so that the radio frequency power amplifier 100 of the present invention meets the 5G-NR standard and has good electrical indicators due to its high linearity.
  • two capacitors, the fourth capacitor C4 and the fifth capacitor C5, will be provided, which is conducive to achieving resonance with the primary coil of the second transformer 5 on the circuit, is conducive to adjusting the layout on the layout, and is conducive to the present invention.
  • the radio frequency power amplifier 100 of the utility model has a small layout area.
  • the capacitance parameter of the fourth capacitor C4 is adjustable; the capacitance parameter of the fifth capacitor C5 is adjustable. Therefore, the radio frequency power amplifier 100 of the present invention meets the 5G-NR standard and has good electrical indicators due to its high linearity.
  • the circuit structure of the above circuit arrangement is simple and has few components.
  • the first power amplifier 1, the second power amplifier 2, the third power amplifier 3, the first transformer 4, the second transformer 5, the first capacitor C1, the second capacitor C2, and the The third capacitor C3, the fourth capacitor C4, the fifth capacitor C5 and the inductor L1 can all work under normal voltage. There is no need to add an additional booster chip to boost the working power supply to above 4.5V, which complicates the overall system. It is low-density, thereby reducing costs while easing system complexity and stocking difficulty requirements.
  • the utility model also provides a radio frequency chip.
  • the radio frequency chip includes the radio frequency power amplifier 100 .
  • the utility model also provides a wireless communication device.
  • the wireless communication device includes the radio frequency power amplifier 100 .
  • the radio frequency power amplifier, radio frequency chip and The wireless communication device sets the circuit of the RF power amplifier: a first capacitor and an inductor are set between the first power amplifier and the first transformer, so that the circuit composed of the first capacitor and the inductor resonates with the primary coil of the first transformer and increases the bandwidth.
  • the second capacitor resonates with the secondary coil of the first transformer to generate a small impedance, so that the output of the first power amplifier is larger and the linearity is high
  • the third capacitor resonates with the primary coil of the second transformer to generate another small impedance, so that the output of the RF power amplifier of the utility model is larger and the linearity is high
  • the fourth capacitor and the fifth capacitor The circuit resonates with the primary coil of the second transformer and increases the bandwidth, the circuit setting of the above RF power amplifier enables the RF power amplifier of the utility model to meet the circuit power and linearity of the 5G-NR standard.
  • the first power amplifier is used as the first-stage power amplifier
  • the second power amplifier and the third power amplifier are used as the second-stage power amplifier.
  • the external input RF signal is amplified by the first power amplifier, it is coupled to the second-stage power amplifier through the first transformer, and then the RF signals output by the second power amplifier and the third power amplifier in the second-stage power amplifier are synthesized through the second transformer to output a signal to the external antenna.
  • the circuit structure of this circuit is simple and has few components.
  • the circuits of the above-mentioned RF power amplifiers can all operate under normal voltage. There is no need to add an additional boost chip for the first power amplifier, the second power amplifier, and the third power amplifier.
  • the complexity of the entire system is low, thereby reducing costs while alleviating system complexity and stocking difficulties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

一种射频功率放大器(100)、一种射频芯片和无线通讯设备,射频功率放大器(100)包括第一功率放大器(1)、第二功率放大器(2)、第三功率放大器(3)、第一变压器(4)、第二变压器(5)、第一电容(C1)、第二电容(C2)、第三电容(C3)、第四电容(C4)、第五电容(C5)以及电感(L1);第一功率放大器(1)的输出端分别连接至电感(L1)的第一端和第一电容(C1)的第一端;第一电容(C1)的第二端接地;电感(L1)的第二端连接至第一变压器(4)的初级线圈的第一端;第一变压器(4)的次级线圈分别通过第二功率放大器(2)和第三功率放大器(3)后连接至第二变压器(5)的初级线圈,第二变压器(5)的次级线圈的第一端作为射频功率放大器(100)的输出端。射频功率放大器(100)在常压下功率高且线性度高、电路结构简单且器件少,并使得整机系统的复杂度低。

Description

射频功率放大器、射频芯片及无线通讯设备 技术领域
本实用新型涉及电路技术领域,尤其涉及一种射频功率放大器、射频芯片及无线通讯设备。
背景技术
目前,无线通信技术的发展,尤其5G的应用越来越广。5GNR是基于OFDM的全新空口设计的全球性5G标准,也是下一代非常重要的蜂窝移动技术基础,5G技术将实现超低时延、高可靠性。由于数据传输更快和高的线性度要求,在射频前端模组中的射频功率放大器成为重要的组成部分。
相关技术的射频功率放大器一般包括依次连接的第一级功率放大器、第二功率放大器以及输出匹配网络。请参考图1所示,图1为相关技术的射频功率放大器的电路结构示意图。所述输出匹配网络包括电感LA、电容CA、电感LB以及电容CB。射频信号从射频信号输入端RFin输入,经过第一级功率放大器PA和第二功率放大器PB两级功率放大,通过输出匹配网络后从射频信号输出端RFout馈送到外部的天线发射出去。
然而,相关技术的射频功率放大器为4G技术。而5G网络的主要优势在于,数据传输速率远远高于以前的蜂窝网络,最高可达10Gbit/s,比当前的有线互联网要快,比先前的4G LTE蜂窝网络快100倍。另一个优点是较低的网络延迟(更快的响应时间),低于1毫秒,而4G为30-70毫秒。4G LTE射频前端模块的射频功率放大器已经无法达到5G-NR的线性度要求。另外,通信网将是4G和5G共存的局面。一是5G的建设不会那么快;二是5G从技术上就是把对应的频段定在超高频,难以一人打天下,需要和4G配合组网。正因如此5G的协议就有两个两种组网方式,分别为:NSA non-Standalone(4G和5G共同组网)和SA Standalone(5G单独组网)。需要在现有的4G射频半导体基础上的相关技术的射频功率放大 器,同时支持5G-NR的标准。相关技术的射频功率放大器为了满足高功率、高线性和成本等方面的需求,需要工作在4.5V电压以上,这就额外增加一颗升压芯片给相关技术的射频功率放大器供电,这增加了整机系统的套片成本和备货难度。
因此,实有必要提供一种新的射频功率放大器、相关芯片和设备解决上述问题。
实用新型内容
针对以上现有技术的不足,本实用新型提出一种在常压下功率高且线性度高、电路结构简单且器件少,并使得整机系统的复杂度低的射频功率放大器、射频芯片及无线通讯设备。
为了解决上述技术问题,第一方面,本实用新型的实施例提供了一种射频功率放大器,所述射频功率放大器包括第一功率放大器、第二功率放大器、第三功率放大器、第一变压器、第二变压器、第一电容、第二电容、第三电容、第四电容、第五电容以及电感;所述第一功率放大器的输入端作为所述射频功率放大器的输入端;所述第一功率放大器的输出端分别连接至所述电感的第一端和所述第一电容的第一端;所述第一电容的第二端接地;所述电感的第二端连接至所述第一变压器的初级线圈的第一端,所述第一变压器的初级线圈的第二端接地;所述第一变压器的次级线圈的第一端分别连接至所述第二功率放大器的输入端和所述第二电容的第一端;所述第一变压器的次级线圈的第二端分别连接至所述第三功率放大器的输入端和所述第二电容的第二端;所述第二功率放大器的输出端分别连接至所述第二变压器的初级线圈的第一端和所述第三电容的第一端;所述第三功率放大器的输出端分别连接至所述第二变压器的初级线圈的第二端和所述第二电容的第二端;所述第二变压器的次级线圈的第一端作为所述射频功率放大器的输出端,且所述第二变压器的次级线圈的第一端分别连接至所述第四电容的第一端和所述第五电容的第一端;所述第四电容的第二端和所述第五电容的第二端均接地;所述第二变压器的次级线圈的第二端接地。
优选的,所述第一电容的电容值参数可调,所述电感的电感值 参数可调。
优选的,所述第二电容的电容值参数可调。
优选的,所述第三电容的电容值参数可调。
优选的,所述第四电容的电容值参数可调;所述第五电容的电容值参数可调。
优选的,所述第一功率放大器、所述第二功率放大器以及所述第三功率放大器均采用晶体管实现。
第二方面,本实用新型的实施例提供了一种射频芯片,所述射频芯片包括如本实用新型的实施例提供的上述射频功率放大器。
第三方面,本实用新型的实施例提供了一种无线通讯设备,所述无线通讯设备包括如本实用新型的实施例提供的上述射频功率放大器。
与相关技术相比,本实用新型的射频功率放大器、射频芯片及无线通讯设备通过对射频功率放大器的电路进行设置:第一功率放大器与第一变压器之间设置第一电容和电感,使得第一电容和电感组成的电路与第一变压器的初级线圈谐振并且增加带宽。通过第二电容与第一变压器的次级线圈谐振产生一个小阻抗,从而使得第一功率放大器的输出较大的功率和线性度高,第三电容与第二变压器的初级线圈谐振产生另一个小阻抗,从而使得本实用新型的射频功率放大器的输出较大的功率和线性度高,第四电容和第五电容组成的电路与第二变压器的初级线圈谐振并且增加带宽,上述射频功率放大器的电路设置使得本实用新型的射频功率放大器满足5G-NR的标准下的电路功率高且线性度高。另外,第一功率放大器作为第一级功率放大器,而第二功率放大器和第三功率放大器作为第二级功率放大器,外部输入的射频信号通过第一功率放大器放大后,通过第一变压器耦合到第二级功率放大器,再通过第二变压器将第二级功率放大器中的第二功率放大器和第三功率放大器各自输出的射频信号合成一路信号输出至外部的天线。该电路的电路结构简单且器件少,上述射频功率放大器的电路均可在常压下工作,不需要额外增加一颗升压芯片给第一功率放大器、第二功率放大器以及第 三功率放大器使用,并使得整机系统的复杂度低,从而降低成本的同时减轻系统复杂度和备货难度等的需求。
附图说明
下面结合附图详细说明本实用新型。通过结合以下附图所作的详细描述,本实用新型的上述或其他方面的内容将变得更清楚和更容易理解。附图中,
图1为相关技术的射频功率放大器的电路结构示意图;
图2为本实用新型射频功率放大器的电路结构示意图。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
在此记载的具体实施方式/实施例为本实用新型的特定的具体实施方式,用于说明本实用新型的构思,均是解释性和示例性的,不应解释为对本实用新型实施方式及本实用新型范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本实用新型的保护范围之内。
本实用新型实施例提供一种射频功率放大器100。所述射频功率放大器100应用满足1005G-NR的标准。所述射频功率放大器100的工作电源低于4.5V,本实施方式中,所述射频功率放大器100的工作电源为3.4V。当然,不限于此,采用低压工艺制成的所述射频功率放大器100的工作电源还可以更低,例如1.8V或者1.2V。
请同时参考图2所示,其中,图2为本实用新型射频功率放大器100的电路结构示意图。
本实用新型射频功率放大器100包括第一功率放大器1、第二功率放大器2、第三功率放大器3、第一变压器4、第二变压器5、第一电容C1、第二电容C2、第三电容C3、第四电容C4、第五电容C5以及电感L1。
本实施方式中,所述第一功率放大器1、所述第二功率放大器 2以及所述第三功率放大器3均采用晶体管实现。所述第一功率放大器1、所述第二功率放大器2以及所述第三功率放大器3均为晶体管构成,有利于本实用新型射频功率放大器100集成于芯片中,并满足5G技术指标,并在N40/N41频段的性能好。
具体的,本实用新型射频功率放大器100的具体电路连接关系为:
所述第一功率放大器1的输入端RFIN作为所述射频功率放大器100的输入端。
所述第一功率放大器1的输出端分别连接至所述电感L1的第一端和所述第一电容C1的第一端。所述第一电容C1的第二端接地GND。
所述电感L1的第二端连接至所述第一变压器4的初级线圈的第一端,所述第一变压器4的初级线圈的第二端接地GND。
所述第一变压器4的次级线圈的第一端分别连接至所述第二功率放大器2的输入端和所述第二电容C2的第一端。所述第一变压器4的次级线圈的第二端分别连接至所述第三功率放大器3的输入端和所述第二电容C2的第二端。
所述第二功率放大器2的输出端分别连接至所述第二变压器5的初级线圈的第一端和所述第三电容C3的第一端。所述第三功率放大器3的输出端分别连接至所述第二变压器5的初级线圈的第二端和所述第二电容C2的第二端。
所述第二变压器5的次级线圈的第一端作为所述射频功率放大器100的输出端,且所述第二变压器5的次级线圈的第一端分别连接至所述第四电容C4的第一端和所述第五电容C5的第一端。所述第四电容C4的第二端和所述第五电容C5的第二端均接地GND。
所述第二变压器5的次级线圈的第二端接地GND。
所述射频功率放大器的工作原理为:
所述射频功率放大器100通过设置两级功率放大器结构,即所述第一功率放大器1作为第一级功率放大器,而所述第二功率放大 器2和所述第三功率放大器3作为第二级功率放大器。
所述第一功率放大器1的输入端RFIN接收外部的射频信号,外部输入的射频信号通过所述第一功率放大器1放大后,通过所述第一变压器4耦合到第二级功率放大器2,再通过所述第二变压器5将第二级功率放大器中的所述第二功率放大器2和所述第三功率放大器3各自输出的射频信号合成一路信号输出至外部的天线,再由天线发射出去。该电路的电路结构简单且器件少,上述射频功率放大器100的电路均可在常压下工作,不需要额外增加一颗升压芯片给第一功率放大器1、第二功率放大器2以及第三功率放大器使3用,并使得整机系统的复杂度低,从而降低成本的同时减轻系统复杂度和备货难度等的需求。
所述第一功率放大器1与所述第一变压器4之间设置所述第一电容C1和所述电感L1,使得所述第一电容C1和所述电感L1组成的电路与所述第一变压器4的初级线圈谐振并且增加带宽,所述第一电容C1和所述电感L1在匹配合适情况下,可以起到高功率和线性度高的作用。该设置使得本实用新型的射频功率放大器100满足5G-NR的标准下的电路功率高且线性度高。
本实施例中,所述第一电容C1的电容值参数可调,所述电感L1的电感值参数可调。该结构使得所述第一电容C1和所述电感L1组成的电路调整带宽,从而使得本实用新型的射频功率放大器100满足5G-NR的标准,且电学指标好,由于是线性度高。
所述第二电容C2与所述第一变压器4的次级线圈谐振产生一个小阻抗,该结构有利于所述第二功率放大器2和所述第三功率放大器3的输入端的阻抗匹配,从而使得第一功率放大器1的输出较大的功率和线性度高,使得本实用新型的射频功率放大器100满足5G-NR的标准下的电路功率高且线性度高。
本实施例中,所述第二电容C2的电容值参数可调,从而使得本实用新型的射频功率放大器100满足5G-NR的标准,且电学指标好,由于是线性度高。
所述第三电容C3与所述第二变压器5的初级线圈谐振产生另 一个小阻抗(该小阻抗为下阻抗),从而使得本实用新型的射频功率放大器100的输出较大的功率和线性度高。该结构有利于所述第二功率放大器2和所述第三功率放大器3的输出端的阻抗匹配,使得本实用新型的射频功率放大器100满足5G-NR的标准下的电路功率高且线性度高。
本实施例中,所述第二电容C3的电容值参数可调,从而使得本实用新型的射频功率放大器100满足5G-NR的标准,且电学指标好,由于是线性度高。
所述第四电容C4和所述第五电容C5组成的电路与所述第二变压器5的初级线圈谐振并且增加带宽,该结构使得所述第四电容C4和所述第五电容C5组成的电路调整带宽,从而使得本实用新型的射频功率放大器100满足5G-NR的标准,且电学指标好,由于是线性度高。其中,将设置所述第四电容C4和所述第五电容C5两个电容,有利于在电路上实现与所述第二变压器5的初级线圈谐振,在版图上有利于调整布局,有利于本实用新型的射频功率放大器100的版图面积小。
本实施例中,第四电容C4的电容值参数可调;第五电容C5的电容值参数可调。从而使得本实用新型的射频功率放大器100满足5G-NR的标准,且电学指标好,由于是线性度高。
上述电路设置的电路结构简单且器件少,第一功率放大器1、第二功率放大器2、第三功率放大器3、第一变压器4、第二变压器5、第一电容C1、第二电容C2、第三电容C3、第四电容C4、第五电容C5以及电感L1均可工作在常压下,不需要额外增加一颗升压芯片将工作电源升压到4.5V以上,并使得整机系统的复杂度低,从而降低成本的同时减轻系统复杂度和备货难度等的需求。
本实用新型的还提供一种射频芯片。所述射频芯片包括所述射频功率放大器100。
本实用新型的还提供一种无线通讯设备。所述无线通讯设备包括所述射频功率放大器100。
与相关技术相比,本实用新型的射频功率放大器、射频芯片及 无线通讯设备通过对射频功率放大器的电路进行设置:第一功率放大器与第一变压器之间设置第一电容和电感,使得第一电容和电感组成的电路与第一变压器的初级线圈谐振并且增加带宽。通过第二电容与第一变压器的次级线圈谐振产生一个小阻抗,从而使得第一功率放大器的输出较大的功率和线性度高,第三电容与第二变压器的初级线圈谐振产生另一个小阻抗,从而使得本实用新型的射频功率放大器的输出较大的功率和线性度高,第四电容和第五电容组成的电路与第二变压器的初级线圈谐振并且增加带宽,上述射频功率放大器的电路设置使得本实用新型的射频功率放大器满足5G-NR的标准下的电路功率高且线性度高。另外,第一功率放大器作为第一级功率放大器,而第二功率放大器和第三功率放大器作为第二级功率放大器,外部输入的射频信号通过第一功率放大器放大后,通过第一变压器耦合到第二级功率放大器,再通过第二变压器将第二级功率放大器中的第二功率放大器和第三功率放大器各自输出的射频信号合成一路信号输出至外部的天线。该电路的电路结构简单且器件少,上述射频功率放大器的电路均可在常压下工作,不需要额外增加一颗升压芯片给第一功率放大器、第二功率放大器以及第三功率放大器使用,并使得整机系统的复杂度低,从而降低成本的同时减轻系统复杂度和备货难度等的需求。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本实用新型而非限制本实用新型的范围,本领域的普通技术人员应当理解,在不脱离本实用新型的精神和范围的前提下对本实用新型进行的修改或者等同替换,均应涵盖在本实用新型的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (8)

  1. 一种射频功率放大器,其特征在于,所述射频功率放大器包括第一功率放大器、第二功率放大器、第三功率放大器、第一变压器、第二变压器、第一电容、第二电容、第三电容、第四电容、第五电容以及电感;
    所述第一功率放大器的输入端作为所述射频功率放大器的输入端;
    所述第一功率放大器的输出端分别连接至所述电感的第一端和所述第一电容的第一端;所述第一电容的第二端接地;
    所述电感的第二端连接至所述第一变压器的初级线圈的第一端,所述第一变压器的初级线圈的第二端接地;
    所述第一变压器的次级线圈的第一端分别连接至所述第二功率放大器的输入端和所述第二电容的第一端;所述第一变压器的次级线圈的第二端分别连接至所述第三功率放大器的输入端和所述第二电容的第二端;
    所述第二功率放大器的输出端分别连接至所述第二变压器的初级线圈的第一端和所述第三电容的第一端;所述第三功率放大器的输出端分别连接至所述第二变压器的初级线圈的第二端和所述第二电容的第二端;
    所述第二变压器的次级线圈的第一端作为所述射频功率放大器的输出端,且所述第二变压器的次级线圈的第一端分别连接至所述第四电容的第一端和所述第五电容的第一端;所述第四电容的第二端和所述第五电容的第二端均接地;
    所述第二变压器的次级线圈的第二端接地。
  2. 根据权利要求1所述的射频功率放大器,其特征在于,所述第一电容的电容值参数可调,所述电感的电感值参数可调。
  3. 根据权利要求1所述的射频功率放大器,其特征在于,所述第二电容的电容值参数可调。
  4. 根据权利要求1所述的射频功率放大器,其特征在于,所述第三电容的电容值参数可调。
  5. 根据权利要求1所述的射频功率放大器,其特征在于,所述第四电容的电容值参数可调;所述第五电容的电容值参数可调。
  6. 根据权利要求1所述的射频功率放大器,其特征在于,所述第一功率放大器、所述第二功率放大器以及所述第三功率放大器均采用晶体管实现。
  7. 一种射频芯片,其特征在于,所述射频芯片包括如权利要求1-6中的任意一项所述射频功率放大器。
  8. 一种无线通讯设备,其特征在于,所述无线通讯设备包括如权利要求1-6中的任意一项所述射频功率放大器。
PCT/CN2023/109797 2022-09-20 2023-07-28 射频功率放大器、射频芯片及无线通讯设备 WO2024060832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222494900.9U CN218183315U (zh) 2022-09-20 2022-09-20 射频功率放大器、射频芯片及无线通讯设备
CN202222494900.9 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024060832A1 true WO2024060832A1 (zh) 2024-03-28

Family

ID=84626238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109797 WO2024060832A1 (zh) 2022-09-20 2023-07-28 射频功率放大器、射频芯片及无线通讯设备

Country Status (2)

Country Link
CN (1) CN218183315U (zh)
WO (1) WO2024060832A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218183315U (zh) * 2022-09-20 2022-12-30 深圳飞骧科技股份有限公司 射频功率放大器、射频芯片及无线通讯设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656069A (zh) * 2016-09-13 2017-05-10 锐迪科微电子(上海)有限公司 一种应用于gsm射频功率放大器的多频输出匹配网络
CN206332649U (zh) * 2016-12-23 2017-07-14 陕西烽火实业有限公司 一种低压射频功率放大器
US20190253027A1 (en) * 2018-02-12 2019-08-15 Georgia Tech Research Corporation Continuous-Mode Harmonically Tuned Power Amplifier Output Networks and Systems Including Same
CN110233599A (zh) * 2019-04-29 2019-09-13 深圳市中微半导体有限公司 基于CMOS的E-Band微波F类功率放大器
CN111431488A (zh) * 2020-05-13 2020-07-17 展讯通信(上海)有限公司 射频功率放大器及通信设备
CN216390923U (zh) * 2021-11-09 2022-04-26 深圳飞骧科技股份有限公司 射频功率放大器、射频芯片及无线通讯设备
CN216390930U (zh) * 2021-11-09 2022-04-26 深圳飞骧科技股份有限公司 射频功率放大器、芯片及电子设备
CN218183315U (zh) * 2022-09-20 2022-12-30 深圳飞骧科技股份有限公司 射频功率放大器、射频芯片及无线通讯设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656069A (zh) * 2016-09-13 2017-05-10 锐迪科微电子(上海)有限公司 一种应用于gsm射频功率放大器的多频输出匹配网络
CN206332649U (zh) * 2016-12-23 2017-07-14 陕西烽火实业有限公司 一种低压射频功率放大器
US20190253027A1 (en) * 2018-02-12 2019-08-15 Georgia Tech Research Corporation Continuous-Mode Harmonically Tuned Power Amplifier Output Networks and Systems Including Same
CN110233599A (zh) * 2019-04-29 2019-09-13 深圳市中微半导体有限公司 基于CMOS的E-Band微波F类功率放大器
CN111431488A (zh) * 2020-05-13 2020-07-17 展讯通信(上海)有限公司 射频功率放大器及通信设备
CN216390923U (zh) * 2021-11-09 2022-04-26 深圳飞骧科技股份有限公司 射频功率放大器、射频芯片及无线通讯设备
CN216390930U (zh) * 2021-11-09 2022-04-26 深圳飞骧科技股份有限公司 射频功率放大器、芯片及电子设备
CN218183315U (zh) * 2022-09-20 2022-12-30 深圳飞骧科技股份有限公司 射频功率放大器、射频芯片及无线通讯设备

Also Published As

Publication number Publication date
CN218183315U (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
Chowdhury et al. A 60GHz 1V+ 12.3 dBm transformer-coupled wideband PA in 90nm CMOS
WO2023082940A1 (zh) 射频功率放大器、芯片及电子设备
CN107332517B (zh) 一种基于增益补偿技术的高线性宽带堆叠低噪声放大器
CN104160550B (zh) 用于rf功率放大器的线性行阵列集成功率合成器
CN104753476B (zh) 多模多频功率放大器
CN114050792A (zh) 一种新型宽带多赫蒂射频功率放大器
CN106452370A (zh) 一种基于非对称结构的高回退Doherty功率放大器及其实现方法
WO2024060832A1 (zh) 射频功率放大器、射频芯片及无线通讯设备
CN107040275A (zh) 含集成谐波滤波器的射频电路和含晶体管的射频电路
WO2023082938A1 (zh) 射频功率放大器、射频芯片及无线通讯设备
CN111416578B (zh) 基于低Q输出网络的宽带集成Doherty功率放大器
CN114785289B (zh) 一种Doherty功率放大器
CN107846195A (zh) 一种带有源多路反馈的超宽带微波低噪声放大器
WO2023088005A1 (zh) 输出匹配网络、射频功率放大器及无线通信装置
WO2023040238A1 (zh) 一种差分功率放大器
CN111030621A (zh) 一种用于无线终端的交流堆叠功率放大器
CN110932687A (zh) 一种交流堆叠功率放大器
CN104124932A (zh) 射频功率放大模块
CN113242024B (zh) 一种射频功率放大器
JP2011244070A (ja) 電力増幅器及びそれを用いた基地局
CN106533372A (zh) 一种分段外匹配式小型化功率放大器
WO2024051381A1 (zh) 匹配网络可重构的功率放大器及通信设备
CN115833768B (zh) 电压合成式Doherty功率放大器
CN110417357B (zh) 一种紧凑型集成多赫蒂放大器
WO2012146009A1 (zh) 一种多赫蒂功放装置及功率放大方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867127

Country of ref document: EP

Kind code of ref document: A1