WO2024060322A1 - Semiconductor structure, manufacturing method therefor, and memory - Google Patents

Semiconductor structure, manufacturing method therefor, and memory Download PDF

Info

Publication number
WO2024060322A1
WO2024060322A1 PCT/CN2022/124049 CN2022124049W WO2024060322A1 WO 2024060322 A1 WO2024060322 A1 WO 2024060322A1 CN 2022124049 W CN2022124049 W CN 2022124049W WO 2024060322 A1 WO2024060322 A1 WO 2024060322A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
isolation
stacking
semiconductor
stacked
Prior art date
Application number
PCT/CN2022/124049
Other languages
French (fr)
Chinese (zh)
Inventor
赵文礼
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Publication of WO2024060322A1 publication Critical patent/WO2024060322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Semiconductor Memories (AREA)

Abstract

Disclosed in the embodiments of the present disclosure are a semiconductor structure, a manufacturing method therefor, and a memory. The method comprises: providing a stack structure in which semiconductor layers and sacrificial layers are alternately stacked, the stack structure comprising first stack areas and a second stack area connected to first ends of the plurality of first stack areas, and insulating materials filling parts between the first stack areas; etching in a first direction the sacrificial layers in the second stack area and in part of the first stack areas to form a first multi-layer gap, the semiconductor layers in the second stack area being used for forming a plurality of stacked bit line structures; filling the part of the first multi-layer gap located in the first stack areas to form a first isolation layer; forming in the insulating materials adjacent to the first stack areas an opening in the direction perpendicular to the surface of the stack structure; etching the first isolation layer from the opening so as to remove at least part of the first isolation layer; forming at the opening a word line structure extending in the direction perpendicular to the surface of the stack structure; and forming a plurality of stacked storage structures in each first stack area.

Description

半导体结构及其制作方法、存储器Semiconductor structure and manufacturing method thereof, and memory
相关申请的交叉引用Cross-references to related applications
本公开基于申请号为202211153060.8、申请日为2022年09月21日、发明名称为“半导体结构及其制作方法、存储器”的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。This disclosure is based on the Chinese patent application with application number 202211153060.8, the filing date is September 21, 2022, and the invention name is "Semiconductor Structure and Manufacturing Method, Memory", and claims the priority of the Chinese patent application. The Chinese patent The entire contents of this application are hereby incorporated by reference into this disclosure.
技术领域Technical field
本公开实施例涉及半导体技术领域,涉及但不限于一种半导体结构及其制作方法、存储器。The embodiments of the present disclosure relate to the field of semiconductor technology, and relate to but are not limited to a semiconductor structure, a manufacturing method thereof, and a memory.
背景技术Background technique
动态随机存取存储器(Dynamic Random Access Memory,DRAM)是一种半导体存储器,主要的作用原理是利用电容内存储电荷的多寡来代表一个二进制比特(bit)是1还是0。DRAM的研制过程中,随着尺寸的微缩进一步,垂直电容结构遇到的瓶颈开始出现。为了实现电容单位密度的提升,堆叠式电容开始出现。采用双向刻蚀DRAM源极与漏极的方式定义出的栅极结构容易具有不规则的形状,而DRAM器件的性能、品质均与栅极结构的规则性相关,如何控制对DRAM器件中的源极与漏极的刻蚀形成具有目标形状的栅极结构,成为了亟需解决的问题。Dynamic Random Access Memory (DRAM) is a kind of semiconductor memory. Its main working principle is to use the amount of charge stored in the capacitor to represent whether a binary bit (bit) is 1 or 0. In the development process of DRAM, as the size further shrinks, the bottleneck encountered by the vertical capacitor structure begins to appear. In order to increase the unit density of capacitors, stacked capacitors began to appear. The gate structure defined by bidirectionally etching the source and drain of DRAM is prone to irregular shapes. The performance and quality of DRAM devices are related to the regularity of the gate structure. How to control the source and drain of DRAM devices? The etching of the electrode and drain electrode to form a gate structure with a target shape has become an urgent problem that needs to be solved.
发明内容Contents of the invention
有鉴于此,本公开实施例提供一种半导体结构及其制作方法、存储器。In view of this, embodiments of the present disclosure provide a semiconductor structure, a manufacturing method thereof, and a memory.
第一方面,本公开实施例提供一种半导体结构的制作方法,所述方法包括:In a first aspect, an embodiment of the present disclosure provides a method for manufacturing a semiconductor structure, the method comprising:
提供由半导体层和牺牲层交替堆叠的堆叠结构;所述堆叠结构包括沿第一方向延伸的若干条第一堆叠区,以及连接在多条所述第一堆叠区的第一端,且沿第二方向延伸的第二堆叠区;其中,所述第一方向与所述第二方向相交;所述第一堆叠区之间填充有绝缘材料;A stacked structure consisting of semiconductor layers and sacrificial layers stacked alternately is provided; the stacked structure includes a plurality of first stacking regions extending along a first direction, and is connected to the first end of the plurality of first stacking regions and along a first A second stacking area extending in two directions; wherein the first direction intersects the second direction; an insulating material is filled between the first stacking areas;
沿所述第一方向刻蚀所述第二堆叠区以及部分所述第一堆叠区的所述牺牲层,形成第一多层空隙;所述第二堆叠区的所述半导体层用于形成多个堆叠的位线结构;Etching the sacrificial layer of the second stacking area and part of the first stacking area along the first direction to form a first multi-layer void; the semiconductor layer of the second stacking area is used to form a multi-layer void. A stacked bit line structure;
填充所述第一多层空隙位于所述第一堆叠区的部分,形成第一隔离层;Filling the portion of the first multi-layer gap located in the first stacking region to form a first isolation layer;
在所述第一堆叠区相邻的所述绝缘材料中形成垂直于所述堆叠结构表面的开口;forming an opening perpendicular to the surface of the stacked structure in the insulating material adjacent to the first stacking region;
从所述开口处刻蚀所述第一隔离层,以去除至少部分所述第一隔离层;Etch the first isolation layer from the opening to remove at least part of the first isolation layer;
在所述开口处形成沿垂直于所述堆叠结构表面方向延伸的字线结构;forming a word line structure extending in a direction perpendicular to the surface of the stacked structure at the opening;
在所述第一堆叠区形成堆叠的多个存储结构。A plurality of stacked memory structures are formed in the first stacking area.
在一些实施例中,所述牺牲层所用的牺牲层材料与半导体层所用的半导体材料的刻蚀选择比大于或等于第一预设值。In some embodiments, an etching selectivity ratio of a sacrificial layer material used for the sacrificial layer to a semiconductor material used for the semiconductor layer is greater than or equal to a first preset value.
在一些实施例中,所述牺牲层材料为锗化硅SiGe,所述半导体材料为硅Si。In some embodiments, the sacrificial layer material is silicon germanium SiGe, and the semiconductor material is silicon Si.
在一些实施例中,所述填充所述第一多层空隙位于所述第一堆叠区的部分,形成第一隔离层,包括:In some embodiments, filling the portion of the first multi-layer void located in the first stacking region to form a first isolation layer includes:
沿所述第一方向,向所述第一多层空隙中依次填充第一隔离材料、第二隔离材料以及所述第一隔离材料,形成所述第一隔离层;其中,所述第一隔离层沿所述第一方向的长度大于或等于所述第一多层空隙位于所述第一堆叠区内的长度。Along the first direction, the first isolation material, the second isolation material and the first isolation material are sequentially filled into the first multi-layer gap to form the first isolation layer; wherein, the first isolation layer A length of a layer along the first direction is greater than or equal to a length of the first multi-layer void within the first stacking region.
在一些实施例中,所述第二隔离材料与所述第一隔离材料的刻蚀选择比大于或等于第二预设值。In some embodiments, the etching selectivity ratio of the second isolation material to the first isolation material is greater than or equal to a second preset value.
在一些实施例中,所述向所述第一多层空隙中依次填充第一隔离材料、第二隔离材料以及所述第一隔离材料,形成所述第一隔离层,包括:In some embodiments, the step of sequentially filling the first multi-layer gap with a first isolation material, a second isolation material, and the first isolation material to form the first isolation layer includes:
向所述第一多层空隙中填充第一隔离材料;Filling the first multi-layer void with a first isolation material;
刻蚀所述第一隔离材料,且保留位于所述第一堆叠区的部分所述第一隔离材料;Etching the first isolation material and retaining a portion of the first isolation material located in the first stacking region;
向所述第一多层空隙中填充第二隔离材料;Filling the first multi-layer void with a second isolation material;
刻蚀所述第二隔离材料,且保留位于所述第一堆叠区的部分所述第二隔离材料;其中,沿所述第一方向,保留的所述第二隔离材料的长度为预定的栅极长度;Etching the second isolation material, and retaining a portion of the second isolation material located in the first stacking region; wherein, along the first direction, the length of the remaining second isolation material is a predetermined gate pole length;
再次向所述第一多层空隙中填充所述第一隔离材料;Filling the first multi-layer void with the first isolation material again;
刻蚀所述第一隔离材料,且保留位于所述第一堆叠区的部分且位于所述第二隔离材料外的所述第一隔离材料。The first isolation material is etched, and the first isolation material located in a portion of the first stacking region and located outside the second isolation material is retained.
在一些实施例中,所述从所述开口处刻蚀所述第一隔离层,以去除至少部分所述第一隔离层,包括:In some embodiments, etching the first isolation layer from the opening to remove at least part of the first isolation layer includes:
从所述开口处刻蚀所述第一隔离层,以去除所述第一隔离层中的所述第二隔离材料。The first isolation layer is etched from the opening to remove the second isolation material in the first isolation layer.
在一些实施例中,所述在所述开口处形成沿垂直于所述堆叠结构表面方向延伸的字线结构,包括:In some embodiments, forming a word line structure extending in a direction perpendicular to the surface of the stacked structure at the opening includes:
在所述开口内的各层所述半导体层的表面形成栅极氧化层;Form a gate oxide layer on the surface of each layer of the semiconductor layer in the opening;
在所述栅极氧化层表面覆盖第一导电材料作为栅极导电层;Cover the surface of the gate oxide layer with a first conductive material as a gate conductive layer;
在覆盖有所述栅极导电层的开口内填充第二导电材料,形成所述字线结构。Fill the opening covered with the gate conductive layer with a second conductive material to form the word line structure.
在一些实施例中,所述提供由半导体层和牺牲层交替堆叠的堆叠结构,包括:In some embodiments, providing a stacked structure consisting of semiconductor layers and sacrificial layers alternately stacked includes:
提供衬底;provide a substrate;
在所述衬底上依次交替堆叠半导体材料和牺牲层材料;Stack semiconductor materials and sacrificial layer materials alternately on the substrate;
沿所述第一方向刻蚀堆叠的所述半导体材料和牺牲层材料,形成沿所述第一方向延伸的若干条所述第一堆叠区,以及连接在多条所述第一堆叠区的第一端,且沿所述第二方向延伸的所述第二堆叠区;所述堆叠结构以外的区域为刻蚀形成的凹槽;Etch the stacked semiconductor material and sacrificial layer material along the first direction to form a plurality of first stacking regions extending along the first direction, and a first stacking region connected to the plurality of first stacking regions. One end, and the second stacking area extending along the second direction; the area outside the stacking structure is a groove formed by etching;
在刻蚀后形成的凹槽内填充所述绝缘材料。The insulating material is filled in the groove formed after etching.
在一些实施例中,所述方法还包括:In some embodiments, the method further comprises:
在所述第一堆叠区远离所述第二堆叠区的第二端,刻蚀所述绝缘材料形成位于相邻的所述第一堆叠区之间的开槽;At a second end of the first stacking region away from the second stacking region, etching the insulating material to form a groove located between adjacent first stacking regions;
在所述开槽内填充隔离材料;Filling the slot with isolation material;
去除所述第二端远离第一端的一侧的所述绝缘材料,并从所述第二端沿第一方向刻蚀所述第一堆叠区中的部分牺牲层,形成第二多层空隙;Remove the insulating material on a side of the second end away from the first end, and etch part of the sacrificial layer in the first stacking region from the second end in a first direction to form a second multi-layer void ;
在刻蚀掉部分所述牺牲层的所述第一堆叠区的所述第二端填充所述隔离材料,形成支撑结构。The isolation material is filled in the second end of the first stacking region where part of the sacrificial layer is etched away to form a support structure.
在一些实施例中,所述在每条所述第一堆叠区形成堆叠的多个存储结构,包括:In some embodiments, the plurality of stacked memory structures formed in each of the first stacking areas include:
去除所述第一堆叠区之间的所述绝缘材料;removing the insulating material between the first stacking regions;
去除所述第一堆叠区中的所述牺牲层,使各层所述半导体层悬空;Remove the sacrificial layer in the first stacking area so that each layer of the semiconductor layer is suspended;
在所述半导体层的表面进行金属硅化处理;Perform metal silicide treatment on the surface of the semiconductor layer;
在金属硅化处理后的所述半导体层表面覆盖第一金属材料,形成电容结构的下电极;The surface of the semiconductor layer after metal silicide treatment is covered with a first metal material to form a lower electrode of the capacitor structure;
在所述下电极的表面覆盖介电层;Cover the surface of the lower electrode with a dielectric layer;
在所述介电层的表面覆盖第三金属材料,形成所述电容结构的上电极;Cover the surface of the dielectric layer with a third metal material to form an upper electrode of the capacitor structure;
在形成有所述上电极的相邻半导体层之间的空隙内以及各第一堆叠区之间的凹槽内填充多晶硅材料。Polysilicon material is filled in the gaps between adjacent semiconductor layers where the upper electrode is formed and in the grooves between the first stacking regions.
在一些实施例中,在形成堆叠的多个电容结构之后,所述方法还包括:In some embodiments, after forming the stacked plurality of capacitor structures, the method further includes:
去除所述第一堆叠区的所述第二端的隔离材料,并同时去除所述电容结构靠近所述第一端一侧的至少部分所述第一隔离层,形成位于所述电容结构两端的沟槽;Remove the isolation material at the second end of the first stacking region, and simultaneously remove at least part of the first isolation layer on the side of the capacitor structure close to the first end to form trenches at both ends of the capacitor structure. groove;
在所述沟槽中填充绝缘材料。The trenches are filled with insulating material.
在一些实施例中,在形成所述第一隔离层之后,所述方法还包括:In some embodiments, after forming the first isolation layer, the method further includes:
在所述第二堆叠区沿第二方向对未被所述第一隔离层覆盖的所述半导体层进行金属硅化处理;Perform a metal silicide treatment on the semiconductor layer not covered by the first isolation layer in the second stacking region along the second direction;
在所述半导体层的表面覆盖第二金属材料;Covering the surface of the semiconductor layer with a second metal material;
刻蚀各层所述半导体层沿第三方向之间连接处的所述第二金属材料,使各层所述半导体层覆盖的第二金属材料之间相互分离;所述第三方向垂直于所述第一方向与第二方向;Etch the second metal material at the connection between each layer of the semiconductor layer along a third direction to separate the second metal materials covered by each layer of the semiconductor layer from each other; the third direction is perpendicular to the The first direction and the second direction;
在各层覆盖有所述第二金属材料的半导体层之间以及所述第二堆叠区远离第一堆叠区的一侧填充绝缘材料;其中,各层覆盖有所述第二金属材料的半导体层为所述位线结构。An insulating material is filled between each layer of the semiconductor layer covered with the second metal material and on the side of the second stacking area away from the first stacking area; wherein each layer is covered with the semiconductor layer of the second metal material. is the bit line structure.
在一些实施例中,所述方法还包括:In some embodiments, the method further includes:
对所述位线结构进行处理,形成长度由下到上依次递减的台阶结构;Process the bit line structure to form a step structure whose length decreases from bottom to top;
在每层所述台阶结构上形成位线引出结构。A bit line lead-out structure is formed on each layer of the stepped structure.
第二方面,本公开实施例还提供一种半导体结构,所述半导体结构如上述实施例任一所述的方法形成。In a second aspect, embodiments of the present disclosure also provide a semiconductor structure, which is formed by the method described in any of the above embodiments.
第三方面,本公开实施例还提供一种存储器,包括:In a third aspect, an embodiment of the present disclosure also provides a memory, including:
如上述实施例任一所述的方法形成的半导体结构。A semiconductor structure formed by the method described in any one of the above embodiments.
本公开实施例通过从侧面单向刻蚀的工艺,在形成AA(Active Area,有源区)区域之后,从一端单向刻蚀中间层,并填上不同隔离材料,定义出晶体管的源极、漏极以及沟道的长度和范围。如此,可以减少对源极与漏极进行双向侧面刻蚀导致的栅极结构不规则问题。The embodiment of the present disclosure uses a unidirectional etching process from the side. After forming the AA (Active Area) region, the middle layer is etched unidirectionally from one end and filled with different isolation materials to define the source of the transistor. , drain and channel length and range. In this way, irregularities in the gate structure caused by bidirectional side etching of the source and drain can be reduced.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1A至图1C为在一些实施例中采用双向刻蚀的方式形成的半导体结构的示意图;1A to 1C are schematic diagrams of semiconductor structures formed by bidirectional etching in some embodiments;
图2为本公开实施例的一种方法流程图。Figure 2 is a method flow chart according to an embodiment of the present disclosure.
图3为本公开实施例中由一种半导体层和牺牲层组成的交替堆叠的堆叠结构的示意图;3 is a schematic diagram of an alternately stacked stack structure composed of a semiconductor layer and a sacrificial layer in an embodiment of the present disclosure;
图4为本公开实施例中一种包含第一多层空隙的半导体结构的示意图;Figure 4 is a schematic diagram of a semiconductor structure including a first multi-layer void in an embodiment of the present disclosure;
图5A为本公开实施例中一种包含第一隔离层的半导体结构的示意图;FIG5A is a schematic diagram of a semiconductor structure including a first isolation layer in an embodiment of the present disclosure;
图5B为本公开实施例中的第一隔离层的放大示意图;Figure 5B is an enlarged schematic diagram of the first isolation layer in an embodiment of the present disclosure;
图6为本公开实施例中一种包含垂直于堆叠结构表面方向的开口的半导体结构的示意图;6 is a schematic diagram of a semiconductor structure including openings perpendicular to the surface direction of the stacked structure in an embodiment of the present disclosure;
图7为本公开实施例中一种具有贯通的通孔与开口的半导体结构的示意图;Figure 7 is a schematic diagram of a semiconductor structure with through-holes and openings in an embodiment of the present disclosure;
图8A为本公开实施例中一种包括字线结构的半导体结构的示意图;FIG8A is a schematic diagram of a semiconductor structure including a word line structure in an embodiment of the present disclosure;
图8B为本公开实施例中字线结构的放大示意图;FIG. 8B is an enlarged schematic diagram of the word line structure in an embodiment of the present disclosure;
图9为本公开实施例中一种包括半导体柱阵列的半导体结构的示意图;Figure 9 is a schematic diagram of a semiconductor structure including a semiconductor pillar array in an embodiment of the present disclosure;
图10为本公开实施例中另一种由半导体层和牺牲层组成的交替堆叠的堆叠结构的示意图;10 is a schematic diagram of another alternately stacked stack structure composed of semiconductor layers and sacrificial layers in an embodiment of the present disclosure;
图11为本公开实施例中一种包括第一堆叠区和第二堆叠区的半导体结构的示意图;Figure 11 is a schematic diagram of a semiconductor structure including a first stacking region and a second stacking region in an embodiment of the present disclosure;
图12为本公开实施例中一种第一堆叠区之间填充有绝缘材料的半导体结构的示意图;Figure 12 is a schematic diagram of a semiconductor structure in which insulating material is filled between first stacking regions in an embodiment of the present disclosure;
图13为本公开实施例中一种包括位于相邻的第一堆叠区之间的开槽的半导体结构的示意图;13 is a schematic diagram of a semiconductor structure including a trench between adjacent first stacking regions in an embodiment of the present disclosure;
图14为本公开实施例中一种包括位于相邻的第一堆叠区之间的第一支撑结构的半导体结构的示意图;FIG14 is a schematic diagram of a semiconductor structure including a first support structure located between adjacent first stacking regions in an embodiment of the present disclosure;
图15为本公开实施例中一种包含第二多层空隙的半导体结构的示意图;FIG15 is a schematic diagram of a semiconductor structure including a second multi-layer void in an embodiment of the present disclosure;
图16为本公开实施例中一种包含支撑结构的半导体结构的示意图;Figure 16 is a schematic diagram of a semiconductor structure including a support structure in an embodiment of the present disclosure;
图17为本公开实施例中一种包含第二开口的半导体结构的示意图;Figure 17 is a schematic diagram of a semiconductor structure including a second opening in an embodiment of the present disclosure;
图18A为本公开实施例中一种包含第一多层空隙的半导体结构的示意图;FIG. 18A is a schematic diagram of a semiconductor structure including a first multi-layer void according to an embodiment of the present disclosure;
图18B为本公开实施例中第一多层空隙的放大示意图;Figure 18B is an enlarged schematic diagram of the first multi-layer void in an embodiment of the present disclosure;
图19为本公开实施例中一种包含第一隔离结构的半导体结构的示意图;Figure 19 is a schematic diagram of a semiconductor structure including a first isolation structure in an embodiment of the present disclosure;
图20为本公开实施例中一种包含第一隔离部分的半导体结构的示意图;FIG20 is a schematic diagram of a semiconductor structure including a first isolation portion according to an embodiment of the present disclosure;
图21为本公开实施例中一种包含第二隔离结构的半导体结构的示意图;Figure 21 is a schematic diagram of a semiconductor structure including a second isolation structure in an embodiment of the present disclosure;
图22为本公开实施例中一种包含第二隔离部分的半导体结构的示意图;Figure 22 is a schematic diagram of a semiconductor structure including a second isolation portion in an embodiment of the present disclosure;
图23为本公开实施例中一种包含第三隔离结构的半导体结构的示意图;Figure 23 is a schematic diagram of a semiconductor structure including a third isolation structure in an embodiment of the present disclosure;
图24A至图24B为本公开实施例中一种包含第一隔离层的半导体结构的示意图;24A to 24B are schematic diagrams of a semiconductor structure including a first isolation layer in an embodiment of the present disclosure;
图25为本公开实施例中一种包含第一金属硅化物结构的半导体结构的示意图;Figure 25 is a schematic diagram of a semiconductor structure including a first metal silicide structure in an embodiment of the present disclosure;
图26为本公开实施例中一种包含第二金属材料层的半导体结构的示意图;Figure 26 is a schematic diagram of a semiconductor structure including a second metal material layer in an embodiment of the present disclosure;
图27A与图27B为本公开实施例中一种包含第四金属结构的半导体结构的示意图;27A and 27B are schematic diagrams of a semiconductor structure including a fourth metal structure in an embodiment of the present disclosure;
图27C为本公开实施例中一种包含第一位线结构的半导体结构的示意图;FIG. 27C is a schematic diagram of a semiconductor structure including a first-order line structure in an embodiment of the present disclosure;
图28为本公开实施例中一种包含第四绝缘结构的半导体结构的示意图;Figure 28 is a schematic diagram of a semiconductor structure including a fourth insulating structure in an embodiment of the present disclosure;
图29为本公开实施例中另一种包含垂直于堆叠结构表面方向的开口的半导体结构的示意图;29 is a schematic diagram of another semiconductor structure including openings perpendicular to the surface direction of the stacked structure in an embodiment of the present disclosure;
图30为本公开实施例中另一种包含位于第一隔离结构与第三隔离结构之间的通孔的半导体结构的示意图;30 is a schematic diagram of another semiconductor structure including a through hole between the first isolation structure and the third isolation structure in an embodiment of the present disclosure;
图31A至图31B为本公开实施例中包含栅极氧化层与栅极导电层的半导体结构的示意图;31A to 31B are schematic diagrams of a semiconductor structure including a gate oxide layer and a gate conductive layer in an embodiment of the present disclosure;
图32为本公开实施例中覆盖有金属钨层的半导体结构的示意图;Figure 32 is a schematic diagram of a semiconductor structure covered with a metallic tungsten layer in an embodiment of the present disclosure;
图33为本公开实施例中包括字线结构的半导体结构的示意图;Figure 33 is a schematic diagram of a semiconductor structure including a word line structure in an embodiment of the present disclosure;
图34为本公开实施例中包括半导体柱阵列的半导体结构的示意图;34 is a schematic diagram of a semiconductor structure including a semiconductor pillar array in an embodiment of the present disclosure;
图35为本公开实施例中包括金属硅化物层的半导体结构的示意图;Figure 35 is a schematic diagram of a semiconductor structure including a metal suicide layer in an embodiment of the present disclosure;
图36为本公开实施例中包括第一金属材料层的半导体结构的示意图;Figure 36 is a schematic diagram of a semiconductor structure including a first metal material layer in an embodiment of the present disclosure;
图37为本公开实施例中包括介电层的半导体结构的示意图;FIG37 is a schematic diagram of a semiconductor structure including a dielectric layer in an embodiment of the present disclosure;
图38为本公开实施例中包括多晶硅层的半导体结构的示意图;Figure 38 is a schematic diagram of a semiconductor structure including a polysilicon layer in an embodiment of the present disclosure;
图39为本公开实施例中覆盖有光刻胶的半导体结构的示意图;FIG39 is a schematic diagram of a semiconductor structure covered with photoresist in an embodiment of the present disclosure;
图40A为本公开实施例中包括位于电容结构两端的沟槽的半导体结构的示意图;40A is a schematic diagram of a semiconductor structure including trenches located at both ends of the capacitor structure in an embodiment of the present disclosure;
图40B为本公开实施例中形成的一种电容结构的示意图;Figure 40B is a schematic diagram of a capacitor structure formed in an embodiment of the present disclosure;
图41为本公开实施例中形成的一种半导体结构的示意图。FIG. 41 is a schematic diagram of a semiconductor structure formed in an embodiment of the present disclosure.
具体实施方式Detailed ways
为了便于理解本公开,下面将参照相关附图更详细地描述本公开公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开,而不应被这里阐述的具体实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开公开的范围完整的传达给本领域的技术人员。In order to facilitate understanding of the present disclosure, exemplary embodiments of the present disclosure will be described in more detail below with reference to the relevant drawings. Although exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the disclosure may be embodied in various forms and should not be limited to the specific embodiments set forth herein. Rather, these embodiments are provided so that a thorough understanding of the disclosure will be provided, and the scope of the disclosure will be fully conveyed to those skilled in the art.
在下文的描述中,给出了大量具体的细节以便提供对本公开更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本公开可以无需一个或多个这些细节而得以实施。在一些实施例中,为了避免与本公开发生混淆,对于本领域公知的一些技术特征未进行描述;即,这里可以不描述实际实施例的全部特征,不详细描述公知的功能和结构。In the following description, a large number of specific details are given to provide a more thorough understanding of the present disclosure. However, it is obvious to those skilled in the art that the present disclosure can be implemented without one or more of these details. In some embodiments, in order to avoid confusion with the present disclosure, some technical features known in the art are not described; that is, all features of the actual embodiment may not be described here, and well-known functions and structures may not be described in detail.
一般地,术语可以至少部分地从上下文中的使用来理解。例如,至少部分地取决于上下文,如本文中所用的术语“一个或多个”可以用于以单数意义描述任何特征、结构或特性,或者可以用于以复数意义描述特征、结构或特性的组合。类似地,诸如“一”或“所述”的术语同样可以被理解为传达 单数用法或传达复数用法,这至少部分地取决于上下文。另外,属于“基于”可以被理解为不一定旨在传达排他的一组因素,并且可以替代地允许存在不一定明确地描述的附加因素,这同样至少部分地取决于上下文。Generally, terms can be understood, at least in part, from context of use. For example, depending at least in part on context, the term "one or more" as used herein may be used in the singular to describe any feature, structure or characteristic, or may be used in the plural to describe a combination of features, structures or characteristics. . Similarly, terms such as "a" or "the" may equally be understood to convey a singular usage or to convey a plural usage, depending at least in part on the context. Additionally, the term "based on" may be understood as not necessarily intended to convey an exclusive set of factors, and may instead allow for the presence of additional factors that are not necessarily explicitly described, again depending at least in part on context.
除非另有定义,本文所使用的术语的目的仅在于描述具体实施例并且不作为本公开的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。Unless otherwise defined, the terms used herein are for the purpose of describing particular embodiments only and are not intended to be limiting of the disclosure. As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the terms "consisting of" and/or "comprising", when used in this specification, identify the presence of stated features, integers, steps, operations, elements and/or parts but do not exclude one or more others The presence or addition of features, integers, steps, operations, elements, parts, and/or groups. When used herein, the term "and/or" includes any and all combinations of the associated listed items.
为了彻底理解本公开,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本公开的技术方案。本公开的较佳实施例详细描述如下,然而除了这些详细描述外,本公开还可以具有其他实施方式。In order to thoroughly understand the present disclosure, detailed steps and detailed structures will be presented in the following description to illustrate the technical solution of the present disclosure. The preferred embodiments of the present disclosure are described in detail below, but in addition to these detailed descriptions, the present disclosure may also have other implementations.
DRAM是一种半导体存储器,主要的作用原理是利用电容内存储电荷的多寡来代表一个二进制比特(bit)是1还是0。DRAM的研制过程中,随着尺寸的微缩进一步,垂直电容结构遇到的瓶颈开始出现。为了实现电容单位密度的提升,堆叠式电容开始出现。在一些实施例中,可以通过对DRAM中的晶体管的源漏两端向沟道区进行刻蚀来形成DRAM器件。首先,如图1A所示,刻蚀绝缘结构20形成多个沟槽10,以将晶体管源极与漏极区域的两侧打开,并通过湿法刻蚀工艺,去除掉箭头方向下方的牺牲层。如图1B所示,对图1A中刻蚀的牺牲层中填充上SiN。由于刻蚀掉的牺牲层对应源极与漏极的区域。刻蚀掉的牺牲是不规则的,则填充的SiN也是不规则的,造成晶体管的栅极区域的牺牲也是不规则的。如图1B中的方框所示。如图1C所示,在去掉图1B中的牺牲形成栅极结构的过程中,由于图1B中去除的牺牲层是不规则,造成后续形成的栅极结构也是不规则的。DRAM is a kind of semiconductor memory. Its main working principle is to use the amount of charge stored in the capacitor to represent whether a binary bit (bit) is 1 or 0. In the development process of DRAM, as the size further shrinks, the bottleneck encountered by the vertical capacitor structure begins to appear. In order to increase the unit density of capacitors, stacked capacitors began to appear. In some embodiments, a DRAM device can be formed by etching the source and drain ends of the transistor in the DRAM toward the channel region. First, as shown in FIG. 1A , the insulating structure 20 is etched to form a plurality of trenches 10 to open both sides of the source and drain regions of the transistor, and the sacrificial layer below the direction of the arrow is removed through a wet etching process. . As shown in Figure 1B, the sacrificial layer etched in Figure 1A is filled with SiN. Because the etched sacrificial layer corresponds to the source and drain regions. The etched sacrifice is irregular, and the filled SiN is also irregular, causing the sacrifice in the gate region of the transistor to be irregular as well. As shown by the box in Figure 1B. As shown in FIG. 1C , during the process of removing the sacrificial layer in FIG. 1B to form the gate structure, since the sacrificial layer removed in FIG. 1B is irregular, the subsequently formed gate structure is also irregular.
DRAM器件的性能、品质均与栅极结构的规则性相关,如何控制对DRAM器件中的源极与漏极的刻蚀形成具有目标形状的栅极结构,成为了亟需解决的问题。The performance and quality of DRAM devices are related to the regularity of the gate structure. How to control the etching of the source and drain electrodes in DRAM devices to form a gate structure with a target shape has become an urgent problem that needs to be solved.
本公开实施例提供一种半导体结构的制作方法,如图2所示,该方法包括:The present disclosure provides a method for manufacturing a semiconductor structure, as shown in FIG2 , the method comprising:
步骤S101、提供由半导体层和牺牲层交替堆叠的堆叠结构;如图3所示,该堆叠结构300包括沿第一方向(即X方向)延伸的若干条第一堆叠区320,以及连接在多条第一堆叠区320的第一端D1,且沿第二方向(即Y方向)延伸的第二堆叠区310;其中,第一方向与第二方向垂直或相交;第一堆叠区320之间填充有绝缘材料;Step S101: Provide a stacked structure consisting of semiconductor layers and sacrificial layers alternately stacked; as shown in FIG. 3, the stacked structure 300 includes a plurality of first stacking regions 320 extending along the first direction (ie, the X direction), and connected to a plurality of first stacking regions 320. The first end D1 of the first stacking area 320 and the second stacking area 310 extending along the second direction (ie, Y direction); wherein the first direction and the second direction are perpendicular to or intersect; between the first stacking areas 320 filled with insulating material;
步骤S102、沿第一方向刻蚀第二堆叠区310以及部分第一堆叠区320的牺牲层,形成如图4所示的第一多层空隙510;第二堆叠区310的半导体层用于形成多层堆叠的位线结构;Step S102: Etch the second stacking region 310 and part of the sacrificial layer of the first stacking region 320 along the first direction to form the first multi-layer gap 510 as shown in FIG. 4; the semiconductor layer of the second stacking region 310 is used to form Multi-layer stacked bit line structure;
步骤S103、填充第一多层空隙510位于第一堆叠区320的部分,形成如图5A至图5B所示的第一隔离层600;Step S103: Fill the portion of the first multi-layer void 510 located in the first stacking region 320 to form the first isolation layer 600 as shown in Figures 5A to 5B;
步骤S104、在第一堆叠区320相邻的绝缘材料中形成如图6所示的垂直于堆叠结构300表面的开口730;Step S104, forming an opening 730 perpendicular to the surface of the stack structure 300 as shown in FIG. 6 in the insulating material adjacent to the first stacking region 320;
步骤S105、从开口730处刻蚀第一隔离层,如图7所示以去除至少部分第一隔离层;Step S105: Etch the first isolation layer from the opening 730, as shown in Figure 7 to remove at least part of the first isolation layer;
步骤S106、如图8A至图8B所示,在开口730处形成沿垂直于堆叠结构表面方向延伸的字线结构754;Step S106, as shown in Figures 8A to 8B, form a word line structure 754 extending in a direction perpendicular to the surface of the stacked structure at the opening 730;
步骤S107、在第一堆叠区320形成堆叠的多个存储结构。Step S107: Form multiple stacked memory structures in the first stacking area 320.
首先执行步骤S101、提供如图3所示的半导体结构。该半导体结构包括堆叠结构300和绝缘结构410。其中,该堆叠结构300又包括交替堆叠的半导体层101和牺牲层102。在一些实施例中,该堆叠结构300可为超晶格结构,此时半导体层101和牺牲层102均为薄膜,其厚度可在几个到几十个原子层范围内。半导体层101的组成材料可为P型半导体材料(例如为硅(Si)或者锗(Ge)等)、N型半导体材料(例如磷化铟(InP)等等,牺牲层102的组成材料主要考虑其与半导体层101材料的刻蚀选择比,在一些实施例中,牺牲层102所用材料与半导体层101所用材料的刻蚀选择比若大于或等于第一预设值,该第一预设值为最低刻蚀选择比(例如,10),即满足以上条件的牺牲层102所用材料与半导体层101所用材料均可被选择。又即牺牲层102材料可根据半导体层101材料和最低刻蚀选择比来进行选择。在本公开实施例中,半导体层101的材料可以选择硅Si,牺牲层102的材料可以选择锗化硅SiGe。如图3所示,堆叠结构300从沿Y方向的AA’进行划分可分为第二堆叠区310和多条第一堆叠区320,其中第二堆叠区310沿第二方向延伸(即Y方向),第一堆叠区320沿第一方向延伸(即X方向),在一些实施例中,X方向与Y方向可相交或垂直。本公开实施例中,以X方向与Y方向相互垂直进行说明。每个第一堆叠区320在该第一堆叠区320的第一端D1(为靠近第二堆叠区的一端)与第二堆叠区310相连。相邻的第一堆叠区320之间还可填充有绝缘材料,用于构成绝缘结构410。该绝缘结构410可对堆叠结构起到支撑作用。该绝缘结构410可位于第二堆叠区310远离第一堆叠区320的一侧、第一堆叠区320之间以及第一堆叠区320远离第二堆叠区310的一侧。First, step S101 is performed to provide a semiconductor structure as shown in FIG. 3 . The semiconductor structure includes a stacked structure 300 and an insulating structure 410 . The stacked structure 300 further includes alternately stacked semiconductor layers 101 and sacrificial layers 102 . In some embodiments, the stacked structure 300 may be a superlattice structure. In this case, the semiconductor layer 101 and the sacrificial layer 102 are both thin films, and their thickness may range from several to dozens of atomic layers. The composition material of the semiconductor layer 101 can be a P-type semiconductor material (such as silicon (Si) or germanium (Ge), etc.), an N-type semiconductor material (such as indium phosphide (InP), etc.). The composition material of the sacrificial layer 102 is mainly considered. The etching selectivity ratio between it and the material of the semiconductor layer 101. In some embodiments, if the etching selectivity ratio of the material used for the sacrificial layer 102 and the material used for the semiconductor layer 101 is greater than or equal to the first preset value, the first preset value is the lowest etching selectivity ratio (for example, 10), that is, the material used for the sacrificial layer 102 and the material used for the semiconductor layer 101 that meet the above conditions can be selected. That is, the material of the sacrificial layer 102 can be selected according to the material of the semiconductor layer 101 and the lowest etching ratio to make the selection. In the embodiment of the present disclosure, the material of the semiconductor layer 101 can be silicon Si, and the material of the sacrificial layer 102 can be silicon germanium SiGe. As shown in Figure 3, the stacked structure 300 is formed from AA' along the Y direction The division can be divided into a second stacking area 310 and a plurality of first stacking areas 320, where the second stacking area 310 extends along the second direction (ie, the Y direction), and the first stacking area 320 extends along the first direction (ie, the X direction). ), in some embodiments, the X direction and the Y direction may intersect or be perpendicular. In the embodiment of the present disclosure, the X direction and the Y direction are perpendicular to each other for illustration. Each first stacking area 320 has a The first end D1 (the end close to the second stacking area) is connected to the second stacking area 310. The adjacent first stacking areas 320 can also be filled with insulating material to form an insulating structure 410. The insulating structure 410 It can support the stacking structure. The insulation structure 410 can be located on the side of the second stacking area 310 away from the first stacking area 320, between the first stacking areas 320, and on the side of the first stacking area 320 away from the second stacking area 310. one side.
继续执行步骤S102、沿X方向刻蚀如图3所示的第二堆叠区310以及部分第一堆叠区320的牺牲层102,形成如图4所示的第一多层空隙510。本公开实施例不是沿Z方向从堆叠结构的上表面对第二堆叠区310进行刻蚀,而是沿X方向对第二堆叠区310以及部分第一堆叠区320进行刻蚀以去除第二堆叠区310中的牺牲层102以及部分第一堆叠区320中的牺牲层102。该刻蚀方式包括但不限于干法刻蚀与湿法刻蚀,本公开实施例中可选用湿法刻蚀,例如可以选用氢氟酸、硝酸、过氧化氢、氢氧化铵等的一种或多种制备刻蚀液。刻蚀液的选择不限于此,任何在牺牲层102所用材料与半导体层101所 用材料之间具有高刻蚀选择比的刻蚀液都可以应用于本公开实施例中。如图4所示,执行完步骤S102的半导体结构具有第一多层空隙510,相邻第一多层空隙510之间均为半导体层101,包括第二堆叠区310中的全部半导体层101与至少部分第一堆叠区320中的半导体层101,其中,第二堆叠区310中的全部半导体层101可在后续用于形成多层堆叠的位线结构。Step S102 is continued, and the sacrificial layer 102 of the second stacking area 310 shown in FIG. 3 and part of the first stacking area 320 is etched along the X direction to form a first multi-layer gap 510 as shown in FIG. 4 . Instead of etching the second stacking region 310 from the upper surface of the stacked structure along the Z direction, the embodiment of the present disclosure etches the second stacking region 310 and part of the first stacking region 320 along the X direction to remove the second stack. The sacrificial layer 102 in region 310 and a portion of the sacrificial layer 102 in first stack region 320 . The etching method includes but is not limited to dry etching and wet etching. In the embodiment of the present disclosure, wet etching can be used. For example, hydrofluoric acid, nitric acid, hydrogen peroxide, ammonium hydroxide, etc. can be used. or multiple preparation etching solutions. The selection of the etching liquid is not limited to this, and any etching liquid with a high etching selectivity ratio between the material used for the sacrificial layer 102 and the material used for the semiconductor layer 101 can be applied in the embodiments of the present disclosure. As shown in FIG. 4 , the semiconductor structure after performing step S102 has first multi-layer voids 510 . Between adjacent first multi-layer voids 510 are semiconductor layers 101 , including all semiconductor layers 101 and 101 in the second stacking region 310 . At least part of the semiconductor layer 101 in the first stacking region 320, wherein all of the semiconductor layer 101 in the second stacking region 310 may be subsequently used to form a multi-layer stacked bit line structure.
继续执行步骤S103、填充如图4所示的第一多层空隙510位于第一堆叠区320的部分,形成如图5所示的第一隔离层600。对第一多层空隙510进行填充的方式包括但不限于生长工艺与沉积工艺。其中,沉积工艺可以包括化学气相沉积(Chemical Vapor Deposition,CVD)、物理气相沉积(Physical Vapor Deposition,PVD)、等离子体增强化学气相沉积(Plasma Enhanced CVD,PECVD)、溅镀(Sputtering)、有机金属化学气相沉积(Metal Organic Chemical Vapor Deposition,MOCVD)或原子层沉积(Atomic Layer Deposition,ALD)等。生长工艺包括但不限于原位蒸气生成法(In-Situ Steam Generation,ISSG)。可以对第一多层空隙510填充至少两种绝缘材料形成第一隔离层600。且至少有一种绝缘材料为低介电常数材料(即介电常数值低于SiO2的介电常数值)例如,氮化硅。第一隔离层600后续可用于隔离字线结构与电容结构,还可用于隔离半导体结构上的相邻晶体管之间的电性。Step S103 is continued to fill the portion of the first multi-layer void 510 located in the first stacking region 320 as shown in FIG. 4 to form the first isolation layer 600 as shown in FIG. 5 . The method of filling the first multi-layer gap 510 includes, but is not limited to, a growth process and a deposition process. Among them, the deposition process can include chemical vapor deposition (Chemical Vapor Deposition, CVD), physical vapor deposition (Physical Vapor Deposition, PVD), plasma enhanced chemical vapor deposition (Plasma Enhanced CVD, PECVD), sputtering (Sputtering), organic metal Chemical vapor deposition (Metal Organic Chemical Vapor Deposition, MOCVD) or atomic layer deposition (Atomic Layer Deposition, ALD), etc. Growth processes include but are not limited to In-Situ Steam Generation (ISSG). The first multi-layer gap 510 may be filled with at least two insulating materials to form the first isolation layer 600 . And at least one insulating material is a low dielectric constant material (that is, the dielectric constant value is lower than the dielectric constant value of SiO2), such as silicon nitride. The first isolation layer 600 can subsequently be used to isolate the word line structure and the capacitor structure, and can also be used to isolate the electrical properties between adjacent transistors on the semiconductor structure.
继续执行步骤S104、在如图5A所示的第一堆叠区320相邻的绝缘材料中形成如图6所示的垂直于堆叠结构表面方向的开口730。在第一堆叠区320两侧的绝缘材料上,选择绝缘材料与第一隔离层在X方向上重叠的部分区域进行刻蚀,所述刻蚀方法包括但不限于干法刻蚀与湿法刻蚀,以形成垂直于堆叠结构表面方向的开口730。即该开口730在X方向上与第一隔离层在X方向上的部分区域重叠,且该开口730不与第一隔离层的两端重叠,该开口730在X方向上的长度小于第一隔离层在X方向上的长度,开口730的长度与形状可以通过掩模定义,开口730的沿XY方向的截面形状包括但不限于圆形、正方形以及长方形。在一些实施例中,该开口730在Y方向上的中心线可与第一隔离层在Y方向上的中心线重叠。Step S104 is continued to form an opening 730 perpendicular to the surface direction of the stacked structure as shown in FIG. 6 in the insulating material adjacent to the first stacking area 320 as shown in FIG. 5A. On the insulating material on both sides of the first stacking area 320, select the partial area where the insulating material overlaps the first isolation layer in the X direction for etching. The etching method includes but is not limited to dry etching and wet etching. Etch to form openings 730 perpendicular to the surface direction of the stacked structure. That is, the opening 730 overlaps with a partial area of the first isolation layer in the X direction, and the opening 730 does not overlap with both ends of the first isolation layer. The length of the opening 730 in the The length of the layer in the X direction, the length and shape of the opening 730 can be defined through a mask, and the cross-sectional shape of the opening 730 along the XY direction includes but is not limited to circles, squares, and rectangles. In some embodiments, the center line of the opening 730 in the Y direction may overlap with the center line of the first isolation layer in the Y direction.
继续执行步骤S105、从开口处刻蚀第一隔离层,以去除至少部分第一隔离层。Continue to step S105 to etch the first isolation layer from the opening to remove at least part of the first isolation layer.
第一隔离层可以包括多种隔离材料,例如第一隔离材料和第二隔离材料。第一隔离层可以是包括第一隔离材料、第二隔离材料以及第一隔离材料的夹心结构。也可以是包括第一隔离材料与第二隔离材料以及第三隔离材料的、三种材料依次排列的结构。本公开实施例中,可以选用相较于第一隔离材料与第三隔离材料而言,刻蚀液对第二隔离材料具有高刻蚀选择比。The first isolation layer may include a plurality of isolation materials, such as a first isolation material and a second isolation material. The first isolation layer may be a sandwich structure including a first isolation material, a second isolation material, and a first isolation material. It may also be a structure in which three materials including a first isolation material, a second isolation material and a third isolation material are arranged in sequence. In embodiments of the present disclosure, the etching liquid can be selected to have a high etching selectivity ratio for the second isolation material compared to the first isolation material and the third isolation material.
去除至少部分第一隔离层,具体地,可以从开口处灌入刻蚀液以刻蚀去除第一隔离层中的第二隔离材料。如图7所示,去除至少部分第一隔离层后可形成通孔740,通孔740与开口730贯通连接。To remove at least part of the first isolation layer, specifically, an etching liquid can be poured into the opening to etch and remove the second isolation material in the first isolation layer. As shown in FIG. 7 , after at least part of the first isolation layer is removed, a through hole 740 can be formed, and the through hole 740 is connected to the opening 730 .
继续执行步骤S106、在开口处形成如图8A至图8B所示的垂直于堆叠结构300表面方向延伸的字线结构754。Step S106 is continued to form a word line structure 754 extending perpendicularly to the surface direction of the stacked structure 300 as shown in FIGS. 8A and 8B at the opening.
字线结构754包括栅极导电层752、栅极氧化层751以及字线753。首先,可以使用生长工艺或沉积工艺在开口730处生长或沉积一层氧化层作为栅极氧化层751。在一些实施例中,可以在高温环境下,在开口730处通入氧原子,使其与堆叠结构300中的原子(例如,硅原子)结合,形成高质量的氧化物薄膜。在一些实施例中,也可以使用沉积工艺,例如,化学气相沉积法(Chemical Vapor Deposition,CVD)形成一层氧化物薄膜作为栅极氧化层。The word line structure 754 includes a gate conductive layer 752, a gate oxide layer 751 and a word line 753. First, a growth process or a deposition process may be used to grow or deposit an oxide layer as the gate oxide layer 751 at the opening 730 . In some embodiments, oxygen atoms can be introduced at the opening 730 in a high temperature environment to combine with atoms (eg, silicon atoms) in the stacked structure 300 to form a high-quality oxide film. In some embodiments, a deposition process, such as chemical vapor deposition (CVD), may also be used to form an oxide film as the gate oxide layer.
然后在包覆有栅极氧化层751的开口730中继续填充导电材料(例如,钨)、多晶硅或金属硅化物中的一种或多种以形成栅极导电层和字线。The opening 730 covered with the gate oxide layer 751 is then filled with one or more of conductive material (eg, tungsten), polysilicon, or metal suicide to form a gate conductive layer and a word line.
继续执行步骤S107、在每条第一堆叠区320形成堆叠的多个存储结构。Step S107 is continued to form multiple stacked memory structures in each first stacking area 320 .
对第一堆叠区320之间的绝缘材料进行刻蚀以形成图9所示的第二凹槽760。具体地,对第一堆叠区320之间的绝缘材料与第一隔离层600的非重叠的区域(定义为第六区间X6)进行刻蚀,在Z方向上,刻蚀深度可等于第一堆叠区320的深度,即以衬底100为刻蚀阻挡层。如此可形成位于第一堆叠区320之间的第二凹槽760。The insulating material between the first stacking regions 320 is etched to form the second groove 760 shown in FIG. 9 . Specifically, the non-overlapping area (defined as the sixth interval X6) of the insulating material between the first stacking area 320 and the first isolation layer 600 is etched. In the Z direction, the etching depth may be equal to the first stacking area. The depth of the region 320 is determined by using the substrate 100 as an etching barrier. This may form a second groove 760 between the first stacking areas 320 .
然后可继续通过刻蚀工艺去除第一堆叠区320中的牺牲层,如图9所示,使得第一堆叠区320中的半导体层101悬空,如此在第二凹槽760两侧具有由多个相互分离的半导体层101形成的半导体柱阵列770。Then the sacrificial layer in the first stacking region 320 can be removed through the etching process, as shown in FIG. 9 , so that the semiconductor layer 101 in the first stacking region 320 is suspended, so that there are a plurality of layers on both sides of the second groove 760 . Semiconductor pillar array 770 is formed by mutually separated semiconductor layers 101 .
然后继续在悬空的半导体层101之间形成存储结构。Then continue to form a memory structure between the suspended semiconductor layers 101 .
在本公开实施例中,存储结构可以包括电容结构,电容结构可以包括下极板、介电层以及上极板。形成电容结构的方式包括在悬空的半导体层之间沉积第一导电材料以形成下极板,沉积高介电常数材料以形成介电层,沉积第二导电材料以形成上极板。以上只是形成存储结构的一个示例,存储结构的形状包括但不限于圆柱形电容、圆片形电容、长方形电容、叠片型电容以及各种异型电容。In an embodiment of the present disclosure, the storage structure may include a capacitor structure, and the capacitor structure may include a lower plate, a dielectric layer, and an upper plate. The method of forming the capacitor structure includes depositing a first conductive material between suspended semiconductor layers to form a lower plate, depositing a high dielectric constant material to form a dielectric layer, and depositing a second conductive material to form an upper plate. The above is only an example of forming a storage structure, and the shape of the storage structure includes but is not limited to cylindrical capacitors, disc capacitors, rectangular capacitors, stacked capacitors, and various special-shaped capacitors.
本公开实施例通过沿X方向的单向侧面刻蚀的工艺,在形成AA(Active Area,有源区)区域之后,从侧面进行单向刻蚀,并填上不同刻蚀选择比的隔离材料,并根据不同隔离材料对应的半导体层的区域,定义出晶体管的源极、漏极以及沟道的长度和范围,如此可以减少对源极与漏极进行双向侧吃导致的栅极结构不规则问题。The disclosed embodiment uses a unidirectional side etching process along the X direction. After forming the AA (Active Area) area, unidirectional etching is performed from the side, and isolation materials with different etching selectivities are filled in. The length and range of the source, drain and channel of the transistor are defined according to the areas of the semiconductor layer corresponding to the different isolation materials. This can reduce the problem of irregular gate structure caused by bidirectional side etching of the source and drain.
在一些实施例中,步骤S103中,填充第一多层空隙位于第一堆叠区的部分,形成第一隔离层,包括:In some embodiments, in step S103, filling the portion of the first multi-layer gap located in the first stacking region to form a first isolation layer includes:
步骤S201、沿第一方向,向第一多层空隙中依次填充第一隔离材料、第二隔离材料以及第一隔离材料,形成第一隔离层;其中,第一隔离层沿第一方向的长度等于第一多层空隙位于第一堆叠区内的长度。Step S201, along the first direction, sequentially fill the first isolation material, the second isolation material and the first isolation material into the first multi-layer void to form a first isolation layer; wherein, the length of the first isolation layer along the first direction Is equal to the length of the first multi-layer void located in the first stacking area.
在一些实施例中,步骤S103可使用步骤S201代替。In some embodiments, step S103 may be replaced by step S201.
如图5A至图5B所示,第一隔离层600可为由第一隔离材料形成的第一隔离部分611、第二隔离材料形成的第二隔离部分621以及第一隔离材料形成的第三隔离部分631所组成的夹心结构。具体地形成步骤包括,沿X方向,向如图5A所示的第一多层空隙510的第一区间X1中填充第一隔离材料,继续沿X方向,向第一多层空隙510的第二区间X2中填充第二隔离材料,继续沿X方向,向第一多层空隙的第三区间X3填充第三隔离材料。故第一隔离层600在X方向上的长度为第一区间X1、第二区间X2与第三区间X3的距离之和。第一隔离层600在X方向上的长度等于第一多层空隙位于第一堆叠区内的长度,即位于第一堆叠区内的第一多层空隙510都可用于形成第一隔离层600。As shown in FIGS. 5A to 5B , the first isolation layer 600 may be a first isolation portion 611 formed of a first isolation material, a second isolation portion 621 formed of a second isolation material, and a third isolation formed of the first isolation material. A sandwich structure composed of parts 631. Specifically, the forming step includes filling the first isolation material into the first interval X1 of the first multi-layer gap 510 as shown in FIG. 5A along the The second isolation material is filled in the interval X2, and the third isolation material is filled into the third interval X3 of the first multi-layer gap along the X direction. Therefore, the length of the first isolation layer 600 in the X direction is the sum of the distances between the first interval X1, the second interval X2, and the third interval X3. The length of the first isolation layer 600 in the X direction is equal to the length of the first multi-layer void 510 located in the first stacking area, that is, the first multi-layer void 510 located in the first stacking area can be used to form the first isolation layer 600 .
在一些实施例中,第二隔离材料与所述第一隔离材料和/或第三隔离材料的刻蚀选择比大于或等于第二预设值,在一些实施例中,第二预设值可为20。相对于第一隔离材料而言,第二隔离材料具有高刻蚀选择比,如此当有选择的去除第二隔离材料时,第一隔离材料可不被去除,从而实现精确控制栅极长度的目的。第二隔离材料指的是填充在第一隔离层600中间部分所使用的材料。而第一隔离材料指的是填充在第一隔离层两侧所使用的材料。In some embodiments, the etching selectivity ratio of the second isolation material to the first isolation material and/or the third isolation material is greater than or equal to a second preset value. In some embodiments, the second preset value may be is 20. Compared with the first isolation material, the second isolation material has a high etching selectivity ratio, so that when the second isolation material is selectively removed, the first isolation material may not be removed, thereby achieving the purpose of accurately controlling the gate length. The second isolation material refers to the material used to fill the middle portion of the first isolation layer 600 . The first isolation material refers to the material used to fill both sides of the first isolation layer.
在一些实施例中,第一隔离材料与第三隔离材料可以相同。In some embodiments, the first isolation material and the third isolation material may be the same.
在一些实施例中,步骤S201中,向第一多层空隙中依次填充第一隔离材料、第二隔离材料以及第一隔离材料,形成第一隔离层,包括:In some embodiments, in step S201, the first isolation material, the second isolation material and the first isolation material are sequentially filled into the first multi-layer void to form a first isolation layer, including:
步骤S301、向第一多层空隙中填充第一隔离材料;Step S301: Fill the first isolation material into the first multi-layer gap;
步骤S302、刻蚀第一隔离材料,且保留位于第一堆叠区的部分第一隔离材料;Step S302: Etch the first isolation material and retain part of the first isolation material located in the first stacking region;
步骤S303、向第一多层空隙中填充第二隔离材料;Step S303: Fill the first multi-layer gap with the second isolation material;
步骤S304、刻蚀第二隔离材料,且保留位于第一堆叠区的部分第二隔离材料;其中,沿所述第一方向,保留的第二隔离材料的长度为预定的栅极长度;Step S304: Etch the second isolation material and retain part of the second isolation material located in the first stacking region; wherein, along the first direction, the length of the remaining second isolation material is a predetermined gate length;
步骤S305、再次向第一多层空隙中填充第一隔离材料;Step S305: Fill the first isolation material into the first multi-layer gap again;
步骤S306、刻蚀第一隔离材料,且保留位于第一堆叠区的部分且位于第二隔离材料外的第一隔离材料。Step S306: Etch the first isolation material, and retain the portion of the first isolation material located in the first stacking region and located outside the second isolation material.
步骤S201又可详细拆分为步骤S301至步骤S306。Step S201 can be further divided into steps S301 to S306 in detail.
首先,执行步骤S301、沿X方向,向如图4所示的第一多层空隙510的第一区间X1内填充第一隔离材料。填充方式包括但不限于生长工艺和沉积工艺,第一隔离材料可为绝缘材料,例如氮化硅。First, step S301 is performed to fill the first section X1 of the first multi-layer gap 510 with the first isolation material along the X direction as shown in FIG. 4 . The filling method includes but is not limited to a growth process and a deposition process. The first isolation material may be an insulating material, such as silicon nitride.
在一些实施例中,若填充的范围超过了第一区间X1,则可进行步骤S302,刻蚀第一隔离材料,且保留位于第一堆叠区在第一区间X1中的第一隔离材料。In some embodiments, if the filling range exceeds the first interval X1, step S302 may be performed to etch the first isolation material and retain the first isolation material in the first interval X1 of the first stack region.
刻蚀方式包括但不限于干法刻蚀与湿法刻蚀,对超过第一区间X1范围的第一隔离材料进行去除,保留位于第一堆叠区的第一区间X1内的第一隔离材料。The etching method includes but is not limited to dry etching and wet etching. The first isolation material exceeding the range of the first interval X1 is removed, and the first isolation material located in the first interval X1 of the first stacking region is retained.
继续执行步骤S303、沿X方向,向第一多层空隙510的第二区间X2内填充第二隔离材料。填充方式包括但不限于生长工艺和沉积工艺,第二隔离材料可为任意与第一隔离材料不同的绝缘材料,特别地,第二隔离材料可为刻蚀选择比大于第一隔离材料的材料,以便于后续有选择的对第二隔离材料进行去除。Continue to perform step S303, and fill the second isolation material into the second interval X2 of the first multi-layer gap 510 along the X direction. The filling method includes but is not limited to a growth process and a deposition process. The second isolation material can be any insulating material different from the first isolation material. In particular, the second isolation material can be a material with a greater etching selectivity than the first isolation material, so as to facilitate the subsequent selective removal of the second isolation material.
在一些实施例中,若填充的范围超过了第二区间X2,则可进行步骤S304,刻蚀第二隔离材料,且保留位于第一堆叠区在第二区间X2中的第二隔离材料。In some embodiments, if the filling range exceeds the second interval X2, step S304 may be performed to etch the second isolation material and retain the second isolation material located in the first stacking region in the second interval X2.
刻蚀方式包括但不限于干法刻蚀与湿法刻蚀,对超过第二区间X2范围的第二隔离材料进行去除,保留位于第一堆叠区的第二区间X2内的第二隔离材料。其中,保留的第二隔离材料的长度为预定的栅极长度,这是因为在后续步骤中可在半导体层中的第二区间X2中形成晶体管的栅极,故第二区间X2的长度即为预定的栅极长度。The etching method includes but is not limited to dry etching and wet etching, and the second isolation material exceeding the second interval X2 is removed, and the second isolation material in the second interval X2 of the first stacking area is retained. The length of the retained second isolation material is the predetermined gate length, because the gate of the transistor can be formed in the second interval X2 in the semiconductor layer in the subsequent steps, so the length of the second interval X2 is the predetermined gate length.
本公开实施例利用第一隔离层中的第二隔离材料的长度定义出了半导体层的栅极长度,实现了对栅极长度的精准控制。The embodiment of the present disclosure uses the length of the second isolation material in the first isolation layer to define the gate length of the semiconductor layer, thereby achieving precise control of the gate length.
然后执行步骤S305、再次向第一多层空隙510中的第三区间X3填充第一隔离材料。第三区间X3可为位于第一堆叠区中的第一多层空隙的剩余区间。填充方式包括但不限于生长工艺和沉积工艺,第一隔离材料可为任意的绝缘材料,例如氮化硅。Then step S305 is performed to fill the third interval X3 in the first multi-layer gap 510 with the first isolation material again. The third interval X3 may be the remaining interval of the first multi-layer void located in the first stacking region. The filling method includes but is not limited to a growth process and a deposition process. The first isolation material can be any insulating material, such as silicon nitride.
在一些实施例中,若填充的范围超过了第三区间X3,则可进行步骤S306、刻蚀多余的第一隔离材料,且位于第一堆叠区在第三区间X3中的第一隔离材料。In some embodiments, if the filling range exceeds the third interval X3, step S306 may be performed to etch the excess first isolation material and the first isolation material located in the first stacking region in the third interval X3.
在一些实施例中,步骤S105中,从开口处刻蚀第一隔离层,以去除至少部分第一隔离层,包括:In some embodiments, in step S105, etching the first isolation layer from the opening to remove at least part of the first isolation layer includes:
步骤S401,从图6中的开口730处刻蚀第一隔离层,以去除第一隔离层600中的第二隔离材料。Step S401 , etching the first isolation layer from the opening 730 in FIG. 6 to remove the second isolation material in the first isolation layer 600 .
在一些实施例中,步骤S105可使用步骤S401代替。In some embodiments, step S105 may be replaced by step S401 .
当第一隔离层600为第一隔离材料组成的第一隔离部分611、第二隔离材料组成的第二隔离部分621与第一隔离材料组成的第三隔离部分631,其可看作夹心结构。去除至少部分第一隔离层600可为去除第一隔离层600中的第二隔离部分621,以形成如图7所示的通孔740,其中通孔740可与开口730贯通。When the first isolation layer 600 is a first isolation portion 611 composed of a first isolation material, a second isolation portion 621 composed of a second isolation material, and a third isolation portion 631 composed of the first isolation material, it can be regarded as a sandwich structure. Removing at least part of the first isolation layer 600 can be removing the second isolation portion 621 in the first isolation layer 600 to form a through hole 740 as shown in FIG. 7, wherein the through hole 740 can be connected to the opening 730.
在一些实施例中,可使用湿法刻蚀工艺,从开口730处灌入刻蚀液以去除第一隔离层600中的第二隔离部分621。In some embodiments, a wet etching process may be used to pour an etching liquid from the opening 730 to remove the second isolation portion 621 in the first isolation layer 600 .
在一些实施例中,步骤S106中,在开口处形成垂直于堆叠结构表面方向延伸的字线结构,包括:In some embodiments, in step S106, a word line structure extending perpendicular to the surface direction of the stacked structure is formed at the opening, including:
步骤S501、在开口内的各层半导体层的表面形成栅极氧化层;Step S501: Form a gate oxide layer on the surface of each semiconductor layer in the opening;
步骤S502、在栅极氧化层表面覆盖第一导电材料作为栅极导电层;Step S502: Cover the surface of the gate oxide layer with a first conductive material as a gate conductive layer;
步骤S503、在覆盖有栅极导电层的开口内填充第二导电材料,形成字线结构。Step S503: Fill the opening covered with the gate conductive layer with the second conductive material to form a word line structure.
在一些实施例中,步骤S106可使用步骤S501、步骤S502以及步骤S503代替。In some embodiments, step S106 may be replaced by step S501, step S502, and step S503.
字线结构可包括栅极氧化层、栅极导电层以及连接多个栅极的字线。The word line structure may include a gate oxide layer, a gate conductive layer, and a word line connecting a plurality of gates.
首先执行步骤S501,在如图7所示的开口730内的各层半导体层101的表面形成图8A所示的栅极氧化层751。First, step S501 is performed to form the gate oxide layer 751 shown in FIG. 8A on the surface of each semiconductor layer 101 in the opening 730 shown in FIG. 7 .
例如,可以在高温环境下,在开口730处各暴露的半导体层101的表面通入氧原子,氧原子与暴露的半导体层101中的硅原子结合,形成高质量的氧化物薄膜即栅极氧化物751。也可以使用沉积工艺,例如,化学气相沉积法(Chemical Vapor Deposition,CVD)形成一层氧化物薄膜作为栅极氧化层751。For example, oxygen atoms can be introduced into the surface of each exposed semiconductor layer 101 at the opening 730 in a high temperature environment, and the oxygen atoms combine with the silicon atoms in the exposed semiconductor layer 101 to form a high-quality oxide film, that is, gate oxidation. Object 751. A deposition process, such as chemical vapor deposition (CVD), may also be used to form an oxide film as the gate oxide layer 751.
栅极氧化层751的组成材料包括但不限于氧化物(例如,氧化硅、氧化铝),掺杂氮的氧化物等等。然后执行步骤S502,利用生长工艺或沉积工艺在栅极氧化层751的表面覆盖第一导电材料形成栅极导电层752。第一导电材料可为金属(例如,TiN)或多晶硅。The constituent materials of the gate oxide layer 751 include, but are not limited to, oxides (eg, silicon oxide, aluminum oxide), nitrogen-doped oxides, and the like. Then step S502 is performed, using a growth process or a deposition process to cover the surface of the gate oxide layer 751 with a first conductive material to form a gate conductive layer 752. The first conductive material may be metal (eg, TiN) or polysilicon.
然后执行步骤S503、利用生长工艺或沉积工艺在覆盖有栅极导电层752的开口730内填充第二导电材料,形成字线753。字线753、栅极导电层752以及栅极氧化层751共同组成字线结构754。Then step S503 is performed, using a growth process or a deposition process to fill the opening 730 covered with the gate conductive layer 752 with a second conductive material to form a word line 753. The word line 753, the gate conductive layer 752 and the gate oxide layer 751 together form a word line structure 754.
第二导电材料包括但不限于金属(例如,金属W)与多晶硅。第二导电材料可将覆盖有栅极导电层752的开口730填满,以形成图8A所示的连接多个栅极的字线753。若第二导电材料的沉积高度超过了堆叠结构表面,可使用CMP的方式去除超出部分的第二导电材料。The second conductive material includes but is not limited to metal (e.g., metal W) and polysilicon. The second conductive material can fill the opening 730 covered with the gate conductive layer 752 to form a word line 753 connecting multiple gates as shown in FIG. 8A. If the deposition height of the second conductive material exceeds the surface of the stacked structure, the excess second conductive material can be removed by CMP.
图8B为栅极氧化层751、栅极导电层752以及字线753组成的字线结构754的局部放大示意图。FIG. 8B is a partially enlarged schematic diagram of the word line structure 754 composed of the gate oxide layer 751, the gate conductive layer 752 and the word line 753.
在一些实施例中,步骤S101中,提供由半导体层和牺牲层交替堆叠的堆叠结构,包括:In some embodiments, in step S101, a stacked structure consisting of semiconductor layers and sacrificial layers alternately stacked is provided, including:
步骤S601、提供衬底;Step S601: Provide a substrate;
步骤S602、在衬底上依次交替堆叠半导体材料和牺牲层材料;Step S602, alternately stack semiconductor materials and sacrificial layer materials on the substrate;
步骤S603、沿第一方向刻蚀堆叠的半导体材料和牺牲层材料,形成沿第一方向延伸的若干条第一堆叠区,以及连接在多条第一堆叠区的第一端,且沿第二方向延伸的第二堆叠区;堆叠结构以外的区域为刻蚀形成的凹槽;Step S603: Etch the stacked semiconductor material and sacrificial layer material along the first direction to form several first stacking regions extending along the first direction, and connect the first ends of the plurality of first stacking regions and along the second The second stacking area extends in the direction; the area outside the stacking structure is a groove formed by etching;
步骤S604、在刻蚀后形成的凹槽内填充第一绝缘材料。Step S604: Fill the first insulating material into the groove formed after etching.
在一些实施例中,步骤S101可包括步骤S601、步骤S602以及步骤S603。In some embodiments, step S101 may include step S601, step S602, and step S603.
首先执行步骤S601,提供一衬底,该衬底可为P型半导体材料衬底(例如为硅(Si)衬底或者锗(Ge)衬底等)、N型半导体衬底(例如磷化铟(InP)衬底)、复合半导体材料衬底(例如为锗硅(SiGe)衬底等)、绝缘体上硅(SOI)衬底以及绝缘体上锗(GeOI)衬底等。First, step S601 is performed to provide a substrate, which can be a P-type semiconductor material substrate (such as a silicon (Si) substrate or a germanium (Ge) substrate, etc.), an N-type semiconductor substrate (such as indium phosphide) (InP) substrate), compound semiconductor material substrate (such as silicon germanium (SiGe) substrate, etc.), silicon-on-insulator (SOI) substrate, and germanium-on-insulator (GeOI) substrate, etc.
然后执行步骤S602,在衬底上依次使用沉积工艺或生长工艺堆叠半导体材料和牺牲层材料以形成如图10所示的位于衬底100上的交替堆叠第一半导体层201和第一牺牲层202。在一些实施例中,第一半体层201与衬底100所用的材料相同。Then step S602 is performed, sequentially using a deposition process or a growth process to stack semiconductor materials and sacrificial layer materials on the substrate to form alternately stacked first semiconductor layers 201 and first sacrificial layers 202 on the substrate 100 as shown in FIG. 10 . In some embodiments, the first half-body layer 201 is made of the same material as the substrate 100 .
在一些实施例中,可使用溅渡或原子层沉积的方式,并提供半导体材料的靶材(例如,Si)和牺牲层材料的靶材(例如,SiGe),形成超晶格结构的第一半导体层201与第一牺牲层202。In some embodiments, sputtering or atomic layer deposition may be used, and a target of semiconductor material (for example, Si) and a target of sacrificial layer material (for example, SiGe) may be provided to form the first layer of the superlattice structure. Semiconductor layer 201 and first sacrificial layer 202.
然后执行步骤S603、对交替堆叠第一半导体层201和第一牺牲层202的上表面(例如,第一牺牲层202)上覆盖一层光刻胶,使用带图案的掩膜版对准需要去除的部分,然后进行曝光。该光刻胶可为负胶,则与掩膜版图案对应部分的光刻胶被去除,继续对交替堆叠的第一半导体层201和第一牺牲层202中未被光刻胶覆盖的部分进行刻蚀,衬底100可作为刻蚀停止层。则可形成如图11所示的堆叠结构300,其包括沿X方向延伸的若干条第一堆叠区320,以及连接在多条第一堆叠区320的第一端D1,且沿Y方向延伸的第二堆叠区310。若干条第一堆叠区320与第二堆叠区310可组成堆叠结构300,堆叠结构300以外的区域为刻蚀形成的凹槽400。Then perform step S603: cover the upper surface (for example, the first sacrificial layer 202) of the alternately stacked first semiconductor layer 201 and the first sacrificial layer 202 with a layer of photoresist, and use a patterned mask to align and remove the required part and then expose it. The photoresist can be a negative resist, and the photoresist corresponding to the mask pattern is removed, and the process continues to the portions of the alternately stacked first semiconductor layer 201 and the first sacrificial layer 202 that are not covered by the photoresist. During etching, the substrate 100 may serve as an etch stop layer. Then a stacked structure 300 as shown in FIG. 11 can be formed, which includes a plurality of first stacking areas 320 extending in the X direction, and a first end D1 connected to the plurality of first stacking areas 320 and extending in the Y direction. Second stacking area 310. Several first stacking areas 320 and second stacking areas 310 may form a stacked structure 300, and the area outside the stacked structure 300 is a groove 400 formed by etching.
在一些实施例中,还可继续执行步骤S604、在刻蚀后形成的凹槽400内填充绝缘材料,以形成图12所示的绝缘结构410。绝缘结构410分别包括位于第二堆叠区310在X负方向一侧的第一绝缘结构411,第一堆叠区320在Y方向一侧/或两侧的第二绝缘结构412以及第一堆叠区320的第二端D2在X正方向一侧的第三绝缘结构413。In some embodiments, step S604 may be continued to fill the groove 400 formed after etching with an insulating material to form the insulating structure 410 shown in FIG. 12 . The insulating structure 410 respectively includes a first insulating structure 411 located on one side of the second stacking area 310 in the negative X direction, a second insulating structure 412 on one/or both sides of the first stacking area 320 in the Y direction, and the first stacking area 320 The second end D2 is the third insulation structure 413 on the side of the positive X direction.
绝缘材料的填充高度可以与堆叠结构300的上表面平齐。在一些实施例中,若绝缘材料的填充高度超过了堆叠结构300的上表面,可使用CMP(Chemical Mechanical Polishing,化学机械抛光)的方式去除多余的绝缘材料。绝缘材料所形成的支撑结构410可起到支撑若干个第一堆叠区320与第二堆叠区310的作用。The filling height of the insulating material may be flush with the upper surface of the stacked structure 300 . In some embodiments, if the filling height of the insulating material exceeds the upper surface of the stacked structure 300, CMP (Chemical Mechanical Polishing) may be used to remove excess insulating material. The support structure 410 formed of insulating material can function to support a plurality of first stacking areas 320 and second stacking areas 310 .
在一些实施例中,该方法还包括:In some embodiments, the method further includes:
步骤S701、在第一堆叠区远离第二堆叠区的第二端,刻蚀绝缘材料形成位于相邻的第一堆叠区之间的开槽;Step S701: At the second end of the first stacking area away from the second stacking area, etch the insulating material to form a groove between adjacent first stacking areas;
步骤S702、在开槽内填充隔离材料;Step S702: Fill the slot with isolation material;
步骤S703、去除第二端远离第一端的一侧的绝缘材料,并从第二端沿第一方向刻蚀第一堆叠区中的部分牺牲层,形成第二多层空隙;Step S703: Remove the insulating material on the side of the second end away from the first end, and etch part of the sacrificial layer in the first stacking region from the second end along the first direction to form a second multi-layer void;
步骤S704、在刻蚀掉部分牺牲层的第一堆叠区的第二端填充隔离材料,形成支撑结构。Step S704: Fill the second end of the first stacking region with part of the sacrificial layer etched away with an isolation material to form a support structure.
在执行完步骤S604可继续执行步骤S701至步骤S704。After step S604 is executed, steps S701 to S704 may be continued.
首先执行步骤S701、如图12所示,在第一堆叠区320远离第二堆叠区310的第二端D2,刻蚀第四区间X4中的绝缘材料,形成如图13所示的位于相邻的第一堆叠区320之间的开槽402。其中,第 四区间X4的第一端与第一堆叠区320的第二端D2重叠,第四区间X4的第二端位于第一堆叠区320内。刻蚀的绝缘材料为第二绝缘结构412中的部分绝缘材料。刻蚀出的开槽402在Y方向的宽度为两个第一堆叠区320在Y方向之间的间距,刻蚀出的开槽在X方向的长度为第四区间X4的长度。First, step S701 is performed. As shown in FIG. 12 , at the second end D2 of the first stacking area 320 away from the second stacking area 310 , the insulating material in the fourth interval X4 is etched to form an adjacent layer as shown in FIG. 13 . slots 402 between the first stacking areas 320 . The first end of the fourth section X4 overlaps with the second end D2 of the first stacking area 320, and the second end of the fourth section X4 is located in the first stacking area 320. The etched insulating material is part of the insulating material in the second insulating structure 412 . The width of the etched groove 402 in the Y direction is the distance between the two first stacking regions 320 in the Y direction, and the length of the etched groove 402 in the X direction is the length of the fourth interval X4.
然后执行步骤S702、在开槽402内填充隔离材料,该隔离材料可为第一隔离材料,形成如图14所示的包含第一支撑结构420的半导体结构。Then step S702 is performed to fill the trench 402 with an isolation material, which may be a first isolation material, to form a semiconductor structure including a first support structure 420 as shown in FIG. 14 .
在图13中的多个开槽402内通过沉积工艺或生长工艺填充第四隔离材料形成如图14中所示的第一支撑结构420。第四隔离材料包括但不限于SiN、SiCN、SiBN以及SiON。第一支撑结构420的上表面应与堆叠结构的上表面平齐,在一些实施例中,若第一支撑结构420的上表面突出于堆叠结构的上表面可使用CMP的方式去除多余的第四隔离材料。The plurality of grooves 402 in FIG. 13 are filled with a fourth isolation material through a deposition process or a growth process to form a first support structure 420 as shown in FIG. 14 . The fourth isolation material includes, but is not limited to, SiN, SiCN, SiBN, and SiON. The upper surface of the first support structure 420 should be flush with the upper surface of the stacked structure. In some embodiments, if the upper surface of the first support structure 420 protrudes from the upper surface of the stacked structure, CMP can be used to remove excess fourth Isolating materials.
然后执行步骤S703、去除图12中远离第一堆叠区320的第二端D2一侧的绝缘材料,即去除第三绝缘结构413,并以第四隔离材料作为刻蚀停止层,以形成如图15中所示的第一开口401,继续沿X负方向,从第二端D2刻蚀第一堆叠区320中的部分牺牲层102,具体地,去除第一堆叠区320位于第五区间X5(第五区间X5的一端在所述第二端D2,第五区间X5的另一端在第一堆叠区内)中的部分牺牲层102,以形成如图15所示的第二多层空隙500。Then step S703 is performed to remove the insulating material on the side of the second end D2 away from the first stacking region 320 in FIG. 12 , that is, the third insulating structure 413 is removed, and the fourth isolation material is used as an etching stop layer to form a structure as shown in FIG. The first opening 401 shown in 15 continues to etch part of the sacrificial layer 102 in the first stacking area 320 from the second end D2 along the negative direction of One end of the fifth section X5 is at the second end D2, and the other end of the fifth section X5 is part of the sacrificial layer 102 in the first stacking area) to form a second multi-layer gap 500 as shown in FIG. 15 .
然后执行步骤S704、在刻蚀掉部分牺牲层102的第一堆叠区320的第二端D2填充隔离材料,该隔离材料可为第五隔离材料,形成如图16中所示的第二支撑结构421,且第一支撑结构420与第二支撑结构421共同组成支撑结构430。Then, step S704 is performed to fill the second end D2 of the first stacking area 320 where part of the sacrificial layer 102 is etched away with an isolation material, which may be a fifth isolation material, to form a second support structure 421 as shown in FIG. 16 , and the first support structure 420 and the second support structure 421 together constitute a support structure 430 .
第四隔离材料与第五隔离材料可以相同也可以不同。本公开实施例中,第四隔离材料与第五隔离材料均可选用SiN。对第二多层空隙500使用第五隔离材料进行填充,并且对第一堆叠区320的第二端D2远离第一堆叠区的一侧所暴露的衬底100上继续填充第五隔离材料。从而使得步骤S702与步骤S704填充的第五隔离材料与第四隔离材料相互连接在一起,一起形成图16中所示的支撑结构430,用于避免半导体结构在后续步骤中发生坍塌现象。The fourth isolation material and the fifth isolation material may be the same or different. In the embodiment of the present disclosure, both the fourth isolation material and the fifth isolation material can be SiN. The second multi-layer gap 500 is filled with the fifth isolation material, and the exposed substrate 100 on the side of the second end D2 of the first stacking area 320 away from the first stacking area is continued to be filled with the fifth isolation material. As a result, the fifth isolation material and the fourth isolation material filled in steps S702 and S704 are connected to each other to form the support structure 430 shown in FIG. 16 to prevent the semiconductor structure from collapsing in subsequent steps.
在一些实施例中,步骤S107中,在第一堆叠区形成堆叠的多个存储结构,包括:In some embodiments, in step S107, multiple stacked memory structures are formed in the first stacking area, including:
在形成字线结构后,利用第一堆叠区的半导体层形成堆叠的多个电容结构。After the word line structure is formed, a plurality of stacked capacitor structures are formed using the semiconductor layer in the first stacking region.
在一些实施例中,存储结构包括晶体管和电容结构;在一些实施例中,存储结构包括电容结构。In some embodiments, the memory structure includes a transistor and a capacitor structure; in some embodiments, the memory structure includes a capacitor structure.
去除第一堆叠区中剩余的牺牲层,保留半导体层。基于多个半导体层,形成堆叠的多个电容结构。每个第一堆叠区中去除了N层牺牲层,故可形成N个堆叠的电容结构;本公开实施例中的堆叠结构包括M个第一堆叠区,可用于形成N*M个电容结构。The remaining sacrificial layer in the first stacking region is removed, leaving the semiconductor layer. Based on multiple semiconductor layers, multiple stacked capacitor structures are formed. N sacrificial layers are removed from each first stacking region, so N stacked capacitor structures can be formed; the stacked structure in the embodiment of the present disclosure includes M first stacking regions, which can be used to form N*M capacitor structures.
在一些实施例中,步骤S107中,在所述第一堆叠区形成堆叠的多个存储结构,包括:In some embodiments, in step S107, multiple stacked memory structures are formed in the first stacking area, including:
步骤S801、去除第一堆叠区之间的绝缘材料;Step S801, removing the insulating material between the first stacking regions;
步骤S802、去除第一堆叠区中的牺牲层,使各层半导体层悬空;Step S802: Remove the sacrificial layer in the first stacking area to make each semiconductor layer suspended;
步骤S803、在半导体层的表面进行金属硅化处理;Step S803: Perform metal silicide treatment on the surface of the semiconductor layer;
步骤S804、在金属硅化处理后的半导体层表面覆盖第一金属材料,形成电容结构的下电极;Step S804, covering the surface of the semiconductor layer after the metal silicide treatment with a first metal material to form a lower electrode of the capacitor structure;
步骤S805、在下电极的表面覆盖介电层;Step S805: Cover the surface of the lower electrode with a dielectric layer;
步骤S806、在介电层的表面覆盖第三金属材料,形成电容结构的上电极;Step S806, covering the surface of the dielectric layer with a third metal material to form an upper electrode of the capacitor structure;
步骤S807、在形成有上电极的各层之间的空隙内以及各第一堆叠区之间的凹槽内填充多晶硅材料。Step S807: Fill the gaps between the layers where the upper electrode is formed and the grooves between the first stacking regions with polysilicon material.
在一些实施例中,步骤S107可使用步骤S801至步骤S807代替。In some embodiments, step S107 may be replaced by steps S801 to S807.
首先执行步骤S801、去除如图33所示的第一堆叠区之间的位于第六区间X6的绝缘材料。First, step S801 is performed to remove the insulating material located in the sixth interval X6 between the first stacking areas as shown in FIG. 33 .
具体地,可在图33所示的第一堆叠区320与绝缘材料上涂覆光刻胶形成光刻胶层,使用带图案的掩膜版(掩膜版上的图案是不透光的,掩膜版的图案与绝缘材料对应)与光刻胶层对准,当光刻胶为负胶时,则与掩膜版图案对应部分的光刻胶被去除,在光刻胶层上形成开口,该开口的尺寸正好覆盖第一堆叠区之间的绝缘材料。然后结合干法刻蚀或湿法刻蚀工艺,以衬底为刻蚀停止层去除绝缘材料,去除绝缘材料后形成如图34所示多个第二凹槽760。Specifically, photoresist can be coated on the first stacking area 320 and the insulating material shown in FIG. 33 to form a photoresist layer, using a patterned mask (the pattern on the mask is opaque, The pattern of the mask (corresponding to the insulating material) is aligned with the photoresist layer. When the photoresist is negative, the photoresist corresponding to the mask pattern is removed, forming an opening on the photoresist layer. , the size of the opening just covers the insulating material between the first stacking areas. Then, a dry etching or wet etching process is used to remove the insulating material using the substrate as an etching stop layer. After the insulating material is removed, a plurality of second grooves 760 are formed as shown in FIG. 34 .
继续执行步骤S802、去除第一堆叠区320中的牺牲层102,使各层半导体层101悬空,当半导体层101的材料为硅时,可形成硅柱阵列。具体地,可使用对牺牲层材料具有高刻蚀选择比的刻蚀液去除第一堆叠区320中的牺牲层102,暴露第一堆叠层320中的半导体层101。各半导体层101之间互不相连,彼此悬空。电容结构基于所述半导体层101形成。半导体层101之间的高度(沿Z方向)与半导体层101自身的长度(沿Y方向)在一定程度决定了电容结构的尺寸。Step S802 is continued to remove the sacrificial layer 102 in the first stacking region 320 so that each semiconductor layer 101 is suspended. When the material of the semiconductor layer 101 is silicon, a silicon pillar array can be formed. Specifically, an etching solution with a high etching selectivity for the sacrificial layer material can be used to remove the sacrificial layer 102 in the first stack region 320 to expose the semiconductor layer 101 in the first stack layer 320 . The semiconductor layers 101 are not connected to each other and are suspended from each other. A capacitive structure is formed based on said semiconductor layer 101 . The height between the semiconductor layers 101 (along the Z direction) and the length of the semiconductor layer 101 itself (along the Y direction) determine the size of the capacitor structure to a certain extent.
继续执行步骤S803、在如图34所示的半导体层101的表面进行金属硅化处理,使得半导体层的表层硅被处理为金属硅化物,形成如图35所示的覆盖在半导体层的表面的金属硅化物层780。金属硅化物包括但不限于硅化钛、硅化锆、硅化钽、硅化钨等等。一方面,金属硅化物可以避免半导体层中的Si与氧气反应从而生成致密的氧化膜,故金属硅化物层780可作为半导体层的保护层。另一方面,金属硅化物的电阻率低,其还可用于降低后续形成的存储电容的接触电阻。Step S803 is continued to perform a metal silicide treatment on the surface of the semiconductor layer 101 as shown in Figure 34, so that the surface silicon of the semiconductor layer is processed into metal silicide, forming a metal covering the surface of the semiconductor layer as shown in Figure 35. Silicide layer 780. Metal silicides include, but are not limited to, titanium silicide, zirconium silicide, tantalum silicide, tungsten silicide, and the like. On the one hand, metal silicide can prevent Si in the semiconductor layer from reacting with oxygen to form a dense oxide film, so the metal silicide layer 780 can serve as a protective layer for the semiconductor layer. On the other hand, metal silicide has a low resistivity, which can also be used to reduce the contact resistance of a subsequently formed storage capacitor.
继续执行步骤S804、在金属硅化处理后的半导体层表面覆盖第一金属材料,形成如图36所示的第一金属材料层790,后续用于形成堆叠的多层存储电容的下电极。可以使用生长工艺或沉积工艺(例如,原子层沉积)向进行了金属硅化物处理后的半导体层的表面(包括平行于XY平面的上下表面、YZ方向的侧壁)沉积第一金属材料。Step S804 is continued to cover the surface of the semiconductor layer after metal silicide treatment with a first metal material to form a first metal material layer 790 as shown in FIG. 36 , which is subsequently used to form a lower electrode of a stacked multi-layer storage capacitor. A growth process or a deposition process (eg, atomic layer deposition) may be used to deposit the first metal material onto the surface of the semiconductor layer (including the upper and lower surfaces parallel to the XY plane and the sidewalls in the YZ direction) after the metal silicide treatment.
在一些实施例中,第一金属材料还会沉积到该半导体结构所有暴露的表面上,例如,连接相邻半导体层之间的第一隔离层的侧壁(平行于YZ方向)、去除第一绝缘材料后的凹槽的衬底表面上、支撑 结构的上表面等等。In some embodiments, the first metal material is also deposited on all exposed surfaces of the semiconductor structure, for example, connecting sidewalls of the first isolation layer between adjacent semiconductor layers (parallel to the YZ direction), removing the first On the substrate surface of the groove behind the insulating material, on the upper surface of the support structure, etc.
后续可以去除连接相邻半导体层之间的第一隔离层在YZ方向上的至少部分侧壁,使得相邻半导体层覆盖的第一金属材料彼此互不连接,即每个电容的下电极是互不相连的。Subsequently, at least part of the sidewalls of the first isolation layer connecting adjacent semiconductor layers in the YZ direction can be removed, so that the first metal materials covered by the adjacent semiconductor layers are not connected to each other, that is, the lower electrodes of each capacitor are interconnected. Disconnected.
然后执行步骤S805、使用生长工艺或沉积工艺(例如,原子层沉积)在第一金属材料层的表面覆盖如图37所示的介电层791。介电层的材料可选用高k(介电系数)介电质材料,例如,氧化锆(ZrOX)、氧化铪(HfO x)。介电层791可以形成在第一隔离层在YZ方向上的侧壁上,且该侧壁与多个表面覆盖了介电层791的半导体层连接。即多个电容中的介电层可以是相互连接的。 Then step S805 is performed, using a growth process or a deposition process (eg, atomic layer deposition) to cover the surface of the first metal material layer with the dielectric layer 791 as shown in FIG. 37 . The material of the dielectric layer may be a high-k (dielectric coefficient) dielectric material, such as zirconium oxide (ZrOX) or hafnium oxide (HfO x ). The dielectric layer 791 may be formed on the sidewall of the first isolation layer in the YZ direction, and the sidewall is connected to a plurality of semiconductor layers whose surfaces are covered with the dielectric layer 791. That is, the dielectric layers in multiple capacitors can be connected to each other.
然后执行步骤S806、使用生长工艺或沉积工艺(例如,原子层沉积)在介电层791的表面覆盖第三金属材料,形成电容结构的上电极。步骤S906中覆盖的第三金属材料还可以形成在第一隔离层在YZ方向上的侧壁的上,且该侧壁与表面覆盖了第三金属材料的多个半导体层连接。即多个电容的上电极可以是相互连接的。第一金属材料与第三金属材料可以相同也可以不同。Then step S806 is performed, using a growth process or a deposition process (eg, atomic layer deposition) to cover the surface of the dielectric layer 791 with a third metal material to form an upper electrode of the capacitor structure. The third metal material covered in step S906 may also be formed on the sidewall of the first isolation layer in the YZ direction, and the sidewall is connected to a plurality of semiconductor layers whose surfaces are covered with the third metal material. That is, the upper electrodes of multiple capacitors can be connected to each other. The first metal material and the third metal material may be the same or different.
然后执行步骤S807、使用生长工艺或沉积工艺在覆盖有上电极的硅柱阵列内以及各第一堆叠区之间覆盖有上电极的第二凹槽内填充多晶硅材料,以形成图38所示的多晶硅层793。多晶硅材料的填充后的上表面高度与隔离材料的上表面高度平齐,在一些实施例中,若填充的多晶硅材料的上表面高度超过了隔离材料的上表面高度,可以通过CMP的方式去除多余的多晶硅材料。本公开实施例中,还可通过CMP的方式去除高于隔离材料上表面的第一金属材料、介电层材料,以形成如图38所示的半导体结构,其包括与电容上电极连接的多晶硅层793。填充的多晶硅材料可作为多个电容的上电极的共同连接层,连接至外部电路。Then step S807 is performed, using a growth process or a deposition process to fill the polysilicon material in the silicon pillar array covered with the upper electrode and in the second groove covered with the upper electrode between the first stacking areas to form the polysilicon material shown in Figure 38 Polysilicon layer 793. The height of the upper surface of the filled polysilicon material is flush with the height of the upper surface of the isolation material. In some embodiments, if the height of the upper surface of the filled polysilicon material exceeds the height of the upper surface of the isolation material, the excess can be removed by CMP. polycrystalline silicon material. In the embodiment of the present disclosure, CMP can also be used to remove the first metal material and dielectric layer material higher than the upper surface of the isolation material to form a semiconductor structure as shown in Figure 38, which includes polysilicon connected to the upper electrode of the capacitor. Layer 793. The filled polysilicon material can serve as a common connection layer for the upper electrodes of multiple capacitors to connect to external circuits.
在一些实施例中,在形成堆叠的多个电容结构之后,该方法还包括:In some embodiments, after forming the stacked plurality of capacitor structures, the method further includes:
步骤S901、去除图38中位于第一堆叠区320的第二端D2的隔离材料,并同时去除靠近第一堆叠区320的第二端D2的至少部分第一隔离层,形成图40A中所示的位于电容结构两端的沟槽912。这是因为电容结构与第一堆叠区320的第二端D2相结合的侧壁S2(沿YZ方向,与衬底表面垂直)沉积有第一金属材料;电容结构与第一隔离层相结合的侧壁S3(沿YZ方向,与衬底表面垂直)也沉积有第一金属材料,第一金属材料将各半导体层之间的多个电容结构连接在了一起,此时可以去除多个电容结构连接处的部分第一金属材料,使得各电容结构的下极板分开,从而使得各电容结构分开。具体地,可以在如图38所示的半导体结构的上表面覆盖一层光刻胶,使用带图案的掩膜版对准需要去除的部分,其中,掩膜版图案对应部分为第一堆叠区320的第二端D2的隔离材料所在区域与第一隔离材料的所在区域,然后进行曝光。该光刻胶可为负胶,则与掩膜版图案对应部分的光刻胶被去除,如图39中所示剩余光刻胶层为第一光刻胶层900。对图39中未被第一光刻胶层900覆盖的半导体结构进行向下刻蚀,并形成如图40A所示的位于电容结构两端的沟槽912,其包括第一沟槽910以及第二沟槽911。Step S901, remove the isolation material located at the second end D2 of the first stacking area 320 in Figure 38, and simultaneously remove at least part of the first isolation layer close to the second end D2 of the first stacking area 320, forming the structure shown in Figure 40A trenches 912 located at both ends of the capacitor structure. This is because the first metal material is deposited on the sidewall S2 (along the YZ direction, perpendicular to the substrate surface) of the capacitor structure combined with the second end D2 of the first stacking region 320; the capacitor structure is combined with the first isolation layer. The sidewall S3 (along the YZ direction, perpendicular to the substrate surface) is also deposited with a first metal material. The first metal material connects multiple capacitor structures between the semiconductor layers. At this time, the multiple capacitor structures can be removed. The part of the first metal material at the connection separates the lower plates of each capacitor structure, thereby separating each capacitor structure. Specifically, the upper surface of the semiconductor structure as shown in Figure 38 can be covered with a layer of photoresist, and a patterned mask can be used to align the parts that need to be removed, where the corresponding part of the mask pattern is the first stacking area The area where the isolation material is located at the second end D2 of 320 and the area where the first isolation material is located are then exposed. The photoresist may be a negative resist, and then the photoresist corresponding to the mask pattern is removed. As shown in FIG. 39, the remaining photoresist layer is the first photoresist layer 900. The semiconductor structure not covered by the first photoresist layer 900 in FIG. 39 is etched downward, and trenches 912 located at both ends of the capacitor structure as shown in FIG. 40A are formed, which include the first trench 910 and the second trench 912 . Trench 911.
步骤S902、在图40A所示的沟槽912中填充绝缘材料。使用生长工艺或沉积工艺在电容结构两端的沟槽912中均填充绝缘材料可以避免该半导体结构中的电容结构产生的漏电现象,同时可以将电容结构与其他结构(例如,外围电路区)进行电性隔离。Step S902: Fill the trench 912 shown in FIG. 40A with insulating material. Using a growth process or a deposition process to fill the trenches 912 at both ends of the capacitor structure with insulating materials can avoid the leakage phenomenon caused by the capacitor structure in the semiconductor structure, and at the same time, the capacitor structure can be electrically connected to other structures (for example, peripheral circuit areas). Sexual isolation.
在一些实施例中,在形成如24A所示的第一隔离层600之后,该方法还包括:In some embodiments, after forming the first isolation layer 600 as shown in 24A, the method further includes:
步骤S1001、沿第二方向(即Y方向),在第二堆叠区310对未被第一隔离层600覆盖的半导体层101进行金属硅化处理,形成图25中的形成第一金属硅化物结构700;Step S1001: Along the second direction (ie, Y direction), perform a metal silicide treatment on the semiconductor layer 101 not covered by the first isolation layer 600 in the second stacking region 310 to form the first metal silicide structure 700 in FIG. 25 ;
具体地,沿Y方向,对第二堆叠区310中的半导体层101(此时已经去除了第二堆叠区中的牺牲层)进行金属硅化物处理,使得半导体层101的表层硅被处理为金属硅化物。例如,硅化钛、硅化锆、硅化钽、硅化钨等等。金属硅化物可作为半导体层101的保护层。金属硅化物的电阻率低,其还可用于降低后续形成的位线的接触电阻。Specifically, along the Y direction, the semiconductor layer 101 in the second stacking area 310 (the sacrificial layer in the second stacking area has been removed at this time) is subjected to metal silicide treatment, so that the surface silicon of the semiconductor layer 101 is processed into metal. silicide. For example, titanium silicide, zirconium silicide, tantalum silicide, tungsten silicide, etc. Metal silicide can serve as a protective layer for the semiconductor layer 101 . Metal silicide has a low resistivity and can also be used to reduce the contact resistance of subsequently formed bit lines.
步骤S1002、继续在半导体层的表面覆盖第二金属材料,形成如图27A所示的第二金属结构711。具体地,可以使用生长工艺或沉积工艺(例如,原子层沉积)向覆盖了金属硅化物的半导体层的表面(包括平行于XY平面的上下表面、YZ方向的侧壁)沉积第二金属材料,该第二金属结构711用于后续形成位线结构。在一些实施例中,在沉积第二金属材料时,还会沉积到半导体结构的上表面上,形成如图26中所示的第二金属材料层710。此时可以通过CMP工艺去除半导体结构第二堆叠区及第二绝缘结构上表面覆盖的多余的第二金属材料,形成图27A所示的,位于第二堆叠区的半导体层上的第二金属结构711。Step S1002: Continue to cover the surface of the semiconductor layer with a second metal material to form a second metal structure 711 as shown in FIG. 27A. Specifically, a growth process or a deposition process (for example, atomic layer deposition) may be used to deposit a second metal material onto the surface of the semiconductor layer covered with metal silicide (including upper and lower surfaces parallel to the XY plane and sidewalls in the YZ direction), The second metal structure 711 is used to subsequently form a bit line structure. In some embodiments, when the second metal material is deposited, it is also deposited on the upper surface of the semiconductor structure to form a second metal material layer 710 as shown in FIG. 26 . At this time, the excess second metal material covering the upper surface of the second stacking region of the semiconductor structure and the second insulating structure can be removed through the CMP process to form a second metal structure located on the semiconductor layer of the second stacking region as shown in FIG. 27A 711.
步骤S1003、刻蚀第二堆叠区中各层半导体层沿第三方向(即Z方向)之间连接处的部分第二金属材料,使各层半导体层在第三方向连接的第二金属材料之间相互分离;第三方向垂直于第一方向与第二方向。即去除连接在相邻半导体层之间、且覆盖在第一隔离层YZ侧壁上至少部分第二金属材料,使得覆盖了第二金属材料的各层半导体层之间相互分离。如图27C所示,第二堆叠区中,覆盖有第二金属材料的半导体层可作为第一位线结构712,多个第一位线结构712在Z方向上堆叠,且彼此之间分离。第一位线结构712可作为目标位线结构也可作为用于形成最终位线结构的中间结构。Step S1003: Etch part of the second metal material at the connection between the semiconductor layers in the second stacking region along the third direction (i.e., the Z direction), so that the second metal material between the semiconductor layers connected in the third direction is etched. are separated from each other; the third direction is perpendicular to the first direction and the second direction. That is, at least part of the second metal material connected between adjacent semiconductor layers and covering the sidewalls of the first isolation layer YZ is removed, so that the semiconductor layers covered with the second metal material are separated from each other. As shown in FIG. 27C , in the second stacking area, the semiconductor layer covered with the second metal material can serve as the first first line structure 712, and multiple first line structures 712 are stacked in the Z direction and separated from each other. The first bit line structure 712 may serve as a target bit line structure or as an intermediate structure for forming the final bit line structure.
步骤S1004、在图27C所示的各层覆盖有第二金属材料的半导体层(即第一位线结构712)之间以及第二堆叠区远离第一堆叠区的一侧填充绝缘材料形成如图28所示的第四绝缘结构720。Step S1004: Fill insulating material between the semiconductor layers covered with the second metal material (i.e., the first line structure 712) and the side of the second stacking region away from the first stacking region as shown in FIG. 27C, as shown in FIG. The fourth insulation structure 720 shown in 28.
通过在第一位线结构712之间填充绝缘材料,实现对相邻的第一位线结构712之间的电性隔离。通过对对第二堆叠区远离第一堆叠区的一侧也填充绝缘材,可起到对多个第一位线结构712的支撑作用。By filling insulating material between the first bit line structures 712, electrical isolation between adjacent first bit line structures 712 is achieved. By also filling the side of the second stacking area away from the first stacking area with insulating material, the plurality of first-order line structures 712 can be supported.
在一些实施例中,该方法还包括:In some embodiments, the method further includes:
步骤S1101、对位线结构进行处理,形成长度由下到上依次递减的台阶结构;可继续对位线结构进行刻蚀处理,Step S1101: Process the bit line structure to form a step structure whose length decreases from bottom to top; the bit line structure can continue to be etched.
步骤S1102、在每层台阶结构上形成位线引出结构。Step S1102: Form a bit line lead-out structure on each layer of step structure.
位线结构可通过台阶(Staircase)的方式引出。台阶可为由下到上沿Y方向长度递减的结构。具体的刻蚀台阶的方式可为,对位线结构的第一端的第一区间刻蚀第一深度,对位线结构的第一端的第二区间刻蚀第二深度,以此类推,直到形成所有台阶。其中第一深度大于第二深度,第一区间为最下层的位线结构相对于倒数第二层的位线结构突出的长度。The bit line structure can be introduced through a staircase. The steps may be a structure whose length decreases along the Y direction from bottom to top. A specific method of etching the steps may be: etching the first interval at the first end of the bit line structure to a first depth, etching the second interval at the first end of the bit line structure to a second depth, and so on. until all steps are formed. The first depth is greater than the second depth, and the first interval is the protruding length of the bit line structure of the lowest layer relative to the bit line structure of the penultimate layer.
上述步骤S1102中,在每层台阶结构上形成位线引出结构,即在步骤S1101形成的沿Y方向长度不同的台阶上,形成金属通孔,作为位线引出结构连接到其他的导线上。In the above-mentioned step S1102, a bit line lead-out structure is formed on each layer of the step structure, that is, metal through holes are formed on the steps with different lengths along the Y direction formed in step S1101, and are connected to other conductors as the bit line lead-out structure.
本公开实施例还提供一种半导体结构,该半导体结构如上述实施例任一所述的方法形成。包括:An embodiment of the present disclosure also provides a semiconductor structure, which is formed by the method described in any of the above embodiments. include:
沿第一方向延伸的若干条第一堆叠区;a plurality of first stacking areas extending along the first direction;
连接在多条第一堆叠区的第一端,且沿第二方向延伸的第二堆叠区;第一方向与第二方向垂直;A second stacking area connected to the first ends of the plurality of first stacking areas and extending in a second direction; the first direction is perpendicular to the second direction;
每条第一堆叠区包括堆叠的多个存储结构;Each first stacking area includes a plurality of stacked storage structures;
每条第一堆叠区域还包括位于多个存储结构与第二堆叠区之间的字线结构;字线结构沿垂直于堆叠结构表面的方向延伸;Each first stacking area also includes a word line structure located between the plurality of memory structures and the second stacking area; the word line structure extends in a direction perpendicular to the surface of the stacking structure;
位于字线结构侧壁的第一隔离层;a first isolation layer located on the sidewall of the word line structure;
第二堆叠区包括沿第二方向延伸且多层堆叠的位线结构。The second stacking region includes a multi-layer stacked bit line structure extending along the second direction.
本公开实施例还提供一种存储器,包括:An embodiment of the present disclosure also provides a memory, including:
如上述实施例任一的方法形成的半导体结构。A semiconductor structure formed by the method of any of the above embodiments.
本公开实施例还包括以下示例:Embodiments of the present disclosure also include the following examples:
步骤S601、提供衬底,该衬底材料可为Si。Step S601: Provide a substrate, and the substrate material may be Si.
步骤S602、在衬底上依次交替堆叠半导体材料和牺牲层材料,本公开实施例中,该半导体材料可为Si,牺牲层材料可为SiGe。形成如图10所示的半导体结构。该半导体结构由下至上依次为衬底100、交替堆叠的第一牺牲层202以及第一半导体层201。该半导体结构的上表面S1可同时为最上层的第一半导体层201的上表面。在另一些实施例中,衬底的材料可以与半导体层的半导体材料不相同。Step S602: Stack semiconductor materials and sacrificial layer materials alternately on the substrate in sequence. In the embodiment of the present disclosure, the semiconductor material may be Si and the sacrificial layer material may be SiGe. A semiconductor structure as shown in Figure 10 is formed. The semiconductor structure includes a substrate 100, alternately stacked first sacrificial layers 202 and first semiconductor layers 201 from bottom to top. The upper surface S1 of the semiconductor structure may also be the upper surface of the uppermost first semiconductor layer 201 . In other embodiments, the material of the substrate may be different from the semiconductor material of the semiconductor layer.
步骤S603、沿X方向刻蚀上述堆叠的第一牺牲层202以及第一半导体层201,形成如图11所示的堆叠结构300,堆叠结构300沿平行于Y方向的截面AA’可以划分为:包括沿X方向延伸的若干条第一堆叠区320,其包括交替堆叠的牺牲层102与半导体层101;以及连接在多条第一堆叠区320的第一端D1,且沿Y方向延伸的第二堆叠区310,其包括交替堆叠的牺牲层102与半导体层101。这里将第一堆叠区320在X方向上与第二堆叠区320连接的一端称作第一端D1,将第一堆叠区320在X方向上远离第二堆叠区320的一端称作第二端D2。这里还可以将第二端D2指向第一端D1的方向定义为X负方向,将第一端D1指向第二端D2的方向定义为X正方向。堆叠结构300位于衬底100上,堆叠结构300以外的区域定义为刻蚀形成的凹槽400。如图11所示,从Z方向朝下看,衬底100所显露的区域(即未被堆叠结构300所覆盖的衬底)可为凹槽400的所在区域。Step S603: Etch the above-mentioned stacked first sacrificial layer 202 and first semiconductor layer 201 along the X direction to form a stacked structure 300 as shown in Figure 11. The stacked structure 300 can be divided into: It includes several first stacking regions 320 extending along the X direction, including alternately stacked sacrificial layers 102 and semiconductor layers 101; and a first end D1 connected to the plurality of first stacking regions 320 and extending along the Y direction. Two stacking regions 310 include alternately stacked sacrificial layers 102 and semiconductor layers 101 . Here, the end of the first stacking area 320 connected to the second stacking area 320 in the X direction is called the first end D1, and the end of the first stacking area 320 away from the second stacking area 320 in the X direction is called the second end. D2. Here, the direction in which the second end D2 points to the first end D1 can also be defined as the negative X direction, and the direction in which the first end D1 points to the second end D2 can be defined as the positive X direction. The stacked structure 300 is located on the substrate 100, and the area outside the stacked structure 300 is defined as a groove 400 formed by etching. As shown in FIG. 11 , looking downward from the Z direction, the exposed area of the substrate 100 (that is, the substrate not covered by the stacked structure 300 ) may be the area where the groove 400 is located.
步骤S604、在刻蚀后形成的凹槽400内填充绝缘材料,绝缘材料可为氧化物(Oxide),以形成如图12所示的半导体结构,该半导体结构包括位于上述凹槽400中的由氧化物形成的绝缘结构410。绝缘结构410分别包括位于第二堆叠区在X负方向一侧的第一绝缘结构411,第一堆叠区在Y方向一侧/或两侧的第二绝缘结构412以及第一堆叠区的第二端D2在X正方向一侧的第三绝缘结构413。Step S604: Fill the groove 400 formed after etching with an insulating material. The insulating material may be oxide (Oxide) to form a semiconductor structure as shown in FIG. 12. The semiconductor structure includes a semiconductor structure located in the groove 400. Insulating structure 410 formed by oxide. The insulation structures 410 respectively include a first insulation structure 411 located on one side of the second stacking area in the negative direction in the The end D2 is the third insulation structure 413 on the side of the positive X direction.
步骤S701、在第一堆叠区320远离第二堆叠区310的第二端D2,刻蚀相邻第一堆叠区320在第二端D2之间的绝缘材料,形成如图13所示的位于相邻的第一堆叠区320之间的开槽402,开槽402在X方向上的长度为X4,开槽402在Y方向上的宽度为相邻第一堆叠区320在Y方向上的间距Y1。在本公开实施例中,第二绝缘结构412在Z方向的厚度可大于或等于开槽402在Z方向的深度。Step S701: At the second end D2 of the first stacking region 320 away from the second stacking region 310, etch the insulating material between the adjacent first stacking regions 320 at the second end D2 to form an insulating layer located between the adjacent first stacking regions 320 as shown in Figure 13. The length of the slot 402 between adjacent first stacking areas 320 in the X direction is X4, and the width of the slot 402 in the Y direction is the distance Y1 between adjacent first stacking areas 320 in the Y direction. . In the embodiment of the present disclosure, the thickness of the second insulation structure 412 in the Z direction may be greater than or equal to the depth of the slot 402 in the Z direction.
步骤S702、在上述开槽402内填充第四隔离材料,该第四隔离材料可为SiN,以形成如图14所示的半导体结构。该半导体结构包括位于开槽402内的由第四隔离材料SiN构成的第一支撑结构420,故第一支撑结构420在X方向上的长度为X4,在Y方向上的长度为Y1。Step S702: Fill the groove 402 with a fourth isolation material, which may be SiN, to form a semiconductor structure as shown in FIG14. The semiconductor structure includes a first support structure 420 located in the groove 402 and made of the fourth isolation material SiN. Therefore, the length of the first support structure 420 in the X direction is X4, and the length in the Y direction is Y1.
步骤S703、去除图14所示的第一堆叠区320的第二端D2远离第二堆叠区310一侧的绝缘材料(即去除第三绝缘结构413)以形成如图15所示的第一开口401。去除第三绝缘结构413后继续从第二端D2开始沿X负方向侧向刻蚀第一堆叠区320中的部分牺牲层102,所去除的部分牺牲层102在X方向上的长度可为X5,如此形成如图15所示的第二多层空隙500,相邻第二多层空隙500之间为半导体层101。Step S703: Remove the insulating material on the side of the second end D2 of the first stacking area 320 away from the second stacking area 310 shown in Figure 14 (ie, remove the third insulating structure 413) to form the first opening as shown in Figure 15 401. After removing the third insulating structure 413, continue to etch laterally from the second end D2 in the negative X direction to part of the sacrificial layer 102 in the first stacking region 320. The length of the removed part of the sacrificial layer 102 in the X direction may be X5 , thus forming the second multi-layer void 500 as shown in FIG. 15 , with the semiconductor layer 101 between adjacent second multi-layer voids 500 .
步骤S704、在图15所示的刻蚀掉部分牺牲层的第一堆叠区320的第二端D2即第二多层空隙500与第一开口401中填充第五隔离材料形成第二支撑结构421,第五隔离材料可为SiN。第二支撑结构421与上述第一支撑结构420共同形成如图16所示的支撑结构430。支撑结构430用于对第一堆叠区320起到支撑作用。在另一些实施例中,步骤S702所使用的第四隔离材料与步骤S704中所使用的第五隔离材料可以不同。Step S704: Fill the second end D2 of the first stacking region 320 with part of the sacrificial layer etched away, that is, the second multi-layer gap 500 and the first opening 401 shown in FIG. 15, with the fifth isolation material to form the second support structure 421. , the fifth isolation material may be SiN. The second support structure 421 and the above-mentioned first support structure 420 together form a support structure 430 as shown in FIG. 16 . The support structure 430 is used to support the first stacking area 320 . In other embodiments, the fourth isolation material used in step S702 and the fifth isolation material used in step S704 may be different.
步骤S102、沿X正方向刻蚀如图16中所示的第二堆叠区310以及部分第一堆叠区320的牺牲层102。在执行步骤S102之前,可以通过刻蚀工艺去除第一隔离结构411,并以第二堆叠区的侧壁作为刻蚀停止层,以形成如图17所示的包括第二开口403的半导体结构。然后基于图17所示的半导体结构继续执行步骤S102,沿X正方向侧向刻蚀第二堆叠320中的全部牺牲层和第一堆叠区310中长度为 L3的牺牲层,形成如图18A至18B所示的第一多层空隙510。即第一多层空隙510在X方向上的长度L1等于第二堆叠区310的牺牲层在X方向上的长度L2与第一堆叠区320在X方向上刻蚀掉的长度L3之和。图18B为图18A中的第一多层空隙510的放大示意图。Step S102, etching the sacrificial layer 102 of the second stacking area 310 and part of the first stacking area 320 as shown in FIG16 along the positive X direction. Before performing step S102, the first isolation structure 411 can be removed by an etching process, and the sidewall of the second stacking area is used as an etching stop layer to form a semiconductor structure including a second opening 403 as shown in FIG17. Then, based on the semiconductor structure shown in FIG17, step S102 is continued to be performed, and all sacrificial layers in the second stack 320 and sacrificial layers with a length of L3 in the first stacking area 310 are laterally etched along the positive X direction to form a first multi-layer gap 510 as shown in FIGS. 18A to 18B. That is, the length L1 of the first multi-layer gap 510 in the X direction is equal to the sum of the length L2 of the sacrificial layer of the second stacking area 310 in the X direction and the length L3 etched away in the X direction of the first stacking area 320. FIG18B is an enlarged schematic diagram of the first multi-layer gap 510 in FIG18A.
步骤S301、至少向图18A所示的第一多层空隙510中填充第一隔离材料,该第一隔离材料可为SiN。在一些实施例中,还可以使用第一隔离材料填充第二开口403以及第一多层空隙510所在位置,形成如图19所示的第一隔离结构610。Step S301: Fill at least the first multi-layer gap 510 shown in FIG. 18A with a first isolation material. The first isolation material may be SiN. In some embodiments, the first isolation material can also be used to fill the second opening 403 and the location of the first multi-layer gap 510 to form a first isolation structure 610 as shown in FIG. 19 .
步骤S302、沿X正方向对图19中的第一隔离结构610位于第一区间X1外的部分进行刻蚀,所保留的第一隔离结构610如图18所示可记为第一隔离部分611,即第一隔离部分在X方向上的长度为X1,第一隔离部分611在Z方向上与第一堆叠区320中的半导体层相接触,第一隔离部分611的长度X1可用于定义晶体管源极或漏极的长度。如图20所示,在执行完步骤S302之后,该半导体结构在第二堆叠区310沿X负方向一侧仍具有第二开口403。Step S302: Etch the portion of the first isolation structure 610 outside the first interval X1 in Figure 19 along the positive direction of X. The remaining first isolation structure 610 can be recorded as the first isolation portion 611 as shown in Figure 18 , that is, the length of the first isolation portion 611 in the X direction is X1, the first isolation portion 611 is in contact with the semiconductor layer in the first stacking region 320 in the Z direction, and the length pole or drain length. As shown in FIG. 20 , after step S302 is performed, the semiconductor structure still has a second opening 403 on one side of the second stacking region 310 along the negative X direction.
步骤S303、沿X正方向,继续向图20中的第一多层空隙510中未被第一隔离材料填充的剩余区间填充第二隔离材料,形成如图21所示的第二隔离结构620。第二隔离材料可为低介电常数材料,即介电常数(k)比较低(低于SiO 2)的电介质,其包括但不限于无机多孔材料(例如,氧化硅多孔材料、氮化硅多孔材料等等)以及有机多孔材料(例如,聚乙烯多孔材料等等)。在本公开实施例中,第二隔离材料可不同于第一隔离材料。 Step S303: Continue to fill the remaining intervals of the first multi-layer gap 510 in Figure 20 that are not filled with the first isolation material with the second isolation material along the positive X direction to form the second isolation structure 620 as shown in Figure 21. The second isolation material may be a low dielectric constant material, that is, a dielectric with a relatively low dielectric constant (k) (lower than SiO 2 ), which includes but is not limited to inorganic porous materials (for example, silicon oxide porous materials, silicon nitride porous materials materials, etc.) and organic porous materials (e.g., polyethylene porous materials, etc.). In embodiments of the present disclosure, the second isolation material may be different from the first isolation material.
步骤S304、沿X正方向,对图21中的第二隔离结构620位于第二区间X2外的部分进行刻蚀,形成如图22所示的第二隔离部分621。图22为填充有第一隔离部分611与第二隔离部分621的第一多层空隙的局部放大图。第二隔离部分621在Z方向上与第一堆叠区中的半导体层相接触。第二隔离部分621在X方向上的长度X2可用于定义晶体管的栅极长度。在后续步骤中可以用栅极材料替换第二隔离材料制作晶体管的栅极结构。如图22所示,刻蚀第二隔离结构620后在第二堆叠区310沿X负方向一侧仍具有第二开口403。Step S304: Etch the portion of the second isolation structure 620 outside the second interval X2 in Figure 21 along the positive X direction to form a second isolation portion 621 as shown in Figure 22. FIG. 22 is a partial enlarged view of the first multi-layer void filled with the first isolation portion 611 and the second isolation portion 621 . The second isolation portion 621 is in contact with the semiconductor layer in the first stacking region in the Z direction. The length X2 of the second isolation portion 621 in the X direction may be used to define the gate length of the transistor. In subsequent steps, the gate material can be used to replace the second isolation material to produce the gate structure of the transistor. As shown in FIG. 22 , after etching the second isolation structure 620 , there is still a second opening 403 on the side of the second stacking region 310 along the negative X direction.
步骤S305、沿X正方向,继续向图22中的第一多层空隙510中未被第一隔离材料和第二隔离材料填充的剩余部分继续填充第一隔离材料。第一隔离材料还填充在第二开口403中,形成如图23所示的包含第三隔离结构630、第二隔离部分621以及第一隔离部分611的半导体结构。Step S305: Continue to fill the remaining portion of the first multi-layer gap 510 in FIG. 22 that is not filled with the first isolation material and the second isolation material with the first isolation material along the positive direction of X. The first isolation material is also filled in the second opening 403 to form a semiconductor structure including a third isolation structure 630, a second isolation portion 621 and a first isolation portion 611 as shown in FIG. 23 .
步骤S306、沿X正方向,对图23中的第三隔离结构630位于第三区间X3外的部分进行刻蚀,形成如图24A所示的第三隔离部分631,其在X方向上的长度为X3。第三隔离部分631在X方向上与第一堆叠区中的半导体层相接触。第三隔离部分631在X方向上的长度可用于定义晶体管的源极或漏极的长度。例如,第一隔离部分611在X方向上的长度X1用于定义晶体管的源极(或漏极),则第三隔离部分631在X方向上的长度X3用于定义晶体管的源极(或源极)。后续可继续对在Z方向上与第一隔离部分611以及第二隔离部分接触的第一堆叠区中的半导体层进行不同浓度的离子注入,以形成晶体管的源极和漏极。Step S306: Etch the portion of the third isolation structure 630 outside the third interval X3 in Figure 23 along the positive for X3. The third isolation portion 631 is in contact with the semiconductor layer in the first stacking region in the X direction. The length of the third isolation portion 631 in the X direction may be used to define the length of the source or drain of the transistor. For example, the length X1 of the first isolation portion 611 in the X direction is used to define the source (or drain) of the transistor, and the length X3 of the third isolation portion 631 in the pole). Subsequently, ions of different concentrations may be implanted into the semiconductor layer in the first stack region in contact with the first isolation part 611 and the second isolation part in the Z direction to form the source and drain of the transistor.
经过步骤S301至S306,形成了如图24A、图24B所示的第一隔离层600。其中,图24B为图24A中的第一隔离层600的局部放大图。第一隔离层600包括第一隔离部分611、第二隔离部分621以及第三隔离部分631。且第一隔离层600位于第一堆叠区的半导体层之间,且第一隔离层600的第一端d1与第一堆叠区320的第一端D1在X方向上重叠。After steps S301 to S306, the first isolation layer 600 as shown in FIG. 24A and FIG. 24B is formed. Among them, FIG. 24B is a partial enlarged view of the first isolation layer 600 in FIG. 24A. The first isolation layer 600 includes a first isolation part 611, a second isolation part 621 and a third isolation part 631. The first isolation layer 600 is located between the semiconductor layers of the first stacking region, and the first end d1 of the first isolation layer 600 overlaps the first end D1 of the first stacking region 320 in the X direction.
步骤S1001,沿X方向对图24B所示的第二堆叠区中的未被第一隔离层600覆盖的半导体层101进行金属硅化处理,形成第一金属硅化物结构700。Step S1001 , perform a metal silicide treatment on the semiconductor layer 101 in the second stacking area shown in FIG. 24B that is not covered by the first isolation layer 600 along the X direction to form a first metal silicide structure 700 .
此时的第二堆叠区310仅包括半导体层101。对位于第二堆叠区中的半导体层101使用金属硅化物工艺进行处理,形成如图25所示的覆盖第二堆叠区310中半导体层101表面的金属硅化物700。具体地,首先利用PVD工艺对位于第二堆叠区中的半导体层101的表面沉积一层金属(例如,Ti,Co和NiPt等),然后进行两次快速热退火处理(RTA,Rapid Thermal Annealing)以及一次选择性湿法刻蚀处理,最终在第二堆叠区中的半导体层101的表面形成第一金属硅化物结构700,金属硅化物包括但不限于TiSi2(硅化钛),CoSi2(硅化钴)和镍合金(例如,NiPt、NiAl、NiY)硅化物薄膜等等。本公开实施例中,由于衬底为Si衬底,Si衬底所暴露出来表面也可同时形成金属硅化物。The second stacking region 310 at this time only includes the semiconductor layer 101 . The semiconductor layer 101 located in the second stacking area is processed using a metal silicide process to form a metal silicide 700 covering the surface of the semiconductor layer 101 in the second stacking area 310 as shown in FIG. 25 . Specifically, a PVD process is first used to deposit a layer of metal (for example, Ti, Co, NiPt, etc.) on the surface of the semiconductor layer 101 located in the second stacking area, and then rapid thermal annealing (RTA, Rapid Thermal Annealing) is performed twice. and a selective wet etching process to finally form a first metal silicide structure 700 on the surface of the semiconductor layer 101 in the second stacking region. The metal silicide includes but is not limited to TiSi2 (titanium silicide), CoSi2 (cobalt silicide) and nickel alloy (eg, NiPt, NiAl, NiY) silicide films, etc. In the embodiment of the present disclosure, since the substrate is a Si substrate, metal silicide can also be formed on the exposed surface of the Si substrate at the same time.
步骤S1002、对图25中位于第二堆叠结构中且覆盖有金属硅化物的半导体层101的表面继续覆盖第二金属材料,第二金属材料可为TiN。在实际沉积TiN时,TiN不但会覆盖在第一金属硅化物结构700的表面,还会覆盖在图25所示的半导体结构的上表面S1。故此时从Z方向朝下看该半导体结构,只能看到如图26所示的第二金属材料层710。对非第二堆叠区上的第二金属材料层710,可以使用CMP工艺进行去除。如图27A所示,所保留的位于第二堆叠区上的第二金属材料层710可记为第二金属结构711。Step S1002: Continue to cover the surface of the semiconductor layer 101 located in the second stack structure and covered with metal silicide in FIG. 25 with a second metal material. The second metal material may be TiN. When TiN is actually deposited, TiN will not only cover the surface of the first metal silicide structure 700, but also cover the upper surface S1 of the semiconductor structure shown in FIG. 25. Therefore, when looking down at the semiconductor structure from the Z direction, only the second metal material layer 710 as shown in FIG. 26 can be seen. The second metal material layer 710 on the non-second stacking area may be removed using a CMP process. As shown in FIG. 27A , the remaining second metal material layer 710 located on the second stacking area can be recorded as a second metal structure 711 .
步骤S1003、刻蚀图27B中的各层半导体层在Z方向之间连接处的第二金属材料,使覆盖有第二金属材料的各层半导体层在Z方向上彼此相互分离。在一些实施例中,在沉积第二金属材料时,第二金属材料还会沉积到第一隔离层600的侧壁上,从而第二堆叠区中覆盖由第二金属材料的相邻的半导体层可通过第一隔离层600侧壁所覆盖的第二金属材料连接起来。Step S1003: Etch the second metal material at the connections between the semiconductor layers in the Z direction in FIG. 27B, so that the semiconductor layers covered with the second metal material are separated from each other in the Z direction. In some embodiments, when the second metal material is deposited, the second metal material is also deposited on the sidewalls of the first isolation layer 600, so that the adjacent semiconductor layer covered by the second metal material in the second stacking region They can be connected through the second metal material covered by the sidewalls of the first isolation layer 600 .
本公开实施例中的第二金属结构711的局部放大图如图27B所示,其包括多层堆叠的第一位线结构712,以及相邻第一位线结构712之间的第二金属材料。本公开实施例中,可使用侧向刻蚀工艺将相邻第一位线结构712之间的部分或全部第二金属材料去除,如图27C所示,使得第一位线结构712在Z方向上彼此不相连。后续第一位线结构712还可经过台阶处理工艺形成目标位线结构,各层目标位 线结构可对应控制与其位于同一层的存储单元。A partial enlarged view of the second metal structure 711 in the embodiment of the present disclosure is shown in FIG. 27B , which includes a multi-layer stacked first first line structure 712 and a second metal material between adjacent first first line structures 712 . In the embodiment of the present disclosure, a lateral etching process can be used to remove part or all of the second metal material between adjacent first-order line structures 712, as shown in FIG. 27C, so that the first-order line structure 712 is in the Z direction. are not connected to each other. The subsequent first bit line structure 712 can also undergo a step processing process to form a target bit line structure. The target bit line structure of each layer can correspondingly control the memory cells located on the same layer.
步骤S1004、在图27C所示的各层覆盖有第二金属材料的半导体层之间以及第二堆叠区沿X负方向的一侧填充绝缘材料,该绝缘材料可为氧化物(例如,氮化硅)。其中,各层覆盖有第二金属材料的半导体层为第一位线结构712。即在第一位线结构712之间以及第二堆叠区沿X负方向一侧填充氧化物,形成如图28所示的第四绝缘结构720。第四绝缘结构720不但可以对相邻的第一位线结构712之间进行电性隔离,还可以对第一位线结构712起到支撑作用。Step S1004: Fill insulating material between the semiconductor layers covered with the second metal material as shown in FIG. 27C and on one side of the second stack region along the negative silicon). Among them, each layer of the semiconductor layer covered with the second metal material is the first line structure 712. That is, the oxide is filled between the first first line structure 712 and the side of the second stacking region along the negative X direction to form the fourth insulation structure 720 as shown in FIG. 28 . The fourth insulating structure 720 can not only electrically isolate adjacent first-bit line structures 712, but also play a supporting role in supporting the first-bit line structure 712.
步骤S104、在第一堆叠区320相邻的绝缘材料中形成如图29所示的垂直于堆叠结构表面方向的开口730,该绝缘材料可为氧化物。具体地,可以从第一表面S1沿Z方向刻蚀与第一堆叠区320相连接的部分氧化物并形成开口730。在一些实施例中,开口730在X方向上的坐标轴区间可与第一隔离层中的第二隔离部分621在X方向上坐标轴区间相同,即第二隔离部分621在X方向上的长度为X2,开口730在X方向上的宽度也可以为X2。可以以堆叠结构中最下层的半导体层的上表面所在的平面作为对第一堆叠区320相邻的绝缘材料刻蚀停止层,即开口730的深度可以等于堆叠结构在Z方向的厚度减去一层半导体层在Z方向的厚度。Step S104: Form an opening 730 perpendicular to the surface direction of the stacked structure as shown in FIG. 29 in the insulating material adjacent to the first stacking region 320. The insulating material may be an oxide. Specifically, a portion of the oxide connected to the first stacking region 320 may be etched from the first surface S1 along the Z direction to form the opening 730 . In some embodiments, the coordinate axis interval of the opening 730 in the X direction may be the same as the coordinate axis interval of the second isolation portion 621 in the first isolation layer in the X direction, that is, the length of the second isolation portion 621 in the X direction. is X2, and the width of the opening 730 in the X direction may also be X2. The plane where the upper surface of the lowest semiconductor layer in the stack structure is located can be used as an etching stop layer for the insulating material adjacent to the first stack region 320. That is, the depth of the opening 730 can be equal to the thickness of the stack structure in the Z direction minus one. The thickness of the semiconductor layer in the Z direction.
步骤S401、从图29的开口730处刻蚀第一隔离层,以去除第一隔离层中的第二隔离部分621,所述第二隔离部分621所用的材料包括第二隔离材料。Step S401: Etch the first isolation layer from the opening 730 in Figure 29 to remove the second isolation part 621 in the first isolation layer. The material used for the second isolation part 621 includes the second isolation material.
本公开实施例中,可以通过在开口730处灌入刻蚀液,利用湿法刻蚀工艺去除至少部分第一隔离层,该部分第一隔离层可以是上述第二隔离部分621,以形成如图30所示的半导体结构,该半导体结构包括多个位于第一隔离部分611与第三隔离部分631之间的通孔740。多个通孔740与上述开口730是贯通连接的。后续可以在开口730中形成字线结构,可以在通孔740中形成栅极结构。一个字线结构可用于控制与之互连的多个栅极结构,进一步控制多个晶体管。In the embodiment of the present disclosure, at least part of the first isolation layer can be removed by using a wet etching process by pouring etching liquid into the opening 730. This part of the first isolation layer can be the above-mentioned second isolation portion 621 to form as follows. The semiconductor structure shown in FIG. 30 includes a plurality of through holes 740 located between the first isolation part 611 and the third isolation part 631. The plurality of through holes 740 are connected through the opening 730 . Subsequently, a word line structure may be formed in the opening 730 and a gate structure may be formed in the through hole 740 . A wordline structure can be used to control multiple gate structures interconnected with it, which further controls multiple transistors.
步骤S501、在如图30所示的开口730内的各层半导体层101的表面形成栅极氧化层。Step S501: Form a gate oxide layer on the surface of each semiconductor layer 101 in the opening 730 as shown in FIG. 30 .
例如,可以使用原子层沉积工艺在通孔740和开口730所暴露出的半导体101表面上均沉积一层氧化层薄膜形成图31A中的栅极氧化层751。For example, an atomic layer deposition process may be used to deposit an oxide layer film on both the through hole 740 and the surface of the semiconductor 101 exposed by the opening 730 to form the gate oxide layer 751 in FIG. 31A .
步骤S502、再继续在栅极氧化层751的表面覆盖第一金属材料(例如,TiN(氮化钛))形成图31A中的栅极导电层752。具体地,可以使用生长工艺或沉积工艺在栅极氧化层751的薄膜上继续沉积一层TiN层作为栅极导电层752。在一些实施例中,栅极导电层752还会覆盖在堆叠结构的上表面形成如图31A所示的半导体结构。如图31A所示,栅极氧化层751和栅极导电层752均可位于通孔740和开口730中图31B为图31A中的通孔740和开口730的局部放大图。Step S502: Continue to cover the surface of the gate oxide layer 751 with a first metal material (for example, TiN (titanium nitride)) to form the gate conductive layer 752 in FIG. 31A. Specifically, a growth process or a deposition process may be used to further deposit a TiN layer on the thin film of the gate oxide layer 751 as the gate conductive layer 752. In some embodiments, the gate conductive layer 752 also covers the upper surface of the stacked structure to form a semiconductor structure as shown in FIG. 31A. As shown in FIG. 31A , both the gate oxide layer 751 and the gate conductive layer 752 may be located in the through hole 740 and the opening 730 . FIG. 31B is a partial enlarged view of the through hole 740 and the opening 730 in FIG. 31A .
步骤S503、在覆盖有栅极导电层752的通孔740和开口730内填充第二金属材料,形成图33中所示的字线结构753。具体地,继续向覆盖有栅极氧化层751和栅极导电层752的开口730和通孔740中填满第二金属材料(例如,金属钨W)。在实际填充过程中,第二金属材料、第一金属材料可沉积在图30所示的半导体结构的上表面上,形成如图32所示的上表面为金属钨层753的半导体结构,后续可以使用CMP的方式去除图32所示的半导体结构上表面多余的金属钨层753以及栅极导电层752,以暴露出包含有字线结构的开口730。如图33所示,开口730内的字线结构754包括栅极氧化层751、栅极导电层752以及金属钨层753。其中,金属钨层753用于构成字线。Step S503: Fill the through hole 740 and the opening 730 covered with the gate conductive layer 752 with the second metal material to form the word line structure 753 shown in FIG. 33. Specifically, continue to fill the opening 730 and the through hole 740 covered with the gate oxide layer 751 and the gate conductive layer 752 with the second metal material (for example, metal tungsten W). During the actual filling process, the second metal material and the first metal material can be deposited on the upper surface of the semiconductor structure shown in Figure 30 to form a semiconductor structure with a metal tungsten layer 753 on the upper surface as shown in Figure 32. Subsequently, CMP is used to remove excess metal tungsten layer 753 and gate conductive layer 752 on the upper surface of the semiconductor structure shown in FIG. 32 to expose the opening 730 including the word line structure. As shown in FIG. 33 , the word line structure 754 in the opening 730 includes a gate oxide layer 751 , a gate conductive layer 752 and a metal tungsten layer 753 . Among them, the metal tungsten layer 753 is used to form a word line.
步骤S801、可以使用刻蚀工艺去除图33中第一堆叠区320之间的且位于第六区间X6中的绝缘材料。具体地,可以在如图33所示的半导体结构的上表面S1覆盖一层光刻胶,使用带图案的掩膜版对准需要去除的部分(该图案对应第一堆叠区320之间位于第六区间X6中的绝缘材料所在的区域),然后进行曝光。该光刻胶可为负胶,则与掩膜版图案对应部分的光刻胶被去除,继续对未被光刻胶覆盖的部分进行刻蚀,衬底可作为刻蚀停止层。Step S801: An etching process may be used to remove the insulating material between the first stacking areas 320 in FIG. 33 and located in the sixth interval X6. Specifically, the upper surface S1 of the semiconductor structure as shown in FIG. 33 can be covered with a layer of photoresist, and a patterned mask is used to align the portions that need to be removed (the pattern corresponds to the portion between the first stacking regions 320 ). The area where the insulating material is located in the six intervals X6), and then exposed. The photoresist can be a negative resist, and the photoresist corresponding to the mask pattern is removed, and the parts not covered by the photoresist continue to be etched, and the substrate can be used as an etching stop layer.
步骤S802、可利用湿法刻蚀工艺去除第一堆叠区中的牺牲层,使各层半导体层悬空,如图34所示,形成在每个第二凹槽760两侧的沿Z方向排布和X方向堆叠的半导体柱阵列(例如,硅柱阵列)770。Step S802, a wet etching process can be used to remove the sacrificial layer in the first stacking area, so that each semiconductor layer is suspended, as shown in Figure 34, to form a semiconductor column array (for example, a silicon column array) 770 arranged along the Z direction and stacked in the X direction on both sides of each second groove 760.
步骤S903、对第一堆叠区320中的半导体层101的表面进行金属硅化处理,即对半导体柱阵列770的表面进行金属硅化物处理。在一些实施例中,可以首先利用PVD工艺在硅柱阵列以及衬底硅所暴露的表面沉积一层金属(例如,Ti,Co和NiPt等)。然后进行两次快速热退火处理(RTA,Rapid Thermal Annealing)以及一次选择性湿法刻蚀处理,最终在硅柱阵列表面形成如图35所示的覆盖在硅柱阵列以及衬底硅表面的金属硅化物层780,金属硅化物包括但不限于TiSi2,CoSi2和NiPtSi等薄膜。Step S903, metal silicide treatment is performed on the surface of the semiconductor layer 101 in the first stacking area 320, that is, metal silicide treatment is performed on the surface of the semiconductor column array 770. In some embodiments, a layer of metal (e.g., Ti, Co, NiPt, etc.) can be first deposited on the exposed surface of the silicon column array and the substrate silicon using a PVD process. Then, two rapid thermal annealing processes (RTA, Rapid Thermal Annealing) and a selective wet etching process are performed, and finally a metal silicide layer 780 covering the silicon column array and the substrate silicon surface is formed on the surface of the silicon column array as shown in FIG. 35. The metal silicide includes but is not limited to thin films such as TiSi2, CoSi2, and NiPtSi.
步骤S804、使用沉积工艺在金属硅化处理后的半导体层表面覆盖第一金属材料,第一金属材料可为TiN,形成如图34所示的第一金属材料层790,第一金属材料层790后续可被进一步处理用作与晶体管连接的电容结构的下电极。Step S804: Use a deposition process to cover the surface of the semiconductor layer after metal silicide treatment with a first metal material. The first metal material can be TiN to form a first metal material layer 790 as shown in Figure 34. The first metal material layer 790 follows Can be further processed for use as a lower electrode of a capacitive structure connected to a transistor.
步骤S805、使用沉积工艺在第一金属材料层790的表面覆盖介电材料,形成如图37所示的介电层791。该介电材料可为高介电常数材料,高介电材料是指介电常数高于SiO 2的材料。介电材料的介电常数越高,其形成的电容结构可存储的电容量越多。 Step S805: Use a deposition process to cover the surface of the first metal material layer 790 with a dielectric material to form a dielectric layer 791 as shown in FIG37. The dielectric material may be a high dielectric constant material, which refers to a material with a dielectric constant higher than SiO 2. The higher the dielectric constant of the dielectric material, the more capacitance the capacitor structure formed by it can store.
步骤S806、使用沉积工艺在介电层791的表面覆盖第三金属材料,其中,第三金属材料可为TiN,形成电容结构的上电极。Step S806: Use a deposition process to cover the surface of the dielectric layer 791 with a third metal material, where the third metal material may be TiN to form an upper electrode of the capacitor structure.
至此,所有硅柱阵列以及硅衬底所暴露的表面上均形成有第一金属材料层790、介电层791以及上电极。相邻硅柱之间的上电极彼此不相连。然后执行步骤S807、在覆盖有上电极的各层硅柱之间的空隙内以及覆盖有上电极的第一堆叠区之间的凹槽760内填充多晶硅材料。在一些实施例中,多晶硅材 料还会覆盖在最上层硅柱的上表面上,此时可通过CMP工艺,去除其上表面所沉积的多余的多晶硅材料、介电材料以及第三金属材料。形成如图38所示的半导体结构。如图38所示,该半导体结构包括多晶硅层793。At this point, the first metal material layer 790, the dielectric layer 791 and the upper electrode are formed on all the silicon pillar arrays and the exposed surfaces of the silicon substrate. The upper electrodes between adjacent silicon pillars are not connected to each other. Then step S807 is performed to fill polysilicon material in the gaps between the layers of silicon pillars covered with the upper electrode and in the grooves 760 between the first stacking areas covered with the upper electrode. In some embodiments, the polysilicon material will also cover the upper surface of the uppermost silicon pillar. At this time, the excess polysilicon material, dielectric material and third metal material deposited on the upper surface can be removed through the CMP process. A semiconductor structure as shown in Figure 38 is formed. As shown in Figure 38, the semiconductor structure includes a polysilicon layer 793.
为了将第一金属材料层用作电容结构的下电极,还可将第一金属材料层分成多个相互分离的下电极,使得各个电容结构之间所包含的第一金属材料层之间不进行电性连接。In order to use the first metal material layer as the lower electrode of the capacitor structure, the first metal material layer can also be divided into a plurality of mutually separated lower electrodes, so that the first metal material layer contained between each capacitor structure does not Electrical connection.
步骤S901、去除图38中位于第一堆叠区320的第二端D2的隔离材料,即支撑结构430,并同时去除靠近第一堆叠区320的第二端D2的至少部分第一隔离层,即第一隔离部分611,以形成图40A中所示的位于电容结构两端的沟槽912。本公开实施例中,当沉积第一金属材料时,第一金属材料还会覆盖在第一隔离结构611的侧壁S3上,此时可去除与第一金属材料层相连的部分第一隔离层600(或第一隔离部分611)。本公开实施例中,可去除第一隔离部分611以及覆盖在第一隔离部分611表面S3上的第一金属材料层。从而使各层电容结构所包含的第一金属材料层互不相连。Step S901: Remove the isolation material located at the second end D2 of the first stacking area 320 in FIG. 38, that is, the support structure 430, and simultaneously remove at least part of the first isolation layer close to the second end D2 of the first stacking area 320, that is, First isolation portion 611 to form trenches 912 at both ends of the capacitor structure as shown in Figure 40A. In the embodiment of the present disclosure, when the first metal material is deposited, the first metal material will also cover the sidewall S3 of the first isolation structure 611. At this time, part of the first isolation layer connected to the first metal material layer can be removed. 600 (or first isolation portion 611). In the embodiment of the present disclosure, the first isolation portion 611 and the first metal material layer covering the surface S3 of the first isolation portion 611 can be removed. Therefore, the first metal material layers included in each layer of the capacitor structure are not connected to each other.
第一金属材料还覆盖在支撑结构430所暴露的侧壁S2上。故可同时去除支撑结构430及其侧壁S2所覆盖的第一金属材料层。在步骤S1001后可形成如图40A所示的位于电容结构两端的沟槽912。沟槽912包括第一沟槽910以及第二沟槽911。具体地,可在图38所示的半导体结构上覆盖光刻胶,使用带图案的掩膜版对准需要去除的部分,然后进行曝光。该光刻胶可为负胶,则与掩膜版图案对应部分的光刻胶被去除,剩余的光刻胶如图39所示。然后使用刻蚀工艺对未被图39中光刻胶所覆盖的部分进行去除,形成如图40A所示的半导体结构,该半导体结构所包含的电容结构如图40B所示。电容结构位于表面覆盖有金属硅化物层780的硅柱之间,其包括下电极794,介电层791以及上电极792。上电极792内还具有多晶硅层793。不同电容的下电极794互不相连,不同电容的上电极792通过多晶硅层793连接在一起。The first metal material also covers the exposed side wall S2 of the support structure 430 . Therefore, the first metal material layer covered by the support structure 430 and its side wall S2 can be removed at the same time. After step S1001, trenches 912 located at both ends of the capacitor structure as shown in FIG. 40A may be formed. The groove 912 includes a first groove 910 and a second groove 911 . Specifically, the semiconductor structure shown in FIG. 38 can be covered with photoresist, a patterned mask is used to align the portions that need to be removed, and then exposed. The photoresist can be a negative resist, then the photoresist corresponding to the mask pattern is removed, and the remaining photoresist is as shown in Figure 39. Then, an etching process is used to remove the portion not covered by the photoresist in FIG. 39 to form a semiconductor structure as shown in FIG. 40A. The capacitor structure included in the semiconductor structure is as shown in FIG. 40B. The capacitor structure is located between silicon pillars whose surfaces are covered with a metal silicide layer 780, and includes a lower electrode 794, a dielectric layer 791 and an upper electrode 792. The upper electrode 792 also has a polysilicon layer 793 inside. The lower electrodes 794 of different capacitances are not connected to each other, and the upper electrodes 792 of different capacitances are connected together through the polysilicon layer 793 .
执行步骤S902、在沟槽912中填充绝缘材料。对图40A所示的沟槽912使用生长工艺或沉积工艺填充绝缘材料,例如,氧化物。绝缘材料包裹在晶体管上,对相邻的晶体管进行电性隔离,以减少晶体管的漏电现象。Step S902 is performed to fill the trench 912 with insulating material. The trench 912 shown in Figure 40A is filled with an insulating material, such as an oxide, using a growth process or a deposition process. Insulating material wraps around the transistors to electrically isolate adjacent transistors to reduce leakage from the transistors.
在一些实施例中,还可执行步骤S1101、对图41所示的第一位线结构712进行处理,形成长度由下到上依次递减的台阶结构。可继续对位于不同层的第一位线结构进行不同深度、不同宽度的刻蚀处理。例如,对处于下层的第一位线结构进行更深的刻蚀处理,对于上层的第一位线结构进行较浅的刻蚀处理。对处于下层的第一位线结构沿Y方向的刻蚀宽度要小于对处于上层的第一位线结构沿Y方向的刻蚀宽度,从而形成长度由下至上依次递减的台阶结构的位线结构。In some embodiments, step S1101 may also be performed to process the first bit line structure 712 shown in FIG. 41 to form a step structure whose length decreases from bottom to top. The first line structures located on different layers can be etched with different depths and different widths. For example, a deeper etching process is performed on the first bit line structure in the lower layer, and a shallower etching process is performed on the first bit line structure in the upper layer. The etching width of the lower first bit line structure along the Y direction is smaller than the etching width of the upper first bit line structure along the Y direction, thereby forming a bit line structure with a step structure whose length decreases from bottom to top. .
步骤S1102、在每层台阶结构上形成位线引出结构。可以在每层台阶上未被上一层台阶所覆盖的表面沉积导电材料,形成每层台阶结构上的位线引出结构。Step S1102: Form a bit line lead-out structure on each layer of step structure. Conductive material can be deposited on the surface of each step that is not covered by the previous step to form a bit line lead-out structure on each step structure.
本公开实施例中采用单向侧吃的方式形成存储结构底端框架的支撑结构,在后期形成存储结构的过程中通过刻蚀该支撑结构,并将上下层存储结构连接处的下电极材料去除,从而使上下层电容结构彼此隔绝。在形成AA区之后,采用单向侧吃的方式,并填上不同隔离材料定义出晶体管的源极、漏极以及沟道的长度和范围,单向侧吃的工艺可以避免双向侧吃所导致的栅极结构不规则的问题。本公开实施例还通过对电容结构以及位线结构所连接的Si层均进行了金属硅化物处理,从而增强了电容结构以及位线结构连通的导通性能。In the embodiment of the present disclosure, a one-way side eating method is used to form the support structure of the bottom frame of the storage structure. In the later process of forming the storage structure, the support structure is etched and the lower electrode material at the connection between the upper and lower storage structures is removed. , thereby isolating the upper and lower capacitor structures from each other. After forming the AA area, a one-way side eating method is used and filled with different isolation materials to define the length and range of the source, drain and channel of the transistor. The one-way side eating process can avoid the two-way side eating process caused by The problem of irregular gate structure. Embodiments of the present disclosure also perform metal silicide treatment on the Si layer connected to the capacitor structure and the bit line structure, thereby enhancing the conduction performance of the capacitor structure and the bit line structure.
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本公开的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任一适合的方式结合在一个或多个实施例中。应理解,在本公开的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。It will be understood that reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic associated with the embodiment is included in at least one embodiment of the present disclosure. Thus, the appearances of "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that in various embodiments of the present disclosure, the size of the sequence numbers of the above-mentioned processes does not mean the order of execution. The execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present disclosure. The implementation process constitutes any limitation. The above serial numbers of the embodiments of the present disclosure are only for description and do not represent the advantages and disadvantages of the embodiments.
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, in this document, the terms "comprising", "comprises" or any other variations thereof are intended to cover a non-exclusive inclusion, such that a process, method, article or device that includes a series of elements not only includes those elements, It also includes other elements not expressly listed or inherent in the process, method, article or apparatus. Without further limitation, an element defined by the statement "comprises a..." does not exclude the presence of additional identical elements in a process, method, article or apparatus that includes that element.
以上,仅为本公开的实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。The above are only embodiments of the present disclosure, but the protection scope of the present disclosure is not limited thereto. Any technician familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the present disclosure, which should be included in the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure should be based on the protection scope of the claims.
工业实用性Industrial applicability
本公开实施例通过从侧面单向刻蚀的工艺,在形成AA(Active Area,有源区)区域之后,从一端单向刻蚀中间层,并填上不同隔离材料,定义出晶体管的源极、漏极以及沟道的长度和范围。如此,可以减少对源极与漏极进行双向侧面刻蚀导致的栅极结构不规则问题。The embodiment of the present disclosure uses a unidirectional etching process from the side. After forming the AA (Active Area) region, the middle layer is etched unidirectionally from one end and filled with different isolation materials to define the source of the transistor. , drain and channel length and range. In this way, irregularities in the gate structure caused by bidirectional side etching of the source and drain can be reduced.

Claims (16)

  1. 一种半导体结构的制作方法,所述方法包括:A method of manufacturing a semiconductor structure, the method comprising:
    提供由半导体层和牺牲层交替堆叠的堆叠结构;所述堆叠结构包括沿第一方向延伸的若干条第一堆叠区,以及连接在多条所述第一堆叠区的第一端,且沿第二方向延伸的第二堆叠区;其中,所述第一方向与所述第二方向相交;所述第一堆叠区之间填充有绝缘材料;A stacked structure consisting of semiconductor layers and sacrificial layers stacked alternately is provided; the stacked structure includes a plurality of first stacking regions extending along a first direction, and is connected to the first end of the plurality of first stacking regions and along a first A second stacking area extending in two directions; wherein the first direction intersects the second direction; an insulating material is filled between the first stacking areas;
    沿所述第一方向刻蚀所述第二堆叠区以及部分所述第一堆叠区的所述牺牲层,形成第一多层空隙;所述第二堆叠区的所述半导体层用于形成多个堆叠的位线结构;Etching the sacrificial layer of the second stacking area and part of the first stacking area along the first direction to form a first multi-layer void; the semiconductor layer of the second stacking area is used to form a multi-layer void. A stacked bit line structure;
    填充所述第一多层空隙位于所述第一堆叠区的部分,形成第一隔离层;Filling the portion of the first multi-layer gap located in the first stacking region to form a first isolation layer;
    在所述第一堆叠区相邻的所述绝缘材料中形成垂直于所述堆叠结构表面的开口;forming an opening perpendicular to the surface of the stacked structure in the insulating material adjacent to the first stacking region;
    从所述开口处刻蚀所述第一隔离层,以去除至少部分所述第一隔离层;Etch the first isolation layer from the opening to remove at least part of the first isolation layer;
    在所述开口处形成沿垂直于所述堆叠结构表面方向延伸的字线结构;forming a word line structure extending in a direction perpendicular to the surface of the stacked structure at the opening;
    在所述第一堆叠区形成堆叠的多个存储结构。A plurality of stacked memory structures are formed in the first stacking area.
  2. 根据权利要求1所述的方法,其中,所述牺牲层所用的牺牲层材料与半导体层所用的半导体材料的刻蚀选择比大于或等于第一预设值。The method of claim 1, wherein an etching selectivity ratio of the sacrificial layer material used for the sacrificial layer and the semiconductor material used for the semiconductor layer is greater than or equal to the first preset value.
  3. 根据权利要求2所述的方法,其中,所述牺牲层材料为锗化硅SiGe,所述半导体材料为硅Si。The method of claim 2, wherein the sacrificial layer material is silicon germanium (SiGe), and the semiconductor material is silicon Si.
  4. 根据权利要求1所述的方法,其中,所述填充所述第一多层空隙位于所述第一堆叠区的部分,形成第一隔离层,包括:The method of claim 1, wherein filling a portion of the first multi-layer void located in the first stacking region to form a first isolation layer includes:
    沿所述第一方向,向所述第一多层空隙中依次填充第一隔离材料、第二隔离材料以及所述第一隔离材料,形成所述第一隔离层;其中,所述第一隔离层沿所述第一方向的长度大于或等于所述第一多层空隙位于所述第一堆叠区内的长度。Along the first direction, the first isolation material, the second isolation material and the first isolation material are sequentially filled into the first multi-layer gap to form the first isolation layer; wherein, the first isolation layer A length of a layer along the first direction is greater than or equal to a length of the first multi-layer void within the first stacking region.
  5. 根据权利要求4所述的方法,其中,所述第二隔离材料与所述第一隔离材料的刻蚀选择比大于或等于第二预设值。The method of claim 4, wherein an etching selectivity ratio of the second isolation material to the first isolation material is greater than or equal to a second preset value.
  6. 根据权利要求4所述的方法,其中,所述向所述第一多层空隙中依次填充第一隔离材料、第二隔离材料以及所述第一隔离材料,形成所述第一隔离层,包括:The method of claim 4, wherein the first isolation material, the second isolation material and the first isolation material are sequentially filled into the first multi-layer void to form the first isolation layer, including :
    向所述第一多层空隙中填充第一隔离材料;Filling the first multi-layer void with a first isolation material;
    刻蚀所述第一隔离材料,且保留位于所述第一堆叠区的部分所述第一隔离材料;Etching the first isolation material and retaining a portion of the first isolation material located in the first stacking region;
    向所述第一多层空隙中填充第二隔离材料;Filling the first multi-layer gaps with a second insulating material;
    刻蚀所述第二隔离材料,且保留位于所述第一堆叠区的部分所述第二隔离材料;其中,沿所述第一方向,保留的所述第二隔离材料的长度为预定的栅极长度;Etching the second isolation material, and retaining a portion of the second isolation material located in the first stacking region; wherein, along the first direction, the length of the remaining second isolation material is a predetermined gate pole length;
    再次向所述第一多层空隙中填充所述第一隔离材料;Filling the first multi-layer void with the first isolation material again;
    刻蚀所述第一隔离材料,且保留位于所述第一堆叠区的部分且位于所述第二隔离材料外的所述第一隔离材料。The first isolation material is etched, and the first isolation material located in a portion of the first stacking region and located outside the second isolation material is retained.
  7. 根据权利要求6所述的方法,其中,所述从所述开口处刻蚀所述第一隔离层,以去除至少部分所述第一隔离层,包括:The method of claim 6, wherein etching the first isolation layer from the opening to remove at least part of the first isolation layer includes:
    从所述开口处刻蚀所述第一隔离层,以去除所述第一隔离层中的所述第二隔离材料。The first isolation layer is etched from the opening to remove the second isolation material in the first isolation layer.
  8. 根据权利要求1所述的方法,其中,所述在所述开口处形成沿垂直于所述堆叠结构表面方向延伸的字线结构,包括:The method of claim 1, wherein forming a word line structure extending in a direction perpendicular to a surface of the stacked structure at the opening includes:
    在所述开口内的各层所述半导体层的表面形成栅极氧化层;Form a gate oxide layer on the surface of each layer of the semiconductor layer in the opening;
    在所述栅极氧化层表面覆盖第一导电材料作为栅极导电层;Cover the surface of the gate oxide layer with a first conductive material as a gate conductive layer;
    在覆盖有所述栅极导电层的开口内填充第二导电材料,形成所述字线结构。Fill the opening covered with the gate conductive layer with a second conductive material to form the word line structure.
  9. 根据权利要求1所述的方法,其中,所述提供由半导体层和牺牲层交替堆叠的堆叠结构,包括:The method of claim 1, wherein said providing a stacked structure consisting of semiconductor layers and sacrificial layers alternately stacked includes:
    提供衬底;provide a substrate;
    在所述衬底上依次交替堆叠半导体材料和牺牲层材料;Stack semiconductor materials and sacrificial layer materials alternately on the substrate;
    沿所述第一方向刻蚀堆叠的所述半导体材料和牺牲层材料,形成沿所述第一方向延伸的若干条所述第一堆叠区,以及连接在多条所述第一堆叠区的第一端,且沿所述第二方向延伸的所述第二堆叠区;所述堆叠结构以外的区域为刻蚀形成的凹槽;Etch the stacked semiconductor material and sacrificial layer material along the first direction to form a plurality of first stacking regions extending along the first direction, and a first stacking region connected to the plurality of first stacking regions. One end, and the second stacking area extending along the second direction; the area outside the stacking structure is a groove formed by etching;
    在刻蚀后形成的凹槽内填充所述绝缘材料。The insulating material is filled in the groove formed after etching.
  10. 根据权利要求9所述的方法,其中,所述方法还包括:The method according to claim 9, wherein the method further comprises:
    在所述第一堆叠区远离所述第二堆叠区的第二端,刻蚀所述绝缘材料形成位于相邻的所述第一堆叠区之间的开槽;At a second end of the first stacking area away from the second stacking area, etching the insulating material to form a groove between adjacent first stacking areas;
    在所述开槽内填充隔离材料;Filling the slot with isolation material;
    去除所述第二端远离第一端的一侧的所述绝缘材料,并从所述第二端沿第一方向刻蚀所述第一堆叠区中的部分牺牲层,形成第二多层空隙;Remove the insulating material on a side of the second end away from the first end, and etch part of the sacrificial layer in the first stacking region from the second end in a first direction to form a second multi-layer void ;
    在刻蚀掉部分所述牺牲层的所述第一堆叠区的所述第二端填充所述隔离材料,形成支撑结构。The isolation material is filled in the second end of the first stacking region where part of the sacrificial layer is etched away to form a support structure.
  11. 根据权利要求10所述的方法,其中,所述在所述第一堆叠区形成堆叠的多个存储结构,包括:The method of claim 10, wherein forming a plurality of stacked memory structures in the first stacking area includes:
    去除所述第一堆叠区之间的所述绝缘材料;removing the insulating material between the first stacking regions;
    去除所述第一堆叠区中的所述牺牲层,使各层所述半导体层悬空;Removing the sacrificial layer in the first stacking area to leave each semiconductor layer suspended;
    在所述半导体层的表面进行金属硅化处理;Perform metal silicide treatment on the surface of the semiconductor layer;
    在金属硅化处理后的所述半导体层表面覆盖第一金属材料,形成电容结构的下电极;The surface of the semiconductor layer after metal silicide treatment is covered with a first metal material to form a lower electrode of the capacitor structure;
    在所述下电极的表面覆盖介电层;Cover the surface of the lower electrode with a dielectric layer;
    在所述介电层的表面覆盖第三金属材料,形成所述电容结构的上电极;Cover the surface of the dielectric layer with a third metal material to form an upper electrode of the capacitor structure;
    在形成有所述上电极的相邻半导体层之间的空隙内以及各第一堆叠区之间的凹槽内填充多晶硅材料。Polysilicon material is filled in the gaps between adjacent semiconductor layers where the upper electrode is formed and in the grooves between the first stacking regions.
  12. 根据权利要求11所述的方法,其中,在形成堆叠的多个电容结构之后,所述方法还包括:The method of claim 11 , wherein after forming the stacked plurality of capacitor structures, the method further includes:
    去除所述第一堆叠区的所述第二端的隔离材料,并同时去除所述电容结构靠近所述第一端一侧的至少部分所述第一隔离层,形成位于所述电容结构两端的沟槽;Removing the isolation material at the second end of the first stacking region, and simultaneously removing at least a portion of the first isolation layer on a side of the capacitor structure close to the first end, to form grooves at both ends of the capacitor structure;
    在所述沟槽中填充绝缘材料。The trench is filled with an insulating material.
  13. 根据权利要求1所述的方法,其中,在形成所述第一隔离层之后,所述方法还包括:The method of claim 1, wherein after forming the first isolation layer, the method further includes:
    在所述第二堆叠区沿第二方向对未被所述第一隔离层覆盖的所述半导体层进行金属硅化处理;Performing metal silicide treatment on the semiconductor layer not covered by the first isolation layer in the second stacking region along a second direction;
    在所述半导体层的表面覆盖第二金属材料;Cover the surface of the semiconductor layer with a second metal material;
    刻蚀各层所述半导体层沿第三方向之间连接处的所述第二金属材料,使各层所述半导体层覆盖的第二金属材料之间相互分离;所述第三方向垂直于所述第一方向与第二方向;Etch the second metal material at the connection between each layer of the semiconductor layer along a third direction to separate the second metal materials covered by each layer of the semiconductor layer from each other; the third direction is perpendicular to the The first direction and the second direction;
    在各层覆盖有所述第二金属材料的半导体层之间以及所述第二堆叠区远离第一堆叠区的一侧填充绝缘材料;其中,各层覆盖有所述第二金属材料的半导体层为所述位线结构。An insulating material is filled between each layer of the semiconductor layer covered with the second metal material and on the side of the second stacking area away from the first stacking area; wherein each layer is covered with the semiconductor layer of the second metal material. is the bit line structure.
  14. 根据权利要求13所述的方法,其中,所述方法还包括:The method of claim 13, wherein the method further includes:
    对所述位线结构进行处理,形成长度由下到上依次递减的台阶结构;Process the bit line structure to form a step structure whose length decreases from bottom to top;
    在每层所述台阶结构上形成位线引出结构。A bit line lead-out structure is formed on the step structure of each layer.
  15. 一种半导体结构,所述半导体结构由权利要求1至14任一所述的方法形成。A semiconductor structure formed by the method of any one of claims 1 to 14.
  16. 一种存储器,包括:A memory consisting of:
    如权利要求1至14任一所述的方法形成的半导体结构。A semiconductor structure formed by the method of any one of claims 1 to 14.
PCT/CN2022/124049 2022-09-21 2022-10-09 Semiconductor structure, manufacturing method therefor, and memory WO2024060322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211153060.8A CN117794235A (en) 2022-09-21 2022-09-21 Semiconductor structure, manufacturing method thereof and memory
CN202211153060.8 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024060322A1 true WO2024060322A1 (en) 2024-03-28

Family

ID=90383966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124049 WO2024060322A1 (en) 2022-09-21 2022-10-09 Semiconductor structure, manufacturing method therefor, and memory

Country Status (2)

Country Link
CN (1) CN117794235A (en)
WO (1) WO2024060322A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151546A (en) * 2019-06-27 2020-12-29 三星电子株式会社 Semiconductor memory device with a plurality of memory cells
US11164872B1 (en) * 2020-07-30 2021-11-02 Micron Technology, Inc. Underbody contact to horizontal access devices for vertical three-dimensional (3D) memory
CN114171520A (en) * 2020-09-11 2022-03-11 三星电子株式会社 Semiconductor memory device with a plurality of memory cells
CN114927478A (en) * 2022-05-07 2022-08-19 长鑫存储技术有限公司 Semiconductor structure and forming method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151546A (en) * 2019-06-27 2020-12-29 三星电子株式会社 Semiconductor memory device with a plurality of memory cells
US11164872B1 (en) * 2020-07-30 2021-11-02 Micron Technology, Inc. Underbody contact to horizontal access devices for vertical three-dimensional (3D) memory
CN114171520A (en) * 2020-09-11 2022-03-11 三星电子株式会社 Semiconductor memory device with a plurality of memory cells
CN114927478A (en) * 2022-05-07 2022-08-19 长鑫存储技术有限公司 Semiconductor structure and forming method thereof

Also Published As

Publication number Publication date
CN117794235A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
US11251199B2 (en) Three-dimensional NOR array including active region pillars and method of making the same
KR20180071463A (en) Semiconductor memory device
KR20190119155A (en) Joint opening structure of three-dimensional memory device and manufacturing method thereof
TWI743568B (en) Devices including vertical transistors, and related methods
CN110088906B (en) High-k dielectric layer in three-dimensional memory device and method of forming the same
KR20140075875A (en) Semiconductor device
TW201725701A (en) Memory device and method for fabricating the same
WO2023103182A1 (en) Memory cell, and memory and manufacturing method therefor
JP2021535627A (en) 3D memory device and its manufacturing method
TW202021097A (en) Three-dimensional storage device and manufacturing method thereof
TW202021094A (en) Three-dimensional memory device and method of manufacturing the same
KR20170000953A (en) Capacitors and semiconductor devices including the same
TW202339206A (en) Semiconductor device
TW202315062A (en) Storage device and method for forming storage device
TW202243215A (en) Semiconductor device
CN111373538B (en) Three-dimensional memory device and method of fabricating the same
KR101845977B1 (en) Semiconductor and manufacturing method of the same
WO2024060322A1 (en) Semiconductor structure, manufacturing method therefor, and memory
KR102634963B1 (en) Vertical semiconductor devices and methods of forming the same
CN108807385B (en) Method for manufacturing semiconductor device
US20240015948A1 (en) Integrated circuit device and method of manufacturing the same
WO2023245695A1 (en) Semiconductor structure, manufacturing method therefor, and memory
WO2023245803A1 (en) Semiconductor structure and manufacturing method therefor, and memory
US20220344341A1 (en) Semiconductor devices having air gaps
WO2023206839A1 (en) Semiconductor structure and preparation method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959324

Country of ref document: EP

Kind code of ref document: A1