WO2024060313A1 - 一种sma丝驱动的具有自复位功能的可重复使用释放机构 - Google Patents

一种sma丝驱动的具有自复位功能的可重复使用释放机构 Download PDF

Info

Publication number
WO2024060313A1
WO2024060313A1 PCT/CN2022/123823 CN2022123823W WO2024060313A1 WO 2024060313 A1 WO2024060313 A1 WO 2024060313A1 CN 2022123823 W CN2022123823 W CN 2022123823W WO 2024060313 A1 WO2024060313 A1 WO 2024060313A1
Authority
WO
WIPO (PCT)
Prior art keywords
pallet
thrust bearing
sma wire
self
release mechanism
Prior art date
Application number
PCT/CN2022/123823
Other languages
English (en)
French (fr)
Inventor
闫晓军
闫泽红
渠磊
饶智祥
王举
冷佳明
万维峰
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2024060313A1 publication Critical patent/WO2024060313A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/645Separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/64Systems for coupling or separating cosmonautic vehicles or parts thereof, e.g. docking arrangements
    • B64G1/641Interstage or payload connectors

Definitions

  • the invention relates to the technical field of spacecraft connection and separation mechanisms, and in particular to a reusable release mechanism driven by SMA wire and having a self-resetting function.
  • Spacecraft require a variety of connection and separation mechanisms to achieve space connection and unlocking functions, such as the separation of multi-stage launch vehicles, the deployment of solar wings on satellites or spacecraft, etc.
  • these unlocking devices are pyrotechnics bolts (also known as explosive bolts).
  • pyrotechnics bolts also known as explosive bolts.
  • SMA shape memory alloys
  • the design solution using SMA columns as a driver proposed by Hi Shear Technology Company in the United States, and the " SMA wire-driven connection and unlocking mechanism” (Patent application number: 200810119580.0).
  • the "SMA wire-driven connection and unlocking mechanism” uses SMA wire as the driving element. Its structure is shown in Figure 1, which consists of insulating bearing 1, insulating fixed seat 2, hoop 3, shell 4, insulating pulley 5, split It is composed of nut 6, bolt 7, end cover 8, separation spring 9, separation top block 10, SMA wire 11 and return spring 12.
  • the upper and lower end surfaces of the split nut 6 are respectively matched with the end cover 8 and the top block 10 with tapered surfaces to form a complete thread pair, and the bolt 7 is screwed into the split nut 6.
  • the upper end of the hoop tube 3 is matched with the end cover 8, and the lower end is tightened by the pre-compressed return spring 12.
  • the pre-stretched SMA wire 11 goes around the pulley 5 and the insulating bearing 1, and its two ends are fixed on the ceramic support 2 and the hoop 3 respectively.
  • the state shown in Figure 1 is the unlocking process. When the SMA wire 11 is energized, the SMA wire 11 shrinks when heated, pulling the hoop 3 to move downward, and at the same time compressing the return spring 12.
  • the "SMA wire-driven connection and unlocking mechanism” has the advantages of large margin and good synchronization, it also has a fatal shortcoming: during the release process of the mechanism, there is sliding friction between the split nut and the hoop, which releases the load. When it is very large, the frictional resistance is also very large, which affects the SMA wire driving process, reduces the success rate of release, and reduces the reliability, thus limiting the size of the release load.
  • the present invention provides a reusable release mechanism driven by SMA wire with a self-resetting function, which has a large release load, automatic resetting, strong impact resistance and high reliability.
  • the SMA wire-driven reusable release mechanism with self-resetting function of the present invention includes, from bottom to top, an SMA driver assembly, a thrust bearing assembly, a tray assembly and a separation assembly; the exterior of the mechanism is packaged by a shell and a bottom cover;
  • the SMA driver assembly includes SMA wire, drive shaft, return spring and support frame; among them, the drive shaft is installed on the support frame; SMA wire is wrapped around the drive shaft, and both ends are fixed on the support frame; the return spring is installed on the tray nut on, the other end is installed on the drive shaft;
  • the thrust bearing assembly is pressed on the support frame and connected to the drive shaft.
  • the raceway of the thrust bearing assembly is evenly provided with pits;
  • the pallet assembly includes a pallet, a pallet spring, a pallet shaft, a pallet bracket and a pallet nut; wherein the pallet bracket is installed on the support frame; the pallet is installed on the pallet bracket through the pallet shaft and pallet nut; the pallet spring is wound around the pallet shaft and is located between pallets and pallet supports;
  • the separation component includes a compression rod, a hoop flap and an inclined block; one end of the compression rod is provided with a boss, and the boss of the compression rod is inserted into the hoop flap and surrounded by the hoop flap; the upper and lower ends of the hoop flap are connected to the shell respectively. It is in contact with the tray; the inclined block is located between the hoop flap and the shell, and moves up and down along the inclined surface; the hoop flap and the inclined block are provided with symmetrical grooves on the contact surface.
  • the separation component is formed by a plurality of inclined planes to form a load-reducing structure, and the load on the compression rod is reduced through the two-level slopes: the matching slope between the compression rod and the hoop flap, and the matching slope between the slope block and the shell or the slider.
  • Load most of the load is borne by the shell, and only a small part of the load acts on the thrust bearing. This design can significantly increase the locking load.
  • the separation component adopts a locking method in which the hoop flap hugs the compression rod. The unlocking and automatic reset are achieved through the movement of the inclined block. When it is necessary to lock again, the inclined block remains stationary and moves downward through the hoop flap.
  • the hoop flap moves along the Cooperating with the inclined block, the inclined surface moves outward, so that the compression rod can slide in.
  • the pressure of the compression rod on the hoop flap disappears, and the hoop flap moves upward under the action of the tray spring, holding and pressing Tightening rod, this structure can achieve quick installation and automatic reset.
  • the drive shaft can rotate in the groove of the support frame.
  • the SMA wire is electrically heated, and the SMA wire shrinks, driving the drive shaft to rotate.
  • the drive shaft resets and pulls the Stretch the SMA wire in preparation for the next drive.
  • This structure can convert the linear motion of the SMA wire into rotational motion, so that it can be used to drive the thrust bearing to rotate.
  • the drive shaft drives the middle ring of the thrust bearing to rotate at a certain angle.
  • the balls fall into the pits, causing the upper ring to drop a certain distance, which in turn causes the ramp block to drop a certain amount. Displacement to achieve release.
  • the SMA wire cools down, under the action of the return spring, the drive shaft drives the middle ring of the thrust bearing to move, causing the balls to return to the raceway of the middle ring to achieve reset.
  • the SMA wire When the mechanism is unlocked, the SMA wire is electrified and heated, causing it to shrink and drive the drive shaft to rotate.
  • the drive shaft drives the thrust bearing to rotate.
  • the balls fall into the preset pits on the raceway, releasing a certain axial gap, and the slide slides down under the pressure. Moving downward, the inclined block moves radially outward, and the hoop flap opens to release the compression rod.
  • the drive shaft When the mechanism automatically resets, after the SMA wire cools down, the drive shaft resets under the action of the reset spring, and the drive shaft drives the thrust bearing to rotate a certain angle.
  • the ball slides from the pit to the raceway, eliminating the axial clearance, the slider moves upward, the inclined block moves radially inward, and the hoop petal moves radially inward to reset.
  • the hoop petals compress the tray spring through the tray under the action of pressure. After the hoop petals move downward, the radial limit of the hoop petals and the bevel block is eliminated, and the hoop petals open. As the clamping rod slides in, the pressure on the hoop petals is eliminated, and under the action of the tray spring, the hoop petals reset and hold the clamping rod tightly to achieve locking.
  • the thrust bearing assembly is a double-row structure, and includes, from top to bottom, an upper ring, an upper row of balls, an upper retaining frame, a middle ring, a lower retaining frame, a lower row of balls and a lower ring; wherein the lower ring of the thrust bearing is pressed on the support frame, and the middle ring is connected to the drive shaft; pits are provided on the raceway of the middle ring, and the pits and the raceway are evenly spaced.
  • the balls in the thrust bearing assembly are sprayed with molybdenum disulfide lubricating coating, which can effectively reduce friction, thereby reducing the torque transmitted to the drive shaft, and effectively bear the axial load.
  • the top of the housing is narrow at the top and wide at the bottom, and the side is a bevel, matching the bevel of the inclined block; the inclined block slides up and down along the side of the housing.
  • the separation assembly further includes a slider, the slider is installed on the upper end surface of the thrust bearing assembly, the slider is provided with an inclined surface that matches the inclined block, and the inclined block slides up and down along the inclined surface of the slider.
  • the sliding block is tapered; the inclined surface of the inclined block is arranged at the bottom of the inclined block and matches the sliding block.
  • the sliding block passes through the inclined block.
  • the bottom of the drive shaft is processed with an internal hexagonal groove
  • the bottom of the bottom cover is processed with a round hole.
  • the internal hexagonal wrench can enter through the round hole, and then rotate the drive shaft to achieve manual unlocking and reset. This design can Conveniently unlock and reset without power supply.
  • a square groove is processed on the side of the base, and a boss is processed on the side of the upper cage, which snaps into the square groove of the base.
  • the upper cage can be rotated through the boss, and manual unlocking and unlocking can be achieved without affecting the SMA driver assembly. reset.
  • the present invention can effectively solve the problems of the existing locking and releasing mechanism such as low impact resistance, small release load, difficulty in resetting, and low reliability. It can realize automatic reset, has large release load, and has strong vibration and impact resistance. It is specifically reflected in the following: The following aspects:
  • the present invention adopts a two-stage load reduction and one-stage release structure.
  • First-level load reduction The compression rod and the hoop flap, the inclined block and the shell or the slider all adopt inclined surfaces, which can effectively transfer most of the tensile load of the compression rod to the shell, leaving only a small part of the load to the thrust bearing.
  • Second-level load reduction The balls in the thrust bearing are sprayed with molybdenum disulfide lubricating coating, which can effectively reduce friction, thereby reducing the torque transmitted to the drive shaft, and effectively bear the axial load.
  • First-level release The drive shaft drives the thrust bearing to rotate at a certain angle, causing the upper ring of the thrust bearing to drop and release a certain axial clearance. This structure can greatly increase the carrying capacity of the mechanism and at the same time improve the reliability of release.
  • the repetitive locking and releasing assembly in the present invention adopts an automatic reset method. After the SMA wire is energized and heated and released, as the SMA wire cools, the restoring force of the spring is greater than the pulling force of the SMA wire. The spring drives the drive shaft to rotate, causing the ball to release from the thrust force. The pits in the bearing move toward the raceway, thus eliminating the axial clearance and achieving automatic reset. This method avoids repeated installation of the release structure and is easy to use.
  • the present invention adopts a quick-insertion installation method of the compression rod.
  • the compression rod is inserted from the release structure, and the hoop flap moves downward with the compression rod, and at the same time along the matching with the inclined block
  • the outward movement allows the compression rod to slide into the groove of the hoop flap.
  • the hoop flap moves upward under the action of the tray spring and re-engages the compression rod.
  • the present invention adopts the method of rotation and release of the drive shaft.
  • the SMA wire winding on the pulley and the drive shaft when the SMA wire shrinks, it drives the driver shaft to rotate, converting linear motion into rotational motion, which greatly saves the cost of the mechanism. space and weight.
  • the present invention uses two sets of SMA wire driving devices to achieve a redundant design, and can still successfully unlock even if one set of SMA wires fails, thus improving the reliability of release.
  • FIG1 is a schematic diagram of the structure of a connection and unlocking mechanism driven by an existing SMA wire
  • Figure 2 is a schematic diagram of the state of the release mechanism of the present invention, in which (a) is the locking state and (b) is the unlocking process state;
  • Figure 3 is a schematic structural diagram of the release mechanism of the present invention.
  • FIG4 is a schematic diagram of the structure of a thrust bearing assembly, wherein (a) is a locked state, and (b) is an unlocking process state;
  • Figure 5 is a schematic diagram of the deep and shallow groove structure of the thrust bearing middle ring
  • Figure 6 is a schematic diagram of the SMA driver component structure
  • Figure 7 is a schematic diagram of the installation of the drive shaft and support frame
  • Figure 8 is a schematic diagram of the manual unlocking structure of the drive shaft and housing
  • Figure 9 shows alternative solution 1 for separate components
  • FIG 10 shows alternative solution 2 for separate components
  • FIG 11 shows alternative solution 3 for separate components
  • Figure 12 shows a solution for changing the plug-in tight connection to a threaded connection
  • Figure 13 shows an alternative solution for SMA wire installation.
  • the releaser can be divided into four components: SMA driver component, thrust bearing component, tray component, and separation component.
  • SMA driver assembly is composed of SMA wire 13, support frame 14, drive shaft 12, and return spring 11;
  • thrust bearing assembly is composed of an upper thrust bearing ring 15, an upper row of balls 16, an upper cage 17, a middle thrust bearing ring 18, and a lower thrust bearing.
  • the SMA wire 13 goes around the drive shaft 12.
  • the drive shaft 12 is assembled in the groove of the support frame and can rotate at a certain angle.
  • the support frame 14 is assembled on the bottom cover 22.
  • the thrust bearing structure is shown in Figure 4. From top to bottom, it consists of the upper thrust bearing ring 15, the upper row of balls 16, the upper cage 17, the thrust bearing middle ring 18, the balls 21, the lower cage 22, and the lower thrust bearing. Ring 21; the lower ring of the thrust bearing is pressed on the support frame 14, and the driving shaft 12 is connected to the middle ring 18 of the thrust bearing, which can drive the middle ring of the driving bearing to rotate.
  • the pallet bracket 9 is also installed on the support frame 14 through screws, the pallet shaft 8 is installed on the pallet bracket 9 through the pallet nut 10, the return spring 11 is installed on the pallet nut 10, and the other end is installed on the drive shaft 12 for Drive shaft 12 resets.
  • One end of the tray spring 7 is pressed on the tray bracket 9, and the other end is pressed on the tray 6.
  • the cage spring 16 is installed on the pallet bracket 9, and the other end is installed on the upper cage 17 for fixing the upper cage 17.
  • a separation assembly is installed on the thrust bearing upper ring 15.
  • the locking state of the self-resetting release is shown in Figure 2(a).
  • the SMA wire 13 is energized and heated.
  • the SMA wire 13 shrinks and drives the drive shaft 12 to rotate.
  • the drive shaft 12 drives the thrust bearing middle ring 18 to rotate.
  • the row of balls 16 and the lower row of balls 20 fall into the deep groove 18-I of the middle ring 18 of the thrust bearing, and the upper ring 15 of the thrust bearing drops a certain displacement, as shown in Figure 2(b), and then the slider 5 moves on the inclined block 4
  • the inclined block 4 moves radially outward under the pressure of the hoop flap 3, and the restraining effect of the hoop flap 3 on the compression rod 2 is released, and then the compression rod 2 separates under the tension.
  • the process of the self-returning releaser locking the compression rod is the reverse process of the unlocking process.
  • the hoop The flap 3 moves downward along with the pressing rod 2, and at the same time the tray spring 7 is compressed by the tray 6. Due to the matching groove, the radial restraint of the inclined block 4 on the hoop flap 3 disappears, the hoop flap 3 moves to both sides, and the pressure of the pressing rod 2 on the hoop flap 3 disappears.
  • the present invention draws lessons from the thrust bearing structure.
  • the ball groove of the thrust bearing middle ring 18 is improved into a structure in which deep grooves 18-I and shallow grooves 18-II are interlaced.
  • the shallow grooves 18-II are interlaced with each other.
  • the groove can be the original rolling groove, and the deep groove can be the set pit.
  • the middle ring of the thrust bearing rotates at a certain angle under the action of the drive shaft, and the upper row of balls 16 and the lower row of balls 20 roll from the shallow groove 18-II into the deep groove 18-I to realize the release of the axial clearance and automatically
  • the driving shaft 12 drives the thrust bearing middle ring 18 to rotate back to a certain angle.
  • the balls roll from the deep groove 18-I to the shallow groove 18-II of the thrust bearing middle ring 18, eliminating the axial gap.
  • the SMA driver assembly is composed of a return spring 11, a drive shaft 12, an SMA wire 13, and a support frame 14. Both ends of the two sets of SMA wires 13 are fixed to the support frame and bypass the drive shaft 12.
  • the shaft 12 is assembled in the groove of the support frame and can rotate at a certain angle.
  • Solution 1 is shown in Figure 11.
  • the inclined block 4 and the sliding block 5 are combined into one part, and a beveled shell is used to cooperate with the inclined block to realize the inclined movement.
  • the block moves obliquely to release the radial constraints.
  • Option 2 is shown in Figure 12.
  • the shape of the slider 5 is set to be tapered, and the inclined block 4 is changed to four cylindrical sliders.
  • the tapered slider 5 moves downward, and the cylindrical slider 4 moves outward. Movement to release hoop flap 3.
  • Option 3 is shown in Figure 13.
  • the slider 5 passes through the inside of the slope block 4.
  • the slope inside the slope block 4 matches the slope of the slider 5. When the slider 5 moves downward, the slope block 4 moves outward to release the hoop.
  • the compression rod 2 and the separation structure adopt a pluggable connection method, which can be replaced by a threaded connection, as shown in Figure 14.
  • the SMA wire installation method of the SMA driver assembly in the present invention is not unique, and can be replaced by the installation method shown in Figure 15. The above changes should also be within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

本发明公开了一种SMA丝驱动的具有自复位功能的可重复使用释放机构。本发明采用了两级降载、一级释放的结构。第一级降载:压紧杆与箍瓣、斜块与外壳或滑块均采用斜面配合,可以有效将大部分压紧杆拉力载荷传递到壳体上,仅剩小部分载荷传递到推力轴承上。第二级降载:推力轴承中滚珠喷涂二硫化钼润滑涂层,能够有效降低摩擦力,进而降低传递到驱动轴上的扭矩,有效承担轴向载荷。一级释放:驱动轴带动推力轴承转动一定角度,使得推力轴承上圈下降,释放一定轴向间隙。该结构能够大幅提高机构承载能力,同时提高释放的可靠性。本发明可实现自动复位,释放载荷大、抗振动、冲击能力强,稳定性高。

Description

一种SMA丝驱动的具有自复位功能的可重复使用释放机构 技术领域
本发明涉及航天器连接-分离机构技术领域,具体涉及一种SMA丝驱动的具有自复位功能的可重复使用释放机构。
背景技术
航天器需要多种连接、分离机构实现空间连接与解锁功能,如多级运载火箭的分离、卫星或者宇宙飞船上太阳翼的展开等等。目前这种解锁装置多为火工品螺栓(又称爆炸螺栓)。随着航天技术的发展,尤其是新一代小型卫星的出现,火工品所引起的冲击和污染问题日趋严重,解决这一问题的一个主要焦点集中在应用形状记忆合金(SMA)发展新型的空间解锁机构。
在发展非火工新型解锁机构上,国内外都有一定的进展,提出了多种利用SMA驱动的设计方案,如美国Hi Shear科技公司提出的以SMA柱作为驱动的设计方案,国内提出的“SMA丝驱动的连接与解锁机构”(专利申请号:200810119580.0)。其中“SMA丝驱动的连接与解锁机构”中采用SMA丝作为驱动元件,其结构如图1所示,由绝缘轴承1、绝缘固定座2、箍筒3、外壳4、绝缘滑轮5、分瓣螺母6、螺栓7、端盖8、分离弹簧9、分离顶块10、SMA丝11以及复位弹簧12组成。分瓣螺母6上下端面均以锥面分别和端盖8、顶块10配合,形成一个完整的螺纹副,螺栓7被拧入分瓣螺母6中。箍筒3上端和端盖8配合,下端被预压缩的复位弹簧12顶紧。预拉伸的SMA丝11绕过滑轮5、绝缘轴承1并将两端分别固定于陶瓷支座2和箍筒3上。图1所示状态为解锁过程,对SMA丝11通电,SMA丝11受热收缩,拉动箍筒3向下运动,同时压缩复位弹簧12,当箍筒3运动到一定位置时,分瓣螺母6上的凸台在分离 弹簧9的作用下滑入箍筒3的凹槽中,破坏了螺纹副,使螺栓7从分瓣螺母6中脱出,从而实现机构的分离功能。通电结束后,温度降低,SMA丝11的低温回复力小于复位弹簧12的推力,在复位弹簧12作用下,箍筒3向上运动,重新拉伸SMA丝11,并将分瓣螺母6重新合拢,从而实现机构的可重复作动功能。
“SMA丝驱动的连接与解锁机构”虽然具有裕度大、同步性好等优点,但其也具有致命的缺点:该机构释放过程中,分瓣螺母与箍筒之间为滑动摩擦,释放载荷很大时,摩擦阻力也很大,进而影响SMA丝驱动过程,释放的成功率下降,可靠性下降,因此限制了释放载荷的使用大小。
发明内容
有鉴于此,本发明提供了一种SMA丝驱动的具有自复位功能的可重复使用释放机构,释放载荷大、自动复位、抗冲击能力强且可靠性高。
本发明的SMA丝驱动的具有自复位功能的可重复使用释放机构,机构内部由下至上依次包括:SMA驱动器组件、推力轴承组件、托盘组件和分离组件;机构外部由外壳和底盖实现封装;
其中,SMA驱动器组件包括SMA丝、驱动轴、复位弹簧和支撑架;其中,驱动轴安装在支撑架上;SMA丝缠绕在驱动轴上,两端固定在支撑架上;复位弹簧安装在托盘螺母上,另一端安装在驱动轴上;
推力轴承组件压在支撑架上,并与驱动轴连接,推力轴承组件的滚道上均匀设有凹坑;
托盘组件包括托盘、托盘弹簧、托盘轴、托盘支架和托盘螺母;其中,托盘支架安装在支撑架上;托盘通过托盘轴和托盘螺母安装在托盘支架上;托盘弹簧缠绕在托盘轴上,并位于托盘与托盘支架之间;
分离组件包括压紧杆、箍瓣和斜块;其中,压紧杆的一端设有凸台,压紧杆的凸台插入箍瓣中,被箍瓣环抱;箍瓣的上下两端分别与外壳和托盘接触;所述斜块位于箍瓣与外壳之间,并沿斜面上下移动;箍瓣和斜块在接触面上设有对称的凹槽。
本发明中,分离组件由多个斜面配合形成降载荷结构,将压紧杆受到的载荷通过压紧杆与箍瓣的配合斜面、斜块与外壳或滑块的配合斜面这两级斜面进行降载,大部分载荷由壳体承担,只有小部分载荷作用在推力轴承上,这样的设计能够大幅增加锁紧载荷。分离组件采用了箍瓣抱紧压紧杆的锁紧方式,通过斜块的运动实现解锁和自动复位,需要再次锁紧时,斜块保持不动,通过箍瓣向下运动,箍瓣沿着与斜块配合斜面向外运动,使得压紧杆得以滑入,随着压紧杆的滑入,压紧杆对箍瓣的压力消失,箍瓣在托盘弹簧的作用下向上运动,抱紧压紧杆,该结构可以实现快速安装,自动复位。
SMA驱动器组件中,驱动轴可以在支撑架的凹槽内转动,对SMA丝通电加热,SMA丝收缩,带动驱动轴旋转,当SMA丝冷却后,在复位弹簧作用下,驱动轴复位,同时拉伸SMA丝,以备下一次驱动。采用该结构能够将SMA丝的直线运动转化为旋转运动,以便用于带动推力轴承旋转。
推力轴承组件在锁紧状态下,滚珠落在滚道中,需要解锁时,驱动轴带动推力轴承中圈旋转一定角度,滚珠落入凹坑中,使得上圈下降一定位移,进而使得斜块下降一定位移,实现释放。当SMA丝冷却后,在复位弹簧作用下,驱动轴带动推力轴承中圈运动,使得滚珠回到中圈的滚道中,实现复位。采用该结构易于释放及复位。
工作过程:
机构解锁时,对SMA丝通电加热,使其收缩带动驱动轴旋转,驱动轴带动推力轴承旋转,滚珠落入滚道上预设的凹坑中,释放一定的轴向间隙,在压力 作用下滑块向下运动,斜块沿径向向外运动,箍瓣打开释放压紧杆。
机构自动复位时,当SMA丝冷却后,在复位弹簧作用下,驱动轴复位,驱动轴带动推力轴承旋转一定的角度,滚珠从凹坑滑到滚道中,消除轴向间隙,滑块向上运动,斜块沿径向向内运动,箍瓣沿径向向内运动复位。
插入压紧杆重复锁紧时,在压力作用下箍瓣通过托盘压缩托盘弹簧,箍瓣向下运动后,由于箍瓣和斜块的径向限位被消除,箍瓣打开,随着压紧杆的滑入,箍瓣受到的压力消除,在托盘弹簧的作用下箍瓣复位,抱紧压紧杆,实现锁紧。
较优的,所述推力轴承组件为双列结构,由上至下依次包括上圈、上排滚珠、上保持架、中圈、下保持架、下排滚珠和下圈;其中,推力轴承下圈压在支撑架上,中圈与驱动轴连接;中圈的滚道上设置有凹坑,凹坑与滚道均匀间隔分布。
较优的,所述推力轴承组件中的滚珠喷涂二硫化钼润滑涂层,能有效降低摩擦力,进而降低传递到驱动轴上的扭矩,有效承担轴向载荷。
较优的,所述外壳顶部上窄下宽,侧面为斜面,与斜块斜面相配合;斜块沿外壳侧面上下滑动。
较优的,所述分离组件还包括滑块,所述滑块安装在推力轴承组件的上端面,所述滑块设有与斜块相配合的斜面,斜块沿滑块的斜面上下滑动。
较优的,所述滑块为锥形;所述斜块的斜面设置在斜块的底部,与滑块相配合。
较优的,所述滑块贯穿斜块。
较优的,所述驱动轴底部加工有内六角凹槽,底盖底部中心加工有圆孔,内六角扳手可以从圆孔进入,进而旋转驱动轴,实现手动的解锁和复位,通过该设计可以在没有电源的情况下方便地进行解锁及复位。
较优的,底座侧面加工有方槽,上保持架侧面加工有凸台,卡入底座方槽中,通过该凸台可以旋转上保持架,在不影响SMA驱动器组件的情况下实现手动解锁和复位。
有益效果:
本发明可有效解决现有锁紧释放机构抗冲击能力低、释放载荷小、复位困难、可靠性低等问题,可实现自动复位,释放载荷大,抗振动、冲击能力强等特点,具体表现在以下几个方面:
(1)本发明采用了两级降载、一级释放的结构。第一级降载:压紧杆与箍瓣、斜块与外壳或滑块均采用斜面配合,可以有效将大部分压紧杆拉力载荷传递到壳体上,仅剩小部分载荷传递到推力轴承上。第二级降载:推力轴承中滚珠喷涂二硫化钼润滑涂层,能够有效降低摩擦力,进而降低传递到驱动轴上的扭矩,有效承担轴向载荷。一级释放:驱动轴带动推力轴承转动一定角度,使得推力轴承上圈下降,释放一定轴向间隙。该结构能够大幅提高机构承载能力,同时提高释放的可靠性。
(2)本发明中重复锁紧释放组件采用了自动复位的方式,SMA丝通电加热释放后,随着SMA丝冷却,弹簧的回复力大于SMA丝拉力,弹簧带动驱动轴旋转,使得滚珠从推力轴承中凹坑向滚道运动,进而消除轴向间隙,实现自动复位。该方法避免了释放结构的重复安装,使用方便。
(3)本发明采用了压紧杆快插的安装方式,需要再次锁紧时,将压紧杆从释放结构插入,箍瓣随着压紧杆向下运动,同时沿着与斜块的配合面向外运动,使得压紧杆得以滑入箍瓣凹槽内,随着压紧杆的滑入,箍瓣在托盘弹簧作用下向上运动,重新抱紧压紧杆。该设计大幅简化了压紧杆的安装过程,使得该机构能够用于航天器在轨重复锁紧。
(4)本发明采用了驱动轴旋转释放的方式,通过SMA丝在滑轮和驱动轴 上缠绕的设计,当SMA丝收缩,带动驱动器轴旋转,将直线运动转化为旋转运动,大幅节省了机构的空间和重量。
(5)本发明采用了两组SMA丝驱动装置,实现了冗余设计,可以在一组SMA丝失效的情况下依然成功解锁,提高了释放的可靠性。
附图说明
图1为现有SMA丝驱动的连接与解锁机构结构示意图;
图2为本发明释放机构状态示意图,其中,(a)为锁紧状态,(b)为解锁过程状态;
图3为本发明释放机构结构示意图;
图4为推力轴承组件结构示意图,其中,(a)为锁紧状态,(b)为解锁过程状态;
图5为推力轴承中圈深浅凹槽结构示意图;
图6为SMA驱动器组件结构示意图;
图7为驱动轴及支撑架安装示意图;
图8为驱动轴及壳体手动解锁结构示意图;
图9为分离组件可替换方案1;
图10为分离组件可替换方案2;
图11为分离组件可替换方案3;
图12为将插拔式抱紧连接改为螺纹连接方案;
图13为SMA丝安装可替换方案。
其中,1-外壳;2-压紧杆;3-箍瓣;4-斜块;5-滑块;6-托盘;7-托盘弹簧;8-托盘轴;9-托盘支架;10-托盘螺母;11-复位弹簧;12-驱动轴;13-SMA丝;14-支撑架;15-推力轴承上圈;16-上排滚珠;17-上保持架;18-推力轴承中圈; 19-下保持架;20-下排滚珠;21-推力轴承下圈;22-底盖。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明的具体结构如图3所示,可以将该释放器分为四个组件:SMA驱动器组件,推力轴承组件,托盘组件,分离组件。其中,SMA驱动器组件由SMA丝13、支撑架14、驱动轴12、复位弹簧11组成;推力轴承组件由推力轴承上圈15、上排滚珠16、上保持架17、推力轴承中圈18、下保持架19、下排滚珠20、推力轴承下圈21组成;托盘组件由托盘6、托盘弹簧7、托盘轴8、托盘支架9、托盘螺母10组成;分离组件由压紧杆2、箍瓣3、斜块4、滑块5组成;机构外部由外壳1、底盖22封装。
如图3所示,SMA丝13绕过驱动轴12,驱动轴12装配在支撑架凹槽内,可以转动一定的角度,支撑架14装配在底盖22上。同时,推力轴承结构如图4所示,从上到下分别由推力轴承上圈15,上排滚珠16,上保持架17,推力轴承中圈18,滚珠21,下保持架22,推力轴承下圈21;推力轴承下圈压在支撑架14上,驱动轴12与推力轴承中圈18连接,可以带动驱动轴承中圈转动。同时,托盘支架9也通过螺钉安装在支撑架14上,托盘轴8通过托盘螺母10安装在托盘支架9上,复位弹簧11安装在托盘螺母10上,另一端安装在驱动轴12上,用于驱动轴12复位。托盘弹簧7一端压在托盘支架9上,另一端压在托盘6上。保持架弹簧16安装在托盘支架9上,另一端安装在上保持架17上,用于固定上保持架17。在推力轴承上圈15上安装着分离组件。
自复位释放器的锁紧状态如图2(a)所示,需要解锁时,对SMA丝13通电加热,SMA丝13收缩带动驱动轴12旋转,驱动轴12带动推力轴承中圈18旋转,上排滚珠16、下排滚珠20落入推力轴承中圈18的深槽18-Ⅰ中,推力轴承 上圈15下降一定的位移,如图2(b)所示,进而滑块5在斜块4的压力下下降一定位移,斜块4在箍瓣3作用下径向向外移动,箍瓣3对压紧杆2的约束作用解除,进而压紧杆2在拉力下分离。当SMA丝13冷却后,SMA丝拉力下降,在复位弹簧11的作用下,驱动轴12复位,同时带动推力轴承中圈17复位,上排滚珠16、下排滚珠20从推力轴承中圈17的深槽18-Ⅰ移动到浅槽18-II中,推力轴承上圈15随之向上移动,滑块5随之向上移动,斜块4沿着径向向内移动,箍瓣3复位。
自复位释放器锁紧压紧杆的过程为解锁过程的逆过程,如图2(b)~2(a)所示,将压紧杆2插入机构中,在压紧杆2作用下,箍瓣3随着压紧杆2向下运动,同时通过托盘6压缩托盘弹簧7。由于配合凹槽作用,斜块4对箍瓣3在径向的约束消失,箍瓣3向两侧运动,压紧杆2对箍瓣3的压力消失,由于配合凹槽作用,斜块4对箍瓣3在径向的约束消失,箍瓣3向两侧运动,压紧杆2对箍瓣3的压力消失,在托盘6作用下,箍瓣3向上同时向内运动,抱紧压紧杆2,实现锁紧。
如图4和图5所示,本发明借鉴了推力轴承结构,在此基础上将推力轴承中圈18的滚珠槽改进为深槽18-Ⅰ与浅槽18-II交错的结构,其中,浅槽可为原滚槽,深槽为设置的凹坑。需要释放时,在驱动轴的作用下推力轴承中圈旋转一定角度,上排滚珠16、下排滚珠20从浅槽18-II滚入深槽18-I中,实现轴向间隙的释放,自动复位时,驱动轴12带动推力轴承中圈18转回一定角度,在上保持架17的作用下,滚珠从推力轴承中圈18的深槽18-I向浅槽18-II滚动,消除轴向间隙。
如图6及图7所示,SMA驱动器组件由复位弹簧11、驱动轴12,SMA丝13,支撑架14组成,两组SMA丝13两端与支撑架固定,同时绕过驱动轴12,驱动轴12装配在支撑架凹槽内,可以转动一定的角度。
如图9所示,在底盖15底部中心打有圆孔,驱动轴12底部有内六角槽,通过内六角扳手可以手动旋转驱动轴12,进而实现手动解锁及复位。
显然,所描述的实施例仅是本发明的一部分实施范例,而不是全部实施范例,SMA驱动器组件、推力轴承组件、托盘组件和分离组件均有可替代的方案。
以分离组件为例,可以提出3种可替代方案,方案1如图11所示,将斜块4和滑块5结合为一个零件,采用带斜面的壳体与斜块配合的方式,实现斜块沿斜向运动释放径向约束。方案2如图12所示,将滑块5的形状设置为锥形,斜块4改为四个圆柱形的滑块,锥形的滑块5向下运动,圆柱形的滑块4向外运动以释放箍瓣3。方案3如图13所示,滑块5穿过斜块4的内部,斜块4内部的斜面与滑块5斜面配合,当滑块5向下运动,斜块4向外运动,以释放箍瓣3。需要指出的是,以上多种可替换方式不是所有的实施范例,改变斜块、滑块的形状大小,两个零件结合为一体等本领域设计人员可以轻易想到的方案,应均在本发明的保护范围之内。
本发明中压紧杆2和分离结构体采用可插拔式的连接方式,可以替换为螺纹连接,如图14所示。本发明中SMA驱动器组件的SMA丝安装方式不唯一,可替换为图15所示的安装方式。以上改变也应均在本发明的保护范围之内。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,机构内部由下至上依次包括:SMA驱动器组件、推力轴承组件、托盘组件和分离组件;机构外部由外壳(1)和底盖(22)实现封装;
    其中,SMA驱动器组件包括SMA丝(13)、驱动轴(12)、复位弹簧(11)和支撑架(14);其中,驱动轴(12)安装在支撑架(14)上;SMA丝(13)缠绕在驱动轴(12)上,两端固定在支撑架(14)上;复位弹簧(11)安装在托盘螺母(10)上,另一端安装在驱动轴(12)上;
    推力轴承组件压在支撑架(14)上,并与驱动轴(12)连接,推力轴承组件的滚道上均匀设有凹坑;
    托盘组件包括托盘(6)、托盘弹簧(7)、托盘轴(8)、托盘支架(9)和托盘螺母(10);其中,托盘支架(9)安装在支撑架(14)上;托盘(6)通过托盘轴(8)和托盘螺母(10)安装在托盘支架(9)上;托盘弹簧(7)缠绕在托盘轴(8)上,并位于托盘(6)与托盘支架(9)之间;
    分离组件包括压紧杆(2)、箍瓣(3)和斜块(4);其中,压紧杆(2)的一端设有凸台,压紧杆(2)的凸台插入箍瓣(3)中,被箍瓣(3)环抱;箍瓣(3)的上下两端分别与外壳(1)和托盘(6)接触;所述斜块(4)位于箍瓣(3)与外壳(1)之间,并沿斜面上下移动;箍瓣(3)和斜块(4)在接触面上设有对称的凹槽。
  2. 如权利要求1所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,所述推力轴承组件为双列结构,由上至下依次包括上圈(15)、上排滚珠(16)、上保持架(17)、中圈(18)、下保持架(19)、下排滚珠(20)和下圈(21);其中,推力轴承下圈(21)压在支撑架(14)上,中圈(18)与驱动轴(12)连接;中圈(18)的滚道上设置有凹坑,凹坑与滚道均匀间隔分 布。
  3. 如权利要求1或2所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,所述推力轴承组件中的滚珠喷涂二硫化钼润滑涂层。
  4. 如权利要求1所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,所述外壳(1)顶部上窄下宽,侧面为斜面,与斜块(4)斜面相配合;斜块(4)沿外壳(1)侧面上下滑动。
  5. 如权利要求1所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,所述分离组件还包括滑块(5),所述滑块(5)安装在推力轴承组件的上端面,所述滑块(5)设有与斜块(4)相配合的斜面,斜块(4)沿滑块(5)的斜面上下滑动。
  6. 如权利要求5所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,所述滑块(5)为锥形;所述斜块(4)的斜面设置在斜块(4)的底部,与滑块(5)相配合。
  7. 如权利要求5所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,所述滑块(5)贯穿斜块(4)。
  8. 如权利要求1所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,设有两组SMA驱动器组件。
  9. 如权利要求1~8任一所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,所述底盖(22)底部中心打有圆孔,驱动轴(12)底部有内六角槽,用于手动旋转驱动轴(12)。
  10. 如权利要求1~8任一所述的SMA丝驱动的具有自复位功能的可重复使用释放机构,其特征在于,所述推力轴承组件侧面加工有凸台;所述底盖(22)的侧面设有对应的凹槽,用于手动解锁及复位。
PCT/CN2022/123823 2022-09-21 2022-10-08 一种sma丝驱动的具有自复位功能的可重复使用释放机构 WO2024060313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211151778.3A CN115571382A (zh) 2022-09-21 2022-09-21 一种sma丝驱动的具有自复位功能的可重复使用释放机构
CN202211151778.3 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024060313A1 true WO2024060313A1 (zh) 2024-03-28

Family

ID=84580240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123823 WO2024060313A1 (zh) 2022-09-21 2022-10-08 一种sma丝驱动的具有自复位功能的可重复使用释放机构

Country Status (2)

Country Link
CN (1) CN115571382A (zh)
WO (1) WO2024060313A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6450064B1 (en) * 1999-05-20 2002-09-17 Starsys Research Corporation Resettable separation mechanism with anti-friction bearings
CN101913436A (zh) * 2010-08-06 2010-12-15 郑钢铁 一种两级冗余驱动的锁定解锁装置
CN108190051A (zh) * 2018-02-09 2018-06-22 北京航空航天大学 一种sma丝驱动的超大载荷解锁装置
CN109774985A (zh) * 2019-01-15 2019-05-21 哈尔滨工程大学 一种大行程大载荷形状记忆合金驱动的连接释放机构
CN110654576A (zh) * 2018-06-29 2020-01-07 哈尔滨工业大学 一种由sma丝驱动的空间解锁装置
CN113830329A (zh) * 2021-11-29 2021-12-24 沈阳中科新宇空间智能装备有限公司 一种基于记忆合金的压紧释放装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6450064B1 (en) * 1999-05-20 2002-09-17 Starsys Research Corporation Resettable separation mechanism with anti-friction bearings
CN101913436A (zh) * 2010-08-06 2010-12-15 郑钢铁 一种两级冗余驱动的锁定解锁装置
CN108190051A (zh) * 2018-02-09 2018-06-22 北京航空航天大学 一种sma丝驱动的超大载荷解锁装置
CN110654576A (zh) * 2018-06-29 2020-01-07 哈尔滨工业大学 一种由sma丝驱动的空间解锁装置
CN109774985A (zh) * 2019-01-15 2019-05-21 哈尔滨工程大学 一种大行程大载荷形状记忆合金驱动的连接释放机构
CN113830329A (zh) * 2021-11-29 2021-12-24 沈阳中科新宇空间智能装备有限公司 一种基于记忆合金的压紧释放装置

Also Published As

Publication number Publication date
CN115571382A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
CN109383850B (zh) 一种非火工驱动器的分瓣螺母型解锁装置
US7001127B2 (en) Non-pyrolytically actuated reduced-shock separation fastener
US6530718B2 (en) Connector assembly
US6769830B1 (en) Connector assembly
US5722709A (en) Separation device using a shape memory alloy retainer
RU2148734C1 (ru) Соединительное устройство и способ соединения вводимых в соединение деталей
US5312152A (en) Shape memory metal actuated separation device
US4788746A (en) Cam actuated self-locking hinge
US6352397B1 (en) Reduced shock separation fastener
CN112777004B (zh) 一种用于线式低冲击分离装置的大减力比低冲击释放机构
CN114132534B (zh) 一种低冲击大承载堆栈式多星锁紧释放机构及其工作方法
CN113120260B (zh) 一种热致熔断钢球锁压紧释放机构
CN109774985B (zh) 一种大行程大载荷形状记忆合金驱动的连接释放机构
CN112319854B (zh) 一种非自锁螺纹空间解锁装置冗余驱动机构
WO2024060313A1 (zh) 一种sma丝驱动的具有自复位功能的可重复使用释放机构
CN109896052B (zh) 一种利用sma丝驱动的飞轮螺母解锁分离机构
CN111409870B (zh) 一种磁悬浮飞轮熔断锁紧保护机构
CN108177800B (zh) 一种基于形状记忆合金锁紧与释放的转动关节
US4941243A (en) Method for assembling an annular shear accelerometer
US11111034B2 (en) Separable roller screw assembly for a space craft release mechanism system
CN110654578B (zh) 一种新型航天用高承载低冲击线式连接分离机构
CN112340069A (zh) 一种基于非连续螺纹副的分离解锁装置
CN113955155A (zh) 分瓣螺母式解锁释放装置及可重复使用的解锁释放装置
CN114455107B (zh) 一种基于sma连接件开关的非火工分离装置
Jiandong et al. Design of Separating Structure of Small Satellite with Elastic Metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959315

Country of ref document: EP

Kind code of ref document: A1