WO2024060073A1 - 同时实现双绕组电机控制及obc充电的复用拓扑结构 - Google Patents

同时实现双绕组电机控制及obc充电的复用拓扑结构 Download PDF

Info

Publication number
WO2024060073A1
WO2024060073A1 PCT/CN2022/120259 CN2022120259W WO2024060073A1 WO 2024060073 A1 WO2024060073 A1 WO 2024060073A1 CN 2022120259 W CN2022120259 W CN 2022120259W WO 2024060073 A1 WO2024060073 A1 WO 2024060073A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
winding
winding motor
dual
switch
Prior art date
Application number
PCT/CN2022/120259
Other languages
English (en)
French (fr)
Inventor
及非凡
宋清玉
李艳君
Original Assignee
浙大城市学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙大城市学院 filed Critical 浙大城市学院
Priority to PCT/CN2022/120259 priority Critical patent/WO2024060073A1/zh
Priority to US18/419,374 priority patent/US20240208343A1/en
Publication of WO2024060073A1 publication Critical patent/WO2024060073A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/26Power factor control [PFC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the invention belongs to the field of motor control and on-board charging devices, and in particular relates to a multiplexing topology structure that simultaneously realizes dual-winding motor control and on-board charger (OBC, On Board Charger) charging.
  • OBC On Board Charger
  • electric vehicle charging mainly includes two forms: charging pile charging and on-board chargers.
  • the construction of charging piles is not yet perfect.
  • On-board chargers have the advantage of portable charging and can be used as a transitional state before the large-scale implementation of charging piles.
  • the purpose of the present invention is to provide a multiplexing topology structure that simultaneously realizes dual-winding motor control and vehicle-mounted charger charging in view of the shortcomings of the existing technology.
  • the present invention reuses a set of hardware equipment to a great extent and simultaneously realizes the functional requirements of dual-winding motor control and vehicle charger charging. It saves equipment space and has considerable cost advantages.
  • a multiplexing topology structure that simultaneously realizes dual-winding motor control and vehicle-mounted charger charging, including:
  • the multiplexed topology is divided into battery module, dual-winding motor power control module 1, dual-winding motor power control module 2, dual-winding motor winding module 1, and dual-winding motor winding module 2.
  • the positive and negative electrodes of the battery BAT are led out in two ways respectively.
  • the positive HV+ is connected to the upper end of the first capacitor C1 in the double-winding motor power control module 1 through the first switch K1, and leads to the connection point 1 to be connected to the sixth switch K6 of the double-winding motor power control module 2; the other positive HV+ is directly connected Connect to the upper end of the second capacitor C2 in the double-winding motor power control module 2.
  • the negative pole HV- is connected to the lower end of the first capacitor C1 in the double-winding motor power control module 1 through the second switch K2, and leads to the connection point 2 to be connected to the tenth switch K10 of the double-winding motor power control module 2.
  • the negative pole HV- in addition One way is directly connected to the lower end of the second capacitor C2 in the double-winding motor power control module 2.
  • the upper and lower ends of the first capacitor C1 are connected to the upper and lower ends of the three-phase inverter circuit bridge arm.
  • the basic block of each phase bridge arm is composed of a power switch tube and a freewheeling diode connection.
  • the basic block UT1 serves as the U-phase upper bridge arm, and the basic block UB1 serves as the U-phase lower bridge arm.
  • the two blocks are connected to each other; the midpoint of the U-phase bridge arm is connected to one of the phase windings La1 of the dual-winding motor winding module 1.
  • the basic block VT1 serves as the V-phase upper bridge arm, and the basic block VB1 serves as the V-phase lower bridge arm.
  • the two groups of blocks are connected to each other.
  • the midpoint of the V-phase bridge arm is connected to one of the phase windings Lb1 of the double-winding motor winding module 1.
  • the basic block WT1 serves as the W-phase upper bridge arm, and the basic block WB1 serves as the W-phase lower bridge arm.
  • the two groups of blocks are connected to each other.
  • the midpoint of the W-phase bridge arm is connected to one of the phase windings Lc1 of the double-winding motor winding module 1.
  • the three-phase windings La1, Lb1, and Lc1 are connected in a star connection, and a double-pole double-throw switch (K3, K4) is configured in the link between the winding La1 and the star midpoint.
  • the third switch K3 controls the connection between the winding La1 and the star midpoint
  • the fourth switch K4 controls the connection between the winding La1 and the connection point N, which is connected to the N end of the mains module AC.
  • the three-phase windings La1, Lb1, and Lc1 of the double-winding motor winding module 1 have the same electrical resistance and inductance characteristics.
  • the upper and lower ends of the second capacitor C2 are connected to the upper and lower ends of the three-phase inverter circuit bridge arm.
  • the basic block of each phase bridge arm is composed of a power switch tube and a freewheeling diode connection.
  • the basic module UT2 serves as the U-phase upper bridge arm, and the basic module UB2 serves as the U-phase lower bridge arm.
  • the two groups of blocks are connected to each other;
  • the upper end of the U-phase bridge arm is equipped with double-pole double-throw switches (K5, K6), of which the fifth switch K5 Controls the connection between the upper end of the U-phase upper bridge arm UT2 and the upper end of the second capacitor C2, and the sixth switch K6 controls the connection between the upper end of the U-phase upper bridge arm UT2 and the connection point 1;
  • the lower end of the U-phase bridge arm is equipped with a double-pole double-throw switch (K9, K10), in which the ninth switch K9 controls the connection between the lower end of the U-phase lower bridge arm UB2 and the lower end of the second capacitor C2, and the tenth switch K10 controls the connection between the lower end of the U-phase lower bridge arm UB2 and the connection point 2;
  • the midpoint of the U-phase bridge arm It is connected to one of the phase windings La2 of the double-winding motor winding module 2.
  • the link is configured with double-pole double-throw switches (K7, K8).
  • the seventh switch K7 controls the connection between the midpoint of the U-phase bridge arm and the connection point L.
  • the connection point L Connected to the L end of the mains module AC
  • the eighth switch K8 controls the connection between the midpoint of the U-phase bridge arm and the one-phase winding La2 in the double-winding motor winding module 2.
  • the basic block VT2 serves as the V-phase upper bridge arm
  • the basic block VB2 serves as the V-phase lower bridge arm.
  • the two groups of blocks are connected to each other.
  • the midpoint of the V-phase bridge arm is connected to one of the phase windings Lb2 of the double-winding motor winding module 2.
  • the basic block WT2 serves as the W-phase upper bridge arm, and the basic block WB2 serves as the W-phase lower bridge arm.
  • the two groups of blocks are connected to each other.
  • the midpoint of the W-phase bridge arm is connected to one of the phase windings Lc2 of the double-winding motor winding module 2.
  • the three-phase windings La2, Lb2, and Lc2 are connected in a star connection.
  • the three-phase windings La2, Lb2, and Lc2 of the double-winding motor winding module 2 have the same electrical resistance and inductance characteristics.
  • the number of turns of the three-phase windings in the double-winding motor winding module 1 is different from that of the three-phase windings in the double-winding motor winding module 2, which is used to control the turns ratio of the primary and secondary sides of the isolation transformer module when switching to the vehicle charger charging mode. Realize the voltage boosting function of the isolation transformer module.
  • the multiplexed topology is divided into mains module, PFC inverter circuit module, inverter module, isolation transformer module, rectifier module, and battery module.
  • the N terminal is connected to the winding La1 in the PFC inverter circuit module through the fourth switch K4, and the L terminal is connected to the midpoint of the second bridge arm in the PFC inverter circuit module through the seventh switch K7.
  • the connection point L is connected to the L end of the mains module AC; the connection point N is connected to the N end of the mains module AC.
  • the winding La1 in the dual-winding motor winding module 1 and the winding La2 in the dual-winding motor winding module 2 in the dual-winding motor control mode are reused, and the third switch and the eighth switch are controlled to be disconnected, respectively, to separate them from the star connection mode.
  • the winding La1 in the dual-winding motor winding module 1 is used as a resistive inductive element; it also includes the upper and lower bridge arms UT1 and UB1 of the U phase in the dual-winding motor power control module 1, the upper and lower bridge arms UT2 and UB2 of the U phase in the dual-winding motor power control module 2, and the first capacitor C1 in the dual-winding motor power control module 1; the upper and lower ends of the bridge arms of the two phases (the U phase in the dual-winding motor power control module 1 and the U phase in the dual-winding motor power control module 2) are connected to the upper and lower ends of the first capacitor C1.
  • the inverter module in the dual-winding motor control mode, includes the V-phase upper and lower bridge arms VT1 and VB1, and the W-phase upper and lower bridge arms WT1 and WB1 in the dual-winding motor power control module 1.
  • the isolation transformer module in the dual-winding motor control mode, includes the winding Lb1 and the winding Lc1 in the dual-winding motor winding module 1, and the winding Lb2 and the winding Lc2 in the dual-winding motor winding module 2; the two-phase winding Lb1 , Lc1 is connected in series to form the primary side of the transformer, and the two-phase windings Lb2 and Lc2 are connected in series to form the secondary side of the transformer.
  • the number of winding turns is reasonably configured to achieve the voltage boosting demand of the isolation transformer module; specifically, the number of turns of the three-phase windings in the dual-winding motor winding module 1 and the three-phase winding in the dual-winding motor winding module 2 are different, which is used to control switching. Set the turns ratio between the primary and secondary sides of the isolation transformer module in the vehicle charger charging mode to realize the voltage boosting function of the isolation transformer module.
  • the rectifier module in the dual-winding motor control mode, includes the V-phase upper and lower bridge arms VT2 and VB2, the W-phase upper and lower bridge arms WT2 and WB2 in the dual-winding motor power control module 2, and the dual-winding motor power control module.
  • the second capacitor C2 in 2; the upper and lower ends of the two-phase (V phase and W phase in the double-winding motor power control module 2) bridge arms are connected to the upper and lower ends of the second capacitor C2.
  • the battery in the dual-winding motor control mode is reused, and its positive and negative poles are connected to the upper and lower ends of the second capacitor C2.
  • the topological structure of the present invention reuses a set of hardware equipment to a great extent, and simultaneously realizes the control of the dual-winding motor and the charging function of the vehicle charger, thereby effectively saving the overall layout space;
  • the topological structure of the present invention reuses hardware devices and adds a small amount of relay switches to simultaneously realize motor control and battery charging requirements, greatly reducing overall cost expenditures;
  • Figure 1 is the topology diagram of the dual-winding motor control mode
  • Figure 2 is the topological structure diagram of the vehicle charger in charging mode
  • Figure 3 is a schematic diagram of relay control operating conditions for switching between two modes.
  • the present invention is a multiplex topology structure that simultaneously realizes dual-winding motor control and vehicle charger charging, including:
  • the multiplexed topology includes a battery module, a dual-winding motor power control module 1, a dual-winding motor winding module 1, a dual-winding motor power control module 2, a dual-winding motor Winding module 2.
  • the battery module drives and controls the dual-winding motor winding module 1 and the dual-winding motor winding module 2 through the dual-winding motor power control module 1 and the dual-winding motor power control module 2 respectively.
  • the positive and negative poles of the battery BAT are led out two ways respectively.
  • the positive HV+ is connected to the upper end of the first capacitor C1 in the double-winding motor power control module 1 through the first relay K1, and leads to the connection point 1 to be connected to the sixth relay K6 of the double-winding motor power control module 2; the other positive HV+ is directly connected Connect to the upper end of the second capacitor C2 in the double-winding motor power control module 2.
  • the negative pole HV- is connected to the lower end of the first capacitor C1 in the double-winding motor power control module 1 through the second relay K2, and leads to the connection point 2 to be connected to the tenth relay K10 of the double-winding motor power control module 2.
  • the negative pole HV- in addition One way is directly connected to the lower end of the second capacitor C2 in the double-winding motor power control module 2.
  • the first relay K1 and the second relay K2 are controlled to be closed, and the positive and negative poles of the battery are connected to connection points 1 and 2 respectively to provide DC voltage for the three-phase inverter circuit.
  • Double-winding motor power control module 1 It is composed of the first capacitor C1 and three-phase bridge arms. Each phase is divided into upper and lower bridge arms. Each bridge arm is connected by a power switch tube and a freewheeling diode. There are 6 bridge arms. Correspond to UT1 and UB1, VT1 and VB1, WT1 and WB1 respectively. The midpoints of the three-phase bridge arms respectively correspond to the three-phase windings La1, Lb1 and Lc1 connected to the double-winding motor winding module 1; by controlling the gates of the power tubes of each bridge arm signal, the dual-winding motor power control module 1 outputs a PWM (Pulse Width Modulation, pulse width modulation) wave to drive the dual-winding motor winding module 1.
  • PWM Pulse Width Modulation, pulse width modulation
  • Double-winding motor winding module 1 It is composed of three-phase symmetrical windings La1, Lb1, and Lc1 connected in a star shape; the link between the winding La1 and the star midpoint is equipped with a double-pole double-throw switch (K3, K4), in which the third relay K3 controls the connection between the winding La1 and the star midpoint, and the fourth relay K4 controls the connection between the winding La1 and the connection point N. Among them, the fourth relay K4 is disconnected and the third relay K3 is closed to ensure that the double-winding motor winding module 1 operates in the motor drive mode; by controlling the fourth relay K4 and the seventh relay K7 to disconnect, the input of the mains module is shielded .
  • the three-phase windings La1, Lb1, and Lc1 of the double-winding motor winding module 1 have the same electrical resistance and inductance characteristics.
  • Double-winding motor power control module 2 At this time, the fifth relay K5 is closed, the sixth relay K6 is open, the seventh relay K7 is open, the eighth relay K8 is closed, the ninth relay K9 is closed, and the tenth relay K10 is open.
  • the double-winding motor power control module 2 is composed of the second capacitor C2 and a three-phase bridge arm. Each phase is divided into upper and lower bridge arms. Each bridge arm is connected by a power switch tube and a freewheeling diode. , the six bridge arms respectively correspond to UT2 and UB2, VT2 and VB2, WT2 and WB2.
  • the midpoints of the three-phase bridge arms respectively correspond to the three-phase windings La2, Lb2, and Lc2 connected to the double-winding motor winding module 2; by controlling the gate signals of the power tubes of each bridge arm, the double-winding motor power control module 2 outputs PWM waves to drive Double winding motor winding module 2.
  • Double-winding motor winding module 2 It is composed of three-phase symmetrical windings La2, Lb2, and Lc2 star-connected, and is controlled by the PWM drive issued by the double-winding motor winding module 2. Among them, the three-phase windings La2, Lb2, and Lc2 of the double-winding motor winding module 2 have the same electrical resistance and inductance characteristics.
  • the multiplexed topology includes a mains module, a PFC inverter circuit module, an inverter module, an isolation transformer module, a rectifier module, and a battery module.
  • Mains module The N terminal is connected to the winding La1 in the PFC inverter circuit module through the fourth relay K4, and the L terminal is connected to the midpoint of the second bridge arm in the PFC inverter circuit module through the seventh relay K7.
  • the fourth relay K4 and the seventh relay K7 are controlled to be closed
  • the third relay K3 and the eighth relay K8 are controlled to be disconnected
  • the N terminal of the mains power is connected to the connection point N
  • the L terminal of the mains power is connected.
  • Point L realizes power transmission to the PFC inverter circuit.
  • the winding La1 in the double-winding motor winding module 1 is used as a resistive element; it also includes the U-phase upper and lower bridge arms UT1 and UB1 in the double-winding motor power control module 1, and the U-phase upper and lower bridge arms UT2 in the double-winding motor power control module 2. and UB2, and the first capacitor C1 in the dual-winding motor power control module 1.
  • the sixth relay K6 and the tenth relay K10 are controlled to close, and the fifth relay K5 and the ninth relay K9 are controlled to open, so that the U-phase upper and lower bridge arms of the double-winding motor power control module 2 are connected to the connection point 1 and the connection point 2 respectively.
  • UT1 and UB1, and UT2 and UB2 together form a two-phase bridge arm.
  • the upper and lower ends of the two-phase bridge arm are jointly connected to the first capacitor C1 to jointly realize the inverter boost of PFC (Power Factor Correction).
  • Inverter module The V-phase upper and lower bridge arms VT1 and VB1 in the dual-winding motor power control module 1, and the W-phase upper and lower bridge arms WT1 and WB1, together form a two-phase bridge arm.
  • By controlling the gate signals of each power switch tube Realize the inverter function and output high-frequency alternating voltage.
  • Isolation transformer module Due to the disconnection of the third relay K3 and the eighth relay K8, the winding Lb1 and the winding Lc1 in the double-winding motor winding module 1 are automatically connected in series to form the primary side of the transformer, and the winding Lb2 in the double-winding motor winding module 2 It is automatically connected in series with winding Lc2 to form the secondary side of the transformer; by reasonably configuring the turns of the two sets of windings, the voltage transformation function of the isolation transformer can be realized.
  • the number of turns of the three-phase windings in the dual-winding motor winding module 1 is different from that of the three-phase windings in the dual-winding motor winding module 2, which is used to control the turns of the primary and secondary sides of the isolation transformer module when switching to the vehicle charger charging mode.
  • Rectifier module The V-phase upper and lower bridge arms VT2 and VB2 in the double-winding motor power control module 2 and the W-phase upper and lower bridge arms WT2 and WB2 together form a two-phase bridge arm.
  • the upper and lower ends of the two-phase bridge arm are connected to the second capacitor respectively.
  • the two ends of C2 are connected, and the rectification function is realized by controlling the gate signal of each power switch tube, and the DC charging voltage is output to charge the battery.
  • Battery module The positive and negative electrodes of the battery are connected to the upper and lower ends of the second capacitor C2. At this time, the first relay K1 and the second relay K2 are controlled to be disconnected.
  • the battery is only structurally connected to the rectifier module and receives the electric power output from the rectifier module for charging.
  • All relay switches involved in the multiplexing topology of the present invention can be replaced by any device with switching properties.
  • the present invention is not limited to the above-mentioned embodiments. The same or similar manner as the above-mentioned embodiments of the present invention is adopted. All other embodiments obtained by those of ordinary skill in the art without making creative efforts are protected by the patent of the present invention. within the range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种同时实现双绕组电机控制及车载充电器充电的复用拓扑结构。通过对特定继电器闭合断开的状态进行控制,实现双绕组电机控制拓扑和车载充电器充电拓扑之间的双向切换。在双绕组电机控制模式下,拓扑结构分为电池模块、双绕组电机功率控制模块1、双绕组电机功率控制模块2、双绕组电机绕组模块1、双绕组电机绕组模块2;在车载充电器充电模式下,拓扑结构分为市电模块、PFC逆变电路模块、逆变模块、隔离变压器模块、整流模块、电池模块。本发明极大程度上复用一套硬件设备的同时实现了双绕组电机控制及车载充电器充电的功能需求,在节省设备空间,提升车载充电效率的同时具有十分可观的成本优势。

Description

同时实现双绕组电机控制及OBC充电的复用拓扑结构 技术领域
本发明属于电机控制及车载充电装置领域,尤其涉及一种同时实现双绕组电机控制及车载充电器(OBC,On Board Charger)充电的复用拓扑结构。
背景技术
近年来世界各国不断推进清洁能源和绿色交通的发展,以应对日益恶化的能源危机和环境污染问题。汽车工业面临转型,电动汽车逐渐成为现代汽车发展中的一个重要方向,许多国家也都在积极推广电动汽车的普及。在转型过渡期间,如何有效地为电动汽车充电是解决用户里程焦虑的一个关键问题。
现如今电动汽车充电主要包括充电桩充电和车载充电器两种形式,充电桩的建设目前还不够完善,车载充电器具有便携充电的优点,可以作为充电桩大规模实现之前的一种过渡状态。
由于电动汽车空间限制和出于成本的考虑,目前车内配备的车载充电器的实际充电效率并不高,在现有的技术当中,众多的科研人员也对车载充电器优化做了许多探索并取得了一定的成果,但依然具有较大的提升空间。
基于此,针对上述论述,期望获得一种新型的车载充电器替代方案,能够有效解决电动汽车空间限制,降低整体硬件成本并尽可能地提升充电效率。
发明内容
本发明的目的在于针对现有技术的不足,提供一种同时实现双绕组电机控制和车载充电器充电的复用拓扑结构。本发明极大程度上复用一套硬件设备,同时实现了双绕组电机控制及车载充电器充电的功能需求,在节省设备空间的同时具有十分可观的成本优势。
本发明的目的是通过以下技术方案来实现的:一种同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,包括:
在双绕组电机控制模式下,所述复用拓扑结构分为电池模块、双绕组电机功率控制模块1、双绕组电机功率控制模块2、双绕组电机绕组模块1、双绕组电机绕组模块2。
所述电池模块中,电池BAT的正负极均分别引出两路。正极HV+一路通过第一开关K1连接到双绕组电机功率控制模块1中第一电容C1的上端,并引出连接点1与双绕组电机功率控制模块2的第六开关K6连接;正极HV+另外一路直接连接到双绕组电机功率控制模块2中第二电容C2的上端。负极HV-一路通过第二开关K2连接到双绕组电机功率控制模块1 中第一电容C1的下端,并引出连接点2与双绕组电机功率控制模块2的第十开关K10连接,负极HV-另外一路直接连接到双绕组电机功率控制模块2中第二电容C2的下端。
所述双绕组电机功率控制模块1中,第一电容C1的上下端与三相逆变电路桥臂的上下端连接。各相桥臂的基本组块由功率开关管和续流二极管连接构成。基本组块UT1作为U相上桥臂,基本组块UB1作为U相下桥臂,两组块相互连接;U相桥臂中点与双绕组电机绕组模块1其中一相绕组La1连接。基本组块VT1作为V相上桥臂,基本组块VB1作为V相下桥臂,两组块相互连接,V相桥臂中点与双绕组电机绕组模块1其中一相绕组Lb1连接。基本组块WT1作为W相上桥臂,基本组块WB1作为W相下桥臂,两组块相互连接,W相桥臂中点与双绕组电机绕组模块1其中一相绕组Lc1连接。
所述双绕组电机绕组模块1中,三相绕组La1、Lb1、Lc1采用星型连接的方式进行连接,绕组La1与星型中点连接的链路中配置双刀双掷开关(K3、K4),其中第三开关K3控制绕组La1与星型中点的连接,第四开关K4控制绕组La1与连接点N的连接,连接点N与市电模块AC的N端连接。其中,双绕组电机绕组模块1的三相绕组La1、Lb1、Lc1电气阻感特性相同。通过控制第四开关K4、第七开关K7断开,屏蔽市电模块的输入。
所述双绕组电机功率控制模块2中,第二电容C2的上下端与三相逆变电路桥臂的上下端连接。各相桥臂的基本组块由功率开关管和续流二极管连接构成。基本组块UT2作为U相上桥臂,基本组块UB2作为U相下桥臂,两组块相互连接;U相桥臂上端配置双刀双掷开关(K5、K6),其中第五开关K5控制U相上桥臂UT2上端与第二电容C2上端的连接,第六开关K6控制U相上桥臂UT2上端与连接点1的连接;U相桥臂下端配置双刀双掷开关(K9、K10),其中第九开关K9控制U相下桥臂UB2下端与第二电容C2下端的连接,第十开关K10控制U相下桥臂UB2下端与连接点2的连接;U相桥臂中点与双绕组电机绕组模块2其中一相绕组La2连接,链路配置双刀双掷开关(K7、K8),其中第七开关K7控制U相桥臂中点与连接点L的连接,连接点L与市电模块AC的L端连接,第八开关K8控制U相桥臂中点与双绕组电机绕组模块2中一相绕组La2的连接。基本组块VT2作为V相上桥臂,基本组块VB2作为V相下桥臂,两组块相互连接,V相桥臂中点与双绕组电机绕组模块2其中一相绕组Lb2连接。基本组块WT2作为W相上桥臂,基本组块WB2作为W相下桥臂,两组块相互连接,W相桥臂中点与双绕组电机绕组模块2其中一相绕组Lc2连接。
所述双绕组电机绕组模块2中,三相绕组La2、Lb2、Lc2采用星型连接的方式进行连接。其中,双绕组电机绕组模块2的三相绕组La2、Lb2、Lc2电气阻感特性相同。双绕组电机绕组模块1中三相绕组与双绕组电机绕组模块2中三相绕组的匝数不同,用于控制切换为车载 充电器充电模式下隔离变压器模块原边和副边的匝数比,实现隔离变压器模块的升压功能。
在车载充电器充电模式下,所述复用拓扑结构分为市电模块、PFC逆变电路模块、逆变模块、隔离变压器模块、整流模块、电池模块。
所述市电模块中,N端通过第四开关K4与PFC逆变电路模块中的绕组La1连接,L端通过第七开关K7与PFC逆变电路模块中的第二桥臂中点连接。连接点L与市电模块AC的L端连接;连接点N与市电模块AC的N端连接。
所述PFC逆变电路模块中,复用双绕组电机控制模式下双绕组电机绕组模块1中的绕组La1和双绕组电机绕组模块2中的绕组La2,分别通过控制第三开关、第八开关断开,将其从星型连接方式下分离。双绕组电机绕组模块1中的绕组La1作为阻感元件;还包括双绕组电机功率控制模块1中的U相上下桥臂UT1和UB1、双绕组电机功率控制模块2中的U相上下桥臂UT2和UB2,以及双绕组电机功率控制模块1中的第一电容C1;两相(双绕组电机功率控制模块1中的U相、双绕组电机功率控制模块2中的U相)桥臂上下端均与第一电容C1上下端连接。
所述逆变模块中,复用双绕组电机控制模式下,包括双绕组电机功率控制模块1中的V相上下桥臂VT1和VB1,以及W相上下桥臂WT1和WB1。
所述隔离变压器模块中,复用双绕组电机控制模式下,包括双绕组电机绕组模块1中的绕组Lb1和绕组Lc1,以及双绕组电机绕组模块2中的绕组Lb2和绕组Lc2;两相绕组Lb1、Lc1串接后构成变压器的原边,两相绕组Lb2、Lc2串接后构成变压器的副边。其中,合理配置绕组匝数,实现隔离变压器模块的升压需求;具体地,双绕组电机绕组模块1中三相绕组与双绕组电机绕组模块2中三相绕组的匝数不同,用于控制切换为车载充电器充电模式下隔离变压器模块原边和副边的匝数比,实现隔离变压器模块的升压功能。
所述整流模块中,复用双绕组电机控制模式下,包括双绕组电机功率控制模块2中的V相上下桥臂VT2和VB2、W相上下桥臂WT2和WB2,以及双绕组电机功率控制模块2中的第二电容C2;两相(双绕组电机功率控制模块2中的V相、W相)桥臂上下端与第二电容C2上下端连接。
所述电池模块中,复用双绕组电机控制模式下的电池,其正负极与第二电容C2上下端连接。
本发明的有益效果如下:
(1)本发明所述的拓扑结构极大程度上复用一套硬件设备,同时实现了双绕组电机的控制以及车载充电器的充电功能,从而有效的节省了整体的布局空间;
(2)本发明所述的拓扑结构通过复用硬件器件,少量添加继电器开关,同时实现电机控制和电池充电需求,整体上极大地压缩了成本支出;
(3)相比于市面一般使用的车载充电器,本发明拓扑结构下的充电效率更高。
附图说明
图1是双绕组电机控制模式下的拓扑结构图;
图2是车载充电器充电模式下的拓扑结构图;
图3是两模式切换的继电器控制操作条件示意图。
具体实施方式
下面结合附图对本发明做进一步详细描述:
本发明一种同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,包括:
如图1所示,在双绕组电机控制模式下,所述复用拓扑结构包括电池模块、双绕组电机功率控制模块1、双绕组电机绕组模块1、双绕组电机功率控制模块2、双绕组电机绕组模块2。电池模块分别同时通过双绕组电机功率控制模块1和双绕组电机功率控制模块2,驱动控制双绕组电机绕组模块1和双绕组电机绕组模块2。
电池模块:电池BAT的正负极均分别引出两路。正极HV+一路通过第一继电器K1连接到双绕组电机功率控制模块1中第一电容C1的上端,并引出连接点1与双绕组电机功率控制模块2的第六继电器K6连接;正极HV+另外一路直接连接到双绕组电机功率控制模块2中第二电容C2的上端。负极HV-一路通过第二继电器K2连接到双绕组电机功率控制模块1中第一电容C1的下端,并引出连接点2与双绕组电机功率控制模块2的第十继电器K10连接,负极HV-另外一路直接连接到双绕组电机功率控制模块2中第二电容C2的下端。在双绕组电机控制模式下,控制第一继电器K1、第二继电器K2闭合,电池正负极分别接通连接点1、连接点2,为三相逆变电路提供直流电压。
双绕组电机功率控制模块1:由第一电容C1和三相桥臂组成,各相分为上下两个桥臂,每个桥臂由功率开关管和续流二极管连接而成,6个桥臂分别对应UT1和UB1、VT1和VB1、WT1和WB1,三相桥臂的中点分别对应连接到双绕组电机绕组模块1的三相绕组La1、Lb1、Lc1;通过控制各桥臂功率管门极信号,双绕组电机功率控制模块1输出PWM(Pulse WidthModulation,脉冲宽度调制)波,驱动双绕组电机绕组模块1。
双绕组电机绕组模块1:由三相对称绕组La1、Lb1、Lc1星型连接组成;绕组La1与星型中点连接的链路中配置双刀双掷开关(K3、K4),其中第三继电器K3控制绕组La1与星型中点的连接,第四继电器K4控制绕组La1与连接点N的连接。其中,第四继电器K4断 开,第三继电器K3闭合,保证双绕组电机绕组模块1在电机驱动模式下运行;通过控制第四继电器K4、第七继电器K7断开,屏蔽掉市电模块的输入。双绕组电机绕组模块1的三相绕组La1、Lb1、Lc1电气阻感特性相同。
双绕组电机功率控制模块2:此时,第五继电器K5闭合,第六继电器K6断开,第七继电器K7断开,第八继电器K8闭合,第九继电器K9闭合,第十继电器K10断开。在此继电器状态下,双绕组电机功率控制模块2由第二电容C2和三相桥臂组成,各相分为上下两个桥臂,每个桥臂由功率开关管和续流二极管连接而成,6个桥臂分别对应UT2和UB2、VT2和VB2、WT2和WB2。三相桥臂的中点分别对应连接到双绕组电机绕组模块2的三相绕组La2、Lb2、Lc2;通过控制各桥臂功率管门极信号,双绕组电机功率控制模块2输出PWM波,驱动双绕组电机绕组模块2。
双绕组电机绕组模块2:由三相对称绕组La2、Lb2、Lc2星型连接组成,受双绕组电机绕组模块2发出的PWM驱动控制。其中,双绕组电机绕组模块2的三相绕组La2、Lb2、Lc2电气阻感特性相同。
如图2所示,在车载充电器充电模式下,所述复用拓扑结构包括市电模块、PFC逆变电路模块、逆变模块、隔离变压器模块、整流模块、电池模块。
市电模块:N端通过第四继电器K4与PFC逆变电路模块中的绕组La1连接,L端通过第七继电器K7与PFC逆变电路模块中的第二桥臂中点连接。在车载充电器充电模式下,控制第四继电器K4、第七继电器K7闭合,控制第三继电器K3、第八继电器K8断开,市电N端接通连接点N,市电L端接通连接点L,实现向PFC逆变电路的功率传输。
PFC逆变电路模块:通过控制第三继电器K3、第八继电器K8断开,将双绕组电机绕组模块1的一相绕组La1和双绕组电机绕组模块2的绕组La2,从星型连接方式下分离。双绕组电机绕组模块1中的绕组La1作为阻感元件;还包括双绕组电机功率控制模块1中的U相上下桥臂UT1和UB1、双绕组电机功率控制模块2中的U相上下桥臂UT2和UB2,以及双绕组电机功率控制模块1中的第一电容C1。控制第六继电器K6、第十继电器K10闭合,控制第五继电器K5、第九继电器K9断开,从而使双绕组电机功率控制模块2的U相上下桥臂分别接通连接点1和连接点2。此时由UT1和UB1、UT2和UB2共同构成两相桥臂,两相桥臂上下两端共同并接第一电容C1,共同实现PFC(Power Factor Correction,功率因数校正)的逆变升压。
逆变模块:由双绕组电机功率控制模块1中的V相上下桥臂VT1、VB1,和W相上下桥臂WT1、WB1,共同组成两相桥臂,通过控制各功率开关管的门极信号实现逆变功能,输出 高频交变电压。
隔离变压器模块:由于第三继电器K3和第八继电器K8的断开,双绕组电机绕组模块1中的绕组Lb1和绕组Lc1自动串接构成变压器的原边,双绕组电机绕组模块2中的绕组Lb2和绕组Lc2自动串接构成变压器的副边;通过合理配置两组绕组的匝数,即可实现隔离变压器变压功能。具体地,双绕组电机绕组模块1中三相绕组与双绕组电机绕组模块2中三相绕组的匝数不同,用于控制切换为车载充电器充电模式下隔离变压器模块原边和副边的匝数比,实现隔离变压器模块的升压功能。
整流模块:由双绕组电机功率控制模块2中的V相上下桥臂VT2、VB2,和W相上下桥臂WT2、WB2共同组成两相桥臂,两相桥臂上下两端分别与第二电容C2两端连接,通过控制各功率开关管的门极信号实现整流功能,输出直流充电电压为电池充电。
电池模块:电池正负极与第二电容C2上下端连接。此时控制第一继电器K1、第二继电器K2断开,电池在结构上只与整流模块连接,接受整流模块输出的电功率进行充电。
如图3所示,基于上述复用拓扑结构,断开K1、K2、K3、K5、K8、K9,闭合K4、K6、K7、K10可切换至车载充电器充电模式,闭合K1、K2、K3、K5、K8、K9,断开K4、K6、K7、K10可切换至双绕组电机控制模式。
本发明复用拓扑结构中所涉及的所有继电器开关可以替换为任意具有开关属性的器件。本发明并不限于上述实施方式,采用与本发明上述实施方式相同或近似的方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均在本发明专利的保护范围之内。

Claims (10)

  1. 一种同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于:
    双绕组电机控制模式下,所述复用拓扑结构包括电池模块、第一双绕组电机功率控制模块、第一双绕组电机绕组模块、第二双绕组电机功率控制模块、第二双绕组电机绕组模块;通过对开关器件的控制操作,实现电池模块同时向第一双绕组电机功率控制模块和第二双绕组电机功率控制模块的直流驱动,进而实现第一双绕组电机功率控制模块和第二双绕组电机功率控制模块分别同时PWM驱动第一双绕组电机绕组模块和第二双绕组电机绕组模块的功能;
    车载充电器充电模式下,所述复用拓扑结构包括市电模块、PFC逆变电路模块、逆变模块、隔离变压器模块、整流模块、电池模块;通过对开关器件的控制,第一双绕组电机功率控制模块的V相上下桥臂、W相上下桥臂,构成逆变电路,实现对PFC逆变电路输出电压的逆变,第二双绕组电机功率控制模块的V相上下桥臂、W相上下桥臂构成两相桥臂,并接第二双绕组电机功率控制模块中第二电容,构成整流电路,实现对隔离变压器输出的高频交流电的整流;通过对开关器件的控制,第一双绕组电机绕组模块中两相绕组串接,共同构成隔离变压器的原边,第二双绕组电机绕组模块中两相绕组串接,共同构成隔离变压器的副边,通过配置两组三相绕组的导线匝数,实现隔离变压器模块的升压功能。
  2. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于,通过控制第一开关、第二开关闭合,电池模块同时与第一双绕组电机功率控制模块和第二双绕组电机功率控制模块连接,实现两路的直流驱动;通过控制第四开关、第七开关断开,屏蔽掉市电模块的输入。
  3. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于,第一双绕组电机功率控制模块和第二双绕组电机功率控制模块在通过开关器件操作控制,构成三相逆变电路结构,同时在电池模块直流驱动下发出所需的PWM波。
  4. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于,通过在第二双绕组电机功率控制模块中的一相桥臂中配置第五开关、第九开关,控制两个开关闭合,实现三相逆变桥臂的并接。
  5. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于,在第一双绕组电机绕组模块中的一相绕组与星型连接中点之间,配置第三开关;在第二双绕组电机绕组模块中的一相桥臂中点和第二双绕组电机绕组模块一相绕组之间,配置第八开关,通过控制两个开关的通断,实现双绕组电机控制模式下的绕组星型连接,和车载充电器充电模式下的绕组串接构成隔离变压器原边和副边的结构切换。
  6. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在 于,在第一双绕组电机绕组模块中的一相绕组与星型连接中点之间,配置第四开关;在第二双绕组电机绕组模块中的一相桥臂中点和第二双绕组电机绕组模块一相绕组之间,配置第七开关;控制两个开关闭合,实现车载充电器充电模式下的市电交流功率输入。
  7. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于,在第二双绕组电机功率控制模块的一相桥臂中配置第六开关、第十开关,通过控制两个开关通断,实现第二双绕组电机功率控制模块的一相桥臂与第一双绕组电机功率控制模块中的一相桥臂、第一电容并接共同实现三相逆变桥,和PFC逆变电路桥式结构的切换。
  8. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于,通过控制相关开关器件通断,实现第一双绕组电机绕组模块中用于逆变输出的三相桥臂中的两相桥臂,和车载充电器充电模式下的逆变模块的桥式电路结构的切换;通过控制相关开关器件通断,实现第二双绕组电机绕组模块中用于逆变输出的三相桥臂中的两相桥臂,和车载充电器充电模式下的整流模块的桥式电路结构的切换。
  9. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于,在双绕组电机控制模式下:
    电池模块通过控制第一开关和第二开关闭合,同时连接第一双绕组电机功率控制模块和第二双绕组电机功率控制模块三相桥臂的上下两端,以同时实现对其的直流功率传递;
    第二双绕组电机功率控制模块通过控制第五开关、第九开关闭合,以及第六开关、第十开关断开,实现第二双绕组电机功率控制模块内的三相桥臂的连接;同时控制第七开关断开,以及第八开关闭合,第二双绕组电机功率控制模块三相桥臂的中点分别对应连接第二双绕组电机绕组模块的三相绕组;各桥臂由功率开关管和续流二极管连接而成,通过对各相桥臂功率开关管的门极进行控制,从而实现PWM波输出;其中,第二双绕组电机绕组模块由三相绕组星型连接组成;
    第一双绕组电机绕组模块通过控制第三开关闭合,以及第四开关断开,实现第一双绕组电机绕组模块的三相绕组的星型连接。
  10. 如权利要求1所述同时实现双绕组电机控制及车载充电器充电的复用拓扑结构,其特征在于,在车载充电器充电模式下:
    市电模块通过控制第四开关和第七开关闭合,以及第一开关和第二开关断开,将市电接入PFC逆变电路模块两端实现交流功率输入;
    PFC逆变电路模块通过控制第三开关、第八开关断开,将第一双绕组电机绕组模块的一相绕组和第二双绕组电机绕组模块的一相绕组,从星型连接方式下分离;再通过控制第六开关、 第十开关闭合,以及第五开关、第九开关断开,联合第一双绕组电机功率控制模块中的U相上下桥臂和第一电容,以及第二双绕组电机功率控制模块中的U相上下桥臂,共同构成PFC逆变电路,通过控制各桥臂功率开关管的门极,实现PFC功能。
PCT/CN2022/120259 2022-09-21 2022-09-21 同时实现双绕组电机控制及obc充电的复用拓扑结构 WO2024060073A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/120259 WO2024060073A1 (zh) 2022-09-21 2022-09-21 同时实现双绕组电机控制及obc充电的复用拓扑结构
US18/419,374 US20240208343A1 (en) 2022-09-21 2024-01-22 Multiplexing topological structure for simultaneously realizing control of duplex-winding motor and charging of obc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/120259 WO2024060073A1 (zh) 2022-09-21 2022-09-21 同时实现双绕组电机控制及obc充电的复用拓扑结构

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/419,374 Continuation US20240208343A1 (en) 2022-09-21 2024-01-22 Multiplexing topological structure for simultaneously realizing control of duplex-winding motor and charging of obc

Publications (1)

Publication Number Publication Date
WO2024060073A1 true WO2024060073A1 (zh) 2024-03-28

Family

ID=90453720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120259 WO2024060073A1 (zh) 2022-09-21 2022-09-21 同时实现双绕组电机控制及obc充电的复用拓扑结构

Country Status (2)

Country Link
US (1) US20240208343A1 (zh)
WO (1) WO2024060073A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974261A (zh) * 2005-11-30 2007-06-06 株式会社日立制作所 电动机驱动装置以及使用了该电动机驱动装置的汽车
CN102158035A (zh) * 2010-02-11 2011-08-17 唐山普林亿威科技有限公司 双三相双对称绕组永磁无刷直流电机
CN102931716A (zh) * 2012-09-18 2013-02-13 北京理工大学 一种双绕组驱动/隔离变压220vac充电一体化装置
WO2013077221A1 (ja) * 2011-11-24 2013-05-30 日産自動車株式会社 電力変換装置及び充電システム
CN109747453A (zh) * 2017-11-02 2019-05-14 福特全球技术公司 带有集成充电器的电气化动力传动系统
CN115158055A (zh) * 2022-07-21 2022-10-11 浙江零跑科技股份有限公司 一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1974261A (zh) * 2005-11-30 2007-06-06 株式会社日立制作所 电动机驱动装置以及使用了该电动机驱动装置的汽车
CN102158035A (zh) * 2010-02-11 2011-08-17 唐山普林亿威科技有限公司 双三相双对称绕组永磁无刷直流电机
WO2013077221A1 (ja) * 2011-11-24 2013-05-30 日産自動車株式会社 電力変換装置及び充電システム
CN102931716A (zh) * 2012-09-18 2013-02-13 北京理工大学 一种双绕组驱动/隔离变压220vac充电一体化装置
CN109747453A (zh) * 2017-11-02 2019-05-14 福特全球技术公司 带有集成充电器的电气化动力传动系统
CN115158055A (zh) * 2022-07-21 2022-10-11 浙江零跑科技股份有限公司 一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置

Also Published As

Publication number Publication date
US20240208343A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
CN108539833B (zh) 一种电动汽车用开绕组永磁电驱重构型车载充电系统
CN207705877U (zh) 一种高效率电动汽车车载充电机
WO2020125625A1 (zh) 动力电池的充电方法、电机控制电路及车辆
CN107623365A (zh) 一种带逆变功能的三端口充电机
CN109361255B (zh) 一种基于电机绕组开路的充放电电路拓扑
WO2024016601A1 (zh) 一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置
CN107276415A (zh) 一种电动汽车驱动与充电集成功率变换器
CN108512256A (zh) 一种多功能车载充放电一体化系统
CN110601525B (zh) 新能源汽车集成车载充电变换系统
CN105871205A (zh) 一种集成式多功能电源转换系统
CN106208641A (zh) 一种交直流复用的电路
CN106314184B (zh) 一种电动汽车车载充电驱动一体化拓扑结构
CN111464040A (zh) 一种适用于不同输入电网的dcdc架构及其控制方法
CN207173336U (zh) 一种用于电动车蓄电池的直流充电装置
CN108736756A (zh) 一种改进型双辅助谐振极型三相软开关逆变电路
CN109586421A (zh) 感应式无线电能传输系统及多调节参数控制方法
CN113511084A (zh) 一种输出端可进行串并联切换的车载充电机
CN107834581A (zh) 一种多绕组谐振独立电流控制的电池储能系统
CN207134991U (zh) 一种电动汽车驱动与充电集成功率变换器
CN205725456U (zh) 集成式多功能电源转换装置
CN110061626A (zh) 一种带高压直流母线的充电站
WO2024060073A1 (zh) 同时实现双绕组电机控制及obc充电的复用拓扑结构
CN112297894A (zh) 一种宽范围输出的集成车载充电机
CN103738153A (zh) 一种新能源汽车的电驱动系统
CN209313739U (zh) 一种高频隔离型交直流变换电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959084

Country of ref document: EP

Kind code of ref document: A1