WO2024060026A1 - 光学谐振腔和气体吸收光谱检测设备 - Google Patents

光学谐振腔和气体吸收光谱检测设备 Download PDF

Info

Publication number
WO2024060026A1
WO2024060026A1 PCT/CN2022/119994 CN2022119994W WO2024060026A1 WO 2024060026 A1 WO2024060026 A1 WO 2024060026A1 CN 2022119994 W CN2022119994 W CN 2022119994W WO 2024060026 A1 WO2024060026 A1 WO 2024060026A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
mirror
reflection
cavity mirror
optical resonant
Prior art date
Application number
PCT/CN2022/119994
Other languages
English (en)
French (fr)
Inventor
陈波
杨志泉
温俊华
许辉杰
Original Assignee
江苏旭海光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏旭海光电科技有限公司 filed Critical 江苏旭海光电科技有限公司
Priority to CN202280004172.9A priority Critical patent/CN116034261A/zh
Priority to PCT/CN2022/119994 priority patent/WO2024060026A1/zh
Publication of WO2024060026A1 publication Critical patent/WO2024060026A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/02Catoptric systems, e.g. image erecting and reversing system
    • G02B17/06Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror

Definitions

  • This application belongs to the technical field of Cavity Enhance Absorption Spectroscopy (CEAS), and in particular relates to an optical resonant cavity and gas absorption spectrum detection equipment.
  • CEAS Cavity Enhance Absorption Spectroscopy
  • gas absorption spectrum detection technology adopts the method of increasing the optical path to increase the gas absorption rate and reduce the lower detection limit.
  • the optical path cannot be increased infinitely.
  • CEAS technologies developed in recent years such as Cavity Ring-Down Spectroscopy (CRDS) technology, Incoherent Broad Band (IBB) cavity enhanced absorption spectroscopy (IBCEAS) technology, and off-axis integrating cavity output spectrum (Off Axis Integrating Cavity Output Spectroscopy, OA-ICOS) technology, etc., utilizes the characteristics of continuous reflection of light in the optical resonant cavity, which can increase the effective optical path by 10 2 -10 4 times in a limited volume, thus greatly improving the gas Absorption spectroscopy detects the sensitivity of equipment.
  • CRDS Cavity Ring-Down Spectroscopy
  • IBB Incoherent Broad Band
  • IBCEAS Incoherent Broad Band
  • OA-ICOS off-axis integrating cavity output spectrum
  • gas detection absorption spectrometry equipment based on CEAS technology generally has the problem of low light energy received by photodetectors, which limits the improvement of the signal-to-noise ratio and sensitivity of gas absorption spectrometry detection equipment.
  • One of the purposes of the embodiments of the present application is to provide an optical resonant cavity and gas absorption spectrum detection equipment to solve the problem of low light energy received by the photodetector of the existing gas absorption spectrum detection equipment based on CEAS technology, which limits the The problem of improving the signal-to-noise ratio and sensitivity of gas absorption spectrum detection equipment.
  • the first aspect of the embodiment of the present application provides an optical resonant cavity, including:
  • a first cavity mirror the first cavity mirror includes a plurality of reflection points, and at least one of all reflection points of the first cavity mirror is an input reflection point;
  • the reflective surface of the second cavity mirror is disposed on the opposite side of the reflective surface of the first cavity mirror.
  • the second cavity mirror includes a plurality of reflection points.
  • the first cavity mirror or the second cavity mirror At least one of all reflection points of the second cavity mirror is an output reflection point;
  • the light beam is transmitted into the optical resonant cavity through the input reflection point, and after being reflected N times between the reflection point of the first cavity mirror and the reflection point of the second cavity mirror, the re-incidence condition is satisfied. And enters the next reflection cycle, and so on, until the energy of the light beam in the optical resonant cavity attenuates to 0, N ⁇ 4, and the re-incidence condition is: the reflection position of the light beam in the optical resonant cavity and the reflection angle is the same as the transmission position and transmission angle at which the light beam is first transmitted into the optical resonant cavity;
  • At least one of all the input reflection points and all the output reflection points is a target reflection point, the transmittance of the target reflection point is greater than or equal to T, and the transmittance of the remaining reflection points is equal to T 0 , T>T 0 >0.
  • the transmittance of one of all said input reflection points and one of all said output reflection points is greater than or equal to T.
  • the transmittance of one of all the input reflection points or one of all the output reflection points is greater than or equal to T.
  • the transmittance of at least one of all the input reflection points is greater than or equal to T in
  • the transmittance of at least one of all the output reflection points is greater than or equal to T out , T in ⁇ T out , T in ⁇ T, T out ⁇ T.
  • the target cavity mirror among the first cavity mirror and the second cavity mirror, reflections with different transmittances are formed on the target cavity mirror based on an integrated coating method or a split coating method.
  • the target cavity mirror includes a plurality of reflection points with different transmittances.
  • the method of forming multiple reflection points with different transmittances on the target cavity mirror is: during the integrated coating process, using a mask on the target cavity mirror Different areas produce different film layers;
  • the method of forming multiple reflection points with different transmittances on the target cavity mirror is: during the split coating process, separate different areas of the target cavity mirror into mutually independent components. , coating different components individually.
  • the optical resonant cavity further includes:
  • each folding reflecting mirror is arranged opposite to the reflecting surface of the first cavity mirror or the reflecting surface of the second cavity mirror, and the folding reflecting mirror includes a plurality of reflection points;
  • the light beam is transmitted into the optical resonant cavity through the input reflection point, and is reflected M between the reflection point of the first cavity mirror, the reflection point of the folding mirror and the reflection point of the second cavity mirror. After several times, the re-incidence condition is met and the next reflection cycle is entered, and the cycle repeats until the energy of the beam attenuates to 0, M>N.
  • At least one of all reflection points of the first cavity mirror or the second cavity mirror is an output reflection point, and the output reflection point is a target reflection point.
  • At least one of the first cavity mirror and the second cavity mirror is a concave mirror.
  • a second aspect of an embodiment of the present application provides a gas absorption spectrum detection device, comprising:
  • optical resonant cavity provided by the first aspect of the embodiment of the present application.
  • a photoelectric detector is used to measure the light intensity of the light beam transmitted through the output reflection point, so as to obtain the absorption spectrum information of the gas in the optical resonant cavity according to the light intensity or the ring-down time of the light intensity.
  • the gas absorption spectrum detection device further includes a converging lens. After the light beam is transmitted to the converging lens through the output reflection point, it is converged to the photodetector through the converging lens.
  • the gas absorption spectrum detection device further includes a converging lens and a receiving optical fiber. After the light beam is transmitted to the converging lens through the output reflection point, it is converged to the receiving optical fiber through the converging lens. and transmitted to the photodetector.
  • the gas absorption spectrum detection device is implemented based on cavity ring-down spectroscopy technology, incoherent broadband cavity enhanced absorption spectroscopy technology or off-axis integrated cavity output spectroscopy technology.
  • the optical resonant cavity provided by the first aspect of the embodiment of the present application includes a first cavity mirror and a second cavity mirror.
  • the first cavity mirror includes a plurality of reflection points, and at least one of all reflection points of the first cavity mirror is an input reflection. point, the reflective surface of the second cavity mirror is disposed on the opposite side of the reflective surface of the first cavity mirror, and forms an optical resonant cavity with the first cavity mirror.
  • the second cavity mirror includes a plurality of reflection points, and the first cavity mirror or the second cavity mirror At least one of all reflection points of the cavity mirror is an output reflection point.
  • the light beam is transmitted into the optical resonant cavity through the input reflection point and is reflected at least 4 times between the reflection point of the first cavity mirror and the reflection point of the second cavity mirror.
  • the re-incidence condition is: the reflection position and reflection angle of the light beam in the optical resonant cavity are consistent with the beam's first
  • the transmission position and transmission angle of a primary transmission into the optical resonant cavity are the same; by making the transmittance of at least one of all input reflection points and all output reflection points greater than the transmittance of the remaining reflection points, the output of the output reflection point can be enhanced
  • the optical resonant cavity is used in gas detection equipment, the light energy coupled to the photodetector can effectively improve the signal-to-noise ratio and sensitivity of the gas detection equipment.
  • FIG1 is a schematic diagram of a first structure of an optical resonant cavity and a gas absorption spectrum detection device provided in an embodiment of the present application;
  • FIG2 is a schematic diagram of a second structure of an optical resonant cavity and a gas absorption spectrum detection device provided in an embodiment of the present application;
  • Figure 3 is a third structural schematic diagram of an optical resonant cavity and gas absorption spectrum detection equipment provided by an embodiment of the present application.
  • an embodiment of the present application provides an optical resonant cavity 100, including:
  • the first cavity mirror 101 includes a plurality of reflection points, and at least one of all reflection points of the first cavity mirror 101 is the input reflection point 103;
  • the second cavity mirror 102 has a reflective surface disposed on the opposite side of the reflective surface of the first cavity mirror 101.
  • the second cavity mirror 102 includes a plurality of reflection points.
  • the first cavity mirror 101 or the second cavity mirror 102 At least one of all reflection points is the output reflection point 104;
  • the light beam is transmitted into the optical resonant cavity 100 through the input reflection point 103, and after being reflected N times between the reflection point of the first cavity mirror 101 and the reflection point of the second cavity mirror 102, the re-incident condition is satisfied and the next reflection cycle is entered, and this cycle is repeated until the energy of the light beam in the optical resonant cavity is attenuated to 0, N ⁇ 4, and the re-incident condition is: the reflection position and reflection angle of the light beam in the optical resonant cavity 101 are the same as the transmission position (i.e., the position of the input reflection point 103) and the transmission angle ⁇ of the light beam when it is first transmitted into the optical resonant cavity 100;
  • the transmittance of at least one of all input reflection points 103 and all output reflection points 104 is greater than or equal to T, and the transmittance of the remaining reflection points is less than or equal to T 0 , T>T 0 >0.
  • the reflection point is the position point on the cavity mirror used to reflect the beam
  • the input reflection point is the position point on the cavity mirror used to input the beam from the light source and reflect the beam
  • the output reflection point is the position point on the cavity mirror used to reflect the beam and reflect it.
  • the remaining reflection points except the input reflection point and the output reflection point are defined as ordinary reflection points.
  • the reflection points with a transmittance greater than or equal to T Defined as the target reflection point
  • the remaining reflection points with transmittance equal to T 0 include input reflection points, output reflection points and ordinary reflection points other than the target reflection point.
  • the position and number of the input reflection point and output reflection point of the optical resonant cavity can be set according to actual needs, which is specifically related to the type of optical resonant cavity.
  • the output The reflection point can be set on the first cavity mirror or on the second cavity mirror.
  • the input reflection point and the output reflection point can be set on the first cavity mirror at the same time.
  • the second cavity mirror is only provided with ordinary reflection points.
  • the input reflection point and the output reflection point may be the same reflection point (defined as the input and output reflection points), and at least one of all reflection points of the first cavity mirror may be the input and output reflection points for the input beam and the output beam.
  • the transmittances of these target reflection points may be the same or different.
  • the maximum reflectance R of the cavity mirror can usually reach 0.99999.
  • the difficulty and cost of increasing the reflectivity increase sharply.
  • the corresponding T 0 i.e. 1-R
  • the corresponding T 0 can reach a minimum of 0.00001. That is to say, the minimum T 0 can be on the order of 10 -5 .
  • the size of T is on the order of 10 -5 -10 -3 , for example, between 0.0009-0.005.
  • the transmittance of all target reflection points is greater than or equal to T.
  • this may include but is not limited to the following situations:
  • the transmittance of all target reflection points is equal.
  • the transmittance of all target reflection points is equal to T;
  • the transmittance of all target reflection points is not equal or partially equal.
  • the transmittance of the target reflection point among all input reflection points is equal to T in
  • the transmittance of the target reflection point among all output reflection points is equal to T. out
  • the transmittance of the target reflection points among all input reflection points is greater than or equal to T in and all are equal or partially equal
  • the transmittance of the target reflection points among all output reflection points is greater than or equal to T out and all are equal.
  • T in ⁇ T out T in ⁇ T, T out ⁇ T.
  • the light beam is transmitted into the optical resonant cavity through the input reflection point, and after reflection N times between the reflection point of the first cavity mirror and the reflection point of the second cavity mirror, it meets the re-incidence condition and enters the next reflection cycle. , is reflected again between the reflection point of the first cavity mirror and the reflection point of the second cavity mirror with the same reflection path, and so on until the energy of the beam attenuates to 0.
  • the transmittance of the target reflection point greater than the transmittance of the remaining reflection points, the average reflectance of all reflection points will be slightly lowered, and the effective optical path will be slightly lowered, which will have a negative impact on the signal-to-noise ratio.
  • this technical means also greatly increases the light energy output from the output reflection point, thus improving the optical energy of the optical resonant cavity coupled to the photodetector when used in gas absorption spectrum detection equipment, which is very important for improving gas absorption spectrum detection.
  • the signal-to-noise ratio of the equipment has a positive impact. Since the positive impact is far greater than the negative impact, the signal-to-noise ratio will also be greatly improved. The greater the number N of single-cycle reflection points, the greater the improvement in the signal-to-noise ratio.
  • the transmittance of at least one of all input reflection points is greater than or equal to T
  • At least one target reflection point for the input beam can be set on the first cavity mirror, and N/2 (that is, at least two) output reflection points for the output beam can be set on the second cavity mirror.
  • the transmittance of a point may be greater than or equal to (N-1)/2 (ie, at least 1.5) times T 0 .
  • a target reflection point for the input beam can be set only on the first cavity mirror, and a target reflection point for the output beam can be set on the first cavity mirror or the second cavity mirror.
  • the target reflection point for the input beam and the target reflection point for the output beam may be the same target reflection point.
  • the transmittance of the target reflection point may be greater than or equal to N-2 (that is, at least 2) times T 0 .
  • a target reflection point for the input beam may be set only on the first cavity mirror, or a target reflection point for the output beam may be set only on the first cavity mirror or the second cavity mirror.
  • the transmittance of the target reflection point may be greater than or equal to (N-1)/2 (that is, at least 1.5) times T 0 .
  • a target cavity mirror with different transmittances is formed on the target cavity mirror. Reflection point.
  • the transmission can be formed on the cavity mirror based on the integrated coating method or the split coating method. Reflection points with different transmittances; if the cavity mirror only includes reflection points with the same transmittance, reflection points with the same transmittance can be formed on the cavity mirror based on the integrated coating method; among them, the definition of the cavity mirror including reflection points with different transmittances for the target endoscope.
  • the method of forming reflection points with different transmittances on the target cavity mirror is: during the integrated coating process, a mask is used to generate different film layers in different areas of the target cavity mirror. ;
  • the method of forming reflection points with different transmittances on the target cavity mirror is: during the split coating process, separate different areas of the target cavity mirror into independent components, and coat the different components separately. .
  • different areas of the target cavity mirror are the locations of reflection points with different transmittances.
  • the number of independent components separated from different areas of the target cavity mirror is determined by the number of target reflection points included in the target cavity mirror and the number of remaining reflection points. Its value range is the number of target reflection points plus 1. Between the number of target reflection points plus the number of remaining reflection points, that is, the position point where each target reflection point is located is separated into a region, and all remaining reflection points are separated into a region, or each remaining reflection point is separated into an area.
  • the first cavity mirror is a concave mirror
  • the second cavity mirror is a concave mirror or a plane mirror.
  • the number and setting positions of the input reflection points and output reflection points, as well as the types of the first cavity mirror and the second cavity mirror can be adjusted according to actual needs.
  • Figure 1 exemplarily shows the structural schematic diagram of the first optical resonant cavity implemented based on the Herriott Cell
  • the first cavity mirror 101 is a concave mirror, and one of all reflection points of the first cavity mirror 101 is the input reflection point 103;
  • the second cavity mirror 102 is a concave reflection mirror, a plurality of reflection points of the second cavity mirror 102 are output reflection points 104, and the first cavity mirror 101 and the second cavity mirror 102 form a Herriott cell.
  • the number of reflections of the light beam in the optical resonant cavity shown in Figure 1 can usually reach 50-100 times.
  • the first cavity mirror and the second cavity mirror are a pair of high reflectivity concave mirrors, and the reflectivity can reach 99 %above.
  • Figure 2 exemplarily shows the structural schematic diagram of the second optical resonant cavity implemented based on the Herriot cell
  • the first cavity mirror 101 is a concave mirror, and one of all reflection points of the first cavity mirror 101 is the input reflection point 103 and the other is the output reflection point 104;
  • the second cavity mirror 102 is a concave mirror, and the first cavity mirror 101 and the second cavity mirror 102 constitute a Herriot cell.
  • the optical resonant cavity 100 further includes:
  • each folding reflecting mirror is arranged opposite to the reflecting surface of the first cavity mirror 101 or the reflecting surface of the second cavity mirror 102, and the folding reflecting mirror includes a plurality of reflecting points;
  • the light beam is transmitted into the optical resonant cavity 100 through the input reflection point 103, and after being reflected M times between the reflection point of the first cavity mirror 101, the reflection point of the folding mirror and the reflection point of the second cavity mirror 102, it satisfies the requirement of re-incidence. conditions and enters the next reflection cycle, and so on until the energy of the light beam in the optical resonant cavity attenuates to 0, M>N.
  • At least one additional folding mirror can be added on the basis of the first cavity mirror and the second cavity mirror to increase the number of reflections of the light beam in the optical resonant cavity.
  • the total optical path of the light beam propagating in the optical resonant cavity can be increased.
  • the optical path can be narrowed.
  • the volume of the resonant cavity improves the optical path-to-volume ratio of the optical resonant cavity.
  • At least one of all reflection points of the first cavity mirror or the second cavity mirror is an output reflection point, and the output reflection point is the target reflection point.
  • Figure 3 exemplarily shows a structural schematic diagram of a third optical resonant cavity 100 including a first folding mirror and a second folding mirror;
  • the first cavity mirror 101 is a plane reflection mirror, and one of all reflection points of the first cavity mirror 101 is the input reflection point 103 and the other is the output reflection point 104;
  • the second cavity mirror 102 is a concave mirror
  • the reflective surface of the first plane folding mirror 105 is arranged opposite to the reflective surface of the first cavity mirror 101;
  • the reflecting surface of the second planar folding mirror 106 is opposite to the reflecting surface of the second cavity mirror 102 and is parallel to the reflecting surface of the first planar folding mirror 105 .
  • the absorption signal of the optical resonant cavity is greatly enhanced.
  • N the number of reflections in a single reflection cycle
  • N the average transmittance of the optical resonant cavity
  • the average The reflectivity is R'
  • the cavity length L
  • the number of output reflection points is n
  • the average transmittance T’ is:
  • T' [(N ⁇ n ⁇ 1)T 0 +T in +nT out ]/N (Formula 2)
  • the relative signal-to-noise ratio SNRr can be obtained as:
  • the relative coupling efficiency Tr be the light energy efficiency ratio of the folded cavity (i.e., an optical resonant cavity including at least one folded reflector) coupled to the photodetector relative to the straight cavity (i.e., a reflective cavity formed by two plane reflectors arranged opposite to each other), and the analysis is divided into the following two cases:
  • the relative coupling efficiency T r can be expressed as:
  • the relative signal-to-noise ratio SNRr is:
  • the relative coupling efficiency T r can be expressed as:
  • the relative signal-to-noise ratio SNRr is:
  • the light beam may be a coherent light beam or an incoherent light beam (eg, an incoherent broadband light beam).
  • an incoherent light beam eg, an incoherent broadband light beam.
  • the improvement factor of the relative signal-to-noise ratio is between 2.78 and 3.89.
  • the light beam may be Coherent beams or incoherent beams (e.g., incoherent broadband beams);
  • the relative signal-to-noise ratio is improved by a factor of 1.96 to 2.75.
  • the improvement factor of the relative signal-to-noise ratio is between 9.82 and 19.4.
  • the light beam may be a coherent light beam or an incoherent light beam (e.g., an incoherent broadband light beam);
  • the improvement factor of the relative signal-to-noise ratio is between 1.96 and 2.75.
  • the improvement factor of the relative signal-to-noise ratio is between 9.82 and 19.4.
  • an embodiment of the present application also provides a gas absorption spectrum detection device including:
  • the photodetector 200 is used to measure the light intensity of the light beam transmitted through the output reflection point 104 to obtain absorption spectrum information of the gas in the optical resonant cavity 100 based on the light intensity or the ring-down time of the light intensity.
  • the light intensity of the light beam coupled to the photodetector can be increased, thereby effectively improving the signal-to-noise ratio of the gas absorption spectrum detection equipment, and thereby improving the acquired gas absorption spectrum. Accuracy of information.
  • the gas absorption spectrum detection device also includes a condensing lens 300. After the light beam is transmitted to the condensing lens 300 through the output reflection point 104, it is converged to the photoelectric detection through the condensing lens 300. Device 200.
  • the gas absorption spectrum detection device may further include a receiving optical fiber. After the light beam is transmitted to the condensing lens through the output reflection point, it is converged to the receiving optical fiber through the condensing lens and transmitted to the optoelectronic device. detector.
  • the light beam output from the optical resonant cavity is converged by a converging lens and then coupled to a photodetector, or transmitted to the photodetector via a receiving optical fiber.
  • This can reduce the area of the receiving surface of the photodetector, thereby effectively reducing the volume of the gas absorption spectrum detection equipment, which is particularly suitable for situations where there are multiple output reflection points.
  • the gas absorption spectrum detection equipment shown in Figure 2 only needs to set a small-diameter converging lens at an output reflection point position of the optical resonant cavity, thus reducing the size of the gas absorption spectrum detection equipment.
  • the gas absorption spectrum detection device is implemented based on cavity ring-down spectroscopy technology, incoherent broadband cavity enhanced absorption spectroscopy technology, or off-axis integrating cavity output spectroscopy technology.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种光学谐振腔(100)和气体吸收光谱检测设备,包括第一腔镜(101)和第二腔镜(102),第一腔镜(101)包括多个反射点,第一腔镜(101)的所有反射点中的至少一个为输入反射点(103),第二腔镜(102)的反射面设置于第一腔镜(101)的反射面的对侧、与第一腔镜(101)构成光学谐振腔(100),第二腔镜(102)包括多个反射点,第一腔镜(101)或第二腔镜(102)的所有反射点中的至少一个为输出反射点(104),光束经输入反射点(103)透射至光学谐振腔(100)内,并在第一腔镜(101)的反射点和第二腔镜(102)的反射点之间反射至少4次之后,满足重入射条件并进入下一个反射循环,如此循环往复,直到光学谐振腔(100)内的光束的能量衰减为0。

Description

光学谐振腔和气体吸收光谱检测设备 技术领域
本申请属于腔增强吸收光谱(Cavity Enhance Absorption Spectroscopy,CEAS)技术领域,尤其涉及一种光学谐振腔和气体吸收光谱检测设备。
背景技术
环保、安全、工业等领域对气体吸收光谱检测的下限提出了更高的要求,为满足这一要求,气体吸收光谱检测技术采用了增加光程的方法,以提高气体吸收率,降低检测下限。然而,在有限的体积下,光程不能无限增加。近年来发展起来的CEAS技术,例如,腔衰荡光谱(Cavity Ring-Down Spectroscopy,CRDS)技术、非相干宽带(Incoherent Broad Band,IBB)腔增强吸收光谱(IBBCEAS)技术、离轴积分腔输出光谱(Off Axis Integrating Cavity Output Spectroscopy,OA-ICOS)技术等,利用光在光学谐振腔内不断反射的特点,可以在有限的体积下,使有效光程提升10 2-10 4倍,从而大大提升气体吸收光谱检测设备的灵敏度。
然而,基于CEAS技术的气体检吸收光谱测设备,普遍存在光电探测器接收的光能量偏低的问题,限制了气体吸收光谱检测设备的信噪比和灵敏度的提升。
技术问题
本申请实施例的目的之一在于:提供一种光学谐振腔和气体吸收光谱检测设备,以解决现有的基于CEAS技术的气体吸收光谱检测设备的光电探测器接收的光能量偏低,限制了气体吸收光谱检测设备的信噪比和灵敏度的提升的问题。
技术解决方案
为了解决上述技术问题,本申请实施例采用的技术方案是:
本申请实施例第一方面提供一种光学谐振腔,包括:
第一腔镜,所述第一腔镜包括多个反射点,所述第一腔镜的所有反射点中的至少一个为输入反射点;
第二腔镜,所述第二腔镜的反射面设置于所述第一腔镜的反射面的对侧,所述第二腔镜包括多个反射点,所述第一腔镜或所述第二腔镜的所有反射点中的至少一个为输出反射点;
其中,光束经所述输入反射点透射至所述光学谐振腔内,并在所述第一腔镜的反射点和所述第二腔镜的反射点之间反射N次之后,满足重入射条件并进入下一个反射循环,如此循环往复,直到所述光学谐振腔内的光束的能量衰减为0,N≥4,所述重入射条件为:所述光束在所述光学谐振腔内的反射位置和反射角度与所述光束第一次透射至所述光学谐振腔内的透射位置和透射角度相同;
所有所述输入反射点和所有所述输出反射点中的至少一个为目标反射点,所述目标反射点的透射率大于或等于T,剩余的所述反射点的透射率等于T 0,T>T 0>0。
在一个实施例中,T=mT 0,m=(N-1)/2,m>1。
在一个实施例中,所有所述输入反射点中的一个和所有所述输出反射点中的一个的透射率大于或等于T。
在一个实施例中,T=mT 0,m=N-2,m>1。
在一个实施例中,所有所述输入反射点中的一个或所有所述输出反射点中的一个的透射率大于或等于T。
在一个实施例中,T=mT 0,m=(N-1)/2,m>1。
在一个实施例中,所有所述输入反射点中的至少一个的透射率大于或等于T in,所有所述输出反射点中的至少一个的透射率大于或等于T out,T in≠T out,T in≥T,T out≥T。
在一个实施例中,对于所述第一腔镜和所述第二腔镜中的目标腔镜,基于一体化镀膜方法或分体式镀膜方法,在所述目标腔镜形成透过率不同的反射点,所述目标腔镜包括多个透射率不同的反射点。
在一个实施例中,基于所述一体化镀膜方法,在所述目标腔镜形成多个透过率不同的反射点的方法为:在一体化镀膜过程中,使用掩模在所述目标腔镜的不同区域产生不同的膜层;
基于所述分体式镀膜方法,在所述目标腔镜形成多个透过率不同的反射点的方法为:在分体式镀膜过程中,将所述目标腔镜的不同区域分离为相互独立的元件,对不同的元件单独进行镀膜。
在一个实施例中,所述光学谐振腔还包括:
至少一个折叠反射镜,每个所述折叠反射镜的反射面与所述第一腔镜的反射面或所述第二腔镜的反射面相对设置,所述折叠反射镜包括多个反射点;
光束经所述输入反射点透射至所述光学谐振腔内,并在所述第一腔镜的反射点、所述折叠反射镜的反射点及所述第二腔镜的反射点之间反射M次之后,满足重入射条件并进入下一个反射循环,如此循环往复直到所述光束的能量衰减为0,M>N。
在一个实施例中,所述第一腔镜或所述第二腔镜的所有反射点中的至少一个为输出反射点,所述输出反射点为目标反射点。
在一个实施例中,所述第一腔镜和所述第二腔镜中至少一个为凹面反射镜。
本申请实施例的第二方面提供一种气体吸收光谱检测设备,包括:
本申请实施例的第一方面提供的光学谐振腔;
光电探测器,所述光电探测器用于测量经所述输出反射点透射出来的光束的光强度,以根据所述光强度或所述光强度的衰荡时间,获得所述光学谐振腔内的气体的吸收光谱信息。
在一个实施例中,所述气体吸收光谱检测设备还包括会聚透镜,所述光束经所述输出反射点透射至所述会聚透镜之后,经所述会聚透镜会聚至所述光电探测器。
在一个实施例中,所述气体吸收光谱检测设备还包括会聚透镜和接收光纤,所述光束经所述输出反射点透射至所述会聚透镜之后,经所述会聚透镜会聚至所述接收光纤,并传输至所述光电探测器。
在一个实施例中,所述气体吸收光谱检测设备基于腔衰荡光谱技术、非相干宽带腔增强吸收光谱技术或离轴积分腔输出光谱技术实现。
有益效果
本申请实施例的第一方面提供的光学谐振腔,包括第一腔镜和第二腔镜,第一腔镜包括多个反射点,第一腔镜的所有反射点中的至少一个为输入反射点,第二腔镜的反射面设置于第一腔镜的反射面的对侧、与第一腔镜构成的光学谐振腔,第二腔镜包括多个反射点,第一腔镜或第二腔镜的所有反射点中的至少一个为输出反射点,光束经输入反射点透射至光学谐振腔内,并在第一腔镜的反射点和第二腔镜的反射点之间反射至少4次之后,满足重入射条件并进入下一个反射循环,如此循环往复,直到光学谐振腔内的光束的能量衰减为0,重入射条件为:光束在光学谐振腔内的反射位置和反射角度与光束第一次透射至光学谐振腔内的透射位置和透射角度相同;通过使得所有输入反射点和所有输出反射点中的至少一个的透射率大于剩余的反射点的透射率,可以增强输出反射点输出的光能量,从而提高光学谐振腔应用于气体检测设备时,光学谐振腔耦合至光电探测器的光能量,可以有效提升气体检测设备的信噪比和灵敏度。
可以理解的是,上述第二方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的光学谐振腔和气体吸收光谱检测设备的第一种结构示意图;
图2是本申请实施例提供的光学谐振腔和气体吸收光谱检测设备的第二种结构示意图;
图3是本申请实施例提供的光学谐振腔和气体吸收光谱检测设备的第三种结构示意图。
本发明的实施方式
为了使本技术领域的人员更好地理解本申请,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。此外,术语“第一”和“第二”等是用于区别不同对象,而非用于描述特定顺序。
如图1、图2或图3所示,本申请实施例提供一种光学谐振腔100,包括:
第一腔镜101,第一腔镜101包括多个反射点,第一腔镜101的所有反射点中至少一个为输入反射点103;
第二腔镜102,第二腔镜102的反射面设置于第一腔镜101的反射面的对侧,第二腔镜102包括多个反射点,第一腔镜101或第二腔镜102的所有反射点中的至少一个为输出反射点104;
其中,光束经输入反射点103透射至光学谐振腔100内,并在第一腔镜101的反射点和第二腔镜102的反射点之间反射N次之后,满足重入射条件并进入下一个反射循环,如此循环往复直到光学谐振腔内的光束的能量衰减为0,N≥4,重入射条件为:光束在光学谐振腔101内的反射位置和反射角度与光束第一次透射至光学谐振腔100内的透射位置(即输入反射点103所在位置)和透射角度θ相同;
所有输入反射点103和所有输出反射点104中的至少一个的透射率大于或等于T,剩余的反射点的透射率小于或等于T 0,T>T 0>0。
在应用中,反射点是腔镜上用于反射光束的位置点,输入反射点是腔镜上用于从光源输入光束并反射光束的位置点,输出反射点是腔镜上用于反射光束并输出光束至光电探测器的位置点,除输入反射点和输出反射点之外的剩余的反射点定义为普通反射点,所有输入反射点和所有输出反射点中透射率大于或等于T的反射点定义为目标反射点,剩余的透射率等于T 0的反射点包括除目标反射点之外的输入反射点、输出反射点及普通反射点。
在应用中,光学谐振腔的输入反射点和输出反射点的位置和数量可以根据实际需要进行设置,具体与光学谐振腔的类型有关,只要保证输入反射点设置于第一腔镜即可,输出反射点可以设置在第一腔镜、也可以设置在第二腔镜。输入反射点和输出反射点可以同时设置在第一腔镜,此时,第二腔镜仅设置有普通反射点。输入反射点和输出反射点可以是同一个反射点(定义为输入输出反射点),第一腔镜的所有反射点中的至少一个可以是用于输入光束和输出光束的输入输出反射点。
在应用中,目标反射点的数量为至少两个时,这些目标反射点的透射率可以相同、也可以不同。由于现代镀膜工艺水平的限制,腔镜的反射率R最大通常可以达到0.99999,再往上提升反射率难度和成本都急剧增加,相应的T 0(也即1-R)最小可以做到0.00001,也即T 0的最小可以做到10 -5量级。T的大小在10 -5-10 -3量级之间,例如,0.0009-0.005之间。
在应用中,所有目标反射点的透射率大于或等于T具体可以包括但不限于以下几种情况:
第一种,所有目标反射点的透射率相等,例如,所有目标反射点的透射率等于T;
第二种,所有目标反射点的透射率都不相等或部分相等,例如,所有输入反射点中的目标反射点的透射率等于T in、所有输出反射点中的目标反射点的透射率等于T out,或者,所有输入反射点中的目标反射点的透射率大于或等于T in且都不相等或部分相等、所有输出反射点中的目标反射点的透射率大于或等于T out且都不相等或部分相等,T in≠T out,T in≥T,T out≥T。
在应用中,光束经输入反射点透射至光学谐振腔内,并在第一腔镜的反射点和第二腔镜的反射点之间反射N次之后,满足重入射条件,进入下一个反射循环,以相同的反射路径在第一腔镜的反射点和第二腔镜的反射点之间再次反射,如此循环往复,直到光束的能量衰减为0。
在应用中,通过使得目标反射点的透射率大于剩余的反射点的透射率,会略微拉低所有反射点的平均反射率,进而略微拉低有效光程,对信噪比具有负面影响,但是,这一技术手段也极大地增加了输出反射点输出的光能量,从而提高光学谐振腔应用于气体吸收光谱检测设备时,光学谐振腔耦合至光电探测器的光能量,对提升气体吸收光谱检测设备的信噪比具有正面影响,由于正面影响远大于负面影响,信噪比也会得到大幅提升,单循环反射点个数N越大,信噪比的提升倍数越大。
在一个实施例中,所有输入反射点中的至少一个的透射率大于或等于T,第二腔镜包括N/2个输出反射点;其中,T与T 0的关系可以为:T=mT 0,m=(N-1)/2,m>1。
在应用中,可以仅在第一腔镜设置至少一个用于输入光束的目标反射点,在第二腔镜设置N/2(也即至少两个)用于输出光束的输出反射点,目标反射点的透射率可以大于或等于(N-1)/2(也即至少1.5)倍的T 0
在一个实施例中,所有所述输入反射点中的一个和所有所述输出反射点中的一个的透射率大于或等于T,其中,T与T 0的关系可以为:T=mT 0,m=N-2,m>1。
在应用中,可以仅在第一腔镜设置一个用于输入光束的目标反射点,同时在第一腔镜或第二腔镜设置一个用于输出光束的目标反射点。用于输入光束的目标反射点和用于输出光束的目标反射点都设置于第一腔镜时,用于输入光束的目标反射点和用于输出光束的目标反射点可以是同一个目标反射点。目标反射点的透射率可以大于或等于N-2(也即至少2)倍的T 0
在一个实施例中,所有所述输入反射点中的一个或所有所述输出反射点中的一个的透射率大于或等于T,其中,T与T 0的关系可以为:T=mT 0,m=(N-1)/2,m>1。
在应用中,可以仅在第一腔镜设置一个用于输入光束的目标反射点,或者,仅在第一腔镜或第二腔镜设置一个用于输出光束的目标反射点。目标反射点的透射率可以大于或等于(N-1)/2(也即至少1.5)倍的T 0
在一个实施例中,对于第一腔镜和第二腔镜中包括不同透射率的反射点的目标腔镜,基于一体化镀膜方法或分体式镀膜方法,在目标腔镜形成透过率不同的反射点。
在应用中,对于第一腔镜和第二腔镜中的每个腔镜,若腔镜包括不同透射率的反射点,可以基于一体化镀膜方法或分体式镀膜方法,在腔镜形成透过率不同的反射点;若腔镜仅包括透射率相同的反射点,可以基于一体化镀膜方法,在腔镜形成透过率相同的反射点;其中,包括不同透射率的反射点的腔镜定义为目标腔镜。
在一个实施例中,基于一体化镀膜方法,在目标腔镜形成透过率不同的反射点的方法为:在一体化镀膜过程中,使用掩模在目标腔镜的不同区域产生不同的膜层;
基于分体式镀膜方法,在目标腔镜形成透过率不同的反射点的方法为:在分体式镀膜过程中,将目标腔镜的不同区域分离为相互独立的元件,对不同的元件单独进行镀膜。
在应用中,目标腔镜的不同区域即为透过率不同的反射点所在的位置点。目标腔镜的不同区域分离而成的相互独立的元件的数量,由目标腔镜所包括的目标反射点的数量和剩余的反射点的数量决定,其取值范围为目标反射点的数量加1至目标反射点的数量加剩余的反射点的数量之间,也即每个目标反射点所在的位置点分离为一个区域,剩余的所有反射点分离为一个区域或剩余的每个反射点分离为一个区域。在一个实施例中,第一腔镜为凹面反射镜,第二腔镜为凹面反射镜或平面反射镜。
在应用中,输入反射点和输出反射点的数量和设置位置,以及第一腔镜和第二腔镜的类型可以根据实际需要进行调整。
图1中示例性的示出基于赫里奥特池(Herriott Cell)实现的第一种光学谐振腔的结构示意图;
其中,第一腔镜101为凹面反射镜,第一腔镜101的所有反射点中的一个为输入反射点103;
第二腔镜102为凹面反射镜,第二腔镜102的所有反射点中的多个为输出反射点104,第一腔镜101和第二腔镜102构成赫里奥特池。
在应用中,图1所示的光学谐振腔中光束的反射次数通常可达到50-100次,第一腔镜和第二腔镜为一对高反射率的凹面反射镜,反射率可以达到99%以上。
图2中示例性的示出基于赫里奥特池实现的第二种光学谐振腔的结构示意图;
其中,第一腔镜101为凹面反射镜,第一腔镜101的所有反射点中的一个为输入反射点103、另一个为输出反射点104;
第二腔镜102为凹面反射镜,第一腔镜101和第二腔镜102构成赫里奥特池。
如图3所示,在一个实施例中,光学谐振腔100还包括:
至少一个折叠反射镜,每个折叠反射镜的反射面与第一腔镜101的反射面或第二腔镜102的反射面相对设置,折叠反射镜包括多个反射点;
光束经输入反射点103透射至光学谐振腔100内,并在第一腔镜101的反射点、折叠反射镜的反射点之间及第二腔镜102的反射点反射M次之后,满足重入射条件并进入下一个反射循环,如此循环往复直到光学谐振腔内的光束的能量衰减为0,M>N。
在应用中,还可以在第一腔镜和第二腔镜的基础上额外增加至少一个折叠反射镜,用于增加光束在光学谐振腔内的反射次数,在第一腔镜和第二腔镜之间的直线距离不变的情况下,通过增加折叠反射镜,可以增加光束在光学谐振腔内传播的总光程,在总光程不变的情况下,通过增加折叠反射镜,可以缩小光学谐振腔的体积,提高光学谐振腔的光程体积比。
在一个实施例中,对于包括折叠反射镜的光学谐振腔,第一腔镜或第二腔镜的所有反射点中的至少一个为输出反射点,输出反射点为目标反射点。
图3中示例性的示出包括第一折叠反射镜和第二折叠反射镜的第三种光学谐振腔100的结构示意图;
其中,第一腔镜101为平面反射镜,第一腔镜101的所有反射点中的一个为输入反射点103、另一个为输出反射点104;
第二腔镜102为凹面反射镜;
第一平面折叠反射镜105的反射面与第一腔镜101的反射面相对设置;
第二平面折叠反射镜106的反射面与第二腔镜102的反射面相对设置且平行于第一平面折叠反射镜105的反射面。
本申请实施例提供的光学谐振腔至少具有如下几个方面的特性:
第一方面,在光束为非相干光束的情形下,光学谐振腔的吸收信号大大增强,设单次反射循环的反射次数为N,N≥4,光学谐振腔的平均透射率为T’、平均反射率为R’,腔长为L,输入反射点的透射率为T in、反射率为R in=1-T in,输出反射点的数量为n个、透射率为T out、反射率为R out=1-T out,其他反射点的透射率为T 0、反射率为R 0=1-T 0,T in>T 0或T out>T 0,则光学谐振腔的等效吸收光程L eff为:
L eff=L/(1-R’)=L/T’(公式1)
平均透射率T’为:
T’=[(N−n−1)T 0+T in+nT out]/N(公式2)
光束在腔镜间不断反射的同时,在n个输出反射点中的每个反射点不断有微量光透射出光学谐振腔,被会聚透镜会聚后到达光电探测器,能量效率η为:
η=nT inT out/[(N−n−1)T 0+T in+nT out](公式3)
将公式1代入公式3可得相对信噪比SNRr为:
SNRr=L effη 1/2/L=(nT inT out) 1/2/T’[(N−n−1)T 0+T in+nT out] 1/2(公式4)
进一步的,为了不失一般性,设T in=m 1T 0,T out=m 2T 0,m 1≥1,m 2≥1,则相对信噪比SNRr为:
SNRr=N(2nm 1m 2) 1/2/(N−n−1+m 1+nm 2) 3/2(2T 0) 1/2=K/(2T 0) 1/2(公式5)
K=N(2nm 1m 2) 1/2/(N−n−1+m 1+nm 2) 3/2(公式6)
由公式6可知,对于如图1所示的第一种光学谐振腔,当n=N/2,m 1=m 2=1时,第一种光学谐振腔的相对信噪比SNRr=1/(2T 0) 1/2,也即K=1,因此,对于给定的N,通过合理设计n、m 1、m 2的数值,可以使得K>1,从而使得第一种光学谐振腔的相对信噪比得到提升,K的数值大小即表示相对信噪比的提升倍数,例如:
当n=N/2,m 1=m,m 2=1,m>1时,也即输入反射点的透过率大于剩余的反射点的透过率,则有:
K=m 1/2[1+(m-1)/N] -3/2(公式7)
将公式7中的K对m求导,可得K的极值K max为:
K max=2N(N/3) 1/2/(3N-3),m=(N-1)/2(公式8)
当n=1,m 1=m 2=m,m>1时,也即输入反射点的透过率和输出反射点的透过率大于剩余的反射点的透过率,则有:
K=(2/N) 1/2m[1+(2m-2)/N] -3/2(公式9)
将公式9中的K对m求导,可得K的极值K max为:
K max=[2/(3N-6)] 1/2N/3,m=N-2(公式10)。
第二方面,在光束为相干光束的情形下,设输出反射点的数量为n=1个,单次反射循环的反射次数为N,相对耦合效率T r为折叠腔(也即包括至少一个折叠反射镜的光学谐振腔)耦合到光电探测器上相对直腔(也即两个平面反射镜相对设置构成的反射腔)的光能效率比,分为以下两种情况进行分析:
第一种情况:
设输入反射点和输出反射点的透射率为T 1,剩余的反射点的透射率为T 0,T 1=mT 0,m>1;
考虑到自由光谱范围FSR、精细度随着N变化,以及腔模峰值耦合效率的变化,相对耦合效率T r可表达为:
T r=4m 2/[N(N+2m-2)](公式11)
当m=1,N=2时,光学谐振腔为直腔,代入公式11,可得T r=1;
当m=1,N≥4时,光学谐振腔为折叠腔或离轴积分腔(例如,如图1所示的第一种光学谐振腔或如图2所示的第二种光学谐振腔),代入公式11,可得T r=4/N 2
相对信噪比SNRr为:
SNRr=L effT r 1/2/L=2K/(NT 0)(公式12)
K=m[1+(2m-2)/N] -3/2(公式13)
当m=1时,光学谐振腔为直腔或折叠腔,则有K=1,SNRr=2/(NT 0);
当N≥4,m>1时,K>1,将公式13中的K对m求导,可得K的极值K max为:
K max=[N/(3N-6)] 1/2N/3,m=N-2(公式14)。
第二种情况:
设输入反射点或输出反射点中的一个的透射率为T 1,即只有一个目标反射点,剩余的反射点的透射率为T 0,T 1=mT 0,m>1;
考虑到自由光谱范围FSR、精细度随着N变化,以及腔模峰值耦合效率的变化,相对耦合效率T r可表达为:
T r=4m/[N(N+m-1)](公式15)
当m=1,N=2时,光学谐振腔为直腔,代入公式18,可得T r=1;
当m=1,N≥4时,光学谐振腔为折叠腔或离轴积分腔(例如,如图1所示的第一种光学谐振腔或如图2所示的第二种光学谐振腔),代入公式18,可得T r=4/N 2
相对信噪比SNRr为:
SNRr=L effT r 1/2/L=2K/(NT 0)(公式16)
K=m 1/2[1+(m-1)/N] -3/2(公式17)
当m=1时,光学谐振腔为直腔或折叠腔,则有K=1,SNRr=2/(NT 0);
当N≥4,m>1时,K>1,将公式13中的K对m求导,可得K的极值K max为:
K max=2N(N/3) 1/2/(3N-3),m=(N-1)/2(公式18)。
在一个实施例中,对于如图1所示的第一种光学谐振腔,光束可以是相干光束或非相干光束(例如,非相干宽带光束),在光束为相干光束的情况下,由于输出反射点的数量为多个,干涉效应被极大地平滑,因此,相干光束情形下可以采用与非相干光束情形下相同的方法进行近似处理;
当T in=mT 0,T out>T 0,m>1时,根据公式6和7可得:
K=m 1/2[1+(m-1)/N] -3/2(公式19)
在N≥4的情况下,通过合理设计m的数值,可以使得K>1;
当m=(N-1)/2时,根据公式8可知,N的数值越大,K max的值越大,例如:
当N=50时,K max=2.78;
当N=100时,K max=3.89;
对于如图1所示的第一种光学谐振腔,当N的数值在50-100之间时,相对信噪比的提升倍数为2.78-3.89之间,N的数值越大,相对信噪比的提升倍数越大;
当T 0=0.01%,R 0=99.99%,N=50时,根据公式19可得m的最佳数值为24.5,此时,T in=24.5×0.01%=0.245%,R in=99.755%。
在一个实施例中,对于第一腔镜或第二腔镜的所有反射点中的一个为输出反射点的光学谐振腔(例如,图2所示的第二种光学谐振腔),光束可以是相干光束或非相干光束(例如,非相干宽带光束);
当T in=T out=mT 0,m>1时,由于输出反射点的数量为一个,也即n=1,则有:
1)当光束为非相干光束时,K=(2/N) 1/2m[1+(2m-2)/N] -3/2(公式9);
相应的,K max=[2/(3N-6)] 1/2N/3,m=N-2(公式10);
若N=50,则K max=1.96;
若N=100,K max=2.75;
对于如图2所示的第二种光学谐振腔,当N的数值在50-100之间时,相对信噪比的提升倍数为1.96-2.75之间,N的数值越大,相对信噪比的提升倍数越大;
2)当光束为相干光束时,K=m[1+(2m-2)/N] -3/2(公式13);
对应的,K max=[N/(3N-6)] 1/2N/3,m=N-2(公式14);
若N=50,则K max=9.82;
若N=100,K max=19.4;
对于如图2所示的第二种光学谐振腔,当N的数值在50-100之间时,相对信噪比的提升倍数为9.82-19.4之间,N的数值越大,相对信噪比的提升倍数越大;
3)当T 0=0.01%,R 0=99.99%,N=50时,可得m的最佳数值为m=N-2=48,此时,T in=T out=48×0.01%=0.48%,R in=R out=99.52%。
在一个实施例中,对于折叠腔(例如,图3所示的第三种光学谐振腔),光束可以是相干光束或非相干光束(例如,非相干宽带光束);
当T in=T out=mT 0,m>1时,由于输出反射点的数量为一个,也即n=1,则有:
1)当光束为非相干光束时,K=(2/N) 1/2m[1+(2m-2)/N] -3/2(公式9);
相应的,K max=[2/(3N-6)] 1/2N/3,m=N-2(公式10);
若N=50,则K max=1.96;
若N=100,K max=2.75;
对于如图3所示的第三种光学谐振腔,当N的数值在50-100之间时,相对信噪比的提升倍数为1.96-2.75之间,N的数值越大,相对信噪比的提升倍数越大;
2)当光束为相干光束时,K=m[1+(2m-2)/N] -3/2(公式13);
对应的,K max=[N/(3N-6)] 1/2N/3,m=N-2(公式14);
若N=50,则K max=9.82;
若N=100,K max=19.4;
对于如图3所示的第三种光学谐振腔,当N的数值在50-100之间时,相对信噪比的提升倍数为9.82-19.4之间,N的数值越大,相对信噪比的提升倍数越大;
3)当T 0=0.001%,R 0=99.999%,N=100时,可得m的最佳数值为m=N-2=98,此时,T in=T out=98×0.001%=0.098%,R in=R out=99.902%。可见,使用折叠反射镜构成折叠腔,可以进一步增大N的数值,从而进一步增大相对信噪比的提升倍数K,同时还可以降低自由光谱范围FSR,提高气体吸收光谱检测设备的分辨率。
如图1、图2或图3所示,本申请实施例还提供一种气体吸收光谱检测设备包括:
光学谐振腔100;
光电探测器200,光电探测器200用于测量经输出反射点104透射出来的光束的光强度,以根据光强度或光强度的衰荡时间,获得光学谐振腔100内的气体的吸收光谱信息。
在应用中,通过采用本申请实施例提供的光学谐振腔可以增加耦合到光电探测器的光束的光强度,从而有效提高气体吸收光谱检测设备的信噪比,进而提高获取到的气体的吸收光谱信息的精度。
如图1、图2或图3所示,在一个实施例中,气体吸收光谱检测设备还包括会聚透镜300,光束经输出反射点104透射至会聚透镜300之后,经会聚透镜300会聚至光电探测器200。
在一个实施例中,气体吸收光谱检测设备还可以包含接收光纤,光束经所述输出反射点透射至所述会聚透镜之后,经所述会聚透镜会聚至所述接收光纤,并传输至所述光电探测器。
在应用中,通过会聚透镜将光学谐振腔输出的光束进行会聚之后再耦合至光电探测器,或经接收光纤传输至光电探测器,可以减小光电探测器的接收面的面积,从而有效降低气体吸收光谱检测设备的体积,尤其适用于输出反射点的数量为多个的情况。
图2所示的气体吸收光谱检测设备由于仅需在光学谐振腔的一个输出反射点位置设置一个小口径的会聚透镜,缩小了气体吸收光谱检测设备的体积。
在一个实施例中,气体吸收光谱检测设备基于腔衰荡光谱技术、非相干宽带腔增强吸收光谱技术或离轴积分腔输出光谱技术实现。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,应包含在本申请的保护范围之内。

Claims (17)

  1. 一种光学谐振腔,其特征在于,包括:
    第一腔镜,所述第一腔镜包括多个反射点,所述第一腔镜的所有反射点中的至少一个为输入反射点;
    第二腔镜,所述第二腔镜的反射面设置于所述第一腔镜的反射面的对侧,所述第二腔镜包括多个反射点,所述第一腔镜或所述第二腔镜的所有反射点中的至少一个为输出反射点;
    其中,光束经所述输入反射点透射至所述光学谐振腔内,并在所述第一腔镜的反射点和所述第二腔镜的反射点之间反射N次之后,满足重入射条件并进入下一个反射循环,如此循环往复,直到所述光学谐振腔内的光束的能量衰减为0,N≥4,所述重入射条件为:所述光束在所述光学谐振腔内的反射位置和反射角度与所述光束第一次透射至所述光学谐振腔内的透射位置和透射角度相同;
    所有所述输入反射点和所有所述输出反射点中的至少一个为目标反射点,所述目标反射点的透射率大于或等于T,剩余的所述反射点的透射率等于T 0,T>T 0>0。
  2. 如权利要求1所述的光学谐振腔,其特征在于,所有所述输入反射点中的至少一个的透射率大于或等于T,所述第二腔镜包括N/2个输出反射点。
  3. 如权利要求2所述的光学谐振腔,其特征在于,T=mT 0,m=(N-1)/2,m>1。
  4. 如权利要求1所述的光学谐振腔,其特征在于,所有所述输入反射点中的一个和所有所述输出反射点中的一个的透射率大于或等于T。
  5. 如权利要求4所述的光学谐振腔,其特征在于,T=mT 0,m=N-2,m>1。
  6. 如权利要求1所述的光学谐振腔,其特征在于,所有所述输入反射点中的一个或所有所述输出反射点中的一个的透射率大于或等于T。
  7. 如权利要求6所述的光学谐振腔,其特征在于,T=mT 0,m=(N-1)/2,m>1。
  8. 如权利要求1所述的光学谐振腔,其特征在于,所有所述输入反射点中的至少一个的透射率大于或等于T in,所有所述输出反射点中的至少一个的透射率大于或等于T out,T in≠T out,T in≥T,T out≥T。
  9. 如权利要求1至8任一项所述的光学谐振腔,其特征在于,对于所述第一腔镜和所述第二腔镜中的目标腔镜,基于一体化镀膜方法或分体式镀膜方法,在所述目标腔镜形成透过率不同的反射点,所述目标腔镜包括多个透射率不同的反射点。
  10. 如权利要求9所述的光学谐振腔,其特征在于,基于所述一体化镀膜方法,在所述目标腔镜形成多个透过率不同的反射点的方法为:在一体化镀膜过程中,使用掩模在所述目标腔镜的不同区域产生不同的膜层;
    基于所述分体式镀膜方法,在所述目标腔镜形成多个透过率不同的反射点的方法为:在分体式镀膜过程中,将所述目标腔镜的不同区域分离为相互独立的元件,对不同的元件单独进行镀膜。
  11. 如权利要求1至8任一项所述的光学谐振腔,其特征在于,所述光学谐振腔还包括:
    至少一个折叠反射镜,每个所述折叠反射镜的反射面与所述第一腔镜的反射面或所述第二腔镜的反射面相对设置,所述折叠反射镜包括多个反射点;
    光束经所述输入反射点透射至所述光学谐振腔内,并在所述第一腔镜的反射点、所述折叠反射镜的反射点及所述第二腔镜的反射点之间反射M次之后,满足重入射条件并进入下一个反射循环,如此循环往复直到所述光束的能量衰减为0,M>N。
  12. 如权利要求11所述的光学谐振腔,其特征在于,所述第一腔镜或所述第二腔镜的所有反射点中的至少一个为输出反射点,所述输出反射点为目标反射点。
  13. 如权利要求1至8任一项所述的光学谐振腔,其特征在于,所述第一腔镜和所述第二腔镜中至少一个为凹面反射镜。
  14. 一种气体吸收光谱检测设备,其特征在于,包括:
    如权利要求1至13任一项所述的光学谐振腔;
    光电探测器,所述光电探测器用于测量经所述输出反射点透射出来的光束的光强度,以根据所述光强度或所述光强度的衰荡时间,获得所述光学谐振腔内的气体的吸收光谱信息。
  15. 如权利要求14所述的气体吸收光谱检测设备,其特征在于,还包括会聚透镜,所述光束经所述输出反射点透射至所述会聚透镜之后,经所述会聚透镜会聚至所述光电探测器。
  16. 如权利要求14所述的气体吸收光谱检测设备,其特征在于,还包括会聚透镜和接收光纤,所述光束经所述输出反射点透射至所述会聚透镜之后,经所述会聚透镜会聚至所述接收光纤,并传输至所述光电探测器。
  17. 如权利要求14至16任一项所述的气体吸收光谱检测设备,其特征在于,所述气体吸收光谱检测设备基于腔衰荡光谱技术、非相干宽带腔增强吸收光谱技术或离轴积分腔输出光谱技术实现。
PCT/CN2022/119994 2022-09-20 2022-09-20 光学谐振腔和气体吸收光谱检测设备 WO2024060026A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004172.9A CN116034261A (zh) 2022-09-20 2022-09-20 光学谐振腔和气体吸收光谱检测设备
PCT/CN2022/119994 WO2024060026A1 (zh) 2022-09-20 2022-09-20 光学谐振腔和气体吸收光谱检测设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/119994 WO2024060026A1 (zh) 2022-09-20 2022-09-20 光学谐振腔和气体吸收光谱检测设备

Publications (1)

Publication Number Publication Date
WO2024060026A1 true WO2024060026A1 (zh) 2024-03-28

Family

ID=86074711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119994 WO2024060026A1 (zh) 2022-09-20 2022-09-20 光学谐振腔和气体吸收光谱检测设备

Country Status (2)

Country Link
CN (1) CN116034261A (zh)
WO (1) WO2024060026A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437954A (en) * 1965-03-31 1969-04-08 Bell Telephone Labor Inc Optical delay line devices
CN103398964A (zh) * 2013-08-13 2013-11-20 中国科学院光电技术研究所 一种基于腔增强技术的气体探测方法
CN109557028A (zh) * 2018-12-09 2019-04-02 山西大学 一种具有密集光斑图案的多通池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437954A (en) * 1965-03-31 1969-04-08 Bell Telephone Labor Inc Optical delay line devices
CN103398964A (zh) * 2013-08-13 2013-11-20 中国科学院光电技术研究所 一种基于腔增强技术的气体探测方法
CN109557028A (zh) * 2018-12-09 2019-04-02 山西大学 一种具有密集光斑图案的多通池

Also Published As

Publication number Publication date
CN116034261A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN113340837B (zh) 一种长光程微型红外气室及红外气体传感器
CN105372801B (zh) 一种日盲紫外光学镜头与系统
CN107884353A (zh) 一种适用于烟气连续监测系统的气体吸收池光路结构
CN112729124A (zh) 光谱共焦位移传感器的光源组件及光谱共焦位移传感器
CN110806623A (zh) 光收发器件
WO2024060026A1 (zh) 光学谐振腔和气体吸收光谱检测设备
CN113484266A (zh) 一种光程倍增器件和光程倍增气体吸收池
CN112018597A (zh) 外腔半导体激光器
CN207571018U (zh) 一种适用于烟气连续监测系统的气体吸收池光路结构
CN210347919U (zh) 一种激光发射装置以及激光雷达系统
CN210071643U (zh) 一种全反射怀特池
US5164857A (en) Wide band non-coated beam splitter
CN110108642A (zh) 一种全反射怀特池
CN105467483B (zh) 红外制冷探测器冷光阑的偏振型透射式挡光环及制作方法
WO2020000776A1 (zh) 一种光学装置
CN218896038U (zh) 一种多次反射的长光程光学系统
JPS60214316A (ja) 双方向伝送用光モジユ−ル
US20220011223A1 (en) Fully compensated optical gas sensing system and apparatus
CN212623330U (zh) 一种具有日盲紫外反射型滤光功能的卡塞格林望远系统
CN212623169U (zh) 一种日盲紫外反射型滤光器
CN220340010U (zh) 一种长光程光学腔体
CN116380839A (zh) 一种具有改进光通池的可调谐半导体激光吸收光谱系统
CN215067435U (zh) 一种收发共轴紧凑激光收发装置
CN219757526U (zh) 一种对波长及偏振不敏感的光功率探测器
US7282729B2 (en) Fabry-Perot resonator apparatus and method for observing low reflectivity surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959038

Country of ref document: EP

Kind code of ref document: A1