WO2024058636A1 - 무선통신시스템에서 리모트 ue 및 릴레이 ue의 핸드오버에 관련된 동작 방법 - Google Patents

무선통신시스템에서 리모트 ue 및 릴레이 ue의 핸드오버에 관련된 동작 방법 Download PDF

Info

Publication number
WO2024058636A1
WO2024058636A1 PCT/KR2023/014050 KR2023014050W WO2024058636A1 WO 2024058636 A1 WO2024058636 A1 WO 2024058636A1 KR 2023014050 W KR2023014050 W KR 2023014050W WO 2024058636 A1 WO2024058636 A1 WO 2024058636A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote
base station
relay
target
information
Prior art date
Application number
PCT/KR2023/014050
Other languages
English (en)
French (fr)
Inventor
백서영
이영대
이승민
박기원
김래영
변대욱
김석중
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2024058636A1 publication Critical patent/WO2024058636A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the following description is about a wireless communication system, and more specifically, a method and apparatus for operating a serving base station, target base station, remote UE, and relay UE related to handover of remote UE and relay UE.
  • 5G In wireless communication systems, various RATs (Radio Access Technologies) such as LTE, LTE-A, and WiFi are used, and 5G is also included.
  • the three key requirements areas for 5G are (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Ultra-Reliable and Includes the area of ultra-reliable and low latency communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC ultra-Reliable and Includes the area of ultra-reliable and low latency communications
  • KPI Key Performance Indicator
  • eMBB goes far beyond basic mobile Internet access and covers rich interactive tasks, media and entertainment applications in the cloud or augmented reality.
  • Data is one of the key drivers of 5G, and we may not see dedicated voice services for the first time in the 5G era.
  • voice is expected to be processed simply as an application using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are the increase in content size and the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connections will become more prevalent as more devices are connected to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing mobile communication platforms, and this can apply to both work and entertainment.
  • cloud storage is a particular use case driving growth in uplink data rates.
  • 5G will also be used for remote work in the cloud and will require much lower end-to-end latency to maintain a good user experience when tactile interfaces are used.
  • Entertainment for example, cloud gaming and video streaming are other key factors driving increased demand for mobile broadband capabilities. Entertainment is essential on smartphones and tablets anywhere, including high mobility environments such as trains, cars and planes.
  • Another use case is augmented reality for entertainment and information retrieval.
  • augmented reality requires very low latency and instantaneous amounts of data.
  • URLLC includes new services that will transform industries through ultra-reliable/available low-latency links, such as remote control of critical infrastructure and self-driving vehicles. Levels of reliability and latency are essential for smart grid control, industrial automation, robotics, and drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of delivering streams rated at hundreds of megabits per second to gigabits per second. These high speeds are required to deliver TV at resolutions above 4K (6K, 8K and beyond) as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, for VR games, gaming companies may need to integrate core servers with a network operator's edge network servers to minimize latency.
  • Automotive is expected to be an important new driver for 5G, with many use cases for mobile communications for vehicles. For example, entertainment for passengers requires simultaneous, high capacity and high mobility mobile broadband. That's because future users will continue to expect high-quality connections regardless of their location and speed.
  • Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark and superimposes information telling the driver about the object's distance and movement on top of what the driver is seeing through the front window.
  • wireless modules will enable communication between vehicles, information exchange between vehicles and supporting infrastructure, and information exchange between cars and other connected devices (eg, devices accompanied by pedestrians).
  • Safety systems can reduce the risk of accidents by guiding drivers through alternative courses of action to help them drive safer.
  • the next step will be remotely controlled or self-driven vehicles.
  • Smart cities and smart homes will be embedded with high-density wireless sensor networks.
  • a distributed network of intelligent sensors will identify conditions for cost-effective and energy-efficient maintenance of a city or home.
  • a similar setup can be done for each household.
  • Temperature sensors, window and heating controllers, burglar alarms and home appliances are all connected wirelessly. Many of these sensors are typically low data rate, low power, and low cost.
  • real-time HD video may be required in certain types of devices for surveillance, for example.
  • a smart grid interconnects these sensors using digital information and communications technologies to collect and act on information. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the efficiency, reliability, economics, sustainability of production and distribution of fuels such as electricity in an automated manner. Smart grid can also be viewed as another low-latency sensor network.
  • the health sector has many applications that can benefit from mobile communications.
  • Communications systems can support telemedicine, providing clinical care in remote locations. This can help reduce the barrier of distance and improve access to health services that are consistently unavailable in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • Mobile communications-based wireless sensor networks can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Therefore, the possibility of replacing cables with reconfigurable wireless links is an attractive opportunity for many industries. However, achieving this requires that wireless connections operate with similar latency, reliability and capacity as cables, and that their management be simplified. Low latency and very low error probability are new requirements needed for 5G connectivity.
  • Logistics and freight tracking are important examples of mobile communications that enable inventory and tracking of packages anywhere using location-based information systems. Use cases in logistics and cargo tracking typically require low data rates but require wide range and reliable location information.
  • a wireless communication system is a multiple access system that supports communication with multiple users by sharing available system resources (eg, bandwidth, transmission power, etc.).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA) systems. division multiple access) system, MC-FDMA (multi carrier frequency division multiple access) system, etc.
  • SL refers to a communication method that establishes a direct link between terminals (User Equipment, UE) and directly exchanges voice or data between terminals without going through a base station (BS).
  • UE User Equipment
  • BS base station
  • SL is being considered as a way to solve the burden on base stations due to rapidly increasing data traffic.
  • V2X vehicle-to-everything refers to a communication technology that exchanges information with other vehicles, pedestrians, and objects with built infrastructure through wired/wireless communication.
  • V2X can be divided into four types: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-network (V2N), and vehicle-to-pedestrian (V2P).
  • V2X communication may be provided through the PC5 interface and/or the Uu interface.
  • next-generation wireless access technology that takes these into consideration may be referred to as new radio access technology (RAT) or new radio (NR).
  • RAT new radio access technology
  • NR new radio
  • Figure 1 is a diagram for comparing and explaining V2X communication based on RAT before NR and V2X communication based on NR.
  • V2X communication in RAT before NR, a method of providing safety service based on V2X messages such as BSM (Basic Safety Message), CAM (Cooperative Awareness Message), and DENM (Decentralized Environmental Notification Message) This was mainly discussed.
  • V2X messages may include location information, dynamic information, attribute information, etc.
  • a terminal may transmit a periodic message type CAM and/or an event triggered message type DENM to another terminal.
  • CAM may include basic vehicle information such as vehicle dynamic state information such as direction and speed, vehicle static data such as dimensions, external lighting conditions, route history, etc.
  • the terminal may broadcast CAM, and the latency of the CAM may be less than 100ms.
  • the terminal can generate a DENM and transmit it to another terminal.
  • all vehicles within the transmission range of the terminal can receive CAM and/or DENM.
  • DENM may have higher priority than CAM.
  • V2X scenarios have been presented in NR.
  • various V2X scenarios may include vehicle platooning, advanced driving, extended sensors, remote driving, etc.
  • vehicles can dynamically form groups and move together. For example, to perform platoon operations based on vehicle platooning, vehicles belonging to the group may receive periodic data from the lead vehicle. For example, vehicles belonging to the group may use periodic data to reduce or widen the gap between vehicles.
  • vehicles may become semi-automated or fully automated. For example, each vehicle may adjust its trajectories or maneuvers based on data obtained from local sensors of nearby vehicles and/or nearby logical entities. Additionally, for example, each vehicle may share driving intentions with nearby vehicles.
  • raw data or processed data acquired through local sensors, or live video data can be used to collect terminals of vehicles, logical entities, and pedestrians. /or can be interchanged between V2X application servers. Therefore, for example, a vehicle can perceive an environment that is better than what it can sense using its own sensors.
  • a remote driver or V2X application can operate or control the remote vehicle.
  • cloud computing-based driving can be used to operate or control the remote vehicle.
  • access to a cloud-based back-end service platform may be considered for remote driving.
  • the present disclosure deals with contents related to operating methods and devices of a serving base station, target base station, remote UE, and relay UE related to handover of remote UE and relay UE.
  • One embodiment is a method of operating a serving base station related to handover (HO) of a remote UE in a wireless communication system, wherein the serving base station receives measurement results from a remote UE; The serving base station selects a target base station for HO of the remote UE; The serving base station transmits an HO request message to the target base station; And the serving base station transmits an RRC reconfiguration with sync message transmitted by the target base station to the remote UE, based on the serving base station's decision to HO the remote UE and the relay UE of the remote UE to the target base station.
  • the RRC reconfiguration with sync message is a method that includes information indicating that the remote UE will maintain a connection with the relay UE.
  • a serving base station in a wireless communication system, includes at least one processor; and at least one computer memory operably coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: measuring results from a remote UE; receive; Select a target base station for HO of the remote UE; Transmit an HO request message to the target base station; And transmitting an RRC reconfiguration with sync message transmitted by the target base station to the remote UE, based on the serving base station's decision to HO the remote UE and the relay UE of the remote UE to the target base station, the RRC The reconfiguration with sync message is a serving base station containing information indicating that the remote UE will maintain a connection with the relay UE.
  • One embodiment provides a non-volatile computer-readable storage medium storing at least one computer program that, when executed by at least one processor, includes instructions that cause the at least one processor to perform operations for a serving base station, comprising: The operations include receiving measurement results from a remote UE; Select a target base station for HO of the remote UE; Transmit an HO request message to the target base station; And transmitting an RRC reconfiguration with sync message transmitted by the target base station to the remote UE, based on the serving base station's decision to HO the remote UE and the relay UE of the remote UE to the target base station, the RRC The reconfiguration with sync message is a storage medium containing information indicating that the remote UE will maintain a connection with the relay UE.
  • One embodiment is a method of operating a remote UE related to handover (HO) of a remote UE in a wireless communication system, the remote UE transmitting a measurement result to a serving base station;
  • the remote UE receives an RRC reconfiguration with sync message transmitted by the target base station from the serving base station;
  • the remote UE transmits RRC reconfiguration complete to the target base station; and
  • the remote UE transmits data to the target base station through a relay UE, and based on the remote UE and the relay UE being HO to the target base station, the RRC reconfiguration with sync message is sent by the remote UE.
  • the method includes information indicating to maintain a connection with the relay UE.
  • the RRC reconfiguration with sync transmitted by the serving base station to the relay UE is connected to the remote UE by the relay UE. It may contain information instructing to maintain the .
  • the HO request message may include information indicating that the remote UE and the relay UE are in a multi-path relay relationship.
  • the serving base station may transmit information related to the relay UE to the target base station.
  • the information related to the relay UE includes the C-RNTI, SRC L2 ID, DST L2 ID, XNAP ID, and L2 ID Uu measurement results of the relay UE, and the bearer set by the serving base station to the relay UE for multipath relay operation. and may include bearer mapping information.
  • the relay UE may be one of a plurality of relay UEs connected to the remote UE.
  • the relay UE may have determined that HO is possible to the target base station together with the remote UE, based on the serving base station's measurement results for the plurality of relay UEs.
  • the remote UE may communicate with at least one of another UE, a UE related to an autonomous vehicle, a base station, or a network.
  • the HO of the remote UE and the relay UE may be configured to the same target base station (and/or cell).
  • the SL (sidelink) connection between the relay UE and the remote UE can be maintained, so it has the advantage of being able to quickly set up multi-path operation even if HO occurs.
  • Figure 1 is a diagram for comparing and explaining V2X communication based on RAT before NR and V2X communication based on NR.
  • FIG. 2 shows the structure of an LTE system according to an embodiment of the present disclosure.
  • FIG. 3 shows a radio protocol architecture for a user plane and a control plane, according to an embodiment of the present disclosure.
  • Figure 4 shows the structure of an NR system according to an embodiment of the present disclosure.
  • Figure 5 shows functional division between NG-RAN and 5GC, according to an embodiment of the present disclosure.
  • Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
  • Figure 7 shows the slot structure of an NR frame according to an embodiment of the present disclosure.
  • Figure 8 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure.
  • Figure 9 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure.
  • Figure 10 shows a synchronization source or synchronization reference of V2X, according to an embodiment of the present disclosure.
  • Figure 11 shows a procedure in which a terminal performs V2X or SL communication depending on the transmission mode, according to an embodiment of the present disclosure.
  • Figure 12 shows a procedure in which a terminal performs path switching, according to an embodiment of the present disclosure.
  • FIG. 13 illustrates direct to indirect path conversion.
  • Figure 14 is a diagram for explaining handover.
  • Figure 15 is a diagram for explaining an embodiment.
  • 16 to 22 are diagrams illustrating various devices to which the embodiment(s) can be applied.
  • “/” and “,” should be interpreted as indicating “and/or.”
  • “A/B” can mean “A and/or B.”
  • “A, B” may mean “A and/or B”.
  • “A/B/C” may mean “at least one of A, B and/or C.”
  • “A, B, C” may mean “at least one of A, B and/or C.”
  • “or” should be interpreted as indicating “and/or.”
  • “A or B” may include “only A,” “only B,” and/or “both A and B.”
  • “or” should be interpreted as indicating “additionally or alternatively.”
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA can be implemented with wireless technologies such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA can be implemented with wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), etc.
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • E-UTRA evolved UTRA
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of the universal mobile telecommunications system (UMTS).
  • 3GPP (3rd generation partnership project) LTE (long term evolution) is a part of E-UMTS (evolved UMTS) that uses E-UTRA (evolved-UMTS terrestrial radio access), employing OFDMA in the downlink and SC in the uplink.
  • -Adopt FDMA LTE-A (advanced) is the evolution of 3GPP LTE.
  • 5G NR is a successor technology to LTE-A and is a new clean-slate mobile communication system with characteristics such as high performance, low latency, and high availability.
  • 5G NR can utilize all available spectrum resources, including low-frequency bands below 1 GHz, mid-frequency bands between 1 GHz and 10 GHz, and high-frequency (millimeter wave) bands above 24 GHz.
  • LTE-A or 5G NR is mainly described, but the technical idea according to an embodiment of the present disclosure is not limited thereto.
  • FIG. 2 shows the structure of an LTE system according to an embodiment of the present disclosure. This may be called an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or a Long Term Evolution (LTE)/LTE-A system.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • E-UTRAN includes a base station 20 that provides a control plane and a user plane to the terminal 10.
  • the terminal 10 may be fixed or mobile, and may be called by other terms such as MS (Mobile Station), UT (User Terminal), SS (Subscriber Station), MT (Mobile Terminal), and wireless device.
  • the base station 20 refers to a fixed station that communicates with the terminal 10, and may be called other terms such as evolved-NodeB (eNB), base transceiver system (BTS), or access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • Base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to an Evolved Packet Core (EPC) 30 through the S1 interface, and more specifically, to a Mobility Management Entity (MME) through S1-MME and to a Serving Gateway (S-GW) through S1-U.
  • EPC Evolved Packet Core
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • the EPC 30 is composed of MME, S-GW, and P-GW (Packet Data Network-Gateway).
  • the MME has information about the terminal's connection information or terminal capabilities, and this information is mainly used for terminal mobility management.
  • S-GW is a gateway with E-UTRAN as an endpoint
  • P-GW is a gateway with PDN (Packet Date Network) as an endpoint.
  • the layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) standard model, which is widely known in communication systems: L1 (layer 1), It can be divided into L2 (second layer) and L3 (third layer).
  • OSI Open System Interconnection
  • the physical layer belonging to the first layer provides information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer provides radio resources between the terminal and the network. plays a role in controlling.
  • the RRC layer exchanges RRC messages between the terminal and the base station.
  • FIG. 3(a) shows a radio protocol architecture for a user plane, according to an embodiment of the present disclosure.
  • FIG. 3(b) shows a wireless protocol structure for a control plane, according to an embodiment of the present disclosure.
  • the user plane is a protocol stack for transmitting user data
  • the control plane is a protocol stack for transmitting control signals.
  • the physical layer provides information transmission services to upper layers using a physical channel.
  • the physical layer is connected to the upper layer, the MAC (Medium Access Control) layer, through a transport channel.
  • Data moves between the MAC layer and the physical layer through a transport channel. Transmission channels are classified according to how and with what characteristics data is transmitted through the wireless interface.
  • the physical channel can be modulated using OFDM (Orthogonal Frequency Division Multiplexing), and time and frequency are used as radio resources.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the MAC layer provides services to the radio link control (RLC) layer, an upper layer, through a logical channel.
  • the MAC layer provides a mapping function from multiple logical channels to multiple transport channels. Additionally, the MAC layer provides a logical channel multiplexing function by mapping multiple logical channels to a single transport channel.
  • the MAC sublayer provides data transmission services on logical channels.
  • the RLC layer performs concatenation, segmentation, and reassembly of RLC Serving Data Units (SDUs).
  • SDUs RLC Serving Data Units
  • TM Transparent Mode
  • UM Unacknowledged Mode
  • AM automatic repeat request
  • the Radio Resource Control (RRC) layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in relation to configuration, re-configuration, and release of radio bearers.
  • RB refers to the logical path provided by the first layer (physical layer or PHY layer) and the second layer (MAC layer, RLC layer, PDCP (Packet Data Convergence Protocol) layer) for data transfer between the terminal and the network.
  • MAC layer physical layer
  • RLC layer Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the functions of the PDCP layer in the user plane include forwarding, header compression, and ciphering of user data.
  • the functions of the PDCP layer in the control plane include forwarding and encryption/integrity protection of control plane data.
  • Setting an RB means the process of defining the characteristics of the wireless protocol layer and channel and setting each specific parameter and operation method to provide a specific service.
  • RB can be further divided into SRB (Signaling Radio Bearer) and DRB (Data Radio Bearer).
  • SRB is used as a path to transmit RRC messages in the control plane
  • DRB is used as a path to transmit user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in the RRC_CONNECTED state. Otherwise, it is in the RRC_IDLE state.
  • the RRC_INACTIVE state has been additionally defined, and a UE in the RRC_INACTIVE state can release the connection with the base station while maintaining the connection with the core network.
  • Downlink transmission channels that transmit data from the network to the terminal include a BCH (Broadcast Channel) that transmits system information and a downlink SCH (Shared Channel) that transmits user traffic or control messages.
  • BCH Broadcast Channel
  • SCH Shared Channel
  • uplink transmission channels that transmit data from the terminal to the network include RACH (Random Access Channel), which transmits initial control messages, and uplink SCH (Shared Channel), which transmits user traffic or control messages.
  • Logical channels located above the transmission channel and mapped to the transmission channel include BCCH (Broadcast Control Channel), PCCH (Paging Control Channel), CCCH (Common Control Channel), MCCH (Multicast Control Channel), and MTCH (Multicast Traffic). Channel), etc.
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic. Channel
  • a physical channel consists of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit and consists of a plurality of OFDM symbols and a plurality of sub-carriers. Additionally, each subframe may use specific subcarriers of specific OFDM symbols (e.g., the first OFDM symbol) of the subframe for the Physical Downlink Control Channel (PDCCH), that is, the L1/L2 control channel.
  • PDCCH Physical Downlink Control Channel
  • TTI Transmission Time Interval
  • Figure 4 shows the structure of an NR system according to an embodiment of the present disclosure.
  • NG-RAN Next Generation - Radio Access Network
  • gNB next generation-Node B
  • eNB next generation-Node B
  • Figure 4 illustrates a case including only gNB.
  • gNB and eNB are connected to each other through the Xn interface.
  • gNB and eNB are connected through the 5G Core Network (5GC) and NG interface. More specifically, it is connected to the access and mobility management function (AMF) through the NG-C interface, and to the user plane function (UPF) through the NG-U interface.
  • AMF access and mobility management function
  • UPF user plane function
  • Figure 5 shows functional division between NG-RAN and 5GC, according to an embodiment of the present disclosure.
  • gNB performs inter-cell radio resource management (Inter Cell RRM), radio bearer management (RB control), connection mobility control, radio admission control, and measurement configuration and provision.
  • Functions such as (Measurement configuration & Provision) and dynamic resource allocation can be provided.
  • AMF can provide functions such as NAS (Non Access Stratum) security and idle state mobility processing.
  • UPF can provide functions such as mobility anchoring and PDU (Protocol Data Unit) processing.
  • SMF Session Management Function
  • IP Internet Protocol
  • Figure 6 shows the structure of a radio frame of NR to which the embodiment(s) can be applied.
  • NR can use radio frames in uplink and downlink transmission.
  • a wireless frame has a length of 10ms and can be defined as two 5ms half-frames (HF).
  • a half-frame may include five 1ms subframes (Subframe, SF).
  • a subframe may be divided into one or more slots, and the number of slots within a subframe may be determined according to subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot may contain 12 or 14 OFDM(A) symbols depending on the cyclic prefix (CP).
  • each slot may contain 14 symbols.
  • each slot can contain 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 below shows the number of symbols per slot ( ⁇ ) according to the SCS setting ( ⁇ ) when normal CP is used. ), number of slots per frame ( ) and the number of slots per subframe ( ) is an example.
  • Table 2 illustrates the number of symbols per slot, the number of slots per frame, and the number of slots per subframe according to the SCS when the extended CP is used.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • OFDM(A) numerology eg, SCS, CP length, etc.
  • the (absolute time) interval of time resources e.g., subframes, slots, or TTI
  • TU Time Unit
  • multiple numerologies or SCSs can be supported to support various 5G services. For example, if SCS is 15kHz, a wide area in traditional cellular bands can be supported, and if SCS is 30kHz/60kHz, dense-urban, lower latency latency) and wider carrier bandwidth may be supported. For SCS of 60 kHz or higher, bandwidths greater than 24.25 GHz can be supported to overcome phase noise.
  • the NR frequency band can be defined as two types of frequency ranges.
  • the two types of frequency ranges may be FR1 and FR2.
  • the values of the frequency range may be changed, for example, the frequency ranges of the two types may be as shown in Table 3 below.
  • FR1 may mean “sub 6GHz range”
  • FR2 may mean “above 6GHz range” and may be called millimeter wave (mmW).
  • mmW millimeter wave
  • FR1 may include a band of 410MHz to 7125MHz as shown in Table 4 below. That is, FR1 may include a frequency band of 6GHz (or 5850, 5900, 5925 MHz, etc.). For example, the frequency band above 6 GHz (or 5850, 5900, 5925 MHz, etc.) included within FR1 may include an unlicensed band. Unlicensed bands can be used for a variety of purposes, for example, for communications for vehicles (e.g., autonomous driving).
  • Figure 7 shows the slot structure of an NR frame according to an embodiment of the present disclosure.
  • a slot includes a plurality of symbols in the time domain.
  • one slot may include 14 symbols, but in the case of extended CP, one slot may include 12 symbols.
  • one slot may include 7 symbols, but in the case of extended CP, one slot may include 6 symbols.
  • a carrier wave includes a plurality of subcarriers in the frequency domain.
  • a Resource Block (RB) may be defined as a plurality (eg, 12) consecutive subcarriers in the frequency domain.
  • BWP (Bandwidth Part) can be defined as a plurality of consecutive (P)RB ((Physical) Resource Blocks) in the frequency domain and can correspond to one numerology (e.g. SCS, CP length, etc.) there is.
  • a carrier wave may include up to N (e.g., 5) BWPs. Data communication can be performed through an activated BWP.
  • Each element may be referred to as a Resource Element (RE) in the resource grid, and one complex symbol may be mapped.
  • RE Resource Element
  • the wireless interface between the terminal and the terminal or the wireless interface between the terminal and the network may be composed of an L1 layer, an L2 layer, and an L3 layer.
  • the L1 layer may refer to a physical layer.
  • the L2 layer may mean at least one of the MAC layer, RLC layer, PDCP layer, and SDAP layer.
  • the L3 layer may mean the RRC layer.
  • V2X or SL (sidelink) communication will be described.
  • Figure 8 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure. Specifically, Figure 8(a) shows the user plane protocol stack of LTE, and Figure 8(b) shows the control plane protocol stack of LTE.
  • Figure 9 shows a radio protocol architecture for SL communication, according to an embodiment of the present disclosure. Specifically, Figure 9(a) shows the user plane protocol stack of NR, and Figure 9(b) shows the control plane protocol stack of NR.
  • Figure 10 shows a synchronization source or synchronization reference of V2X, according to an embodiment of the present disclosure.
  • the terminal in V2X, is directly synchronized to GNSS (global navigation satellite systems), or indirectly synchronized to GNSS through a terminal (within network coverage or outside network coverage) that is directly synchronized to GNSS. You can. If GNSS is set as the synchronization source, the terminal can calculate the DFN and subframe number using Coordinated Universal Time (UTC) and a (pre)set Direct Frame Number (DFN) offset.
  • UTC Coordinated Universal Time
  • DFN Direct Frame Number
  • the terminal may be synchronized directly to the base station or to another terminal that is time/frequency synchronized to the base station.
  • the base station may be an eNB or gNB.
  • the terminal may receive synchronization information provided by the base station and be directly synchronized to the base station. Afterwards, the terminal can provide synchronization information to other nearby terminals.
  • the base station timing is set as a synchronization standard, the terminal is connected to a cell associated with that frequency (if within cell coverage at the frequency), primary cell, or serving cell (if outside cell coverage at the frequency) for synchronization and downlink measurements. ) can be followed.
  • a base station may provide synchronization settings for the carrier used for V2X or SL communication.
  • the terminal can follow the synchronization settings received from the base station. If the terminal did not detect any cells in the carrier used for the V2X or SL communication and did not receive synchronization settings from the serving cell, the terminal may follow the preset synchronization settings.
  • the terminal may be synchronized to another terminal that has not obtained synchronization information directly or indirectly from the base station or GNSS.
  • Synchronization source and preference can be set in advance to the terminal.
  • the synchronization source and preference can be set through a control message provided by the base station.
  • SL synchronization source may be associated with a synchronization priority.
  • the relationship between synchronization source and synchronization priority can be defined as Table 5 or Table 6.
  • Table 5 or Table 6 is only an example, and the relationship between synchronization source and synchronization priority can be defined in various forms.
  • P0 may mean the highest priority
  • P6 may mean the lowest priority
  • the base station may include at least one of a gNB or an eNB.
  • Whether to use GNSS-based synchronization or base station-based synchronization can be set (in advance).
  • the terminal In single-carrier operation, the terminal can derive its transmission timing from the available synchronization criteria with the highest priority.
  • SLSS Sidelink Synchronization Signal
  • SLSS is a SL-specific sequence and may include Primary Sidelink Synchronization Signal (PSSS) and Secondary Sidelink Synchronization Signal (SSSS).
  • PSSS Primary Sidelink Synchronization Signal
  • SSSS Secondary Sidelink Synchronization Signal
  • the PSSS may be referred to as S-PSS (Sidelink Primary Synchronization Signal), and the SSSS may be referred to as S-SSS (Sidelink Secondary Synchronization Signal).
  • S-PSS Systemlink Primary Synchronization Signal
  • S-SSS Sidelink Secondary Synchronization Signal
  • length-127 M-sequences can be used for S-PSS
  • length-127 Gold sequences can be used for S-SSS.
  • the terminal can detect the first signal and obtain synchronization using S-PSS.
  • the terminal can obtain detailed synchronization using S-PSS and S-SSS and detect the synchronization signal ID.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the basic information includes information related to SLSS, duplex mode (DM), TDD UL/DL (Time Division Duplex Uplink/Downlink) configuration, resource pool related information, type of application related to SLSS, This may be subframe offset, broadcast information, etc.
  • the payload size of PSBCH may be 56 bits, including a CRC of 24 bits.
  • S-PSS, S-SSS, and PSBCH may be included in a block format that supports periodic transmission (e.g., SL Synchronization Signal (SL SS)/PSBCH block, hereinafter referred to as Sidelink-Synchronization Signal Block (S-SSB)).
  • the S-SSB may have the same numerology (i.e., SCS and CP length) as the PSCCH (Physical Sidelink Control Channel)/PSSCH (Physical Sidelink Shared Channel) in the carrier, and the transmission bandwidth is (pre-set) SL BWP (Sidelink BWP).
  • the bandwidth of S-SSB may be 11 RB (Resource Block).
  • PSBCH may span 11 RB.
  • the frequency position of the S-SSB can be set (in advance). Therefore, the UE does not need to perform hypothesis detection at the frequency to discover the S-SSB in the carrier.
  • the transmitting terminal can transmit one or more S-SSBs to the receiving terminal within one S-SSB transmission period according to the SCS.
  • the number of S-SSBs that the transmitting terminal transmits to the receiving terminal within one S-SSB transmission period may be pre-configured or configured for the transmitting terminal.
  • the S-SSB transmission period may be 160ms.
  • an S-SSB transmission period of 160ms can be supported.
  • the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period.
  • the transmitting terminal can transmit one or two S-SSBs to the receiving terminal within one S-SSB transmission period.
  • the transmitting terminal can transmit 1, 2, or 4 S-SSBs to the receiving terminal within one S-SSB transmission cycle.
  • Figure 11 shows a procedure in which a terminal performs V2X or SL communication depending on the transmission mode, according to an embodiment of the present disclosure.
  • the embodiment of FIG. 11 may be combined with various embodiments of the present disclosure.
  • the transmission mode may be referred to as a mode or resource allocation mode.
  • the transmission mode in LTE may be referred to as the LTE transmission mode
  • the transmission mode in NR may be referred to as the NR resource allocation mode.
  • Figure 11 (a) shows terminal operations related to LTE transmission mode 1 or LTE transmission mode 3.
  • Figure 11 (a) shows UE operations related to NR resource allocation mode 1.
  • LTE transmission mode 1 can be applied to general SL communication
  • LTE transmission mode 3 can be applied to V2X communication.
  • Figure 11 (b) shows terminal operations related to LTE transmission mode 2 or LTE transmission mode 4.
  • Figure 11(b) shows UE operations related to NR resource allocation mode 2.
  • the base station may schedule SL resources to be used by the terminal for SL transmission.
  • the base station may transmit information related to SL resources and/or information related to UL resources to the first terminal.
  • the UL resources may include PUCCH resources and/or PUSCH resources.
  • the UL resource may be a resource for reporting SL HARQ feedback to the base station.
  • the first terminal may receive information related to dynamic grant (DG) resources and/or information related to configured grant (CG) resources from the base station.
  • CG resources may include CG Type 1 resources or CG Type 2 resources.
  • the DG resource may be a resource that the base station configures/allocates to the first terminal through downlink control information (DCI).
  • the CG resource may be a (periodic) resource that the base station configures/allocates to the first terminal through a DCI and/or RRC message.
  • the base station may transmit an RRC message containing information related to the CG resource to the first terminal.
  • the base station may transmit an RRC message containing information related to the CG resource to the first terminal, and the base station may send a DCI related to activation or release of the CG resource. It can be transmitted to the first terminal.
  • the first terminal may transmit a PSCCH (eg, Sidelink Control Information (SCI) or 1st-stage SCI) to the second terminal based on the resource scheduling.
  • a PSCCH eg., Sidelink Control Information (SCI) or 1st-stage SCI
  • the first terminal may transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
  • HARQ feedback information eg, NACK information or ACK information
  • the first terminal may transmit/report HARQ feedback information to the base station through PUCCH or PUSCH.
  • the HARQ feedback information reported to the base station may be information that the first terminal generates based on HARQ feedback information received from the second terminal.
  • the HARQ feedback information reported to the base station may be information that the first terminal generates based on preset rules.
  • the DCI may be a DCI for scheduling of SL.
  • the format of the DCI may be DCI format 3_0 or DCI format 3_1. Table 7 shows an example of DCI for scheduling SL.
  • the terminal can determine the SL transmission resource within the SL resource set by the base station/network or within the preset SL resource.
  • the set SL resource or preset SL resource may be a resource pool.
  • the terminal can autonomously select or schedule resources for SL transmission.
  • the terminal can self-select a resource from a set resource pool and perform SL communication.
  • the terminal may perform sensing and resource (re)selection procedures to select resources on its own within the selection window.
  • the sensing may be performed on a subchannel basis.
  • the first terminal that has selected a resource within the resource pool may transmit a PSCCH (eg, Sidelink Control Information (SCI) or 1st-stage SCI) to the second terminal using the resource.
  • a PSCCH eg, Sidelink Control Information (SCI) or 1st-stage SCI
  • the first terminal may transmit a PSSCH (e.g., 2nd-stage SCI, MAC PDU, data, etc.) related to the PSCCH to the second terminal.
  • the first terminal may receive the PSFCH related to the PSCCH/PSSCH from the second terminal.
  • the first terminal may transmit an SCI to the second terminal on the PSCCH.
  • the first terminal may transmit two consecutive SCIs (eg, 2-stage SCI) on the PSCCH and/or PSSCH to the second terminal.
  • the second terminal can decode two consecutive SCIs (eg, 2-stage SCI) to receive the PSSCH from the first terminal.
  • the SCI transmitted on the PSCCH may be referred to as 1st SCI, 1st SCI, 1st-stage SCI, or 1st-stage SCI format
  • the SCI transmitted on the PSSCH may be referred to as 2nd SCI, 2nd SCI, 2nd-stage SCI, or It can be called the 2nd-stage SCI format
  • the 1st-stage SCI format may include SCI format 1-A
  • the 2nd-stage SCI format may include SCI format 2-A and/or SCI format 2-B.
  • Table 8 shows an example of the 1st-stage SCI format.
  • Table 9 shows an example of the 2nd-stage SCI format.
  • the first terminal can receive PSFCH based on Table 10.
  • the first terminal and the second terminal may determine PSFCH resources based on Table 10, and the second terminal may transmit HARQ feedback to the first terminal using the PSFCH resource.
  • the first terminal may transmit SL HARQ feedback to the base station through PUCCH and/or PUSCH, based on Table 11.
  • Table 12 below shows disclosure related to selection and reselection of sidelink relay UE in 3GPP TS 36.331.
  • the disclosure content in Table 12 is used as the prior art of this disclosure, and related necessary details refer to 3GPP TS 36.331.
  • Figure 12 shows the connection management captured in the TR document (3GPP TR 38.836) related to Rel-17 NR SL and the procedure for path switching from direct to indirect.
  • the remote UE needs to establish its own PDU session/DRB with the network before user plane data transmission.
  • the PC5-RRC aspect of Rel-16 NR V2X's PC5 unicast link setup procedure involves L2 UE-to-Network relaying between the remote UE and the relay UE before the remote UE establishes a Uu RRC connection with the network through the relay UE. It can be reused to set up a secure unicast link.
  • the PC5 L2 configuration for transmission between the remote UE and the UE-to-Network Relay UE is defined in the standard. It can be based on the RLC/MAC configuration. Establishment of Uu SRB1/SRB2 and DRB of remote UE follows the legacy Uu configuration procedure for L2 UE-to-Network Relay.
  • the high-level connection establishment procedure shown in Figure 12 applies to L2 UE-to-Network Relay.
  • step S1200 the Remote and Relay UE can perform a discovery procedure and establish a PC5-RRC connection in step S1201 based on the existing Rel-16 procedure.
  • the remote UE may transmit the first RRC message (i.e., RRCSetupRequest) for connection establishment with the gNB through the Relay UE using the basic L2 configuration of PC5.
  • the gNB responds to the remote UE with an RRCSetup message (S1203).
  • RRCSetup delivery to the remote UE uses the default configuration of PC5. If the Relay UE has not started in RRC_CONNECTED, it must perform its own connection setup upon receiving a message about PC5's default L2 configuration. At this stage, details for the relay UE to deliver the RRCSetupRequest/RRCSetup message to the remote UE can be discussed in the WI stage.
  • step S1204 gNB and Relay UE perform a relay channel setup procedure through Uu.
  • the Relay/Remote UE sets up an RLC channel to relay SRB1 to the remote UE through PC5. This step prepares the relay channel for SRB1.
  • a remote UE SRB1 message (e.g., RRCSetupComplete message) is transmitted to the gNB via the relay UE using the SRB1 relay channel via PC5. And the remote UE is connected to RRC through Uu.
  • step S1206 the remote UE and gNB set security according to the legacy procedure and the security message is delivered through the relay UE.
  • the gNB sets up an additional RLC channel between the gNB and the Relay UE for traffic relay.
  • the Relay/Remote UE sets up an additional RLC channel between the Remote UE and Relay UE for traffic relay.
  • gNB sends RRCReconfiguration to the remote UE through the relay UE to configure relay SRB2/DRB.
  • the remote UE sends RRCReconfigurationComplete as a response to the gNB through the Relay UE.
  • the RRC reconfiguration and RRC disconnection procedures can reuse legacy RRC procedures with the message content/configuration design left to the WI stage.
  • RRC connection reset and RRC connection resumption procedures can reuse existing RRC procedures as a baseline by considering the connection establishment procedure of the above L2 UE-to-Network Relay to handle relay-specific parts along with message content/configuration design. there is. Message content/configuration may be defined later.
  • Figure 13 illustrates direct to indirect path conversion.
  • the procedure in FIG. 13 can be used when a remote UE switches to an indirect relay UE.
  • the remote UE measures/discovers a candidate relay UE and then reports one or several candidate relay UEs.
  • Remote UEs can filter out appropriate relay UEs that meet higher layer criteria when reporting.
  • the report may include the relay UE's ID and SL RSRP information, where details regarding PC5 measurements may be determined later.
  • step S1302 the gNB decides to switch to the target relay UE and the target (re)configuration is optionally sent to the relay UE.
  • the RRC reconfiguration message for the remote UE may include the ID of the target relay UE, target Uu, and PC5 configuration.
  • step S1305 the remote UE establishes a PC5 connection with the target relay UE if the connection has not yet been established.
  • step S1306 the remote UE feeds back RRCReconfigurationComplete to the gNB via the target path using the target configuration provided in RRCReconfiguration.
  • step S1307 the data path is switched.
  • Tables 13 to 18 below are disclosed in the 3GPP TS 38.423 standard document related to handover, and are used as prior art for this disclosure.
  • Figure 8.2.1.2-1 corresponds to Figure 14, and for other details, refer to the above standard document 3GPP TS 38.423.
  • 8.2.1 Handover Preparation 8.2.1.1 General This procedure is used to establish necessary resources in an NG-RAN node for an incoming handover. If the procedure concerns a conditional handover, parallel transactions are allowed. Possible parallel requests are identified by the target cell ID when the source UE AP IDs are the same. The procedure uses UE-associated signaling. 8.2.1.2 Successful Operation The source NG-RAN node initiates the procedure by sending the HANDOVER REQUEST message to the target NG-RAN node. When the source NG-RAN node sends the HANDOVER REQUEST message, it shall start the timer TXn RELOCprep.
  • the target NG-RAN node shall consider that the request concerns a conditional handover and shall include the Conditional Handover Information Acknowledge IE in the HANDOVER REQUEST ACKNOWLEDGE message. If the Target NG-RAN node UE XnAP ID IE is contained in the Conditional Handover Information Request IE included in the HANDOVER REQuest message, then the target NG-RAN node shall remove the existing prepared conditional HO identified by the Target NG-RAN node UE XnAP ID IE and the Target Cell Global ID IE. It is up to the implementation of the target NG-RAN node when to remove the HO information.
  • the source NG-RAN node Upon reception of the HANDOVER REQUEST ACKNOWLEDGE message, the source NG-RAN node shall stop the timer TXn RELOCprep and terminate the Handover Preparation procedure. If the procedure was initiated for an immediate handover, the source NG-RAN node shall start the timer TXn RELOCoverall . The source NG-RAN node is then defined to have a Prepared Handover for that Xn UE-associated signaling. For each E-RAB ID IE included in the QoS Flow To Be Setup List IE in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the content of the IE in the UE context and use it for subsequent inter -system handover.
  • the target NG-RAN node shall, if supported, use it to determine the characteristics of the UE for subsequent handling.
  • the target NG-RAN node shall prepare the configuration of the AS security relationship between the UE and the target NG-RAN node by using the information in the UE Security Capabilities IE and the AS Security Information IE in the UE Context Information IE, as specified in TS 33.501 [28].
  • the target NG-RAN node Upon reception of the PDU Session Resource Setup List IE, contained in the HANDOVER REQUEST message, the target NG-RAN node shall behave the same as specified in TS 38.413 [5] for the PDU Session Resource Setup procedure.
  • the target NG-RAN node shall report in the HANDOVER REQUEST ACKNOWLEDGE message the successful establishment of the result for all the requested PDU session resources.
  • the cause value should be precise enough to enable the source NG-RAN node to know the reason for the unsuccessful establishment.
  • the target NG-RAN node For each PDU session if the PDU Session Aggregate Maximum Bit Rate IE is included in the PDU Session Resources To Be Setup List IE contained in the HANDOVER REQUEST message, the target NG-RAN node shall store the received PDU Session Aggregate Maximum Bit Rate in the UE context and use it when enforcing traffic policing for Non-GBR QoS flows for the concerned UE as specified in TS 23.501 [7].
  • the source NG-RAN node For each QoS flow for which the source NG-RAN node proposes to perform forwarding of downlink data, the source NG-RAN node shall include the DL Forwarding IE set to "DL forwarding proposed" within the Data Forwarding and Offloading Info from source NG- RAN node IE in the PDU Session Resources To Be Setup List IE in the HANDOVER REQUEST message.
  • the source NG-RAN node shall include the DL Forwarding IE set to "DL forwarding proposed" for all the QoS flows mapped to a DRB, if it requests a DAPS handover for that DRB.
  • the target NG-RAN node For each PDU session that the target NG-RAN node decides to admit the data forwarding for at least one QoS flow, the target NG-RAN node includes the PDU Session level DL data forwarding GTP-U Tunnel Endpoint IE within the Data Forwarding Info from target NG-RAN node IE in the PDU Session Resource Admitted Info IE contained in the PDU Session Resources Admitted List IE in the HANDOVER REQUEST ACKNOWLEDGE message.
  • the source NG-RAN node shall include the UL Forwarding Proposal IE within the Data Forwarding and Offloading Info from source NG-RAN node IE in the HANDOVER REQUEST message, and if the target NG-RAN node decides to admit uplink data forwarding for at least one QoS flow, the target NG-RAN node may include the PDU Session Level UL Data Forwarding UP TNL Information IE in the Data Forwarding Info from target NG-RAN node IE in the PDU Session Resources Admitted Item IE contained in the PDU Session Resources Admitted List IE in the HANDOVER REQUEST ACKNOWLEDGE message to indicate that it accepts the uplink data forwarding.
  • the target NG-RAN node may allocate resources for additional Xn-U PDU session resource GTP-U tunnels, indicated in the Secondary Data Forwarding Info from target NG-RAN node List I.E.
  • the target NG-RAN node may accept the setup of the involved QoS flow when notification control has been enabled if the requested QoS parameters set or at least one of the alternative QoS parameters sets can be fulfilled at the time of handover as specified in TS 23.501 [7].
  • the target NG-RAN node accepts the handover fulfilling one of the alternative QoS parameters it shall indicate the alternative QoS parameters set which it can currently fulfil in the Current QoS Parameters Set Index IE within the PDU Session Resources Admitted List IE of the HANDOVER REQUEST ACKNOWLEDGE message while setting the QoS parameters towards the UE according to the requested QoS parameters set as specified in TS 23.501 [7].
  • the source NG-RAN node For each DRB for which the source NG-RAN node proposes to perform forwarding of downlink data, the source NG-RAN node shall include the DRB ID IE and the mapped QoS Flows List IE within the Source DRB to QoS Flow Mapping List IE contained in the PDU Session Resources To Be Setup List IE in the HANDOVER REQUEST message.
  • the source NG-RAN node may include the QoS Flow Mapping Indication IE in the Source DRB to QoS Flow Mapping List IE to indicate that only the uplink or downlink QoS flow is mapped to the DRB.
  • the target NG-RAN node If the target NG-RAN node decides to use the same DRB configuration and to map the same QoS flows as the source NG-RAN node, the target NG-RAN node includes the DL Forwarding GTP Tunnel Endpoint IE within the Data Forwarding Response DRB List IE in the HANDOVER REQUEST ACKNOWLEDGE message to indicate that it accepts the proposed forwarding of downlink data for this DRB.
  • the target NG-RAN node may additionally include the Redundant DL Forwarding UP TNL Information IE if at least one of the QoS flow mapped to the DRB is eligible to the redundant transmission feature as indicated in the Redundant QoS Flow Indicator IE within the PDU Session Resource To Be Setup List IE received in the HANDOVER REQUEST message for the QoS flow.
  • the HANDOVER REQUEST ACKNOWLEDGE message contains the UL Forwarding GTP Tunnel Endpoint IE for a given DRB in the Data Forwarding Response DRB List IE within Data Forwarding Info from target NG-RAN node IE in the PDU Session Resources Admitted List IE and the source NG- RAN node accepts the data forwarding proposed by the target NG-RAN node, the source NG-RAN node shall perform forwarding of uplink data for the DRB. If the HANDOVER REQUEST includes PDU session resources for PDU sessions associated to S-NSSAIs not supported by target NG-RAN, the target NG-RAN node shall reject such PDU session resources.
  • the target NG-RAN node shall send the HANDOVER REQUEST ACKNOWLEDGE message including the PDU Session Resources Not Admitted List IE listing corresponding PDU sessions rejected at the target NG-RAN.
  • the target NG-RAN node shall -store the information received in the Mobility Restriction List IE in the UE context; - use this information to determine a target for the UE during subsequent mobility action for which the NG-RAN node provides information about the target of the mobility action towards the UE, except when one of the PDU sessions has a particular ARP value (TS 23.501 [7]) in which case the information shall not apply; - use this information to select a proper SCG during dual connectivity operation. - use this information to select proper RNA(s) for the UE when moving the UE to RRC_INACTIVE. - not contained in the HANDOVER REQUEST message, the target NG-RAN node shall - consider that no roaming and no access restrictions apply to the UE.
  • the target NG-RAN node shall, if supported, initiate the requested trace function as specified in TS 32.422 [23]. If the Index to RAT/Frequency Selection Priority IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall store this information and use it as defined in TS 23.501 [7]. If the UE Context Reference at the S-NG-RAN IE is contained in the HANDOVER REQUEST message the target NG-RAN node may use it as specified in TS 37.340 [8].
  • the source NG-RAN node may expect the target NG-RAN node to include the UE Context Kept Indicator IE set to "True" in the HANDOVER REQUEST ACKNOWLEDGE message, which shall use this information as specified in TS 37.340 [8 ].
  • the target NG-RAN node shall, if supported, use it when selecting transport network resource as specified in TS 23.501 [7].
  • Redundant transmission - For each PDU session, if the Redundant UL NG-U UP TNL Information at UPF IE is included in the PDU Session Resource To Be Setup List IE, the target NG-RAN node shall, if supported, use it as the uplink termination point for the user plane data for the redundant transmission for the concerned PDU session. - For each PDU session, if the Additional Redundant UL NG-U UP TNL Information at UPF List IE is included in the PDU Session Resource To Be Setup List IE, the target NG-RAN node shall, if supported, use them as the uplink termination points for the user plane data for the redundant transmission for the concerned PDU session.
  • the target NG-RAN node For each PDU session, if the Redundant Common Network Instance IE is included in the PDU Session Resource To Be Setup List IE, the target NG-RAN node shall, if supported, use it when selecting transport network resource for the redundant transmission as specified in TS 23.501 [7]. - For each PDU session, if the Redundant PDU Session Information IE is included in the PDU Session Resource To Be Setup List IE contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the received information in the UE context and set up the redundant user plane for the concerned PDU session, as specified in TS 23.501 [7].
  • the target NG-RAN node may store and use it to identify the paired PDU sessions. If the TSC Traffic Characteristics IE is included in the QoS Flows To Be Setup List in the PDU Session Resource To Be Setup List IE, the target NG-RAN node shall, if supported, use it as specified in TS 23.501 [7].
  • the target NG-RAN node shall, if supported, use it when selecting transport network resource for the concerned NG-U transport bearer as specified in TS 23.501 [7].
  • the target NG-RAN node For each PDU session for which the Security Indication IE is included in the PDU Session Resource To Be Setup List IE and the Integrity Protection Indication IE or Confidentiality Protection Indication IE is set to "required", the target NG-RAN node shall perform user plane integrity protection or ciphering, respectively. If the NG-RAN node is not able to perform the user plane integrity protection or ciphering, it shall reject the setup of the PDU Session Resources with an appropriate cause value. If the NG-RAN node is an ng-eNB, it shall reject all PDU sessions for which the Integrity Protection Indication IE is set to "required”.
  • the target NG-RAN node For each PDU session for which the Security Indication IE is included in the PDU Session Resource To Be Setup List IE and the Integrity Protection Indication IE or the Confidentiality Protection Indication IE is set to "preferred", the target NG-RAN node should, if supported, perform user plane integrity protection or ciphering, respectively and shall notify the SMF whether it succeeded the user plane integrity protection or ciphering or not for the concerned security policy.
  • the NG-RAN node For each PDU session for which the Maximum Integrity Protected Data Rate IE is included in the Security Indication IE in the PDU Session Resources To Be Setup List IE, the NG-RAN node shall store the respective information and, if integrity protection is to be performed for the PDU session, it shall enforce the traffic corresponding to the received Maximum Integrity Protected Data Rate IE, for the concerned PDU session and concerned UE, as specified in TS 23.501 [7].
  • the target NG-RAN node For each PDU session for which the Security Indication IE is included in the PDU Session Resource To Be Setup List IE and the Integrity Protection Indication IE or Confidentiality Protection Indication IE is set to "not needed", the target NG-RAN node shall not perform user plane integrity protection or ciphering, respectively, for the concerned PDU session.
  • the target NG-RAN node For each PDU session, if the Additional UL NG-U UP TNL Information List IE is included in the PDU Session Resources To Be Setup List IE contained in the HANDOVER REQUEST message, the target NG-RAN node may forward the UP transport layer information to the target S-NG-RAN node as the uplink termination point for the user plane data for this PDU session split in different tunnel.
  • the target NG-RAN node should initiate the requested location reporting functionality as defined in TS 38.413 [5].
  • the target NG-RAN node Upon reception of UE History Information IE in the HANDOVER REQUEST message, the target NG-RAN node shall collect the information defined as mandatory in the UE History Information IE and shall, if supported, collect the information defined as optional in the UE History Information IE , for as long as the UE stays in one of its cells, and store the collected information to be used for future handover preparations.
  • the target NG-RAN node shall if supported, initiate the requested trace session and MDT session as described in TS 32.422 [23].
  • the target NG-RAN node shall, if supported, initiate the requested MDT session as described in TS 32.422 [23] and the target NG-RAN node shall ignore the Interfaces To Trace IE, and the Trace Depth IE.
  • the target NG-RAN node shall, if supported, store this information and take it into account in the requested MDT session.
  • the MDT Activation IE set to "Immediate MDT Only" or "Logged MDT only", and if the Signalling based MDT PLMN List IE is included in the MDT Configuration IE, the target NG-RAN node may use it to propagate the MDT Configuration as described in TS 37.320 [43].
  • the Bluetooth Measurement Configuration IE within the MDT Configuration IE, the target NG-RAN node shall, if supported, take it into account for MDT Configuration as described in TS 37.320 [43].
  • the target NG-RAN node shall, if supported, take it into account for MDT Configuration as described in TS 37.320 [43].
  • the Sensor Measurement Configuration IE within the MDT Configuration IE, the target NG-RAN node shall take it into account for MDT Configuration as described in TS 37.320 [43].
  • the target NG-RAN node shall store it as part of the UE context, and use it as described in TS 37.320 [43]. If the Management Based MDT PLMN List IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the received information in the UE context, and use this information to allow subsequent selection of the UE for management based MDT defined in TS 32.422 [23].
  • the target NG-RAN node shall, if supported, store it in the UE context, and take it into account if it includes information regarding the PLMN serving the UE in the target NG-RAN node. If the Mobility Information IE is provided in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store this information. The target NG-RAN shall, if supported, store the C-RNTI assigned at the source cell as received in the HANDOVER REQUEST message.
  • the target NG-RAN node Upon reception of the UE History Information from the UE IE in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the collected information and use it for future handover preparations. For each QoS flow which has been successfully established in the target NG-RAN node, if the QoS Monitoring Request IE was included in the QoS Flow Level QoS Parameters IE contained in the HANDOVER REQUEST message, the target NG-RAN node shall store this information , and shall, if supported, perform delay measurement and QoS monitoring, as specified in TS 23.501 [7].
  • the target NG-RAN node shall store this information, and shall, if supported, use it for RAN part delay reporting.
  • the target NG-RAN node shall, if supported, store this information in the UE context and use it as specified in TS 38.300 [9].
  • the target NG-RAN node shall, if supported, consider that the UE is authorized for the relevant service( s).
  • the target NG-RAN node shall, if supported, use the received value for the concerned UE's sidelink communication in network scheduled mode for NR V2X services.
  • the target NG-RAN node shall, if supported, use the received value for the concerned UE's sidelink communication in network scheduled mode for LTE V2X services.
  • 5G ProSe - If the 5G ProSe Authorized IE is included in the HANDOVER REQUEST message and it contains one or more IEs set to "authorized", the target NG-RAN node shall, if supported, consider that the UE is authorized for the relevant service(s ).
  • the target NG-RAN node shall, if supported, use the received value for the concerned UE's sidelink communication in network scheduled mode for 5G ProSe services.
  • the target NG-RAN node shall, if supported, use it as defined in TS 23.304 [48].
  • the target NG-RAN node shall, if supported, use it as defined in TS 23.287 [38].
  • the target NG-RAN node shall consider that the request concerns a DAPS handover for that DRB, as described in TS 38.300 [9]. Accordingly, the target NG-RAN node shall include the DAPS Response Information IE in the HANDOVER REQUEST ACKNOWLEDGE message. If the Maximum Number of CHO Preparations IE is included in the Conditional Handover Information Acknowledge IE contained in the HANDOVER REQUEST ACKNOWLEDGE message, then the source NG-RAN node should not prepare more candidate target cells for a CHO for the same UE towards the target NG -RAN node than the number indicated in the IE.
  • the target NG-RAN node may use the information to allocate necessary resources for the incoming CHO. If the IAB Node Indication IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, consider that the handover is for an IAB node.
  • the target NG-RAN node shall, if supported, consider the UE as an IAB-node which does not have any PDU sessions activated, and ignore the PDU Session Resources To Be Setup List IE, and shall not take any action with respect to PDU session setup. Subsequently, the source NG-RAN node shall, if supported, ignore the PDU Session Resources Admitted To Be Added List IE in the HANDOVER REQUEST ACKNOWLEDGE message.
  • the target NG-RAN node shall, if supported, store this information in the UE context and use it as defined in TS 23.501 [7] and TS 23.502 [13] . If for a given QoS Flow the Source DL Forwarding IP Address IE is included within the Data Forwarding and Offloading Info from source NG-RAN node IE in the PDU Session Resources To Be Setup List IE contained in the HANDOVER REQUEST message, the target NG- RAN node shall, if supported, store this information and use it as part of its ACL functionality configuration actions, if such ACL functionality is deployed.
  • the target NG-RAN node shall, if supported, establish MBS session resources as specified in TS 23.247 [46] and TS 38.300 [9], if applicable. If the HANDOVER REQUEST message includes the MBS Area Session ID IE, the target NG-RAN, if supported, shall use this information as an indication from which MBS Area Session ID the UE is handed over. For each MBS session for which the Active MBS Session Information IE is included in the MBS Session Information Item List IE, the target NG-RAN shall, if supported, use this information to setup respective MBS Session Resources.
  • the target NG-RAN node shall, if supported, consider that the MBS sessions for which the Active MBS Session Information IE is not included are inactive. If the HANDOVER REQUEST ACKNOWLEDGE message contains in the MBS Session Information Response List IE the MBS Data Forwarding Response Info IE that the source NG-RAN node shall use the information for forwarding MBS traffic to the target NG-RAN node. If the MBS Session Associated Information List IE is included in the PDU Session Resources To Be Setup List IE in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, use the information contained in the Associated QoS Flows Information List IE as specified in TS 23.247 [46].
  • the target NG-RAN node For each MRB indicated in the MBS Mapping and Data Forwarding Request Info from source NG-RAN node IE, the target NG-RAN node shall use the MRB ID IE and, if included, the MRB Progress Information IE which includes the highest PDCP SN of the packet which has already been delivered to the UE for the MRB, to decide whether to apply data forwarding for that MRB and to establish respective resources.
  • the source NG-RAN shall, for each MRB in the MBS Data Forwarding Response Info from target NG-RAN node IE in the HANDOVER REQUEST ACKNOWLEDGE message, start data forwarding to the indicated DL Forwarding UP TNL Information.
  • the source NG-RAN node may use the information to determine when to stop data forwarding. If the Time Synchronization Assistance Information IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store this information in the UE context and use it as defined in TS 23.501 [7]. If the QMC Configuration Information IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, take it into account for QoE measurements handling, as described in TS 38.300 [9].
  • the target NG-RAN node shall, if supported, store the received UE Slice Maximum Bit Rate List in the UE context, and use the received UE Slice Maximum Bit Rate value for each S-NSSAI for the concerned UE as specified in TS 23.501 [7].
  • the source NG-RAN node shall, if supported, include the uplink/downlink PDCP SN and HFN status received from the S-NG-RAN node in the SN Status Transfer procedure towards the target NG-RAN node, as specified in TS 37.340 [8].
  • the HO process of a general UE is described as follows.
  • the UE reports the Uu link measurement results (the Uu link signal strength of its own serving cell and the Uu link signal strength of neighboring cells) to the base station, and the base station selects a target cell using the measurement results reported by the UE.
  • the serving base station (Serving gNB) can request a HO request from the target base station (hereinafter referred to as target base station (target gNB)) to which the target cell belongs, and if the target base station allows HO, RRCReconfiguration (withSync) for HO through the serving base station. Send a message.
  • target base station hereinafter referred to as target base station (target gNB)
  • RRCReconfiguration withSync
  • a UE is connected to the same gNB using one direct path and one indirect path via 1) Layer-2 UE-to-Network relay, or 2) via another UE (where the UE-UE inter-connection is assumed to be ideal), where the solutions for 1) are to be reused for 2) without precluding the possibility of excluding a part of the solutions which is unnecessary for the operation for 2).
  • Note 3A Study on the benefit and potential solutions are to be completed in RAN#98 which will decide whether/how to start the normative work.
  • Note 3B UE-to-Network relay in scenario 1 reuses the Rel-17 solution as the baseline.
  • Note 3C Support of Layer-3 UE-to-Network relay in multi-path scenario is assumed to have no RAN impact and the work and solutions are subject to SA2 to progress.
  • the remote UE can activate both the direct path and the indirect path through the relay UE, and at this time, the connection between the remote UE and the relay UE can be SL or ideal link. .
  • a serving base station involved in handover (HO) of a remote UE may receive measurement results from the remote UE (S1501 in FIG. 15).
  • the serving base station can select a target base station for HO of the remote UE.
  • the serving base station may transmit an HO request message to the target base station (S1502a).
  • the serving base station may transmit the RRC reconfiguration with sync message sent by the target base station to the remote UE (S1502).
  • the RRC reconfiguration with sync message is information indicating that the remote UE will maintain a connection with the relay UE. may include.
  • the RRC reconfiguration with sync transmitted by the serving base station to the relay UE is such that the relay UE is connected to the remote UE. It may contain information instructing to maintain a connection.
  • the serving base station decides/determines to HO both the remote UE and the relay UE to one target base station and/or the target base station allows, it will instruct the remote UE and relay UE to maintain the already established sidelink connection. It is possible.
  • the target base station allows both the remote UE and the relay UE to HO to the target base station (when an ACK for the serving base station's HO request is transmitted), reconfiguration with sync (reconfiguration with sync) to each of the remote UE and relay UE Messages (including HO-related configuration) can be transmitted.
  • the relay UE when the relay UE performs HO, a notification message is sent to the remote UE, and the remote UE that receives it can release or maintain the SL connection with the relay UE (remote UE implementation) .
  • the relay UE should not transmit a notification message to the remote UE even when performing HO.
  • the reconfiguration with sync message delivered by the target base station to the relay UE may include an indication to maintain the SL connection with the current remote UE.
  • the reconfiguration with sync message delivered to the remote UE may also include an indication to maintain the SL connection with the current relay UE.
  • the remote UE/relay UE that has received the reconfiguration with sync message containing the above indication assumes that its peer relay UE/remote UE has also received a HO command from the same target base station (and/or cell) and establishes the current SL connection. can be maintained as is.
  • the HO request message may include information indicating that the remote UE and the relay UE are in a multi-path relay relationship. Measurement and reporting have been triggered for both the remote UE and the relay UE, and the serving base station may determine that the relay UE and the remote UE can HO to the same target base station as a result of the measurement reports of the remote UE and the relay UE. In this case, the serving base station can request HO of the remote UE and relay UE from the target base station and indicate that the two UEs are UEs in a multi-path relay relationship as described above.
  • the serving base station may transmit information related to the relay UE to the target base station.
  • the information related to the relay UE includes the relay UE's C-RNTI, SRC (source) L2 ID, DST (destination) L2 ID, It may include bearer and bearer mapping information set in the relay UE. More specifically, the serving base station may request HO of the remote UE ((and/or) relay UE) to the target base station while also transmitting information about the current relay UE.
  • C-RNTI of the current relay UE For example, C-RNTI of the current relay UE, SRC/DST L2 ID of the remote UE/relay UE, XNAP ID, Uu measurement result of the relay UE (and/or Uu measurement result of the remote UE, (one SL measurement result), when the serving base station transmits the information of the remote UE (and/or relay UE) such as the bearer and bearer mapping information configured to the remote UE and relay UE for multi-path relaying operation, and the local ID of the remote UE, etc. You can also send them together.
  • the serving base station of the remote UE is the target base station and sets the base station necessary for HO of the remote UE.
  • information on the relay UE connected to the remote UE can also be transmitted (even if the HO of the relay UE is not determined).
  • the information delivered by the serving base station to the target base station includes the C-RNTI of the current relay UE, SRC/DST L2 ID of the remote UE/relay UE, XNAP ID, Uu measurement result of the relay UE (and/or Uu measurement result of the remote UE) , SL measurement results measured by the remote UE/relay UE), bearer and bearer mapping information configured by the serving base station to the remote UE and relay UE for multi-path relaying operation, local ID of the remote UE, etc. to the remote UE (and/ Alternatively, it may be transmitted together when transmitting information from a relay UE).
  • the target base station uses this information already received during the remote UE's HO to contact the remote UE at the target base station (and/or cell). Can be used when setting indirect path. For example, if the relay UE also becomes HO (within a certain period of time) after the remote UE's HO, the target base station can quickly set indirect settings if the relay UE maintains an SL connection with the remote UE.
  • the relay UE may be one of a plurality of relay UEs connected to the remote UE.
  • the relay UE may have determined that HO is possible to the target base station together with the remote UE, based on the serving base station's measurement results for the plurality of relay UEs. If one remote UE is connected to multiple relay UEs, the serving base station transmits only information about relay UEs that can HO to the same target base station as the remote UE as a result of measurement reports from multiple relay UEs when requesting HO from the remote UE. It may be possible.
  • the remote UE that received the HO command may deactivate the indirect path. If the remote UE and the relay UE make HO to the same gNB (and/or cell) as described above, the target base station and/or serving base station sets a configuration to inactive (and/or active) the indirect link to the remote UE. can do.
  • the (source/target) gNB includes a signal to deactivate the indirect link when configuring HO to the remote UE, and when the same relay UE completes HO with the same gNB (and/or cell) as the remote UE, it connects to the direct link. It can also be sent as RRCconfiguration to activate the indirect link of the remote UE.
  • the remote UE that received the HO command will indirectly receive the HO command if there is no indication in the HO command to maintain SL connection with the current relay UE (i.e., if it knows that HO is going to the same gNB as the currently connected remote UE) You can also release the link.
  • a remote UE that has completed HO to a new target base station (and/or cell) may report the RLF of the indirect link and establish a new indirect link.
  • the target base station When HOing the remote UE and relay UE to the same gNB (and/or cell), the target base station sets the indirect related configuration (SL/Uu bearer, bearer) to be used by the target base station (and/or cell) in the HO command of the relay UE and remote UE. mapping) can also be configured together.
  • the target base station may need to be notified that they are connected by the ideal link. In this case, the target base station can exclude unnecessary SL connection-related settings between the remote UE and relay UE from the HO command.
  • the remote UE may be replaced with a relay UE, and the relay UE may be replaced with a remote UE.
  • a remote UE when a remote UE performs HO with a relay UE that currently has a U2N connection, there is an advantage in that service continuity can be satisfied while maintaining the current SL connection. If the remote UE performs HO (to inter-gNB/cell) in a multi-path relaying operation without operating as described above, the remote UE performs a multi-path relaying operation in a new target base station (and/or cell) A remote UE wishing to do so may have to go through the trouble of finding a new relay UE and spend time doing so.
  • the serving base station may include at least one processor; and at least one computer memory operably coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform operations, the operations comprising: measuring results from a remote UE; receive; Select a target base station for HO of the remote UE; Transmit an HO request message to the target base station; And transmitting an RRC reconfiguration with sync message transmitted by the target base station to the remote UE, based on the serving base station's decision to HO the remote UE and the relay UE of the remote UE to the target base station, the RRC
  • the reconfiguration with sync message may include information indicating that the remote UE will maintain a connection with the relay UE.
  • a non-volatile computer-readable storage medium storing at least one computer program including instructions that, when executed by at least one processor, cause the at least one processor to perform operations for the serving base station, wherein the operations are , receiving measurement results from a remote UE; Select a target base station for HO of the remote UE; Transmit an HO request message to the target base station; And transmitting an RRC reconfiguration with sync message transmitted by the target base station to the remote UE, based on the serving base station's decision to HO the remote UE and the relay UE of the remote UE to the target base station, the RRC
  • the reconfiguration with sync message may include information indicating that the remote UE will maintain a connection with the relay UE.
  • a method of operating a remote UE related to handover (HO) of a remote UE includes: the remote UE transmitting measurement results to a serving base station; The remote UE receives an RRC reconfiguration with sync message transmitted by the target base station from the serving base station; The remote UE transmits RRC reconfiguration complete to the target base station; and the remote UE transmits data to the target base station through a relay UE, and based on the remote UE and the relay UE being HO to the target base station, the RRC reconfiguration with sync message is sent by the remote UE. It may include information instructing to maintain a connection with the relay UE.
  • the serving base station and/or target base station determines the HO based on this
  • information about (multiple) remote UEs connected to the relay UE may also be transmitted to the target base station.
  • the information transmitted at this time includes the C-RNTI of the remote UE, SRC/DST L2 ID of the remote UE/relay UE, XNAP ID, Uu measurement result of the remote UE (and/or Uu measurement result of the relay UE, and measured SL measurement results), bearer and bearer mapping information configured by the serving base station to the remote UE and relay UE for multi-path relaying operation, and the local ID of the remote UE, etc., are transmitted to the relay UE (and/or remote UE) You can also send it along with the poem.
  • the target (source) gNB can also determine the HO of the connected remote UE.
  • the information that the target base station configures for the relay UE/remote UE may include an indication to maintain the SL connection between the remote UE and the relay UE.
  • the direct link must be released in the case of a remote UE that is HOed together due to the relay UE's HO (this may include cases where the remote UE's direct link cannot be HOed to the relay UE's gNB) ).
  • the remote UE may report the RLF of the direct link through the indirect link and receive configuration for a new direct link.
  • the primary path is a remote UE with an indirect path
  • the relay UE if the relay UE notifies HO, the primary path may be switched to a direct path and the indirect link may be released.
  • the relay UE may need to notify the remote UE of the gNB ID (and/or NR Cell Global Identifier (NCGI), whether the gNB has changed, etc.).
  • the remote UE does not need to release the SL connection with the relay UE if the relay UE is still connected to the same gNB after HO, but if the relay UE HO to another gNB, it may need to release the indirect link and report this to the base station. .
  • the serving base station sends other UEs that did not receive the HO.
  • New configuration can be performed for remote UE/relay UE.
  • the remote UE's serving base station may make a new configuration to the relay UE without reporting from the relay UE (e.g., reporting on SL release with the remote UE, etc.).
  • the relay UE e.g., reporting on SL release with the remote UE, etc.
  • the upper layer of the relay UE (and/or remote UE) that received this can notify this to the AS layer. .
  • the AS layer that received this may not need to report this to its base station even though the SL connection with the remote UE has been released.
  • the serving base station of the relay UE may make a new configuration to the remote UE without a report from the remote UE (for example, a report on SL release with the relay UE, etc.). Therefore, if the relay UE that has received the HO command knows that the remote UE is a UE that performs multi-path operation, there is no need to notify the relay UE of this even if it has received the HO command. Additionally, the remote UE may not need to notify the base station of this even if the SL connection with the relay UE has been released due to HO of the relay UE.
  • the AS layer may indicate that there is no need to notify the base station of this. This is to prevent unnecessary reporting to gNB.
  • SL measurement can be performed for each SRC/DST pair, so when the serving base station/target base station determines the HO, problems may arise if it is judged based on only one SRC/DST pair. This is because multiple relay UEs/remote UEs and UEs performing pure sidelink operations may be connected to one remote UE/relay UE. Therefore, in order for the serving/target base station to determine HO, it may need to consider all other SRC/DST pairs connected to the relay UE/remote UE. To this end, when the measurement and reporting of one SRC/DST pair is triggered, it can be configured so that the measurement and reporting of another SRC/DST pair can be triggered.
  • the primary link described above is determined by the gNB among direct/indirect links, a path for exchanging control signals, a link for connection establishment, a path for transmitting data of a large data volume, a path for security-related settings, etc. It can mean.
  • the gNB gives several possibilities of HO to the direct path and HO to the indirect path, and the remote UE performs HO when certain conditions are satisfied.
  • the RRC status of the relay UE selected by the remote UE may be RRC IDLE/INACTIVE/CONNECTED.
  • the selected relay UE may be in the RRC IDLE/INACTIVE state.
  • the relay UE is in a CONNECTED state to a cell (and/or gNB) different from the cell (and/or gNB) that was notified as a cell (and/or gNB) that is camping on through a discovery message, etc. before establishing an SL connection with the remote UE. (and/or perform RACH).
  • a relay UE in RRC IDLE/INACTIVE state may establish an SL connection with a remote UE and this may be a triggering condition for the relay UE to be RRC_CONNECTED.
  • this may be a triggering condition for the relay UE to be RRC_CONNECTED.
  • the relay UE with the RRC_CONNECTED state triggered enters the CONNECTED state with a cell (and/or gNB) that is different from the cell (and/or gNB) that broadcasted the existing discovery message, etc., there may be a problem as to how the remote UE should operate. there is.
  • the following describes a method for solving the above-described problem that may occur when a remote UE with a direct/indirect link establishes a connection for multi-path relaying with a relay UE in RRC IDLE/INACTIVE status. do.
  • the remote UE has a direct (and/or indirect) link with the gNB, and we will look at an embodiment related to the operation of receiving a command for multi-path (and/or HO) from the gNB.
  • the serving base station/target base station can provide information about the relay UE with which the remote UE will establish an SL connection (via reconfiguration with sync). However, since the remote UE may fail to establish an SL connection with a designated relay UE, the serving base station/target base station provides auxiliary information in multi-path (and/or HO) in case the remote UE fails multi-path (and/or HO). and/or HO) may be notified together with the command. Auxiliary information provided by the target base station may be the ID of another candidate relay UE (and/or) information that may be helpful in connecting via a direct link.
  • the serving base station/target base station may inform the multi-path (and/or HO) command for the remote UE of various possible relay UEs with which the remote UE can establish an SL connection in the form of a list.
  • the remote UE must first attempt a SL connection with the ID of the relay UE listed first in the list, and can attempt an SL connection in the order of the list.
  • the first relay UE in the list is an example, and the remote UE may be a randomly set, preset relay UE, or a randomly selected relay UE among several candidate relay UEs in the list.
  • the serving gNB provides multi-path (and/or cell) support to the serving (and/or camp on) cell (i.e., target base station (and/or cell)) of (all/several) candidate relay UEs in the list. /or you can make a request for HO).
  • (all/several) candidate relay UEs in the list may be limited to belonging to the same target base station (and/or cell). That is, the serving gNB (and/or cell) may select one relay UE, but may also transmit information about other candidate relay UEs belonging to the same target base station (and/or cell) as the relay UE to the target base station.
  • the serving gNB provides the serving (and /or a request for multi-path (and/or HO) can be made to each camp on) cell (i.e. target cell).
  • each target cell can also issue an RRCReconfiguration (reconfiguration with sync) command related to HO to the remote UE.
  • the remote UE may attempt access by selecting one of the RRCReonfigurations (including multi-path/HO commands) from multiple target cells.
  • the serving gNB combines reconfiguration (with sync) messages from multiple target base stations into one It can also be transmitted to a remote UE in a message format of . If multiple target base stations (and/or cells) can be configured, the list up order for candidate relay UEs may be determined by the source base station.
  • the remote UE that receives this may first attempt SL connection to the candidate relay belonging to the first candidate relay UE list of the RRC (eg, reconfiguration with sync) message. If the remote UE fails to establish an SL connection with a designated relay UE, but the multi-path (and/or HO) related timer (e.g., T304, T304-like, T420 or T420-like) has not yet expired. (That is, if there is remaining time) SL connection can be attempted to another candidate relay UE included in the list of RRC (e.g., reconfiguration with sync) message. As long as there is remaining time in the multi-path (and/or HO) related timer, the remote UE can attempt an SL connection to another candidate relay UE, and the order of attempts can be based on the order of the given list.
  • the multi-path (and/or HO) related timer e.g., T304, T304-like, T420 or T420-like
  • the source base station (and/or cell) selects one relay UE suitable for multi-path (and/or HO), and sends multi-path (and/or HO) to the target base station (and/or cell) of the designated relay UE. You can also request it.
  • the L2 SRC/DST ID of the relay UE determined by the source base station, measurement value (SD-RSRP, Uu link signal strength measured by relay UE/remote UE), local ID, cell ID of relay UE, PLMN ID, etc. can be notified. there is. Alternatively, the ID and measurement results of other candidate relay UEs belonging to the same target cell may also be notified.
  • the target base station that received this may transmit an ACK to the multi-path (and/or HO) request for the relay UE received from the source base station.
  • the target base station can transmit an RRC (reconfiguration with sync) message to the remote UE.
  • RRC configuration with sync
  • the relay UE ID determined by the source base station and/or the target base station that can create an indirect link and information that can directly access the target base station (For example, providing a preamble value that enables contention free based RACH) Both can be provided.
  • the remote UE that received the RRC message can determine the indirect path and direct path for the (same) target base station (and/or cell). For example, if the remote UE decides on an indirect path, the remote UE may first attempt an SL connection with the relay UE included in the RRC message.
  • the remote UE fails to complete the SL connection (and/or receives a notification message from the relay UE, (and/or) detects that the cell of the relay UE in IDLE/INACTIVE state has changed, (and/ or) When the SL connection is completed but the RRCReconfigurationComplete message fails to be sent, etc.)
  • the multi-path (and/or HO) related timer e.g., T304 or T304-like or T420 or T420-like
  • the target base station may be attempted.
  • the remote UE may perform RACH to the target base station (and/or cell). If RACH fails, the multi-path (and/or HO) related timer (e.g., T304, T304-like, T420 or T420-like) has not yet expired (i.e., there is time remaining), and the RRC message You may also attempt to establish an SL connection with the relay UE included in and transmit the RRCReconfigurationComplete message. If there are multiple relay UEs included in the RRC message (list up), SL connection can be attempted starting from the first relay UE.
  • the multi-path (and/or HO) related timer e.g., T304, T304-like, T420 or T420-like
  • the RRC message You may also attempt to establish an SL connection with the relay UE included in and transmit the RRCReconfigurationComplete message. If there are multiple relay UEs included in the RRC message (list up), SL connection can be attempted starting from the first relay UE.
  • the base station can expect both direct link and indirect access from the remote UE to be possible.
  • the RRC message includes the link that the target base station preferentially expects.
  • the type may be indicated.
  • the target base station expects the remote UE to access directly and can indicate this to the remote UE.
  • the remote UE that receives this will preferentially perform access through the priority access link (direct link in the above example) indicated by the target base station, but if it fails (e.g., RACH failure), it will use the relay UE included in the RRC message. You can also perform access using indirect link.
  • the base station expects a direct link from the remote UE, but it should be kept in mind that access is also possible through an indirect link. Or the opposite case is also possible.
  • the target base station and/or cell may expect the remote UE to access through an indirect link and set the relevant configuration to the determined relay UE.
  • the base station must readjust the settings of the prepared relay UE (RRCReconfiguration).
  • the remote UE may include its L2 SRC (and/or DST) ID in the RRCReconfigurationComplete message. This is because the base station can readjust the settings of the preset relay UE. (Because the remote UE settings performed by the base station on the relay UE can be made based on the L2 SRC/DST ID.)
  • the remote UE that received the HO related command can perform RRC reestablishment.
  • RRC reestablishment both direct link and indirect link are possible.
  • the remote UE can report (that the timer has expired) to its serving base station.
  • a remote UE that has received a command to HO through an indirect link may fail the indirect connection. If the indirect link connection fails, the remote UE can attempt to send an RRCReconfigurationComplete message through the direct link if the HO-related timer is running. Alternatively, you can select another relay UE that belongs to the target base station (this can be known from the discovery message), establish an SL, and transmit the RRCReconfigurationComplete message to the new indirect link.
  • a remote UE that has received a command to HO via direct link may fail to connect to the direct link. If the direct link connection fails, the remote UE can attempt to send an RRCReconfigurationComplete message through the indirect link if the HO-related timer is running. At this time, the indirect link may mean a link established by a remote UE by finding a relay UE that is connected (and/or camped on) to the target base station using a discovery message, etc.
  • a remote UE that has not completed HO until the HO timer expires can perform RRCReestablishment.
  • RRCRestablishment can be performed preferentially on the source base station and the target base station, and both direct and indirect links are possible.
  • the remote UE In a direct-to-indirect HO operation, if the remote UE that received the HO commend attempted to make a SL connection with the relay UE due to HO, but received the RRCReconfigurationFailureSidelink message from the relay UE, the remote UE can perform the following operations.
  • the relay UE reports to the serving base station (including cause value) that it has received the RRCReconfigurationFialureSidelink message from the relay UE.
  • the serving base station can notify this to the target base station. Additionally, the serving base station can find a new target base station and make an HO request, or it can find a new target relay UE and make an HO request to the target base station to which the target relay UE belongs.
  • the remote UE can transmit an RRCReconfigurationComplete message toward the target base station via direct link.
  • RRCReconfigurationComplete There are two ways to reach the target base station: direct and indirect. Since the indirect link failed, you can attempt to send an HO completion message directly to the target base station. (If the HO-related timer is running)
  • the remote UE determines HO failure and performs RRCReestablishment.
  • RRCReestablishment can be done both directly and indirectly. In this case, it was determined to be an HO failure, so the HO-related timer (T304-like) can be stopped.
  • a remote UE with a direct link establishes an SL connection with a relay UE for indirect link setup and receives RRCReconfigurationFailureSidelink from the relay UE
  • the remote UE notifies this to the serving gNB.
  • HO can be replaced with the term path switching.
  • the remote UE provides auxiliary information in case the remote UE fails to access the direct link or indirect link in the RRC message commanding multi-path (and/or HO). It can reduce the possibility of failure of multi-path (and/or HO) operation. This can be effective in connection stability and service continuity.
  • the base station provides several possibilities for HO to the direct path and HO to the indirect path, and the remote UE can perform HO if certain conditions are met.
  • the remote UE can start both T304 and T420.
  • the remote UE can operate by relying on the longer timer between T304 and T420.
  • the operation corresponding to the timer that has not expired can be performed.
  • the remote UE In multi-path operation, if the remote UE has a direct link, a new connection can be established through an indirect link.
  • the remote UE receives information about the candidate relay UE (ID and measurement value (SD-RSRP, remote/relay UE's Uu RSRP, etc.) of the candidate relay UE, serving cell/camp on cell ID of the relay UE, etc.) through a direct link.
  • PLMN ID, etc. is reported to the serving gNB through a direct link.
  • Serving gNB can provide one/or several relay lists of candidate relay UEs to the remote UE through direct link. This can be delivered with the RRCReconfiguration message.
  • the remote UE that received this can establish an SL with the relay UE included in RRCReconfiguration and transmit the RRCReconfigurationComplete message to the serving base station through an indirect link through the corresponding relay UE.
  • the remote UE may have a direct link and an indirect link.
  • a remote UE with a direct/indirect link accesses the target base station through a direct/indirect link, it may be similar to the multi-path operation described above.
  • the remote UE can report the candidate relay UE to its serving base station and receive HO-related RRCReconfiguration from the serving base station.
  • the remote UE can establish an SL connection with the relay UE included in RRCReconfiguration and transmit the RRCReconfigurationComplete message through an indirect link through the relay UE.
  • the remote UE's target base station and/or serving base station may provide several candidate relay UEs (list).
  • relevant information may be provided so that the remote UE can first access the target base station through a direct link and, if this fails, access through an indirect link.
  • relevant information may be provided so that the remote UE can first access the target base station through an indirect link and, if this fails, access through a direct link.
  • the remote UE can be configured to establish an SL connection with the relay UE for multi-path relaying (and/or HO) operation (indirect link configuration of the remote UE).
  • the remote UE may be provided with a list of several candidate relay UEs. If the remote UE fails to establish a SL connection with a relay UE belonging to the provided relay UE list (and/or fails to transmit an RRCReconfigurationComplete message, receives a notification message from a relay UE, etc.), it connects to other relay UEs and SLs belonging to the list. Connection can also be performed. This operation may be possible only before the multi-path relaying (and/or HO) related timer (e.g., T304 or T304-like or T420 or T420-like) expires in the remote UE.
  • T304 or T304-like or T420 or T420-like expires in the remote UE.
  • the timer required to establish an SL connection (e.g., T400) is expected to be set to a smaller value than the timer for multi-path relaying (and/or HO). This is because when a remote UE establishes an indirect link during multi-path (and/or HO), the time it takes to establish an SL connection and establish a Uu link must be considered.
  • a multi-path (and/or HO) related timer e.g., T304 or T304-like or T420 or T420- like
  • the SL connection-related timer e.g., T400 timer
  • the remote UE no longer needs to establish an SL connection with the relay UE due to multi-path (and/or HO). Therefore, when the multi-path (and/or HO) related timer expires, the SL connection related timer must also stop.
  • the upper layer of the remote UE is notified that SL has been completed. You may need to let us know. The upper layer of the remote UE releases the established SL connection.
  • the target base station and/or source base station may configure a configuration that allows access to both direct link and indirect link while transmitting a multi-path (and/or HO) related RRC message to the remote UE.
  • the remote UE can access through any one link (the target base station and/or the source base station may decide which link to access preferentially). If one link is selected and access to the target base station through the selected link fails, the remote UE may attempt access through another link.
  • both the T304 timer and the T420 timer can be started.
  • a remote UE that fails to access the target base station through a direct link may attempt to access the target base station through an indirect link if the T420 timer has remaining time (and/or the T420 timer has not expired).
  • both the T304 timer and the T420 timer can be started.
  • a remote UE that fails to access the target base station through an indirect link may attempt to access the target base station through a direct link if the T304 timer has remaining time (and/or the T304 timer has not expired).
  • the T420 timer may be applied as an exception even when connected to the direct link.
  • the remote UE receives multi-path (and/or HO)-related RRCReconfiguration and the configuration is set to enable access through both direct link and indirect link, only the T420 timer may be started. From the target base station's perspective, it is expected that the remote UE will preferentially access through the direct link, but if direct access fails, access through the indirect link is also permitted, so only the T420 timer may be allowed for the remote UE.
  • the remote UE when the remote UE performs a multi-path (and/or HO)-related operation, the stop condition of the timer for multi-path (and/or HO) and the settings for both direct link and indirect link are An enforcement timer has been proposed where permitted. Through this, the remote UE's timer operation and multi-path (and/or HO) operation can be performed efficiently.
  • Figure 16 illustrates a communication system 1 applied to the present disclosure.
  • the communication system 1 applied to the present disclosure includes a wireless device, a base station, and a network.
  • a wireless device refers to a device that performs communication using wireless access technology (e.g., 5G NR (New RAT), LTE (Long Term Evolution)) and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots (100a), vehicles (100b-1, 100b-2), XR (eXtended Reality) devices (100c), hand-held devices (100d), and home appliances (100e). ), IoT (Internet of Thing) device (100f), and AI device/server (400).
  • vehicles may include vehicles equipped with wireless communication functions, autonomous vehicles, vehicles capable of inter-vehicle communication, etc.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, HMD (Head-Mounted Device), HUD (Head-Up Display) installed in vehicles, televisions, smartphones, It can be implemented in the form of computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • Portable devices may include smartphones, smart pads, wearable devices (e.g., smartwatches, smart glasses), and computers (e.g., laptops, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, etc.
  • IoT devices may include sensors, smart meters, etc.
  • a base station and network may also be implemented as wireless devices, and a specific wireless device 200a may operate as a base station/network node for other wireless devices.
  • Wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, 4G (eg, LTE) network, or 5G (eg, NR) network.
  • Wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without going through the base station/network.
  • vehicles 100b-1 and 100b-2 may communicate directly (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to everything
  • an IoT device eg, sensor
  • another IoT device eg, sensor
  • another wireless device 100a to 100f
  • Wireless communication/connection may be established between the wireless devices (100a to 100f)/base station (200) and the base station (200)/base station (200).
  • wireless communication/connection includes various wireless connections such as uplink/downlink communication (150a), sidelink communication (150b) (or D2D communication), and inter-base station communication (150c) (e.g. relay, IAB (Integrated Access Backhaul)).
  • uplink/downlink communication 150a
  • sidelink communication 150b
  • inter-base station communication 150c
  • This can be achieved through technology (e.g., 5G NR).
  • a wireless device and a base station/wireless device, and a base station and a base station can transmit/receive wireless signals to each other.
  • wireless communication/connection (150a, 150b, 150c) can transmit/receive signals through various physical channels.
  • various signal processing processes e.g., channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • FIG 17 illustrates a wireless device to which the present disclosure can be applied.
  • the first wireless device 100 and the second wireless device 200 can transmit and receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ refers to ⁇ wireless device 100x, base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) in FIG. ⁇ can be responded to.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may additionally include one or more transceivers 106 and/or one or more antennas 108.
  • Processor 102 controls memory 104 and/or transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal and then transmit a wireless signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive a wireless signal including the second information/signal through the transceiver 106 and then store information obtained from signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, memory 104 may perform some or all of the processes controlled by processor 102 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 106 may be coupled to processor 102 and may transmit and/or receive wireless signals via one or more antennas 108. Transceiver 106 may include a transmitter and/or receiver. The transceiver 106 can be used interchangeably with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • Processor 202 controls memory 204 and/or transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a wireless signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, memory 204 may perform some or all of the processes controlled by processor 202 or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein. Software code containing them can be stored.
  • the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • Transceiver 206 may be coupled to processor 202 and may transmit and/or receive wireless signals via one or more antennas 208. Transceiver 206 may include a transmitter and/or receiver. Transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (e.g., functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed herein. can be created.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data or information according to the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein.
  • One or more processors 102, 202 generate signals (e.g., baseband signals) containing PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , can be provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • PDU, SDU, message, control information, data or information can be obtained.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, etc.
  • Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions, and/or instructions.
  • One or more memories 104, 204 may consist of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104, 204 may be located internal to and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106, 206 may transmit user data, control information, wireless signals/channels, etc. mentioned in the methods and/or operation flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, wireless signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or operational flowcharts disclosed herein, etc. from one or more other devices. there is.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or wireless signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or wireless signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), and one or more transceivers (106, 206) may be connected to the description and functions disclosed in this document through one or more antennas (108, 208). , may be set to transmit and receive user data, control information, wireless signals/channels, etc.
  • one or more antennas may be multiple physical antennas or multiple logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) process the received user data, control information, wireless signals/channels, etc. using one or more processors (102, 202), and convert the received wireless signals/channels, etc. from the RF band signal. It can be converted to a baseband signal.
  • One or more transceivers (106, 206) may convert user data, control information, wireless signals/channels, etc. processed using one or more processors (102, 202) from baseband signals to RF band signals.
  • one or more transceivers 106, 206 may comprise (analog) oscillators and/or filters.
  • a vehicle or autonomous vehicle can be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, etc.
  • AV manned/unmanned aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a drive unit 140a, a power supply unit 140b, a sensor unit 140c, and an autonomous driving unit. It may include a portion 140d.
  • the antenna unit 108 may be configured as part of the communication unit 110.
  • the communication unit 110 can transmit and receive signals (e.g., data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, road side units, etc.), and servers.
  • the control unit 120 may control elements of the vehicle or autonomous vehicle 100 to perform various operations.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a can drive the vehicle or autonomous vehicle 100 on the ground.
  • the driving unit 140a may include an engine, motor, power train, wheels, brakes, steering device, etc.
  • the power supply unit 140b supplies power to the vehicle or autonomous vehicle 100 and may include a wired/wireless charging circuit, a battery, etc.
  • the sensor unit 140c can obtain vehicle status, surrounding environment information, user information, etc.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward sensor. / May include a reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc.
  • the autonomous driving unit 140d includes technology for maintaining the driving lane, technology for automatically adjusting speed such as adaptive cruise control, technology for automatically driving along a set route, and technology for automatically setting the route and driving when the destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, etc. from an external server.
  • the autonomous driving unit 140d can create an autonomous driving route and driving plan based on the acquired data.
  • the control unit 120 may control the driving unit 140a so that the vehicle or autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (e.g., speed/direction control).
  • the communication unit 110 may acquire the latest traffic information data from an external server irregularly/periodically and obtain surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c can obtain vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on newly acquired data/information.
  • the communication unit 110 may transmit information about vehicle location, autonomous driving route, driving plan, etc. to an external server.
  • An external server can predict traffic information data in advance using AI technology, etc., based on information collected from vehicles or self-driving vehicles, and provide the predicted traffic information data to the vehicles or self-driving vehicles.
  • Figure 19 illustrates a vehicle to which this disclosure applies. Vehicles can also be implemented as transportation, trains, airplanes, ships, etc.
  • the vehicle 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, and a position measurement unit 140b.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other vehicles or external devices such as a base station.
  • the control unit 120 can control components of the vehicle 100 to perform various operations.
  • the memory unit 130 may store data/parameters/programs/codes/commands that support various functions of the vehicle 100.
  • the input/output unit 140a may output an AR/VR object based on information in the memory unit 130.
  • the input/output unit 140a may include a HUD.
  • the location measuring unit 140b may obtain location information of the vehicle 100.
  • the location information may include absolute location information of the vehicle 100, location information within the driving line, acceleration information, and location information with surrounding vehicles.
  • the location measuring unit 140b may include GPS and various sensors.
  • the communication unit 110 of the vehicle 100 may receive map information, traffic information, etc. from an external server and store them in the memory unit 130.
  • the location measurement unit 140b may acquire vehicle location information through GPS and various sensors and store it in the memory unit 130.
  • the control unit 120 creates a virtual object based on map information, traffic information, and vehicle location information, and the input/output unit 140a can display the generated virtual object on the window of the vehicle (1410, 1420).
  • the control unit 120 may determine whether the vehicle 100 is operating normally within the travel line based on vehicle location information. If the vehicle 100 deviates from the driving line abnormally, the control unit 120 may display a warning on the window of the vehicle through the input/output unit 140a. Additionally, the control unit 120 may broadcast a warning message regarding driving abnormalities to surrounding vehicles through the communication unit 110. Depending on the situation, the control unit 120 may transmit location information of the vehicle and information about driving/vehicle abnormalities to the relevant organizations through the communication unit 110.
  • FIG. 20 illustrates an XR device applied to the present disclosure.
  • XR devices can be implemented as HMDs, HUDs (Head-Up Displays) installed in vehicles, televisions, smartphones, computers, wearable devices, home appliances, digital signage, vehicles, robots, etc.
  • HMDs High-D Displays
  • HUDs Head-Up Displays
  • the XR device 100a may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a power supply unit 140c. .
  • the communication unit 110 may transmit and receive signals (eg, media data, control signals, etc.) with external devices such as other wireless devices, mobile devices, or media servers.
  • Media data may include video, images, sound, etc.
  • the control unit 120 may perform various operations by controlling the components of the XR device 100a.
  • the control unit 120 may be configured to control and/or perform procedures such as video/image acquisition, (video/image) encoding, and metadata generation and processing.
  • the memory unit 130 may store data/parameters/programs/codes/commands necessary for driving the XR device 100a/creating an XR object.
  • the input/output unit 140a may obtain control information, data, etc. from the outside and output the generated XR object.
  • the input/output unit 140a may include a camera, microphone, user input unit, display unit, speaker, and/or haptic module.
  • the sensor unit 140b can obtain XR device status, surrounding environment information, user information, etc.
  • the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar.
  • the power supply unit 140c supplies power to the XR device 100a and may include a wired/wireless charging circuit, a battery, etc.
  • the memory unit 130 of the XR device 100a may include information (eg, data, etc.) necessary for creating an XR object (eg, AR/VR/MR object).
  • the input/output unit 140a can obtain a command to operate the XR device 100a from the user, and the control unit 120 can drive the XR device 100a according to the user's driving command. For example, when a user tries to watch a movie, news, etc. through the XR device 100a, the control unit 120 sends content request information to another device (e.g., mobile device 100b) or It can be transmitted to a media server.
  • another device e.g., mobile device 100b
  • It can be transmitted to a media server.
  • the communication unit 130 may download/stream content such as movies and news from another device (eg, the mobile device 100b) or a media server to the memory unit 130.
  • the control unit 120 controls and/or performs procedures such as video/image acquisition, (video/image) encoding, and metadata creation/processing for the content, and acquires it through the input/output unit 140a/sensor unit 140b.
  • XR objects can be created/output based on information about surrounding space or real objects.
  • the XR device 100a is wirelessly connected to the mobile device 100b through the communication unit 110, and the operation of the XR device 100a can be controlled by the mobile device 100b.
  • the mobile device 100b may operate as a controller for the XR device 100a.
  • the XR device 100a may obtain 3D location information of the mobile device 100b and then generate and output an XR object corresponding to the mobile device 100b.
  • Figure 21 illustrates a robot to which this disclosure is applied.
  • Robots can be classified into industrial, medical, household, military, etc. depending on the purpose or field of use.
  • the robot 100 may include a communication unit 110, a control unit 120, a memory unit 130, an input/output unit 140a, a sensor unit 140b, and a driver 140c.
  • the communication unit 110 may transmit and receive signals (e.g., driving information, control signals, etc.) with external devices such as other wireless devices, other robots, or control servers.
  • the control unit 120 can control the components of the robot 100 to perform various operations.
  • the memory unit 130 may store data/parameters/programs/codes/commands that support various functions of the robot 100.
  • the input/output unit 140a may obtain information from the outside of the robot 100 and output the information to the outside of the robot 100.
  • the input/output unit 140a may include a camera, microphone, user input unit, display unit, speaker, and/or haptic module.
  • the sensor unit 140b can obtain internal information of the robot 100, surrounding environment information, user information, etc.
  • the sensor unit 140b may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, a radar, etc.
  • the driving unit 140c can perform various physical operations such as moving robot joints. Additionally, the driving unit 140c can cause the robot 100 to run on the ground or fly in the air.
  • the driving unit 140c may include an actuator, motor, wheel, brake, propeller, etc.
  • FIG 22 illustrates an AI device applied to this disclosure.
  • AI devices are fixed or mobile devices such as TVs, projectors, smartphones, PCs, laptops, digital broadcasting terminals, tablet PCs, wearable devices, set-top boxes (STBs), radios, washing machines, refrigerators, digital signage, robots, vehicles, etc. It can be implemented with available devices, etc.
  • the AI device 100 includes a communication unit 110, a control unit 120, a memory unit 130, an input/output unit (140a/140b), a learning processor unit 140c, and a sensor unit 140d. may include.
  • the communication unit 110 uses wired and wireless communication technology to communicate wired and wireless signals (e.g., sensor information) with external devices such as other AI devices (e.g., 100x, 200, 400 in Figure 16) or AI servers (e.g., 400 in Figure 16). , user input, learning model, control signal, etc.) can be transmitted and received. To this end, the communication unit 110 may transmit information in the memory unit 130 to an external device or transmit a signal received from an external device to the memory unit 130.
  • wired and wireless signals e.g., sensor information
  • external devices e.g., 100x, 200, 400 in Figure 16
  • AI servers e.g., 400 in Figure 16
  • the control unit 120 may determine at least one executable operation of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. And, the control unit 120 can control the components of the AI device 100 to perform the determined operation. For example, the control unit 120 may request, search, receive, or utilize data from the learning processor unit 140c or the memory unit 130, and may select at least one executable operation that is predicted or is determined to be desirable. Components of the AI device 100 can be controlled to execute operations. In addition, the control unit 120 collects history information including the user's feedback on the operation content or operation of the AI device 100 and stores it in the memory unit 130 or the learning processor unit 140c, or the AI server ( It can be transmitted to an external device such as Figure 16, 400). The collected historical information can be used to update the learning model.
  • the memory unit 130 can store data supporting various functions of the AI device 100.
  • the memory unit 130 may store data obtained from the input unit 140a, data obtained from the communication unit 110, output data from the learning processor unit 140c, and data obtained from the sensing unit 140. Additionally, the memory unit 130 may store control information and/or software codes necessary for operation/execution of the control unit 120.
  • the input unit 140a can obtain various types of data from outside the AI device 100.
  • the input unit 140a may obtain training data for model learning and input data to which the learning model will be applied.
  • the input unit 140a may include a camera, microphone, and/or a user input unit.
  • the output unit 140b may generate output related to vision, hearing, or tactile sensation.
  • the output unit 140b may include a display unit, a speaker, and/or a haptic module.
  • the sensing unit 140 may obtain at least one of internal information of the AI device 100, surrounding environment information of the AI device 100, and user information using various sensors.
  • the sensing unit 140 may include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and/or a radar. there is.
  • the learning processor unit 140c can train a model composed of an artificial neural network using training data.
  • the learning processor unit 140c may perform AI processing together with the learning processor unit of the AI server (FIG. 16, 400).
  • the learning processor unit 140c may process information received from an external device through the communication unit 110 and/or information stored in the memory unit 130. Additionally, the output value of the learning processor unit 140c may be transmitted to an external device through the communication unit 110 and/or stored in the memory unit 130.
  • Embodiments as described above can be applied to various mobile communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

일 실시예는, 무선통신시스템에서 리모트 UE의 핸드오버(Handover, HO)에 관련된 서빙 기지국의 동작 방법에 있어서, 상기 서빙 기지국이 리모트 UE로부터 측정 결과를 수신; 상기 서빙 기지국이 상기 리모트 UE의 HO를 위한 타겟 기지국을 선택; 상기 서빙 기지국이 상기 타겟 기지국으로 HO request 메시지를 전송; 및 상기 서빙 기지국이 상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송을 포함하며, 상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 방법이다.

Description

무선통신시스템에서 리모트 UE 및 릴레이 UE의 핸드오버에 관련된 동작 방법
이하의 설명은 무선 통신 시스템에 대한 것으로, 보다 상세하게는 리모트 UE 및 릴레이 UE의 핸드오버에 관련된 서빙 기지국, 타겟 기지국, 리모트 UE, 릴레이 UE의 동작 방법 및 장치이다.
무선 통신 시스템에서는 LTE, LTE-A, WiFi 등의 다양한 RAT(Radio Access Technology)이 사용되고 있으며, 5G 도 여기에 포함된다. 5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다. 일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
무선 통신 시스템은 가용한 시스템 자원(예를 들어, 대역폭, 전송 전력 등)을 공유하여 다중 사용자와의 통신을 지원하는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
사이드링크(sidelink, SL)란 단말(User Equipment, UE)들 간에 직접적인 링크를 설정하여, 기지국(Base Station, BS)을 거치지 않고, 단말 간에 음성 또는 데이터 등을 직접 주고 받는 통신 방식을 말한다. SL는 급속도로 증가하는 데이터 트래픽에 따른 기지국의 부담을 해결할 수 있는 하나의 방안으로서 고려되고 있다.
V2X(vehicle-to-everything)는 유/무선 통신을 통해 다른 차량, 보행자, 인프라가 구축된 사물 등과 정보를 교환하는 통신 기술을 의미한다. V2X는 V2V(vehicle-to-vehicle), V2I(vehicle-to-infrastructure), V2N(vehicle-to- network) 및 V2P(vehicle-to-pedestrian)와 같은 4 가지 유형으로 구분될 수 있다. V2X 통신은 PC5 인터페이스 및/또는 Uu 인터페이스를 통해 제공될 수 있다.
한편, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(Radio Access Technology, RAT)에 비해 향상된 모바일 광대역 (mobile broadband) 통신에 대한 필요성이 대두되고 있다. 이에 따라, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스 또는 단말을 고려한 통신 시스템이 논의되고 있는데, 개선된 이동 광대역 통신, 매시브 MTC(Machine Type Communication), URLLC(Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 무선 접속 기술을 새로운 RAT(new radio access technology) 또는 NR(new radio)이라 칭할 수 있다. NR에서도 V2X(vehicle-to-everything) 통신이 지원될 수 있다.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.
V2X 통신과 관련하여, NR 이전의 RAT에서는 BSM(Basic Safety Message), CAM(Cooperative Awareness Message), DENM(Decentralized Environmental Notification Message)과 같은 V2X 메시지를 기반으로, 안전 서비스(safety service)를 제공하는 방안이 주로 논의되었다. V2X 메시지는, 위치 정보, 동적 정보, 속성 정보 등을 포함할 수 있다. 예를 들어, 단말은 주기적인 메시지(periodic message) 타입의 CAM, 및/또는 이벤트 트리거 메시지(event triggered message) 타입의 DENM을 다른 단말에게 전송할 수 있다.
예를 들어, CAM은 방향 및 속도와 같은 차량의 동적 상태 정보, 치수와 같은 차량 정적 데이터, 외부 조명 상태, 경로 내역 등 기본 차량 정보를 포함할 수 있다. 예를 들어, 단말은 CAM을 방송할 수 있으며, CAM의 지연(latency)은 100ms보다 작을 수 있다. 예를 들어, 차량의 고장, 사고 등의 돌발적인 상황이 발행하는 경우, 단말은 DENM을 생성하여 다른 단말에게 전송할 수 있다. 예를 들어, 단말의 전송 범위 내에 있는 모든 차량은 CAM 및/또는 DENM을 수신할 수 있다. 이 경우, DENM은 CAM 보다 높은 우선 순위를 가질 수 있다.
이후, V2X 통신과 관련하여, 다양한 V2X 시나리오들이 NR에서 제시되고 있다. 예를 들어, 다양한 V2X 시나리오들은, 차량 플래투닝(vehicle platooning), 향상된 드라이빙(advanced driving), 확장된 센서들(extended sensors), 리모트 드라이빙(remote driving) 등을 포함할 수 있다.
예를 들어, 차량 플래투닝을 기반으로, 차량들은 동적으로 그룹을 형성하여 함께 이동할 수 있다. 예를 들어, 차량 플래투닝에 기반한 플라툰 동작들(platoon operations)을 수행하기 위해, 상기 그룹에 속하는 차량들은 선두 차량으로부터 주기적인 데이터를 수신할 수 있다. 예를 들어, 상기 그룹에 속하는 차량들은 주기적인 데이터를 이용하여, 차량들 사이의 간격을 줄이거나 넓힐 수 있다.
예를 들어, 향상된 드라이빙을 기반으로, 차량은 반자동화 또는 완전 자동화될 수 있다. 예를 들어, 각 차량은 근접 차량 및/또는 근접 로지컬 엔티티(logical entity)의 로컬 센서(local sensor)에서 획득된 데이터를 기반으로, 궤도(trajectories) 또는 기동(maneuvers)을 조정할 수 있다. 또한, 예를 들어, 각 차량은 근접한 차량들과 드라이빙 인텐션(driving intention)을 상호 공유할 수 있다.
예를 들어, 확장 센서들을 기반으로, 로컬 센서들을 통해 획득된 로 데이터(raw data) 또는 처리된 데이터(processed data), 또는 라이브 비디오 데이터(live video data)는 차량, 로지컬 엔티티, 보행자들의 단말 및/또는 V2X 응용 서버 간에 상호 교환될 수 있다. 따라서, 예를 들어, 차량은 자체 센서를 이용하여 감지할 수 있는 환경 보다 향상된 환경을 인식할 수 있다.
예를 들어, 리모트 드라이빙을 기반으로, 운전을 하지 못하는 사람 또는 위험한 환경에 위치한 리모트 차량을 위해, 리모트 드라이버 또는 V2X 애플리케이션은 상기 리모트 차량을 동작 또는 제어할 수 있다. 예를 들어, 대중 교통과 같이 경로를 예측할 수 있는 경우, 클라우드 컴퓨팅 기반의 드라이빙이 상기 리모트 차량의 동작 또는 제어에 이용될 수 있다. 또한, 예를 들어, 클라우드 기반의 백엔드 서비스 플랫폼(cloud-based back-end service platform)에 대한 액세스가 리모트 드라이빙을 위해 고려될 수 있다.
한편, 차량 플래투닝, 향상된 드라이빙, 확장된 센서들, 리모트 드라이빙 등 다양한 V2X 시나리오들에 대한 서비스 요구사항(service requirements)들을 구체화하는 방안이 NR에 기반한 V2X 통신에서 논의되고 있다.
본 개시는 리모트 UE 및 릴레이 UE의 핸드오버에 관련된 서빙 기지국, 타겟 기지국, 리모트 UE, 릴레이 UE의 동작 방법 및 장치에 관련된 내용들을 기술적 과제로 한다.
일 실시예는, 무선통신시스템에서 리모트 UE의 핸드오버(Handover, HO)에 관련된 서빙 기지국의 동작 방법에 있어서, 상기 서빙 기지국이 리모트 UE로부터 측정 결과를 수신; 상기 서빙 기지국이 상기 리모트 UE의 HO를 위한 타겟 기지국을 선택; 상기 서빙 기지국이 상기 타겟 기지국으로 HO request 메시지를 전송; 및 상기 서빙 기지국이 상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송을 포함하며, 상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 방법이다.
일 실시예는, 무선통신시스템에서, 서빙 기지국에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은, 리모트 UE로부터 측정 결과를 수신; 상기 리모트 UE의 HO를 위한 타겟 기지국을 선택; 상기 타겟 기지국으로 HO request 메시지를 전송; 및 상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송을 포함하며, 상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 서빙 기지국이다.
일 실시예는, 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 서빙 기지국을 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서, 상기 동작들은, 리모트 UE로부터 측정 결과를 수신; 상기 리모트 UE의 HO를 위한 타겟 기지국을 선택; 상기 타겟 기지국으로 HO request 메시지를 전송; 및 상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송을 포함하며, 상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 저장 매체이다.
일 실시예는, 무선통신시스템에서 리모트 UE의 핸드오버(Handover, HO)에 관련된 리모트 UE의 동작 방법에 있어서, 상기 리모트 UE가 서빙 기지국으로 측정 결과를 전송; 상기 리모트 UE가 상기 서빙 기지국으로부터 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 수신; 상기 리모트 UE가 상기 타겟 기지국으로 RRC reconfiguration complete 를 전송; 및 상기 리모트 UE가 릴레이 UE를 통해 상기 타겟 기지국으로 데이터를 전송을 포함하며, 상기 상기 리모트 UE와 상기 릴레이 UE가 상기 타겟 기지국으로 HO 되는 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 방법이다.
상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 서빙 기지국이 상기 릴레이 UE에게 전송하는 RRC reconfiguration with sync는 상기 릴레이 UE가 상기 리모트 UE와 연결을 유지할 것을 지시하는 정보를 포함할 수 있다.
상기 HO request 메시지는 상기 리모트 UE와 상기 릴레이 UE가 multi-path relay 관계에 있음을 알리는 정보를 포함할 수 있다.
상기 서빙 기지국은 상기 타겟 기지국으로 상기 릴레이 UE에 관련된 정보를 전달할 수 있다.
상기 릴레이 UE에 관련된 정보는, 상기 릴레이 UE의 C-RNTI, SRC L2 ID, DST L2 ID, XNAP ID, L2 ID Uu 측정 결과, 상기 서빙 기지국이 멀티패스 릴레이 동작을 위해서 상기 릴레이 UE에 설정한 bearer 및 bearer mapping 정보를 포함할 수 있다.
상기 릴레이 UE는 상기 리모트 UE에 연결된 복수의 릴레이 UE 중 하나일 수 있다.
상기 릴레이 UE는, 상기 서빙 기지국이 상기 복수의 릴레이 UE에 대한 측정 결과에 기초하여, 상기 리모트 UE와 함께 상기 타겟 기지국으로 HO가 가능하다고 판단한 것일 수 있다.
상기 리모트 UE는 다른 UE, 자율주행 차량에 관련된 UE 또는 기지국 또는 네트워크 중 적어도 하나와 통신하는 것일 수 있다.
일 실시예에 의하면, 리모트 UE와 릴레이 UE의 HO를 동일한 타겟 기지국(및/또는 cell)로 이루어지게 할 수 있다. 이를 통하여 릴레이 UE와 리모트 UE간의 SL (sidelink) connection을 유지할 수 있으므로 HO가 발생하더라도 빠르게 multi-path 동작을 설정할 수 있다는 장점이 있다.
본 명세서에 첨부되는 도면은 실시예(들)에 대한 이해를 제공하기 위한 것으로서 다양한 실시형태들을 나타내고 명세서의 기재와 함께 원리를 설명하기 위한 것이다.
도 1은 NR 이전의 RAT에 기반한 V2X 통신과 NR에 기반한 V2X 통신을 비교하여 설명하기 위한 도면이다.
도 2는 본 개시의 일 실시 예에 따른, LTE 시스템의 구조를 나타낸다.
도 3은 본 개시의 일 실시 예에 따른, 사용자 평면(user plane), 제어 평면(control plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 4는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.
도 5는 본 개시의 일 실시 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 나타낸다.
도 6은 실시예(들)이 적용될 수 있는 NR의 무선 프레임의 구조를 나타낸다.
도 7은 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.
도 8은 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 9는 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 10은 본 개시의 일 실시 예에 따른, V2X의 동기화 소스 또는 동기화 기준(synchronization reference)을 나타낸다.
도 11은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다.
도 12는 본 개시의 일 실시 예에 따라, 단말이 path switching을 수행하는 절차를 나타낸다.
도 13은 direct to indirect path 전환을 예시한다.
도 14는 핸드오버를 설명하기 위한 도면이다.
도 15는 실시예를 설명하기 위한 도면이다.
도 16 내지 도 22는 실시예(들)이 적용될 수 있는 다양한 장치를 설명하는 도면이다.
본 개시의 다양한 실시 예에서, “/” 및 “,”는 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A/B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A, B”는 “A 및/또는 B”를 의미할 수 있다. 나아가, “A/B/C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다. 나아가, “A, B, C”는 “A, B 및/또는 C 중 적어도 어느 하나”를 의미할 수 있다.
본 개시의 다양한 실시 예에서, “또는”은 “및/또는”을 나타내는 것으로 해석되어야 한다. 예를 들어, “A 또는 B”는 “오직 A”, “오직 B”, 및/또는 “A 및 B 모두”를 포함할 수 있다. 다시 말해, “또는”은 “부가적으로 또는 대안적으로”를 나타내는 것으로 해석되어야 한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA(evolved-UMTS terrestrial radio access)를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
5G NR은 LTE-A의 후속 기술로서, 고성능, 저지연, 고가용성 등의 특성을 가지는 새로운 Clean-slate 형태의 이동 통신 시스템이다. 5G NR은 1GHz 미만의 저주파 대역에서부터 1GHz~10GHz의 중간 주파 대역, 24GHz 이상의 고주파(밀리미터파) 대역 등 사용 가능한 모든 스펙트럼 자원을 활용할 수 있다.
설명을 명확하게 하기 위해, LTE-A 또는 5G NR을 위주로 기술하지만 본 개시의 일 실시 예에 따른 기술적 사상이 이에 제한되는 것은 아니다.
도 2는 본 개시의 일 실시 예에 따른, LTE 시스템의 구조를 나타낸다. 이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고 불릴 수 있다.
도 2를 참조하면, E-UTRAN은 단말(10)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), MT(Mobile Terminal), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속 정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN(Packet Date Network)을 종단점으로 갖는 게이트웨이이다.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection, OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1 (제 1 계층), L2 (제 2 계층), L3(제 3 계층)로 구분될 수 있다. 이 중에서 제 1 계층에 속하는 물리 계층은 물리 채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제 3 계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국 간 RRC 메시지를 교환한다.
도 3(a)는 본 개시의 일 실시 예에 따른, 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다.
도 3(b)은 본 개시의 일 실시 예에 따른, 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.
도 3(a) 및 A3을 참조하면, 물리 계층(physical layer)은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 상위 계층인 MAC(Medium Access Control) 계층과는 전송 채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선 자원으로 활용한다.
MAC 계층은 논리 채널(logical channel)을 통해 상위 계층인 RLC(radio link control) 계층에게 서비스를 제공한다. MAC 계층은 복수의 논리 채널에서 복수의 전송 채널로의 맵핑 기능을 제공한다. 또한, MAC 계층은 복수의 논리 채널에서 단수의 전송 채널로의 맵핑에 의한 논리 채널 다중화 기능을 제공한다. MAC 부 계층은 논리 채널상의 데이터 전송 서비스를 제공한다.
RLC 계층은 RLC SDU(Serving Data Unit)의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 수행한다. 무선 베어러(Radio Bearer, RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다.
RRC(Radio Resource Control) 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제 1 계층(physical 계층 또는 PHY 계층) 및 제 2 계층(MAC 계층, RLC 계층, PDCP(Packet Data Convergence Protocol) 계층)에 의해 제공되는 논리적 경로를 의미한다.
사용자 평면에서의 PDCP 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling Radio Bearer)와 DRB(Data Radio Bearer) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC connection)이 확립되면, 단말은 RRC_CONNECTED 상태에 있게 되고, 그렇지 못할 경우 RRC_IDLE 상태에 있게 된다. NR의 경우, RRC_INACTIVE 상태가 추가로 정의되었으며, RRC_INACTIVE 상태의 단말은 코어 네트워크와의 연결을 유지하는 반면 기지국과의 연결을 해지(release)할 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송 채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.
전송 채널 상위에 있으며, 전송 채널에 맵핑되는 논리 채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
물리 채널(Physical Channel)은 시간 영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(sub-carrier)로 구성된다. 하나의 서브프레임(sub-frame)은 시간 영역에서 복수의 OFDM 심벌(symbol)들로 구성된다. 자원 블록은 자원 할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어 채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫 번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI(Transmission Time Interval)는 서브프레임 전송의 단위시간이다.
도 4는 본 개시의 일 실시 예에 따른, NR 시스템의 구조를 나타낸다.
도 4를 참조하면, NG-RAN(Next Generation - Radio Access Network)은 단말에게 사용자 평면 및 제어 평면 프로토콜 종단(termination)을 제공하는 gNB(next generation-Node B) 및/또는 eNB를 포함할 수 있다. 도 4에서는 gNB만을 포함하는 경우를 예시한다. gNB 및 eNB는 상호 간에 Xn 인터페이스로 연결되어 있다. gNB 및 eNB는 5세대 코어 네트워크(5G Core Network: 5GC)와 NG 인터페이스를 통해 연결되어 있다. 보다 구체적으로, AMF(access and mobility management function)과는 NG-C 인터페이스를 통해 연결되고, UPF(user plane function)과는 NG-U 인터페이스를 통해 연결된다.
도 5는 본 개시의 일 실시 예에 따른, NG-RAN과 5GC 간의 기능적 분할을 나타낸다.
도 5를 참조하면, gNB는 인터 셀 간의 무선 자원 관리(Inter Cell RRM), 무선 베어러 관리(RB control), 연결 이동성 제어(Connection Mobility Control), 무선 허용 제어(Radio Admission Control), 측정 설정 및 제공(Measurement configuration & Provision), 동적 자원 할당(dynamic resource allocation) 등의 기능을 제공할 수 있다. AMF는 NAS(Non Access Stratum) 보안, 아이들 상태 이동성 처리 등의 기능을 제공할 수 있다. UPF는 이동성 앵커링(Mobility Anchoring), PDU(Protocol Data Unit) 처리 등의 기능을 제공할 수 있다. SMF(Session Management Function)는 단말 IP(Internet Protocol) 주소 할당, PDU 세션 제어 등의 기능을 제공할 수 있다.
도 6은 실시예(들)이 적용될 수 있는 NR의 무선 프레임의 구조를 나타낸다.
도 6을 참조하면, NR에서 상향링크 및 하향링크 전송에서 무선 프레임을 사용할 수 있다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의될 수 있다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)을 포함할 수 있다. 서브프레임은 하나 이상의 슬롯으로 분할될 수 있으며, 서브프레임 내 슬롯 개수는 부반송파 간격(Subcarrier Spacing, SCS)에 따라 결정될 수 있다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함할 수 있다.
노멀 CP(normal CP)가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함할 수 있다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함할 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA 심볼 (또는, DFT-s-OFDM 심볼)을 포함할 수 있다.
다음 표 1은 노멀 CP가 사용되는 경우, SCS 설정(μ)에 따라 슬롯 별 심볼의 개수(
Figure PCTKR2023014050-appb-img-000001
), 프레임 별 슬롯의 개수(
Figure PCTKR2023014050-appb-img-000002
)와 서브프레임 별 슬롯의 개수(
Figure PCTKR2023014050-appb-img-000003
)를 예시한다.
Figure PCTKR2023014050-appb-img-000004
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수를 예시한다.
Figure PCTKR2023014050-appb-img-000005
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴머놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, 서브프레임, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다.
NR에서, 다양한 5G 서비스들을 지원하기 위한 다수의 뉴머놀로지(numerology) 또는 SCS가 지원될 수 있다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)이 지원될 수 있고, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)이 지원될 수 있다. SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)을 극복하기 위해 24.25GHz보다 큰 대역폭이 지원될 수 있다.
NR 주파수 밴드(frequency band)는 두 가지 타입의 주파수 범위(frequency range)로 정의될 수 있다. 상기 두 가지 타입의 주파수 범위는 FR1 및 FR2일 수 있다. 주파수 범위의 수치는 변경될 수 있으며, 예를 들어, 상기 두 가지 타입의 주파수 범위는 하기 표 3과 같을 수 있다. NR 시스템에서 사용되는 주파수 범위 중 FR1은 “sub 6GHz range”를 의미할 수 있고, FR2는 “above 6GHz range”를 의미할 수 있고 밀리미터 웨이브(millimeter wave, mmW)로 불릴 수 있다.
Figure PCTKR2023014050-appb-img-000006
상술한 바와 같이, NR 시스템의 주파수 범위의 수치는 변경될 수 있다. 예를 들어, FR1은 하기 표 4와 같이 410MHz 내지 7125MHz의 대역을 포함할 수 있다. 즉, FR1은 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역을 포함할 수 있다. 예를 들어, FR1 내에서 포함되는 6GHz (또는 5850, 5900, 5925 MHz 등) 이상의 주파수 대역은 비면허 대역(unlicensed band)을 포함할 수 있다. 비면허 대역은 다양한 용도로 사용될 수 있고, 예를 들어 차량을 위한 통신(예를 들어, 자율주행)을 위해 사용될 수 있다.
Figure PCTKR2023014050-appb-img-000007
도 7은 본 개시의 일 실시 예에 따른, NR 프레임의 슬롯 구조를 나타낸다.
도 7을 참조하면, 슬롯은 시간 영역에서 복수의 심볼들을 포함한다. 예를 들어, 노멀 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함할 수 있다. 또는 노멀 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함할 수 있다.
반송파는 주파수 영역에서 복수의 부반송파들을 포함한다. RB(Resource Block)는 주파수 영역에서 복수(예를 들어, 12)의 연속한 부반송파로 정의될 수 있다. BWP(Bandwidth Part)는 주파수 영역에서 복수의 연속한 (P)RB((Physical) Resource Block)로 정의될 수 있으며, 하나의 뉴머놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행될 수 있다. 각각의 요소는 자원 그리드에서 자원요소(Resource Element, RE)로 지칭될 수 있고, 하나의 복소 심볼이 맵핑될 수 있다.
한편, 단말과 단말 간 무선 인터페이스 또는 단말과 네트워크 간 무선 인터페이스는 L1 계층, L2 계층 및 L3 계층으로 구성될 수 있다. 본 개시의 다양한 실시 예에서, L1 계층은 물리(physical) 계층을 의미할 수 있다. 또한, 예를 들어, L2 계층은 MAC 계층, RLC 계층, PDCP 계층 및 SDAP 계층 중 적어도 하나를 의미할 수 있다. 또한, 예를 들어, L3 계층은 RRC 계층을 의미할 수 있다.
이하, V2X 또는 SL(sidelink) 통신에 대하여 설명한다.
도 8은 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 8의 (a)는 LTE의 사용자 평면 프로토콜 스택을 나타내고, 도 8의 (b)는 LTE의 제어 평면 프로토콜 스택을 나타낸다.
도 9는 본 개시의 일 실시 예에 따른, SL 통신을 위한 무선 프로토콜 구조(radio protocol architecture)를 나타낸다. 구체적으로, 도 9의 (a)는 NR의 사용자 평면 프로토콜 스택을 나타내고, 도 9의 (b)는 NR의 제어 평면 프로토콜 스택을 나타낸다.
도 10은 본 개시의 일 실시 예에 따른, V2X의 동기화 소스(synchronization source) 또는 동기화 기준(synchronization reference)을 나타낸다.
도 10을 참조하면, V2X에서, 단말은 GNSS(global navigation satellite systems)에 직접적으로 동기화 되거나, 또는 GNSS에 직접적으로 동기화된 (네트워크 커버리지 내의 또는 네트워크 커버리지 밖의) 단말을 통해 비간접적으로 GNSS에 동기화 될 수 있다. GNSS가 동기화 소스로 설정된 경우, 단말은 UTC(Coordinated Universal Time) 및 (미리) 설정된 DFN(Direct Frame Number) 오프셋을 사용하여 DFN 및 서브프레임 번호를 계산할 수 있다.
또는, 단말은 기지국에 직접 동기화되거나, 기지국에 시간/주파수 동기화된 다른 단말에게 동기화될 수 있다. 예를 들어, 상기 기지국은 eNB 또는 gNB일 수 있다. 예를 들어, 단말이 네트워크 커버리지 내에 있는 경우, 상기 단말은 기지국이 제공하는 동기화 정보를 수신하고, 상기 기지국에 직접 동기화될 수 있다. 그 후, 상기 단말은 동기화 정보를 인접한 다른 단말에게 제공할 수 있다. 기지국 타이밍이 동기화 기준으로 설정된 경우, 단말은 동기화 및 하향링크 측정을 위해 해당 주파수에 연관된 셀(상기 주파수에서 셀 커버리지 내에 있는 경우), 프라이머리 셀 또는 서빙 셀(상기 주파수에서 셀 커버리지 바깥에 있는 경우)을 따를 수 있다.
기지국(예를 들어, 서빙 셀)은 V2X 또는 SL 통신에 사용되는 반송파에 대한 동기화 설정을 제공할 수 있다. 이 경우, 단말은 상기 기지국으로부터 수신한 동기화 설정을 따를 수 있다. 만약, 단말이 상기 V2X 또는 SL 통신에 사용되는 반송파에서 어떤 셀도 검출하지 못했고, 서빙 셀로부터 동기화 설정도 수신하지 못했다면, 상기 단말은 미리 설정된 동기화 설정을 따를 수 있다.
또는, 단말은 기지국이나 GNSS로부터 직접 또는 간접적으로 동기화 정보를 획득하지 못한 다른 단말에게 동기화될 수도 있다. 동기화 소스 및 선호도는 단말에게 미리 설정될 수 있다. 또는, 동기화 소스 및 선호도는 기지국에 의하여 제공되는 제어 메시지를 통해 설정될 수 있다.
SL 동기화 소스는 동기화 우선 순위와 연관될 수 있다. 예를 들어, 동기화 소스와 동기화 우선 순위 사이의 관계는 표 5 또는 표 6과 같이 정의될 수 있다. 표 5 또는 표 6은 일 예에 불과하며, 동기화 소스와 동기화 우선 순위 사이의 관계는 다양한 형태로 정의될 수 있다.
Figure PCTKR2023014050-appb-img-000008
Figure PCTKR2023014050-appb-img-000009
표 5 또는 표 6에서, P0가 가장 높은 우선 순위를 의미할 수 있고, P6이 가장 낮은 우선순위를 의미할 수 있다. 표 5 또는 표 6에서, 기지국은 gNB 또는 eNB 중 적어도 어느 하나를 포함할 수 있다.
GNSS 기반의 동기화 또는 기지국 기반의 동기화를 사용할지 여부는 (미리) 설정될 수 있다. 싱글-캐리어 동작에서, 단말은 가장 높은 우선 순위를 가지는 이용 가능한 동기화 기준으로부터 상기 단말의 전송 타이밍을 유도할 수 있다.
이하, SL 동기 신호(Sidelink Synchronization Signal, SLSS) 및 동기화 정보에 대해 설명한다.
SLSS는 SL 특정적인 시퀀스(sequence)로, PSSS(Primary Sidelink Synchronization Signal)와 SSSS(Secondary Sidelink Synchronization Signal)를 포함할 수 있다. 상기 PSSS는 S-PSS(Sidelink Primary Synchronization Signal)라고 칭할 수 있고, 상기 SSSS는 S-SSS(Sidelink Secondary Synchronization Signal)라고 칭할 수 있다. 예를 들어, 길이-127 M-시퀀스(length-127 M-sequences)가 S-PSS에 대하여 사용될 수 있고, 길이-127 골드-시퀀스(length-127 Gold sequences)가 S-SSS에 대하여 사용될 수 있다. 예를 들어, 단말은 S-PSS를 이용하여 최초 신호를 검출(signal detection)할 수 있고, 동기를 획득할 수 있다. 예를 들어, 단말은 S-PSS 및 S-SSS를 이용하여 세부 동기를 획득할 수 있고, 동기 신호 ID를 검출할 수 있다.
PSBCH(Physical Sidelink Broadcast Channel)는 SL 신호 송수신 전에 단말이 가장 먼저 알아야 하는 기본이 되는 (시스템) 정보가 전송되는 (방송) 채널일 수 있다. 예를 들어, 상기 기본이 되는 정보는 SLSS에 관련된 정보, 듀플렉스 모드(Duplex Mode, DM), TDD UL/DL(Time Division Duplex Uplink/Downlink) 구성, 리소스 풀 관련 정보, SLSS에 관련된 애플리케이션의 종류, 서브프레임 오프셋, 방송 정보 등일 수 있다. 예를 들어, PSBCH 성능의 평가를 위해, NR V2X에서, PSBCH의 페이로드 크기는 24 비트의 CRC를 포함하여 56 비트일 수 있다.
S-PSS, S-SSS 및 PSBCH는 주기적 전송을 지원하는 블록 포맷(예를 들어, SL SS(Synchronization Signal)/PSBCH 블록, 이하 S-SSB(Sidelink-Synchronization Signal Block))에 포함될 수 있다. 상기 S-SSB는 캐리어 내의 PSCCH(Physical Sidelink Control Channel)/PSSCH(Physical Sidelink Shared Channel)와 동일한 뉴머놀로지(즉, SCS 및 CP 길이)를 가질 수 있고, 전송 대역폭은 (미리) 설정된 SL BWP(Sidelink BWP) 내에 있을 수 있다. 예를 들어, S-SSB의 대역폭은 11 RB(Resource Block)일 수 있다. 예를 들어, PSBCH는 11 RB에 걸쳐있을 수 있다. 그리고, S-SSB의 주파수 위치는 (미리) 설정될 수 있다. 따라서, 단말은 캐리어에서 S-SSB를 발견하기 위해 주파수에서 가설 검출(hypothesis detection)을 수행할 필요가 없다.
한편, NR SL 시스템에서, 서로 다른 SCS 및/또는 CP 길이를 가지는 복수의 뉴머놀로지가 지원될 수 있다. 이 때, SCS가 증가함에 따라서, 전송 단말이 S-SSB를 전송하는 시간 자원의 길이가 짧아질 수 있다. 이에 따라, S-SSB의 커버리지(coverage)가 감소할 수 있다. 따라서, S-SSB의 커버리지를 보장하기 위하여, 전송 단말은 SCS에 따라 하나의 S-SSB 전송 주기 내에서 하나 이상의 S-SSB를 수신 단말에게 전송할 수 있다. 예를 들어, 전송 단말이 하나의 S-SSB 전송 주기 내에서 수신 단말에게 전송하는 S-SSB의 개수는 전송 단말에게 사전에 설정되거나(pre-configured), 설정(configured)될 수 있다. 예를 들어, S-SSB 전송 주기는 160ms 일 수 있다. 예를 들어, 모든 SCS에 대하여, 160ms의 S-SSB 전송 주기가 지원될 수 있다.
예를 들어, SCS가 FR1에서 15kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 30kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개 또는 2개의 S-SSB를 전송할 수 있다. 예를 들어, SCS가 FR1에서 60kHz인 경우, 전송 단말은 하나의 S-SSB 전송 주기 내에서 수신 단말에게 1개, 2개 또는 4개의 S-SSB를 전송할 수 있다.
도 11은 본 개시의 일 실시 예에 따라, 단말이 전송 모드에 따라 V2X 또는 SL 통신을 수행하는 절차를 나타낸다. 도 11의 실시 예는 본 개시의 다양한 실시 예와 결합될 수 있다. 본 개시의 다양한 실시 예에서, 전송 모드는 모드 또는 자원 할당 모드라고 칭할 수 있다. 이하, 설명의 편의를 위해, LTE에서 전송 모드는 LTE 전송 모드라고 칭할 수 있고, NR에서 전송 모드는 NR 자원 할당 모드라고 칭할 수 있다.
예를 들어, 도 11의 (a)는 LTE 전송 모드 1 또는 LTE 전송 모드 3과 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 11의 (a)는 NR 자원 할당 모드 1과 관련된 단말 동작을 나타낸다. 예를 들어, LTE 전송 모드 1은 일반적인 SL 통신에 적용될 수 있고, LTE 전송 모드 3은 V2X 통신에 적용될 수 있다.
예를 들어, 도 11의 (b)는 LTE 전송 모드 2 또는 LTE 전송 모드 4와 관련된 단말 동작을 나타낸다. 또는, 예를 들어, 도 11의 (b)는 NR 자원 할당 모드 2와 관련된 단말 동작을 나타낸다.
도 11의 (a)를 참조하면, LTE 전송 모드 1, LTE 전송 모드 3 또는 NR 자원 할당 모드 1에서, 기지국은 SL 전송을 위해 단말에 의해 사용될 SL 자원을 스케줄링할 수 있다. 예를 들어, 단계 S8000에서, 기지국은 제 1 단말에게 SL 자원과 관련된 정보 및/또는 UL 자원과 관련된 정보를 전송할 수 있다. 예를 들어, 상기 UL 자원은 PUCCH 자원 및/또는 PUSCH 자원을 포함할 수 있다. 예를 들어, 상기 UL 자원은 SL HARQ 피드백을 기지국에게 보고하기 위한 자원일 수 있다.
예를 들어, 제 1 단말은 DG(dynamic grant) 자원과 관련된 정보 및/또는 CG(configured grant) 자원과 관련된 정보를 기지국으로부터 수신할 수 있다. 예를 들어, CG 자원은 CG 타입 1 자원 또는 CG 타입 2 자원을 포함할 수 있다. 본 명세서에서, DG 자원은, 기지국이 DCI(downlink control information)를 통해서 제 1 단말에게 설정/할당하는 자원일 수 있다. 본 명세서에서, CG 자원은, 기지국이 DCI 및/또는 RRC 메시지를 통해서 제 1 단말에게 설정/할당하는 (주기적인) 자원일 수 있다. 예를 들어, CG 타입 1 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있다. 예를 들어, CG 타입 2 자원의 경우, 기지국은 CG 자원과 관련된 정보를 포함하는 RRC 메시지를 제 1 단말에게 전송할 수 있고, 기지국은 CG 자원의 활성화(activation) 또는 해제(release)와 관련된 DCI를 제 1 단말에게 전송할 수 있다.
단계 S8010에서, 제 1 단말은 상기 자원 스케줄링을 기반으로 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S8020에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S8030에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다. 예를 들어, HARQ 피드백 정보(예, NACK 정보 또는 ACK 정보)가 상기 PSFCH를 통해서 상기 제 2 단말로부터 수신될 수 있다. 단계 S8040에서, 제 1 단말은 HARQ 피드백 정보를 PUCCH 또는 PUSCH를 통해서 기지국에게 전송/보고할 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 상기 제 2 단말로부터 수신한 HARQ 피드백 정보를 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 기지국에게 보고되는 HARQ 피드백 정보는, 상기 제 1 단말이 사전에 설정된 규칙을 기반으로 생성(generate)하는 정보일 수 있다. 예를 들어, 상기 DCI는 SL의 스케줄링을 위한 DCI일 수 있다. 예를 들어, 상기 DCI의 포맷은 DCI 포맷 3_0 또는 DCI 포맷 3_1일 수 있다. 표 7은 SL의 스케줄링을 위한 DCI의 일 예를 나타낸다.
Figure PCTKR2023014050-appb-img-000010
도 11의 (b)를 참조하면, LTE 전송 모드 2, LTE 전송 모드 4 또는 NR 자원 할당 모드 2에서, 단말은 기지국/네트워크에 의해 설정된 SL 자원 또는 미리 설정된 SL 자원 내에서 SL 전송 자원을 결정할 수 있다. 예를 들어, 상기 설정된 SL 자원 또는 미리 설정된 SL 자원은 자원 풀일 수 있다. 예를 들어, 단말은 자율적으로 SL 전송을 위한 자원을 선택 또는 스케줄링할 수 있다. 예를 들어, 단말은 설정된 자원 풀 내에서 자원을 스스로 선택하여, SL 통신을 수행할 수 있다. 예를 들어, 단말은 센싱(sensing) 및 자원 (재)선택 절차를 수행하여, 선택 윈도우 내에서 스스로 자원을 선택할 수 있다. 예를 들어, 상기 센싱은 서브채널 단위로 수행될 수 있다. 예를 들어, 단계 S8010에서, 자원 풀 내에서 자원을 스스로 선택한 제 1 단말은 상기 자원을 사용하여 PSCCH(예, SCI(Sidelink Control Information) 또는 1st-stage SCI)를 제 2 단말에게 전송할 수 있다. 단계 S8020에서, 제 1 단말은 상기 PSCCH와 관련된 PSSCH(예, 2nd-stage SCI, MAC PDU, 데이터 등)를 제 2 단말에게 전송할 수 있다. 단계 S8030에서, 제 1 단말은 PSCCH/PSSCH와 관련된 PSFCH를 제 2 단말로부터 수신할 수 있다.
도 11의 (a) 또는 (b)를 참조하면, 예를 들어, 제 1 단말은 PSCCH 상에서 SCI를 제 2 단말에게 전송할 수 있다. 또는, 예를 들어, 제 1 단말은 PSCCH 및/또는 PSSCH 상에서 두 개의 연속적인 SCI(예, 2-stage SCI)를 제 2 단말에게 전송할 수 있다. 이 경우, 제 2 단말은 PSSCH를 제 1 단말로부터 수신하기 위해 두 개의 연속적인 SCI(예, 2-stage SCI)를 디코딩할 수 있다. 본 명세서에서, PSCCH 상에서 전송되는 SCI는 1st SCI, 제 1 SCI, 1st-stage SCI 또는 1st-stage SCI 포맷이라고 칭할 수 있고, PSSCH 상에서 전송되는 SCI는 2nd SCI, 제 2 SCI, 2nd-stage SCI 또는 2nd-stage SCI 포맷이라고 칭할 수 있다. 예를 들어, 1st-stage SCI 포맷은 SCI 포맷 1-A를 포함할 수 있고, 2nd-stage SCI 포맷은 SCI 포맷 2-A 및/또는 SCI 포맷 2-B를 포함할 수 있다. 표 8은 1st-stage SCI 포맷의 일 예를 나타낸다.
Figure PCTKR2023014050-appb-img-000011
표 9는 2nd-stage SCI 포맷의 일 예를 나타낸다.
Figure PCTKR2023014050-appb-img-000012
도 11의 (a) 또는 (b)를 참조하면, 단계 S8030에서, 제 1 단말은 표 10을 기반으로 PSFCH를 수신할 수 있다. 예를 들어, 제 1 단말 및 제 2 단말은 표 10을 기반으로 PSFCH 자원을 결정할 수 있고, 제 2 단말은 PSFCH 자원을 사용하여 HARQ 피드백을 제 1 단말에게 전송할 수 있다.
Figure PCTKR2023014050-appb-img-000013
도 11의 (a)를 참조하면, 단계 S8040에서, 제 1 단말은 표 11를 기반으로, PUCCH 및/또는 PUSCH를 통해서 SL HARQ 피드백을 기지국에게 전송할 수 있다.
Figure PCTKR2023014050-appb-img-000014
한편, 다음 표 12는 3GPP TS 36.331에서 사이드링크 릴레이 UE의 선택 및 재선택에 관련된 개시내용이다. 표 12의 개시 내용은 본 개시의 종래 기술로써 사용되며, 관련하여 필요한 세부 사항은 3GPP TS 36.331를 참조한다.
Figure PCTKR2023014050-appb-img-000015
도 12는 Rel-17 NR SL에 관련한 TR 문서(3GPP TR 38.836)에 capture되어 있는 connection management와 direct에서 indirect로 path switching 시 procedure를 나타낸다. 리모트 UE는 사용자 평면 데이터 전송 전에 네트워크와 자체 PDU 세션/DRB를 설정할 필요가 있다.
Rel-16 NR V2X의 PC5-RRC 측면 PC5 유니캐스트 링크 설정 절차는, 리모트 UE가 릴레이 UE를 통해 네트워크와 Uu RRC connection을 수립하기 전에, 리모트 UE가 릴레이 UE사이에 L2 UE-to-Network relaying 를 위해 secure unicast link를 설정하는데 재사용될 수 있다.
in-coverage 및 out-of-coverage 모두에 대해 리모트 UE가 gNB와의 연결 설정을 위한 첫 번째 RRC 메시지를 시작하면, 리모트 UE와 UE-to-Network Relay UE 간의 전송을 위한 PC5 L2 구성은 표준에 정의된 RLC/MAC 구성에 기초할 수 있다. 리모트 UE의 Uu SRB1/SRB2 및 DRB의 수립은 L2 UE-to-Network Relay에 대한 레거시 Uu 구성 절차를 따른다.
도 12에 도시된 상위 수준 연결 설정 절차는 L2 UE-to-Network Relay에 적용된다.
단계 S1200에서 Remote and Relay UE는 탐색 절차를 수행하고 기존 Rel-16 절차를 기준으로 단계 S1201에서 PC5-RRC 연결을 설정할 수 있다
단계 S1202에서 리모트 UE는 PC5의 기본 L2 구성을 사용하여 Relay UE를 통해 gNB와의 연결 설정을 위한 첫 번째 RRC 메시지(즉, RRCSetupRequest)를 전송할 수 있다. gNB는 RRCSetup 메시지로 리모트 UE에 응답(S1203)한다. 리모트 UE로의 RRCSetup 전달은 PC5의 기본 구성을 사용한다. Relay UE가 RRC_CONNECTED에서 시작되지 않았다면 PC5의 기본 L2 구성에 대한 메시지 수신 시 자체 연결 설정을 수행해야 한다. 이 단계에서 Relay UE가 리모트 UE에 대한 RRCSetupRequest/RRCSetup 메시지를 전달하기 위한 세부사항은 WI 단계에서 논의될 수 있다.
단계 S1204에서 gNB와 Relay UE는 Uu를 통해 릴레이 채널 설정 절차를 수행한다. gNB의 구성에 따라 Relay/Remote UE는 PC5를 통해 리모트 UE로 SRB1을 릴레이하기 위한 RLC 채널을 설정한다. 이 단계는 SRB1에 대한 릴레이 채널을 준비한다.
단계 S1205에서, 리모트 UE SRB1 메시지(예: RRCSetupComplete 메시지)는 PC5를 통해 SRB1 릴레이 채널을 사용하여 릴레이 UE를 통해 gNB로 전송된다. 그리고 리모트 UE는 Uu를 통해 RRC 연결된다.
단계 S1206에서, 리모트 UE와 gNB는 레거시 절차에 따라 보안을 설정하고 보안 메시지는 Relay UE를 통해 전달된다.
단계 S1210에서, gNB는 트래픽 릴레이를 위해 gNB와 Relay UE 사이에 추가 RLC 채널을 설정한다. gNB의 구성에 따라 Relay/Remote UE는 트래픽 릴레이를 위해 리모트 UE와 Relay UE 사이에 추가 RLC 채널을 설정한다. gNB는 릴레이 SRB2/DRB를 설정하기 위해 릴레이 UE를 통해 리모트 UE에 RRCReconfiguration을 전송한다. 리모트 UE는 RRCReconfigurationComplete를 Relay UE를 통해 gNB에 응답으로 전송한다.
연결 설정 절차 외에 L2 UE-to-Network 릴레이의 경우:
- RRC 재구성 및 RRC 연결 해제 절차는 WI 단계에 남겨진 메시지 내용/구성 설계와 함께 레거시 RRC 절차를 재사용할 수 있다.
- RRC 연결 재설정 및 RRC 연결 재개 절차는 메시지 내용/구성 설계와 함께 릴레이 특정 부분을 처리하기 위해 위의 L2 UE-to-Network Relay의 연결 설정 절차를 고려함으로써 기존 RRC 절차를 베이스라인으로 재사용할 수 있다. 메시지 컨텐트/구성은 추후 정의될 수 있다.
도 13은 direct to indirect path 전환을 예시한다. L2 UE-to-Network Relay의 서비스 연속성을 위해 리모트 UE가 indirect Relay UE로 전환하는 경우 도 13의 절차가 사용될 수 있다.
도 13을 참조하면, 단계 S1301에서 리모트 UE는 후보 릴레이 UE를 측정/발견한 후 리모트 UE가 하나 또는 여러 개의 후보 릴레이 UE를 보고한다. 리모트 UE는 보고할 때 상위 계층 기준을 충족하는 적절한 릴레이 UE를 필터링할 수 있다. 보고에는 릴레이 UE의 ID 및 SL RSRP 정보가 포함될 수 있으며, 여기서 PC5 측정 관련 세부사항은 추후 결정될 수 있다.
단계 S1302에서, gNB가 타겟 릴레이 UE로 전환하기로 결정하고 타겟 (재)구성((re)configuration)은 선택적으로 릴레이 UE로 전송된다.
단계 S1304에서, 리모트 UE에 대한 RRC 재구성 메시지는 타겟 릴레이 UE의 ID, 타겟 Uu 및 PC5 구성을 포함할 수 있다.
단계 S1305에서, 연결이 아직 설정되지 않은 경우 리모트 UE는 타겟 릴레이 UE와 PC5 연결을 설정한다.
단계 S1306에서, 리모트 UE는 RRCReconfiguration에서 제공된 타겟 구성을 사용하여 대상 경로를 통해 gNB에 RRCReconfigurationComplete를 피드백한다.
단계 S1307에서, 데이터 경로가 전환된다.
다음 표 13 내지 표 18의 내용은 핸드오버에 관련된 3GPP TS 38.423 표준 문서에 개시된 내용으로써, 본 개시 내용의 종래 기술로써 사용된다. 표 14에서 Figure 8.2.1.2-1은 도 14에 해당하며, 이외 다른 사항들은 상기 표준문서 3GPP TS 38.423을 참조한다.
8.2.1 Handover Preparation
8.2.1.1 General
This procedure is used to establish necessary resources in an NG-RAN node for an incoming handover. If the procedure concerns a conditional handover, parallel transactions are allowed. Possible parallel requests are identified by the target cell ID when the source UE AP IDs are the same.
The procedure uses UE-associated signalling.
8.2.1.2 Successful Operation
The source NG-RAN node initiates the procedure by sending the HANDOVER REQUEST message to the target NG-RAN node. When the source NG-RAN node sends the HANDOVER REQUEST message, it shall start the timer TXnRELOCprep.
If the Conditional Handover Information Request IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall consider that the request concerns a conditional handover and shall include the Conditional Handover Information Acknowledge IE in the HANDOVER REQUEST ACKNOWLEDGE message.
If the Target NG-RAN node UE XnAP ID IE is contained in the Conditional Handover Information Request IE included in the HANDOVER REQUEST message, then the target NG-RAN node shall remove the existing prepared conditional HO identified by the Target NG-RAN node UE XnAP ID IE and the Target Cell Global ID IE. It is up to the implementation of the target NG-RAN node when to remove the HO information.
Upon reception of the HANDOVER REQUEST ACKNOWLEDGE message, the source NG-RAN node shall stop the timer TXnRELOCprep and terminate the Handover Preparation procedure. If the procedure was initiated for an immediate handover, the source NG-RAN node shall start the timer TXnRELOCoverall. The source NG-RAN node is then defined to have a Prepared Handover for that Xn UE-associated signalling.
For each E-RAB ID IE included in the QoS Flow To Be Setup List IE in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the content of the IE in the UE context and use it for subsequent inter-system handover.
If the Masked IMEISV IE is contained in the HANDOVER REQUEST message the target NG-RAN node shall, if supported, use it to determine the characteristics of the UE for subsequent handling.
At reception of the HANDOVER REQUEST message the target NG-RAN node shall prepare the configuration of the AS security relation between the UE and the target NG-RAN node by using the information in the UE Security Capabilities IE and the AS Security Information IE in the UE Context Information IE, as specified in TS 33.501 [28].
Upon reception of the PDU Session Resource Setup List IE, contained in the HANDOVER REQUEST message, the target NG-RAN node shall behave the same as specified in TS 38.413 [5] for the PDU Session Resource Setup procedure. The target NG-RAN node shall report in the HANDOVER REQUEST ACKNOWLEDGE message the successful establishment of the result for all the requested PDU session resources. When the target NG-RAN node reports the unsuccessful establishment of a PDU session resource, the cause value should be precise enough to enable the source NG-RAN node to know the reason for the unsuccessful establishment.
For each PDU session if the PDU Session Aggregate Maximum Bit Rate IE is included in the PDU Session Resources To Be Setup List IE contained in the HANDOVER REQUEST message, the target NG-RAN node shall store the received PDU Session Aggregate Maximum Bit Rate in the UE context and use it when enforcing traffic policing for Non-GBR QoS flows for the concerned UE as specified in TS 23.501 [7].
For each QoS flow for which the source NG-RAN node proposes to perform forwarding of downlink data, the source NG-RAN node shall include the DL Forwarding IE set to "DL forwarding proposed" within the Data Forwarding and Offloading Info from source NG-RAN node IE in the PDU Session Resources To Be Setup List IE in the HANDOVER REQUEST message. The source NG-RAN node shall include the DL Forwarding IE set to "DL forwarding proposed" for all the QoS flows mapped to a DRB, if it requests a DAPS handover for that DRB. For each PDU session that the target NG-RAN node decides to admit the data forwarding for at least one QoS flow, the target NG-RAN node includes the PDU Session level DL data forwarding GTP-U Tunnel Endpoint IE within the Data Forwarding Info from target NG-RAN node IE in the PDU Session Resource Admitted Info IE contained in the PDU Session Resources Admitted List IE in the HANDOVER REQUEST ACKNOWLEDGE message.
For each QoS flow for which the source NG-RAN node has not yet received the SDAP end marker packet if QoS flow re-mapping happened before handover, the source NG-RAN node shall include the UL Forwarding Proposal IE within the Data Forwarding and Offloading Info from source NG-RAN node IE in the HANDOVER REQUEST message, and if the target NG-RAN node decides to admit uplink data forwarding for at least one QoS flow, the target NG-RAN node may include the PDU Session Level UL Data Forwarding UP TNL Information IE in the Data Forwarding Info from target NG-RAN node IE in the PDU Session Resources Admitted Item IE contained in the PDU Session Resources Admitted List IE in the HANDOVER REQUEST ACKNOWLEDGE message to indicate that it accepts the uplink data forwarding.
For each PDU session resource successfully setup at the target NG-RAN, the target NG-RAN node may allocate resources for additional Xn-U PDU session resource GTP-U tunnels, indicated in the Secondary Data Forwarding Info from target NG-RAN node List IE.
For each PDU session in the HANDOVER REQUEST message, if the Alternative QoS Parameters Set List IE is included in the GBR QoS Flow Information IE in the PDU Session Resources To Be Setup List IE, the target NG-RAN node may accept the setup of the involved QoS flow when notification control has been enabled if the requested QoS parameters set or at least one of the alternative QoS parameters sets can be fulfilled at the time of handover as specified in TS 23.501 [7]. In case the target NG-RAN node accepts the handover fulfilling one of the alternative QoS parameters it shall indicate the alternative QoS parameters set which it can currently fulfil in the Current QoS Parameters Set Index IE within the PDU Session Resources Admitted List IE of the HANDOVER REQUEST ACKNOWLEDGE message while setting the QoS parameters towards the UE according to the requested QoS parameters set as specified in TS 23.501 [7].
For each DRB for which the source NG-RAN node proposes to perform forwarding of downlink data, the source NG-RAN node shall include the DRB ID IE and the mapped QoS Flows List IE within the Source DRB to QoS Flow Mapping List IE contained in the PDU Session Resources To Be Setup List IE in the HANDOVER REQUEST message. The source NG-RAN node may include the QoS Flow Mapping Indication IE in the Source DRB to QoS Flow Mapping List IE to indicate that only the uplink or downlink QoS flow is mapped to the DRB. If the target NG-RAN node decides to use the same DRB configuration and to map the same QoS flows as the source NG-RAN node, the target NG-RAN node includes the DL Forwarding GTP Tunnel Endpoint IE within the Data Forwarding Response DRB List IE in the HANDOVER REQUEST ACKNOWLEDGE message to indicate that it accepts the proposed forwarding of downlink data for this DRB.
The target NG-RAN node may additionally include the Redundant DL Forwarding UP TNL Information IE if at least one of the QoS flow mapped to the DRB is eligible to the redundant transmission feature as indicated in the Redundant QoS Flow Indicator IE within the PDU Session Resource To Be Setup List IE received in the HANDOVER REQUEST message for the QoS flow.
If the HANDOVER REQUEST ACKNOWLEDGE message contains the UL Forwarding GTP Tunnel Endpoint IE for a given DRB in the Data Forwarding Response DRB List IE within Data Forwarding Info from target NG-RAN node IE in the PDU Session Resources Admitted List IE and the source NG-RAN node accepts the data forwarding proposed by the target NG-RAN node, the source NG-RAN node shall perform forwarding of uplink data for the DRB.
If the HANDOVER REQUEST includes PDU session resources for PDU sessions associated to S-NSSAIs not supported by target NG-RAN, the target NG-RAN node shall reject such PDU session resources. In this case, and if at least one PDU Session Resource To Be Setup Item IE is admitted, the target NG-RAN node shall send the HANDOVER REQUEST ACKNOWLEDGE message including the PDU Session Resources Not Admitted List IE listing corresponding PDU sessions rejected at the target NG-RAN.
If the Mobility Restriction List IE is
- contained in the HANDOVER REQUEST message, the target NG-RAN node shall
- store the information received in the Mobility Restriction List IE in the UE context;
- use this information to determine a target for the UE during subsequent mobility action for which the NG-RAN node provides information about the target of the mobility action towards the UE, except when one of the PDU sessions has a particular ARP value (TS 23.501 [7]) in which case the information shall not apply;
- use this information to select a proper SCG during dual connectivity operation.
- use this information to select proper RNA(s) for the UE when moving the UE to RRC_INACTIVE.
- not contained in the HANDOVER REQUEST message, the target NG-RAN node shall
- consider that no roaming and no access restriction apply to the UE.
If the Trace Activation IE is included in the HANDOVER REQUEST message the target NG-RAN node shall, if supported, initiate the requested trace function as specified in TS 32.422 [23].
If the Index to RAT/Frequency Selection Priority IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall store this information and use it as defined in TS 23.501 [7].
If the UE Context Reference at the S-NG-RAN IE is contained in the HANDOVER REQUEST message the target NG-RAN node may use it as specified in TS 37.340 [8]. In this case, the source NG-RAN node may expect the target NG-RAN node to include the UE Context Kept Indicator IE set to "True" in the HANDOVER REQUEST ACKNOWLEDGE message, which shall use this information as specified in TS 37.340 [8].
For each PDU session, if the Network Instance IE is included in the PDU Session Resource To Be Setup List IE and the Common Network Instance IE is not present, the target NG-RAN node shall, if supported, use it when selecting transport network resource as specified in TS 23.501 [7].
Redundant transmission:
- For each PDU session, if the Redundant UL NG-U UP TNL Information at UPF IE is included in the PDU Session Resource To Be Setup List IE, the target NG-RAN node shall, if supported, use it as the uplink termination point for the user plane data for the redundant transmission for the concerned PDU session.
- For each PDU session, if the Additional Redundant UL NG-U UP TNL Information at UPF List IE is included in the PDU Session Resource To Be Setup List IE, the target NG-RAN node shall, if supported, use them as the uplink termination points for the user plane data for the redundant transmission for the concerned PDU session.
- For each PDU session, if the Redundant Common Network Instance IE is included in the PDU Session Resource To Be Setup List IE, the target NG-RAN node shall, if supported, use it when selecting transport network resource for the redundant transmission as specified in TS 23.501 [7].
- For each PDU session, if the Redundant PDU Session Information IE is included in the PDU Session Resource To Be Setup List IE contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the received information in the UE context and set up the redundant user plane for the concerned PDU session, as specified in TS 23.501 [7]. If the PDU Session Pair ID IE is included in the Redundant PDU Session Information IE, the target NG-RAN node may store and use it to identify the paired PDU sessions.
If the TSC Traffic Characteristics IE is included in the QoS Flows To Be Setup List in the PDU Session Resource To Be Setup List IE, the target NG-RAN node shall, if supported, use it as specified in TS 23.501 [7].
For each PDU session, if the Common Network Instance IE is included in the PDU Session Resource To Be Setup List IE or in the Additional UL NG-U UP TNL Information at UPF List IE, or in the Additional Redundant UL NG-U UP TNL Information at UPF List IE, the target NG-RAN node shall, if supported, use it when selecting transport network resource for the concerned NG-U transport bearer as specified in TS 23.501 [7].
For each PDU session for which the Security Indication IE is included in the PDU Session Resource To Be Setup List IE and the Integrity Protection Indication IE or Confidentiality Protection Indication IE is set to "required", the target NG-RAN node shall perform user plane integrity protection or ciphering, respectively. If the NG-RAN node is not able to perform the user plane integrity protection or ciphering, it shall reject the setup of the PDU Session Resources with an appropriate cause value.
If the NG-RAN node is an ng-eNB, it shall reject all PDU sessions for which the Integrity Protection Indication IE is set to "required".
For each PDU session for which the Security Indication IE is included in the PDU Session Resource To Be Setup List IE and the Integrity Protection Indication IE or the Confidentiality Protection Indication IE is set to "preferred", the target NG-RAN node should, if supported, perform user plane integrity protection or ciphering, respectively and shall notify the SMF whether it succeeded the user plane integrity protection or ciphering or not for the concerned security policy.
For each PDU session for which the Maximum Integrity Protected Data Rate IE is included in the Security Indication IE in the PDU Session Resources To Be Setup List IE, the NG-RAN node shall store the respective information and, if integrity protection is to be performed for the PDU session, it shall enforce the traffic corresponding to the received Maximum Integrity Protected Data Rate IE, for the concerned PDU session and concerned UE, as specified in TS 23.501 [7].
For each PDU session for which the Security Indication IE is included in the PDU Session Resource To Be Setup List IE and the Integrity Protection Indication IE or Confidentiality Protection Indication IE is set to "not needed", the target NG-RAN node shall not perform user plane integrity protection or ciphering, respectively, for the concerned PDU session.
For each PDU session, if the Additional UL NG-U UP TNL Information List IE is included in the PDU Session Resources To Be Setup List IE contained in the HANDOVER REQUEST message, the target NG-RAN node may forward the UP transport layer information to the target S-NG-RAN node as the uplink termination point for the user plane data for this PDU session split in different tunnel.
If the Location Reporting Information IE is included in the HANDOVER REQUEST message, then the target NG-RAN node should initiate the requested location reporting functionality as defined in TS 38.413 [5].
Upon reception of UE History Information IE in the HANDOVER REQUEST message, the target NG-RAN node shall collect the information defined as mandatory in the UE History Information IE and shall, if supported, collect the information defined as optional in the UE History Information IE, for as long as the UE stays in one of its cells, and store the collected information to be used for future handover preparations.
If the Trace Activation IE is included in the HANDOVER REQUEST message which includes
- the MDT Activation IE set to "Immediate MDT and Trace", then the target NG-RAN node shall if supported, initiate the requested trace session and MDT session as described in TS 32.422 [23].
- the MDT Activation IE set to "Immediate MDT Only" or "Logged MDT only", the target NG-RAN node shall, if supported, initiate the requested MDT session as described in TS 32.422 [23] and the target NG-RAN node shall ignore the Interfaces To Trace IE, and the Trace Depth IE.
- the MDT Location Information IE, within the MDT Configuration IE, the target NG-RAN node shall, if supported, store this information and take it into account in the requested MDT session.
- the MDT Activation IE set to "Immediate MDT Only" or "Logged MDT only", and if the Signalling based MDT PLMN List IE is included in the MDT Configuration IE, the target NG-RAN node may use it to propagate the MDT Configuration as described in TS 37.320 [43].
- the Bluetooth Measurement Configuration IE, within the MDT Configuration IE, the target NG-RAN node shall, if supported, take it into account for MDT Configuration as described in TS 37.320 [43].
- the WLAN Measurement Configuration IE, within the MDT Configuration IE, the target NG-RAN node shall, if supported, take it into account for MDT Configuration as described in TS 37.320 [43].
- the Sensor Measurement Configuration IE, within the MDT Configuration IE, the target NG-RAN node shall take it into account for MDT Configuration as described in TS 37.320 [43].
- the MDT Configuration IE and if the target NG-RAN node is a gNB receiving a MDT Configuration-EUTRA IE, or the target NG-RAN node is a ng-eNB receiving a MDT Configuration-NR IE, the target NG-RAN node shall store it as part of the UE context, and use it as described in TS 37.320 [43].
If the Management Based MDT PLMN List IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the received information in the UE context, and use this information to allow subsequent selection of the UE for management based MDT defined in TS 32.422 [23].
If the HANDOVER REQUEST message includes the Management Based MDT PLMN List IE, the target NG-RAN node shall, if supported, store it in the UE context, and take it into account if it includes information regarding the PLMN serving the UE in the target NG-RAN node.
If the Mobility Information IE is provided in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store this information. The target NG-RAN shall, if supported, store the C-RNTI assigned at the source cell as received in the HANDOVER REQUEST message.
Upon reception of the UE History Information from the UE IE in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the collected information and use it for future handover preparations.
For each QoS flow which has been successfully established in the target NG-RAN node, if the QoS Monitoring Request IE was included in the QoS Flow Level QoS Parameters IE contained in the HANDOVER REQUEST message, the target NG-RAN node shall store this information, and shall, if supported, perform delay measurement and QoS monitoring, as specified in TS 23.501 [7]. If the QoS Monitoring Reporting Frequency IE was included in the QoS Flow Level QoS Parameters IE contained in the HANDOVER REQUEST message, the target NG-RAN node shall store this information, and shall, if supported, use it for RAN part delay reporting.
If the 5GC Mobility Restriction List Container IE is included in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store this information in the UE context and use it as specified in TS 38.300 [9].
V2X:
- If the NR V2X Services Authorized IE is included in the HANDOVER REQUEST message and it contains one or more IEs set to "authorized", the target NG-RAN node shall, if supported, consider that the UE is authorized for the relevant service(s).
- If the LTE V2X Services Authorized IE is included in the HANDOVER REQUEST message and it contains one or more IEs set to "authorized", the target NG-RAN node shall, if supported, consider that the UE is authorized for the relevant service(s).
- If the NR UE Sidelink Aggregate Maximum Bit Rate IE is included in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, use the received value for the concerned UE's sidelink communication in network scheduled mode for NR V2X services.
- If the LTE UE Sidelink Aggregate Maximum Bit Rate IE is included in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, use the received value for the concerned UE's sidelink communication in network scheduled mode for LTE V2X services.
5G ProSe:
- If the 5G ProSe Authorized IE is included in the HANDOVER REQUEST message and it contains one or more IEs set to "authorized", the target NG-RAN node shall, if supported, consider that the UE is authorized for the relevant service(s).
- If the 5G ProSe UE PC5 Aggregate Maximum Bit Rate IE is included in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, use the received value for the concerned UE's sidelink communication in network scheduled mode for 5G ProSe services.
- If the 5G ProSe PC5 QoS Parameters IE is included in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, use it as defined in TS 23.304 [48].
If the PC5 QoS Parameters IE is included in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, use it as defined in TS 23.287 [38].
If the DAPS Request Information IE is included for a given DRB in the HANDOVER REQUEST message, the target NG-RAN node shall consider that the request concerns a DAPS handover for that DRB, as described in TS 38.300 [9]. Accordingly, the target NG-RAN node shall include the DAPS Response Information IE in the HANDOVER REQUEST ACKNOWLEDGE message.
If the Maximum Number of CHO Preparations IE is included in the Conditional Handover Information Acknowledge IE contained in the HANDOVER REQUEST ACKNOWLEDGE message, then the source NG-RAN node should not prepare more candidate target cells for a CHO for the same UE towards the target NG-RAN node than the number indicated in the IE.
If the Estimated Arrival Probability IE is contained in the Conditional Handover Information Request IE included in the HANDOVER REQUEST message, then the target NG-RAN node may use the information to allocate necessary resources for the incoming CHO.
If the IAB Node Indication IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, consider that the handover is for an IAB node. In addition:
- If the No PDU Session Indication IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, consider the UE as an IAB-node which does not have any PDU sessions activated, and ignore the PDU Session Resources To Be Setup List IE, and shall not take any action with respect to PDU session setup. Subsequently, the source NG-RAN node shall, if supported, ignore the PDU Session Resources Admitted To Be Added List IE in the HANDOVER REQUEST ACKNOWLEDGE message.
If the UE Radio Capability ID IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store this information in the UE context and use it as defined in TS 23.501 [7] and TS 23.502 [13].
If for a given QoS Flow the Source DL Forwarding IP Address IE is included within the Data Forwarding and Offloading Info from source NG-RAN node IE in the PDU Session Resources To Be Setup List IE contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store this information and use it as part of its ACL functionality configuration actions, if such ACL functionality is deployed.
If the MBS Session Information List IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, establish MBS session resources as specified in TS 23.247 [46] and TS 38.300 [9], if applicable.
If the HANDOVER REQUEST message includes the MBS Area Session ID IE, the target NG-RAN, if supported, shall use this information as an indication from which MBS Area Session ID the UE is handed over. For each MBS session for which the Active MBS Session Information IE is included in the MBS Session Information Item List IE, the target NG-RAN shall, if supported, use this information to setup respective MBS Session Resources. The target NG-RAN node shall, if supported, consider that the MBS sessions for which the Active MBS Session Information IE is not included are inactive.
If the HANDOVER REQUEST ACKNOWLEDGE message contains in the MBS Session Information Response List IE the MBS Data Forwarding Response Info IE that the source NG-RAN node shall use the information for forwarding MBS traffic to the target NG-RAN node.
If the MBS Session Associated Information List IE is included in the PDU Session Resources To Be Setup List IE in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, use the information contained in the Associated QoS Flows Information List IE as specified in TS 23.247 [46].
For each MRB indicated in the MBS Mapping and Data Forwarding Request Info from source NG-RAN node IE, the target NG-RAN node shall use the MRB ID IE and, if included, the MRB Progress Information IE which includes the highest PDCP SN of the packet which has already been delivered to the UE for the MRB, to decide whether to apply data forwarding for that MRB and to establish respective resources.
The source NG-RAN shall, for each MRB in the MBS Data Forwarding Response Info from target NG-RAN node IE in the HANDOVER REQUEST ACKNOWLEDGE message, start data forwarding to the indicated DL Forwarding UP TNL Information. If the MRB Progress Information IE is included the source NG-RAN node may use the information to determine when to stop data forwarding.
If the Time Synchronisation Assistance Information IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store this information in the UE context and use it as defined in TS 23.501 [7].
If the QMC Configuration Information IE is contained in the HANDOVER REQUEST message, the target NG-RAN node shall, if supported, take it into account for QoE measurements handling, as described in TS 38.300 [9].
If the UE Slice-Maximum Bit Rate List IE is contained in HANDOVER REQUEST message, the target NG-RAN node shall, if supported, store the received UE Slice Maximum Bit Rate List in the UE context, and use the received UE Slice Maximum Bit Rate value for each S-NSSAI for the concerned UE as specified in TS 23.501 [7].
Interaction with SN Status Transfer procedure:
If the UE Context Kept Indicator IE set to "True" and the DRBs transferred to MN IE are included in the HANDOVER REQUEST ACKNOWLEDGE message, the source NG-RAN node shall, if supported, include the uplink/downlink PDCP SN and HFN status received from the S-NG-RAN node in the SN Status Transfer procedure towards the target NG-RAN node, as specified in TS 37.340 [8].
상기 표 13 내지 표 18에 기초하여, 일반적인 UE의 HO 과정을 설명하면 다음과 같다. UE가 Uu link measurement 결과(자신의 서빙 셀의 Uu link 신호 세기 및 주변 neighbor cell 들의 Uu link 신호 세기)를 기지국에 보고하고, 기지국은 UE가 보고한 측정 결과를 이용하여 target cell을 선택한다. 서빙 기지국(Serving gNB)은 target cell이 속한 타겟 기지국(이하 타겟 기지국(target gNB))에 HO request를 요구할 수 있으며, 타겟 기지국은 HO를 허락하는 경우, 서빙 기지국을 통해 HO를 위한 RRCReconfiguration(withSync) 메시지를 전송한다.
다음 표 19는 ‘New Rel-18 WID on NR sidelink relay enhancements’로써 본 개시의 종래 기술에 해당한다.
3. Study the benefit and potential solutions for multi-path support to enhance reliability and throughput (e.g., by switching among or utilizing the multiple paths simultaneously) in the following scenarios [RAN2, RAN3]:
A. A UE is connected to the same gNB using one direct path and one indirect path via 1) Layer-2 UE-to-Network relay, or 2) via another UE (where the UE-UE inter-connection is assumed to be ideal), where the solutions for 1) are to be reused for 2) without precluding the possibility of excluding a part of the solutions which is unnecessary for the operation for 2).
Note 3A: Study on the benefit and potential solutions are to be completed in RAN#98 which will decide whether/how to start the normative work.
Note 3B: UE-to-Network relay in scenario 1 reuses the Rel-17 solution as the baseline.
Note 3C: Support of Layer-3 UE-to-Network relay in multi-path scenario is assumed to have no RAN impact and the work and solutions are subject to SA2 to progress.
3GPP NR Rel-18에서 준비 중인 릴레이 동작은, 리모트 UE는 direct path와 릴레이 UE를 통한 indirect path 둘 다를 activation 할 수 있으며, 이 때, 리모트 UE와 릴레이 UE 간의 connection은 SL 또는 ideal link가 될 수 있다.
일 실시예에 의한 리모트 UE의 핸드오버(Handover, HO)에 관련된 서빙 기지국은, 리모트 UE로부터 측정 결과를 수신(도 15의 S1501)할 수 있다. 서빙 기지국은 상기 리모트 UE의 HO를 위한 타겟 기지국을 선택할 수 있다. 서빙 기지국은 상기 타겟 기지국으로 HO request 메시지를 전송(S1502a)할 수 있다. 서빙 기지국은 상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송(S1502)할 수 있다.
여기서, 상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함할 수 있다. 또한, 상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 서빙 기지국이 상기 릴레이 UE에게 전송하는 RRC reconfiguration with sync는 상기 릴레이 UE가 상기 리모트 UE와 연결을 유지할 것을 지시하는 정보를 포함할 수 있다.
즉, 서빙 기지국이 리모트 UE와 릴레이 UE를 함께 하나의 타겟 기지국으로 HO 시키기로 결정/판단 및/또는 타겟 기지국이 허용한 경우, 리모트 UE와 릴레이 UE에게 이미 수립되어 있는 사이드링크 연결을 유지할 것을 지시할 수 있는 것이다. 보다 상세히, 타겟 기지국은 리모트 UE와 릴레이 UE가 둘 다 타겟 기지국으로 HO 할 수 있도록 허락한 경우(서빙 기지국의 HO request에 대한 ACK을 전송한 경우), 리모트 UE와 릴레이 UE 각각에 reconfiguration with sync (HO 관련 configuration 포함) 메시지를 전송할 수 있다. 기존 Rel-17 SL U2N relay 동작에 있어서 릴레이 UE가 HO를 수행하는 경우, 리모트 UE에 notification 메시지를 전송하고 이를 수신한 리모트 UE는 릴레이 UE와의 SL connection을 release 하거나, 유지할 수 있다(리모트 UE implementation). 그러나 리모트 UE와 릴레이 UE가 동일 타겟 기지국으로 HO를 수행할 수 있는 경우, 릴레이 UE는 HO를 수행하는 경우에도 리모트 UE에게 notification 메시지를 전송하지 않아야 한다.
따라서 타겟 기지국이 (service gNB를 통해서) 릴레이 UE에 전달하는 reconfiguration with sync 메시지에는 현재 리모트 UE와 SL connection을 유지하라는 indication이 포함되어 있을 수도 있다. 마찬가지로 리모트 UE에게 전달하는 reconfiguration with sync 메시지에도 현재 릴레이 UE와 SL connection을 유지하라는 indication이 포함되어 있을 수도 있다. 상기 indication이 포함되어 있는 reconfiguration with sync 메시지를 수신한 리모트 UE/릴레이 UE는 자신의 peer 릴레이 UE/리모트 UE도 자신과 동일한 타겟 기지국(및/또는 cell)로 HO 명령을 받았을 것으로 가정하고 현재 SL connection을 그대로 유지할 수 있다.
상기 HO request 메시지는 상기 리모트 UE와 상기 릴레이 UE가 multi-path relay 관계에 있음을 알리는 정보를 포함할 수 있다. 리모트 UE와 릴레이 UE가 둘 다 측정 및 보고가 triggering 되었고, 서빙 기지국이 리모트 UE와 릴레이 UE의 측정 보고 결과로 릴레이 UE와 리모트 UE가 동일한 타겟 기지국으로 HO 할 수 있다고 판단하는 경우가 발생할 수 있다. 이 경우 서빙 기지국은 타겟 기지국에 리모트 UE와 릴레이 UE의 HO를 request 하면서 상술한 설명과 같이 두 UE가 multi-path relay 관계에 있는 UE임을 indication 할 수 있는 것이다.
상기 서빙 기지국은 상기 타겟 기지국으로 상기 릴레이 UE에 관련된 정보를 전달할 수 있다. 상기 릴레이 UE에 관련된 정보는, 상기 릴레이 UE의 C-RNTI, SRC(source) L2 ID, DST(destination) L2 ID, XNAP ID, L2 ID Uu 측정 결과, 상기 서빙 기지국이 멀티패스 릴레이 동작을 위해서 상기 릴레이 UE에 설정한 bearer 및 bearer mapping 정보를 포함할 수 있다. 보다 상세히, 서빙 기지국은 타겟 기지국에 리모트 UE ((및/또는) 릴레이 UE)의 HO를 request 하면서 현재 릴레이 UE의 정보도 함께 전달할 수 있다. 예를 들어 현재 릴레이 UE의 C-RNTI, 리모트 UE/릴레이 UE의 SRC/DST L2 ID, XNAP ID, 릴레이 UE의 Uu 측정 결과(및/또는 리모트 UE의 Uu 측정 결과, 리모트 UE/릴레이 UE가 측정한 SL 측정 결과), 서빙 기지국이 multi-path relaying 동작을 위해서 리모트 UE와 릴레이 UE에 configuration한 bearer 및 bearer mapping 정보, 리모트 UE의 local ID 등을 리모트 UE(및/또는 릴레이 UE)의 정보 전달 시 함께 전송할 수도 있다.
이와 유사하게, 리모트 UE의 측정 및 보고가 triggering 되었고, 서빙 기지국이 릴레이 UE의 HO가 필요하다고 판단하여 릴레이 UE의 타겟 기지국을 결정한 경우, 리모트 UE의 서빙 기지국은 타겟 기지국으로 리모트 UE의 HO 시 필요한 정보 외에 (릴레이 UE의 HO가 결정되지 않은 경우임에도 불구하고) 리모트 UE와 연결된 릴레이 UE의 정보도 함께 전송할 수 있다. 이때 서빙 기지국이 타겟 기지국에 전달하는 정보는 현재 릴레이 UE의 C-RNTI, 리모트 UE/릴레이 UE의 SRC/DST L2 ID, XNAP ID, 릴레이 UE의 Uu 측정 결과(및/또는 리모트 UE의 Uu 측정 결과, 리모트 UE/릴레이 UE가 측정한 SL 측정 결과), 서빙 기지국이 multi-path relaying 동작을 위해서 리모트 UE와 릴레이 UE에 configuration한 bearer 및 bearer mapping 정보, 리모트 UE의 local ID 등을 리모트 UE(및/또는 릴레이 UE)의 정보 전달 시 함께 전송할 수도 있다. 타겟 기지국은 리모트 UE의 HO 후에 일정 시간 후(및/또는 전)에 릴레이 UE의 handover가 triggering 된 경우 이미 리모트 UE의 HO시 전달받은 이러한 정보를 이용하여 타겟 기지국(및/또는 cell)에서 리모트 UE의 indirect path 설정 시 이용할 수 있다. 예를 들어 리모트 UE의 HO 후 (일정 시간 내에) 릴레이 UE 도 HO가 되었다면 타겟 기지국은 릴레이 UE가 리모트 UE와 SL connection을 유지하고 있는 경우 빠르게 indirect 설정을 할 수 있다.
상기 릴레이 UE는 상기 리모트 UE에 연결된 복수의 릴레이 UE 중 하나일 수 있다. 상기 릴레이 UE는, 상기 서빙 기지국이 상기 복수의 릴레이 UE에 대한 측정 결과에 기초하여, 상기 리모트 UE와 함께 상기 타겟 기지국으로 HO가 가능하다고 판단한 것일 수 있다. 만약, 하나의 리모트 UE가 여러 릴레이 UE와 연결되어 있는 경우, 서빙 기지국은 여러 릴레이 UE의 측정 보고 결과로 리모트 UE와 동일한 타겟 기지국으로 HO 가능한 릴레이 UE에 대한 정보만 리모트 UE의 HO 요청 시 함께 전송할 수도 있다.
상술한 내용들은 Multi-path relay 동작이 아닌 single path relay 동작에서도 적용될 수도 있다.
Multi-path relay 동작에서 direct link가 primary path인 경우, HO 명령을 받은 리모트 UE는 indirect path를 일단 deactivation 할 수도 있다. 만약 상기 기술한 바와 같이 리모트 UE와 릴레이 UE가 동일 gNB(및/또는 cell)로 HO를 한 경우, 타겟 기지국 및/또는 서빙 기지국은 리모트 UE에 indirect link를 inactive(및/또는 active) 시키는 configuration을 할 수 있다. 예를 들어 (source/target) gNB는 리모트 UE에 HO configuration 시 indirect link를 deactivation 하는 신호를 포함하고, 동일 릴레이 UE가 리모트 UE와 동일 gNB(및/또는 cell)로 HO를 완료하면, direct link로 리모트 UE의 indirect link를 activation 하는 RRCconfiguration으로 전송할 수도 있다.
또는 direct link가 primary path인 경우, HO 명령을 받은 리모트 UE는 HO 명령에 현재 릴레이 UE와 SL connection을 유지하라는 indication이 없다면 (즉, 현재 연결된 리모트 UE와 동일 gNB로 HO하는 경우가 아는 경우) indirect link를 release 할 수도 있다. 새로운 타겟 기지국(및/또는 cell)에 HO를 완료한 리모트 UE는 indirect link의 RLF를 보고하고 새로운 indirect link를 맺을 수도 있다.
리모트 UE와 릴레이 UE를 동일 gNB(및/또는 cell)로 HO 하는 경우 타겟 기지국은 릴레이 UE와 리모트 UE의 HO command에 타겟 기지국(및/또는 cell)에서 사용할 indirect 관련 configuration(SL/Uu bearer, bearer mapping)을 함께 configuration 할 수도 있다.
리모트 UE와 릴레이 UE가 ideal link로 연결되어 있는 경우 리모트 UE와 릴레이 UE가 함께 HO 하는 경우 ideal link로 연결되어 있음을 타겟 기지국에 알려야 할 수도 있다. 이 경우 타겟 기지국은 리모트 UE와 릴레이 UE 사이의 불필요한 SL connection 관련된 설정을 HO 명령에서 제외시킬 수 있다.
상기 기술에서 리모트 UE는 릴레이 UE로, 릴레이 UE는 리모트 UE로 대체되어 해석될 수도 있다.
상술한 바와 같이, 리모트 UE가 현재 U2N connection을 맺고 있는 릴레이 UE와 함께 HO를 수행하는 경우, 현재의 SL connection을 계속 유지하며 service continuity를 만족할 수 있다는 점에서 장점이 있다. 상기 본 개시 내용과 같이 동작하지 않고 Multi-path relaying 동작에서 리모트 UE가 (inter-gNB/cell로) HO를 수행하는 경우, 리모트 UE는 새로운 타겟 기지국(및/또는 cell)에서 multi-path relaying 동작을 하고자 하는 리모트 UE는 새로운 릴레이 UE를 찾는 수고 및 이를 위한 시간을 소비해야 할 수 있다.
상술한 설명과 관련하여, 서빙 기지국은, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작들은, 리모트 UE로부터 측정 결과를 수신; 상기 리모트 UE의 HO를 위한 타겟 기지국을 선택; 상기 타겟 기지국으로 HO request 메시지를 전송; 및 상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송을 포함하며, 상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함할 수 있다.
또한, 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 서빙 기지국을 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서, 상기 동작들은, 리모트 UE로부터 측정 결과를 수신; 상기 리모트 UE의 HO를 위한 타겟 기지국을 선택; 상기 타겟 기지국으로 HO request 메시지를 전송; 및 상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송을 포함하며, 상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함할 수 있다.
또한, 리모트 UE의 핸드오버(Handover, HO)에 관련된 리모트 UE의 동작 방법은, 상기 리모트 UE가 서빙 기지국으로 측정 결과를 전송; 상기 리모트 UE가 상기 서빙 기지국으로부터 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 수신; 상기 리모트 UE가 상기 타겟 기지국으로 RRC reconfiguration complete 를 전송; 및 상기 리모트 UE가 릴레이 UE를 통해 상기 타겟 기지국으로 데이터를 전송을 포함하며, 상기 상기 리모트 UE와 상기 릴레이 UE가 상기 타겟 기지국으로 HO 되는 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함할 수 있다.
계속해서, Multi-path relay 동작을 수행하는 릴레이 UE가 HO를 수행하는 경우에 대해 살펴본다.
릴레이 UE의 측정 및 보고가 트리거링 되고 서빙 기지국 (및/또는 타겟 기지국)이 이를 바탕으로 HO를 결정하는 경우, 릴레이 UE에 연결되어 있는 (여러) 리모트 UE에 관한 정보도 타겟 기지국으로 함께 전달할 수도 있다. 이때 전달되는 정보는 리모트 UE의 C-RNTI, 리모트 UE/릴레이 UE의 SRC/DST L2 ID, XNAP ID, 리모트 UE의 Uu 측정 결과(및/또는 릴레이 UE의 Uu 측정 결과, 리모트 UE/릴레이 UE가 측정한 SL 측정 결과), 서빙 기지국이 multi-path relaying 동작을 위해서 리모트 UE와 릴레이 UE에 configuration한 bearer 및 bearer mapping 정보, 리모트 UE의 local ID 등을 릴레이 UE(및/또는 리모트 UE)의 정보 전달 시 함께 전송할 수도 있다.
타겟 (소스) gNB는 릴레이 UE의 HO 결정 시 연결된 리모트 UE의 HO도 함께 결정할 수 있다. 이 경우, 타겟 기지국이 릴레이 UE/리모트 UE에 configure 하는 정보에는 리모트 UE와 릴레이 UE간의 SL connection을 유지하라는 indication이 포함될 수 있다.
Primary path가 indirect path인 경우 릴레이 UE의 HO로 인하여 함께 HO 하게 된 리모트 UE의 경우 direct link는 release 해야 한다 (여기에는 리모트 UE의 direct link는 릴레이 UE의 gNB로 HO가 불가한 경우가 포함될 수 있다). 이때, 리모트 UE는 indirect link로 direct link의 RLF를 보고하고 새로운 direct link를 위한 configuration을 받을 수도 있다.
또는 primary path가 indirect path인 리모트 UE임에도 불구하고, 릴레이 UE가 HO를 notification 한 경우, primary path를 direct path로 switching 하고 indirect link는 release 할 수도 있다. 릴레이 UE가 HO를 notification 하는 경우, gNB ID (및/또는 NCGI(NR Cell Global Identifier), gNB가 변경되었는지 여부 등)를 리모트 UE에 알려야 할 수도 있다. 리모트 UE는 릴레이 UE가 HO 후에도 자신과 여전히 동일한 gNB에 연결되어 있다면 릴레이 UE와의 SL connection을 release 할 필요 없지만, 릴레이 UE가 다른 gNB로 HO 한 경우 indirect link를 release 하고 이를 기지국에 보고해야 할 수도 있다.
Multi-path로 연결되어 있는 리모트 UE 또는 릴레이 UE 중 어느 하나의 UE만 타겟 기지국(및/또는 서빙 기지국)으로부터 HO 명령을 받은 경우(HO에 대한 ACK을 받은 경우) 서빙 기지국은 HO를 받지 않은 다른 리모트 UE/릴레이 UE에 대해서 새로운 configuration을 수행할 수 있다.
예를 들어, 리모트 UE만 HO 명령을 받은 경우, 리모트 UE의 서빙 기지국은 릴레이 UE의 보고(예를 들어, 리모트 UE와의 SL release 등에 대한 보고) 없이도 릴레이 UE에 새로운 configuration을 할 수도 있다. 즉, remote (및/또는 relay) UE의 상위 layer에서 release를 수행할 때 HO를 이유로 release 함을 알리면, 이를 수신한 릴레이 UE(및/또는 리모트 UE)의 상위 layer는 이를 AS layer에 알릴 수 있다. 이를 받은 AS layer는 상대 리모트 UE와의 SL connection이 release 되었지만 이를 자신의 기지국으로 보고할 필요는 없을 수 있다.
또는 릴레이 UE만 HO 명령을 받은 경우, 릴레이 UE의 서빙 기지국은 리모트 UE의 보고(예를 들어, 릴레이 UE와의 SL release 등에 대한 보고) 없이도 리모트 UE에 새로운 configuration을 할 수도 있다. 따라서 HO 명령을 받은 릴레이 UE는 리모트 UE가 multi-path 동작을 하는 UE임을 아는 경우, 자신이 HO 명령을 받았어도 이를 릴레이 UE에 알릴 필요 없다. 또한 리모트 UE도 릴레이 UE와 SL connection이 릴레이 UE의 HO를 이유로 release 되었다고 해도 이를 기지국에 알릴 필요가 없을 수 있다.
즉, 상위 릴레이 UE/리모트 UE의 상위 layer에서 SL를 HO를 이유로 release 할 때, 이를 기지국에 알릴 필요 없음을 AS layer에 indication 할 수도 있다. 이는 gNB에 행해지는 불필요한 보고를 막기 위함이다.
SL 동작에서 SL 측정은 SRC/DST pair 별로 이루어질 수 있으므로 서빙 기지국/타겟 기지국이 HO를 결정하는 경우 하나의 SRC/DST pair 만으로 판단하면 문제가 생길 수도 있다. 하나의 리모트 UE/릴레이 UE에는 여러 릴레이 UE/리모트 UE 및 순수 사이드링크 동작을 하는 UE들이 연결되어 있을 수 있기 때문이다. 따라서 serving/타겟 기지국이 HO를 결정하기 위해서는 릴레이 UE/리모트 UE에 연결되어 있는 다른 SRC/DST pair를 모두 고려해야 할 수도 있다. 이를 위해서 하나의 SRC/DST pair의 측정 및 보고가 triggering 된 경우, 다른 SRC/DST pair의 측정 및 보고 이 triggering 될 수 있도록 configure 될 수도 있다.
본 개시에서 상기 기술한 primary link는 direct/indirect link 중 gNB에서 결정하거나, control 신호를 주고 받는 path, connection establishment를 행한 link, 다량의 data volume의 data를 전송하는 path, security 관련 설정이 이루어지는 path 등을 의미할 수 있다.
이하에서는 gNB가 direct path로의 HO와 indirect path로의 HO의 몇가지 가능성을 주고, remote UE는 특정 조건이 만족하면 HO를 수행하는 것에 관련된 실시예에 대한 내용이 개시된다.
Multi-path 동작에서 리모트 UE가 선택하는 릴레이 UE의 RRC 상태는 RRC IDLE/INACTIVE/CONNECTED 상태일 수 있다. Direct(및/또는 indirect) link를 가지고 있는 리모트 UE(및/또는 리모트 UE의 serving gNB)가 SL connection을 맺기 위한 릴레이 UE를 결정한 경우 선택된 릴레이 UE는 RRC IDLE/INACTIVE 상태일 수 있다. 이 경우, 릴레이 UE는 리모트 UE와 SL connection을 맺기 전에 discovery message 등으로 camp on 하고 있는 cell(및/또는 gNB)라고 알렸던 cell(및/또는 gNB)와 다른 cell(및/또는 gNB)로 CONNECTED 상태(및/또는 RACH 수행)가 될 수 있다. 또는 RRC IDLE/INACTIVE 상태인 릴레이 UE는 리모트 UE와 SL connection을 맺고 이것이 릴레이 UE가 RRC_CONNECTED로 되는 triggering 조건이 될 수도 있다. 이 경우 RRC_CONNECTED 상태가 triggering 된 릴레이 UE가 기존 discovery message 등으로 broadcast 한 cell(및/또는 gNB)와 다른 cell(및/또는 gNB)로 CONNECTED 상태가 된경우 리모트 UE는 어떻게 동작해야 하는지가 문제될 수 있다. 따라서, 이하에서는 direct/indirect link를 가지고 있는 리모트 UE가 RRC IDLE/INACTIVE 상태인 릴레이 UE와 multi-path relaying을 위한 connection을 맺는 과정에서 발생될 수 있는 상기 기술한 문제를 해결하기 위한 방법에 대해서 기술한다.
우선, 리모트 UE는 gNB와 direct(및/또는 indirect) link를 가지고 있고, 상기 gNB로부터 multi-path(및/또는 HO)를 위한 command를 받는 동작에 관련된 실시예를 살펴본다.
서빙 기지국/타겟 기지국은 리모트 UE가 SL connection을 맺을 릴레이 UE에 대한 정보를 알려줄 수 있다(via reconfiguration with sync). 그러나 리모트 UE가 정해진 릴레이 UE와 SL connection을 맺는데 실패할 수 있으므로 서빙 기지국/타겟 기지국은 리모트 UE가 multi-path(및/또는 HO)를 실패했을 경우를 대비하여 보조적인 정보를 multi-path(및/또는 HO) 명령에 함께 알려줄 수 있다. 타겟 기지국이 제공하는 보조적인 정보는 다른 후보 릴레이 UE의 ID (그리고/혹은) direct link로 접속하는데 도움이 될 수 있는 정보 등이 될 수 있다.
예를 들어, 서빙 기지국/타겟 기지국은 리모트 UE에 대한 multi-path(및/또는 HO) 명령에는 리모트 UE가 SL connection을 맺을 수 있는 여러 가능성이 있는 릴레이 UE를 list의 형태로 알려줄 수 있다. 리모트 UE는 list의 가장 첫 번째에 list up 되는 릴레이 UE의 ID로 가장 먼저 SL connection을 시도해야 하며, list의 순서대로 SL connection을 시도할 수 있다. 여기서 상기 list의 첫 번째 릴레이 UE는 예시이며, list에 있는 여러 후보 릴레이 UE중에 리모트 UE가 임의로 설정, 미리 설정된 릴레이 UE, 또는 랜덤하게 선택된 릴레이 UE일 수도 있다.
이를 위해서 serving gNB(및/또는 cell)는 list에 있는 (모든/여러) 후보 릴레이 UE의 serving(및/또는 camp on) cell(즉, 타겟 기지국(및/또는 cell))에 multi-path(및/또는 HO)를 위한 request를 할 수 있다. 이때 list에 있는 (모든/여러) 후보 릴레이 UE 들은 모두 동일 타겟 기지국(및/또는 cell)에 속하는 것으로 한정될 수도 있다. 즉, serving gNB(및/또는 cell)은 하나의 릴레이 UE를 정하되 해당 릴레이 UE와 동일 타겟 기지국(및/또는 cell)에 속하는 다른 후보 릴레이 UE의 정보를 함께 타겟 기지국에 전달할 수도 있다.
만약, list에 있는 (모든/여러) 후보 릴레이 UE 들이 모두 동일 타겟 기지국(및/또는 cell)에 속하는 것으로 한정되지 않는 경우, serving gNB는 list에 있는 (모든/여러) 후보 릴레이 UE의 serving(및/또는 camp on) cell(즉, target cell)에 각기 multi-path(및/또는 HO)를 위한 request를 할 수 있다. 이 경우 각 target cell은 리모트 UE에게 HO에 관련한 RRCReconfiguration (reconfiguration with sync) 명령을 할 수 도 있다. 이 경우 리모트 UE는 여러 target cell에서 온 (multi-path/HO 명령이 포함된) RRCReonfiguration 중 하나를 선택하여 access를 시도할 수도 있다.
또는 list에 있는 (모든/여러) 후보 릴레이 UE 들이 모두 동일 타겟 기지국(및/또는 cell)에 속하는 것으로 한정되지 않는 경우, serving gNB는 여러 타겟 기지국에서 오는 reconfiguration(with sync) 메시지를 하나로 통합하여 하나의 메시지 format으로 리모트 UE에게 전송할 수도 있다. 여러 타겟 기지국(및/또는 cell)가 설정될 수 있는 경우, 후보 릴레이 UE에 대한 list up 순서는 소스 기지국이 정할 수도 있다.
이를 수신한 리모트 UE는 RRC (예를 들어, reconfiguration with sync) 메시지의 후보 릴레이 UE list의 가장 첫 번째에 속하는 후보 릴레이에 가장 먼저 SL connection을 시도할 수도 있다. 만약 리모트 UE가 정해진 릴레이 UE와 SL connection을 맺는데 실패했으나, multi-path(및/또는 HO) 관련된 timer(예를 들어, T304, T304-like, T420 or T420-like)가 아직 만료하지 않은 경우(즉, 잔여 시간이 남은 경우) RRC (예를 들어, reconfiguration with sync) 메지시의 list에 포함되어 있는 다른 후보 릴레이 UE에 SL connection을 시도해 볼 수 있다. multi-path(및/또는 HO) 관련된 timer의 잔여 시간이 남아 있는 한 리모트 UE는 다른 후보 릴레이 UE에 SL connection을 시도할 수 있고, 이때 시도하는 순서는 주어진 list의 순서에 기반할 수 있다.
소스 기지국(및/또는 cell)은 multi-path(및/또는 HO)에 적합한 하나의 릴레이 UE를 정하고, 정해진 릴레이 UE의 타겟 기지국(및/또는 cell)에 multi-path(및/또는 HO)를 요청할 수도 있다. 이때 소스 기지국이 정한 릴레이 UE의 L2 SRC/DST ID, measurement 값(SD-RSRP, 릴레이 UE/리모트 UE가 측정한 Uu link 신호 세기), local ID, 릴레이 UE의 cell ID, PLMN ID등을 알려줄 수 있다. 또는 동일 target cell에 속하는 다른 후보 릴레이 UE의 ID 및 측정 결과도 함께 알려줄 수도 있다.
이를 수신한 타겟 기지국은 소스 기지국으로부터 받은 릴레이 UE에 대한 multi-path(및/또는 HO) 요청에 ACK을 전송할 수 있다. 타겟 기지국은 리모트 UE에 RRC (reconfiguration with sync) 메시지를 전송할 수 있는데, 이 경우, indirect link를 생성할 수 있는 소스 기지국 및/또는 타겟 기지국이 결정한 릴레이 UE ID와 타겟 기지국에 directly access 할 수 있는 정보(예를 들어, contention free based RACH가 가능할 수 있도록 하는 preamble 값 제공) 둘 다를 제공할 수 있다.
RRC 메시지를 수신한 리모트 UE는 자신이 (동일) 타겟 기지국(및/또는 cell)에 대해서 indirect path와 direct path를 결정할 수 있다. 예를 들어, 리모트 UE가 indirect path를 결정한 경우 리모트 UE는 우선적으로 RRC 메시지에 포함되어 있는 릴레이 UE와 SL connection을 시도할 수 있다. 만약 리모트 UE가 SL connection을 완료하는데 실패한 경우(및/또는 릴레이 UE로부터 notification 메시지를 수신한 경우, (및/또는) IDLE/INACTIVE 상태의 릴레이 UE의 cell 이 바뀌었음을 detect 한 경우, (및/또는) SL connection은 완료했으나 RRCReconfigurationComplete 메시지를 전송하지 못한 경우 등) multi-path(및/또는 HO) 관련된 timer(예를 들어, T304 or T304-like or T420 or T420-like)가 아직 만료하지 않은 경우(즉, 잔여 시간이 남은 경우) 타겟 기지국으로 direct link connection을 시도할 수도 있다.
또 다른 예시로, 리모트 UE가 direct path를 결정한 경우, 리모트 UE는 타겟 기지국(및/또는 cell)로 RACH를 수행할 수도 있다. 만약 RACH에 실패한 경우 multi-path(및/또는 HO) 관련된 timer(예를 들어, T304, T304-like, T420 or T420-like)가 아직 만료되지 않은 경우(즉, 잔여 시간이 남은 경우) RRC 메시지에 포함되어 있던 릴레이 UE와 SL connection을 시도하여 RRCReconfigurationComplete 메시지를 전송할 수도 있다. RRC 메시지에 포함되어 있던 릴레이 UE가 여러 개인 경우(list up) 첫번째 릴레이 UE부터 SL connection을 시도해 볼 수 있다.
이 경우 기지국은 리모트 UE로부터 direct link와 indirect로의 access가 모두 가능함을 기대할 수 있다.
만약, 타겟 기지국으로 액세스하는 link(예를 들어, direct link or indirect link) 중 리모트 UE가 우선적으로 액세스할 link를 (source/target) gNB가 결정한 경우, RRC 메시지에는 타겟 기지국이 우선적으로 기대하는 link의 type이 표기될 수도 있다. 예를 들어 타겟 기지국은 리모트 UE가 direct로 액세스할 것을 기대하며, 이를 리모트 UE에 indication 할 수 있다. 이를 수신한 리모트 UE는 우선적으로는 타겟 기지국이 지시한 우선 access link(상기 예에서는 direct link)를 통해서 access를 수행하되 fail 한 경우(예를 들어, RACH 실패) RRC 메시지에 포함되어 있는 릴레이 UE를 이용하여 indirect link로 access를 수행할 수도 있다.
이 경우 기지국은 리모트 UE로부터 direct link를 기대하나 indirect link로도 access가 가능함을 염두에 두고 있어야 한다. 또는 반대의 경우도 가능하다. 예를 들어 타겟 기지국(및/또는 cell)은 리모트 UE가 indirect link를 통하여 액세스할 것으로 기대하고 결정된 릴레이 UE에 관련 configuration을 설정해 놓을 수 있다. 그러나 기대와 달리 리모트 UE가 directly 액세스한 경우, 기지국은 준비해 둔 릴레이 UE의 설정을 재조정(RRCReconfiguration) 해야 한다.
이를 위해서 리모트 UE는 RRCReconfigurationComplete 메시지에 자신의 L2 SRC(및/또는 DST) ID를 포함할 수 있다. 이를 통해서 기지국은 기 설정된 릴레이 UE의 설정을 재조정 할 수 있기 때문이다. (기지국이 릴레이 UE에 행하는 리모트 UE에 대한 설정은 L2 SRC/DST ID 기반으로 이루어질 수 있으므로.)
이러한 동작에서 multi-path(및/또는 HO) 관련 timer가 만료되면, HO관련 command를 받은 리모트 UE는 RRC reestablishment를 수행할 수 있다. 이때 RRC reestablishment의 경우에는 direct link/indirect link 모두 가능하다.
Multi-path 관련 timer가 만료되면, 리모트 UE는 (timer가 만료되었음을) 자신의 serving 기지국에 보고할 수 있다.
Indirect link로 HO하라는 명령을 받은 리모트 UE는 indirect 연결에 실패할 수 있다. Indirect link 연결에 실패한 경우, 리모트 UE는 HO 관련 timer가 running 하고 있는 경우, direct link로 RRCReconfigurationComplete 메시지 전송을 시도할 수 있다. 또는 타겟 기지국에 속해 있는(이는 discovery message로 알 수 있음) 다른 릴레이 UE를 선택하여 SL를 맺고, 새로운 indirect link로 RRCReconfigurationComplete 메시지를 전송할 수도 있다.
Direct link로 HO하라는 명령을 받은 리모트 UE는 direct link 연결에 실패할 수 있다. Direct link 연결에 실패한 경우, 리모트 UE는 HO 관련 timer가 running 하고 있는 경우, indirect link로 RRCReconfigurationComplete 메시지 전송을 시도할 수 있다. 이때 indirect link는 리모트 UE가 discovery message 등을 이용하여 타겟 기지국에 연결된(및/또는 camp on)하고 있는 릴레이 UE를 찾아 맺은 link를 의미할 수 있다.
HO timer가 만료할 때까지 HO를 완료하지 못한 리모트 UE는 RRCReestablishment를 수행할 수 있다. RRCRestablishment는 소스 기지국과 타겟 기지국에 우선적으로 수행할 수 있으며, direct, indirect link 모두 가능하다.
Direct-to-indirect HO 동작에서 HO commend를 수신한 리모트 UE가 HO를 이유로 릴레이 UE와 SL connection을 시도했으나, 릴레이 UE로부터 RRCReconfigurationFailureSidelink 메시지를 수신한 경우, 리모트 UE는 다음과 같은 동작이 가능하다.
(option 1) 릴레이 UE는 릴레이 UE로부터 RRCReconfigurationFialureSidelink 메시지를 수신했음을, (cause value 포함하여) serving 기지국에 보고한다. Serving 기지국은 이를 타겟 기지국에 알릴 수 있다. 또한 serving 기지국은 새로운 타겟 기지국을 찾아 HO request를 하거나, 새로운 target 릴레이 UE를 찾아 target 릴레이 UE가 속한 타겟 기지국에 HO request를 할 수도 있다.
(option 2) 리모트 UE는 direct link로 타겟 기지국을 향해 RRCReconfigurationComplete 메시지를 전송할 수 있다. 타겟 기지국에 도달하는 방법은 direct와 indirect 2가지가 있을 수 있는데, indirect link가 실패했으므로, directly 타겟 기지국으로 HO 완료 메시지 전송을 시도할 수 있다. (HO 관련 timer가 running 하고 있는 경우)
(option 3) 리모트 UE는 HO failure로 판단하고 RRCReestablishment를 수행한다. RRCReestablishment는 direct/indirect 모두 가능하다. 이 경우는 HO failure로 판단했으므로 HO 관련 timer(T304-like)는 stop 할 수 있다.
Multi-path 동작에서 direct link를 가지고 있는 리모트 UE가 indirect link setup을 위해서 릴레이 UE와 SL 연결을 맺는 중, 릴레이 UE로 RRCReconfigurationFailureSidelink 받은 경우, 리모트 UE는 이를 serving gNB에 알린다. 또는 cause value를 포함하여 indirect link를 setup 하는 데 실패했음을 알릴 수도 있다.
상기 기술에서 HO는 path switching 용어로 대치될 수 있다.
상술한 실시예에 의할 경우, 리모트 UE가 multi-path(및/또는 HO)를 command하는 RRC 메시지에 direct link 또는 indirect link의 access에 실패하는 경우를 대비한 보조적인 정보를 제공해 줌으로써 리모트 UE의 multi-path(및/또는 HO) 동작의 실패 가능성을 줄일 수 있다. 이를 통하여 연결의 안정성, service continuity에 효과적일 수 있다.
상기 실시예에서 설명된 바와 같이, 기지국이 direct path로의 HO와 indirect path로의 HO의 몇 가지 가능성을 주고, remote UE는 특정 조건이 만족하면 HO를 수행할 수 있다. 이러한 경우, remote UE는 T304와 T420 둘 다를 start 할 수 있다. 또는 remote UE는 T304와 T420 중 더 긴 timer에 기대어 동작할 수 있다. 또는 두개의 timer 중 다른 timer가 만료되지 않은 경우, 만료되지 않은 timer에 해당하는 동작을 수행할 수도 있다. 이하에서는 이와 관련된 다양한 예시들에 대한 설명이 개시된다.
Multi-path 동작에 있어서 리모트 UE가 direct link를 가지고 있는 경우 indirect link로 새로운 connection을 맺을 수 있다. 이 경우 리모트 UE는 direct link를 통해서 후보 릴레이 UE에 대한 정보(후보 릴레이 UE의 ID 및 measurement 값(SD-RSRP, remote/릴레이 UE의 Uu RSRP 등), 릴레이 UE의 serving cell/camp on cell ID, PLMN ID 등)를 direct link를 통해서 serving gNB에 보고한다. Serving gNB는 direct link를 통해서 후보 릴레이 UE 중 하나/또는 여러 relay list를 리모트 UE에 줄 수 있다. 이는 RRCReconfiguration 메시지로 전달 가능하다. 이를 수신한 리모트 UE는 RRCReconfiguration에 포함되어 있는 릴레이 UE와 SL를 맺고, 해당 릴레이 UE를 통한 indirect link를 통해서 RRCReconfigurationComplete 메시지를 serving 기지국에 전송할 수 있다.
리모트 UE의 HO 동작에 있어서, 리모트 UE는 direct link 및 indirect link를 가질 수 있다. Direct/indirect link를 가지고 있는 리모트 UE가 direc/indirect link를 통하여 타겟 기지국으로 액세스 하는 경우 상기 기술한 multi-path 동작과 유사할 수 있다. 리모트 UE는 후보 릴레이 UE에 대하여 자신의 serving 기지국에 보고하고, serving 기지국으로부터 HO관련한 RRCReconfiguration을 받을 수 있다. 리모트 UE는 RRCReconfiguration에 포함되어 있는 릴레이 UE와 SL connection을 맺고 릴레이 UE를 통한 indirect link로 RRCReconfigurationComplete 메시지를 전송할 수 있다.
Multi-path relay 또는 HO 동작에서 리모트 UE의 타겟 기지국 및/또는 서빙 기지국은 여러 후보 릴레이 UE (list)를 제공할 수도 있다. 또는 리모트 UE가 우선적으로 direct link를 통해 타겟 기지국에 액세스 하고 이에 실패한 경우 indirect link를 통해 액세스 할 수 있도록 관련 정보를 제공할 수도 있다. 또는 반대로 리모트 UE가 우선적으로 indirect link를 통해 타겟 기지국에 액세스 하고 이에 실패한 경우 direct link를 통해 액세스 할 수 있도록 관련 정보를 제공할 수도 있다.
리모트 UE가 multi-path relaying(및/또는 HO) 동작을 위하여 릴레이 UE와 SL connection을 맺도록 설정될 수 있다(리모트 UE의 indirect link 설정). 이 경우, 리모트 UE는 여러 후보 릴레이 UE의 list가 제공될 수도 있다. 리모트 UE는 제공된 릴레이 UE list에 속하는 릴레이 UE와 SL connection을 맺는데 실패한 경우(및/또는 RRCReconfigurationComplete 메시지를 송신하지 못한 경우, 릴레이 UE로부터 notification 메시지를 수신한 경우 등) list에 속하는 다른 릴레이 UE와 SL connection을 수행할 수도 있다. 이러한 동작은 리모트 UE에 multi-path relaying(및/또는 HO) 관련 타이머(예를 들어, T304 or T304-like or T420 or T420-like)가 만료 되기 전에만 가능한 동작일 수 있다.
일반적으로 SL connection을 맺는데 필요한 타이머(예를 들어, T400)는 multi-path relaying(및/또는 HO)를 위한 타이머 보다 더 작은 값으로 설정될 것으로 기대된다. 왜냐하면 리모트 UE가 multi-path(및/또는 HO) 시 indirect link를 맺는 경우 SL connection을 맺고 Uu link를 맺는데 걸리는 시간이 고려되어야 하기 때문이다.
리모트 UE가 multi-path(및/또는 HO)를 이유로 후보 릴레이 UE와 SL connection을 맺는 과정에서 multi-path(및/또는 HO) 관련 타이머(예를 들어, T304 or T304-like or T420 or T420-like)는 만료되었으나, SL connection 관련 타이머(예를 들어, T400 타이머)는 계속 동작할 수도 있다. 특히 위에 기술한 경우와 같이 리모트 UE가 gNB가 RRC 메시지를 통해 여러 후보 릴레이 UE를 알려주고 그 중 하나의 릴레이 UE와 SL connection을 맺는데 실패하여 다른 릴레이 UE와 SL connection을 맺는 경우 이러한 일이 발생할 수 있다.
Multi-path(및/또는 HO) 관련 타이머가 만료된 경우 리모트 UE는 더 이상 multi-path(및/또는 HO)를 이유로 릴레이 UE와 SL connection을 맺을 필요가 없다. 따라서 Multi-path(및/또는 HO) 관련 타이머가 만료되면, SL connection 관련 타이머 도 멈춰야 한다.
혹은 SL connection 관련 타이머를 멈추지 않고, 타이머 내에 리모트 UE와 릴레이 UE가 SL connection을 맺었다면 (Multi-path(및/또는 HO) 관련 타이머가 만료된 상황에서) SL가 완료되었음을 리모트 UE의 상위 layer에 알려야 할 수도 있다. 리모트 UE의 상위 layer는 맺은 SL connection을 release 한다.
타겟 기지국 및/또는 소스 기지국은 리모트 UE에 multi-path(및/또는 HO) 관련 RRC 메시지를 전송하면서 direct link와 indirect link 둘 다 액세스가 가능한 configuration을 할 수도 있다. 이 경우 리모트 UE는 어느 하나의 link를 통해서 액세스 할 수 있다(어느 link를 통해서 우선적으로 액세스 할지는 타겟 기지국 및/또는 소스 기지국이 정할 수도 있음). 하나의 link를 선택한 경우 선택한 link를 통해서 타겟 기지국에 액세스 하는 것에 실패한 경우 리모트 UE는 다른 link를 통해서 액세스를 시도할 수도 있다.
예를 들어 리모트 UE가 direct link를 통해서 타겟 기지국에 우선적으로 액세스 하는 경우 T304 타이머와 T420 타이머를 둘 다 start 할 수 있다. Direct link를 통해서 타겟 기지국에 액세스 하는 것에 실패한 리모트 UE는 T420 타이머의 잔여 시간이 남아 있다면(및/또는 T420 타이머가 expired 되지 않은 경우) indirect link를 통해서 타겟 기지국으로 액세스를 시도할 수도 있다.
혹은 리모트 UE가 indirect link를 통해서 타겟 기지국에 우선적으로 액세스 하는 경우에도 T304 타이머와 T420 타이머를 둘 다 start 할 수 있다. Indirect link를 통해서 타겟 기지국에 액세스 하는 것에 실패한 리모트 UE는 T304 타이머의 잔여 시간이 남아 있다면(및/또는 T304 타이머가 expired 되지 않은 경우) direct link를 통해서 타겟 기지국으로 액세스를 시도할 수도 있다. 또는 이러한 경우는 타겟 기지국(및/또는 소스 기지국)이 리모트 UE의 direct 또는 indirect link로의 접속에 대해서 가능성을 열어둔 상태이므로 direct link로 접속시에도 예외적으로 T420 타이머를 적용할 수도 있다. 즉, 리모트 UE는 multi-path(및/또는 HO) 관련 RRCReconfiguration을 받고 해당 configuration에 direct link와 indirect link를 통한 액세스가 모두 가능하게 설정되어 있는 경우 T420 타이머만 start 할 수도 있다. 타겟 기지국 입장에서는 리모트 UE가 우선적으로 direct link를 통해서 액세스 할 것이라고 기대하지만, direct 액세스에 실패한 경우 indirect link를 통해서도 액세스 해도 된다고 허용한 경우이므로 해당 리모트 UE에 대해서는 T420 타이머만을 허용할 수도 있다.
상술한 설명에서 리모트 UE가 multi-path(및/또는 HO) 관련 동작을 하는 경우 multi-path(및/또는 HO)를 위한 타이머의 stop 조건 및 direct link를 통한 설정과 indirect link를 위한 설정이 모두 허용된 경우 적용 타이머가 제안되었다. 이를 통하여 리모트 UE의 타이머 동작 및 multi-path(및/또는 HO) 동작을 효율적을 수행할 수 있다.
본 개시가 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 개시의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 16은 본 개시에 적용되는 통신 시스템(1)을 예시한다.
도 16을 참조하면, 본 개시에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 개시의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
본 개시가 적용되는 무선 기기 예
도 17는 본 개시에 적용될 수 있는 무선 기기를 예시한다.
도 17를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 16의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 개시가 적용되는 차량 또는 자율 주행 차량 예
도 18는 본 개시에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 18를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
본 개시가 적용되는 AR/VR 및 차량 예
도 19은 본 개시에 적용되는 차량을 예시한다. 차량은 운송수단, 기차, 비행체, 선박 등으로도 구현될 수 있다.
도 19을 참조하면, 차량(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a) 및 위치 측정부(140b)를 포함할 수 있다.
통신부(110)는 다른 차량, 또는 기지국 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 차량(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 메모리부(130) 내의 정보에 기반하여 AR/VR 오브젝트를 출력할 수 있다. 입출력부(140a)는 HUD를 포함할 수 있다. 위치 측정부(140b)는 차량(100)의 위치 정보를 획득할 수 있다. 위치 정보는 차량(100)의 절대 위치 정보, 주행선 내에서의 위치 정보, 가속도 정보, 주변 차량과의 위치 정보 등을 포함할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서들을 포함할 수 있다.
일 예로, 차량(100)의 통신부(110)는 외부 서버로부터 지도 정보, 교통 정보 등을 수신하여 메모리부(130)에 저장할 수 있다. 위치 측정부(140b)는 GPS 및 다양한 센서를 통하여 차량 위치 정보를 획득하여 메모리부(130)에 저장할 수 있다. 제어부(120)는 지도 정보, 교통 정보 및 차량 위치 정보 등에 기반하여 가상 오브젝트를 생성하고, 입출력부(140a)는 생성된 가상 오브젝트를 차량 내 유리창에 표시할 수 있다(1410, 1420). 또한, 제어부(120)는 차량 위치 정보에 기반하여 차량(100)이 주행선 내에서 정상적으로 운행되고 있는지 판단할 수 있다. 차량(100)이 주행선을 비정상적으로 벗어나는 경우, 제어부(120)는 입출력부(140a)를 통해 차량 내 유리창에 경고를 표시할 수 있다. 또한, 제어부(120)는 통신부(110)를 통해 주변 차량들에게 주행 이상에 관한 경고 메세지를 방송할 수 있다. 상황에 따라, 제어부(120)는 통신부(110)를 통해 관계 기관에게 차량의 위치 정보와, 주행/차량 이상에 관한 정보를 전송할 수 있다.
본 개시가 적용되는 XR 기기 예
도 20은 본 개시에 적용되는 XR 기기를 예시한다. XR 기기는 HMD, 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등으로 구현될 수 있다.
도 20을 참조하면, XR 기기(100a)는 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 전원공급부(140c)를 포함할 수 있다.
통신부(110)는 다른 무선 기기, 휴대 기기, 또는 미디어 서버 등의 외부 기기들과 신호(예, 미디어 데이터, 제어 신호 등)를 송수신할 수 있다. 미디어 데이터는 영상, 이미지, 소리 등을 포함할 수 있다. 제어부(120)는 XR 기기(100a)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성 및 처리 등의 절차를 제어 및/또는 수행하도록 구성될 수 있다. 메모리부(130)는 XR 기기(100a)의 구동/XR 오브젝트의 생성에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 외부로부터 제어 정보, 데이터 등을 획득하며, 생성된 XR 오브젝트를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 XR 기기 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다. 전원공급부(140c)는 XR 기기(100a)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다.
일 예로, XR 기기(100a)의 메모리부(130)는 XR 오브젝트(예, AR/VR/MR 오브젝트)의 생성에 필요한 정보(예, 데이터 등)를 포함할 수 있다. 입출력부(140a)는 사용자로부터 XR 기기(100a)를 조작하는 명령을 회득할 수 있으며, 제어부(120)는 사용자의 구동 명령에 따라 XR 기기(100a)를 구동시킬 수 있다. 예를 들어, 사용자가 XR 기기(100a)를 통해 영화, 뉴스 등을 시청하려고 하는 경우, 제어부(120)는 통신부(130)를 통해 컨텐츠 요청 정보를 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버에 전송할 수 있다. 통신부(130)는 다른 기기(예, 휴대 기기(100b)) 또는 미디어 서버로부터 영화, 뉴스 등의 컨텐츠를 메모리부(130)로 다운로드/스트리밍 받을 수 있다. 제어부(120)는 컨텐츠에 대해 비디오/이미지 획득, (비디오/이미지) 인코딩, 메타데이터 생성/처리 등의 절차를 제어 및/또는 수행하며, 입출력부(140a)/센서부(140b)를 통해 획득한 주변 공간 또는 현실 오브젝트에 대한 정보에 기반하여 XR 오브젝트를 생성/출력할 수 있다.
또한, XR 기기(100a)는 통신부(110)를 통해 휴대 기기(100b)와 무선으로 연결되며, XR 기기(100a)의 동작은 휴대 기기(100b)에 의해 제어될 수 있다. 예를 들어, 휴대 기기(100b)는 XR 기기(100a)에 대한 콘트롤러로 동작할 수 있다. 이를 위해, XR 기기(100a)는 휴대 기기(100b)의 3차원 위치 정보를 획득한 뒤, 휴대 기기(100b)에 대응하는 XR 개체를 생성하여 출력할 수 있다.
본 개시가 적용되는 로봇 예
도 21은 본 개시에 적용되는 로봇을 예시한다. 로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류될 수 있다.
도 21을 참조하면, 로봇(100)은 통신부(110), 제어부(120), 메모리부(130), 입출력부(140a), 센서부(140b) 및 구동부(140c)를 포함할 수 있다.
통신부(110)는 다른 무선 기기, 다른 로봇, 또는 제어 서버 등의 외부 기기들과 신호(예, 구동 정보, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 로봇(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 메모리부(130)는 로봇(100)의 다양한 기능을 지원하는 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 입출력부(140a)는 로봇(100)의 외부로부터 정보를 획득하며, 로봇(100)의 외부로 정보를 출력할 수 있다. 입출력부(140a)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센서부(140b)는 로봇(100)의 내부 정보, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140b)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 레이더 등을 포함할 수 있다. 구동부(140c)는 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 구동부(140c)는 로봇(100)을 지상에서 주행하거나 공중에서 비행하게 할 수 있다. 구동부(140c)는 액츄에이터, 모터, 바퀴, 브레이크, 프로펠러 등을 포함할 수 있다.
본 개시가 적용되는 AI 기기 예
도 22는 본 개시에 적용되는 AI 기기를 예시한다. AI 기기는 TV, 프로젝터, 스마트폰, PC, 노트북, 디지털방송용 단말기, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), 라디오, 세탁기, 냉장고, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 22를 참조하면, AI 기기(100)는 통신부(110), 제어부(120), 메모리부(130), 입/출력부(140a/140b), 러닝 프로세서부(140c) 및 센서부(140d)를 포함할 수 있다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 기기(예, 도 16, 100x, 200, 400)나 AI 서버(예, 도 16의 400) 등의 외부 기기들과 유무선 신호(예, 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등)를 송수신할 수 있다. 이를 위해, 통신부(110)는 메모리부(130) 내의 정보를 외부 기기로 전송하거나, 외부 기기로부터 수신된 신호를 메모리부(130)로 전달할 수 있다.
제어부(120)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 기기(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 제어부(120)는 AI 기기(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다. 예를 들어, 제어부(120)는 러닝 프로세서부(140c) 또는 메모리부(130)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 기기(100)의 구성 요소들을 제어할 수 있다. 또한, 제어부(120)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리부(130) 또는 러닝 프로세서부(140c)에 저장하거나, AI 서버(도 16, 400) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
메모리부(130)는 AI 기기(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예를 들어, 메모리부(130)는 입력부(140a)로부터 얻은 데이터, 통신부(110)로부터 얻은 데이터, 러닝 프로세서부(140c)의 출력 데이터, 및 센싱부(140)로부터 얻은 데이터를 저장할 수 있다. 또한, 메모리부(130)는 제어부(120)의 동작/실행에 필요한 제어 정보 및/또는 소프트웨어 코드를 저장할 수 있다.
입력부(140a)는 AI 기기(100)의 외부로부터 다양한 종류의 데이터를 획득할 수 있다. 예를 들어, 입력부(140a)는 모델 학습을 위한 학습 데이터, 및 학습 모델이 적용될 입력 데이터 등을 획득할 수 있다. 입력부(140a)는 카메라, 마이크로폰 및/또는 사용자 입력부 등을 포함할 수 있다. 출력부(140b)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다. 출력부(140b)는 디스플레이부, 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다. 센싱부(140)는 다양한 센서들을 이용하여 AI 기기(100)의 내부 정보, AI 기기(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 얻을 수 있다. 센싱부(140)는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰 및/또는 레이더 등을 포함할 수 있다.
러닝 프로세서부(140c)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 러닝 프로세서부(140c)는 AI 서버(도 16, 400)의 러닝 프로세서부와 함께 AI 프로세싱을 수행할 수 있다. 러닝 프로세서부(140c)는 통신부(110)를 통해 외부 기기로부터 수신된 정보, 및/또는 메모리부(130)에 저장된 정보를 처리할 수 있다. 또한, 러닝 프로세서부(140c)의 출력 값은 통신부(110)를 통해 외부 기기로 전송되거나/되고, 메모리부(130)에 저장될 수 있다.
상술한 바와 같은 실시형태들은 다양한 이동통신 시스템에 적용될 수 있다.

Claims (11)

  1. 무선통신시스템에서 리모트 UE의 핸드오버(Handover, HO)에 관련된 서빙 기지국의 동작 방법에 있어서,
    상기 서빙 기지국이 리모트 UE로부터 측정 결과를 수신;
    상기 서빙 기지국이 상기 리모트 UE의 HO를 위한 타겟 기지국을 선택;
    상기 서빙 기지국이 상기 타겟 기지국으로 HO request 메시지를 전송; 및
    상기 서빙 기지국이 상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송;
    을 포함하며,
    상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 방법.
  2. 제1항에 있어서,
    상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 서빙 기지국이 상기 릴레이 UE에게 전송하는 RRC reconfiguration with sync는 상기 릴레이 UE가 상기 리모트 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 방법.
  3. 제1항에 있어서,
    상기 HO request 메시지는 상기 리모트 UE와 상기 릴레이 UE가 multi-path relay 관계에 있음을 알리는 정보를 포함하는, 방법.
  4. 제1항에 있어서,
    상기 서빙 기지국은 상기 타겟 기지국으로 상기 릴레이 UE에 관련된 정보를 전달하는, 방법.
  5. 제1항에 있어서,
    상기 릴레이 UE에 관련된 정보는, 상기 릴레이 UE의 C-RNTI, SRC L2 ID, DST L2 ID, XNAP ID, L2 ID Uu 측정 결과, 상기 서빙 기지국이 멀티패스 릴레이 동작을 위해서 상기 릴레이 UE에 설정한 bearer 및 bearer mapping 정보를 포함하는, 방법.
  6. 제1항에 있어서,
    상기 릴레이 UE는 상기 리모트 UE에 연결된 복수의 릴레이 UE 중 하나인, 방법.
  7. 제6항에 있어서,
    상기 릴레이 UE는, 상기 서빙 기지국이 상기 복수의 릴레이 UE에 대한 측정 결과에 기초하여, 상기 리모트 UE와 함께 상기 타겟 기지국으로 HO가 가능하다고 판단한 것인, 방법.
  8. 무선통신시스템에서, 서빙 기지국에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하게 연결될 수 있고, 실행될 때 상기 적어도 하나의 프로세서로 하여금 동작들을 수행하게 하는 명령들을 저장하는 적어도 하나의 컴퓨터 메모리를 포함하며,
    상기 동작들은,
    리모트 UE로부터 측정 결과를 수신;
    상기 리모트 UE의 HO를 위한 타겟 기지국을 선택;
    상기 타겟 기지국으로 HO request 메시지를 전송; 및
    상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송;
    을 포함하며,
    상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 서빙 기지국.
  9. 적어도 하나의 프로세서에 의해 실행될 때, 적어도 하나의 프로세서가 서빙 기지국을 위한 동작들을 수행하게 하는 명령을 포함하는 적어도 하나의 컴퓨터 프로그램을 저장하는 비휘발성 컴퓨터 판독 가능 저장 매체에 있어서,
    상기 동작들은,
    리모트 UE로부터 측정 결과를 수신;
    상기 리모트 UE의 HO를 위한 타겟 기지국을 선택;
    상기 타겟 기지국으로 HO request 메시지를 전송; 및
    상기 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 상기 리모트 UE에게 전송;
    을 포함하며,
    상기 서빙 기지국이 상기 리모트 UE와 상기 리모트 UE의 릴레이 UE를 상기 타겟 기지국으로 HO 시키기로 결정한 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 저장 매체.
  10. 무선통신시스템에서 리모트 UE의 핸드오버(Handover, HO)에 관련된 리모트 UE의 동작 방법에 있어서,
    상기 리모트 UE가 서빙 기지국으로 측정 결과를 전송;
    상기 리모트 UE가 상기 서빙 기지국으로부터 타겟 기지국이 전송한 RRC reconfiguration with sync 메시지를 수신;
    상기 리모트 UE가 상기 타겟 기지국으로 RRC reconfiguration complete 를 전송; 및
    상기 리모트 UE가 릴레이 UE를 통해 상기 타겟 기지국으로 데이터를 전송;
    을 포함하며,
    상기 상기 리모트 UE와 상기 릴레이 UE가 상기 타겟 기지국으로 HO 되는 것에 기초하여, 상기 RRC reconfiguration with sync 메시지는 상기 리모트 UE가 상기 릴레이 UE와 연결을 유지할 것을 지시하는 정보를 포함하는, 방법.
  11. 제10항에 있어서,
    상기 리모트 UE는 다른 UE, 자율주행 차량에 관련된 UE 또는 기지국 또는 네트워크 중 적어도 하나와 통신하는 것인, 리모트 UE.
PCT/KR2023/014050 2022-09-16 2023-09-18 무선통신시스템에서 리모트 ue 및 릴레이 ue의 핸드오버에 관련된 동작 방법 WO2024058636A1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20220117357 2022-09-16
KR10-2022-0117357 2022-09-16
KR20220118048 2022-09-19
KR10-2022-0118048 2022-09-19
KR20220118018 2022-09-19
KR10-2022-0118018 2022-09-19
KR20220123298 2022-09-28
KR10-2022-0123298 2022-09-28
US202263411569P 2022-09-29 2022-09-29
US63/411,569 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024058636A1 true WO2024058636A1 (ko) 2024-03-21

Family

ID=90275423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/014050 WO2024058636A1 (ko) 2022-09-16 2023-09-18 무선통신시스템에서 리모트 ue 및 릴레이 ue의 핸드오버에 관련된 동작 방법

Country Status (1)

Country Link
WO (1) WO2024058636A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385714A1 (en) * 2020-06-09 2021-12-09 Qualcomm Incorporated Layer 2 relay user equipment mobility
US20220046485A1 (en) * 2020-08-05 2022-02-10 Lg Electronics Inc. Method and apparatus for triggering reselection for relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210385714A1 (en) * 2020-06-09 2021-12-09 Qualcomm Incorporated Layer 2 relay user equipment mobility
US20220046485A1 (en) * 2020-08-05 2022-02-10 Lg Electronics Inc. Method and apparatus for triggering reselection for relay

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC.: "Service continuity enhancements for L2 U2N relay", 3GPP DRAFT; R3-224751, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Electronic meeting; 20220815 - 20220824, 9 August 2022 (2022-08-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052264918 *
OPPO: "Discussion on multi-path SL relay", 3GPP DRAFT; R2-2207015, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-meeting; 20220901, 10 August 2022 (2022-08-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052260339 *
ZTE: "Service continuity enhancement for SL relay", 3GPP DRAFT; R3-224371, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Electronic Meeting; 20220815 - 20220826, 9 August 2022 (2022-08-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052264538 *

Similar Documents

Publication Publication Date Title
WO2021162506A1 (ko) 무선통신시스템에서 릴레이 ue에 관련된 ue의 동작 방법
WO2022211582A1 (ko) 무선통신시스템에서 사이드링크 릴레이에서 rrc 연결에 관련된 ue의 동작 방법
WO2021085909A1 (ko) 무선통신시스템에서 pc5 유니캐스트 링크 해제에 관련된 ue의 동작 방법
WO2023287259A1 (ko) 무선통신시스템에서 사이드링크 릴레이에서 핸드오버에 관련된 동작 방법
WO2023014157A1 (ko) 무선통신시스템에서 path switching 및 측정 보고에 관련된 리모트 ue의 동작 방법.
WO2022211580A1 (ko) 무선통신시스템에서 qos에 기초한 릴레이 ue의 선택 방법
WO2022035182A1 (ko) 무선통신시스템에서 센서 로우 데이터 공유와 피드백에 관련된 ue의 동작 방법.
WO2024058636A1 (ko) 무선통신시스템에서 리모트 ue 및 릴레이 ue의 핸드오버에 관련된 동작 방법
WO2024063502A1 (ko) 무선통신시스템에서 멀티 패스 릴레이에서 릴레이의 셀 변경에 관련된 동작 방법.
WO2024147663A1 (ko) 무선통신시스템에서 multi-path relay 에 관련된 리모트 ue의 동작 방법
WO2024128828A1 (ko) 무선통신시스템에서 direct path, indirect path의 rlf 보고에 관련된 리모트 ue의 동작 방법
WO2024025368A1 (ko) 무선통신시스템에서 ideal link 연결을 갖는 리모트 ue의 동작 방법
WO2023211090A1 (ko) 무선통신시스템에서 rrc reject을 수신한 릴레이 ue의 동작 방법
WO2023244090A1 (ko) 무선통신시스템에서 ue-to-ue relay의 링크 해제에 관련된 ue의 동작 방법
WO2024025373A1 (ko) 무선통신시스템에서 리모트 ue의 핸드오버에 관련된 소스 기지국의 동작 방법.
WO2024058546A1 (ko) 무선통신시스템에서 멀티패스 릴레이에서 rlf 발생에 관련된 리모트 ue의 동작 방법
WO2024029967A1 (ko) 무선통신시스템에서 ue-to-ue relay 에서 end to end 베이러 설정에 관련된 타겟 릴레이 ue의 동작 방법
WO2024128717A1 (ko) 무선통신시스템에서 ue-to-ue relay 에서 릴레이 선택 또는 재선택에 관련된 동작 방법.
WO2024063627A1 (ko) 무선통신시스템에서 UE-to-UE relay 연결 설정에 관련된 릴레이 UE의 동작 방법
WO2024072139A1 (ko) 무선통신시스템에서 ue-to-ue relay 에서 디스커버리 및 연결 설정에 관련된 동작 방법
WO2024128826A1 (ko) 무선통신시스템에서 qos에 기초한 릴레이 선택 또는 재선택에 관련된 동작 방법
WO2024029921A1 (ko) 무선통신시스템에서 ue-to-ue relay 에서 id 설정 등에 관련된 릴레이 ue의 동작 방법
WO2024058547A1 (ko) 무선통신시스템에서 멀티 패스 릴레이 동작에서 rrc 재설정에 관련된 ue의 동작 방법
WO2024029982A1 (ko) 무선통신시스템에서 ue-to-ue relay 에서 선호 자원에 관련된 릴레이 ue의 동작 방법
WO2023219441A1 (ko) 무선통신시스템에서 멀티 패스 릴레이 동작을 위한 사이드링크 drx configuration에 관련된 ue의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865929

Country of ref document: EP

Kind code of ref document: A1