WO2024058441A1 - Process for recovering platinum-group metal from waste catalyst by using biocyanide and ionic liquid - Google Patents

Process for recovering platinum-group metal from waste catalyst by using biocyanide and ionic liquid Download PDF

Info

Publication number
WO2024058441A1
WO2024058441A1 PCT/KR2023/012145 KR2023012145W WO2024058441A1 WO 2024058441 A1 WO2024058441 A1 WO 2024058441A1 KR 2023012145 W KR2023012145 W KR 2023012145W WO 2024058441 A1 WO2024058441 A1 WO 2024058441A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum group
cyanide
specifically
platinum
biocyanide
Prior art date
Application number
PCT/KR2023/012145
Other languages
French (fr)
Korean (ko)
Inventor
김현중
사디아일야스
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2024058441A1 publication Critical patent/WO2024058441A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This disclosure relates to a process for recovering platinum group metals from spent catalysts using biocyanide and ionic liquids. More specifically, the present disclosure relates to a process of bioleaching platinum group metals contained in a spent catalyst using biocyanide produced from microorganisms and then recovering the platinum group metals with high purity using an organophosphorus ionic liquid as an extractant. It's about.
  • catalytic converters Due to the recently strengthened regulation of polluting gases, catalytic converters have become mandatory to treat exhaust gases emitted from various vehicles.
  • precious metals specifically platinum (Pt) and palladium, are used as catalyst components. (Pd) etc. are applied.
  • spent catalytic converters are processed through a pyrometallurgical process, where the precious metals are collected in alloy form using collector metals or collector metals such as Cu 0 and Fe 0 .
  • collector metals or collector metals such as Cu 0 and Fe 0 .
  • this process is not only difficult to see as a direct extraction method, but is also energy-intensive and involves isolating relatively low weight precious metals after subsequent chemical leaching (or elution), as well as producing large amounts of 2 Tea waste is produced in the form of slag.
  • the slag produced in this way exhibits high alkalinity and is therefore not suitable for landfill.
  • the problem of emitting a large amount of carbon dioxide has been pointed out, and after the alloy is reprocessed and separated from the collected metal, it must be treated with individual precious metal salts.
  • the platinum recovery rate is about 80 to 94%
  • the palladium recovery rate is about 80 to 96%. Therefore, there is a problem that greatly increases the processing cost of the entire recycling process.
  • bioleaching-based technology does not specifically mention a method of recovering platinum group metals from cyanide leachate.
  • a method of precipitating them through the addition of ion exchange resin and sulfide such as sodium sulfide (NaHS) is also known (for example, U.S. Patent No. 7544231).
  • NaHS sodium sulfide
  • an environmentally friendly method is provided to effectively recover platinum group metals while minimizing the use of toxic substances at a lower cost compared to the prior art.
  • Another embodiment of the present disclosure seeks to provide a method for recycling the residue generated after recovering platinum group metals from a spent catalyst using microorganisms.
  • a method for recovering platinum group metals from a spent catalyst containing a is provided.
  • the platinum group-containing spent catalyst may contain at least one platinum group metal selected from the group consisting of platinum and palladium.
  • the platinum group-containing spent catalyst may not contain rhodium.
  • the platinum group-containing spent catalyst may be provided in step a) in the form of particles or pulverized material having a particle size range of 350 ⁇ m or less.
  • the total content of platinum group metal in the platinum group-containing spent catalyst may range from 0.005 to 0.4% by weight.
  • the platinum group-containing spent catalyst contains platinum and palladium, and the contents of platinum and palladium may be in the range of 0.003 to 0.15% by weight and 0.002 to 0.1% by weight, respectively.
  • the pH of the aqueous solution containing biocyanide in step a) may range from 9.5 to 14, and the concentration of cyanide (CN - ) may range from 2 to 6 g/L.
  • the step of trapping or collecting the solution containing biocyanide into an alkaline solution and concentrating or accumulating it may be further included.
  • the pH of the platinum group-containing cyanide leachate formed in step a) may range from 9 to 12.5.
  • the organophosphorus ionic liquid used in step b) may include a phosphonium-based cationic group represented by the following general formula 1, and an anionic group selected from the group consisting of halide, sulfide, and nitrate. there is:
  • R 1 to R 4 are each an alkyl group having 35 to 56 carbon atoms.
  • the molecular weight (M w ) of the organophosphorus-based ionic liquid used in step b) may range from 200 to 900.
  • step c) may be performed by stripping.
  • the step of separating the organophosphorus ionic liquid from the extract remaining after recovery of the platinum group metal in step c) and reusing it as an extractant in step b) may further be included.
  • the process for recovering platinum group metals from spent catalysts uses a green biogenic cyanide solution based on bioleaching or biohydrometallurgical mechanisms, compared to conventional techniques (pyrometallurgical processes, chemical wet metals using acids). It can dramatically solve problems pointed out in the smelting process (in particular, emissions of harmful gases or toxic substances, slag production, high energy consumption, etc.). Furthermore, by performing a liquid-liquid extraction method using a specific extractant, platinum group metals can be easily separated from the platinum group-containing leachate produced through biocyanide-based leaching, and further, individual platinum group metals can be recovered with high purity. It provides advantages that can be done. In particular, because it is environmentally friendly, low energy-intensive, and highly efficient, it is consistent with the ESG strategies of related companies and is expected to be widely commercialized in the future.
  • 1 is a process diagram showing a schematic process sequence for recovering platinum group metals from spent catalysts
  • FIG. 2 is a process diagram showing an exemplary process for recovering platinum group metals from spent catalyst
  • Figure 3 is a diagram showing an example of an apparatus for performing a cyanide production experiment using bacteria
  • Figure 4 is a graph showing the results of measuring the number of C. violaceum cells in YP medium supplemented with 2.0 g/L glycine in biocyanide over time in batch mode;
  • Figure 5 shows the time course of the preparation of biocyanide solution using a NaOH trapping solution of 4.0 mol/L and YP medium with a glycine concentration of 2.0 g/L in (a) batch mode and (b) continuous mode, respectively.
  • This is a graph showing the accumulation and pH change of biogenic cyanide
  • Figure 6 is a graph showing the effect of temperature on the pressurized biocyanation reaction of Pt and Pd from a spent catalytic converter at conditions of CN - concentration of 2.9 g/L, pO 2 of 10.5 bar, initial pH of 11.2 and 60 minutes;
  • Figure 7 shows the effect of oxygen partial pressure (pO 2 ) on the pressurized biocyanation reaction of Pt and Pd from a spent catalytic converter at a temperature of 150 °C, CN concentration of 2.9 g/L, initial pH of 11.2, and 60 min. It is a graph representing;
  • Figure 8 is a graph showing the effect of biocyanide concentration on the pressurized biocyanation reaction of Pt and Pd from a spent catalytic converter under conditions of temperature of 150 °C, pO 2 of 14 bar, initial pH of 11.2 and 60 minutes;
  • Figure 9 shows the effect of ionic liquid concentration on the extraction of Pt and Pd from (a) cyanide leachate under certain conditions (O:A, 1; pH, 10.8; contact time, 10 min; and temperature, 25°C). Graph showing the impact, and (b) D vs. It is a log plot of P-IL;
  • FIG. 10 shows the platinum group metal-containing solution (leaching solution) for Pt-Pd extraction under given conditions (O:A, 1; P-IL concentration, 0.15 mol/L; contact time, 10 min; and temperature, 25 °C). This is a graph showing the effect of pH;
  • Figure 11 shows the effect of temperature on (a) Pt-Pd extraction under given conditions (O:A, 1; P-IL concentration, 0.15 mol/L; solution pH, 10.4; and contact time, 10 min).
  • Graph, and (b) logK ex vs. is the Van't Hoff plot for 1/T;
  • Figure 12 is a graph showing the effect of the concentration of NH 4 SCN on the stripping behavior of Pt and Pd in the ionic liquid phase under certain conditions (O:A, 1; contact time, 10 min; and temperature, 25 °C). ;
  • Figure 13 shows the concentration of S(CH 2 CH 2 OH) 2 for Pt-stripping in the Pd-depleted ionic liquid phase under given conditions (O:A, 1; contact time, 10 min; and temperature, 25 °C). This is a graph showing the impact of;
  • Figure 14 is (a) a graph showing the behavior of leaching Pt and Pd from a spent catalytic converter using the biocyanide solution accumulated in the recycled raffinate after performing the (Pt, Pd) extraction process using P-IL, and (b) a graph showing the results of evaluating the reusability of ionic liquid in a (Pt,Pd) extraction cycle from a cyanide leaching solution; and
  • Figure 15 is a graph showing the results of an experiment on biodegradation of cyanide in a bleed solution using C. violaceum drained from the bioreactor after being used to produce biocyanide.
  • Platinum group metal broadly includes the six metal elements belonging to the platinum group: platinum, palladium, rhodium, ruthenium, iridium, and osmium. It can be understood as referring to platinum and/or palladium in a narrow sense.
  • Bioleaching may generally refer to a process of dissolving a metal from a mineral source by microorganisms, and specifically to a process of converting a solid metal to a water-soluble form.
  • “Culture medium” may refer to an aqueous solution of nutrients available for cell growth.
  • Extraction can mean transferring a particular component, specifically a metal, from one phase to another.
  • “Stripping” may refer to a process of separating or removing a specific metal from a liquid medium or solvent
  • selective stripping may refer to a process of separating or removing a specific metal from a liquid medium or solvent containing a plurality of metals. can do.
  • contact may also be understood to include not only direct contact, but also contact through the intervention of other components or members.
  • a process of bioleaching and solvo-chemical extraction using microorganisms is provided to separate and recover platinum group metals from a spent catalyst containing platinum group metals,
  • the schematic process is as shown in Figure 1.
  • platinum group-containing spent catalyst can be used as a starting material.
  • platinum group-containing spent catalysts are available from various fields such as the automotive and chemical industries, and may typically be derived from catalytic converters (e.g., catalytic converters of automobiles).
  • the content of the platinum group metal in the spent catalyst is not particularly limited, but the content (based on element) of the platinum group metal in the spent catalyst is, for example, about 0.005 to 0.4% by weight, specifically about 0.01 to 0.01% by weight. It may range from 0.3% by weight, more specifically about 0.011 to 0.15% by weight.
  • the spent catalyst may contain platinum and/or palladium among the platinum group metals.
  • the spent catalyst may simultaneously contain platinum and palladium, where the content (based on element) of platinum (Pt) is, for example, about 0.003 to 0.15% by weight, specifically about 0.005 to 0.1% by weight. %, more specifically, it may be around 0.08% by weight, and the content of palladium (Pd) (based on element) is, for example, about 0.002 to 0.1% by weight, specifically about 0.004 to 0.05% by weight, more specifically about It may be in the range of around 0.04% by weight.
  • the weight ratio of platinum/palladium may range, for example, from about 0.1 to 3, specifically from about 0.3 to 2.5, and more specifically from about 0.5 to 2.1.
  • the spent catalyst may further contain other components in addition to platinum group metals, such as alumina, magnesia, silica, zirconia, titania, calcium oxide, etc., and the content of additional components or metals (element Standard) may be, for example, in the range of about 60% by weight or less, specifically about 40% by weight or less, and more specifically about 20% by weight or less.
  • platinum group metals such as alumina, magnesia, silica, zirconia, titania, calcium oxide, etc.
  • the spent catalyst may be substantially free of rhodium.
  • platinum group-containing catalysts that do not contain rhodium are typically available from old generation catalysts of automobile vehicles, more specifically second generation catalysts of automobile vehicles, etc. These composition characteristics can affect the Pt and Pd extraction process using ionic liquid, the reuse process of cyanide leachate remaining after use, and the biodegradation process of cyanide remaining in the solution, which is discharged in a certain amount prior to the cyanide leachate reuse process. there is. However, it does not exclude the presence of trace amounts of rhodium in the form of impurities, for example, it may be contained in less than about 0.0004% by weight, specifically less than about 0.0001% by weight.
  • rhodium may act as an impurity during the extraction of Pt and Pd, lowering the purity of Pt and Pd to be recovered, and as the recycling process of raffinate generated during the extraction process is repeated, rhodium may accumulate in the solution. , it may be advantageous to contain as little rhodium as possible.
  • the content of platinum group components in the above-described spent catalyst may be understood as illustrative, and may vary depending on the source.
  • the spent catalyst may be provided in the form of particles or pulverized material.
  • the particle size or size of the pulverized material or particles determines effective contact with the biocyanide solution described later, flow characteristics in the reactor, etc. It can be determined by taking into account, for example, about 350 ⁇ m or less, specifically about 250 ⁇ m or less, more specifically about 100 to 200 ⁇ m, and particularly specifically about 120 to 180 ⁇ m.
  • waste catalyst derived from a waste catalyst converter for automobiles it may be provided in a pulverized form after the catalyst layer has been peeled off. At this time, for grinding, means known in the art can be used.
  • the grinding means may be a roller grinder, vibrating mill, ball mill, pot mill, hammer mill, pulverizer, gyratory grinder, gyratory mill, etc., but is not limited thereto, and may be two or more of the listed types. It can also be pulverized by combining.
  • the platinum group-containing spent catalyst may optionally undergo an alkali pretreatment step.
  • This alkaline pretreatment can be performed to remove carbonaceous substances in the spent catalyst (or spent catalyst particles) and various impurities that may inhibit subsequent biocyanation.
  • the alkaline treatment may be performed by contacting the spent catalyst with an alkali-containing solution (specifically, an aqueous solution), wherein the alkaline component is at least one selected from sodium hydroxide, potassium hydroxide, ammonium hydroxide, etc. You can.
  • the concentration of the alkaline solution may be adjusted, for example, in the range of about 1 to 5 mol/L, specifically about 1.5 to 4 mol/L, and more specifically about 2 to 3 mol/L.
  • the pretreatment temperature may be adjusted, for example, to at least about 60°C, specifically about 70 to 98°C, and more specifically about 80 to 95°C.
  • the pretreatment time is not particularly limited, but may be adjusted, for example, in the range of about 30 to 200 minutes, specifically about 40 to 100 minutes, and more specifically about 50 to 80 minutes.
  • a step of synthesizing cyanide that is, biocyanide (HCN)
  • HCN biocyanide
  • a solution specifically an aqueous solution
  • microorganisms can be selected from species capable of producing cyanide by metabolic action.
  • the cyanide-producing microorganism may be at least one selected from species belonging to Betaproteobacteria, Gammaproteobacteria, etc., such as Chromobacterium violaceum , Pseudomonas fluorescens , It may be at least one selected from Pseudomonas plecoglossicida , Bacillus megaterium, etc., and in particular, it may be a type that can produce cyanide through oxidative decarboxylation of glycine.
  • Chromobacterium violaceum which belongs to Gram-negative beta-probacteria and promotes oxidase reaction, can be used as the spoilage bacteria.
  • the types listed above may be understood as illustrative purposes.
  • the medium may be a growth medium, specifically YP medium supplemented with glycine.
  • the concentration of glycine in the medium may be, for example, in the range of about 0.5 to 5 g/L, specifically about 1.5 to 3.5 g/L, and more specifically about 2 to 2.5 g/L. Since the components of the medium used for microbial growth in this embodiment are known in the art, separate detailed description will be omitted.
  • the pH of the growth medium can be adjusted in consideration of microbial characteristics, and may be, for example, at least about 7, specifically about 8 to 9, and more specifically about 8.5.
  • the culture temperature is not particularly limited, but may be typically adjusted in the range of about 20 to 40°C, more typically about 25 to 35°C.
  • the concentration of microorganisms in the initial growth medium may range, for example, from at least about 10 5 CFU/mL, specifically about 10 6 to 10 9 CFU/mL, and more specifically about 10 7 to 10 8 CFU/mL. However, this can be understood as an example.
  • the culture of microorganisms may be performed under the supply of an oxygen-containing gas, for example, air, and the culture may be performed using a bioreactor illustratively equipped with an aeration facility.
  • the concentration of cyanide after culturing may range, for example, from about 900 to 1200 mg/L, specifically from about 950 to 1100 mg/L, and more specifically from about 1000 to 1100 mg/L.
  • a concentration or accumulation step may be performed to increase the concentration of biocyanide produced by microbial culture.
  • cyanide (HCN) produced using an alkaline solution specifically, an aqueous solution
  • HCV cyanide
  • the alkaline component in the alkaline solution may be at least one selected from, for example, sodium hydroxide, potassium hydroxide, ammonium hydroxide, etc., and its concentration may be, for example, about 1 to 8 mol. /L, specifically, can be adjusted in the range of about 1.5 to 6 mol/L, more specifically about 3 to 5 mol/L, but this can be understood as an example.
  • the principle of cyanide trapping is to utilize the phenomenon that the vapor density of cyanide (HCN) (0.94) is lower than the vapor density of air (1.0). To achieve this, aeration is applied as much as possible to push the HCN toward the alkaline solution. It is desirable to have it done.
  • cyanide trapping may be performed according to Scheme 1 below.
  • the trapping time is, for example, about 20 to 120 hours, specifically about 40 to 110 hours, more specifically about 60 to 105 hours, more specifically about 90 to 100 hours, considering the desired concentration of biocyanide. It can be adjusted appropriately within the time range.
  • the concentration of cyanide or cyanide ions (i.e., CN - ) concentrated or accumulated into the alkaline solution as described above is, for example, about 2 to 6 g/L, specifically about 3 to 5 g/L, more specifically It can increase to a range of about 4 to 4.5 g/L.
  • concentration of cyanide is below a certain level, there is a limit to increasing the leaching rate during bioleaching in the downstream stage, and if it exceeds a certain level, the leaching rate will no longer increase, so concentration It may be advantageous to appropriately adjust the degree.
  • the pH of the concentrated cyanide solution may range, for example, from about 9.5 to 14, specifically from about 10 to 12, and more specifically from about 10.5 to 11.5.
  • the production of biocyanide and the concentration or accumulation of cyanide using an alkaline solution may be performed in a batch or continuous manner, but biocyanide is produced in a relatively short period of time. Considering that it is generated in a section, continuous mode may be advantageous.
  • the obtained biocyanide-containing solution or concentrated (accumulated) biocyanide-containing solution is supplied to a lixiviant medium to remove platinum group metals from the platinum group-containing spent catalyst.
  • a leaching step is performed.
  • the platinum group metal in the spent catalyst may form a form combined with cyanide ions, for example, a complex.
  • the amount of spent catalyst in the biocyanide-containing solution is, for example, about 2 to 40 g/100 mL, specifically about It can be adjusted in the range of 5 to 25 g/100 mL, more specifically about 10 to 20 g/100 mL.
  • the bioleaching process may be performed under stirring conditions.
  • the stirring speed may be adjusted in the range of about 100 to 400 rpm, specifically about 200 to 250 rpm, but this is for illustrative purposes. It can be understood as
  • the leaching time may be determined considering the maximum leaching of Pt and Pd, for example, about 30 to 360 minutes, specifically about 30 to 120 minutes, and more specifically about 60 to 90 minutes. You can.
  • bioleaching may be set to elevated temperature conditions and increased oxygen pressure (pO 2 ) conditions.
  • the leaching temperature may be adjusted, for example, in the range of about 100 to 200 °C, specifically about 120 to 180 °C, and more specifically about 140 to 160 °C.
  • the leaching temperature is too low or too high, it may act as a factor in reducing the leaching rate, so it may be advantageous to appropriately adjust it within the above-mentioned range.
  • the above-described leaching temperature can be changed depending on other conditions, such as cyanide concentration, leaching time, oxygen pressure, etc.
  • the leaching rate may tend to increase as the pressure during bioleaching, specifically the oxygen pressure (or oxygen partial pressure) increases, for example, at least about 8 bar, specifically about 10 bar. It can be adjusted in the range of from about 18 bar to about 18 bar, more specifically about 12 to 16 bar. However, at excessively high oxygen pressure (or partial pressure), the increase in leaching rate is insignificant and may actually act as a factor in reducing the economic feasibility of the process, so it may be advantageous to adjust it appropriately within the above-mentioned range.
  • the leaching rate of the platinum group metals is, for example, at least about 90%, specifically at least about 92%, more specifically at least It may be about 95%.
  • the cyanide solution from which the platinum group has been leached may exhibit basicity.
  • the pH of the platinum group-containing leachate is, for example, about 9 to 12.5, specifically about 10 to 12, more specifically about 10.2 to 11.5, In particular, it may range from about 10.5 to 11, and this can be understood as an example.
  • the platinum group-containing cyanide leachate produced by bioleaching contains other components (for example, Al 2 O 3 , MgO, SiO 2 , ZrO 2 , CaO, TiO 2 , etc.), a step of selectively separating and recovering the platinum group metal is performed using a solvo-chemical method.
  • platinum group metals in the leachate are selectively moved into the extract by liquid-liquid extraction, thereby forming a platinum group-rich extract and a platinum group-depleted raffinate.
  • a water-insoluble organophosphorous ionic liquid may be used as the extractant.
  • organophosphorus-based ionic liquids are environmentally friendly because they are not flammable, unlike existing extractants, and also have good mass transfer and loading capacity.
  • the phosphorus-based ionic liquid may contain a phosphonium-based cationic group represented by General Formula 1 below.
  • R 1 to R 4 are each an alkyl group having 35 to 56 carbon atoms, specifically 38 to 50 carbon atoms, and more specifically 40 to 48 carbon atoms.
  • the anion constituting the phosphonium-based ionic liquid it may be at least one selected from halide, sulfide, nitrate, etc.
  • the halide may be at least one selected from fluoride, chloride, bromide, iodide, etc., and more specifically, may be chloride (Cl - ).
  • the molecular weight (M w ) of the above-described phosphonium-based ionic liquid may range, for example, from about 200 to 900, specifically from about 300 to 800, and more specifically from about 400 to 700. .
  • M w molecular weight
  • a representative phosphonium-based ionic liquid may be trihexyl(tetradecyl)phosphonium chloride, which exhibits anion exchange properties and is contained in the cyanide leachate. It can be particularly advantageous for extracting platinum group metals.
  • the organophosphorus ionic liquid may be applied to the extraction process in a mixed form with an aromatic solvent, taking into account the dielectric constant of the solvent, metal affinity, and affinity with the ionic liquid and aqueous solution.
  • the aromatic solvent that can be used is an aromatic solvent having 7 to 12 carbon atoms, specifically 8 to 11 carbon atoms, and more specifically, about 10 carbon atoms, for example, Solesso100. It may be commercially available as Solvesso150, Solvesso200, ExxolD80, etc.
  • the concentration of the organophosphorus extractant is, for example, at least about 0.08 mol/L, specifically at least about 0.1 mol/L, more specifically about 0.12 to 0.3 mol/L, especially specifically about 0.14 to 0.2 mol/L.
  • the concentration of the organophosphorus extractant is, for example, at least about 0.08 mol/L, specifically at least about 0.1 mol/L, more specifically about 0.12 to 0.3 mol/L, especially specifically about 0.14 to 0.2 mol/L.
  • an organometallic complex is formed between the cyanide of a platinum group metal (specifically Pt and/or Pd) and the ionic liquid in the extract, specifically phosphonium-based ionic liquid. It is believed that the metal moves from the aqueous phase to the organic phase by ion exchange between the anion of the phonium-based ionic liquid and the metal ion (specifically, the anion combining platinum and cyanide group).
  • the structure of the organometallic complex according to the ion exchange reaction may be expressed as Formula 1 below.
  • the extraction conditions are not particularly limited, but the volume ratio of organic phase to aqueous phase is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2. It can be adjusted in the range of 2:1.
  • the equilibration time may be, for example, in the range of about 2 to 30 minutes, specifically about 5 to 15 minutes, and more specifically about 5 to 10 minutes.
  • the extraction temperature may be, for example, around 20 to 40°C, specifically around 22 to 35°C, more specifically around 24 to 30°C, particularly around 25°C.
  • platinum group-depleted raffinate aqueous phase
  • organophosphorus ionic liquid as it contains cyanide
  • it can be used to leach platinum group metals from the spent catalyst.
  • it can be recycled as a solution containing biocyanide, and/or as a solution containing biocyanide concentrated (or accumulated) by an alkaline solution (trapping or collection solution).
  • cyanide can be decomposed by microorganisms that can be used to produce the aforementioned biocyanide, and can be discharged outside the process or system after going through the decomposition process.
  • recovering platinum group metals from a platinum group-rich extract may be performed.
  • the recovered platinum group metal may be a single platinum group metal or a combination of at least two types of platinum group metals.
  • this specific example does not exclude the recovery of a combination of two or more platinum group metals, for example, a combination of Pt and Pd, considering the usability, it is better to recover each platinum group metal contained in the spent catalyst with high purity. It can be advantageous. From this perspective, the following description will focus on methods for recovering a plurality of platinum group metals contained in the extract, specifically Pt and Pd.
  • selective stripping may be performed to recover a plurality of platinum group metals contained in the extract (i.e., organophosphorus-based ionic liquid).
  • the platinum group metals extracted in the extract (organic phase) are platinum (Pt) and palladium (Pd)
  • a solution specifically an aqueous solution
  • a compound i.e., stripping agent
  • Pt and Pd can each be recovered by contacting them with a platinum group-containing extract (oil phase), individually or sequentially.
  • an aqueous solution of a stripping agent that has water miscibility and selectivity for palladium can be used.
  • These stripping agents may be selected from thiol compounds that have selectivity in forming Pd complexes.
  • the Pd-selective stripping agent may be, for example, a thiocyanate compound.
  • Such a thiocyanate compound may be, for example, at least one selected from ammonium thiocyanate (NH 4 SCN), sodium thiocyanate (NaSCN), potassium thiocyanate (KSCN), etc., and specifically, ammonium thiocyanate (NaSCN). It may be a cyanate (NH 4 SCN) compound.
  • the concentration of the aqueous solution of the stripping agent selective for palladium can be adjusted so that the Pd stripping rate is maximum and at the same time the Pt stripping rate is minimum, for example at least about 0.7 mol/L, specifically at least about 0.8 mol/L. to 3 mol/L, more specifically about 1.2 to 2.6 mol/L, and particularly specifically about 1.8 to 2.3 mol/L.
  • the volume ratio of the organic phase to the water phase during palladium stripping is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2 to 2:1. It can be adjusted within a range.
  • the stripping temperature may be, for example, about 20 to 40° C., specifically about 22 to 35° C., more specifically about 24 to 30° C., and particularly specifically about 25° C.
  • the contact time is specifically limited. Although not guaranteed, it can be appropriately adjusted, for example, in the range of about 2 to 30 minutes, specifically about 5 to 15 minutes, and more specifically about 5 to 10 minutes.
  • the stripping rate of palladium may be at least about 90%, specifically at least about 95%, and more specifically at least about 98%.
  • the stripping rate of platinum may be, for example, less than about 3%, specifically less than about 2.5%, and more specifically less than about 2%.
  • the organic phase i.e., the palladium-depleted fraction in which most of the platinum (Pt) is contained in the organophosphorus ionic liquid, can be subjected to additional stripping to recover platinum (second stripping step).
  • the platinum stripping agent should be selected from types that are easy to form a Pt complex and have properties that can move Pt from the organic phase to the aqueous phase. You can.
  • thioalcohol can be used, specifically 2,2-thiodiethanol (S(CH 2 CH 2 OH) 2 ), Beta-rhodinol, (S)-3,7- It may be at least one selected from dimethyl-6-often-1-ol, etc., and specifically may be 2,2-thiodiethanol (S(CH 2 CH 2 OH) 2 ).
  • the concentration of the aqueous solution of the stripping agent selective for platinum is determined taking into account the maximum stripping rate of Pt, for example at least about 0.8 mol/L, specifically at least about 1 to 3 mol/L, more specifically about It can be adjusted in the range of 1.2 to 2.2 mol/L, particularly about 1.4 to 2 mol/L.
  • the volume ratio of organic phase to aqueous phase during platinum stripping is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2 to 2:1. It can be adjusted within a range.
  • the stripping temperature may be, for example, about 20 to 40° C., specifically about 22 to 35° C., more specifically about 24 to 30° C., and particularly specifically about 25° C.
  • the contact time is specifically limited. Although not guaranteed, it can be appropriately adjusted, for example, in the range of about 2 to 30 minutes, specifically about 5 to 15 minutes, and more specifically about 5 to 10 minutes.
  • the stripping rate of platinum may be at least about 90%, specifically at least about 95%, and more specifically at least about 98%.
  • each stripping solution can recover high purity platinum group metals, specifically platinum and palladium, through methods known in the art, such as precipitation and salt formation.
  • a platinum group metal-containing stripping solution specifically a platinum-containing solution and a palladium-containing solution, respectively, for example, ammonium salt, sulfide salt, etc.
  • the concentration of the added component may be determined depending on the amount of platinum group metal in the stripping solution, for example, about 0.01 to 0.05 mol/L, specifically about 0.02 to 0.04 mol/L, More specifically, it may range from about 0.02 to 0.03 mol/L.
  • the above numerical range may be understood as illustrative.
  • the temperature conditions for forming the precipitate are not particularly limited, but may be adjusted, for example, to a range of about 20 to 100°C, specifically about 30 to 80°C, and more specifically about 40 to 50°C.
  • the extract remaining after the stripping process can be recycled after the separation process and reused as an extractant in the extraction step before the stripping step.
  • the ionic liquid can be separated by contacting it with an aqueous solution of at least one acid selected from strong acids, such as hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, etc.
  • the concentration of the acid aqueous solution may be adjusted in the range of, for example, about 3 to 9 mol/L, specifically about 4 to 8 mol/L, and more specifically about 5 to 7 mol/L, but the acid used It can be changed depending on the type, etc.
  • a spent catalytic converter (5 kg) for a vehicle obtained from a domestic disposal company was used.
  • the collected catalyst was finely ground to a size of approximately 150 ⁇ m using a gyratory crusher and ball mill.
  • the contents of platinum and palladium among the platinum group metals were 756 ppm and 367.5 ppm, respectively.
  • platinum group metals were recovered from spent catalyst by performing the critical steps of the process shown in FIG. 2.
  • biocyanide production and concentration (accumulation) experiments were performed using the setup device shown in FIG. 3.
  • cyanide-producing bacteria C. violaceum DSM30191
  • YP medium 10 g peptone, 5 g yeast extract, and 1.0 L distilled water
  • Approximately 10 6 CFU/mL was inoculated.
  • Cyanide synthesis was performed in a bioreactor (equipped with a stirrer to provide agitation at 300 rpm), and air was constantly supplied through an aerator at a flow rate of 3.0 mL/s. The bioreactor was maintained at 30°C over 120 hours.
  • 4.0 mol/L NaOH solution was used as an alkali collection means for concentrating (accumulating) the synthesized biocyanide.
  • concentration of biocyanide was analyzed by titration against a standard AgNO 3 solution, and cells were counted by the drop plate method on nutrient agar using plates incubated at 30°C for 24 hours.
  • the cell number increased from 10 6 CFU/mL to 10 9 CFU/mL within 36 hours after incubation and was maintained until 12 hours thereafter. Then, as a result of 120 hours of incubation, it decreased to 10 7 CFU/mL.
  • biocyanide accumulation into the alkaline solution started after 12 hours (10 6 mg/L CN - ) and progressed over 48 hours, with a maximum accumulation of 1.05 g/L CN - reached, and then began to decrease.
  • cyanide (HCN) synthesis was performed using YP medium supplemented with 2.0 g/L glycine and through a continuous process capable of accumulating higher concentrations of cyanide ions under conditions with a retention time of 24 hours.
  • HCN cyanide
  • Figure 5b the highest concentration of 4.17 g/L CN - was reached after 96 hours in the alkaline collection solution with a pH of 10.7.
  • the CN - ion concentration decreased to 3.8 g/L after 120 hours, which is believed to be because some of the CN - ions were converted to HCN as the pH decreased to about 10 (pKa, 9.3).
  • the solution was collected by filtration using a 0.45 ⁇ m membrane filter, and the collected filtrate was analyzed for Pt-Pd using ICP-plasma mass spectrometry (ICP-MS; MSS 01, SPECTRO Analytical Instruments GmbH, Germany). Analysis was performed.
  • ICP-MS ICP-plasma mass spectrometry
  • the metal leaching rate was calculated according to Equation 1 below.
  • M IS and M LL are the metal content in the solid sample and the metal content in the leachate, respectively.
  • the leaching rate of Pt and Pd in the cyanide-containing solution at a high temperature of 100°C was found to be 85% or less. However, at 150 °C, the leaching rate reached a maximum of 91% Pt and 94% Pd. Thereafter, as the temperature increased, the leaching rate decreased, reaching a maximum of 87% Pt and 81% Pd at 250°C. This decrease behavior is believed to be due to the decomposition of cyanide due to an increase in the hydrolysis rate at higher temperatures, as shown in Schemes 2 and 3 below.
  • the bioleaching experiment was performed according to the experimental procedure according to Example 2, except that the bioleaching was performed while changing the partial pressure of oxygen (pO 2 ) in the range of 3.5 to 17.5 bar (temperature of 150°C, 2.9 g/L). CN - concentration, initial pH of 11.2 and 60 min). The results are shown in Figure 7.
  • pO 2 partial pressure of oxygen
  • a bioleaching experiment was performed according to the experimental procedure according to Example 2, except that the bioleaching was performed while changing the biocyanide (CN - ) concentration in the range of 0.23 to 4.17 g/L (temperature of 150°C, pO 2 of 14 bar, initial pH of 11.2 and 60 min). The results are shown in Figure 8.
  • the Pt leaching rate (43% to >95%) and Pd leaching rate (52% to 96%) also increased.
  • the residual cyanide concentration increased from 0.032 g/L to >1.0 g/L.
  • the maximum leaching rate was observed in the cyanide-containing solution at a concentration of 2.9 g/L CN - .
  • the stock leachate (Pt, 157.5 mg/L and Pd, 77.6 mg/L) was used in the subsequent separation (liquid-liquid extraction) process.
  • Trihexyl(tetradecyl)phosphonium chloride a phosphonium-based ionic liquid
  • C10 aromatic solvent
  • PH 10.8 cyanide leachate
  • the platinum group metals (Pt and Pd) were extracted.
  • the organic to aqueous phase ratio (O:A) was 1, and the contact was made at 25°C for 10 minutes. The results are shown in Figure 9.
  • the logarithmic distributions Pt and Pd showed a relationship between log[P-IL] and a straight line with a slope value of about 2.
  • the slope value indicates that 2 molecules of ionic liquid are involved per mole of Pt and Pd extraction complexes. Based on this relationship, the extraction reaction can be represented by Schemes 6 and 7 below.
  • the extraction experiment was performed according to the experimental procedure according to Example 5, except that the liquid-liquid extraction was performed while changing the pH of the platinum group metal-containing solution (leaching solution) in the range of 10.4 to 11.2 (O:A, 1 ; P-IL concentration, 0.15 mol/L; contact time, 10 min; and temperature, 25 °C). The results are shown in Figure 10. At this time, the extraction rate was calculated according to Equation 2 below.
  • V org and V aq are the volumes of the organic phase and the aqueous phase, respectively.
  • the Pt-Pd loaded ionic liquid was contacted with various concentrations of NH 4 SCN aqueous solution (0.25 to 2.0 mol/L) (O:A, 1; contact time, 10 min; and temperature, 25° C.). The results are shown in Figure 12. At this time, the stripping rate was calculated according to Equation 3 below.
  • CS org and CS aq are the metal concentrations after stripping in the organic phase and aqueous phase, respectively.
  • the NH 4 SCN solution showed the selective recovery ability of Pd over Pt. Specifically, as the NH 4 SCN concentration increased from 0.25 mol/L to 1.0 mol/L, the Pd-stripping rate increased significantly from 68% to >94%. Afterwards, stripping hardly progressed, showing a stripping rate of over 98% in a 2.0 mol/L NH 4 SCN solution, and at this time, Pt was less than 3%.
  • the selectivity achieved in thiocyanate stripping comes from the fact that the Pd-compound has a larger charge density due to the larger size of Pt(CN) 4 2- than that of Pd(CN) 4 2- . It is believed to be caused by The reaction involved in Pd-stripping using NH 4 SCN solution can be expressed in Scheme 8 below.
  • the Pd-depleted ionic liquid was contacted with various concentrations of S(CH 2 CH 2 OH) 2 aqueous solution (0.25 to 2.0 mol/L) (O:A, 1; contact time, 10 min; and temperature, 25 °C. ). The results are shown in Figure 13.
  • the Pt stripping rate reached about 90% in a 1.0 mol/L S(CH 2 CH 2 OH) 2 solution and about 96% in a 1.5 mol/L S(CH 2 CH 2 OH) 2 solution. % has been reached. However, even if the S(CH 2 CH 2 OH) 2 concentration was further increased, no significant increase in the stripping rate was observed.
  • the coordination substitution reaction of Pt-stripping using S(CH 2 CH 2 OH) 2 can be represented by Scheme 9 below.
  • the leaching rates of Pt and Pd were both about 95%, confirming the recyclability of the residual cyanide solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Disclosed in the content of the present disclosure is a process for recovering a platinum-group metal with a high yield by using an organic phosphorus-based ionic liquid as an extracting agent, following bio-leaching of the platinum-group metal contained in a waste catalyst by using biocyanide produced from microorganisms.

Description

바이오시안화물 및 이온성 액체를 이용하여 폐촉매로부터 백금족 금속을 회수하는 공정Process for recovering platinum group metals from spent catalysts using biocyanide and ionic liquids
본 개시 내용은 바이오시안화물 및 이온성 액체를 이용하여 폐촉매로부터 백금족 금속을 회수하는 공정에 관한 것이다. 보다 구체적으로, 본 개시 내용은 미생물로부터 생성된 바이오시안화물을 이용하여 폐촉매 내에 함유된 백금족 금속을 바이오침출시킨 다음, 유기 인계 이온성 액체를 추출제로 사용하여 백금족 금속을 고순도로 회수하는 공정에 관한 것이다.This disclosure relates to a process for recovering platinum group metals from spent catalysts using biocyanide and ionic liquids. More specifically, the present disclosure relates to a process of bioleaching platinum group metals contained in a spent catalyst using biocyanide produced from microorganisms and then recovering the platinum group metals with high purity using an organophosphorus ionic liquid as an extractant. It's about.
최근 강화되는 오염 가스의 규제 정책으로 인하여 각종 차량으로부터 배출되는 배기가스를 처리하기 위한 촉매 변환기가 의무적으로 사용되고 있는 바, 배기가스의 포집을 위하여는 촉매 성분으로 귀금속, 구체적으로 백금(Pt), 팔라듐(Pd) 등이 적용되고 있다. Due to the recently strengthened regulation of polluting gases, catalytic converters have become mandatory to treat exhaust gases emitted from various vehicles. To capture exhaust gases, precious metals, specifically platinum (Pt) and palladium, are used as catalyst components. (Pd) etc. are applied.
전통적으로, 폐촉매 변환기는 건식 제련 프로세스를 통하여 처리되는 바, 이때 Cu0 및 Fe0와 같은 수집 금속(collector metal) 또는 포집 금속을 이용하여 합금 형태로 귀금속을 수집한다. 그러나, 이러한 프로세스는 직접 추출 방식으로 보기 어려을 뿐만 아니라, 에너지 집약적이고, 후속적으로 화학적 침출(또는 용출)을 수행한 후에 상대적으로 낮은 중량의 귀금속을 분리하는 과정을 수반할 뿐만 아니라, 다량의 2차 폐기물을 슬래그 형태로 생성한다. 이와 같이 생성된 슬래그는 높은 알칼리성을 나타내므로 매립에 적합하지 않다. 또한, 다량의 이산화탄소를 배출하는 문제점이 지적되고 있으며, 합금을 재가공하여 수집 금속과 분리한 후에는 개별 귀금속 염으로 처리되어야 한다. 더욱이, 건식 제련 프로세스의 경우, 백금 회수율은 약 80 내지 94%, 그리고 팔라듐 회수율은 약 80 내지 96%의 수준이다. 따라서, 전체 재활용 공정의 처리 비용을 크게 증가시키는 문제점이 있다.Traditionally, spent catalytic converters are processed through a pyrometallurgical process, where the precious metals are collected in alloy form using collector metals or collector metals such as Cu 0 and Fe 0 . However, this process is not only difficult to see as a direct extraction method, but is also energy-intensive and involves isolating relatively low weight precious metals after subsequent chemical leaching (or elution), as well as producing large amounts of 2 Tea waste is produced in the form of slag. The slag produced in this way exhibits high alkalinity and is therefore not suitable for landfill. In addition, the problem of emitting a large amount of carbon dioxide has been pointed out, and after the alloy is reprocessed and separated from the collected metal, it must be treated with individual precious metal salts. Moreover, for the dry smelting process, the platinum recovery rate is about 80 to 94%, and the palladium recovery rate is about 80 to 96%. Therefore, there is a problem that greatly increases the processing cost of the entire recycling process.
택일적으로, 습식 야금(hydrometallurgical) 방식이 제안되었으나, 고농도의 독성 산을 사용하기 때문에 환경 스트레스를 증가시키는 위험한 폐수 및 기체 오염 물질을 방출한다. 또한, 후-처리 단계로서 폐수 처리를 수반하는 바, 이에 소요되는 비용이 크고, 가스 세정 또한 고비용의 정교한 장비를 사용해야 하므로 전체적인 처리 비용이 필연적으로 증가한다. Alternatively, hydrometallurgical methods have been proposed, but because they use high concentrations of toxic acids, they release hazardous wastewater and gaseous pollutants that increase environmental stress. In addition, since wastewater treatment is involved as a post-treatment step, the cost required for this is large, and gas cleaning also requires the use of expensive and sophisticated equipment, which inevitably increases the overall treatment cost.
이에 대하여, 고농축 산의 사용을 억제할 목적으로 화학적 시안화 공정이 잠재적인 대안으로 제안되고 있다. 그러나, 유리 시안화물의 독성으로 인하여 운송 시 위험성이 높고, 시안화물-함유 폐수를 배출하기 전에 시안화물을 분해하는데 높은 비용이 소요된다. In response to this, a chemical cyanidation process has been proposed as a potential alternative for the purpose of suppressing the use of highly concentrated acids. However, due to the toxicity of free cyanide, there is a high risk during transportation and high costs are incurred in decomposing cyanide before discharging cyanide-containing wastewater.
최근에는 용액 화학을 수반하는 무기 금속 추출 방식에 대한 대안으로 친환경성이 강화된 미생물 기반 기술, 구체적으로 시안화물-생성 박테리아로부터 생성된 바이오시안화물 용액을 이용하여 폐촉매로부터 백금족을 침출시켜 회수하는 기술이 보고된 바 있다(국내특허번호 제1575582호; Hydrometallurgy 158 (2015) 10-18).Recently, as an alternative to inorganic metal extraction methods involving solution chemistry, environmentally friendly microorganism-based technologies have been developed, specifically biocyanide solutions produced from cyanide-producing bacteria, to recover platinum groups by leaching them from spent catalysts. The technology has been reported (Domestic Patent No. 1575582; Hydrometallurgy 158 (2015) 10-18).
그러나, 전술한 바이오침출 기반의 기술에서는 시안화물 침출액으로부터 백금족 금속을 회수하는 방식에 관하여는 구체적으로 언급하고 있지 않다. 백금족 금속을 함유하는 침출액으로부터 백금족을 분리 회수하기 위하여, 이온교환수지 및 소디움 설파이드(NaHS)와 같은 설파이드의 첨가를 통하여 침전시키는 방식도 알려져 있다(예를 들면, 미국특허번호 제7544231호). 그러나, 용액에 잔류하는 시안화물을 분해하기 위하여는 많은 비용이 소요되며, 특히 독성으로 인하여 배출이 용이하지 않다.However, the above-described bioleaching-based technology does not specifically mention a method of recovering platinum group metals from cyanide leachate. In order to separate and recover platinum group metals from leachate containing platinum group metals, a method of precipitating them through the addition of ion exchange resin and sulfide such as sodium sulfide (NaHS) is also known (for example, U.S. Patent No. 7544231). However, it costs a lot of money to decompose the cyanide remaining in the solution, and it is not easy to discharge due to its toxicity.
본 개시 내용의 일 구체예에서는 백금족 금속(PGM)을 함유하는 폐촉매로부터 백금족 금속을 회수하기 위하여, 종래 기술 대비 저렴한 비용으로 독성 물질의 사용을 최소화하면서 백금족 금속을 효과적으로 회수할 수 있는 친환경적 방안을 제공하고자 한다.In one embodiment of the present disclosure, in order to recover platinum group metals from a spent catalyst containing platinum group metals (PGM), an environmentally friendly method is provided to effectively recover platinum group metals while minimizing the use of toxic substances at a lower cost compared to the prior art. We would like to provide
본 개시 내용의 다른 구체예에서는 미생물을 이용하여 폐촉매로부터 백금족 금속을 회수한 후에 생성된 잔류물을 재활용하는 방안을 제공하고자 한다.Another embodiment of the present disclosure seeks to provide a method for recycling the residue generated after recovering platinum group metals from a spent catalyst using microorganisms.
본 개시 내용의 일 구체예에 따르면,According to one embodiment of the present disclosure,
a) 시안화물-생성 미생물의 대사 작용에 의하여 생성된 바이오시안화물을 함유하는 용액을 이용하여 백금족-함유 폐촉매로부터 백금족 금속을 침출시킴으로써 백금족-함유 시안화물 침출액을 형성하는 단계;a) forming a platinum group-containing cyanide leachate by leaching platinum group metals from a platinum group-containing spent catalyst using a solution containing biocyanide produced by the metabolic action of cyanide-producing microorganisms;
b) 백금족-함유 시안화물 침출액을 추출제로서 수불용성의 유기 인계 이온성 액체를 이용한 액-액 추출 처리에 의하여 백금족-풍부 익스트랙트 및 백금족-고갈된 라피네이트를 형성하는 단계; 및b) subjecting the platinum group-containing cyanide leachate to a liquid-liquid extraction treatment using a water-insoluble organophosphorus ionic liquid as an extractant to form a platinum group-rich extract and a platinum group-depleted raffinate; and
c) 상기 익스트랙트로부터 백금족 금속을 회수하는 단계;c) recovering platinum group metal from the extract;
를 포함하는 폐촉매로부터 백금족 금속을 회수하는 방법이 제공된다.A method for recovering platinum group metals from a spent catalyst containing a is provided.
예시적 구체예에 따르면, 상기 백금족-함유 폐촉매는 백금 및 팔라듐으로부터 이루어지는 군으로부터 선택되는 적어도 하나의 백금족 금속을 함유할 수 있다.According to an exemplary embodiment, the platinum group-containing spent catalyst may contain at least one platinum group metal selected from the group consisting of platinum and palladium.
예시적 구체예에 따르면, 상기 백금족-함유 폐촉매는 로듐을 함유하지 않을 수 있다.According to an exemplary embodiment, the platinum group-containing spent catalyst may not contain rhodium.
예시적 구체예에 따르면, 상기 백금족-함유 폐촉매는 350 ㎛ 이하의 입도 범위를 갖는 입자 또는 분쇄물 형태로 단계 a)에 제공될 수 있다. According to an exemplary embodiment, the platinum group-containing spent catalyst may be provided in step a) in the form of particles or pulverized material having a particle size range of 350 μm or less.
예시적 구체예에 따르면, 상기 백금족-함유 폐촉매 내 전체 백금족 금속의 함량은 0.005 내지 0.4 중량% 범위일 수 있다.According to an exemplary embodiment, the total content of platinum group metal in the platinum group-containing spent catalyst may range from 0.005 to 0.4% by weight.
예시적 구체예에 따르면, 상기 백금족-함유 폐촉매는 백금 및 팔라듐을 함유하며, 백금 및 팔라듐 각각의 함량은 0.003 내지 0.15 중량% 및 0.002 내지 0.1 중량% 범위일 수 있다.According to an exemplary embodiment, the platinum group-containing spent catalyst contains platinum and palladium, and the contents of platinum and palladium may be in the range of 0.003 to 0.15% by weight and 0.002 to 0.1% by weight, respectively.
예시적 구체예에 따르면, 상기 단계 a) 중 바이오시안화물을 함유하는 수용액의 pH는 9.5 내지 14의 범위이고, 시안화물(CN-)의 농도는 2 내지 6 g/L의 범위일 수 있다.According to an exemplary embodiment, the pH of the aqueous solution containing biocyanide in step a) may range from 9.5 to 14, and the concentration of cyanide (CN - ) may range from 2 to 6 g/L.
예시적 구체예에 따르면, 상기 단계 a) 중 백금족 금속을 침출시키기 전에 바이오시안화물을 함유하는 용액을 알칼리 용액 내로 트래핑 또는 수집하여 농축 또는 축적시키는 단계를 더 포함할 수 있다. According to an exemplary embodiment, before leaching the platinum group metal in step a), the step of trapping or collecting the solution containing biocyanide into an alkaline solution and concentrating or accumulating it may be further included.
예시적 구체예에 따르면, 상기 단계 a)에서 형성된 백금족-함유 시안화물 침출액의 pH는 9 내지 12.5의 범위일 수 있다.According to an exemplary embodiment, the pH of the platinum group-containing cyanide leachate formed in step a) may range from 9 to 12.5.
예시적 구체예에 따르면, 상기 단계 b)에서 사용된 유기 인계 이온성 액체는 하기 일반식 1로 표시되는 포스포늄계 양이온기, 그리고 할라이드, 황화물 및 질산염으로 이루어지는 군으로부터 선택되는 음이온기를 포함할 수 있다:According to an exemplary embodiment, the organophosphorus ionic liquid used in step b) may include a phosphonium-based cationic group represented by the following general formula 1, and an anionic group selected from the group consisting of halide, sulfide, and nitrate. there is:
[일반식 1][General Formula 1]
Figure PCTKR2023012145-appb-img-000001
Figure PCTKR2023012145-appb-img-000001
상기 식에서, R1 내지 R4는 각각 탄소수 35 내지 56의 알킬기이다.In the above formula, R 1 to R 4 are each an alkyl group having 35 to 56 carbon atoms.
예시적 구체예에 따르면, 상기 단계 b)에서 사용된 유기 인계 이온성 액체의 분자량(Mw)은 200 내지 900의 범위일 수 있다. According to an exemplary embodiment, the molecular weight (M w ) of the organophosphorus-based ionic liquid used in step b) may range from 200 to 900.
예시적 구체예에 따르면, 상기 단계 c)는 스트리핑에 의하여 수행될 수 있다.According to an exemplary embodiment, step c) may be performed by stripping.
예시적 구체예에 따르면, 상기 단계 c)에서 백금족 금속의 회수 후에 남은 익스트랙트로부터 유기 인계 이온성 액체를 분리하여 단계 b)에서 추출제로 재사용하는 단계를 더 포함할 수 있다.According to an exemplary embodiment, the step of separating the organophosphorus ionic liquid from the extract remaining after recovery of the platinum group metal in step c) and reusing it as an extractant in step b) may further be included.
본 개시 내용의 구체예에 따른 폐촉매로부터 백금족 금속을 회수하는 공정은 바이오침출 또는 바이오 습식 야금 메커니즘을 기반으로 하는 녹색 바이오제닉 시안화물 용액을 이용함으로써 종래 기술(건식 제련 공정, 산을 이용한 화학적 습식 제련 공정 등)에서 지적된 문제점(특히, 유해 가스 또는 독성 물질의 배출, 슬래그 생성, 고에너지 소요 등)을 획기적으로 해결할 수 있다. 더 나아가, 특정 추출제를 이용한 액-액 추출 방식을 수행함으로써 바이오시안화물 기반의 침출을 통하여 생성된 백금족-함유 침출액으로부터 백금족 금속을 용이하게 분리할 수 있고, 더 나아가 개별 백금족 금속을 고순도로 회수할 수 있는 장점을 제공한다. 특히, 환경친화적, 저에너지 집약적 및 고효율을 구현할 수 있기 때문에 관련 기업의 ESG 전략에도 부합되는 바, 향후 광범위한 상용화가 기대된다.The process for recovering platinum group metals from spent catalysts according to embodiments of the present disclosure uses a green biogenic cyanide solution based on bioleaching or biohydrometallurgical mechanisms, compared to conventional techniques (pyrometallurgical processes, chemical wet metals using acids). It can dramatically solve problems pointed out in the smelting process (in particular, emissions of harmful gases or toxic substances, slag production, high energy consumption, etc.). Furthermore, by performing a liquid-liquid extraction method using a specific extractant, platinum group metals can be easily separated from the platinum group-containing leachate produced through biocyanide-based leaching, and further, individual platinum group metals can be recovered with high purity. It provides advantages that can be done. In particular, because it is environmentally friendly, low energy-intensive, and highly efficient, it is consistent with the ESG strategies of related companies and is expected to be widely commercialized in the future.
도 1은 폐촉매로부터 백금족 금속을 회수하기 위한 개략적인 공정 순서를 도시하는 공정도이고;1 is a process diagram showing a schematic process sequence for recovering platinum group metals from spent catalysts;
도 2는 폐촉매로부터 백금족 금속을 회수하는 예시적인 공정을 도시하는 공정도이고;2 is a process diagram showing an exemplary process for recovering platinum group metals from spent catalyst;
도 3은 박테리아를 이용한 시안화물 생성 실험을 수행하기 위한 장치의 예를 도시하는 도면이고;Figure 3 is a diagram showing an example of an apparatus for performing a cyanide production experiment using bacteria;
도 4는 회분식 모드에서 시간 경과에 따른 바이오시안화물에 있어서, 2.0 g/L의 글리신이 보충된 YP 배지에서의 C. violaceum 세포 수를 측정한 결과를 나타내는 그래프이고;Figure 4 is a graph showing the results of measuring the number of C. violaceum cells in YP medium supplemented with 2.0 g/L glycine in biocyanide over time in batch mode;
도 5는 (a) 회분식 모드 및 (b) 연속 모드 각각에 있어서, 2.0 g/L의 글리신 농도의 YP 배지 내 및 4.0 mol/L의 NaOH 트래핑 용액을 이용한 바이오시안화물 용액의 제조 시 시간 경과에 따른 바이오제닉 시안화물의 축적 및 pH 변화를 나타내는 그래프이고;Figure 5 shows the time course of the preparation of biocyanide solution using a NaOH trapping solution of 4.0 mol/L and YP medium with a glycine concentration of 2.0 g/L in (a) batch mode and (b) continuous mode, respectively. This is a graph showing the accumulation and pH change of biogenic cyanide;
도 6은 2.9 g/L의 CN- 농도, 10.5 bar의 pO2, 11.2의 초기 pH 및 60 분의 조건에서 폐촉매 변환기로부터 Pt 및 Pd의 가압 바이오시안화 반응에 대한 온도의 영향을 나타내는 그래프이고;Figure 6 is a graph showing the effect of temperature on the pressurized biocyanation reaction of Pt and Pd from a spent catalytic converter at conditions of CN - concentration of 2.9 g/L, pO 2 of 10.5 bar, initial pH of 11.2 and 60 minutes;
도 7은 150 ℃의 온도, 2.9 g/L의 CN- 농도, 11.2의 초기 pH 및 60 분의 조건에서 폐촉매 변환기로부터 Pt 및 Pd의 가압 바이오시안화 반응에 대한 산소 부분압(pO2)의 영향을 나타내는 그래프이고; Figure 7 shows the effect of oxygen partial pressure (pO 2 ) on the pressurized biocyanation reaction of Pt and Pd from a spent catalytic converter at a temperature of 150 °C, CN concentration of 2.9 g/L, initial pH of 11.2, and 60 min. It is a graph representing;
도 8은 150 ℃의 온도, 14 bar의 pO2, 11.2의 초기 pH 및 60 분의 조건에서 폐촉매 변환기로부터 Pt 및 Pd의 가압 바이오시안화 반응에 대한 바이오시안화물 농도의 영향을 나타내는 그래프이고;Figure 8 is a graph showing the effect of biocyanide concentration on the pressurized biocyanation reaction of Pt and Pd from a spent catalytic converter under conditions of temperature of 150 °C, pO 2 of 14 bar, initial pH of 11.2 and 60 minutes;
도 9는 소정 조건(O:A, 1; pH, 10.8; 접촉 시간, 10 min; 및 온도, 25 ℃)에서 (a) 시안화물 침출액으로부터 Pt 및 Pd의 추출에 대하여 이온성 액체의 농도가 미치는 영향을 나타내는 그래프, 그리고 (b) D vs. P-IL의 로그 플롯이고;Figure 9 shows the effect of ionic liquid concentration on the extraction of Pt and Pd from (a) cyanide leachate under certain conditions (O:A, 1; pH, 10.8; contact time, 10 min; and temperature, 25°C). Graph showing the impact, and (b) D vs. It is a log plot of P-IL;
도 10은 소정 조건(O:A, 1; P-IL 농도, 0.15 mol/L; 접촉 시간, 10 min; 및 온도, 25 ℃)에서 Pt-Pd 추출에 대하여 백금족 금속-함유 용액(침출액)의 pH가 미치는 영향을 나타내는 그래프이고;Figure 10 shows the platinum group metal-containing solution (leaching solution) for Pt-Pd extraction under given conditions (O:A, 1; P-IL concentration, 0.15 mol/L; contact time, 10 min; and temperature, 25 °C). This is a graph showing the effect of pH;
도 11은 소정 조건(O:A, 1; P-IL 농도, 0.15 mol/L; 용액 pH, 10.4; 및 접촉 시간, 10 min)에서 (a) Pt-Pd 추출에 대하여 온도가 미치는 영향을 나타내는 그래프, 및 (b) logKex vs. 1/T에 대한 Van't Hoff 플롯이고;Figure 11 shows the effect of temperature on (a) Pt-Pd extraction under given conditions (O:A, 1; P-IL concentration, 0.15 mol/L; solution pH, 10.4; and contact time, 10 min). Graph, and (b) logK ex vs. is the Van't Hoff plot for 1/T;
도 12는 소정 조건(O:A, 1; 접촉 시간, 10 min; 및 온도, 25 ℃)에서 이온성 액체 상 중 Pt 및 Pd의 스트리핑 거동에 대하여 NH4SCN의 농도가 미치는 영향을 나타내는 그래프이고;Figure 12 is a graph showing the effect of the concentration of NH 4 SCN on the stripping behavior of Pt and Pd in the ionic liquid phase under certain conditions (O:A, 1; contact time, 10 min; and temperature, 25 °C). ;
도 13은 소정 조건(O:A, 1; 접촉 시간, 10 min; 및 온도, 25 ℃)에서 Pd-고갈된 이온성 액체 상 중 Pt-스트리핑에 대하여 S(CH2CH2OH)2의 농도가 미치는 영향을 나타내는 그래프이고;Figure 13 shows the concentration of S(CH 2 CH 2 OH) 2 for Pt-stripping in the Pd-depleted ionic liquid phase under given conditions (O:A, 1; contact time, 10 min; and temperature, 25 °C). This is a graph showing the impact of;
도 14는 (a) P-IL을 이용한 (Pt,Pd) 추출 공정 수행 후 리사이클되는 라피네이트 내에 축적된 바이오시안화물 용액을 사용하여 폐촉매 변환기로부터 Pt 및 Pd를 침출시키는 거동을 나타내는 그래프, 및 (b) 시안화물 침출 용액으로부터의 (Pt,Pd) 추출 사이클에서 이온성 액체의 재사용성을 평가한 결과를 나타내는 그래프이고; 그리고Figure 14 is (a) a graph showing the behavior of leaching Pt and Pd from a spent catalytic converter using the biocyanide solution accumulated in the recycled raffinate after performing the (Pt, Pd) extraction process using P-IL, and (b) a graph showing the results of evaluating the reusability of ionic liquid in a (Pt,Pd) extraction cycle from a cyanide leaching solution; and
도 15는 바이오시안화물 생성에 사용된 후 바이오리액터로부터 드레인된 C. violaceum를 사용하여 블리드(bleed) 용액 내에서 시안화물의 생분해시키는 실험 결과를 나타내는 그래프이다.Figure 15 is a graph showing the results of an experiment on biodegradation of cyanide in a bleed solution using C. violaceum drained from the bioreactor after being used to produce biocyanide.
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다. 또한, 첨부된 도면은 이해를 돕기 위한 것으로, 본 발명이 이에 한정되는 것은 아니며, 개별 구성에 관한 세부 사항은 후술하는 관련 기재의 구체적 취지에 의하여 적절히 이해될 수 있다.The present invention can all be achieved by the following description. The following description should be understood as describing preferred embodiments of the present invention, but the present invention is not necessarily limited thereto. In addition, the attached drawings are intended to aid understanding, and the present invention is not limited thereto, and details regarding individual configurations can be appropriately understood based on the specific purpose of the related description described later.
본 명세서에서 사용되는 용어는 하기와 같이 정의될 수 있다.Terms used in this specification may be defined as follows.
"백금족 금속"은 포괄적으로는 백금족에 속하는 6개의 금속 원소, 즉 백금(platinum), 팔라듐(palladium), 로듐(rhodium), 루테늄(ruthenium), 이리듐(iridium), 및 오스뮴(osmium)을 포함하는 것으로 이해될 수 있으며, 협의로는 백금 및/또는 팔라듐을 지칭하는 것으로 이해될 수 있다.“Platinum group metal” broadly includes the six metal elements belonging to the platinum group: platinum, palladium, rhodium, ruthenium, iridium, and osmium. It can be understood as referring to platinum and/or palladium in a narrow sense.
"바이오침출(bioleaching)"은 일반적으로 미생물에 의하여 미네랄 소스로부터 금속을 용출(dissolution)시키는 프로세스, 구체적으로 고상의 금속을 수용성의 형태로 전환시키는 프로세스를 의미할 수 있다.“Bioleaching” may generally refer to a process of dissolving a metal from a mineral source by microorganisms, and specifically to a process of converting a solid metal to a water-soluble form.
"배양 배지(culture medium)"은 세포 성장에 사용 가능한 영양성분의 수용액을 의미할 수 있다.“Culture medium” may refer to an aqueous solution of nutrients available for cell growth.
"추출(extraction)"은 하나의 상(phase)으로부터 다른 상을 특정 성분, 구체적으로 금속을 전달하는 것을 의미할 수 있다. “Extraction” can mean transferring a particular component, specifically a metal, from one phase to another.
"스트리핑(stripping)"은 액상 매질 또는 용매로부터 특정 금속을 분리 또는 제거하는 프로세스를 의미할 수 있으며, 선택적 스트리핑은 복수의 금속을 함유하는 액상 매질 또는 용매로부터 특정 금속을 분리 또는 제거하는 프로세스를 의미할 수 있다. “Stripping” may refer to a process of separating or removing a specific metal from a liquid medium or solvent, and selective stripping may refer to a process of separating or removing a specific metal from a liquid medium or solvent containing a plurality of metals. can do.
본 명세서에서 수치 범위가 하한값 및/또는 상한값으로 특정된 경우, 해당 수치 범위 내에 임의의 서브 조합도 개시된 것으로 이해될 수 있다. 예를 들면, "1 내지 5"로 기재된 경우, 1, 2, 3, 4 및 5는 물론, 이들 간의 임의의 서브-조합도 포함할 수 있다.In this specification, when a numerical range is specified as a lower limit and/or an upper limit, it can be understood that any subcombination within the numerical range is also disclosed. For example, when written as “1 to 5,” it can include 1, 2, 3, 4, and 5, as well as any sub-combinations therebetween.
본 명세서에서 임의의 구성 요소 또는 부재가 다른 구성 요소 또는 부재와 "연결된다"고 기재되어 있는 경우, 달리 언급되지 않는 한, 상기 다른 구성 요소 또는 부재와 직접 연결되어 있는 경우뿐만 아니라, 다른 구성 요소 또는 부재의 개재 하에서 연결되어 있는 경우도 포함되는 것으로 이해될 수 있다. When any component or member is described herein as being “connected to” another component or member, unless otherwise stated, it refers not only to being directly connected to said other component or member, but also to the other component or member. Alternatively, it may be understood that cases of being connected through the intervention of a member are also included.
이와 유사하게, "접촉한다"는 용어 역시 반드시 직접적으로 접촉하는 경우뿐만 아니라, 다른 구성 요소 또는 부재의 개재 하에서 접촉하는 경우도 포함될 수 있는 것으로 이해될 수 있다.Similarly, the term “contact” may also be understood to include not only direct contact, but also contact through the intervention of other components or members.
어떠한 구성요소를 "포함"한다고 할 때, 이는 별도의 언급이 없는 한, 다른 구성요소를 더 포함할 수 있음을 의미한다. When it is said to “include” a certain component, this means that it may further include other components, unless otherwise specified.
본 개시 내용의 일 구체예에 따르면, 백금족 금속을 함유하는 폐촉매로부터 백금족 금속을 분리 회수하기 위하여, 미생물을 이용한 바이오침출 및 솔보-화학적(solvo-chemical) 추출 방식의 공정이 제공되는 바, 이의 개략적인 공정은 도 1에 도시된 바와 같다.According to one embodiment of the present disclosure, a process of bioleaching and solvo-chemical extraction using microorganisms is provided to separate and recover platinum group metals from a spent catalyst containing platinum group metals, The schematic process is as shown in Figure 1.
상기 도면을 참조하면, 출발 물질로서 고상의 백금족-함유 폐촉매가 사용될 수 있다. 이와 관련하여, 백금족-함유 폐촉매는 자동차, 화학 산업 등의 다양한 분야에서 입수 가능하며, 전형적으로 촉매 변환기(예를 들면, 자동차의 촉매 변환기)로부터 유래된 것일 수 있다. Referring to the drawing, a solid platinum group-containing spent catalyst can be used as a starting material. In this regard, platinum group-containing spent catalysts are available from various fields such as the automotive and chemical industries, and may typically be derived from catalytic converters (e.g., catalytic converters of automobiles).
예시적 구체예에 따르면, 폐촉매 내에서 백금족 금속의 함량은 특별히 한정되는 것은 아니지만, 폐촉매 내 백금족 금속의 함량(원소 기준)은, 예를 들면 약 0.005 내지 0.4 중량%, 구체적으로 약 0.01 내지 0.3 중량%, 보다 구체적으로 약 0.011 내지 0.15 중량%의 범위일 수 있다.According to an exemplary embodiment, the content of the platinum group metal in the spent catalyst is not particularly limited, but the content (based on element) of the platinum group metal in the spent catalyst is, for example, about 0.005 to 0.4% by weight, specifically about 0.01 to 0.01% by weight. It may range from 0.3% by weight, more specifically about 0.011 to 0.15% by weight.
예시적 구체예에 있어서, 폐촉매는, 백금족 금속 중 백금 및/또는 팔라듐을 함유할 수 있다. 특정 구체예에 따르면, 폐촉매는 백금 및 팔라듐을 동시에 함유할 수 있는 바, 이때 백금(Pt)의 함량(원소 기준)은, 예를 들면 약 0.003 내지 0.15 중량%, 구체적으로 약 0.005 내지 0.1 중량%, 보다 구체적으로 약 0.08 중량% 내외일 수 있고, 또한 팔라듐(Pd)의 함량(원소 기준)은, 예를 들면 약 0.002 내지 0.1 중량%, 구체적으로 약 0.004 내지 0.05 중량%, 보다 구체적으로 약 0.04 중량% 내외의 범위일 수 있다. 예시적으로, 백금/팔라듐의 중량 비는, 예를 들면 약 0.1 내지 3, 구체적으로 약 0.3 내지 2.5, 보다 구체적으로 약 0.5 내지 2.1의 범위일 수 있다.In an exemplary embodiment, the spent catalyst may contain platinum and/or palladium among the platinum group metals. According to a specific embodiment, the spent catalyst may simultaneously contain platinum and palladium, where the content (based on element) of platinum (Pt) is, for example, about 0.003 to 0.15% by weight, specifically about 0.005 to 0.1% by weight. %, more specifically, it may be around 0.08% by weight, and the content of palladium (Pd) (based on element) is, for example, about 0.002 to 0.1% by weight, specifically about 0.004 to 0.05% by weight, more specifically about It may be in the range of around 0.04% by weight. Illustratively, the weight ratio of platinum/palladium may range, for example, from about 0.1 to 3, specifically from about 0.3 to 2.5, and more specifically from about 0.5 to 2.1.
예시적 구체예에 따르면, 폐촉매는 백금족 금속 이외에 다른 성분, 예를 들면 알루미나, 마그네시아, 실리카, 지르코니아, 티타니아, 산화칼슘 등을 더 함유할 수 있는 바, 추가적으로 함유 가능한 성분 또는 금속의 함량(원소 기준)은, 예를 들면 약 60 중량% 이하, 구체적으로 약 40 중량% 이하, 보다 구체적으로 약 20 중량% 이하의 범위일 수 있다. According to an exemplary embodiment, the spent catalyst may further contain other components in addition to platinum group metals, such as alumina, magnesia, silica, zirconia, titania, calcium oxide, etc., and the content of additional components or metals (element Standard) may be, for example, in the range of about 60% by weight or less, specifically about 40% by weight or less, and more specifically about 20% by weight or less.
한편, 폐촉매는 로듐을 실질적으로 함유하지 않을 수 있다. 이와 같이, 로듐을 함유하지 않는 백금족-함유 촉매는 전형적으로 구버젼 자동차용 촉매(old generation catalysts of automobile vehicles), 보다 구체적으로 2세대 자동차용 촉매(second generation catalysts of automobile vehicles) 등으로부터 입수 가능한 바, 이러한 조성 특성은 이온성 액체를 이용한 Pt 및 Pd 추출공정, 사용 후 남은 시안화물 침출액의 재사용 공정, 시안화물 침출액 재사용 공정에 앞서 일정량 배출되는 용액 내에 잔류하는 시안화물의 바이오분해 공정에 영향을 미칠 수 있다. 다만, 로듐이 불순물 형태 등으로 미량 존재하는 것을 배제하는 것은 아니며, 예를 들면 약 0.0004 중량% 미만, 구체적으로 약 0.0001 중량% 미만으로 함유될 수도 있다. 다만, 로듐은 Pt 및 Pd의 추출 시 불순물로 작용하여 회수 대상인 Pt 및 Pd의 순도를 낮출 수 있고, 또한 추출 과정에서 생성되는 라피네이트의 리사이클 과정을 반복함에 따라 용액 내에 로듐이 누적될 수 있는 만큼, 가급적 로듐을 함유하지 않는 것이 유리할 수 있다. 전술한 폐촉매 내 백금족 성분의 함량은 예시적 취지로 이해될 수 있고, 입수원에 따라 다양한 범위일 수 있다.On the other hand, the spent catalyst may be substantially free of rhodium. As such, platinum group-containing catalysts that do not contain rhodium are typically available from old generation catalysts of automobile vehicles, more specifically second generation catalysts of automobile vehicles, etc. These composition characteristics can affect the Pt and Pd extraction process using ionic liquid, the reuse process of cyanide leachate remaining after use, and the biodegradation process of cyanide remaining in the solution, which is discharged in a certain amount prior to the cyanide leachate reuse process. there is. However, it does not exclude the presence of trace amounts of rhodium in the form of impurities, for example, it may be contained in less than about 0.0004% by weight, specifically less than about 0.0001% by weight. However, rhodium may act as an impurity during the extraction of Pt and Pd, lowering the purity of Pt and Pd to be recovered, and as the recycling process of raffinate generated during the extraction process is repeated, rhodium may accumulate in the solution. , it may be advantageous to contain as little rhodium as possible. The content of platinum group components in the above-described spent catalyst may be understood as illustrative, and may vary depending on the source.
예시적 구체예에 따르면, 폐촉매는 입자 또는 분쇄물 형태로 제공될 수 있는 바, 이때, 분쇄물 또는 입자의 입도 또는 사이즈는 후술하는 바이오시안화물 용액과의 효과적인 접촉, 반응기 내의 유동특성 등을 고려하여 정하여질 수 있는 바, 예를 들면 약 350 ㎛ 이하, 구체적으로 약 250 ㎛ 이하, 보다 구체적으로 약 100 내지 200 ㎛, 특히 구체적으로 약 120 내지 180 ㎛ 범위에서 조절될 수 있다. 한편, 자동차용 폐촉매 변환기로부터 유래되는 폐촉매의 경우, 촉매 층을 박리한 후에 분쇄시킨 형태로 제공될 수 있다. 이때, 분쇄를 위하여, 당업계에서 공지된 수단을 이용할 수 있다. 일 예로서, 분쇄 수단은 롤러식 분쇄기, 진동 밀, 볼 밀, 포트 밀, 햄머 밀, 펄버라이저, 자이러토리 분쇄기, 자이러토리 밀 등일 수 있으나, 이에 한정되는 것은 아니며, 나열된 종류 중 2 이상을 조합하여 분쇄할 수도 있다.According to an exemplary embodiment, the spent catalyst may be provided in the form of particles or pulverized material. In this case, the particle size or size of the pulverized material or particles determines effective contact with the biocyanide solution described later, flow characteristics in the reactor, etc. It can be determined by taking into account, for example, about 350 ㎛ or less, specifically about 250 ㎛ or less, more specifically about 100 to 200 ㎛, and particularly specifically about 120 to 180 ㎛. Meanwhile, in the case of waste catalyst derived from a waste catalyst converter for automobiles, it may be provided in a pulverized form after the catalyst layer has been peeled off. At this time, for grinding, means known in the art can be used. As an example, the grinding means may be a roller grinder, vibrating mill, ball mill, pot mill, hammer mill, pulverizer, gyratory grinder, gyratory mill, etc., but is not limited thereto, and may be two or more of the listed types. It can also be pulverized by combining.
폐촉매의 전처리(선택적)Pretreatment of spent catalyst (optional)
도 1을 참조하면, 백금족-함유 폐촉매는 선택적으로(optionally) 알칼리 전처리 단계를 거칠 수 있다. 이러한 알칼리 전처리는 폐촉매(또는 폐촉매 입자) 내 탄소질 물질, 후속 바이오시안화를 저해할 수 있는 각종 불순물을 제거하기 위하여 수행될 수 있다. 예시적으로, 알칼리 처리는 알칼리-함유 용액(구체적으로 수용액)과 폐촉매를 접촉시키는 방식으로 수행될 수 있는 바, 이때 알칼리 성분은, 수산화나트륨, 수산화칼륨, 수산화암모늄 등으로부터 선택되는 적어도 하나일 수 있다. 또한, 알칼리 용액의 농도는, 예를 들면 약 1 내지 5 mol/L, 구체적으로 약 1.5 내지 4 mol/L, 보다 구체적으로 약 2 내지 3 mol/L의 범위에서 조절될 수 있다. 또한, 전처리 온도는, 예를 들면 적어도 약 60 ℃, 구체적으로 약 70 내지 98 ℃, 보다 구체적으로 약 80 내지 95 ℃의 범위에서 조절될 수 있다. 이외에도, 전처리 시간은 특별히 한정되는 것은 아니지만, 예를 들면 약 30 내지 200분, 구체적으로 약 40 내지 100분, 보다 구체적으로 약 50 내지 80분의 범위에서 조절될 수 있다.Referring to FIG. 1, the platinum group-containing spent catalyst may optionally undergo an alkali pretreatment step. This alkaline pretreatment can be performed to remove carbonaceous substances in the spent catalyst (or spent catalyst particles) and various impurities that may inhibit subsequent biocyanation. Illustratively, the alkaline treatment may be performed by contacting the spent catalyst with an alkali-containing solution (specifically, an aqueous solution), wherein the alkaline component is at least one selected from sodium hydroxide, potassium hydroxide, ammonium hydroxide, etc. You can. Additionally, the concentration of the alkaline solution may be adjusted, for example, in the range of about 1 to 5 mol/L, specifically about 1.5 to 4 mol/L, and more specifically about 2 to 3 mol/L. Additionally, the pretreatment temperature may be adjusted, for example, to at least about 60°C, specifically about 70 to 98°C, and more specifically about 80 to 95°C. In addition, the pretreatment time is not particularly limited, but may be adjusted, for example, in the range of about 30 to 200 minutes, specifically about 40 to 100 minutes, and more specifically about 50 to 80 minutes.
바이오시안화물의 생성Production of biocyanide
일 구체예에 따르면, 전술한 폐촉매의 제공과 별도로 시안화물-생성 미생물을 성장 배양시키면서 시안화물, 즉 바이오시안화물(HCN)을 합성하는 단계가 수행되는 바, 이에 따라 바이오시안화물을 함유하는 용액(구체적으로 수용액)이 형성될 수 있다.According to one embodiment, in addition to providing the above-described spent catalyst, a step of synthesizing cyanide, that is, biocyanide (HCN), is performed while growing and culturing cyanide-producing microorganisms, and accordingly, a step of synthesizing cyanide, that is, biocyanide (HCN), is performed. A solution (specifically an aqueous solution) may be formed.
이와 관련하여, 미생물은 대사 작용에 의하여 시안화물을 생성할 수 있는 종류로부터 선정될 수 있다. 일 예로서, 시안화물-생성 미생물은, 예를 들면 베타프로테오박테리아(Betaproteobacteria), 감마프로테오박테리아(Gammaproteobacteria) 등에 속하는 종류로부터 적어도 하나가 선택될 수 있으며, 예를 들면 Chromobacterium violaceum, Pseudomonas fluorescens, Pseudomonas plecoglossicida, Bacillus megaterium 등으로부터 선택되는 적어도 하나일 수 있는 바, 특히 글리신의 산화적 탈카르복시화 반응에 의하여 시안화물을 생성할 수 있는 종류일 수 있다. 특정 구체예에 따르면, 부패균으로서 그램-음성의 베타-프로박테리아에 속하며, 옥시다아제 반응을 촉진시키는 Chromobacterium violaceum을 사용할 수 있다. 다만, 상기 나열된 종류는 예시적인 취지로 이해될 수 있다.In this regard, microorganisms can be selected from species capable of producing cyanide by metabolic action. As an example, the cyanide-producing microorganism may be at least one selected from species belonging to Betaproteobacteria, Gammaproteobacteria, etc., such as Chromobacterium violaceum , Pseudomonas fluorescens , It may be at least one selected from Pseudomonas plecoglossicida , Bacillus megaterium, etc., and in particular, it may be a type that can produce cyanide through oxidative decarboxylation of glycine. According to a specific embodiment, Chromobacterium violaceum , which belongs to Gram-negative beta-probacteria and promotes oxidase reaction, can be used as the spoilage bacteria. However, the types listed above may be understood as illustrative purposes.
예시적 구체예에 따르면, 시안화물-생성 미생물을 배양하기 위하여, 배지는 성장 배지, 구체적으로 글리신이 보충된 YP 배지일 수 있다. 이때, 배지 내 글리신의 농도는, 예를 들면 약 0.5 내지 5 g/L, 구체적으로 약 1.5 내지 3.5 g/L, 보다 구체적으로 약 2 내지 2.5 g/L의 범위일 수 있다. 본 구체예에서 미생물 성장에 사용되는 배지의 구성성분들은 당업계에 공지되어 있는 만큼, 별도의 세부 기재는 생략하기로 한다.According to an exemplary embodiment, for culturing cyanide-producing microorganisms, the medium may be a growth medium, specifically YP medium supplemented with glycine. At this time, the concentration of glycine in the medium may be, for example, in the range of about 0.5 to 5 g/L, specifically about 1.5 to 3.5 g/L, and more specifically about 2 to 2.5 g/L. Since the components of the medium used for microbial growth in this embodiment are known in the art, separate detailed description will be omitted.
예시적으로, 성장 배지의 pH는 미생물 특성을 고려하여 조절할 수 있는 바, 예를 들면 적어도 약 7, 구체적으로 약 8 내지 9, 보다 구체적으로 약 8.5 내외의 범위일 수 있다. 또한, 배양 온도는 특별히 한정되는 것은 아니지만, 전형적으로 약 20 내지 40 ℃, 보다 전형적으로 약 25 내지 35 ℃의 범위에서 조절될 수 있다. Exemplarily, the pH of the growth medium can be adjusted in consideration of microbial characteristics, and may be, for example, at least about 7, specifically about 8 to 9, and more specifically about 8.5. Additionally, the culture temperature is not particularly limited, but may be typically adjusted in the range of about 20 to 40°C, more typically about 25 to 35°C.
또한, 초기 성장 배지 내 미생물의 농도는, 예를 들면 적어도 약 105 CFU/mL, 구체적으로 약 106 내지 109 CFU/mL, 보다 구체적으로 약 107 내지 108 CFU/mL의 범위일 수 있으나, 이는 예시적 취지로 이해될 수 있다.Additionally, the concentration of microorganisms in the initial growth medium may range, for example, from at least about 10 5 CFU/mL, specifically about 10 6 to 10 9 CFU/mL, and more specifically about 10 7 to 10 8 CFU/mL. However, this can be understood as an example.
예시적 구체예에 따르면, 미생물의 배양은 산소-함유 가스, 예를 들면 공기의 공급 하에서 수행될 수 있으며, 예시적으로 폭기 설비가 구비된 바이오리액터를 사용하여 배양을 수행할 수 있다. 배양 후 시안화물의 농도는, 예를 들면 약 900 내지 1200 mg/L, 구체적으로 약 950 내지 1100 mg/L, 보다 구체적으로 약 1000 내지 1100 mg/L의 범위일 수 있다. According to an exemplary embodiment, the culture of microorganisms may be performed under the supply of an oxygen-containing gas, for example, air, and the culture may be performed using a bioreactor illustratively equipped with an aeration facility. The concentration of cyanide after culturing may range, for example, from about 900 to 1200 mg/L, specifically from about 950 to 1100 mg/L, and more specifically from about 1000 to 1100 mg/L.
예시적 구체예에 따르면, 미생물 배양에 의하여 생성된 바이오시안화물의 농도를 높이기 위하여 농축 또는 축적 단계를 수행할 수 있다. 이를 위하여, 알칼리 용액(구체적으로 수용액)을 이용하여 생성된 시안화물(HCN)을 알칼리 용액 내로 트래핑(trapping) 또는 수집할 수 있다. According to an exemplary embodiment, a concentration or accumulation step may be performed to increase the concentration of biocyanide produced by microbial culture. For this purpose, cyanide (HCN) produced using an alkaline solution (specifically, an aqueous solution) can be trapped or collected into the alkaline solution.
일 예로서, 알칼리 용액(트래핑 또는 수집 용액) 내 알칼리 성분은, 예를 들면 수산화나트륨, 수산화칼륨, 수산화암모늄 등으로부터 선택되는 적어도 하나일 수 있으며, 이의 농도는, 예를 들면 약 1 내지 8 mol/L, 구체적으로 약 1.5 내지 6 mol/L, 보다 구체적으로 약 3 내지 5 mol/L의 범위에서 조절될 수 있으나, 이는 예시적 취지로 이해될 수 있다. 이와 같이, 시안화물이 트래핑되는 원리는 시안화물(HCN)의 증기 밀도(0.94)가 공기의 증기 밀도(1.0)에 비하여 낮은 현상을 이용한 것으로, 이를 위하여는 가급적 폭기를 가하여 HCN을 알칼리 용액 쪽으로 밀어내도록 하는 것이 바람직하다. 예시적으로, 시안화물 트래핑은 하기 반응식 1에 따라 수행될 수 있다.As an example, the alkaline component in the alkaline solution (trapping or collection solution) may be at least one selected from, for example, sodium hydroxide, potassium hydroxide, ammonium hydroxide, etc., and its concentration may be, for example, about 1 to 8 mol. /L, specifically, can be adjusted in the range of about 1.5 to 6 mol/L, more specifically about 3 to 5 mol/L, but this can be understood as an example. In this way, the principle of cyanide trapping is to utilize the phenomenon that the vapor density of cyanide (HCN) (0.94) is lower than the vapor density of air (1.0). To achieve this, aeration is applied as much as possible to push the HCN toward the alkaline solution. It is desirable to have it done. Illustratively, cyanide trapping may be performed according to Scheme 1 below.
[반응식 1][Scheme 1]
Figure PCTKR2023012145-appb-img-000002
Figure PCTKR2023012145-appb-img-000002
일 예로서, 트래핑 시간은 원하는 바이오시안화물의 농도를 고려하여, 예를 들면 약 20 내지 120 시간, 구체적으로 약 40 내지 110 시간, 보다 구체적으로 약 60 내지 105 시간, 보다 구체적으로 약 90 내지 100 시간의 범위에서 적절히 조절할 수 있다. As an example, the trapping time is, for example, about 20 to 120 hours, specifically about 40 to 110 hours, more specifically about 60 to 105 hours, more specifically about 90 to 100 hours, considering the desired concentration of biocyanide. It can be adjusted appropriately within the time range.
상술한 바와 같이 알칼리 용액 내로 농축 또는 축적된 시안화물 또는 시안화물 이온(즉, CN-)의 농도는, 예를 들면 약 2 내지 6 g/L, 구체적으로 약 3 내지 5 g/L, 보다 구체적으로 약 4 내지 4.5 g/L의 범위까지 증가할 수 있다. 이와 관련하여, 시안화물의 농도가 일정 수준에 미달할 경우에는 후단의 바이오침출 시 침출율을 증가시키는데 한계가 있고, 일정 수준을 초과할 경우에는 더 이상 침출율이 증가하지 않는 점을 고려하여 농축 정도를 적절히 조절하는 것이 유리할 수 있다.The concentration of cyanide or cyanide ions (i.e., CN - ) concentrated or accumulated into the alkaline solution as described above is, for example, about 2 to 6 g/L, specifically about 3 to 5 g/L, more specifically It can increase to a range of about 4 to 4.5 g/L. In this regard, if the concentration of cyanide is below a certain level, there is a limit to increasing the leaching rate during bioleaching in the downstream stage, and if it exceeds a certain level, the leaching rate will no longer increase, so concentration It may be advantageous to appropriately adjust the degree.
또한, 농축된 시안화물 용액의 pH는, 예를 들면 약 9.5 내지 14, 구체적으로 약 10 내지 12, 보다 구체적으로 약 10.5 내지 11.5의 범위일 수 있다.Additionally, the pH of the concentrated cyanide solution may range, for example, from about 9.5 to 14, specifically from about 10 to 12, and more specifically from about 10.5 to 11.5.
한편, 예시적 구체예에 따르면, 바이오시안화물의 생성 및 알칼리 용액(트래핑 용액 또는 알칼리 수집기)을 이용한 시안화물의 농축 또는 축적은 회분식 또는 연속식으로 수행될 수 있으나, 바이오시안화물은 비교적 짧은 시간 구간에서 생성되는 점을 고려할 때, 연속식 모드가 유리할 수 있다.Meanwhile, according to an exemplary embodiment, the production of biocyanide and the concentration or accumulation of cyanide using an alkaline solution (trapping solution or alkaline collector) may be performed in a batch or continuous manner, but biocyanide is produced in a relatively short period of time. Considering that it is generated in a section, continuous mode may be advantageous.
시안화물을 이용한 바이오침출Bioleaching using cyanide
본 개시 내용의 일 구체예에 따르면, 수득된 바이오시안화물-함유 용액 또는 농축(축적)된 바이오시안화물-함유 용액을 침출제 매질(lixiviant medium)로 공급하여 백금족-함유 폐촉매 내 백금족 금속을 침출시키는 단계가 수행된다. 이 경우, 폐촉매 내 백금족 금속은 시안화 이온과 결합한 형태, 예를 들면 착체(complex)를 형성할 수 있다.According to one embodiment of the present disclosure, the obtained biocyanide-containing solution or concentrated (accumulated) biocyanide-containing solution is supplied to a lixiviant medium to remove platinum group metals from the platinum group-containing spent catalyst. A leaching step is performed. In this case, the platinum group metal in the spent catalyst may form a form combined with cyanide ions, for example, a complex.
예시적 구체예에 따르면, 바이오시안화물-함유 용액(또는 농축(또는 축적)된 바이오시안화물-함유 용액) 내 폐촉매의 량은, 예를 들면 약 2 내지 40 g/100 mL, 구체적으로 약 5 내지 25 g/100 mL, 보다 구체적으로 약 10 내지 20 g/100 mL의 범위에서 조절될 수 있다. 이때, 바이오침출 과정은 교반 조건 하에서 수행될 수 있는 바, 예시적으로 교반 속도는, 예를 들면 약 100 내지 400 rpm, 구체적으로 약 200 내지 250 rpm의 범위에서 조절될 수 있으나, 이는 예시적 취지로 이해될 수 있다. According to an exemplary embodiment, the amount of spent catalyst in the biocyanide-containing solution (or concentrated (or accumulated) biocyanide-containing solution) is, for example, about 2 to 40 g/100 mL, specifically about It can be adjusted in the range of 5 to 25 g/100 mL, more specifically about 10 to 20 g/100 mL. At this time, the bioleaching process may be performed under stirring conditions. For example, the stirring speed may be adjusted in the range of about 100 to 400 rpm, specifically about 200 to 250 rpm, but this is for illustrative purposes. It can be understood as
또한, 침출 시간은 Pt 및 Pd의 최대 침출을 고려하여 정하여질 수 있는 바, 예를 들면 약 30 내지 360 분, 구체적으로 약 30 내지 120 분, 보다 구체적으로 약 60 내지 90 분의 범위에서 정하여질 수 있다. In addition, the leaching time may be determined considering the maximum leaching of Pt and Pd, for example, about 30 to 360 minutes, specifically about 30 to 120 minutes, and more specifically about 60 to 90 minutes. You can.
한편, 예시적 구체예에 따르면, 바이오침출은 승온 조건 및 증가된 산소 압력(pO2) 조건으로 설정할 수 있다. 이와 관련하여, 침출 온도는, 예를 들면 약 100 내지 200 ℃, 구체적으로 약 120 내지 180 ℃, 보다 구체적으로 약 140 내지 160 ℃의 범위에서 조절될 수 있다. 이때, 침출 온도가 지나치게 낮거나 높은 경우에는 침출율을 저하시키는 요인으로 작용할 수 있는 만큼, 전술한 범위에서 적절히 조절하는 것이 유리할 수 있다. 다만, 전술한 침출 온도는 다른 조건, 예를 들면 시안화물의 농도, 침출 시간, 산소 압력 등에 따라 변경 가능하다.Meanwhile, according to an exemplary embodiment, bioleaching may be set to elevated temperature conditions and increased oxygen pressure (pO 2 ) conditions. In this regard, the leaching temperature may be adjusted, for example, in the range of about 100 to 200 °C, specifically about 120 to 180 °C, and more specifically about 140 to 160 °C. At this time, if the leaching temperature is too low or too high, it may act as a factor in reducing the leaching rate, so it may be advantageous to appropriately adjust it within the above-mentioned range. However, the above-described leaching temperature can be changed depending on other conditions, such as cyanide concentration, leaching time, oxygen pressure, etc.
또한, 예시적 구체예에 따르면, 바이오침출 시 압력, 구체적으로 산소 압력(또는 산소 부분압)이 증가할수록 침출율이 증가하는 경향을 나타낼 수 있는 바, 예를 들면 적어도 약 8 bar, 구체적으로 약 10 내지 18 bar, 보다 구체적으로 약 12 내지 16 bar의 범위에서 조절될 수 있다. 다만, 지나치게 높은 산소 압력(또는 부분압)에서는 침출율의 증가는 미미하고, 오히려 공정의 경제성을 저하시키는 요인으로 작용할 수 있는 만큼, 전술한 범위에서 적절히 조절하는 것이 유리할 수 있다.In addition, according to an exemplary embodiment, the leaching rate may tend to increase as the pressure during bioleaching, specifically the oxygen pressure (or oxygen partial pressure) increases, for example, at least about 8 bar, specifically about 10 bar. It can be adjusted in the range of from about 18 bar to about 18 bar, more specifically about 12 to 16 bar. However, at excessively high oxygen pressure (or partial pressure), the increase in leaching rate is insignificant and may actually act as a factor in reducing the economic feasibility of the process, so it may be advantageous to adjust it appropriately within the above-mentioned range.
전술한 바이오침출 과정을 통하여 폐촉매 내 백금족 금속 대부분이 시안화물 용액 내로 침출될 수 있는 바, 백금족 금속의 침출율은, 예를 들면 적어도 약 90%, 구체적으로 적어도 약 92%, 보다 구체적으로 적어도 약 95%일 수 있다. 이때, 백금족이 침출된 시안화물 용액은 염기성을 나타낼 수 있는 바, 구체적으로 백금족-함유 침출액의 pH는, 예를 들면 약 9 내지 12.5, 구체적으로 약 10 내지 12, 보다 구체적으로 약 10.2 내지 11.5, 특히 구체적으로 약 10.5 내지 11의 범위일 수 있는 바, 이는 예시적 취지로 이해될 수 있다.Through the above-described bioleaching process, most of the platinum group metals in the spent catalyst can be leached into the cyanide solution, and the leaching rate of the platinum group metals is, for example, at least about 90%, specifically at least about 92%, more specifically at least It may be about 95%. At this time, the cyanide solution from which the platinum group has been leached may exhibit basicity. Specifically, the pH of the platinum group-containing leachate is, for example, about 9 to 12.5, specifically about 10 to 12, more specifically about 10.2 to 11.5, In particular, it may range from about 10.5 to 11, and this can be understood as an example.
백금족 금속의 분리 및 회수Separation and recovery of platinum group metals
- 백금족 금속의 분리(추출)- Separation (extraction) of platinum group metals
본 개시 내용의 일 구체예에 따르면, 바이오침출에 의하여 생성된 백금족-함유 시안화물 침출액은 회수하고자 하는 백금족 금속 이외에 다른 성분(예를 들면 Al2O3, MgO, SiO2, ZrO2, CaO, TiO2 등)을 함유하고 있는 바, 솔보-케미컬(solvo-chemical) 방식을 이용하여 백금족 금속을 선택적으로 분리하여 회수하는 단계가 수행된다. 이를 위하여, 본 구체예에서는 액-액 추출에 의하여 침출액 내 백금족 금속을 익스트랙트 내로 선택적으로 이동시킴으로써 백금족-풍부 익스트랙트 및 백금족-고갈된 라피네이트를 형성할 수 있다.According to one embodiment of the present disclosure, the platinum group-containing cyanide leachate produced by bioleaching contains other components (for example, Al 2 O 3 , MgO, SiO 2 , ZrO 2 , CaO, TiO 2 , etc.), a step of selectively separating and recovering the platinum group metal is performed using a solvo-chemical method. To this end, in this embodiment, platinum group metals in the leachate are selectively moved into the extract by liquid-liquid extraction, thereby forming a platinum group-rich extract and a platinum group-depleted raffinate.
예시적 구체예에 따르면, 추출제로서 수불용성을 갖는(water immiscible) 유기 인계 이온성 액체를 사용할 수 있다. 이와 관련하여, 유기 인계 이온성 액체는 기존 추출제와 달리 가연성이 없기 때문에 환경 친화적이고, 또한 물질 전달(mass transfer) 및 추출 용량(loading capacity)이 양호하다. According to an exemplary embodiment, a water-insoluble organophosphorous ionic liquid may be used as the extractant. In this regard, organophosphorus-based ionic liquids are environmentally friendly because they are not flammable, unlike existing extractants, and also have good mass transfer and loading capacity.
예시적 구체예에 따르면, 인계 이온성 액체는 하기 일반식 1로 표시되는 포스포늄계 양이온기를 함유할 수 있다.According to an exemplary embodiment, the phosphorus-based ionic liquid may contain a phosphonium-based cationic group represented by General Formula 1 below.
[일반식 1][General Formula 1]
Figure PCTKR2023012145-appb-img-000003
Figure PCTKR2023012145-appb-img-000003
상기 식에서, R1 내지 R4는 각각 탄소수 35 내지 56, 구체적으로 탄소수 38 내지 50, 보다 구체적으로 탄소수 40 내지 48의 알킬기이다.In the above formula, R 1 to R 4 are each an alkyl group having 35 to 56 carbon atoms, specifically 38 to 50 carbon atoms, and more specifically 40 to 48 carbon atoms.
한편, 포스포늄계 이온성 액체를 구성하는 음이온의 경우, 할라이드, 황화물, 질산염 등으로부터 선택되는 적어도 하나일 수 있다. 이때, 할라이드는 플루오라이드, 클로라이드, 브로마이드, 요오다이드 등으로부터 선택되는 적어도 하나일 수 있으며, 보다 구체적으로는 클로라이드(Cl-)일 수 있다. Meanwhile, in the case of the anion constituting the phosphonium-based ionic liquid, it may be at least one selected from halide, sulfide, nitrate, etc. At this time, the halide may be at least one selected from fluoride, chloride, bromide, iodide, etc., and more specifically, may be chloride (Cl - ).
예시적 구체예에 따르면, 전술한 포스포늄계 이온성 액체의 분자량(Mw)은, 예를 들면 약 200 내지 900, 구체적으로 약 300 내지 800, 보다 구체적으로 약 400 내지 700의 범위일 수 있다. 이와 관련하여, 포스포늄계 이온성 액체의 분자량은 추출 효율 및 백금족에 대한 선택성에 영향을 미치는 점을 감안하면, 전술한 범위의 분자량을 갖는 종류를 사용하는 것이 유리할 수 있다. 특정 구체예에 따르면, 대표적인 포스포늄계 이온성 액체로 트리헥실(테트라데실)포스포늄 클로라이드(trihexyl(tetradecyl)phosphonium chloride)를 예시할 수 있는 바, 음이온 교환 특성을 나타내어 시안화물 침출액에 함유되어 있는 백금족 금속을 추출하는데 특히 유리할 수 있다. According to an exemplary embodiment, the molecular weight (M w ) of the above-described phosphonium-based ionic liquid may range, for example, from about 200 to 900, specifically from about 300 to 800, and more specifically from about 400 to 700. . In this regard, considering that the molecular weight of the phosphonium-based ionic liquid affects the extraction efficiency and selectivity for the platinum group, it may be advantageous to use a type having a molecular weight in the above-mentioned range. According to a specific example, a representative phosphonium-based ionic liquid may be trihexyl(tetradecyl)phosphonium chloride, which exhibits anion exchange properties and is contained in the cyanide leachate. It can be particularly advantageous for extracting platinum group metals.
예시적 구체예에 따르면, 유기 인계 이온성 액체는 방향족 용매와 혼합된 형태로 추출 과정에 적용될 수 있는 바, 이는 용매의 유전상수, 금속 친화도, 이온성 액체 및 수용액과의 친화도를 고려한 것이다. 사용 가능한 방향족 용매는 탄소수 7 내지 12, 구체적으로 탄소수 8 내지 11, 보다 구체적으로 탄소수 10 내외의 방향족 용매로서, 예를 들면 Solesso100,. Solvesso150, Solvesso200, ExxolD80 등으로 시판 중인 종류일 수 있다. 이 경우, 유기 인계 추출제의 농도는, 예를 들면 적어도 약 0.08 mol/L, 구체적으로 적어도 약 0.1 mol/L, 보다 구체적으로 약 0.12 내지 0.3 mol/L, 특히 구체적으로 약 0.14 내지 0.2 mol/L의 범위에서 조절될 수 있다According to an exemplary embodiment, the organophosphorus ionic liquid may be applied to the extraction process in a mixed form with an aromatic solvent, taking into account the dielectric constant of the solvent, metal affinity, and affinity with the ionic liquid and aqueous solution. . The aromatic solvent that can be used is an aromatic solvent having 7 to 12 carbon atoms, specifically 8 to 11 carbon atoms, and more specifically, about 10 carbon atoms, for example, Solesso100. It may be commercially available as Solvesso150, Solvesso200, ExxolD80, etc. In this case, the concentration of the organophosphorus extractant is, for example, at least about 0.08 mol/L, specifically at least about 0.1 mol/L, more specifically about 0.12 to 0.3 mol/L, especially specifically about 0.14 to 0.2 mol/L. Can be adjusted in the range of L
상술한 바와 같이 포스포늄계 이온성 액체를 추출제로 사용한 결과, 익스트랙트 내에서 백금족 금속(구체적으로 Pt 및/또는 Pd)의 시안화물과 이온성 액체 간의 유기금속 착제를 형성하는 바, 구체적으로 포스포늄계 이온성 액체의 음이온이 금속 이온(구체적으로 백금과 시안화기가 결합된 음이온)과 이온 교환에 의하여 수상으로부터 유기 상으로 금속이 이동하는 것으로 판단된다. 예시적으로, 포스포늄계 이온성 액체로 트리헥실(테트라데실)포스포늄 클로라이드를 추출제로 사용한 경우, 이온 교환 반응에 따른 유기금속 착체의 구조는 하기 화학식 1과 같이 표시될 수 있다.As described above, as a result of using a phosphonium-based ionic liquid as an extractant, an organometallic complex is formed between the cyanide of a platinum group metal (specifically Pt and/or Pd) and the ionic liquid in the extract, specifically phosphonium-based ionic liquid. It is believed that the metal moves from the aqueous phase to the organic phase by ion exchange between the anion of the phonium-based ionic liquid and the metal ion (specifically, the anion combining platinum and cyanide group). For example, when trihexyl (tetradecyl) phosphonium chloride is used as an extractant as a phosphonium-based ionic liquid, the structure of the organometallic complex according to the ion exchange reaction may be expressed as Formula 1 below.
[화학식 1][Formula 1]
Figure PCTKR2023012145-appb-img-000004
Figure PCTKR2023012145-appb-img-000004
예시적 구체예에 따르면, 추출 조건은 특별히 한정되는 것은 아니지만, 유기상 : 수상의 체적 비는 약 1 : 5 내지 5 : 1, 구체적으로 약 1 : 3 내지 3 : 1, 보다 구체적으로 약 1 : 2 내지 2 : 1의 범위에서 조절될 수 있다. 한편, 평형시간은, 예를 들면 약 2 내지 30분, 구체적으로 약 5 내지 15분, 보다 구체적으로 약 5 내지 10분의 범위일 수 있다. 이외에도, 추출 온도는, 예를 들면 약 20 내지 40 ℃, 구체적으로 약 22 내지 35 ℃, 보다 구체적으로 약 24 내지 30 ℃, 특히 구체적으로 약 25 ℃ 부근일 수 있다,According to an exemplary embodiment, the extraction conditions are not particularly limited, but the volume ratio of organic phase to aqueous phase is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2. It can be adjusted in the range of 2:1. Meanwhile, the equilibration time may be, for example, in the range of about 2 to 30 minutes, specifically about 5 to 15 minutes, and more specifically about 5 to 10 minutes. In addition, the extraction temperature may be, for example, around 20 to 40°C, specifically around 22 to 35°C, more specifically around 24 to 30°C, particularly around 25°C.
한편, 유기 인계 이온성 액체를 이용한 추출 시 잔류하는 백금족-고갈된 라피네이트(수 상)의 경우, 시안화물을 함유하고 있는 만큼, 이를 폐촉매로부터 백금족 금속을 침출하는데 사용할 수 있다. 일 예로서, 바이오시안화물을 함유하는 용액, 및/또는 알칼리 용액(트래핑 또는 수집 용액)에 의하여 농축(또는 축적)된 바이오시안화물을 함유하는 용액으로 리사이클할 수 있다.Meanwhile, in the case of platinum group-depleted raffinate (aqueous phase) remaining during extraction using an organophosphorus ionic liquid, as it contains cyanide, it can be used to leach platinum group metals from the spent catalyst. As an example, it can be recycled as a solution containing biocyanide, and/or as a solution containing biocyanide concentrated (or accumulated) by an alkaline solution (trapping or collection solution).
한편, 백금족-고갈된 라피네이트의 적어도 일부에 대하여, 이에 함유된 시안화물을 분해(구체적으로 생분해)시키는 방식으로 처리할 수 있다. 이때, 시안화물은 전술한 바이오시안화물 생성에 사용 가능한 미생물에 의하여 분해될 수 있으며, 분해 과정을 거친 후에 공정 또는 시스템 외부로 배출될 수 있다. Meanwhile, at least a portion of the platinum group-depleted raffinate can be treated in a manner to decompose (specifically, biodegrade) the cyanide contained therein. At this time, cyanide can be decomposed by microorganisms that can be used to produce the aforementioned biocyanide, and can be discharged outside the process or system after going through the decomposition process.
- 백금족 금속의 회수- Recovery of platinum group metals
본 개시 내용의 일 구체예에 따르면, 백금족-풍부 익스트랙트로부터 백금족 금속을 회수하는 단계가 수행될 수 있다. 이때, 회수되는 백금족 금속은 단일 백금족 금속 또는 적어도 2종의 백금족 금속의 조합일 수 있다. According to one embodiment of the present disclosure, recovering platinum group metals from a platinum group-rich extract may be performed. At this time, the recovered platinum group metal may be a single platinum group metal or a combination of at least two types of platinum group metals.
비록 본 구체예가 2종 이상의 백금족 금속의 조합, 예를 들면 Pt 및 Pd의 조합을 회수하는 것을 배제하는 취지는 아니지만, 활용성 등을 고려하면 폐촉매에 함유된 백금족 금속을 각각 고순도로 회수하는 것이 유리할 수 있다. 이러한 관점에서 이하에서는 익스트랙트 내에 함유된 복수의 백금족 금속, 구체적으로 Pt 및 Pd를 각각 회수하는 방법을 중심으로 기술하기로 한다.Although this specific example does not exclude the recovery of a combination of two or more platinum group metals, for example, a combination of Pt and Pd, considering the usability, it is better to recover each platinum group metal contained in the spent catalyst with high purity. It can be advantageous. From this perspective, the following description will focus on methods for recovering a plurality of platinum group metals contained in the extract, specifically Pt and Pd.
예시적 구체예에 따르면, 익스트랙트(즉, 유기 인계 이온성 액체)에 함유된 복수의 백금족 금속을 회수하기 위하여 선택적 스트리핑을 수행할 수 있다. 일 예로서, 익스트랙트(유기 상) 내에 추출된 백금족 금속이 백금(Pt) 및 팔라듐(Pd)인 경우, 특정 금속에 대하여 선택성을 나타내는 화합물(즉, 스트리핑제)의 용액(구체적으로 수용액)을 백금족-함유 익스트랙트(오일 상)와 접촉시키는 과정을 개별적으로 또는 순차적으로 수행하는 방식으로 Pt 및 Pd를 각각 회수할 수 있다.According to an exemplary embodiment, selective stripping may be performed to recover a plurality of platinum group metals contained in the extract (i.e., organophosphorus-based ionic liquid). As an example, when the platinum group metals extracted in the extract (organic phase) are platinum (Pt) and palladium (Pd), a solution (specifically an aqueous solution) of a compound (i.e., stripping agent) that exhibits selectivity for the specific metal is used. Pt and Pd can each be recovered by contacting them with a platinum group-containing extract (oil phase), individually or sequentially.
예시적 구체예에 따르면, 먼저 백금(Pt) 및 팔라듐(Pd)을 함유하는 익스트랙트로부터 팔라듐을 선택적으로 스트리핑하기 위하여, 수혼화성을 갖고, 팔라듐에 대한 선택성을 갖는 스트리핑제의 수용액을 사용할 수 있다(제1 스트리핑 단계). 이러한 스트리핑제는 Pd 착화물 형성 시 선택성이 있는 티올 화합물로부터 선택될 수 있다. 일 예로서, Pd 선택성 스트리핑제는, 예를 들면 티오시아네이트 화합물을 사용할 수 있다. 이러한 티오시아네이트 화합물은, 예를 들면 암모늄 티오시아네이트(NH4SCN), 소듐 티오시아네이트(NaSCN), 포타슘 티오시아네이트(KSCN) 등으로부터 선택되는 적어도 하나일 수 있으며, 구체적으로는 암모늄 티오시아네이트(NH4SCN) 화합물일 수 있다.According to an exemplary embodiment, in order to first selectively strip palladium from an extract containing platinum (Pt) and palladium (Pd), an aqueous solution of a stripping agent that has water miscibility and selectivity for palladium can be used. (First stripping step). These stripping agents may be selected from thiol compounds that have selectivity in forming Pd complexes. As an example, the Pd-selective stripping agent may be, for example, a thiocyanate compound. Such a thiocyanate compound may be, for example, at least one selected from ammonium thiocyanate (NH 4 SCN), sodium thiocyanate (NaSCN), potassium thiocyanate (KSCN), etc., and specifically, ammonium thiocyanate (NaSCN). It may be a cyanate (NH 4 SCN) compound.
이와 관련하여, 팔라듐에 선택적인 스트리핑제 수용액의 농도는 Pd 스트리핑율이 최대이고, 이와 동시에 Pt 스트리핑율이 최소가 되도록 조절할 수 있는 바, 예를 들면 적어도 약 0.7 mol/L, 구체적으로 적어도 약 0.8 내지 3 mol/L, 보다 구체적으로 약 1.2 내지 2.6 mol/L, 특히 구체적으로 약 1.8 내지 2.3 mol/L의 범위에서 조절될 수 있다. In this regard, the concentration of the aqueous solution of the stripping agent selective for palladium can be adjusted so that the Pd stripping rate is maximum and at the same time the Pt stripping rate is minimum, for example at least about 0.7 mol/L, specifically at least about 0.8 mol/L. to 3 mol/L, more specifically about 1.2 to 2.6 mol/L, and particularly specifically about 1.8 to 2.3 mol/L.
예시적 구체예에 따르면, 팔라듐 스트리핑 시 유기 상 : 수 상의 체적 비는 약 1 : 5 내지 5 : 1, 구체적으로 약 1 : 3 내지 3 : 1, 보다 구체적으로 약 1 : 2 내지 2 : 1의 범위에서 조절될 수 있다. 또한, 스트리핑 온도는, 예를 들면 약 20 내지 40 ℃, 구체적으로 약 22 내지 35 ℃, 보다 구체적으로 약 24 내지 30 ℃, 특히 구체적으로 약 25 ℃ 부근일 수 있다, 이외에도, 접촉 시간은 특별히 한정되는 것은 아니지만, 예를 들면 약 2 내지 30분, 구체적으로 약 5 내지 15분, 보다 구체적으로 약 5 내지 10분의 범위에서 적절히 조절 가능하다. According to an exemplary embodiment, the volume ratio of the organic phase to the water phase during palladium stripping is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2 to 2:1. It can be adjusted within a range. In addition, the stripping temperature may be, for example, about 20 to 40° C., specifically about 22 to 35° C., more specifically about 24 to 30° C., and particularly specifically about 25° C. In addition, the contact time is specifically limited. Although not guaranteed, it can be appropriately adjusted, for example, in the range of about 2 to 30 minutes, specifically about 5 to 15 minutes, and more specifically about 5 to 10 minutes.
예시적 구체예에 따르면, 팔라듐의 스트리핑율은, 적어도 약 90%, 구체적으로 적어도 약 95%, 보다 구체적으로 적어도 약 98%일 수 있다. 반면, 백금의 스트리핑율은, 예를 들면 약 3% 미만, 구체적으로 약 2.5% 미만, 보다 구체적으로 약 2% 미만일 수 있다. 이와 같이, 팔라듐에 대한 선택적 스트리핑을 통하여, 팔라듐-풍부 분획 및 팔라듐-고갈 분획이 형성될 수 있다.According to exemplary embodiments, the stripping rate of palladium may be at least about 90%, specifically at least about 95%, and more specifically at least about 98%. On the other hand, the stripping rate of platinum may be, for example, less than about 3%, specifically less than about 2.5%, and more specifically less than about 2%. As such, through selective stripping for palladium, a palladium-rich fraction and a palladium-depleted fraction can be formed.
그 다음, 유기 상, 즉 대부분의 백금(Pt)이 유기 인계 이온성 액체에 함유된 상태인 팔라듐-고갈 분획에 대하여 추가적인 스트리핑을 수행하여 백금을 회수할 수 있다(제2 스트리핑 단계).Next, the organic phase, i.e., the palladium-depleted fraction in which most of the platinum (Pt) is contained in the organophosphorus ionic liquid, can be subjected to additional stripping to recover platinum (second stripping step).
이와 관련하여, 2 성분계(Pd 및 Pt) 분리 단계로서 팔라듐이 앞서 분리된 만큼, 백금 스트리핑제는 Pt 착화물 형성이 용이하고, Pt를 유기 상에서 수상으로 이동시킬 수 있는 성상을 갖는 종류로부터 선택될 수 있다. 이러한 백금 스트리핑제로서, 예를 들면 티오알코올을 사용할 수 있는 바, 구체적으로 2,2-티오디에탄올(S(CH2CH2OH)2), Beta-rhodinol, (S)-3,7-dimethyl-6-often-1-ol 등으로부터 선택되는 적어도 하나일 수 있고, 구체적으로는 2,2-티오디에탄올(S(CH2CH2OH)2)일 수 있다.In this regard, as palladium was previously separated as a two-component system (Pd and Pt) separation step, the platinum stripping agent should be selected from types that are easy to form a Pt complex and have properties that can move Pt from the organic phase to the aqueous phase. You can. As such a platinum stripping agent, for example, thioalcohol can be used, specifically 2,2-thiodiethanol (S(CH 2 CH 2 OH) 2 ), Beta-rhodinol, (S)-3,7- It may be at least one selected from dimethyl-6-often-1-ol, etc., and specifically may be 2,2-thiodiethanol (S(CH 2 CH 2 OH) 2 ).
이와 관련하여, 백금에 선택적인 스트리핑제 수용액의 농도는 Pt 최대 스트리핑율을 고려하여 결정하는 바, 예를 들면 적어도 약 0.8 mol/L, 구체적으로 적어도 약 1 내지 3 mol/L, 보다 구체적으로 약 1.2 내지 2.2 mol/L, 특히 구체적으로 약 1.4 내지 2 mol/L의 범위에서 조절될 수 있다. In this regard, the concentration of the aqueous solution of the stripping agent selective for platinum is determined taking into account the maximum stripping rate of Pt, for example at least about 0.8 mol/L, specifically at least about 1 to 3 mol/L, more specifically about It can be adjusted in the range of 1.2 to 2.2 mol/L, particularly about 1.4 to 2 mol/L.
예시적 구체예에 따르면, 백금 스트리핑 시 유기 상 : 수 상의 체적 비는 약 1 : 5 내지 5 : 1, 구체적으로 약 1 : 3 내지 3 : 1, 보다 구체적으로 약 1 : 2 내지 2 : 1의 범위에서 조절될 수 있다. 또한, 스트리핑 온도는, 예를 들면 약 20 내지 40 ℃, 구체적으로 약 22 내지 35 ℃, 보다 구체적으로 약 24 내지 30 ℃, 특히 구체적으로 약 25 ℃ 부근일 수 있다, 이외에도, 접촉 시간은 특별히 한정되는 것은 아니지만, 예를 들면 약 2 내지 30분, 구체적으로 약 5 내지 15분, 보다 구체적으로 약 5 내지 10분의 범위에서 적절히 조절 가능하다. According to an exemplary embodiment, the volume ratio of organic phase to aqueous phase during platinum stripping is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2 to 2:1. It can be adjusted within a range. In addition, the stripping temperature may be, for example, about 20 to 40° C., specifically about 22 to 35° C., more specifically about 24 to 30° C., and particularly specifically about 25° C. In addition, the contact time is specifically limited. Although not guaranteed, it can be appropriately adjusted, for example, in the range of about 2 to 30 minutes, specifically about 5 to 15 minutes, and more specifically about 5 to 10 minutes.
예시적 구체예에 따르면, 백금의 스트리핑율은, 적어도 약 90%, 구체적으로 적어도 약 95%, 보다 구체적으로 적어도 약 98%일 수 있다.According to exemplary embodiments, the stripping rate of platinum may be at least about 90%, specifically at least about 95%, and more specifically at least about 98%.
상술한 순차적인 스트리핑 과정을 통하여 익스트랙트(유기 인계 이온성 액체) 내에 함유되어 있는 팔라듐 및 백금을 각각 분리할 수 있다. 이때, 각각의 스트리핑 용액은 당업계에서 공지된 방식, 예를 들면 침전 및 염 형성을 통하여 고순도의 백금족 금속, 구체적으로 백금 및 팔라듐을 각각 회수할 수 있다. 일 예로서, 백금족 금속-함유 스트리핑 용액, 구체적으로 백금-함유 용액 및 팔라듐-함유 용액으로부터 백금 및 팔라듐을 각각 회수하기 위하여, 예를 들면, 암모늄염, 황화염 등을 첨가하여 반응시킴으로써 백금족 금속(구체적으로 백금 및 팔라듐)의 염(구체적으로 (NH4)2PtCl6, (NH4)2PdCl6 등)의 침전물을 형성할 수 있다. 이때, 첨가 성분, 예를 들면 암모늄 이온의 농도는, 스트리핑 용액 내 백금족 금속의 량에 따라 정하여질 수 있는 바, 예를 들면 약 0.01 내지 0.05 mol/L, 구체적으로 약 0.02 내지 0.04 mol/L, 보다 구체적으로 약 0.02 내지 0.03 mol/L의 범위일 수 있다. 다만, 상기 수치 범위는 예시적 취지로 이해될 수 있다. Through the sequential stripping process described above, palladium and platinum contained in the extract (organophosphorus ionic liquid) can be separated, respectively. At this time, each stripping solution can recover high purity platinum group metals, specifically platinum and palladium, through methods known in the art, such as precipitation and salt formation. As an example, in order to recover platinum and palladium from a platinum group metal-containing stripping solution, specifically a platinum-containing solution and a palladium-containing solution, respectively, for example, ammonium salt, sulfide salt, etc. are added and reacted to remove platinum group metal (specifically, It is possible to form a precipitate of salt (specifically, (NH 4 ) 2 PtCl 6 , (NH 4 ) 2 PdCl 6 , etc.) of platinum and palladium. At this time, the concentration of the added component, for example, ammonium ion, may be determined depending on the amount of platinum group metal in the stripping solution, for example, about 0.01 to 0.05 mol/L, specifically about 0.02 to 0.04 mol/L, More specifically, it may range from about 0.02 to 0.03 mol/L. However, the above numerical range may be understood as illustrative.
또한, 침전물 형성 시 온도 조건은 특별히 한정되는 것은 아니지만, 예를 들면 약 20 내지 100 ℃, 구체적으로 약 30 내지 80 ℃, 보다 구체적으로 약 40 내지 50 ℃의 범위에서 조절될 수 있다.In addition, the temperature conditions for forming the precipitate are not particularly limited, but may be adjusted, for example, to a range of about 20 to 100°C, specifically about 30 to 80°C, and more specifically about 40 to 50°C.
한편, 스트리핑 과정을 거친 후에 잔류하는 익스트랙트, 구체적으로 유기 인계 이온성 액체는 분리 과정을 거친 후에 리사이클되어 스트리핑 단계 전단의 추출 단계에서 추출제로 재사용될 수 있다. 일 예로서, 강산, 예를 들면 염산, 질산, 황산, 불산 등으로부터 선택되는 적어도 하나의 산 수용액과 접촉시켜 이온성 액체를 분리할 수 있다. 이때, 산 수용액의 농도는, 예를 들면 약 3 내지 9 mol/L, 구체적으로 약 4 내지 8 mol/L, 보다 구체적으로 약 5 내지 7 mol/L의 범위에서 조절될 수 있으나, 사용되는 산의 종류 등에 따라 변경 가능하다. Meanwhile, the extract remaining after the stripping process, specifically the organophosphorus ionic liquid, can be recycled after the separation process and reused as an extractant in the extraction step before the stripping step. As an example, the ionic liquid can be separated by contacting it with an aqueous solution of at least one acid selected from strong acids, such as hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, etc. At this time, the concentration of the acid aqueous solution may be adjusted in the range of, for example, about 3 to 9 mol/L, specifically about 4 to 8 mol/L, and more specifically about 5 to 7 mol/L, but the acid used It can be changed depending on the type, etc.
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다. The present invention can be more clearly understood by the following examples, which are for illustrative purposes only and are not intended to limit the scope of the invention.
실시예Example
- 본 실시예에서는 국내 폐기업체로부터 입수된 차량용 폐촉매 변환기(5 kg)을 사용하였다. 수집된 촉매를 자이러토리 분쇄기(Gyratory crusher) 및 볼 밀을 이용하여 약 150 ㎛ 사이즈로 미세 그라인딩하였다.- In this example, a spent catalytic converter (5 kg) for a vehicle obtained from a domestic disposal company was used. The collected catalyst was finely ground to a size of approximately 150 ㎛ using a gyratory crusher and ball mill.
엑스선 형광법(X-ray Fluorescence S4 Pioneer, Bruker, Germany)에 의하여 분쇄된 폐촉매의 조성을 분석한 결과, 백금족 금속과 같은 금속 성분을 제외한 주요 무기산화물의 조성(단위: 중량%)은 하기 표 1과 같았다.As a result of analyzing the composition of the pulverized spent catalyst by It was the same.
성분ingredient Al2O3 Al 2 O 3 MgOMgO SiO2 SiO 2 ZrO2 ZrO2 TiO2 TiO 2
조성Furtherance 41.841.8 17.417.4 24.224.2 0.720.72 0.560.56
또한, Fire assay 결과, 백금족 금속 중 백금 및 팔라듐 각각의 함량은 756 ppm 및 367.5 ppm이었다.Additionally, as a result of the fire assay, the contents of platinum and palladium among the platinum group metals were 756 ppm and 367.5 ppm, respectively.
- 염산(Merck), 질산(Riedel-deHa¨en), NaOH 펠렛(Junsei Chemical Co. Ltd.), 티오우레아(Junsei Chemical Co. Ltd.), 티오글리콜(Sigma-Aldrich), P-IL(trihexyl(tetradecyl)phosphonium chloride; Cyphos IL101; Cytec Industries Inc., Canada), 및 방향족 용매 C10 (SOLVENTIS) 각각은 시판 중인 제품을 사용하였고, 추가적인 정제 처리는 수행하지 않았다.- Hydrochloric acid (Merck), nitric acid (Riedel-deHa¨en), NaOH pellets (Junsei Chemical Co. Ltd.), thiourea (Junsei Chemical Co. Ltd.), thioglycol (Sigma-Aldrich), P-IL (trihexyl) (tetradecyl)phosphonium chloride; Cyphos IL101; Cytec Industries Inc., Canada), and aromatic solvent C10 (SOLVENTIS) were each commercially available, and no additional purification was performed.
본 실시예에서는 도 2에 도시된 공정의 중요 단계를 수행하여 폐촉매로부터 백금족 금속을 회수하였다.In this example, platinum group metals were recovered from spent catalyst by performing the critical steps of the process shown in FIG. 2.
실시예 1Example 1
바이오시안화물 합성Biocyanide synthesis
본 실시예에서 바이오시안화물 생성 및 농축(축적) 실험은 도 3에 도시된 셋-업 장치를 이용하여 수행하였다.In this example, biocyanide production and concentration (accumulation) experiments were performed using the setup device shown in FIG. 3.
30 ℃ 및 pH 8.5에서 2.0 g/L 글리신(glycine)이 보충된 YP 배지(펩톤 10g, 효모 추출물 5g, 및 증류수 1.0 L)에 미리 성장시킨 시안화물-생성 박테리아(C. violaceum DSM30191) 12 mL(약 106 CFU/mL)를 접종하였다. 시안화물 합성은 바이오리액터(교반기가 구비되어 300 rpm의 교반을 제공함)에서 수행되었으며, 이때 폭기기를 통하여 공기를 3.0 mL/s의 유속으로 일정하게 공급하였다. 바이오리액터는 30 ℃에서 120 시간에 걸쳐 유지하였다. 이와 함께, 합성된 바이오시안화물 농축(축적)을 위한 알칼리 수집 수단으로 4.0 mol/L NaOH 용액를 사용하였다. 바이오시안화물의 농도는 표준 AgNO3 용액에 대한 적정에 의하여 분석하였고, 30 ℃에서 24 시간 동안 인큐베이션된 플레이트를 이용하여 영양 한천(nutrient agar) 상에서 드롭 플레이트법에 의하여 세포를 계수하였다. 12 mL (12 mL) of cyanide-producing bacteria ( C. violaceum DSM30191) pre-grown in YP medium (10 g peptone, 5 g yeast extract, and 1.0 L distilled water) supplemented with 2.0 g/L glycine at 30 °C and pH 8.5. Approximately 10 6 CFU/mL) was inoculated. Cyanide synthesis was performed in a bioreactor (equipped with a stirrer to provide agitation at 300 rpm), and air was constantly supplied through an aerator at a flow rate of 3.0 mL/s. The bioreactor was maintained at 30°C over 120 hours. In addition, 4.0 mol/L NaOH solution was used as an alkali collection means for concentrating (accumulating) the synthesized biocyanide. The concentration of biocyanide was analyzed by titration against a standard AgNO 3 solution, and cells were counted by the drop plate method on nutrient agar using plates incubated at 30°C for 24 hours.
회분식 모드에서 시간 경과에 따른 바이오시안화물에 있어서, 2.0 g/L의 글리신이 보충된 YP 배지에서의 C. violaceum 세포 수를 측정한 결과를 도 4에 나타내었다.For biocyanide over time in batch mode, the results of measuring the number of C. violaceum cells in YP medium supplemented with 2.0 g/L glycine are shown in Figure 4.
상기 도면에 따르면, 세포 수는 인큐베이션 후 36 시간 이내에 106 CFU/mL에서 109 CFU/mL으로 증가하였고, 이후 12 시간까지 유지되었다. 그 다음, 120 시간의 인큐베이션 결과, 107 CFU/mL까지 감소하였다.According to the figure, the cell number increased from 10 6 CFU/mL to 10 9 CFU/mL within 36 hours after incubation and was maintained until 12 hours thereafter. Then, as a result of 120 hours of incubation, it decreased to 10 7 CFU/mL.
한편, (a) 회분식 모드 및 (b) 연속 모드 각각에 있어서, 2.0 g/L의 글리신 농도의 YP 배지 내 및 4.0 mol/L의 NaOH 트래핑 용액을 이용한 바이오시안화물 용액의 제조 시 시간 경과에 따른 바이오제닉 시안화물의 축적 및 pH 변화를 도 5에 나타내었다.On the other hand, in (a) batch mode and (b) continuous mode, the time elapsed during the preparation of biocyanide solution using YP medium with a glycine concentration of 2.0 g/L and NaOH trapping solution with 4.0 mol/L. The accumulation and pH change of biogenic cyanide are shown in Figure 5.
도 5a를 참조하면, 알칼리 용액(NaOH 트래핑 용액)으로의 바이오시안화물 축적은 12 시간(106 mg/L CN-) 후에 시작되어 48 시간에 걸쳐 진행되었고, 최대 축적은 1.05 g/L CN-에 도달하였으며, 이후에는 감소하기 시작하였다. Referring to Figure 5a, biocyanide accumulation into the alkaline solution (NaOH trapping solution) started after 12 hours (10 6 mg/L CN - ) and progressed over 48 hours, with a maximum accumulation of 1.05 g/L CN - reached, and then began to decrease.
한편, 2.0 g/L 글리신이 보충된 YP 배지를 사용하고 24 시간의 체류 시간을 갖는 조건 하에서 보다 높은 농도의 시안화물 이온 축적이 가능한 연속 공정을 통하여 시안화물(HCN) 합성을 수행하였다. 도 5b에서 알 수 있듯이 용액의 pH 10.7인 알칼리 수집 용액 내에서 96 시간 경과 후에 4.17 g/L CN-의 최고 농도에 도달하였다. 이후, CN- 이온 농도는 120 시간 경과 후에는 3.8 g/L로 감소하였는 바, 이는 pH가 약 10으로 감소함에 따라 CN- 이온의 일부가 HCN으로 전환되었기 때문으로 판단된다(pKa, 9.3).Meanwhile, cyanide (HCN) synthesis was performed using YP medium supplemented with 2.0 g/L glycine and through a continuous process capable of accumulating higher concentrations of cyanide ions under conditions with a retention time of 24 hours. As can be seen in Figure 5b, the highest concentration of 4.17 g/L CN - was reached after 96 hours in the alkaline collection solution with a pH of 10.7. Afterwards, the CN - ion concentration decreased to 3.8 g/L after 120 hours, which is believed to be because some of the CN - ions were converted to HCN as the pH decreased to about 10 (pKa, 9.3).
실시예 2Example 2
바이오침출 시 온도의 영향 평가Evaluation of the effect of temperature on bioleaching
2.9 g/L의 CN- 이온 농도로 미리 조절된 바이오시안화물 용액을 침출제 매질(lixiviant medium)로 사용하여 고압 멸균기((Ni-Cr) 합금 600 반응기; 200 mL) 내에서 가압 조건 하에 바이오침출을 수행하였다. 바이오시안화물 용액 100 mL에 20 g의 폐촉매 시료를 투입하였고, 가압 침출은 200 rpm의 교반 속도로 100 내지 200 ℃의 범위 내에서 온도를 변화시키면서 수행하였다(pO2: 10.5 bar; 1 시간). Bioleaching under pressurized conditions in an autoclave ((Ni-Cr) alloy 600 reactor; 200 mL) using a biocyanide solution pre-adjusted to a CN - ion concentration of 2.9 g/L as a lixiviant medium. was carried out. 20 g of spent catalyst sample was added to 100 mL of biocyanide solution, and pressure leaching was performed while changing the temperature within the range of 100 to 200 ℃ with a stirring speed of 200 rpm (pO 2 : 10.5 bar; 1 hour). .
이후, 용액을 0.45 ㎛ 멤브레인 필터를 사용하여 여과하여 수집하였고, 수집된 여액(filtrate)에 대하여 ICP-플라즈마 질량 분광기(ICP-MS; MSS 01, SPECTRO Analytical Instruments GmbH, Germany)를 이용하여 Pt-Pd 분석을 수행하였다.Afterwards, the solution was collected by filtration using a 0.45 ㎛ membrane filter, and the collected filtrate was analyzed for Pt-Pd using ICP-plasma mass spectrometry (ICP-MS; MSS 01, SPECTRO Analytical Instruments GmbH, Germany). Analysis was performed.
금속 침출율은 하기 수학식 1에 따라 산출하였다.The metal leaching rate was calculated according to Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2023012145-appb-img-000005
Figure PCTKR2023012145-appb-img-000005
상기 식에서, MIS 및 MLL은 각각 고상 시료 내 금속 함량 및 침출액 내 금속 함량이다.In the above equation, M IS and M LL are the metal content in the solid sample and the metal content in the leachate, respectively.
Pt 및 Pd의 가압 바이오시안화 반응에 대한 온도의 영향을 도 6에 나타내었다.The effect of temperature on the pressure biocyanation reaction of Pt and Pd is shown in Figure 6.
상기 도면을 참조하면, 100 ℃의 고온에서 시안화물-함유 용액에 Pt 및 Pd의 침출율은 85% 이하로 나타났다. 다만, 150 ℃에서 침출율은 최대 91% Pt 및 94% Pd에 도달하였다. 이후, 온도가 증가함에 따라 침출율은 감소하였는 바, 250 ℃에서 최대 87% Pt 및 81% Pd까지 감소하였다. 이러한 감소 거동은 보다 높은 온도에서 하기 반응식 2 및 3에 나타낸 바와 같이 가수분해 속도의 증가로 인하여 시안화물이 분해되었기 때문으로 판단된다.Referring to the figure, the leaching rate of Pt and Pd in the cyanide-containing solution at a high temperature of 100°C was found to be 85% or less. However, at 150 °C, the leaching rate reached a maximum of 91% Pt and 94% Pd. Thereafter, as the temperature increased, the leaching rate decreased, reaching a maximum of 87% Pt and 81% Pd at 250°C. This decrease behavior is believed to be due to the decomposition of cyanide due to an increase in the hydrolysis rate at higher temperatures, as shown in Schemes 2 and 3 below.
[반응식 2][Scheme 2]
Figure PCTKR2023012145-appb-img-000006
Figure PCTKR2023012145-appb-img-000006
[반응식 3][Scheme 3]
Figure PCTKR2023012145-appb-img-000007
Figure PCTKR2023012145-appb-img-000007
실시예 3 Example 3
바이오침출 시 산소 부분압의 영향 평가Evaluation of the effect of oxygen partial pressure on bioleaching
산소 부분압(pO2)을 3.5 내지 17.5 bar 범위에서 변화시키면서 바이오침출을 수행한 것을 제외하고는 실시예 2에 따른 실험 절차에 따라 바이오침출 실험을 수행하였다(150 ℃의 온도, 2.9 g/L의 CN- 농도, 11.2의 초기 pH 및 60 분). 그 결과를 도 7에 나타내었다.The bioleaching experiment was performed according to the experimental procedure according to Example 2, except that the bioleaching was performed while changing the partial pressure of oxygen (pO 2 ) in the range of 3.5 to 17.5 bar (temperature of 150°C, 2.9 g/L). CN - concentration, initial pH of 11.2 and 60 min). The results are shown in Figure 7.
상기 도면에 따르면, 백금족 금속(Pt 및 Pd)의 침출은 pO2가 증가함에 따라 크게 증가하였으며 17.5 bar의 pO2에서 94% 이상으로 도달하였다. 시안화물 내에서 산소의 촉매적 역할은 하기 반응식 4 및 5에 따른 시안화 반응을 통한 거동에 의하여 확인될 수 있다.According to the figure, the leaching of platinum group metals (Pt and Pd) increased significantly as pO 2 increased and reached more than 94% at a pO 2 of 17.5 bar. The catalytic role of oxygen in cyanide can be confirmed by the behavior through the cyanidation reaction according to Schemes 4 and 5 below.
[반응식 4][Scheme 4]
Figure PCTKR2023012145-appb-img-000008
Figure PCTKR2023012145-appb-img-000008
[반응식 5][Scheme 5]
Figure PCTKR2023012145-appb-img-000009
Figure PCTKR2023012145-appb-img-000009
실시예 4Example 4
바이오침출 시 바이오시안화물 농도의 영향 평가Evaluation of the impact of biocyanide concentration during bioleaching
바이오시안화물(CN-) 농도를 0.23 내지 4.17 g/L의 범위에서 변화시키면서 바이오침출을 수행한 것을 제외하고는 실시예 2에 따른 실험 절차에 따라 바이오침출 실험을 수행하였다(150 ℃의 온도, 14 bar의 pO2, 11.2의 초기 pH 및 60 분). 그 결과를 도 8에 나타내었다.A bioleaching experiment was performed according to the experimental procedure according to Example 2, except that the bioleaching was performed while changing the biocyanide (CN - ) concentration in the range of 0.23 to 4.17 g/L (temperature of 150°C, pO 2 of 14 bar, initial pH of 11.2 and 60 min). The results are shown in Figure 8.
상기 도면을 참조하면, CN- 농도가 증가함에 따라 Pt 침출율(43%에서 >95%) 및 Pd 침출율(52%에서 96%) 역시 증가하였다. 또한, 잔류 시안화물 농도는 0.032 g/L에서 >1.0 g/L으로 증가하였다. 특히, 2.9 g/L CN- 농도의 시안화물-함유 용액에서 최대 침출율이 관찰되었다. 스톡 침출액(Pt, 157.5 mg/L 및 Pd, 77.6 mg/L)은 후속 분리(액-액 추출) 공정에 사용하였다. Referring to the figure, as the CN - concentration increased, the Pt leaching rate (43% to >95%) and Pd leaching rate (52% to 96%) also increased. Additionally, the residual cyanide concentration increased from 0.032 g/L to >1.0 g/L. In particular, the maximum leaching rate was observed in the cyanide-containing solution at a concentration of 2.9 g/L CN - . The stock leachate (Pt, 157.5 mg/L and Pd, 77.6 mg/L) was used in the subsequent separation (liquid-liquid extraction) process.
실시예 5Example 5
백금족-함유 시안화물 침출액으로부터 백금족 금속의 추출 시 추출제 농도의 영향 평가Evaluation of the effect of extractant concentration on extraction of platinum group metals from platinum group-containing cyanide leachate
포스포늄계 이온성 액체인 트리헥실(테트라데실)포스포늄 클로라이드를 방향족 용매(C10)에 용해시켰고, 0.01 내지 0.15 mol/L의 범위에서 이온성 액체의 농도를 변화시키면서 시안화물 침출액(pH 10.8) 내 백금족 금속(Pt 및 Pd)을 추출하였다. 이때, 유기 상 대 수 상(O : A)의 비(organic to aqueous phase ratio)는 1이고, 25 ℃에서 10분 동안 접촉시켰다. 그 결과를 도 9에 나타내었다.Trihexyl(tetradecyl)phosphonium chloride, a phosphonium-based ionic liquid, was dissolved in an aromatic solvent (C10), and the cyanide leachate (pH 10.8) was added while changing the concentration of the ionic liquid in the range of 0.01 to 0.15 mol/L. The platinum group metals (Pt and Pd) were extracted. At this time, the organic to aqueous phase ratio (O:A) was 1, and the contact was made at 25°C for 10 minutes. The results are shown in Figure 9.
도 9a에 따르면, 유기 상 내 이온성 액체의 활성 분자(active molecules)가 많을수록 Pt 및 Pd의 추출율(extraction efficiency)이 증가하였고, 0.15 mol/L의 이온성 액체에서 97% Pt, 그리고 94% Pd에 도달하였다.According to Figure 9a, as the number of active molecules of the ionic liquid in the organic phase increased, the extraction efficiency of Pt and Pd increased, and at 0.15 mol/L of the ionic liquid, 97% Pt and 94% Pd. reached.
도 9b에 따르면, 로그 분포 Pt 및 Pd는 log[P-IL]과 기울기 값이 약 2인 직선의 관계를 나타내었다. 이때, 기울기 값은 Pt 및 Pd 추출 착체(extraction complexes) 1 몰 당 2 분자의 이온성 액체가 수반됨을 지시한다. 이러한 관계에 기초하여 추출 반응은 하기 반응식 6 및 7로 나타낼 수 있다.According to Figure 9b, the logarithmic distributions Pt and Pd showed a relationship between log[P-IL] and a straight line with a slope value of about 2. At this time, the slope value indicates that 2 molecules of ionic liquid are involved per mole of Pt and Pd extraction complexes. Based on this relationship, the extraction reaction can be represented by Schemes 6 and 7 below.
[반응식 6][Scheme 6]
Figure PCTKR2023012145-appb-img-000010
Figure PCTKR2023012145-appb-img-000010
[반응식 7][Scheme 7]
Figure PCTKR2023012145-appb-img-000011
Figure PCTKR2023012145-appb-img-000011
실시예 6Example 6
백금족-함유 시안화물 침출액으로부터 백금족 금속의 추출 시 pH의 영향 평가Evaluation of the effect of pH on extraction of platinum group metals from platinum group-containing cyanide leachate
백금족 금속-함유 용액(침출액)의 pH를 10.4에서 11.2의 범위에서 변화시키면서 액-액 추출을 수행한 것을 제외하고는 실시예 5에 따른 실험 절차에 따라 추출 실험을 수행하였다(O:A, 1; P-IL 농도, 0.15 mol/L; 접촉 시간, 10 min; 및 온도, 25 ℃). 그 결과를 도 10에 나타내었다. 이때, 추출율은 하기 수학식 2에 따라 산출하였다.The extraction experiment was performed according to the experimental procedure according to Example 5, except that the liquid-liquid extraction was performed while changing the pH of the platinum group metal-containing solution (leaching solution) in the range of 10.4 to 11.2 (O:A, 1 ; P-IL concentration, 0.15 mol/L; contact time, 10 min; and temperature, 25 °C). The results are shown in Figure 10. At this time, the extraction rate was calculated according to Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2023012145-appb-img-000012
Figure PCTKR2023012145-appb-img-000012
상기 식에서, Vorg 및 Vaq는 각각 유기 상 및 수 상의 체적이다. In the above formula, V org and V aq are the volumes of the organic phase and the aqueous phase, respectively.
상기 도면을 참조하면, 침출액(leach liquor)의 pH가 11.2(96.4% Pt 및 92.7% Pd)에서 10.4(98.2% Pt 및 97.6% Pd)으로 감소함에 Pt 및 Pd 추출이 증가하는 경향을 나타내었다. 이처럼, 높은 pH에서 낮은 추출율을 나타내는 이유는 수산화 이온이 경쟁적으로 추출되기 때문으로 판단된다. 낮은 pH에서 형성된 HCN의 독성(HCN : CN- = 1:1(pKa 9.3))을 방지하기 위하여, pH 10.4에서 추출로 최적화하였고, 이를 후속 실험에 사용하였다.Referring to the figure, Pt and Pd extraction tended to increase as the pH of the leach liquor decreased from 11.2 (96.4% Pt and 92.7% Pd) to 10.4 (98.2% Pt and 97.6% Pd). In this way, it is believed that the reason for the low extraction rate at high pH is because hydroxide ions are extracted competitively. To prevent the toxicity of HCN formed at low pH (HCN: CN - = 1:1 (pKa 9.3)), extraction was optimized at pH 10.4 and used in subsequent experiments.
실시예 7Example 7
백금족-함유 시안화물 침출액으로부터 백금족 금속의 추출 시 온도의 영향 평가Evaluation of the effect of temperature on extraction of platinum group metals from platinum group-containing cyanide leachate
추출 온도를 20 내지 60 ℃의 범위에서 변화시키면서 액-액 추출을 수행한 것을 제외하고는 실시예 5에 따른 실험 절차에 따라 추출 실험을 수행하였다(O:A, 1; P-IL 농도, 0.15 mol/L; 용액 pH, 10.4; 및 접촉 시간, 10 min). 그 결과를 도 11에 나타내었다.The extraction experiment was performed according to the experimental procedure according to Example 5, except that liquid-liquid extraction was performed while changing the extraction temperature in the range of 20 to 60 ° C. (O:A, 1; P-IL concentration, 0.15 mol/L; solution pH, 10.4; and contact time, 10 min). The results are shown in Figure 11.
도 11a를 참조하면, 온도가 증가함에 따라 추출율은 감소하였다(Pt: 98%에서 <87%; Pd: 97%에서 86%). 이러한 결과는 발열 반응이 수반되었고, 온도 증가에 따라 이온성 액체의 금속-바인딩능이 감소함을 지시한다.Referring to Figure 11a, the extraction rate decreased as the temperature increased (Pt: from 98% to <87%; Pd: from 97% to 86%). These results indicate that an exothermic reaction was involved and that the metal-binding ability of the ionic liquid decreased with increasing temperature.
도 11b를 참조하면, 회귀 계수 값이 0.99를 초과하는 직선이 도출되었는 바, 직선의 기울기 값을 이용하여 Pt 및 Pd 추출에 대한 겉보기 엔탈피 변화(ΔH°)는 ΔH°(Pt), -39.8 kJ/mol 및 ΔH°(Pd), -34.9 kJ/mol로 측정되었다. 상술한 결과로부터 금속-이온 착체의 발열 특성을 확인할 수 있다.Referring to Figure 11b, a straight line with a regression coefficient exceeding 0.99 was derived. Using the slope value of the straight line, the apparent enthalpy change (ΔH°) for Pt and Pd extraction is ΔH°(Pt), -39.8 kJ. /mol and ΔH°(Pd), was measured to be -34.9 kJ/mol. From the above-mentioned results, the exothermic characteristics of the metal-ion complex can be confirmed.
실시예 8Example 8
Pt-Pd 로딩된 이온성 액체로부터 Pt 스트리핑Pt stripping from Pt-Pd loaded ionic liquid
Pt-Pd 로딩된(loaded) 이온성 액체를 다양한 농도의 NH4SCN 수용액(0.25 내지 2.0 mol/L)과 접촉시켰다(O:A, 1; 접촉 시간, 10 min; 및 온도, 25 ℃). 그 결과를 도 12에 나타내었다. 이때, 스트리핑율은 하기 수학식 3에 따라 산출하였다.The Pt-Pd loaded ionic liquid was contacted with various concentrations of NH 4 SCN aqueous solution (0.25 to 2.0 mol/L) (O:A, 1; contact time, 10 min; and temperature, 25° C.). The results are shown in Figure 12. At this time, the stripping rate was calculated according to Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2023012145-appb-img-000013
Figure PCTKR2023012145-appb-img-000013
상기 식에서, CSorg 및 CSaq는 각각 유기 상 및 수 상 내 스트리핑 후 금속 농도이다. In the above equation, CS org and CS aq are the metal concentrations after stripping in the organic phase and aqueous phase, respectively.
상기 도면에서는 NH4SCN 용액은 Pt에 대한 Pd의 선택적 회수능을 나타내었다. 구체적으로, NH4SCN 농도가 0.25 mol/L에서 1.0 mol/L로 증가함에 따라 Pd-스트리핑율은 68%에서 >94%로 크게 증가하였다. 이후에는 스트리핑이 거의 진행되지 않았는 바, 2.0 mol/L의 NH4SCN 용액에서 98% 이상의 스트리핑율 나타내었고, 이때 Pt는 3% 미만이었다. In the figure, the NH 4 SCN solution showed the selective recovery ability of Pd over Pt. Specifically, as the NH 4 SCN concentration increased from 0.25 mol/L to 1.0 mol/L, the Pd-stripping rate increased significantly from 68% to >94%. Afterwards, stripping hardly progressed, showing a stripping rate of over 98% in a 2.0 mol/L NH 4 SCN solution, and at this time, Pt was less than 3%.
이와 관련하여, 티오시아네이트 스트리핑(thiocyanate stripping)에서 달성된 선택성은 Pd(CN)4 2-보다 Pt(CN)4 2-의 크기가 더 크기 때문에 Pd-화합물이 보다 큰 전하 밀도를 갖는 점으로부터 기인하는 것으로 판단된다. NH4SCN 용액을 사용한 Pd-스트리핑에 수반되는 반응은 하기 반응식 8로 나타낼 수 있다.In this regard, the selectivity achieved in thiocyanate stripping comes from the fact that the Pd-compound has a larger charge density due to the larger size of Pt(CN) 4 2- than that of Pd(CN) 4 2- . It is believed to be caused by The reaction involved in Pd-stripping using NH 4 SCN solution can be expressed in Scheme 8 below.
[반응식 8][Scheme 8]
Figure PCTKR2023012145-appb-img-000014
Figure PCTKR2023012145-appb-img-000014
실시예 8Example 8
Pd-고갈된 이온성 액체로부터 Pt 스트리핑Pt stripping from Pd-depleted ionic liquids
Pd-고갈된 이온성 액체를 다양한 농도의 S(CH2CH2OH)2 수용액(0.25 내지 2.0 mol/L)과 접촉시켰다(O:A, 1; 접촉 시간, 10 min; 및 온도, 25 ℃). 그 결과를 도 13에 나타내었다.The Pd-depleted ionic liquid was contacted with various concentrations of S(CH 2 CH 2 OH) 2 aqueous solution (0.25 to 2.0 mol/L) (O:A, 1; contact time, 10 min; and temperature, 25 °C. ). The results are shown in Figure 13.
상기 도면에 따르면, Pt 스트리핑율은 1.0 mol/L의 S(CH2CH2OH)2 용액에서 약 90%에 도달하였고, 1.5 mol/L의 S(CH2CH2OH)2 용액에서 약 96%에 도달하였다. 다만, S(CH2CH2OH)2 농도를 추가적으로 증가시킨다 해도 스트리핑율의 현저한 증가는 관찰되지 않았다. 이와 관련하여, S(CH2CH2OH)2를 사용한 Pt-스트리핑의 배위 치환 반응(coordination substitution reaction)은 하기 반응식 9로 표시될 수 있다.According to the figure, the Pt stripping rate reached about 90% in a 1.0 mol/L S(CH 2 CH 2 OH) 2 solution and about 96% in a 1.5 mol/L S(CH 2 CH 2 OH) 2 solution. % has been reached. However, even if the S(CH 2 CH 2 OH) 2 concentration was further increased, no significant increase in the stripping rate was observed. In this regard, the coordination substitution reaction of Pt-stripping using S(CH 2 CH 2 OH) 2 can be represented by Scheme 9 below.
[반응식 9][Scheme 9]
Figure PCTKR2023012145-appb-img-000015
Figure PCTKR2023012145-appb-img-000015
실시예 9Example 9
시안화물-함유 라피네이트의 재활용성 및 유기 인계 이온성 액체의 재사용성 평가Evaluation of recyclability of cyanide-containing raffinate and reusability of organophosphorus ionic liquid
유기 인계 이온성 액체(트리헥실(테트라데실)포스포늄 클로라이드)를 추출제로 사용하여 바이오 침출액 내 백금족 금속(Pt 및 Pd)을 추출한 후에 형성된 라피네이트에 잔류하는 시안화물의 재활용성을 평가하였다.The recyclability of cyanide remaining in the raffinate formed after extraction of platinum group metals (Pt and Pd) in bio leachate was evaluated using an organophosphorus ionic liquid (trihexyl(tetradecyl)phosphonium chloride) as an extractant.
구체적으로, 도 2에 도시된 바와 같이, 3.8 x 10-8 μmol/L CN-을 포함하는 라피네이트를 알칼리 트랩 용액(alkali collector)으로 리사이클하여 4.0 mol/L NaOH로 농도를 조절한 다음, 바이오시안화물을 농축(축적)하였다. 이와 같이 농축된 바이오시안화물을 사용하여 최적화된 침출 조건(온도, 150 ℃; pO2, 14 bar; CN- 농도, 2.9 g/L)에서 5회의 연속적인 침출 실험을 수행하였다. 그 결과를 도 14a에 나타내었다.Specifically, as shown in Figure 2, raffinate containing 3.8 Cyanide was concentrated (accumulated). Using this concentrated biocyanide, five consecutive leaching experiments were performed under optimized leaching conditions (temperature, 150 °C; pO 2 , 14 bar; CN - concentration, 2.9 g/L). The results are shown in Figure 14a.
상기 도면을 참조하면, Pt 및 Pd의 침출율은 모두 약 95%로서 잔류 시안화물 용액의 재활용성을 확인하였다. Referring to the figure, the leaching rates of Pt and Pd were both about 95%, confirming the recyclability of the residual cyanide solution.
한편, 추출 과정에서 사용된 유기 안계 이온성 액체의 재사용성은 6.0 mol/L HCl 용액과 30분 동안 접촉시켜 이온성 액체와 산성 용액을 분리한 다음, 유기 상(organic phase)을 재생하는 방식으로 평가하였다. 이때, 추출, 스트리핑 및 재생 주기를 반복적으로 수행하여 2종의 백금족 금속을 각각 분리하였다. 그 결과를 도 14b에 나타내었다.Meanwhile, the reusability of the organic ionic liquid used in the extraction process was evaluated by contacting it with 6.0 mol/L HCl solution for 30 minutes to separate the ionic liquid and the acidic solution, and then regenerating the organic phase. did. At this time, the extraction, stripping, and regeneration cycles were repeatedly performed to separate the two types of platinum group metals. The results are shown in Figure 14b.
상기 도면을 참조하면, 총 5회의 연속 사이클에 대한 결과로부터 Pt 및 Pd의 추출율은 모두 >97%이었다. 이는 이온성 액체가 안정성을 갖고 있고, 또한 양호한 재생 및 재사용성을 나타냄을 의미하는 바, 도 2에서 제안된 프로세스가 지속 가능함을 뒷받침한다. Referring to the figure, the extraction rates of Pt and Pd were both >97% from the results of a total of 5 consecutive cycles. This means that the ionic liquid is stable and also exhibits good regeneration and reusability, supporting that the process proposed in Figure 2 is sustainable.
실시예 10Example 10
재활용된 시안화물-함유 라피네이트의 생분해성 평가Evaluation of biodegradability of recycled cyanide-containing raffinate
5회의 순차적인 침출-추출-스트리핑 사이클을 수행한 후, 시안화물-함유 라피네이트 체적의 25%를 흡출(bleed out)시켜 잔류 시안화물의 생분해성을 평가하였다. 그 결과를 도 15에 나타내었다.After performing five sequential leaching-extraction-stripping cycles, 25% of the volume of the cyanide-containing raffinate was bleed out to evaluate the biodegradability of residual cyanide. The results are shown in Figure 15.
상기 도면을 참조하면, 드레인된 C. violaceum와 접촉한 후 8 시간이 경과하자마자 잔류 시안화물의 현저한 분해가 시작되었고, 28 시간 경과 후에는 90%를 초과하였다. CN- 이온의 최대 무독화(detoxification; >99%)는 60 시간 경과 후에 달성되었다. CN- 이온의 최종 농도는 5.64 × 10-11 μmol/L이었다(블리드 용액 내 초기 농도는 3.76 × 10-8 μmol/L임).Referring to the figure, significant decomposition of residual cyanide began as soon as 8 hours after contact with drained C. violaceum , and exceeded 90% after 28 hours. Maximal detoxification (>99%) of CN - ions was achieved after 60 hours. The final concentration of CN - ions was 5.64 × 10 -11 μmol/L (the initial concentration in the bleed solution was 3.76 × 10 -8 μmol/L).
이처럼, 잔류 시안화물은 앞서 바이오시안화물 생성에 사용 가능한 미생물(효소)에 의하여 분해될 수 있으며, 분해 과정을 거친 후에 독성이 저감된 상태로 배출 가능함을 알 수 있다.In this way, it can be seen that residual cyanide can be decomposed by microorganisms (enzymes) that can be used to produce biocyanide, and that it can be discharged with reduced toxicity after the decomposition process.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily used by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (19)

  1. a) 시안화물-생성 미생물의 대사 작용에 의하여 생성된 바이오시안화물을 함유하는 용액을 이용하여 백금족-함유 폐촉매로부터 백금족 금속을 침출시킴으로써 백금족-함유 시안화물 침출액을 형성하는 단계;a) forming a platinum group-containing cyanide leachate by leaching platinum group metals from a platinum group-containing spent catalyst using a solution containing biocyanide produced by the metabolic action of cyanide-producing microorganisms;
    b) 백금족-함유 시안화물 침출액을 추출제로서 수불용성의 유기 인계 이온성 액체를 이용한 액-액 추출 처리에 의하여 백금족-풍부 익스트랙트 및 백금족-고갈된 라피네이트를 형성하는 단계; 및b) subjecting the platinum group-containing cyanide leachate to a liquid-liquid extraction treatment using a water-insoluble organophosphorus ionic liquid as an extractant to form a platinum group-rich extract and a platinum group-depleted raffinate; and
    c) 상기 익스트랙트로부터 백금족 금속을 회수하는 단계;c) recovering platinum group metal from the extract;
    를 포함하는 폐촉매로부터 백금족 금속을 회수하는 방법.A method for recovering platinum group metals from a spent catalyst comprising a.
  2. 제1항에 있어서, 상기 백금족-함유 폐촉매는 백금 및 팔라듐으로부터 이루어지는 군으로부터 선택되는 적어도 하나의 백금족 금속을 함유하는 것을 특징으로 하는 방법.The method of claim 1, wherein the platinum group-containing spent catalyst contains at least one platinum group metal selected from the group consisting of platinum and palladium.
  3. 제2항에 있어서, 상기 백금족-함유 폐촉매는 로듐을 함유하지 않는 것을 특징으로 하는 방법.3. The method of claim 2, wherein the platinum group-containing spent catalyst does not contain rhodium.
  4. 제1항에 있어서, 상기 백금족-함유 폐촉매는 350 ㎛ 이하의 입도 범위를 갖는 입자 또는 분쇄물 형태로 단계 a)에 제공되는 것을 특징으로 하는 방법.The method according to claim 1, wherein the platinum group-containing spent catalyst is provided to step a) in the form of particles or pulverized particles having a particle size range of 350 μm or less.
  5. 제1항에 있어서, 상기 백금족-함유 폐촉매 내 전체 백금족 금속의 함량은 0.005 내지 0.4 중량% 범위인 것을 특징으로 하는 방법.The method according to claim 1, wherein the total platinum group metal content in the platinum group-containing spent catalyst is in the range of 0.005 to 0.4% by weight.
  6. 제5항에 있어서, 상기 백금족-함유 폐촉매는 백금 및 팔라듐을 함유하며, 백금 및 팔라듐 각각의 함량은 0.003 내지 0.15 중량% 및 0.002 내지 0.1 중량% 범위인 것을 특징으로 하는 방법.The method according to claim 5, wherein the platinum group-containing spent catalyst contains platinum and palladium, and the contents of platinum and palladium are in the range of 0.003 to 0.15% by weight and 0.002 to 0.1% by weight, respectively.
  7. 제1항에 있어서, 상기 단계 a)에 앞서 상기 백금족-함유 폐촉매를 수산화나트륨, 수산화칼륨 및 수산화암모늄으로 이루어지는 군으로부터 적어도 하나가 선택되는 알칼리-함유 용액으로 전처리하는 단계를 더 포함하는 것을 특징으로 하는 방법.The method of claim 1, further comprising the step of pretreating the platinum group-containing spent catalyst with an alkali-containing solution selected from the group consisting of sodium hydroxide, potassium hydroxide, and ammonium hydroxide prior to step a). How to do it.
  8. 제1항에 있어서, 상기 시안화물-생성 미생물은 베타프로테오박테리아(Betaproteobacteria) 및 감마프로테오박테리아(Gammaproteobacteria)에 속하는 종류로부터 적어도 하나가 선택되는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 1, wherein the cyanide-producing microorganism is selected from at least one species belonging to Betaproteobacteria and Gammaproteobacteria.
  9. 제1항에 있어서, 상기 단계 a) 중 바이오시안화물을 함유하는 수용액의 pH는 9.5 내지 14의 범위이고, 시안화물(CN-)의 농도는 2 내지 6 g/L의 범위인 것을 특징으로 하는 방법.The method of claim 1, wherein the pH of the aqueous solution containing biocyanide in step a) is in the range of 9.5 to 14, and the concentration of cyanide (CN - ) is in the range of 2 to 6 g/L. method.
  10. 제1항에 있어서, 상기 단계 a) 중 백금족 금속을 침출시키기 전에 바이오시안화물을 함유하는 용액을 알칼리 용액 내로 트래핑 또는 수집하여 농축 또는 축적시키는 단계를 더 포함하는 것을 특징으로 하는 방법.The method according to claim 1, further comprising trapping or collecting the solution containing biocyanide into an alkaline solution to concentrate or accumulate it before leaching the platinum group metal in step a).
  11. 제1항에 있어서, 상기 침출은 100 내지 200 ℃의 온도 및 적어도 8 bar의 산소 압력 조건에서 수행되는 것을 특징으로 하는 방법. The method according to claim 1, wherein the leaching is carried out at a temperature of 100 to 200° C. and an oxygen pressure of at least 8 bar.
  12. 제1항에 있어서, 상기 단계 a)에서 형성된 백금족-함유 시안화물 침출액의 pH는 9 내지 12.5의 범위인 것을 특징으로 하는 방법.The method according to claim 1, wherein the pH of the platinum group-containing cyanide leachate formed in step a) is in the range of 9 to 12.5.
  13. 제1항에 있어서, 기 단계 b)에서 사용된 수불용성 유기 인계 이온성 액체는 하기 일반식 1로 표시되는 포스포늄계 양이온기, 그리고 할라이드, 황화물 및 질산염으로 이루어지는 군으로부터 선택되는 음이온기를 포함하는 것을 특징으로 하는 방법:The method of claim 1, wherein the water-insoluble organophosphorus ionic liquid used in step b) comprises a phosphonium-based cationic group represented by the following general formula 1, and an anionic group selected from the group consisting of halide, sulfide, and nitrate. Method characterized by:
    [일반식 1][General Formula 1]
    Figure PCTKR2023012145-appb-img-000016
    Figure PCTKR2023012145-appb-img-000016
    상기 식에서, R1 내지 R4는 각각 탄소수 35 내지 56의 알킬기임.In the above formula, R 1 to R 4 are each an alkyl group having 35 to 56 carbon atoms.
  14. 제13항에 있어서, 상기 단계 b)에서 사용된 유기 인계 이온성 액체의 분자량(Mw)은 200 내지 900의 범위인 것을 특징으로 하는 방법.The method of claim 13, wherein the molecular weight (M w ) of the organophosphorous ionic liquid used in step b) is in the range of 200 to 900.
  15. 제2항에 있어서, 상기 단계 c)는 스트리핑에 의하여 수행되는 것을 특징으로 하는 방법.The method according to claim 2, wherein step c) is performed by stripping.
  16. 제14항에 있어서, 상기 익스트랙트로부터 팔라듐을 회수하기 위하여, 티오시아네이트 화합물로부터 적어도 하나가 선택되는 스트리핑제를 사용하고, 그리고15. The method of claim 14, wherein to recover palladium from the extract, a stripping agent selected from at least one thiocyanate compound is used, and
    상기 익스트랙트로부터 백금을 회수하기 위하여, 티오알코올로부터 적어도 하나가 선택되는 스트리핑제를 사용하는 것을 특징으로 하는 방법.A method characterized by using at least one stripping agent selected from thioalcohols to recover platinum from the extract.
  17. 제10항에 있어서, 상기 백금족-고갈된 라피네이트를 상기 단계 a) 중 바이오시안화물-함유 용액, 및/또는 농축 또는 축적된 바이오시안화물-함유 용액으로 리사이클하는 단계를 더 포함하는 것을 특징으로 하는 방법.11. The method of claim 10, further comprising the step of recycling the platinum group-depleted raffinate to the biocyanide-containing solution of step a) and/or to the concentrated or accumulated biocyanide-containing solution. How to.
  18. 제1항에 있어서, 상기 백금족-고갈된 라피네이트 내 시안화물을 상기 시안화물-생성 미생물에 의하여 분해하는 단계를 더 포함하는 것을 특징으로 하는 방법.The method of claim 1, further comprising decomposing cyanide in the platinum group-depleted raffinate by the cyanide-producing microorganism.
  19. 제1항에 있어서, 상기 단계 c)에서 백금족 금속의 회수 후에 남은 익스트랙트로부터 유기 인계 이온성 액체를 분리하여 단계 b)에서 추출제로 재사용하는 단계를 더 포함하는 것을 특징으로 하는 방법.The method of claim 1, further comprising the step of separating the organophosphorus ionic liquid from the extract remaining after recovery of the platinum group metal in step c) and reusing it as an extractant in step b).
PCT/KR2023/012145 2022-09-14 2023-08-17 Process for recovering platinum-group metal from waste catalyst by using biocyanide and ionic liquid WO2024058441A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220115296A KR102542074B1 (en) 2022-09-14 2022-09-14 Process for Recovering Platinum Group Metals from Spent Catalysts Using Biocyanide and Ionic Liquid
KR10-2022-0115296 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024058441A1 true WO2024058441A1 (en) 2024-03-21

Family

ID=86762537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/012145 WO2024058441A1 (en) 2022-09-14 2023-08-17 Process for recovering platinum-group metal from waste catalyst by using biocyanide and ionic liquid

Country Status (2)

Country Link
KR (1) KR102542074B1 (en)
WO (1) WO2024058441A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542074B1 (en) * 2022-09-14 2023-06-13 한양대학교 산학협력단 Process for Recovering Platinum Group Metals from Spent Catalysts Using Biocyanide and Ionic Liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781670B1 (en) * 2006-08-16 2007-12-03 희성촉매 주식회사 A catalyst without rh or with the minimum rh for purifying exhaust gases from engine
JP2012532989A (en) * 2009-07-07 2012-12-20 サイテク・テクノロジー・コーポレーシヨン Method for recovering metals from aqueous solutions
KR102542074B1 (en) * 2022-09-14 2023-06-13 한양대학교 산학협력단 Process for Recovering Platinum Group Metals from Spent Catalysts Using Biocyanide and Ionic Liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781670B1 (en) * 2006-08-16 2007-12-03 희성촉매 주식회사 A catalyst without rh or with the minimum rh for purifying exhaust gases from engine
JP2012532989A (en) * 2009-07-07 2012-12-20 サイテク・テクノロジー・コーポレーシヨン Method for recovering metals from aqueous solutions
KR102542074B1 (en) * 2022-09-14 2023-06-13 한양대학교 산학협력단 Process for Recovering Platinum Group Metals from Spent Catalysts Using Biocyanide and Ionic Liquid

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN MUHAN, WU SHENGJIE, HUANG ZHANGJIE, CHEN JING, CHEN MIN JUN: "Separation and recovery of Pd(II) and Pt(II) from cyanide liquors of Pd-Pt flotation concentrate via solvent extraction : Separation and recovery of Pd(II) and Pt(II) from cyanide", JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, WILEY, HOBOKEN, USA, vol. 92, no. 7, 1 July 2017 (2017-07-01), Hoboken, USA, pages 1699 - 1709, XP093146518, ISSN: 0268-2575, DOI: 10.1002/jctb.5168 *
ILYAS SADIA, SRIVASTAVA RAJIV RANJAN, KIM HYUNJUNG: "Mobilization of platinum and palladium from exhausted catalytic converters using bio-cyanide and an ionic-liquid as mass transport carriers", GREEN CHEMISTRY, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 24, no. 13, 4 July 2022 (2022-07-04), GB , pages 5204 - 5218, XP093146519, ISSN: 1463-9262, DOI: 10.1039/D2GC00874B *
ILYAS SADIA; KIM HYUNJUNG: "Recovery of Platinum-Group Metals from an Unconventional Source of Catalytic Converter Using Pressure Cyanide Leaching and Ionic Liquid Extraction", JOM: JOURNAL OF METALS, SPRINGER NEW YORK LLC, UNITED STATES, vol. 74, no. 3, 12 January 2022 (2022-01-12), United States , pages 1020 - 1026, XP037702715, ISSN: 1047-4838, DOI: 10.1007/s11837-021-05119-6 *

Also Published As

Publication number Publication date
KR102542074B1 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2024058441A1 (en) Process for recovering platinum-group metal from waste catalyst by using biocyanide and ionic liquid
WO2019022555A1 (en) Method for selective recovery of valuable metal from waste denitrification catalyst through alkali fusion
WO2017105083A1 (en) System and method for melting aluminum and recycling black dross
US20240194962A1 (en) Systems and methods for closed-loop recycling of a liquid component of a leaching mixture when recycling lead from spent lead-acid batteries
KR100860344B1 (en) METHOD FOR RECOVERING Pb
WO2016188326A1 (en) Semi coke wastewater treating and regenerative recycling method
WO2012081897A2 (en) Method for enrichment-recovering ferronickel from raw material containing nickel, method for recovering nickel from enriched ferronickel, and method for recycling solution containing iron produced from same
WO2012005545A2 (en) Method for economical extraction of lithium from solution including lithium
WO2018117771A1 (en) Method for recovering nickel and cobalt from nickel, iron, and cobalt-containing raw material
CN110180861B (en) Clean production method for recycling waste packaging iron drum
WO2021235699A1 (en) Method for recovering precious metals from waste printed circuit board
WO2018048087A1 (en) Fine particle separation device
WO2024014804A1 (en) Method for recovering rare earth metal
CA1163382A (en) Process of treating dust containing zinc and lead and derived in an iron or steel making process
MXPA06011358A (en) Process for removal of the catalytic coating material from spent, defective or unused metal support catalytic converters.
WO2023243827A1 (en) Method for producing aqueous solution containing nickel or cobalt
WO2023182561A1 (en) Method using solvent extraction for selective recovery of valuable metal from lithium secondary battery waste material
WO2023121346A1 (en) Apparatus for producing sodium bicarbonate from industrial by-products containing sodium sulfate
WO2016060387A1 (en) Method for manufacturing briquette and briquette manufactured by using same
KR100528506B1 (en) A Method for Concentrating and Recovering Precious Metals from Spent PCBs and Spent Auto-Catalysts Simultaneously
WO2019022320A1 (en) Method for extracting rare metal elements from coal ash, and apparatus for extracting rare metal elements
JP2003334529A (en) Treatment method for substrate
WO2018194397A1 (en) Method for smelting ilmenite using red mud
WO2017047915A1 (en) Apparatus for treating fly ash, and method for treating fly ash by using same
WO2010074516A2 (en) Method for preparing high purity zinc oxide using secondary dust

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865741

Country of ref document: EP

Kind code of ref document: A1