WO2024014804A1 - Method for recovering rare earth metal - Google Patents

Method for recovering rare earth metal Download PDF

Info

Publication number
WO2024014804A1
WO2024014804A1 PCT/KR2023/009754 KR2023009754W WO2024014804A1 WO 2024014804 A1 WO2024014804 A1 WO 2024014804A1 KR 2023009754 W KR2023009754 W KR 2023009754W WO 2024014804 A1 WO2024014804 A1 WO 2024014804A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
cerium
phosphorus
specifically
earth metals
Prior art date
Application number
PCT/KR2023/009754
Other languages
French (fr)
Korean (ko)
Inventor
김현중
사디아일야스
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2024014804A1 publication Critical patent/WO2024014804A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This disclosure relates to methods for recovery of rare earth metals. More specifically, the present disclosure relates to an environmentally friendly, bio-based process for effectively recovering rare earth metals from rare earth metal sources, particularly low-grade phosphate minerals such as monazite, through solvo-chemical extraction.
  • Rare earth metals are widely used in advanced manufacturing industries such as semiconductors due to their unique physical and chemical properties such as high chemical stability and thermal conductivity, and demand is currently rapidly increasing worldwide.
  • rare earth metals are mainly applied to catalysts, ceramics and glass, metals and alloys, and abrasives, and among them, cerium (Ce) is known to be used in the largest amount among the rare earth metals.
  • rare earth metals do not exist in elemental form in nature, but are produced as various minerals.
  • Rare earth-containing minerals exist in the form of halides, carbonates, oxides, and phosphates. do.
  • approximately 200 types of minerals are known to contain rare earth elements, but most of them contain small amounts of rare earth metals, so the number of mineral species that can be used industrially is limited.
  • monazite is a cerium (Ce) group rare earth metal in phosphate form. It is a mineral that exists in abundance and is distributed in many areas around the world.
  • monazite has chemical stability, so in order to recover rare earth metals, it is used for concentration (WO 2016-109966 A1), smelting (WO 2009-021389 A1), and leaching after acid and alkali decomposition - ion exchange (Korean Patent Publication No. 2013). -0076261), hydrochloric acid leaching (US Patent No. 9752213), mechanochemical leaching (Domestic Patent No. 1058567), biological leaching (Domestic Patent No. 1641074), solvent extraction (Chinese Patent No. 101319275), etc. Methods are known, but acid or alkaline decomposition methods are mainly applied.
  • the acid decomposition method is advantageous in that it uses a low-cost acid such as sulfuric acid, but it can cause corrosion of equipment and emit a large amount of corrosive gas, causing environmental pollution.
  • alkaline decomposition method is relatively simple to operate and has advantages in terms of decomposition rate, but is expensive and may cause environmental pollution.
  • the acid or alkali decomposition method has the problem of consuming a large amount of energy and also consuming a large amount of reagents to neutralize the free acid or alkali remaining after leaching of the roasted sample.
  • One embodiment of the present disclosure seeks to provide an environmentally friendly integrated process capable of selectively leaching or eluting rare earth elements from low-grade rare earth-containing phosphate sources such as monazite using microorganisms, and then implementing effective separation and recovery.
  • the rare earth metal-containing phosphate source comprising: (i) cerium, (ii) at least one rare earth metal other than cerium, and (iii) iron;
  • Microorganisms with sulfur and iron oxidation capabilities are cultured with the phosphorus-depleted residue, and iron in the phosphorus-depleted residue is leached by a metabolic leaching agent released from the microorganisms with sulfur and iron oxidation capabilities to produce iron. - forming a depleted residue;
  • step c) extracting cerium(IV) in the leachate obtained in step c) with an organic solvent to form a cerium-rich extract and a cerium-depleted raffinate;
  • a method for recovering rare earth metals containing a is provided.
  • the rare earth metal-containing phosphate source may contain 0.05 to 0.6 weight percent phosphorus (P) on an elemental basis.
  • the rare earth metal-containing phosphate source comprises, on an elemental basis, 0.5 to 4% by weight cerium, 0.1 to 3.5% by weight of at least one rare earth metal other than cerium, and 5 to 30% by weight of May contain iron.
  • the rare earth metal-containing phosphate source may include up to 25% by weight of other metals in oxide form.
  • the rare earth metal-containing phosphate source may be monazite.
  • the rare earth metal-containing phosphate source in step a) may be in the form of particles or pulverized particles with a size ranging from 50 to 400 mesh.
  • the rare earth metal other than cerium may include at least one of lanthanum (La) and yttrium (Y).
  • the other metal may include at least one selected from the group consisting of silicon, titanium, aluminum, zirconium, sodium, potassium, calcium, manganese, and magnesium.
  • the metabolic acid in step a) includes oxalic acid, and the concentration of oxalic acid in the metabolic acid may be at least 200 mM.
  • step a) some of the rare earth metals in the phosphate source may be precipitated in the form of organic salts by metabolic acid and contained in the residue.
  • the culture in step a) is performed in the presence of microorganisms initially cultured in a growth medium, where the liquid/S ratio of the growth medium/phosphate source is adjusted in the range of 5 to 15. It can be.
  • step b) is performed using a medium supplemented with sulfur and nutrients, where the ratio of medium/liquid ratio of phosphorus-depleted residue may be adjusted in the range of 2 to 5.
  • the acid in step c) is nitric acid, which may involve ozone-nitration treatment.
  • the organic solvent in step d) may include a water-immiscible organic phosphorus compound.
  • the concentration of the organic phosphorus compound in step d) is in the range of 0.05 to 0.5 M, and the volume ratio of the organic phase/water phase (O/A) is in the range of 5:1 to 1:5. It can be adjusted.
  • step e) converts cerium (IV) to cerium (III) using hydrogen peroxide as a reducing agent, and then strips cerium (III) with an acid solution to obtain a cerium-containing acid solution.
  • f) recovering rare earth metals other than cerium from the raffinate may be further included.
  • the cerium contained in the acid solution through the stripping may be recovered by precipitating it in the form of cerium oxalate by oxalate ions.
  • the rare earth metal other than cerium in the raffinate may include at least one of lanthanum (La) and yttrium (Y).
  • step f) may include precipitating rare earth metals other than cerium in the raffinate in the form of oxalate by oxalate ions.
  • the rare earth metal recovery process is a bio-based process using microorganisms, which recovers phosphate from rare earth metal sources such as low-grade minerals such as monazite without the use of heat treatment or highly concentrated chemicals that are involved in the prior art. It provides an eco-friendly and sustainable solution by effectively destroying the structure to separate and recover rare earth metals. In particular, it can be environmentally friendly, low energy-intensive, and highly efficient, and fits the ESG strategy of rare earth-related companies, so widespread commercialization is expected in the future.
  • Figure 1 schematically shows an example of an integrated process for separating and recovering phosphorus (P), iron (Fe), cerium (Ce), and rare earth metals other than cerium (La, Y) from a solid rare earth metal-containing phosphate source. It is a drawing showing;
  • Figure 2 is a graph showing the production concentration and bioleaching rate of metabolic acids over time during the leaching step of phosphorus (P) in a rare earth metal-containing phosphate source using microorganisms in an example;
  • Figure 3 shows the leaching amount and bioleaching rate of iron over time during the leaching step of iron (Fe) in the phosphorus-depleted residue after separation of phosphorus (P) in the rare earth metal-containing phosphate source using microorganisms, respectively. It is a graph;
  • Figure 4 is a graph showing the leaching rates of each of the three rare earth metals (Ce, La and Y) according to the concentration of nitric acid as a result of ozone-nitration treatment of the iron-depleted residue after separation of iron (Fe). ;
  • Figure 5 is a graph showing the extraction rates of three rare earth metals (Ce, La, and Y) in the leachate according to the concentration of the organic extractant;
  • Figure 6 is a graph showing the cerium stripping rate according to the hydrochloric acid concentration during the step of performing hydrochloric acid stripping using hydrogen peroxide (concentration: 0.1 mol/L) on the cerium(IV)-containing extract;
  • Figure 7 is an XRD pattern for cerium oxalate precipitate formed by reaction with oxalate ions after stripping;
  • Figure 8 shows the precipitation rate of rare earth metals according to the concentration of oxalate ions during the process of forming precipitates (oxalate precipitates) of rare earth metals (La, Y) other than cerium by adding ammonium oxalate to raffinate produced by cerium extraction. It is a graph representing;
  • Figure 9 is an XRD pattern for an oxalate mixed precipitate of rare earth metals (La, Y).
  • “Rare earth metals” is a general term for 17 types of elements including scandium, yttrium, and 15 elements of the lanthanide series with atomic numbers from 57 to 71, which are group 3A of the periodic table. Their chemical properties are similar to each other, and generally all have +3. It exists in a form with an oxidation number.
  • rare earth metals can generally be divided into light rare earth metals (elements) and medium rare earth metals (elements), and the four elements from lanthanum (La) with atomic number 57 to neodymium (Nd) with atomic number 60 are light. While they belong to rare earths, the remaining 13 elements can be understood as belonging to medium rare earths.
  • Bioleaching may generally refer to a process of dissolving a metal from a mineral source by microorganisms, and specifically to a process of converting a solid metal to a water-soluble form.
  • “Culture medium” may refer to an aqueous solution of nutrients available for cell growth.
  • PSM Phosphate solubilizing microorganism
  • Extraction can mean transferring a particular component, specifically a metal, from one phase to another.
  • “Stripping” may refer to a process of separating or removing a specific metal from a liquid medium or solvent
  • selective stripping may refer to a process of separating or removing a specific metal from a liquid medium or solvent containing a plurality of metals. can do.
  • contact may also be understood to include not only direct contact, but also contact through the intervention of other components or members.
  • a process of bioleaching and solvo-chemical extraction using microorganisms is provided to separate and recover rare earth metals from rare earth metal-containing phosphate sources, from which An exemplary process for separating and recovering phosphorus (P), iron (Fe), cerium (Ce), and rare earth metals other than cerium (La, Y) is shown in FIG. 1.
  • a solid rare earth metal source is provided as a starting material, and in the illustrated embodiment, it may be a phosphate source containing cerium and rare earth metals other than cerium and additionally containing iron. Typically, it may be a naturally occurring low-grade mineral.
  • the rare earth metal source may be a mineral, specifically monazite.
  • Monazite may be a phosphate mineral generally represented by chemical formulas such as (Ce,La,Th)PO 4 and (Ce,La,Nd,Th)PO 4 .
  • the content of phosphorus (P), on an elemental basis, is for example about 0.05 to 0.6% by weight, specifically about 0.07 to 0.3% by weight, more specifically about 0.09 to 0.2% by weight, especially specifically It may be around 1% by weight.
  • the content of cerium (based on element) in the rare earth metal salt source is, for example, about 0.5 to 4% by weight, specifically about 0.5 to 3% by weight, more specifically about 0.7 to 2% by weight, particularly specifically 1% by weight. It may be nearby.
  • rare earth metals other than cerium include lanthanum (La) and yttrium (Y), and may contain at least one of these.
  • this specific example is not limited to this, and it can be understood that other rare earth metals (for example, Pr, etc.) may be contained instead of or in addition to lanthanum and/or yttrium.
  • the content (based on element) of rare earth metals other than cerium may range, for example, from about 0.1 to 3.5% by weight, specifically from about 0.3 to 2% by weight, and more specifically from about 0.5 to 1% by weight.
  • the iron content (on an elemental basis) in the rare metal source may range, for example, from about 5 to 30 wt%, specifically from about 8 to 20 wt%, and more specifically from about 10 to 15 wt%.
  • the rare earth metal source when it is in mineral form, it may additionally contain other metals in addition to the above-described phosphorus, rare earth metals, and iron, and these other metals are not particularly limited and include, for example, silicon. , titanium, aluminum, zirconium, sodium, potassium, calcium, manganese, magnesium, etc.
  • the content of other metals may be, for example, up to about 25% by weight, specifically about 10 to 20% by weight, and more specifically around 20% by weight, based on oxide.
  • the content of individual components in the above-described rare earth metal source may be understood as illustrative, and may vary depending on the production area, etc.
  • the solid rare earth metal-containing phosphate source may be in the form of ground or particles so that subsequent leaching (bioleaching) can be carried out effectively.
  • the size of the pulverized material or particles may be determined by considering the sieving results, for example, it may be in the range of about 50 to 400 mesh, specifically about 70 to 350 mesh, and more specifically about 80 to 325 mesh. there is.
  • the grinding means may be a roller grinder, vibrating mill, ball mill, pot mill, hammer mill, pulverizer, gyratory mill, etc., but is not limited thereto.
  • the phosphate source undergoes a bioleaching step in which phosphorus is leached using phosphorus-soluble microorganisms.
  • phosphate is a host of rare earth metals. Acting as a matrix, the rare earth metal remains in the center with a distorted coordination sphere surrounded by eight oxides of phosphate. Therefore, in order to leach rare earth metals with a lixiviant, it may be advantageous to first destroy the phosphate structure.
  • the metabolic acids produced upon incubation with the aforementioned phosphate source act as a leaching agent, converting the phosphorus in the phosphate source to a soluble form, thereby allowing it to leach out.
  • the phosphorus-soluble microorganism may be at least one selected from the group consisting of Aspergillus genus and Penicillium genus. In addition, various penicillium species, heterotrophic bacterial species, etc.
  • Pseudomonas rhizosphaerae examples of which include Pseudomonas putida, Pseudomonas fluorescens, Bacillus megaterium, Paenibacillus polymyxa, Ensifer meliloti, and Azospirillum brasilense.
  • Mesorhizobium ciceri Acetobacter aceti, Pseudomonas aeruginosa, etc., and can be used alone or in combination.
  • the types listed above may be understood as illustrative purposes.
  • Phosphorus (P) is an essential element for life, maintaining major cellular reactions, metabolic processes of carbon and amino acids, and is essential for ATP, enzyme reactions, and energy transfer. At this time, the phosphorus-soluble microorganism can discharge insoluble phosphorus in the phosphate source in a soluble form through acidification, chelation, exchange reaction, etc.
  • the medium may be a growth medium, specifically a modified growth medium, wherein the phosphate source is combined with the microorganisms being initially cultured in the growth medium, and then the microorganisms are grown. It can be processed by culturing.
  • the culture of microorganisms may be performed in a fed-batch culture method. “Fed-batch culture” means that at least one nutrient (e.g., sucrose) is added to the reactor intermittently or continuously during the culture process. It may mean a process that is added.
  • the concentration of microbial spores in the initial growth medium may be, for example, at least about 3 ⁇ 10 6 spores/mL, specifically about 3 ⁇ 10 8 to 3 ⁇ 10 10 spores/mL, more specifically about It may be 1 ⁇ 10 9 to 5 ⁇ 10 9 spores/mL, particularly around 3 ⁇ 10 9 spores/mL, but this may be understood as an example.
  • the phosphorus component in the phosphate source functions as a source that provides phosphorus necessary for culture, separate supply of phosphorus may not be required. Since the components of the medium used for microbial growth in this embodiment are known in the art, separate detailed description will be omitted.
  • the liquid-to-liquid ratio (L/S ratio) of growth medium/phosphate source can be adjusted considering the amount of medium and phosphate source, for example, about 5 to 15, specifically It may be about 5 to 13, more specifically about 8 to 12, and especially about 10.
  • the metabolic acid produced by the microorganism may include, for example, oxalic acid (C 2 H 2 O 4 ), and may additionally be selected from gluconic acid, citric acid, formic acid, butyric acid, maleic acid, etc. It may contain at least one.
  • oxalic acid C 2 H 2 O 4
  • the concentration of metabolic acid produced by the microorganism may be, for example, at least about 200mM, specifically about 230 to 1200mM, more specifically about 500 to 900mM, especially specifically about 840mM, ,
  • the proportion of oxalic acid may be, for example, at least about 35%, specifically about 40 to 80%, more specifically about 50 to 70%, and especially specifically about 56%, based on the mole of the total metabolic acid.
  • the concentration of oxalic acid among the metabolic acids produced by microbial culture is, for example, at least about 200 mM, specifically about 300 to 900 mM, more specifically about 350 to 600 mM, and particularly specifically around about 470 mM. It can be.
  • the conditions for bioleaching of the phosphorus component are not particularly limited because they may vary depending on the composition and properties of the phosphate source, which is the starting material, but the temperature is, for example, about 20 to 45 ( ⁇ 1). °C, specifically about 25 to 40 ( ⁇ 1) °C, more specifically about 30 to 35 ( ⁇ 1) °C, especially specifically can be adjusted around 30 ( ⁇ 1) °C, and the pH is, for example For example, it may be adjusted in the range of about 4 to 7, specifically about 4.5 to 6.5, and more specifically about 5 to 6. Additionally, leaching of phosphorus components may be performed under stirred or non-stirred conditions, but it may be advantageous to carry out the leaching under stirred conditions. In addition, the leaching time may be set within a range of, for example, about 2 to 20 days, specifically about 3 to 14 days, more specifically about 3 to 12 days, and particularly about 8 to 10 days. It is not limited.
  • phosphorus (P) in the process of bioleaching of phosphorus components by metabolic acid, not only phosphorus (P) but also one or two or more other components in the rare earth metal-containing phosphate source may be leached or eluted at least in part.
  • Components that are additionally leached in this way may be alkali metals (e.g., sodium, potassium, etc.), alkaline earth metals (e.g., calcium, etc.), rare earth metals, iron, etc.
  • the amount of each component leached (or eluted) together with phosphorus (P) may vary depending on the composition of the phosphate source, etc., and is not limited to a specific range.
  • rare earth metals leached together with phosphorus can form complexes by combining with metabolic acids, and can be converted from inorganic (oxide) form to organic form (e.g., rare earth oxalate), and these organic substances or organic salts are It may precipitate and become incorporated into the phosphorus-depleted residue, or it may be submitted together for subsequent processing.
  • organic form e.g., rare earth oxalate
  • Examples of precipitation reactions of rare earth metals when converted to oxalate salts can be represented as shown in Schemes 2 and 3 below.
  • the phosphorus in the leachate can be obtained in the form of a solution containing high purity phosphorus through an additional separation and purification process.
  • a method for separating and purifying phosphorus a solvo-chemical method, specifically extraction and stripping using an organic solvent as shown, can be applied.
  • an extractant for example, one or more organic solvents selected from phosphine oxide compounds having a long carbon skeleton (about 16 to 48 carbon atoms, specifically about 25 to 35 carbon atoms) can be used.
  • a phosphorus-rich extract is generated by this.
  • a solution containing high purity phosphorus can be obtained by adding a stripping solution selected from at least one inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, perchloric acid, etc. to the phosphorus-rich extract. Additionally, the organic solvent in the extract can be recycled and reused as an extractant in the extraction step before the stripping step.
  • a stripping solution selected from at least one inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, perchloric acid, etc.
  • the extraction conditions are not particularly limited, but the volume ratio of organic phase to aqueous phase is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2. It can be adjusted in the range of 2:1. Additionally, the concentration of the extractant (based on the organic phase) may be, for example, around 0.1 to 0.5 M, specifically around 0.15 to 0.4 M, more specifically around 0.2 to 0.3 M, and particularly specifically around 0.25 M. Meanwhile, the equilibration time may be, for example, about 1 to 30 minutes, specifically about 2 to 20 minutes, more specifically about 4 to 10 minutes, and particularly about 5 minutes.
  • the extraction temperature may be, for example, about 20 to 40° C., specifically about 22 to 35° C., more specifically about 24 to 30° C., and particularly specifically about 25° C.
  • the phase separation time may be, for example, For example, it may be set to about 5 to 30 minutes, specifically about 7 to 25 minutes, more specifically about 9 to 15 minutes, and particularly about 10 minutes.
  • the volume ratio of organic phase to aqueous phase is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2 to 2:1. It can be adjusted in the range of 1.
  • the acid concentration may be, for example, about 1 to 3 M, specifically about 1.4 to 2.7 M, more specifically about 1.8 to 2.5 M, and especially specifically about 2 M.
  • hydrogen peroxide may be used during stripping. At this time, the concentration of hydrogen peroxide may be, for example, about 0.05 to 0.2 M, specifically about 0.08 to 0.15 M, and more specifically about 0.1 M.
  • the contact time may be, for example, about 1 to 20 minutes, specifically about 3 to 10 minutes, more specifically about 4 to 6 minutes, especially about 5 minutes.
  • the stripping temperature may be, for example, about 20 to 40° C., specifically about 22 to 35° C., more specifically about 24 to 30° C., and particularly specifically about 25° C.
  • the phase separation time may be, For example, it may be set to about 5 to 30 minutes, specifically about 7 to 25 minutes, more specifically about 9 to 15 minutes, and particularly specifically about 10 minutes.
  • bioleaching using microorganisms can be performed to separate and recover iron from the phosphorus-depleted residue (specifically, iron-rich residue) remaining after phosphorus leaching.
  • the microorganisms usable for iron leaching are microorganisms with sulfur and iron oxidation capabilities, from which a metabolic leaching agent is released.
  • Such microorganism may be at least one selected from the group consisting of Alicyclobacillus genus and Sulfobacillus genus.
  • the Alicyclobacillus genus is a microorganism belonging to the Alicyclobacillaceae family and may be a Gram-positive or Gram-variable microorganism, examples of which include A. acidiphilus, A. disulfidooxidans, A. montanus, A. sacchari , etc.
  • microorganisms belonging to the Sulfobacillus genus include S ulfobacillus acidophilus, Sulfobacillus benefaciens, Sulfobacillus disulfidooxidans, Sulfobacillus sibiricus, Sulfobacillus thermosulfidooxidans, and Sulfobacillus thermotolerans .
  • the lixiviant formed as a metabolite during the cultivation of the microorganism may be sulfuric acid produced by the microorganism oxidizing elemental sulfur or sulfur in the presence of oxygen, as illustrated in Scheme 4 below.
  • oxygen can be provided by external aeration.
  • microorganisms for iron leaching can be cultured while supplementing or supplying sulfur and nutrients (e.g., scurose) to the remaining medium (spent medium) used in the above-described phosphorus leaching step. there is.
  • sulfur and nutrients e.g., scurose
  • the mechanism for leaching (solubilizing) iron from the phosphorus-depleted residue can be illustrated as shown in Scheme 5 below.
  • sulfur may be obtained from a variety of sources, such as biological sulfur that can be collected from a sedimentation tank at a wastewater treatment plant.
  • organic acid ions e.g., oxalate ions
  • organic salts e.g., oxalate salts
  • the liquid ratio of medium/residue (phosphorus-depleted residue) during iron leaching can be adjusted considering the amount of medium and residue, for example, about 2 to 5, specifically It may range from about 2.3 to 4, more specifically about 2.5.
  • the leaching conditions of iron in the phosphorus-depleted residue are not particularly limited because they can vary depending on various factors (iron content in the starting phosphate source, properties, etc.), but the temperature is, for example, about 30 to 60°C, more specifically around 40 to 55°C, specifically around 50°C, and the pH is, for example, around 1.1 to 2.8, specifically around 1.3 to 2, and more specifically around 1.5. It can be adjusted within the range of .
  • leaching of iron may be performed under stirred or non-stirred conditions, but it may be advantageous to perform it under stirred conditions.
  • the leaching time may be, for example, set in the range of about 1 to 21 days, specifically about 2 to 10 days, and more specifically about 4 to 8 days, but is not limited thereto.
  • the amount of iron leached increases over time during the bioleaching step of iron, such that at least about 50%, specifically at least about 90%, and more specifically at least about 50% of the elemental iron in the phosphorus-depleted residue. At least about 99% can be solubilized and leached or eluted to form an iron-containing solution in the liquid phase and an iron-depleted residue as a solid component.
  • alkali metals eg, sodium, potassium, etc.
  • alkaline earth metals eg, calcium, etc.
  • leaching of rare earth metals may be limited, for example, less than about 2%, specifically less than about 1.5%, and more specifically less than about 1%.
  • the iron-containing solution produced by leaching of the phosphorus-depleted residue is separated separately, and the iron can be recovered through, for example, precipitation, solvent extraction, ion exchange, etc. Since this separation and recovery method is well known in the art, detailed description is omitted.
  • a step of selectively separating and recovering cerium among rare earth metals in the iron-depleted residue may be performed.
  • rare earth metals can be leached by treating the iron-depleted residue with acid (acid aqueous solution), and cerium(III) among the leached rare earth metals can be selectively oxidized and converted to cerium(IV).
  • nitric acid can be used as the acid for leaching rare earth metals.
  • the concentration of the acid may be determined considering the cerium content, for example, about 0.2 to 8 M, specifically about 0.5 to 6 M, more specifically about 1 to 5 M, more specifically 2 to 4.5 M. , particularly specifically adjustable in the range of about 3 to 4 M.
  • leaching of rare earth metals may tend to increase as the acid concentration increases.
  • cerium which has an oxidation number of +3 among rare earth metals, that is, cerium(III), can be selectively oxidized to cerium(IV).
  • ozone peroxydisulfate, oxygen, etc.
  • oxygen etc.
  • ozone-nitration treatment can be performed using nitric acid (nitric acid solution) and ozone, where the oxidation reaction can be performed according to Scheme 6 below.
  • cerium is selectively oxidized, while the remaining rare earth metals (e.g., lanthanum and/or yttrium) remain with an oxidation number of +3.
  • a catalyst that converts ozone into molecular oxygen can be used, and as an example, a catalyst bed containing CuO and MnO 2 can be applied.
  • the liquid ratio of the acid/iron-depleted residue can be adjusted considering the amount of acid and residue, for example, about 2 to 20, specifically about 5 to 15, more specifically about It may range from 8 to 12, particularly around 10.
  • the conditions for leaching of rare earth metals and selective oxidation of cerium are not particularly limited, but the temperature is, for example, about 25 to 75 ( ⁇ 1) °C, specifically about 30 to 70 ( ⁇ 1) °C, more specifically. It can be adjusted around 45 to 60 ( ⁇ 1) °C, particularly around 55 ( ⁇ 1) °C.
  • the processing time can be adjusted in the range of, for example, about 1 to 24 hours, specifically about 2 to 15 hours, more specifically 3 to 10 hours, and especially specifically about 4 to 6 hours, but this is for illustrative purposes. It can be understood as
  • selective oxidation treatment of cerium may be performed by performing sulfuric acid (H 2 SO 4 ) leaching by sulfation roasting instead of ozone-nitration treatment.
  • sulfuric acid H 2 SO 4
  • sulfation roasting instead of ozone-nitration treatment.
  • the ozone-nitration treatment described above may be advantageous.
  • At least about 60%, specifically at least about 80%, of the cerium element in the iron-depleted residue. , more specifically, at least about 90% may be leached into the acid (acid solution). Additionally, of the leached cerium, at least about 80%, specifically at least about 85%, more specifically at least about 90%, especially specifically about 90.1% of the cerium (cerium(III)) having an oxidation number of +3 is +4. It can be oxidized to cerium (cerium(IV)), which has an oxidation number of . In addition, at least about 80%, specifically at least about 90%, and more specifically at least about 98% of the other rare earth (e.g., lanthanum and/or yttrium) elements in the iron-depleted residue may be leached.
  • the other rare earth e.g., lanthanum and/or yttrium
  • the steps of separating (extracting) and recovering cerium(IV) in the rare earth metal-containing acid leachate are performed.
  • cerium(IV) can be separated from other rare earth metals with an oxidation number of +3 by using an organic solvent in the acid leachate, such as a water immiscible organophosphorus compound, as an extractant.
  • organic phosphorus compounds are tri-alkyl phosphine oxide-based compounds, and at least one of these can be used.
  • an organophosphorus extractant is commercially available under the trade name Cyanex 923.
  • organic phosphorus compounds can be used while added or dissolved in a solvent, for example, an aromatic solvent.
  • a solvent for example, an aromatic solvent.
  • an aromatic solvent is a petroleum hydrocarbon series and may have 9 to 11 carbon atoms, specifically around 10 carbon atoms. From this, one type or two or more types can be used in combination.
  • a phase modifier may be used together with the organic phosphorus compound.
  • This phase modifier may be, for example, at least one selected from n-heptane, n-decanol, etc., and based on the organic phase, For example, it can be used in an amount of about 1 to 10 volume%, specifically about 3 to 8 volume%, and more specifically about 4 to 6 volume%.
  • the composition of the above-described extractant may be understood as exemplary.
  • the concentration of the organic phosphorus compound during extraction (based on the organic phase) is adjusted, for example, in the range of about 0.05 to 0.5 M, specifically about 0.15 to 0.4 M, more specifically about 0.2 to 0.3 M. It may be possible, but it is not limited to this.
  • the volume ratio (O/A) of the organic phase/aqueous phase in the extraction step is, for example, about 5:1 to 1:5, specifically about 4:1 to 1:4, more specifically It may be in the range of about 3:1 to 1:3, specifically about 2:1, and considering the organic phosphorus compound composition and aqueous phase element distribution, it may be advantageous to adjust it within the above-mentioned range.
  • the extraction temperature is not particularly limited and may be, for example, about 10 to 40°C, specifically about 20 to 30°C, and more specifically, room temperature.
  • the extraction treatment of the rare earth metal-containing leachate at least about 95%, specifically at least about 98%, and more specifically at least about 99% of the cerium(IV) element in the leachate is extracted, while the other +3 is oxidized.
  • the extraction of rare earth metals having a value may be, for example, about 5% or less, specifically about 4% or less, and more specifically about 3.5% or less. Therefore, most of the cerium(IV) is contained in the extract, while most of the remaining rare earth metals (specifically with an oxidation number of +3) remain in the raffinate.
  • a step of recovering cerium in high purity from a cerium-rich extract obtained by separating cerium (IV) by extraction can be performed.
  • the acid may be at least one inorganic acid selected from, for example, nitric acid, hydrochloric acid, sulfuric acid, perchloric acid, etc.
  • the concentration of the acid may be determined considering the concentration of cerium (III), for example, about 0.2 to 3 M, specifically about 0.5 to 2.5 M, more specifically about 1 to 2 M. It may be a range, but this can be understood as an example. However, as the acid concentration increases, the stripping of cerium may tend to increase.
  • hydrogen peroxide can be used as a reducing agent in a reductive stripping method for stripping cerium (IV) or Ce 4+ from the organic phase.
  • Hydrogen peroxide is generally a strong oxidizing agent and can function as a strong reducing agent, and its standard potential values are shown in Schemes 7 to 9 below.
  • hydrogen peroxide can be advantageous because Ce 4+ can be reduced to Ce 3+ and other metal impurities are not mixed during the reduction process.
  • Ce 3+ formed by the reducing agent in this way can be stripped into the aqueous phase using an acid solution.
  • the concentration of hydrogen peroxide may be set, for example, around 0.01 to 1 M, specifically around 0.05 to 0.5 M, more specifically around 0.08 to 0.2 M, and particularly specifically around 0.1 M. .
  • At least about 60%, specifically at least about 90%, and more specifically at least about 95% of the cerium elements in the extract may be stripped, and as a result, a cerium aqueous solution may be formed.
  • an organic acid ion specifically an oxalate ion (or oxalate ion) is supplied and reacted to precipitate an organic acid salt of cerium (specifically an oxalate salt).
  • an organic acid salt of cerium specifically an oxalate salt
  • the source of oxalate ions may include ammonium oxalate, oxalic acid, sodium oxalate, potassium oxalate, etc., and at least one of these may be used.
  • the concentration of oxalate ions may be determined depending on the amount of cerium in the cerium aqueous solution, for example, about 0.002 to 2 M, specifically about 0.005 to 1 M, more specifically about 0.01 to 0.05 M, especially specifically It may range from about 0.02 to 0.03 M.
  • the above numerical range may be understood as illustrative.
  • the temperature conditions for forming the precipitate are not particularly limited, but may be adjusted, for example, to a range of about 20 to 90°C, specifically about 50 to 85°C, and more specifically about 60 to 80°C.
  • the remaining organic phase i.e. organic solvent, can be recycled and used as an extractant for cerium(IV) extraction in the front end.
  • the raffinate separated from the extract during the extraction of cerium is in a cerium-depleted state and mainly contains rare earth metals other than cerium (specifically, rare earth metals with an oxidation value of +3).
  • the method may further include recovering rare earth metals other than cerium from the cerium-depleted raffinate.
  • organic acid ions specifically oxalate ions (or oxalate ions) are supplied and reacted to produce rare earth metals.
  • organic acid salt specifically an oxalate salt
  • high purity rare thorium metal can be recovered.
  • the concentration of oxalate ions is, for example, about 0.01 to 0.1 M, specifically about 0.02 to 0.07 M, more specifically about 0.03 to 0.05 M. It may be in the range of M. However, the above numerical range may be understood as illustrative. Additionally, the formation of the precipitate may be performed under elevated temperature conditions, for example, at a temperature controlled in the range of about 60 to 95°C, specifically about 65 to 90°C, and more specifically about 70 to 85°C.
  • the obtained rare earth metal can be used as a precursor or catalyst precursor when producing a fluorescent material.
  • Vein-deposit monazite ore with the composition shown in Table 1 was ground to a mesh size of 80 to 325 by a ball mill, and phosphorus was bioleached as shown in FIG. 1. At this time, a mixed species of A. japonicus, A. aculeatus, A. niger, P. cinnamopurpureum, P. , and chrysogenum was used as the phosphorus-soluble microorganism.
  • Bioleaching was performed by introducing 100 g of monazite ore sample into a 1.5 L capacity bioreactor at a constant stirring speed of 200 rpm and an operating temperature of 30 °C. At this time , the initially cultured microorganisms ( 3 It consisted of 4. ⁇ 7H 2 O, 0.52 g/L KCl, and 1.6 g/L yeast extract.
  • Monazite ore the only source of phosphate, was added by adjusting the liquid-to-liquid ratio (medium: ore) to 10. Initially, the pH of the medium was adjusted to 4.5 (using 5 wt% dil. H 2 SO 4 ). After 48 hours of incubation, the pH was adjusted back to 6.0 (using 5 wt% dil. NaOH) and maintained during the microbial treatment process. For accuracy, experiments were repeated at 24-hour intervals for a total of up to 14 days.
  • Example 2 After phosphorus leaching in Example 1, a second bioleaching was performed on the remaining residue. At this time, a metabolic leaching agent was produced through a biochemical reaction of microorganisms using spent medium, and the microorganisms used were a mixed species of the genus Alicyclobacilli and Sulfobacillus .
  • microorganisms were cultured in modified 9K medium, supplemented with biological sulfur (collected from the sedimentation tank of the wastewater treatment plant) and sucrose as energy sources at a temperature of 50 °C and aeration of external air at a flow rate of 0.5 L/min. did.
  • the liquid/solid ratio (L/S ratio) was maintained at 2.5, and 1.0 L of metabolic leachable produced at pH 1.5 was used to contact 25 g of iron-rich residue obtained in Example 1 with the spent medium.
  • Bioleaching was performed in a 1.5 L capacity bioreactor for 21 days under the conditions of a holding temperature of 50 °C and a stirring speed of 300 rpm. The leaching behavior of iron over time is shown in Figure 3.
  • iron leaching reached more than 50%, and after 6 days, it reached about 90%. Iron leaching exceeding 99.8% occurred after 8 days. However, even as additional time elapsed, iron leaching of more than about 4848 mg/L was not observed (saturated state). The saturation state is believed to result from an increased pH value from an initial pH of 1.5 to a final pH of approximately 2.6. In addition to iron, most of Na, Ca and K ions were leached. However, La and Y were leached to less than about 2%.
  • Example 2 In order to leach rare earth metals (REM) in the iron-depleted residue obtained in Example 2, leaching was performed using a nitric acid solution in a closed container, and ozone-nitration treatment was additionally performed. As a result, the oxidation state of cerium was converted from Ce 3+ to Ce 4+ . At this time, the gas was injected into a catalytic cracker equipped with a catalyst layer of CuO and MnO 2 that converts O 3 into O 2 . 20 g of the iron-depleted residue was leached with various concentrations of nitric acid solutions (0.5 to 4.0 mol/L HNO 3 ) under the conditions of ozone supply and a liquid-to-liquid ratio of 10.
  • REM rare earth metals
  • the leachate obtained using 3.0 mol/L of HNO 3 in Example 3 contained 1025 mg/L of Ce 4+ , 682 mg/L of Y 3+ , and 372 mg/L of La 3+ , which was Solvo-chemical separation and rare earth metal recovery were performed.
  • Pre-mixtures of four organophosphorus compounds at various concentrations were pre-equilibrated to form water immiscible extractant media with different concentrations.
  • Reduction stripping was performed on the Ce(IV)-containing extract (organic solvent) obtained in Example 4 using an aqueous hydrochloric acid solution (2.0 M), where H 2 O 2 was used as a reducing agent. (0.1 mol/L) was added.
  • Example 4 ammonium oxalate was added as a precipitating salt to 100 mL of raffinate produced after cerium extraction to precipitate La 3+ and Y 3+ .
  • the precipitation conditions were set to a temperature of 90°C, a stirring speed of 150 rpm, and a contact time of 30 minutes, and about 98% of the rare earth metal with an oxidation value of +3 was deposited using 0.025 mol/L oxalate ions. Obtained.
  • the precipitation rate of rare earth metals (La, Y) other than cerium according to the concentration of oxalate ions during the formation of deposits (oxalate precipitates) is shown in Figure 8.
  • the XRD pattern for the oxalate mixed precipitate of rare earth metals (La, Y) is shown in Figure 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present disclosure describes an eco-friendly bio-based process for effectively recovering a rare earth metal from a rare earth metal source, particularly a low-grade phosphate mineral such as monazite, through solvo-chemical extraction.

Description

희토류 금속의 회수 방법Recovery method of rare earth metals
본 개시 내용은 희토류 금속의 회수 방법에 관한 것이다. 보다 구체적으로, 본 개시 내용은 솔보-화학적(solvo-chemical) 추출을 통하여 희토류 금속 소스, 특히 모나자이트와 같은 저품위 인산염 광물로부터 희토류 금속을 효과적으로 회수하는 친환경 바이오-기반의 공정에 관한 것이다.This disclosure relates to methods for recovery of rare earth metals. More specifically, the present disclosure relates to an environmentally friendly, bio-based process for effectively recovering rare earth metals from rare earth metal sources, particularly low-grade phosphate minerals such as monazite, through solvo-chemical extraction.
희토류 금속(rare earth metals; REM)은 높은 화학적 안정성 및 열 전도성과 같은 특유의 물리 화학적 특성으로 인하여 반도체와 같은 첨단제조 산업 분야에서 광범위하게 사용되고 있으며, 현재 전 세계적으로 수요가 급증하고 있다. 특히, 희토류 금속은 주로 촉매, 세라믹 및 글라스, 금속 및 합금, 연마재 등에 적용되고 있으며, 이중 세륨(Ce)은 희토류 금속 중 가장 많은 량으로 사용되는 것으로 알려져 있다.Rare earth metals (REM) are widely used in advanced manufacturing industries such as semiconductors due to their unique physical and chemical properties such as high chemical stability and thermal conductivity, and demand is currently rapidly increasing worldwide. In particular, rare earth metals are mainly applied to catalysts, ceramics and glass, metals and alloys, and abrasives, and among them, cerium (Ce) is known to be used in the largest amount among the rare earth metals.
한편, 희토류 금속은 자연에서는 원소 형태로 존재하지 않고, 다양한 광물로 산출되고 있는데, 희토류-함유 광물은 할로겐(halides), 탄산염(carbonates), 산화물(oxides), 인산염(phosphates) 등의 형태로 존재한다. 현재, 대략 200종의 광물이 희토류 원소를 함유하는 것으로 알려져 있으나, 대부분은 소량의 희토류 금속을 함유하고 있어 산업적으로 활용 가능한 광물 종은 제한적이다Meanwhile, rare earth metals do not exist in elemental form in nature, but are produced as various minerals. Rare earth-containing minerals exist in the form of halides, carbonates, oxides, and phosphates. do. Currently, approximately 200 types of minerals are known to contain rare earth elements, but most of them contain small amounts of rare earth metals, so the number of mineral species that can be used industrially is limited.
이와 관련하여, 주요 희토류 광물로서 바스트나사이트(Bastnㅴsite), 모나자이트(Monazite) 및 제노타임(Xenotime)의 3종을 예시할 수 있는데, 이중 모나자이트는 세륨(Ce) 족 희토류 금속이 인산염 형태로 존재하는 광물로서 부존량이 많고 전 세계적으로 많은 지역에 분포되어 있다.In this regard, three types of major rare earth minerals can be exemplified: bastnsite, monazite, and xenotime, of which monazite is a cerium (Ce) group rare earth metal in phosphate form. It is a mineral that exists in abundance and is distributed in many areas around the world.
또한, 모나자이트는 화학적 안정성을 갖고 있어 희토류 금속을 회수하기 위하여, 농축(WO 2016-109966 A1), 제련(WO 2009-021389 A1), 산 및 알칼리 분해 후 침출-이온 교환(국내특허공개번호 제2013-0076261호), 염산 침출(미국특허번호 제9752213호), 기계화학적 침출(국내특허번호 제1058567호), 생물학적 침출(국내특허번호 제1641074호), 용매추출(중국특허번호 제101319275호) 등의 방식이 알려져 있으나, 주로 산 또는 알칼리 분해법이 적용되고 있다. In addition, monazite has chemical stability, so in order to recover rare earth metals, it is used for concentration (WO 2016-109966 A1), smelting (WO 2009-021389 A1), and leaching after acid and alkali decomposition - ion exchange (Korean Patent Publication No. 2013). -0076261), hydrochloric acid leaching (US Patent No. 9752213), mechanochemical leaching (Domestic Patent No. 1058567), biological leaching (Domestic Patent No. 1641074), solvent extraction (Chinese Patent No. 101319275), etc. Methods are known, but acid or alkaline decomposition methods are mainly applied.
전술한 방식 중 산 분해법의 경우, 황산과 같은 저가의 산을 사용하는 점에서 유리하나, 설비 부식을 유발하고 다량의 부식성 가스를 방출하여 환경오염을 유발할 수 있다. 반면, 알칼리 분해법은 비교적 작업이 간편하고, 분해율 면에서 장점이 있으나, 비용이 많이 들고, 환경오염을 유발할 수 있다. 더욱이, 산 또는 알칼리 분해법은 다량의 에너지를 소모하고, 또한 로스팅(roasting)된 샘플의 침출 후에 남은 유리 산 또는 알칼리를 중화시키는데 많은 량의 시약이 소비되는 문제점이 있다.Among the above-mentioned methods, the acid decomposition method is advantageous in that it uses a low-cost acid such as sulfuric acid, but it can cause corrosion of equipment and emit a large amount of corrosive gas, causing environmental pollution. On the other hand, alkaline decomposition method is relatively simple to operate and has advantages in terms of decomposition rate, but is expensive and may cause environmental pollution. Moreover, the acid or alkali decomposition method has the problem of consuming a large amount of energy and also consuming a large amount of reagents to neutralize the free acid or alkali remaining after leaching of the roasted sample.
이에 대한 대안으로, 미생물을 이용한 회수 방식, 예를 들면 생물흡착(biosorption), 바이오침출(bioleaching) 및 생광화작용(biomineralization)을 이용하는 바이오-기반 기술이 알려져 있다. 그러나, 해당 연구들은 주로 희토류 금속의 침출보다는 인산염 가용화 미생물을 이용한 희토류 광물 내 인산염의 가용화에 초점을 두고 있다(국내특허번호 제1641074호).As an alternative, bio-based technologies using recovery methods using microorganisms, such as biosorption, bioleaching and biomineralization, are known. However, these studies mainly focus on the solubilization of phosphate in rare earth minerals using phosphate solubilizing microorganisms rather than the leaching of rare earth metals (Korean Patent No. 1641074).
이처럼, 전술한 종래 기술의 한계를 극복하고, 저품위 자원(또는 광물), 구체적으로 모나자이트와 같은 인산염 광물로부터 희토류 금속을 친환경적이면서 효과적으로 분리 회수할 수 있는 방안이 요구된다.As such, there is a need for an environmentally friendly and effective method of separating and recovering rare earth metals from low-grade resources (or minerals), specifically phosphate minerals such as monazite, overcoming the limitations of the above-described prior art.
본 개시 내용의 일 구체예에서는 미생물을 이용하여 모나자이트와 같은 저품위 희토류-함유 인산염 소스로부터 희토류를 선택적으로 침출 또는 용출시키고, 이후 효과적인 분리 회수를 구현할 수 있는 친환경적 통합 공정을 제공하고자 한다.One embodiment of the present disclosure seeks to provide an environmentally friendly integrated process capable of selectively leaching or eluting rare earth elements from low-grade rare earth-containing phosphate sources such as monazite using microorganisms, and then implementing effective separation and recovery.
본 개시 내용의 제1 면에 따르면,According to the first aspect of the present disclosure,
a) 인-가용성 미생물을 고상의 희토류 금속-함유 인산염 소스와 함께 배양시키면서 상기 미생물로부터 배출되는 대사 산(metabolic acid)에 의하여 희토류 금속-함유 인산염 소스 내 인을 침출시켜 인-함유 침출액 및 인-고갈된(depleted) 잔류물을 형성하는 단계, 상기 희토류 금속-함유 인산염 소스는, (i) 세륨, (ii) 세륨 이외의 적어도 하나의 희토류 금속, 및 (iii) 철을 포함함;a) While culturing phosphorus-soluble microorganisms with a solid rare earth metal-containing phosphate source, phosphorus in the rare earth metal-containing phosphate source is leached by metabolic acid released from the microorganisms to form a phosphorus-containing leachate and phosphorus-containing phosphate source. forming a depleted residue, the rare earth metal-containing phosphate source comprising: (i) cerium, (ii) at least one rare earth metal other than cerium, and (iii) iron;
b) 황 및 철 산화능을 갖는 미생물을 상기 인-고갈된 잔류물과 함께 배양하여 상기 황 및 철 산화능을 갖는 미생물로부터 배출되는 대사생성 침출제에 의하여 인-고갈된 잔류물 내 철을 침출시켜 철-고갈(depleted) 잔류물을 형성하는 단계;b) Microorganisms with sulfur and iron oxidation capabilities are cultured with the phosphorus-depleted residue, and iron in the phosphorus-depleted residue is leached by a metabolic leaching agent released from the microorganisms with sulfur and iron oxidation capabilities to produce iron. - forming a depleted residue;
c) 상기 철-고갈된 잔류물을 산으로 처리하여 희토류 금속을 침출시킴과 함께 희토류 금속 중 세륨(III)을 선택적으로 산화시켜 세륨(IV)으로 전환시키는 단계;c) treating the iron-depleted residue with acid to leach rare earth metals and selectively oxidize cerium(III) among the rare earth metals to convert it to cerium(IV);
d) 상기 단계 c)에서 얻어진 침출액 내 세륨(IV)을 유기 용매에 의하여 추출하여 세륨-풍부(rich) 익스트랙트(extract) 및 세륨-고갈된(depleted) 라피네이트를 형성하는 단계; 및d) extracting cerium(IV) in the leachate obtained in step c) with an organic solvent to form a cerium-rich extract and a cerium-depleted raffinate; and
e) 상기 익스트랙트로부터 세륨을 회수하는 단계;e) recovering cerium from the extract;
를 포함하는 희토류 금속의 회수 방법이 제공된다.A method for recovering rare earth metals containing a is provided.
예시적 구체예에 따르면, 상기 희토류 금속-함유 인산염 소스는, 원소 기준으로, 0.05 내지 0.6 중량%의 인(P)을 함유할 수 있다.According to an exemplary embodiment, the rare earth metal-containing phosphate source may contain 0.05 to 0.6 weight percent phosphorus (P) on an elemental basis.
예시적 구체예에 따르면, 상기 희토류 금속-함유 인산염 소스는, 원소 기준으로, 0.5 내지 4 중량%의 세륨, 0.1 내지 3.5 중량%의 세륨 이외의 적어도 하나의 희토류 금속, 및 5 내지 30 중량%의 철을 포함할 수 있다.According to an exemplary embodiment, the rare earth metal-containing phosphate source comprises, on an elemental basis, 0.5 to 4% by weight cerium, 0.1 to 3.5% by weight of at least one rare earth metal other than cerium, and 5 to 30% by weight of May contain iron.
예시적 구체예에 따르면, 상기 희토류 금속-함유 인산염 소스는, 산화물 형태의 기타 금속을 25 중량%까지 포함할 수 있다.According to an exemplary embodiment, the rare earth metal-containing phosphate source may include up to 25% by weight of other metals in oxide form.
예시적 구체예에 따르면, 상기 희토류 금속-함유 인산염 소스는 모나자이트일 수 있다.According to an exemplary embodiment, the rare earth metal-containing phosphate source may be monazite.
예시적 구체예에 따르면, 상기 단계 a)에서 희토류 금속-함유 인산염 소스는 50 내지 400 메쉬 범위의 사이즈를 갖는 입자 또는 분쇄물 형태일 수 있다.According to an exemplary embodiment, the rare earth metal-containing phosphate source in step a) may be in the form of particles or pulverized particles with a size ranging from 50 to 400 mesh.
예시적 구체예에 따르면, 상기 세륨 이외의 희토류 금속은 란탄(La) 및 이트륨(Y) 중 적어도 하나를 포함할 수 있다. According to an exemplary embodiment, the rare earth metal other than cerium may include at least one of lanthanum (La) and yttrium (Y).
예시적 구체예에 따르면, 상기 기타 금속은 실리콘, 티타늄, 알루미늄, 지르코늄, 나트륨, 칼륨, 칼슘, 망간 및 마그네슘으로 이루어지는 군으로부터 선택되는 적어도 하나를 포함할 수 있다.According to an exemplary embodiment, the other metal may include at least one selected from the group consisting of silicon, titanium, aluminum, zirconium, sodium, potassium, calcium, manganese, and magnesium.
예시적 구체예에 따르면, 상기 단계 a)에서 대사 산은 옥살산을 포함하고, 이때 대사 산 중 옥살산의 농도는 적어도 200 mM일 수 있다. According to an exemplary embodiment, the metabolic acid in step a) includes oxalic acid, and the concentration of oxalic acid in the metabolic acid may be at least 200 mM.
예시적 구체예에 따르면, 상기 단계 a)에서 인산염 소스 내 희토류 금속 중 일부가 대사 산에 의하여 유기 염 형태로 침전되어 잔류물에 함유될 수 있다.According to an exemplary embodiment, in step a), some of the rare earth metals in the phosphate source may be precipitated in the form of organic salts by metabolic acid and contained in the residue.
예시적 구체예에 따르면, 상기 단계 a)에서 배양은 성장 배지에서 초기 배양된 미생물의 존재 하에서 수행되며, 이때 성장 배지/인산염 소스의 액고 비(L/S ratio)는 5 내지 15의 범위에서 조절될 수 있다.According to an exemplary embodiment, the culture in step a) is performed in the presence of microorganisms initially cultured in a growth medium, where the liquid/S ratio of the growth medium/phosphate source is adjusted in the range of 5 to 15. It can be.
예시적 구체예에 따르면, 상기 단계 b)는 유황 및 영양소가 보충된 배지를 이용하여 수행되며, 이때 배지/인-고갈된 잔류물의 액고 비는 2 내지 5의 범위에서 조절될 수 있다. According to an exemplary embodiment, step b) is performed using a medium supplemented with sulfur and nutrients, where the ratio of medium/liquid ratio of phosphorus-depleted residue may be adjusted in the range of 2 to 5.
예시적 구체예에 따르면, 상기 단계 c)에서 산은 질산이며, 오존-니트로화 처리를 수반할 수 있다.According to an exemplary embodiment, the acid in step c) is nitric acid, which may involve ozone-nitration treatment.
예시적 구체예에 따르면, 상기 단계 d)에서 유기 용매는 수 불혼화성의 유기 인 화합물을 포함할 수 있다.According to an exemplary embodiment, the organic solvent in step d) may include a water-immiscible organic phosphorus compound.
예시적 구체예에 따르면, 상기 단계 d)에서 유기 인 화합물의 농도는 0.05 내지 0.5 M의 범위이고, 이때 유기 상/수 상의 체적 비(O/A)는 5 : 1 내지 1 : 5의 범위에서 조절될 수 있다.According to an exemplary embodiment, the concentration of the organic phosphorus compound in step d) is in the range of 0.05 to 0.5 M, and the volume ratio of the organic phase/water phase (O/A) is in the range of 5:1 to 1:5. It can be adjusted.
예시적 구체예에 따르면, 상기 단계 e)는 과산화수소를 환원제로 하여 세륨(IV)을 세륨(III)으로 전환시킨 후, 산 용액으로 세륨(III)을 스트리핑하여 세륨-함유 산 용액을 수득할 수 있다. According to an exemplary embodiment, step e) converts cerium (IV) to cerium (III) using hydrogen peroxide as a reducing agent, and then strips cerium (III) with an acid solution to obtain a cerium-containing acid solution. there is.
예시적 구체예에 따르면, f) 상기 라피네이트로부터 세륨 이외의 희토류 금속을 회수하는 단계를 더 포함할 수 있다.According to an exemplary embodiment, f) recovering rare earth metals other than cerium from the raffinate may be further included.
예시적 구체예에 따르면, 상기 스트리핑에 의하여 산 용액에 함유된 내 세륨을 옥살산 이온에 의하여 세륨 옥살레이트 형태로 침전시켜 회수할 수 있다.According to an exemplary embodiment, the cerium contained in the acid solution through the stripping may be recovered by precipitating it in the form of cerium oxalate by oxalate ions.
예시적 구체예에 따르면, 상기 라피네이트 내 세륨 이외의 희토류 금속은 란탄(La) 및 이트륨(Y) 중 적어도 하나를 포함할 수 있다.According to an exemplary embodiment, the rare earth metal other than cerium in the raffinate may include at least one of lanthanum (La) and yttrium (Y).
예시적 구체예에 따르면, 상기 단계 f)는 라피네이트 내 세륨 이외의 희토류 금속을 옥살산 이온에 의하여 옥살레이트 형태로 침전시키는 단계를 포함할 수 있다. According to an exemplary embodiment, step f) may include precipitating rare earth metals other than cerium in the raffinate in the form of oxalate by oxalate ions.
본 개시 내용의 구체예에 따른 희토류 금속의 회수 공정은, 미생물을 이용한 바이오 기반의 공정으로서 종래 기술에서 수반되는 열 처리, 고농축 화학 약품 등의 사용 없이도 모나자이트와 같은 저품위 광물과 같은 희토류 금속 소스 내 인산염 구조를 효과적으로 파괴하여 희토류 금속을 분리 회수할 수 있는 등, 친환경적이면서 지속 가능한 해결 방안을 제공한다. 특히, 환경 친화적, 저에너지 집약적 및 고효율을 구현할 수 있으며, 희토류 관련 기업의 ESG 전략에도 부합되는 바, 향후 광범위한 상용화가 기대된다.The rare earth metal recovery process according to an embodiment of the present disclosure is a bio-based process using microorganisms, which recovers phosphate from rare earth metal sources such as low-grade minerals such as monazite without the use of heat treatment or highly concentrated chemicals that are involved in the prior art. It provides an eco-friendly and sustainable solution by effectively destroying the structure to separate and recover rare earth metals. In particular, it can be environmentally friendly, low energy-intensive, and highly efficient, and fits the ESG strategy of rare earth-related companies, so widespread commercialization is expected in the future.
도 1은 고상의 희토류 금속-함유 인산염 소스로부터 인(P), 철(Fe), 세륨(Ce) 및 세륨 이외의 희토류 금속(La, Y)을 각각 분리 회수하기 위한 통합 공정의 예를 개략적으로 도시하는 도면이고; Figure 1 schematically shows an example of an integrated process for separating and recovering phosphorus (P), iron (Fe), cerium (Ce), and rare earth metals other than cerium (La, Y) from a solid rare earth metal-containing phosphate source. It is a drawing showing;
도 2는 실시예에서 미생물을 이용한 희토류 금속-함유 인산염 소스 내 인(P)의 침출 단계 중 시간 경과에 따른 대사 산의 생성 농도 및 바이오침출율을 각각 나타내는 그래프이고;Figure 2 is a graph showing the production concentration and bioleaching rate of metabolic acids over time during the leaching step of phosphorus (P) in a rare earth metal-containing phosphate source using microorganisms in an example;
도 3은 미생물을 이용한 희토류 금속-함유 인산염 소스 내 인(P)의 분리 후 인-고갈된 잔류물 내 철(Fe)의 침출 단계 중 시간 경과에 따른 철의 침출량 및 바이오침출율을 각각 나타내는 그래프이고; Figure 3 shows the leaching amount and bioleaching rate of iron over time during the leaching step of iron (Fe) in the phosphorus-depleted residue after separation of phosphorus (P) in the rare earth metal-containing phosphate source using microorganisms, respectively. It is a graph;
도 4는 철(Fe)의 분리 후 철-고갈된 잔류물에 대한 오존-니트로화 처리 결과, 질산의 농도에 따른 3종의 희토류 금속(Ce, La 및 Y) 각각의 침출율을 나타내는 그래프이고; Figure 4 is a graph showing the leaching rates of each of the three rare earth metals (Ce, La and Y) according to the concentration of nitric acid as a result of ozone-nitration treatment of the iron-depleted residue after separation of iron (Fe). ;
도 5는 유기계 추출제의 농도에 따른 침출액 내 3종의 희토류 금속(Ce, La 및 Y)의 추출율을 나타내는 그래프이고;Figure 5 is a graph showing the extraction rates of three rare earth metals (Ce, La, and Y) in the leachate according to the concentration of the organic extractant;
도 6은 세륨(IV)-함유 익스트랙트에 대하여 과산화수소(농도: 0.1 mol/L)를 이용한 염산 스트리핑을 수행하는 단계 중 염산 농도에 따른 세륨 스트리핑율을 나타내는 그래프이고;Figure 6 is a graph showing the cerium stripping rate according to the hydrochloric acid concentration during the step of performing hydrochloric acid stripping using hydrogen peroxide (concentration: 0.1 mol/L) on the cerium(IV)-containing extract;
도 7은 스트리핑을 거친 후, 옥살레이트 이온과 반응하여 형성된 세륨 옥살레이트 침전물에 대한 XRD 패턴이고;Figure 7 is an XRD pattern for cerium oxalate precipitate formed by reaction with oxalate ions after stripping;
도 8은 세륨 추출에 의하여 생성된 라피네이트에 암모늄 옥살레이트를 첨가하여 세륨 이외의 희토류 금속(La, Y)의 침전물(옥살레이트 침전물) 형성하는 과정 중 옥살레이트 이온의 농도에 따른 희토류 금속의 침전율을 나타내는 그래프이고; 그리고Figure 8 shows the precipitation rate of rare earth metals according to the concentration of oxalate ions during the process of forming precipitates (oxalate precipitates) of rare earth metals (La, Y) other than cerium by adding ammonium oxalate to raffinate produced by cerium extraction. It is a graph representing; and
도 9는 희토류 금속(La, Y)의 옥살레이트 혼합 침전물에 대한 XRD 패턴이다.Figure 9 is an XRD pattern for an oxalate mixed precipitate of rare earth metals (La, Y).
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다. 또한, 첨부된 도면은 이해를 돕기 위한 것으로, 본 발명이 이에 한정되는 것은 아니며, 개별 구성에 관한 세부 사항은 후술하는 관련 기재의 구체적 취지에 의하여 적절히 이해될 수 있다.The present invention can all be achieved by the following description. The following description should be understood as describing preferred embodiments of the present invention, but the present invention is not necessarily limited thereto. In addition, the attached drawings are intended to aid understanding, and the present invention is not limited thereto, and details regarding individual configurations can be appropriately understood based on the specific purpose of the related description described later.
본 명세서에서 사용되는 용어는 하기와 같이 정의될 수 있다.Terms used in this specification may be defined as follows.
"희토류 금속"은 주기율표 제3A 족인 스칸듐, 이트륨 및 원자번호 57에서 71인 란탄계열의 15가지 원소를 합친 17종의 원소를 총칭하는 용어로서, 화학적 성질이 서로 유사하고, 일반적으로 모두 +3의 산화수를 갖는 형태로 존재한다. 또한, 희토류 금속은 일반적으로 경희토류 금속(원소) 및 중희토류 금속(원소)으로 구분할 수 있는 바, 원자번호 57번인 란탄(La)부터 원자번호 60번인 네오디뮴(Nd)까지의 4가지 원소는 경희토류에 속하는 한편, 나머지 13가지 원소는 중희토류에 속하는 것으로 이해될 수 있다.“Rare earth metals” is a general term for 17 types of elements including scandium, yttrium, and 15 elements of the lanthanide series with atomic numbers from 57 to 71, which are group 3A of the periodic table. Their chemical properties are similar to each other, and generally all have +3. It exists in a form with an oxidation number. In addition, rare earth metals can generally be divided into light rare earth metals (elements) and medium rare earth metals (elements), and the four elements from lanthanum (La) with atomic number 57 to neodymium (Nd) with atomic number 60 are light. While they belong to rare earths, the remaining 13 elements can be understood as belonging to medium rare earths.
"바이오침출(bioleaching)"은 일반적으로 미생물에 의하여 미네랄 소스로부터 금속을 용출(dissolution)시키는 프로세스, 구체적으로 고상의 금속을 수용성의 형태로 전환시키는 프로세스를 의미할 수 있다.“Bioleaching” may generally refer to a process of dissolving a metal from a mineral source by microorganisms, and specifically to a process of converting a solid metal to a water-soluble form.
"배양 배지(culture medium)"은 세포 성장에 사용 가능한 영양성분의 수용액을 의미할 수 있다.“Culture medium” may refer to an aqueous solution of nutrients available for cell growth.
"인 가용성 미생물(phosphate solubilizing microorganism; PSM)"은 고정화되어 있는 인을 수용성 인으로 전환시키는 미생물을 의미할 수 있다.“Phosphate solubilizing microorganism (PSM)” may refer to a microorganism that converts immobilized phosphorus into water-soluble phosphorus.
"추출(extraction)"은 하나의 상(phase)으로부터 다른 상을 특정 성분, 구체적으로 금속을 전달하는 것을 의미할 수 있다. “Extraction” can mean transferring a particular component, specifically a metal, from one phase to another.
"스트리핑(stripping)"은 액상 매질 또는 용매로부터 특정 금속을 분리 또는 제거하는 프로세스를 의미할 수 있으며, 선택적 스트리핑은 복수의 금속을 함유하는 액상 매질 또는 용매로부터 특정 금속을 분리 또는 제거하는 프로세스를 의미할 수 있다. “Stripping” may refer to a process of separating or removing a specific metal from a liquid medium or solvent, and selective stripping may refer to a process of separating or removing a specific metal from a liquid medium or solvent containing a plurality of metals. can do.
본 명세서에서 수치 범위가 하한값 및/또는 상한값으로 특정된 경우, 해당 수치 범위 내에 임의의 서브 조합도 개시된 것으로 이해될 수 있다. 예를 들면, "1 내지 5"로 기재된 경우, 1, 2, 3, 4 및 5는 물론, 이들 간의 임의의 서브-조합도 포함할 수 있다.In this specification, when a numerical range is specified as a lower limit and/or an upper limit, it can be understood that any subcombination within the numerical range is also disclosed. For example, when written as “1 to 5,” it can include 1, 2, 3, 4, and 5, as well as any sub-combinations therebetween.
본 명세서에서 임의의 구성 요소 또는 부재가 다른 구성 요소 또는 부재와 "연결된다"고 기재되어 있는 경우, 달리 언급되지 않는 한, 상기 다른 구성 요소 또는 부재와 직접 연결되어 있는 경우뿐만 아니라, 다른 구성 요소 또는 부재의 개재 하에서 연결되어 있는 경우도 포함되는 것으로 이해될 수 있다. When any component or member is described herein as being “connected to” another component or member, unless otherwise stated, it refers not only to being directly connected to said other component or member, but also to the other component or member. Alternatively, it may be understood that cases of being connected through the intervention of a member are also included.
이와 유사하게, "접촉한다"는 용어 역시 반드시 직접적으로 접촉하는 경우뿐만 아니라, 다른 구성 요소 또는 부재의 개재 하에서 접촉하는 경우도 포함될 수 있는 것으로 이해될 수 있다.Similarly, the term “contact” may also be understood to include not only direct contact, but also contact through the intervention of other components or members.
어떠한 구성요소를 "포함"한다고 할 때, 이는 별도의 언급이 없는 한, 다른 구성요소를 더 포함할 수 있음을 의미한다. When it is said to “include” a certain component, this means that it may further include other components, unless otherwise specified.
본 개시 내용의 일 구체예에 따르면, 희토류 금속-함유 인산염 소스로부터 희토류 금속을 분리 회수하기 위하여, 미생물을 이용한 바이오침출 및 솔보-화학적(solvo-chemical) 추출 방식의 공정이 제공되는 바, 이로부터 인(P), 철(Fe), 세륨(Ce) 및 세륨 이외의 희토류 금속(La, Y)을 각각 분리 회수하기 위한 예시적 공정을 도 1에 도시하였다.According to one embodiment of the present disclosure, a process of bioleaching and solvo-chemical extraction using microorganisms is provided to separate and recover rare earth metals from rare earth metal-containing phosphate sources, from which An exemplary process for separating and recovering phosphorus (P), iron (Fe), cerium (Ce), and rare earth metals other than cerium (La, Y) is shown in FIG. 1.
상기 도면을 참조하면, 출발 물질로서 고상의 희토류 금속 소스가 제공되는 바, 도시된 구체예에서는 세륨 및 세륨 이외의 희토류 금속을 함유하며, 추가적으로 철을 함유하는 인산염(phosphate) 소스일 수 있고, 보다 전형적으로는 천연적으로 존재하는 저품위 광물일 수 있다. 일 예로서, 희토류 금속 소스는 광물, 구체적으로 모나자이트일 수 있다. 모나자이트는 일반적으로 (Ce,La,Th)PO4, (Ce,La,Nd,Th)PO4 등의 화학식으로 표시되는 인산염 광물일 수 있다. Referring to the drawing, a solid rare earth metal source is provided as a starting material, and in the illustrated embodiment, it may be a phosphate source containing cerium and rare earth metals other than cerium and additionally containing iron. Typically, it may be a naturally occurring low-grade mineral. As an example, the rare earth metal source may be a mineral, specifically monazite. Monazite may be a phosphate mineral generally represented by chemical formulas such as (Ce,La,Th)PO 4 and (Ce,La,Nd,Th)PO 4 .
희토류 금속 소스에 있어서, 인(P)의 함량은, 원소 기준으로, 예를 들면 약 0.05 내지 0.6 중량%, 구체적으로 약 0.07 내지 0.3 중량%, 보다 구체적으로 약 0.09 내지 0.2 중량%, 특히 구체적으로 약 1 중량% 부근일 수 있다. In the rare earth metal source, the content of phosphorus (P), on an elemental basis, is for example about 0.05 to 0.6% by weight, specifically about 0.07 to 0.3% by weight, more specifically about 0.09 to 0.2% by weight, especially specifically It may be around 1% by weight.
한편, 희토류 금속염 소스 내 세륨의 함량(원소 기준)은, 예를 들면 약 0.5 내지 4 중량%, 구체적으로 약 0.5 내지 3 중량%, 보다 구체적으로 약 0.7 내지 2 중량%, 특히 구체적으로 1 중량% 부근일 수 있다. 또한, 세륨 이외의 희토류 금속으로, 란탄(La) 및 이트륨(Y)을 예시할 수 있으며, 이중 적어도 하나를 함유할 수 있다. 다만, 본 구체예가 이에 한정되는 것은 아니며, 란탄 및/또는 이트륨 대신에 또는 추가하여 다른 희토류 금속(예를 들면, Pr 등)을 함유할 수 있는 것으로 이해될 수 있다. 일 예로서, 세륨 이외의 희토류 금속의 함량(원소 기준)은, 예를 들면 약 0.1 내지 3.5 중량%, 구체적으로 약 0.3 내지 2 중량%, 보다 구체적으로 약 0.5 내지 1 중량%의 범위일 수 있다. 또한, 희토륨 금속 소스 내 철 함량(원소 기준)은, 예를 들면 약 5 내지 30 중량%, 구체적으로 약 8 내지 20 중량%, 보다 구체적으로 약 10 내지 15 중량%의 범위일 수 있다. Meanwhile, the content of cerium (based on element) in the rare earth metal salt source is, for example, about 0.5 to 4% by weight, specifically about 0.5 to 3% by weight, more specifically about 0.7 to 2% by weight, particularly specifically 1% by weight. It may be nearby. Additionally, rare earth metals other than cerium include lanthanum (La) and yttrium (Y), and may contain at least one of these. However, this specific example is not limited to this, and it can be understood that other rare earth metals (for example, Pr, etc.) may be contained instead of or in addition to lanthanum and/or yttrium. As an example, the content (based on element) of rare earth metals other than cerium may range, for example, from about 0.1 to 3.5% by weight, specifically from about 0.3 to 2% by weight, and more specifically from about 0.5 to 1% by weight. . Additionally, the iron content (on an elemental basis) in the rare metal source may range, for example, from about 5 to 30 wt%, specifically from about 8 to 20 wt%, and more specifically from about 10 to 15 wt%.
예시적 구체예에 따르면, 희토류 금속 소스가 광물 형태인 경우, 전술한 인, 희토류 금속 및 철 이외에도 기타 금속을 추가적으로 함유할 수 있는 바, 이러한 기타 금속은, 특별히 한정되는 것은 아니며, 예를 들면 실리콘, 티타늄, 알루미늄, 지르코늄, 나트륨, 칼륨, 칼슘, 망간, 마그네슘 등으로부터 선택되는 적어도 하나일 수 있다. 기타 금속의 함량은, 산화물 기준으로, 예를 들면 약 25 중량%까지, 구체적으로 약 10 내지 20 중량%, 보다 구체적으로 약 20 중량% 부근일 수 있다. According to an exemplary embodiment, when the rare earth metal source is in mineral form, it may additionally contain other metals in addition to the above-described phosphorus, rare earth metals, and iron, and these other metals are not particularly limited and include, for example, silicon. , titanium, aluminum, zirconium, sodium, potassium, calcium, manganese, magnesium, etc. The content of other metals may be, for example, up to about 25% by weight, specifically about 10 to 20% by weight, and more specifically around 20% by weight, based on oxide.
전술한 희토류 금속 소스 내 개별 성분의 함량은 예시적 취지로 이해될 수 있고, 산출 지역 등에 따라 변화 가능하다.The content of individual components in the above-described rare earth metal source may be understood as illustrative, and may vary depending on the production area, etc.
이와 관련하여, 희토류 금속 소스로서 특정 산지로부터 입수 가능한 모나자이트의 예시적인 조성은 하기 표 1과 같이 나타낼 수 있다(중량%).In this regard, an exemplary composition of monazite available from a specific origin as a rare earth metal source can be shown (% by weight) in Table 1 below.
Fe2O3 Fe2O3 _ Al2O3 Al 2 O 3 SiO2 SiO 2 TiO2 TiO 2 Y2O3 Y 2 O 3 La2O3 La 2 O 3 CeO2 CeO 2 PO4 PO 4 Na2ONa 2 O MgOMgO K2O K2O MnOMnO CaOCaO ZrO2 ZrO2
28.428.4 8.18.1 34.734.7 11.311.3 0.130.13 0.680.68 1.061.06 0.860.86 0.80.8 1.61.6 1.31.3 0.60.6 5.15.1 5.75.7
예시적 구체예에 따르면, 후속 침출(바이오침출)이 효과적으로 수행될 수 있도록 고상의 희토류 금속-함유 인산염 소스는 분쇄물 또는 입자 형태를 가질 수 있다. 이때, 분쇄물 또는 입자의 사이즈는 체가름 결과를 고려하여 정하여질 수 있는 바, 예를 들면 약 50 내지 400 메쉬, 구체적으로 약 70 내지 350 메쉬, 보다 구체적으로 약 80 내지 325 메쉬의 범위일 수 있다. According to an exemplary embodiment, the solid rare earth metal-containing phosphate source may be in the form of ground or particles so that subsequent leaching (bioleaching) can be carried out effectively. At this time, the size of the pulverized material or particles may be determined by considering the sieving results, for example, it may be in the range of about 50 to 400 mesh, specifically about 70 to 350 mesh, and more specifically about 80 to 325 mesh. there is.
한편, 모나자이트와 같은 광물의 경우, 당업계에서 공지된 분쇄 수단을 이용할 수 있다. 일 예로서, 분쇄 수단은 롤러식 분쇄기, 진동 밀, 볼 밀, 포트 밀, 햄머 밀, 펄버라이저, 자이러토리 밀 등일 수 있으나, 이에 한정되는 것은 아니다.Meanwhile, in the case of minerals such as monazite, grinding means known in the art can be used. As an example, the grinding means may be a roller grinder, vibrating mill, ball mill, pot mill, hammer mill, pulverizer, gyratory mill, etc., but is not limited thereto.
인(P)의 바이오침출Bioleaching of phosphorus (P)
도 1을 참조하면, 인산염 소스는 인-가용성 미생물을 이용하여 인을 침출시키는 바이오침출 단계를 거치게 된다.Referring to Figure 1, the phosphate source undergoes a bioleaching step in which phosphorus is leached using phosphorus-soluble microorganisms.
도시된 바와 같이, 희토류 금속-함유 인산염 소스, 특히 모나자이트로부터 다른 성분 또는 원소에 앞서 인(P)을 우선적으로 침출 및 분리하는 이유는 하기와 같이 설명될 수 있다: 모나자이트에서 인산염은 희토류 금속의 호스트 매트릭스로 작용하는 바, 희토류 금속은 인산염의 8개의 산화물로 둘러싸인 비틀어진 배위 구(distorted coordination sphere)와 함께 중심에 잔류한다. 따라서, 침출제(lixiviant)로 희토류 금속을 침출하기 위하여는 먼저 인산염 구조를 파괴하는 것이 유리할 수 있다.As shown, the reason for preferential leaching and separation of phosphorus (P) before other components or elements from rare earth metal-containing phosphate sources, especially monazite, can be explained as follows: In monazite, phosphate is a host of rare earth metals. Acting as a matrix, the rare earth metal remains in the center with a distorted coordination sphere surrounded by eight oxides of phosphate. Therefore, in order to leach rare earth metals with a lixiviant, it may be advantageous to first destroy the phosphate structure.
도시된 구체예에서, 인 가용성 미생물(PSM)의 경우, 전술한 인산염 소스와 함께 배양됨에 따라 생성된 대사 산(metabolic acids)이 침출제로 작용하여 인산염 소스 내 인을 가용화 형태로 전환시킴으로써 침출시킬 수 있는 종류로부터 선정될 수 있다. 일 예로서, 인 가용성 미생물은, 예를 들면 Aspergillus 속 및 Penicillium 속으로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다. 이외에도, 다양한 페니실리움 종(penicillium species), 종속영양세균종(heterotrophic bacterial species) 등이 사용 가능한 바, 이의 예로는 Pseudomonas rhizosphaerae, Pseudomonas putida, Pseudomonas fluorescens, Bacillus megaterium, Paenibacillus polymyxa, Ensifer meliloti, Azospirillum brasilense, Mesorhizobium ciceri, Acetobacter aceti, Pseudomonas aeruginosa 등을 들 수 있으며, 단독으로 또는 조합하여 사용할 수 있다. 다만, 상기 나열된 종류는 예시적인 취지로 이해될 수 있다.In the depicted embodiment, in the case of phosphorus-soluble microorganisms (PSM), the metabolic acids produced upon incubation with the aforementioned phosphate source act as a leaching agent, converting the phosphorus in the phosphate source to a soluble form, thereby allowing it to leach out. Can be selected from available types. As an example, the phosphorus-soluble microorganism may be at least one selected from the group consisting of Aspergillus genus and Penicillium genus. In addition, various penicillium species, heterotrophic bacterial species, etc. can be used, examples of which include Pseudomonas rhizosphaerae, Pseudomonas putida, Pseudomonas fluorescens, Bacillus megaterium, Paenibacillus polymyxa, Ensifer meliloti, and Azospirillum brasilense. , Mesorhizobium ciceri, Acetobacter aceti, Pseudomonas aeruginosa, etc., and can be used alone or in combination. However, the types listed above may be understood as illustrative purposes.
인(P)은 생명체에 필수적인 원소로서 주된 세포 반응, 탄소 및 아미노산의 대사 프로세스를 유지하고, ATP, 효소 반응 및 에너지 전달에 필수적이다. 이때, 인 가용성 미생물은 인산염 소스 내 불용성의 인을 산성화(acidification), 킬레이트화, 교환 반응 등에 의하여 가용성 형태로 배출시킬 수 있다. Phosphorus (P) is an essential element for life, maintaining major cellular reactions, metabolic processes of carbon and amino acids, and is essential for ATP, enzyme reactions, and energy transfer. At this time, the phosphorus-soluble microorganism can discharge insoluble phosphorus in the phosphate source in a soluble form through acidification, chelation, exchange reaction, etc.
예시적 구체예에 따르면, 인 가용성 미생물을 배양하기 위하여, 배지는 성장 배지, 구체적으로 변형된 성장 배지일 수 있는데, 인산염 소스는 미생물이 성장 배지에서 초기 배양된 상태에서 조합되고, 이후 미생물이 성장 배양되는 방식으로 처리할 수 있다. 일 예로서, 미생물의 배양은 유가식 배양(fed-batch culture) 방식으로 수행될 수 있는 바, "유가식 배양"은 배양 과정 중 적어도 하나의 영양분(예를 들면 자당)이 반응기에 간헐적 또는 연속적으로 첨가되는 프로세스를 의미할 수 있다. 일 예로서, 초기 성장 배지 내 미생물의 포자(spores) 농도는, 예를 들면 적어도 약 3×106 spores/mL, 구체적으로 약 3×108 내지 3×1010 spores/mL, 보다 구체적으로 약 1×109 내지 5×109 spores/mL, 특히 구체적으로 약 3×109 spores/mL 부근일 수 있으나, 이는 예시적 취지로 이해될 수 있다. 이때, 인산염 소스 내 인 성분이 배양에 필요한 인을 제공하는 소스로 기능하므로 별도로 인을 공급하는 것은 요구되지 않을 수 있다. 본 구체예에서 미생물 성장에 사용되는 배지의 구성성분들은 당업계에 공지되어 있는 만큼, 별도의 세부 기재는 생략하기로 한다. 한편, 예시적 구체예에 있어서, 성장 배지/인산염 소스(고상)의 액고 비(L/S ratio)는 배지 및 인산염 소스의 양을 고려하여 조절할 수 있는 바, 예를 들면 약 5 내지 15, 구체적으로 약 5 내지 13, 보다 구체적으로 약 8 내지 12, 특히 구체적으로 약 10 부근일 수 있다.According to an exemplary embodiment, for culturing phosphorus-soluble microorganisms, the medium may be a growth medium, specifically a modified growth medium, wherein the phosphate source is combined with the microorganisms being initially cultured in the growth medium, and then the microorganisms are grown. It can be processed by culturing. As an example, the culture of microorganisms may be performed in a fed-batch culture method. “Fed-batch culture” means that at least one nutrient (e.g., sucrose) is added to the reactor intermittently or continuously during the culture process. It may mean a process that is added. As an example, the concentration of microbial spores in the initial growth medium may be, for example, at least about 3×10 6 spores/mL, specifically about 3×10 8 to 3×10 10 spores/mL, more specifically about It may be 1×10 9 to 5×10 9 spores/mL, particularly around 3×10 9 spores/mL, but this may be understood as an example. At this time, since the phosphorus component in the phosphate source functions as a source that provides phosphorus necessary for culture, separate supply of phosphorus may not be required. Since the components of the medium used for microbial growth in this embodiment are known in the art, separate detailed description will be omitted. Meanwhile, in an exemplary embodiment, the liquid-to-liquid ratio (L/S ratio) of growth medium/phosphate source (solid phase) can be adjusted considering the amount of medium and phosphate source, for example, about 5 to 15, specifically It may be about 5 to 13, more specifically about 8 to 12, and especially about 10.
미생물의 배양 시간이 증가함에 대사 산의 생성량은 증가하게 되고, 그 결과 인산염 소스 내 인이 침출되는 바, 이러한 침출 과정에서 수반되는 예시적 반응은 하기 반응식 1과 같이 나타낼 수 있다.As the cultivation time of the microorganism increases, the amount of metabolic acid produced increases, and as a result, phosphorus in the phosphate source is leached. An exemplary reaction involved in this leaching process can be expressed as shown in Scheme 1 below.
[반응식 1][Scheme 1]
REM(PO4) + n[HA] = REMAn + HnPO4 REM(PO 4 ) + n[HA] = REMA n + H n PO 4
예시적 구체예에 따르면, 미생물에 의하여 생성되는 대사 산은, 예를 들면 옥살산(C2H2O4)을 포함할 수 있는 바, 추가적으로 글루콘산, 시트르산, 포름산, 부티르산, 말레산 등으로부터 선택되는 적어도 하나를 함유할 수 있다. 이와 관련하여, 미생물에 의하여 생성되는 대사 산의 농도는, 예를 들면 적어도 약 200 mM, 구체적으로 약 230 내지 1200 mM, 보다 구체적으로 약 500 내지 900 mM, 특히 구체적으로 약 840 mM 부근일 수 있고, 이때 옥살산이 차지하는 비율은, 전체 대사 산의 몰 기준으로, 예를 들면 적어도 약 35%, 구체적으로 약 40 내지 80%, 보다 구체적으로 약 50 내지 70%, 특히 구체적으로 약 56% 부근일 수 있다. 예시적으로, 미생물 배양에 따라 생성되는 대사 산 중 옥살산의 농도는, 예를 들면 적어도 약 200 mM, 구체적으로 약 300 내지 900 mM, 보다 구체적으로 약 350 내지 600 mM, 특히 구체적으로 약 470 mM 부근일 수 있다. According to an exemplary embodiment, the metabolic acid produced by the microorganism may include, for example, oxalic acid (C 2 H 2 O 4 ), and may additionally be selected from gluconic acid, citric acid, formic acid, butyric acid, maleic acid, etc. It may contain at least one. In this regard, the concentration of metabolic acid produced by the microorganism may be, for example, at least about 200mM, specifically about 230 to 1200mM, more specifically about 500 to 900mM, especially specifically about 840mM, , At this time, the proportion of oxalic acid may be, for example, at least about 35%, specifically about 40 to 80%, more specifically about 50 to 70%, and especially specifically about 56%, based on the mole of the total metabolic acid. there is. Exemplarily, the concentration of oxalic acid among the metabolic acids produced by microbial culture is, for example, at least about 200 mM, specifically about 300 to 900 mM, more specifically about 350 to 600 mM, and particularly specifically around about 470 mM. It can be.
예시적 구체예에 있어서, 인 성분의 바이오침출 조건은 출발물질인 인산염 소스의 조성, 성상 등에 따라 변화할 수 있기 때문에 특별히 한정되는 것은 아니지만, 온도는, 예를 들면 약 20 내지 45 (±1) ℃, 구체적으로 약 25 내지 40 (±1) ℃, 보다 구체적으로 약 30 내지 35 (±1) ℃, 특히 구체적으로 약 30 (±1) ℃ 부근에서 조절될 수 있고, 또한 pH는, 예를 들면 약 4 내지 7, 구체적으로 약 4.5 내지 6.5, 보다 구체적으로 약 5 내지 6의 범위에서 조절될 수 있다. 또한, 인 성분의 침출 시 교반 또는 비교반 조건에서 수행될 수 있으나, 교반 조건 하에서 수행하는 것이 유리할 수 있다. 이외에도, 침출 시간은, 예를 들면 약 2 내지 20일, 구체적으로 약 3 내지 14 일, 보다 구체적으로 약 3 내지 12 일, 특히 구체적으로 약 8 내지 10일의 범위 내에서 정하여질 수 있으나, 이에 한정되는 것은 아니다. In an exemplary embodiment, the conditions for bioleaching of the phosphorus component are not particularly limited because they may vary depending on the composition and properties of the phosphate source, which is the starting material, but the temperature is, for example, about 20 to 45 (±1). ℃, specifically about 25 to 40 (±1) ℃, more specifically about 30 to 35 (±1) ℃, especially specifically can be adjusted around 30 (±1) ℃, and the pH is, for example For example, it may be adjusted in the range of about 4 to 7, specifically about 4.5 to 6.5, and more specifically about 5 to 6. Additionally, leaching of phosphorus components may be performed under stirred or non-stirred conditions, but it may be advantageous to carry out the leaching under stirred conditions. In addition, the leaching time may be set within a range of, for example, about 2 to 20 days, specifically about 3 to 14 days, more specifically about 3 to 12 days, and particularly about 8 to 10 days. It is not limited.
예시적 구체예에 있어서, 전술한 인-가용성 미생물을 이용한 바이오침출 과정을 통하여, 인산염 소스 내 전체 인(P) 원소 중 적어도 약 70%, 구체적으로 적어도 약 75%, 보다 구체적으로 약 80 내지 90%, 특히 구체적으로 약 83%가 가용화될 수 있다.In an exemplary embodiment, through the bioleaching process using the phosphorus-soluble microorganisms described above, at least about 70%, specifically at least about 75%, and more specifically about 80 to 90% of the total elemental phosphorus (P) in the phosphate source. %, specifically about 83%, can be solubilized.
또한, 대사 산에 의한 인 성분의 바이오침출 과정에서 인(P)뿐만 아니라, 희토류 금속-함유 인산염 소스 내 1 또는 2 이상의 다른 성분이 적어도 일부 침출 또는 용출될 수 있다. 이와 같이 추가적으로 침출되는 성분은, 알칼리 금속(예를 들면, 나트륨, 칼륨 등), 알칼리 토금속(예를 들면, 칼슘 등), 희토류 금속, 철 등일 수 있다. 다만, 인(P)과 함께 침출(또는 용출)되는 성분들 각각의 량은 인산염 소스의 조성 등에 따라 변화 가능한 만큼, 특정 범위로 한정되는 것은 아니다. In addition, in the process of bioleaching of phosphorus components by metabolic acid, not only phosphorus (P) but also one or two or more other components in the rare earth metal-containing phosphate source may be leached or eluted at least in part. Components that are additionally leached in this way may be alkali metals (e.g., sodium, potassium, etc.), alkaline earth metals (e.g., calcium, etc.), rare earth metals, iron, etc. However, the amount of each component leached (or eluted) together with phosphorus (P) may vary depending on the composition of the phosphate source, etc., and is not limited to a specific range.
또한, 인과 함께 침출되는 희토류 금속은 대사 산과 결합하여 복합체를 형성할 수 있는 바, 무기물(산화물) 형태에서 유기물 형태(예를 들면, 희토류 옥살레이트)로 전환될 수 있고, 이러한 유기물 또는 유기 염은 침전되어 인-고갈된 잔류물에혼입되거나, 또는 함께 후속 처리 과정에 제공될 수 있다. 희토류 금속의 침전 반응의 예(옥살레이트 염으로 전환되는 경우)는 하기 반응식 2 및 3과 같이 나타낼 수 있다.In addition, rare earth metals leached together with phosphorus can form complexes by combining with metabolic acids, and can be converted from inorganic (oxide) form to organic form (e.g., rare earth oxalate), and these organic substances or organic salts are It may precipitate and become incorporated into the phosphorus-depleted residue, or it may be submitted together for subsequent processing. Examples of precipitation reactions of rare earth metals (when converted to oxalate salts) can be represented as shown in Schemes 2 and 3 below.
[반응식 2][Scheme 2]
2Ce3+ + 3C2O4 2- → Ce2(C2O4)3 2Ce 3+ + 3C 2 O 4 2- → Ce 2 (C 2 O 4 ) 3
[반응식 3][Scheme 3]
2(La3+,Y3+) + 3C2O4 2- → (La,Y)2(C2O4)3 2(La 3+ ,Y 3+ ) + 3C 2 O 4 2- → (La,Y) 2 (C 2 O 4 ) 3
한편, 예시적 구체예에 따르면, 침출액 내 인은 추가적인 분리 정제 과정을 거쳐 고순도의 인을 함유하는 용액 형태로 수득될 수 있다. 이러한 인의 분리 정제 방법으로, 솔보-케미컬(solvo-chemical) 방식, 구체적으로 도시된 바와 같이 유기 용매를 이용한 추출 및 스트리핑을 적용할 수 있다. 이때, 추출제로서, 예를 들면 긴 탄소골격(탄소수 약 16 내지 48, 구체적으로 약 25 내지 35)을 갖는 산화포스핀계 화합물 등으로부터 선택되는 1종 또는 그 이상의 유기 용매를 사용할 수 있는 바, 추출에 의하여 인-풍부 익스트랙트가 생성된다. 이후, 인-풍부 익스트랙트에, 예를 들면 염산, 질산, 황산, 과염소산 등의 무기산으로부터 적어도 하나가 선택되는 스트리핑 용액을 첨가하여 고순도의 인을 함유하는 용액을 수득할 수 있다. 또한, 익스트랙트 내 유기 용매는 리사이클되어 스트리핑 단계 전단의 추출 단계에서 추출제로 재사용될 수 있다. Meanwhile, according to an exemplary embodiment, the phosphorus in the leachate can be obtained in the form of a solution containing high purity phosphorus through an additional separation and purification process. As a method for separating and purifying phosphorus, a solvo-chemical method, specifically extraction and stripping using an organic solvent as shown, can be applied. At this time, as an extractant, for example, one or more organic solvents selected from phosphine oxide compounds having a long carbon skeleton (about 16 to 48 carbon atoms, specifically about 25 to 35 carbon atoms) can be used. A phosphorus-rich extract is generated by this. Thereafter, a solution containing high purity phosphorus can be obtained by adding a stripping solution selected from at least one inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid, perchloric acid, etc. to the phosphorus-rich extract. Additionally, the organic solvent in the extract can be recycled and reused as an extractant in the extraction step before the stripping step.
예시적 구체예에 따르면, 추출 조건은 특별히 한정되는 것은 아니지만, 유기상 : 수상의 체적 비는 약 1 : 5 내지 5 : 1, 구체적으로 약 1 : 3 내지 3 : 1, 보다 구체적으로 약 1 : 2 내지 2 : 1의 범위에서 조절될 수 있다. 또한, 추출제의 농도(유기 상 기준)는, 예를 들면 약 0.1 내지 0.5 M, 구체적으로 약 0.15 내지 0.4 M, 보다 구체적으로 약 0.2 내지 0.3 M, 특히 구체적으로 약 0.25 M 부근일 수 있다. 한편, 평형시간은, 예를 들면 약 1 내지 30분, 구체적으로 약 2 내지 20분, 보다 구체적으로 약 4 내지 10분, 특히 구체적으로 약 5분 부근일 수 있다. 추출 온도는, 예를 들면 약 20 내지 40 ℃, 구체적으로 약 22 내지 35 ℃, 보다 구체적으로 약 24 내지 30 ℃, 특히 구체적으로 약 25 ℃ 부근일 수 있다, 이외에도, 상 분리 시간은, 예를 들면 약 5 내지 30분, 구체적으로 약 7 내지 25분, 보다 구체적으로 약 9 내지 15분, 특히 구체적으로 약 10분으로 설정될 수 있다. According to an exemplary embodiment, the extraction conditions are not particularly limited, but the volume ratio of organic phase to aqueous phase is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2. It can be adjusted in the range of 2:1. Additionally, the concentration of the extractant (based on the organic phase) may be, for example, around 0.1 to 0.5 M, specifically around 0.15 to 0.4 M, more specifically around 0.2 to 0.3 M, and particularly specifically around 0.25 M. Meanwhile, the equilibration time may be, for example, about 1 to 30 minutes, specifically about 2 to 20 minutes, more specifically about 4 to 10 minutes, and particularly about 5 minutes. The extraction temperature may be, for example, about 20 to 40° C., specifically about 22 to 35° C., more specifically about 24 to 30° C., and particularly specifically about 25° C. In addition, the phase separation time may be, for example, For example, it may be set to about 5 to 30 minutes, specifically about 7 to 25 minutes, more specifically about 9 to 15 minutes, and particularly about 10 minutes.
예시적 구체예에 따르면, 특별히 한정되는 것은 아니지만, 유기상 : 수상의 체적 비는 약 1 : 5 내지 5 : 1, 구체적으로 약 1 : 3 내지 3 : 1, 보다 구체적으로 약 1 : 2 내지 2 : 1의 범위에서 조절될 수 있다. 또한, 산 농도는, 예를 들면 약 1 내지 3 M, 구체적으로 약 1.4 내지 2.7 M, 보다 구체적으로 약 1.8 내지 2.5 M, 특히 구체적으로 약 2 M일 수 있다. 또한, 스트리핑 시 과산화수소를 사용할 수 있는 바, 이때 과산화수소의 농도는, 예를 들면 약 0.05 내지 0.2 M, 구체적으로 약 0.08 내지 0.15 M, 보다 구체적으로 약 0.1 M일 수 있다. 접촉 시간은, 예를 들면 약 1 내지 20 분, 구체적으로 약 3 내지 10분, 보다 구체적으로 약 4 내지 6분, 특히 구체적으로 약 5분일 수 있다. 한편, 스트리핑 온도는, 예를 들면 약 20 내지 40 ℃, 구체적으로 약 22 내지 35 ℃, 보다 구체적으로 약 24 내지 30 ℃, 특히 구체적으로 약 25 ℃ 부근일 수 있다, 이외에도, 상 분리 시간은, 예를 들면 약 5 내지 30분, 구체적으로 약 7 내지 25분, 보다 구체적으로 약 9 내지 15분, 특히 구체적으로 약 10분으로 설정될 수 있다. According to an exemplary embodiment, but not particularly limited, the volume ratio of organic phase to aqueous phase is about 1:5 to 5:1, specifically about 1:3 to 3:1, more specifically about 1:2 to 2:1. It can be adjusted in the range of 1. Additionally, the acid concentration may be, for example, about 1 to 3 M, specifically about 1.4 to 2.7 M, more specifically about 1.8 to 2.5 M, and especially specifically about 2 M. In addition, hydrogen peroxide may be used during stripping. At this time, the concentration of hydrogen peroxide may be, for example, about 0.05 to 0.2 M, specifically about 0.08 to 0.15 M, and more specifically about 0.1 M. The contact time may be, for example, about 1 to 20 minutes, specifically about 3 to 10 minutes, more specifically about 4 to 6 minutes, especially about 5 minutes. Meanwhile, the stripping temperature may be, for example, about 20 to 40° C., specifically about 22 to 35° C., more specifically about 24 to 30° C., and particularly specifically about 25° C. In addition, the phase separation time may be, For example, it may be set to about 5 to 30 minutes, specifically about 7 to 25 minutes, more specifically about 9 to 15 minutes, and particularly specifically about 10 minutes.
철(Fe)의 바이오침출Bioleaching of iron (Fe)
도 1을 다시 참조하면, 인 침출 후에 남은 인-고갈된(depleted) 잔류물(구체적으로 철-풍부 잔류물)로부터 철을 분리 회수하기 위하여, 미생물을 이용한 바이오침출을 수행할 수 있다. Referring again to FIG. 1, bioleaching using microorganisms can be performed to separate and recover iron from the phosphorus-depleted residue (specifically, iron-rich residue) remaining after phosphorus leaching.
예시적 구체예에 따르면, 철 침출에 사용 가능한 미생물은 황 및 철 산화능을 갖는 미생물이며, 이로부터 대사생성 침출제가 방출된다. 이러한 미생물은 Alicyclobacillus 속 및 Sulfobacillus 속으로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다. 구체적으로, Alicyclobacillus 속은 Alicyclobacillaceae 과에 속하는 미생물로서 그램-양성(Gram-positive) 또는 그램-가변(Gram-variable) 미생물일 수 있고, 이의 예로는 A. acidiphilus, A. disulfidooxidans, A. montanus, A. sacchari 등이 있다. 또한, Sulfobacillus 속에 속하는 미생물로는 Sulfobacillus acidophilus, Sulfobacillus benefaciens, Sulfobacillus disulfidooxidans, Sulfobacillus sibiricus, Sulfobacillus thermosulfidooxidans, Sulfobacillus thermotolerans 등을 예시할 수 있다.According to an exemplary embodiment, the microorganisms usable for iron leaching are microorganisms with sulfur and iron oxidation capabilities, from which a metabolic leaching agent is released. Such microorganism may be at least one selected from the group consisting of Alicyclobacillus genus and Sulfobacillus genus. Specifically, the Alicyclobacillus genus is a microorganism belonging to the Alicyclobacillaceae family and may be a Gram-positive or Gram-variable microorganism, examples of which include A. acidiphilus, A. disulfidooxidans, A. montanus, A. sacchari , etc. Additionally, microorganisms belonging to the Sulfobacillus genus include S ulfobacillus acidophilus, Sulfobacillus benefaciens, Sulfobacillus disulfidooxidans, Sulfobacillus sibiricus, Sulfobacillus thermosulfidooxidans, and Sulfobacillus thermotolerans .
도시된 구체예에서, 미생물의 배양 과정에서 대사산물로 형성되는 침출제(lixiviant)는, 하기 반응식 4에서 예시된 바와 같이, 미생물이 원소 황 또는 유황을 산소의 존재 하에서 산화시켜 생성되는 황산일 수 있으며, 이때 산소는 외부 폭기에 의하여 제공될 수 있다.In the depicted embodiment, the lixiviant formed as a metabolite during the cultivation of the microorganism may be sulfuric acid produced by the microorganism oxidizing elemental sulfur or sulfur in the presence of oxygen, as illustrated in Scheme 4 below. In this case, oxygen can be provided by external aeration.
[반응식 4][Scheme 4]
S + 1/2O2 + H2O → SO4 2- + 2H+ S + 1/2O 2 + H 2 O → SO 4 2- + 2H +
예시적 구체예에 따르면, 전술한 인 침출 단계에서 사용되고 남은 배지(폐배지(spent medium))에 유황 및 영양분(예를 들면 자당(scurose))을 보충 또는 공급하면서 철 침출용 미생물을 배양할 수 있다. 이때, 인-고갈된 잔류물로부터 철을 침출(가용화)하는 메커니즘은 하기 반응식 5와 같이 예시할 수 있다.According to an exemplary embodiment, microorganisms for iron leaching can be cultured while supplementing or supplying sulfur and nutrients (e.g., scurose) to the remaining medium (spent medium) used in the above-described phosphorus leaching step. there is. At this time, the mechanism for leaching (solubilizing) iron from the phosphorus-depleted residue can be illustrated as shown in Scheme 5 below.
[반응식 5][Scheme 5]
0.5Fe2O3 +2H2SO4 → Fe(SO4)2 - + H+ + 1.5H2O0.5Fe 2 O 3 +2H 2 SO 4 → Fe(SO 4 ) 2 - + H + + 1.5H 2 O
예시적으로, 유황은 다양한 소스로부터 입수 가능한 바, 일 예로서 폐수 처리장의 침전조에서 수집 가능한 생물학적 유황일 수 있다. 또한, 전술한 바와 같이, 인 침출 과정에서 유기 염(예를 들면, 옥살레이트 염)의 형태로 침전되어 잔류물 내에 존재할 수 있는 유기산 이온(예를 들면, 옥살산 이온)이 철의 가용화 반응의 촉매로 작용할 수도 있다.Illustratively, sulfur may be obtained from a variety of sources, such as biological sulfur that can be collected from a sedimentation tank at a wastewater treatment plant. In addition, as described above, organic acid ions (e.g., oxalate ions) that precipitate in the form of organic salts (e.g., oxalate salts) during the phosphorus leaching process and may exist in the residue serve as catalysts for the solubilization reaction of iron. It may work as a
예시적 구체예에 따르면, 철 침출 시 배지/잔류물(인-고갈된 잔류물)의 액고 비는, 배지 및 잔류물의 량을 고려하여 조절될 수 있는 바, 예를 들면 약 2 내지 5, 구체적으로 약 2.3 내지 4, 보다 구체적으로 약 2.5 내외의 범위일 수 있다. 또한, 인-고갈된 잔류물 내 철의 침출 조건은 다양한 요인(출발물질인 인산염 소스 내 철 함량, 성상 등)에 따라 변화할 수 있기 때문에 특별히 한정되는 것은 아니지만, 온도는, 예를 들면 약 30 내지 60 ℃, 보다 구체적으로 약 40 내지 55 ℃, 구체적으로 약 50 ℃ 내외에서 조절될 수 있고, 또한 pH는, 예를 들면 약 1.1 내지 2.8, 구체적으로 약 1.3 내지 2, 보다 구체적으로 약 1.5 내외의 범위에서 조절될 수 있다. 더 나아가, 철의 침출 시 교반 또는 비교반 조건에서 수행될 수 있으나, 교반 조건 하에서 수행하는 것이 유리할 수 있다. 이외에도, 침출 시간은, 예를 들면 약 1 내지 21일, 구체적으로 약 2 내지 10일, 보다 구체적으로 약 4 내지 8일의 범위에서 정하여질 수 있으나, 이에 한정되는 것은 아니다.According to an exemplary embodiment, the liquid ratio of medium/residue (phosphorus-depleted residue) during iron leaching can be adjusted considering the amount of medium and residue, for example, about 2 to 5, specifically It may range from about 2.3 to 4, more specifically about 2.5. In addition, the leaching conditions of iron in the phosphorus-depleted residue are not particularly limited because they can vary depending on various factors (iron content in the starting phosphate source, properties, etc.), but the temperature is, for example, about 30 to 60°C, more specifically around 40 to 55°C, specifically around 50°C, and the pH is, for example, around 1.1 to 2.8, specifically around 1.3 to 2, and more specifically around 1.5. It can be adjusted within the range of . Furthermore, leaching of iron may be performed under stirred or non-stirred conditions, but it may be advantageous to perform it under stirred conditions. In addition, the leaching time may be, for example, set in the range of about 1 to 21 days, specifically about 2 to 10 days, and more specifically about 4 to 8 days, but is not limited thereto.
예시적 구체예에 있어서, 철의 바이오침출 단계 중 시간 경과에 따라 철의 용출량이 증가하는 바, 인-고갈된 잔류물 내 철 원소 중 적어도 약 50%, 구체적으로 적어도 약 90%, 보다 구체적으로 적어도 약 99%가 가용화되어 침출 또는 용출되어 액상으로 철-함유 용액, 그리고 고상 성분으로 철-고갈된(depleted) 잔류물을 형성할 수 있다.In an exemplary embodiment, the amount of iron leached increases over time during the bioleaching step of iron, such that at least about 50%, specifically at least about 90%, and more specifically at least about 50% of the elemental iron in the phosphorus-depleted residue. At least about 99% can be solubilized and leached or eluted to form an iron-containing solution in the liquid phase and an iron-depleted residue as a solid component.
이외에도, 인 침출 과정에서 완전히 제거되지 않은 다른 성분, 예를 들면 알칼리 금속(예를 들면, 나트륨, 칼륨 등) 및 알칼리 토금속(예를 들면, 칼슘 등) 역시 침출되어 제거될 수 있다. 다만, 희토류 금속의 침출은 제한적인 바, 예를 들면 약 2% 미만, 구체적으로 약 1.5% 미만, 보다 구체적으로 약 1% 미만일 수 있다.In addition, other components that are not completely removed during the phosphorus leaching process, such as alkali metals (eg, sodium, potassium, etc.) and alkaline earth metals (eg, calcium, etc.), may also be removed by leaching. However, leaching of rare earth metals may be limited, for example, less than about 2%, specifically less than about 1.5%, and more specifically less than about 1%.
이처럼, 인-고갈된 잔류물의 침출에 의하여 생성된 철-함유 용액은 별도로 분리되고, 예를 들면 침전, 용매추출, 이온교환 등을 통하여 철을 회수할 수 있다. 이러한 분리 회수 방법은 당업계에서 공지된 만큼, 상세한 기재는 생략한다. In this way, the iron-containing solution produced by leaching of the phosphorus-depleted residue is separated separately, and the iron can be recovered through, for example, precipitation, solvent extraction, ion exchange, etc. Since this separation and recovery method is well known in the art, detailed description is omitted.
세륨의 분리 및 회수Separation and recovery of cerium
도 1을 참조하면, 철-고갈된 잔류물 내 희토류 금속 중 세륨을 선택적으로 분리 회수하는 단계가 수행될 수 있다.Referring to FIG. 1, a step of selectively separating and recovering cerium among rare earth metals in the iron-depleted residue may be performed.
구체적으로, 철-고갈 잔류물을 산(산 수용액)으로 처리하면서 희토류 금속을 침출시키고, 이와 함께 침출된 희토류 금속 중 세륨(III)을 선택적으로 산화시켜 세륨(IV)으로 전환시킬 수 있다.Specifically, rare earth metals can be leached by treating the iron-depleted residue with acid (acid aqueous solution), and cerium(III) among the leached rare earth metals can be selectively oxidized and converted to cerium(IV).
예시적 구체예에 따르면, 희토류 금속의 침출용 산으로서, 질산을 사용할 수 있다. 이때, 산의 농도는 세륨 함량을 고려하여 정하여질 수 있는 바, 예를 들면 약 0.2 내지 8 M, 구체적으로 약 0.5 내지 6 M, 보다 구체적으로 약 1 내지 5 M, 보다 구체적으로 2 내지 4.5 M, 특히 구체적으로 약 3 내지 4 M의 범위에서 조절 가능하다. 전형적으로, 산의 농도가 증가함에 따라 희토류 금속의 침출이 증가하는 경향을 나타낼 수 있다.According to an exemplary embodiment, nitric acid can be used as the acid for leaching rare earth metals. At this time, the concentration of the acid may be determined considering the cerium content, for example, about 0.2 to 8 M, specifically about 0.5 to 6 M, more specifically about 1 to 5 M, more specifically 2 to 4.5 M. , particularly specifically adjustable in the range of about 3 to 4 M. Typically, leaching of rare earth metals may tend to increase as the acid concentration increases.
한편, 철-고갈된 잔류물 내 희토류 금속의 침출과 함께 희토류 금속 중 +3의 산화가를 갖는 세륨, 즉 세륨(III)을 선택적으로 세륨(IV)으로 산화시킬 수 있다. Meanwhile, with the leaching of rare earth metals in the iron-depleted residue, cerium, which has an oxidation number of +3 among rare earth metals, that is, cerium(III), can be selectively oxidized to cerium(IV).
침출된 세륨(III)을 세륨(IV)으로 산화시키기 위하여, 산화제로서, 예를 들면 오존, 퍼옥시디설페이트, 산소 등을 단독으로 또는 조합하여 사용할 수 있으며, 구체적으로 오존을 사용할 수 있다. 특정 구체예에 따르면, 질산(질산 용액) 및 오존을 이용한 오존-니트로화 처리를 수행할 수 있는 바, 이때 산화 반응은 하기 반응식 6에 따라 수행될 수 있다.To oxidize leached cerium(III) to cerium(IV), for example, ozone, peroxydisulfate, oxygen, etc. can be used alone or in combination as an oxidizing agent, and specifically, ozone can be used. According to a specific embodiment, ozone-nitration treatment can be performed using nitric acid (nitric acid solution) and ozone, where the oxidation reaction can be performed according to Scheme 6 below.
[반응식 6][Scheme 6]
O3 + 2Ce3+ + 2H+ → 2Ce4+ + H2O + O2 O 3 + 2Ce 3+ + 2H + → 2Ce 4+ + H 2 O + O 2
전술한 산화 반응에서, 세륨이 선택적으로 산화되는 반면, 나머지 희토류 금속(예를 들면, 란탄 및/또는 이트륨)은 +3의 산화가를 갖는 상태로 잔류한다. 이때, 오존을 분자 산소로 전환하는 촉매를 이용할 수 있는 바, 일 예로서 CuO 및 MnO2을 포함하는 촉매 층(bed)을 적용할 수 있다.In the above-described oxidation reaction, cerium is selectively oxidized, while the remaining rare earth metals (e.g., lanthanum and/or yttrium) remain with an oxidation number of +3. At this time, a catalyst that converts ozone into molecular oxygen can be used, and as an example, a catalyst bed containing CuO and MnO 2 can be applied.
예시적 구체예에 따르면, 산/철-고갈된 잔류물의 액고 비는 산 및 잔류물의 량을 고려하여 조절할 수 있는 바, 예를 들면 약 2 내지 20, 구체적으로 약 5 내지 15, 보다 구체적으로 약 8 내지 12, 특히 구체적으로 약 10 내외의 범위일 수 있다.According to an exemplary embodiment, the liquid ratio of the acid/iron-depleted residue can be adjusted considering the amount of acid and residue, for example, about 2 to 20, specifically about 5 to 15, more specifically about It may range from 8 to 12, particularly around 10.
또한, 희토류 금속의 침출 및 세륨의 선택적 산화 조건은 특별히 한정되는 것은 아니지만, 온도는, 예를 들면 약 25 내지 75 (±1) ℃, 구체적으로 약 30 내지 70 (±1) ℃, 보다 구체적으로 약 45 내지 60 (±1) ℃, 특히 구체적으로 약 55 (±1) ℃ 내외에서 조절될 수 있다. 이외에도, 처리 시간은, 예를 들면 약 1 내지 24 시간, 구체적으로 약 2 내지 15 시간, 보다 구체적으로 3 내지 10 시간, 특히 구체적으로 약 4 내지 6 시간의 범위에서 조절할 수 있으나, 이는 예시적 취지로 이해될 수 있다. In addition, the conditions for leaching of rare earth metals and selective oxidation of cerium are not particularly limited, but the temperature is, for example, about 25 to 75 (±1) °C, specifically about 30 to 70 (±1) °C, more specifically. It can be adjusted around 45 to 60 (±1) °C, particularly around 55 (±1) °C. In addition, the processing time can be adjusted in the range of, for example, about 1 to 24 hours, specifically about 2 to 15 hours, more specifically 3 to 10 hours, and especially specifically about 4 to 6 hours, but this is for illustrative purposes. It can be understood as
택일적 구체예에 따르면, 오존-니트로화 처리 대신에 황산화 로스팅(roasting)에 의한 황산(H2SO4) 침출을 수행하여 세륨의 선택적 산화 처리를 수행할 수도 있다. 다만, 이 경우에는 고농도의 산이 요구되는 만큼, 전술한 오존-니트로화 처리가 유리할 수 있다.According to an alternative embodiment, selective oxidation treatment of cerium may be performed by performing sulfuric acid (H 2 SO 4 ) leaching by sulfation roasting instead of ozone-nitration treatment. However, in this case, as a high concentration of acid is required, the ozone-nitration treatment described above may be advantageous.
전술한 바와 같이, 희토류 금속을 산에 의하여 침출시키고, 이와 함께 침출액 내 희토류 금속 중 세륨을 선택적으로 산화시킨 결과, 철-고갈된 잔류물 내 세륨 원소 중 적어도 약 60%, 구체적으로 적어도 약 80%, 보다 구체적으로 적어도 약 90%가 산(산 용액) 내에 침출될 수 있다. 또한, 침출된 세륨 중 +3의 산화가를 갖는 세륨(세륨(III))의 적어도 약 80%, 구체적으로 적어도 약 85%, 보다 구체적으로 적어도 약 90%, 특히 구체적으로 약 90.1%가 +4의 산화가를 갖는 세륨(세륨(IV))으로 산화될 수 있다. 이외에도, 철-고갈된 잔류물 내 다른 희토류(예를 들면, 란탄 및/또는 이트륨) 원소 중 적어도 약 80%, 구체적으로 적어도 약 90%, 보다 구체적으로 적어도 약 98%가 침출될 수 있다. As described above, as a result of leaching the rare earth metal with acid and selectively oxidizing cerium among the rare earth metals in the leach liquid, at least about 60%, specifically at least about 80%, of the cerium element in the iron-depleted residue. , more specifically, at least about 90% may be leached into the acid (acid solution). Additionally, of the leached cerium, at least about 80%, specifically at least about 85%, more specifically at least about 90%, especially specifically about 90.1% of the cerium (cerium(III)) having an oxidation number of +3 is +4. It can be oxidized to cerium (cerium(IV)), which has an oxidation number of . In addition, at least about 80%, specifically at least about 90%, and more specifically at least about 98% of the other rare earth (e.g., lanthanum and/or yttrium) elements in the iron-depleted residue may be leached.
세륨의 분리 회수Separation and recovery of cerium
도 1을 참조하면, 희토류 금속-함유 산 침출액 내 세륨(IV)을 분리(추출)하고, 회수하는 단계가 수행된다.Referring to FIG. 1, the steps of separating (extracting) and recovering cerium(IV) in the rare earth metal-containing acid leachate are performed.
도시된 구체예에 있어서, 산 침출액에 유기 용매, 예를 들면 수 불혼화성의 유기 인(organophosphorus) 화합물을 추출제로 사용함으로써 세륨(IV)를 +3의 산화가를 갖는 다른 희토류 금속으로부터 분리할 수 있다. 이러한 유기 인 화합물의 대표적인 예는 트리-알킬 포스핀 옥사이드계 화합물이며, 이중 적어도 하나를 사용할 수 있다. 예시적으로, 유기 인계 추출제는 상품명 Cyanex 923으로 시판 중이다. Cyanex 923은 4종의 유기 포스핀 옥사이드의 혼합물 형태로서 디옥틸-모노헥실 포스핀 옥사이드(R'R2P=O; 31 중량%), 모노-옥틸 디헥실 포스핀 옥사이드(R'2RP=O; 42 중량%), 트리-헥실 포스핀 옥사이드(R'3P=O; 14 중량%), 및 트리-n-옥틸 포스핀 옥사이드(R3P=O; 8 중량%)로 이루어져 있다.In the illustrated embodiment, cerium(IV) can be separated from other rare earth metals with an oxidation number of +3 by using an organic solvent in the acid leachate, such as a water immiscible organophosphorus compound, as an extractant. there is. Representative examples of such organic phosphorus compounds are tri-alkyl phosphine oxide-based compounds, and at least one of these can be used. By way of example, an organophosphorus extractant is commercially available under the trade name Cyanex 923. Cyanex 923 is a mixture of four types of organic phosphine oxides, including dioctyl-monohexyl phosphine oxide (R'R2P=O; 31% by weight) and mono-octyl dihexyl phosphine oxide (R'2RP=O; 42% by weight). wt%), tri-hexyl phosphine oxide (R'3P=O; 14 wt%), and tri-n-octyl phosphine oxide (R3P=O; 8 wt%).
한편, 추출 시 유기 인 화합물은 용매, 예를 들면 방향족 용매 내에 첨가 또는 용해시킨 상태에서 사용 가능한 바, 이러한 방향족 용매는 석유계 탄화수소 계열로 탄소수가 9 내지 11, 구체적으로는 탄소수가 10 내외 일 수 있고, 이로부터 1종 또는 2종 이상 조합하여 사용할 수 있다. 또한, 유기 인 화합물과 함께 상 개질제(phase modifier)를 사용할 수 있는 바, 이러한 상 개질제는, 예를 들면 n-헵탄, n-데칸올 등으로부터 선택되는 적어도 하나일 수 있고, 유기 상 기준으로, 예를 들면 약 1 내지 10 체적%, 구체적으로 약 3 내지 8 체적%, 보다 구체적으로 약 4 내지 6 체적%의 량으로 사용될 수 있다. 전술한 추출제의 조성은 예시적 취지로 이해될 수 있다.Meanwhile, during extraction, organic phosphorus compounds can be used while added or dissolved in a solvent, for example, an aromatic solvent. Such an aromatic solvent is a petroleum hydrocarbon series and may have 9 to 11 carbon atoms, specifically around 10 carbon atoms. From this, one type or two or more types can be used in combination. In addition, a phase modifier may be used together with the organic phosphorus compound. This phase modifier may be, for example, at least one selected from n-heptane, n-decanol, etc., and based on the organic phase, For example, it can be used in an amount of about 1 to 10 volume%, specifically about 3 to 8 volume%, and more specifically about 4 to 6 volume%. The composition of the above-described extractant may be understood as exemplary.
예시적 구체예에 따르면, 추출 시 유기 인 화합물의 농도(유기 상 기준)는, 예를 들면 약 0.05 내지 0.5 M, 구체적으로 약 0.15 내지 0.4 M, 보다 구체적으로 약 0.2 내지 0.3 M의 범위에서 조절될 수 있으나, 이에 한정되는 것은 아니다. According to an exemplary embodiment, the concentration of the organic phosphorus compound during extraction (based on the organic phase) is adjusted, for example, in the range of about 0.05 to 0.5 M, specifically about 0.15 to 0.4 M, more specifically about 0.2 to 0.3 M. It may be possible, but it is not limited to this.
예시적 구체예에 따르면, 추출 단계에서 유기 상/수 상의 체적 비(O/A)는, 예를 들면 약 5:1 내지 1:5, 구체적으로 약 4 : 1 내지 1 : 4, 보다 구체적으로 약 3:1 내지 1:3, 특히 구체적으로 약 2:1 내외의 범위일 수 있는 바, 유기 인 화합물 조성 및 수 상 원소 분포들을 고려하면 전술한 범위 내에서 조절하는 것이 유리할 수 있다. 또한, 추출 온도는 특별히 한정되는 것은 아니며, 예를 들면 약 10 내지 40 ℃, 구체적으로 약 20 내지 30 ℃, 보다 구체적으로 실온일 수 있다.According to an exemplary embodiment, the volume ratio (O/A) of the organic phase/aqueous phase in the extraction step is, for example, about 5:1 to 1:5, specifically about 4:1 to 1:4, more specifically It may be in the range of about 3:1 to 1:3, specifically about 2:1, and considering the organic phosphorus compound composition and aqueous phase element distribution, it may be advantageous to adjust it within the above-mentioned range. Additionally, the extraction temperature is not particularly limited and may be, for example, about 10 to 40°C, specifically about 20 to 30°C, and more specifically, room temperature.
이처럼, 희토류 금속-함유 침출액에 대한 추출 처리를 통하여 침출액 내 세륨(IV) 원소 중 적어도 약 95%, 구체적으로 적어도 약 98%, 보다 구체적으로 적어도 약 99%가 추출되는 한편, 다른 +3의 산화가를 갖는 희토류 금속의 추출은, 예를 들면 약 5% 이하, 구체적으로 약 4% 이하, 보다 구체적으로 약 3.5% 이하일 수 있다. 따라서, 세륨(IV)의 대부분은 익스트랙트에 함유되는 한편, 나머지 희토류 금속(구체적으로 +3의 산화가를 가짐)의 대부분은 라피네이트에 잔류하게 된다. In this way, through the extraction treatment of the rare earth metal-containing leachate, at least about 95%, specifically at least about 98%, and more specifically at least about 99% of the cerium(IV) element in the leachate is extracted, while the other +3 is oxidized. The extraction of rare earth metals having a value may be, for example, about 5% or less, specifically about 4% or less, and more specifically about 3.5% or less. Therefore, most of the cerium(IV) is contained in the extract, while most of the remaining rare earth metals (specifically with an oxidation number of +3) remain in the raffinate.
도시된 구체예에 따르면, 상술한 바와 같이, 세륨(IV)을 추출에 의하여 분리하여 얻은 세륨-풍부 익스트랙트(추출액)로부터 세륨을 고순도로 회수하는 단계가 수행될 수 있다.According to the illustrated embodiment, as described above, a step of recovering cerium in high purity from a cerium-rich extract obtained by separating cerium (IV) by extraction can be performed.
대표적으로, 세륨의 회수는 세륨(IV)을 세륨(III)으로 다시 전환(환원)시키고, 산을 이용하여 세륨(III)을 스트리핑하는 방식으로 수행될 수 있다. 이때, 산은 무기산, 예를 들면 질산, 염산, 황산, 과염소산 등으로부터 선택되는 적어도 하나일 수 있다. 예시적으로, 산의 농도는 세륨(III)의 농도를 고려하여 정하여질 수 있는 바, 예를 들면 약 0.2 내지 3. M, 구체적으로 약 0.5 내지 2.5 M, 보다 구체적으로 약 1 내지 2 M의 범위일 수 있으나, 이는 예시적 취지로 이해될 수 있다. 다만, 산의 농도가 증가할수록 세륨의 스트리핑은 증가하는 경향을 나타낼 수 있다.Typically, recovery of cerium can be performed by converting (reducing) cerium (IV) back to cerium (III) and stripping cerium (III) using acid. At this time, the acid may be at least one inorganic acid selected from, for example, nitric acid, hydrochloric acid, sulfuric acid, perchloric acid, etc. Exemplarily, the concentration of the acid may be determined considering the concentration of cerium (III), for example, about 0.2 to 3 M, specifically about 0.5 to 2.5 M, more specifically about 1 to 2 M. It may be a range, but this can be understood as an example. However, as the acid concentration increases, the stripping of cerium may tend to increase.
한편, 유기 상으로부터 세륨(IV) 또는 Ce4+를 스트리핑하기 위한 환원 스트리핑법에 있어서 과산화수소를 환원제로 사용할 수 있다. 과산화수소는 통상적으로 강한 산화제이면서 강한 환원제로 기능할 수 있는 바, 이의 표준 전위 값은 하기 반응식 7 내지 9와 같다.Meanwhile, hydrogen peroxide can be used as a reducing agent in a reductive stripping method for stripping cerium (IV) or Ce 4+ from the organic phase. Hydrogen peroxide is generally a strong oxidizing agent and can function as a strong reducing agent, and its standard potential values are shown in Schemes 7 to 9 below.
[반응식 7][Scheme 7]
Ce4+ + e- ↔ Ce3+ E0(Ce4+/Ce3+) = 1.74 VCe 4+ + e - ↔ Ce 3+ E 0 (Ce 4+ /Ce 3+ ) = 1.74 V
[반응식 8][Scheme 8]
O2 + 2H- + 2e- ↔ H2O2 E0(O2/H2O2) = 0.693 VO 2 + 2H - + 2e - ↔ H 2 O 2 E 0 (O 2 /H 2 O 2 ) = 0.693 V
[반응식 9][Scheme 9]
E0 = E0(Ce4+/Ce3+) - E0(O2/H2O2) = 1.74 - 0.693 = 1.047 > 0E 0 = E 0 (Ce 4+ /Ce 3+ ) - E 0 (O 2 /H 2 O 2 ) = 1.74 - 0.693 = 1.047 > 0
상기 식으로부터 과산화수소는 Ce4+는 Ce3+으로 환원될 수 있으며, 환원 프로세스 중 다른 금속 불순물이 혼입되지 않기 때문에 유리할 수 있다. 이와 같이 환원제에 의하여 형성된 Ce3+는 산 용액을 이용하여 수계 상 내로 스트리핑될 수 있다. 예시적 구체예에 따르면, 과산화수소의 농도는, 예를 들면 약 0.01 내지 1 M, 구체적으로 약 0.05 내지 0.5 M, 보다 구체적으로 약 0.08 내지 0.2 M, 특히 구체적으로 약 0.1 M 부근에서 정하여질 수 있다. From the above equation, hydrogen peroxide can be advantageous because Ce 4+ can be reduced to Ce 3+ and other metal impurities are not mixed during the reduction process. Ce 3+ formed by the reducing agent in this way can be stripped into the aqueous phase using an acid solution. According to an exemplary embodiment, the concentration of hydrogen peroxide may be set, for example, around 0.01 to 1 M, specifically around 0.05 to 0.5 M, more specifically around 0.08 to 0.2 M, and particularly specifically around 0.1 M. .
전술한 환원 스트리핑을 통하여, 익스트랙트 내 세륨 원소 중 적어도 약 60%, 구체적으로 적어도 약 90%, 보다 구체적으로 적어도 약 95%가 스트리핑될 수 있으며, 그 결과 세륨 수용액이 형성될 수 있다. 수득된 세륨 산 용액(수용액)으로부터 세륨을 회수하기 위하여, 예를 들면, 유기산 이온, 구체적으로 옥살산 이온(또는 옥살레이트 이온)을 공급하여 반응시킴으로써 세륨의 유기산 염(구체적으로 옥살레이트 염)의 침전물, 구체적으로 고순도의 세륨 염을 형성할 수 있다. 일 예로서, 옥살산 이온의 소스로서, 예를 들면 암모늄 옥살레이트, 옥살산, 옥살산나트륨, 옥살산칼륨 등을 예시할 수 있으며, 이중 적어도 하나를 사용할 수 있다. 이때, 옥살산 이온의 농도는, 세륨 수용액 내 세륨의 량에 따라 정하여질 수 있는 바, 예를 들면 약 0.002 내지 2 M, 구체적으로 약 0.005 내지 1 M, 보다 구체적으로 약 0.01 내지 0.05 M, 특히 구체적으로 약 0.02 내지 0.03 M의 범위일 수 있다. 다만, 상기 수치 범위는 예시적 취지로 이해될 수 있다. Through the above-described reduction stripping, at least about 60%, specifically at least about 90%, and more specifically at least about 95% of the cerium elements in the extract may be stripped, and as a result, a cerium aqueous solution may be formed. In order to recover cerium from the obtained cerium acid solution (aqueous solution), for example, an organic acid ion, specifically an oxalate ion (or oxalate ion) is supplied and reacted to precipitate an organic acid salt of cerium (specifically an oxalate salt). , specifically, it is possible to form a high purity cerium salt. As an example, the source of oxalate ions may include ammonium oxalate, oxalic acid, sodium oxalate, potassium oxalate, etc., and at least one of these may be used. At this time, the concentration of oxalate ions may be determined depending on the amount of cerium in the cerium aqueous solution, for example, about 0.002 to 2 M, specifically about 0.005 to 1 M, more specifically about 0.01 to 0.05 M, especially specifically It may range from about 0.02 to 0.03 M. However, the above numerical range may be understood as illustrative.
또한, 침전물 형성 시 온도 조건은 특별히 한정되는 것은 아니지만, 예를 들면 약 20 내지 90 ℃, 구체적으로 약 50 내지 85 ℃, 보다 구체적으로 약 60 내지 80 ℃의 범위에서 조절될 수 있다.In addition, the temperature conditions for forming the precipitate are not particularly limited, but may be adjusted, for example, to a range of about 20 to 90°C, specifically about 50 to 85°C, and more specifically about 60 to 80°C.
한편, 세륨의 스트리핑 이후, 남은 유기 상, 즉 유기 용매는 리사이클되어 전단의 세륨(IV) 추출을 위한 추출제로 사용될 수 있다.Meanwhile, after stripping of cerium, the remaining organic phase, i.e. organic solvent, can be recycled and used as an extractant for cerium(IV) extraction in the front end.
세륨 이외의 희토류 금속의 분리 회수Separation and recovery of rare earth metals other than cerium
도 1을 다시 참조하면, 세륨의 추출 과정에서 익스트랙트로부터 분리된 라피네이트는 세륨-고갈된 상태이며, 세륨 이외의 희토류 금속(구체적으로 +3의 산화가를 갖는 희토류 금속)을 주로 함유하고 있다. 예시적 구체예에 따르면, 세륨-고갈된 라피네이트로부터 세륨 이외의 희토류 금속을 회수하는 단계를 더 포함할 수 있다.Referring back to Figure 1, the raffinate separated from the extract during the extraction of cerium is in a cerium-depleted state and mainly contains rare earth metals other than cerium (specifically, rare earth metals with an oxidation value of +3). . According to an exemplary embodiment, the method may further include recovering rare earth metals other than cerium from the cerium-depleted raffinate.
이때, 라피네이트 내에 함유된 세륨 이외의 희토류 금속을 회수할 목적으로, 세륨 회수 절차와 유사하게, 예를 들면, 유기산 이온, 구체적으로 옥살산 이온(또는 옥살레이트 이온)을 공급하고 이와 반응시켜 희토류 금속(예를 들면, 란탄 및/또는 이트륨)의 유기산 염(구체적으로 옥살레이트 염)의 침전물을 형성함으로써, 고순도의 희토륨 금속을 회수할 수 있다.At this time, for the purpose of recovering rare earth metals other than cerium contained in the raffinate, similar to the cerium recovery procedure, for example, organic acid ions, specifically oxalate ions (or oxalate ions) are supplied and reacted to produce rare earth metals. By forming a precipitate of an organic acid salt (specifically an oxalate salt) of (e.g., lanthanum and/or yttrium), high purity rare thorium metal can be recovered.
예시적 구체예에 따르면, 세륨 이외의 희토류 금속 옥살레이트 염을 형성할 경우, 옥살산 이온의 농도는, 예를 들면 약 0.01 내지 0.1 M, 구체적으로 약 0.02 내지 0.07 M, 보다 구체적으로 약 0.03 내지 0.05 M의 범위일 수 있다. 다만, 상기 수치 범위는 예시적 취지로 이해될 수 있다. 또한, 침전물 형성은 승온 조건, 예를 들면 약 60 내지 95 ℃, 구체적으로 약 65 내지 90 ℃, 보다 구체적으로 약 70 내지 85 ℃의 범위에서 조절되는 온도에서 수행될 수 있다.According to an exemplary embodiment, when forming a rare earth metal oxalate salt other than cerium, the concentration of oxalate ions is, for example, about 0.01 to 0.1 M, specifically about 0.02 to 0.07 M, more specifically about 0.03 to 0.05 M. It may be in the range of M. However, the above numerical range may be understood as illustrative. Additionally, the formation of the precipitate may be performed under elevated temperature conditions, for example, at a temperature controlled in the range of about 60 to 95°C, specifically about 65 to 90°C, and more specifically about 70 to 85°C.
이처럼, 침전 과정을 통하여 라피네이트 내 란탄 및/또는 이트륨과 같은 희토륨(+3의 산화가를 가짐) 원소 중 적어도 약 50%, 구체적으로 적어도 약 80%, 보다 구체적으로 적어도 약 95%, 그리고 심지어 약 98%가 침전물(또는 공침물)로 수득될 수 있다. 이때, 수득되는 희토류 금속은 형광물질의 제조 시 전구체로, 또는 촉매 전구체로 사용 가능하다.In this way, through the precipitation process, at least about 50%, specifically at least about 80%, more specifically at least about 95% of the rare thorium (having an oxidation number of +3) elements such as lanthanum and/or yttrium in the raffinate, and Even about 98% can be obtained as precipitate (or coprecipitate). At this time, the obtained rare earth metal can be used as a precursor or catalyst precursor when producing a fluorescent material.
본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다. The present invention can be more clearly understood by the following examples, which are for illustrative purposes only and are not intended to limit the scope of the invention.
실시예Example
가. 물질go. matter
본 실시예에서 사용된 물질은 하기 표 2와 같다.The materials used in this example are listed in Table 2 below.
물질명substance name 제조사manufacturing company
GlucoseGlucose ACS Reagent ChemicalsACS Reagent Chemicals
NaNO3 NaNO 3 Sigma-AldrichSigma-Aldrich
MgSO4.7H2OMgSO 4.7H 2 O Sigma-AldrichSigma-Aldrich
KClKCl Sigma-AldrichSigma-Aldrich
(NH4)2SO4 (NH 4 ) 2 SO 4 Sigma-AldrichSigma-Aldrich
K2HPO4 K 2 HPO 4 Sigma-AldrichSigma-Aldrich
Yeast extractYeast extract Sigma-AldrichSigma-Aldrich
NaOHNaOH Junsei Chemical Co. Ltd.Junsei Chemical Co. Ltd.
H2SO4 H 2 SO 4 DaejungDaejung
HClHCl DaejungDaejung
HNO3 HNO 3 Riedel-deHaenRiedel-de-Haen
Organophosphorus compoundsOrganophosphorus compounds Cyantec. Inc. Canada, SolvayCyantec. Inc. Canada, Solvay
TBPTBP Sigma-Aldrich Sigma-Aldrich
IsododecanolIsododecanol Shanghai ChemicalsShanghai Chemicals
C10C10 Shanghai ChemicalsShanghai Chemicals
H2O2 H 2 O 2 MerckMerck
C2H8N2O4 C 2 H 8 N 2 O 4 Sigma AldrichSigma Aldrich
나. 분석 방법me. Analysis method
본 실시예에서 수행된 분석은 하기와 같이 수행되었다.The analysis performed in this example was performed as follows.
- XRD 패턴은 X'pert PRO PANalytical를 사용하여 분석하였다.- The XRD pattern was analyzed using X'pert PRO PANalytical.
- 수상(aqueous phase) 또는 유기 상(organic phase) 내 금속 원소의 함량은 유도결합플라즈마-유도방출스펙트럼법으로 분석하였는 바, iCAP 7400 Duo (Thermo Scientific, USA)를 이용하였다.- The content of metal elements in the aqueous phase or organic phase was analyzed by inductively coupled plasma-stimulated emission spectroscopy using iCAP 7400 Duo (Thermo Scientific, USA).
실시예 1Example 1
표 1에 기재된 조성을 갖는 맥상(vein-deposit) 모나자이트 광석을 볼 밀에 의하여 80 내지 325 메쉬 사이즈로 분쇄하였고, 도 1에 도시된 바와 같이 인을 바이오침출시켰다. 이때, 사용된 인 가용성 미생물로서 A. japonicus, A. aculeatus, A. niger, P. cinnamopurpureum, P. chrysogenum의 혼합종을 사용하였다.Vein-deposit monazite ore with the composition shown in Table 1 was ground to a mesh size of 80 to 325 by a ball mill, and phosphorus was bioleached as shown in FIG. 1. At this time, a mixed species of A. japonicus, A. aculeatus, A. niger, P. cinnamopurpureum, P. , and chrysogenum was used as the phosphorus-soluble microorganism.
100 g의 모나자이트 광석 샘플을 200 rpm의 일정한 교반 속도 및 30 ℃의 운전 온도로 1.5 L 용량의 생물 반응기에 투입하여 바이오침출을 수행하였다. 이때, 변형된 성장 배지에서 초기 배양된 미생물(3 x 109 spores/mL)을 배양하였고, 배지는 9 내지 55 g/L의 자당(glucose), 6.0 g/L NaNO3, 0.52 g/L MgSO4.·7H2O, 0.52 g/L KCl, 및 1.6 g/L 효모 추출물로 구성하였다. Bioleaching was performed by introducing 100 g of monazite ore sample into a 1.5 L capacity bioreactor at a constant stirring speed of 200 rpm and an operating temperature of 30 °C. At this time , the initially cultured microorganisms ( 3 It consisted of 4. ·7H 2 O, 0.52 g/L KCl, and 1.6 g/L yeast extract.
인산염의 유일한 공급원인 모나자이트 광석은 액고 비(배지 : 광석)를 10으로 조절하여 투입하였고. 초기에 배지의 pH를 4.5(5 중량% dil. H2SO4 사용)로 조정하였다. 48시간 배양 후, pH를 다시 6.0(5 중량% dil. NaOH 사용)으로 조정하였고, 미생물 처리 과정 동안 유지시켰다. 정확성을 위하여, 실험은 최대 총 14일 동안 24 시간 간격으로 반복 실행하였다. Monazite ore, the only source of phosphate, was added by adjusting the liquid-to-liquid ratio (medium: ore) to 10. Initially, the pH of the medium was adjusted to 4.5 (using 5 wt% dil. H 2 SO 4 ). After 48 hours of incubation, the pH was adjusted back to 6.0 (using 5 wt% dil. NaOH) and maintained during the microbial treatment process. For accuracy, experiments were repeated at 24-hour intervals for a total of up to 14 days.
모나자이트 샘플에 대한 인 침출 과정 중 시간 경과에 따른 대사 산(metabolic acid)의 생성 농도 및 바이오침출율을 도 2에 각각 나타내었다.The production concentration and bioleaching rate of metabolic acid over time during the phosphorus leaching process for the monazite sample are shown in Figure 2.
상기 도면에 따르면, 3일까지는 대사 산의 생성은 무시할 수 있는 수준이었는 바, 용액 내에서 유의미한 농도의 인이 관찰되지 않았음을 지시한다. 그러나, 미생물 처리 후 9일이 경과한 시점에서는 470 mM의 옥살산, 300 mM의 글루콘산, 그리고 70 mM의 시트르산을 포함하는 약 840 mM의 유기산(대사 산)이 생성되었고, 이는 14일까지 거의 변화가 없었다. 또한, 3일에서 10일 사이의 구간에서 유기산의 생성이 급격히 증가하여 >80%에 도달하였다. 이후, 14일까지 인의 침출 효율은 크게 변하지 않았고 82.6% 수준에 이르렀다. According to the figure, the production of metabolic acids was negligible until day 3, indicating that no significant concentration of phosphorus was observed in the solution. However, at 9 days after microbial treatment, approximately 840 mM organic acids (metabolic acids), including 470 mM oxalic acid, 300 mM gluconic acid, and 70 mM citric acid, were produced, which remained largely unchanged until 14 days. There was no. Additionally, the production of organic acids increased rapidly in the period between 3 and 10 days, reaching >80%. Afterwards, the phosphorus leaching efficiency did not change significantly until 14 days and reached a level of 82.6%.
이처럼, 용액 내 유기산과 장기간 접촉한 후에도 샘플 내 인의 침출 정도에는 실질적인 변화가 없었는 바, 미생물이 지수성장 단계를 통과하는 것으로 확인되었고, 미생물 성장을 유지하기 위한 에너지원으로 인이 추가적으로 요구되지는 않았다. 또한, 침출 과정에서 인 이외에도 77% Na, 85% K, 81% Ca, 0.56% Y, 0.13% La 및 7.6% Fe가 침출됨을 확인하였다.As such, there was no substantial change in the degree of phosphorus leaching in the sample even after prolonged contact with the organic acid in the solution, confirming that the microorganism passed the exponential growth stage, and no additional phosphorus was required as an energy source to maintain microbial growth. . Additionally, it was confirmed that in addition to phosphorus, 77% Na, 85% K, 81% Ca, 0.56% Y, 0.13% La, and 7.6% Fe were leached during the leaching process.
실시예 2Example 2
실시예 1에서 인 침출 후, 남은 잔류물에 대하여 2차 바이오침출을 수행하였다. 이때, 폐 배지(spent medium)를 이용한 미생물의 생화학적 반응에 의하여 대사생성 침출제를 생성하였으며, 사용된 미생물은 Alicyclobacilli 속 및 Sulfobacillus 속의 혼합종이었다.After phosphorus leaching in Example 1, a second bioleaching was performed on the remaining residue. At this time, a metabolic leaching agent was produced through a biochemical reaction of microorganisms using spent medium, and the microorganisms used were a mixed species of the genus Alicyclobacilli and Sulfobacillus .
또한, 미생물은 변형된 9K 배지에서 배양되었으며, 50 ℃의 온도, 그리고 0.5 L/min 유속의 외부 공기의 폭기 조건에서 생물학적 유황(폐수 처리장의 침전조에서 수집) 및 자당(sucrose)을 에너지 소스로 보충하였다. 액/고 비(L/S ratio)를 2.5로 유지하고, pH 1.5에서 생성된 1.0 L 대사생성 침출제를 실시예 1에서 얻어진 25 g의 철-풍부 잔류물과 폐 배지 간 접촉에 사용하였다. 바이오침출은 50 ℃의 유지 온도 및 300 rpm의 교반 속도 조건 하에서 21일 동안 1.5 L 용량의 생물 반응기에서 수행하였다. 시간 경과에 따른 철의 침출 거동을 도 3에 나타내었다.Additionally, the microorganisms were cultured in modified 9K medium, supplemented with biological sulfur (collected from the sedimentation tank of the wastewater treatment plant) and sucrose as energy sources at a temperature of 50 °C and aeration of external air at a flow rate of 0.5 L/min. did. The liquid/solid ratio (L/S ratio) was maintained at 2.5, and 1.0 L of metabolic leachable produced at pH 1.5 was used to contact 25 g of iron-rich residue obtained in Example 1 with the spent medium. Bioleaching was performed in a 1.5 L capacity bioreactor for 21 days under the conditions of a holding temperature of 50 °C and a stirring speed of 300 rpm. The leaching behavior of iron over time is shown in Figure 3.
상기 도면에 따르면, 생물학적 침출을 개시하고 4일이 경과한 후, 철 침출은 50% 이상에 도달하였고, 6일 후에는 약 90%에 도달하였다. 99.8%를 초과하는 철 침출은 8일 후에 나타났다. 다만, 시간이 추가적으로 경과하더라도, 약 4848 mg/L 이상의 철 침출은 관찰되지 않았다(포화 상태). 포화 상태는 초기 pH 1.5에서 약 2.6의 최종 pH까지 증가된 pH 값으로부터 기인한 것으로 판단된다. 철 이외에도, Na, Ca 및 K 이온의 대부분이 침출되었다. 다만, La 및 Y는 약 2% 미만으로 침출되었다. According to the figure, 4 days after starting biological leaching, iron leaching reached more than 50%, and after 6 days, it reached about 90%. Iron leaching exceeding 99.8% occurred after 8 days. However, even as additional time elapsed, iron leaching of more than about 4848 mg/L was not observed (saturated state). The saturation state is believed to result from an increased pH value from an initial pH of 1.5 to a final pH of approximately 2.6. In addition to iron, most of Na, Ca and K ions were leached. However, La and Y were leached to less than about 2%.
실시예 3Example 3
실시예 2에 수득된 철-고갈된 잔사물 내 희토류 금속(REM)을 침출시키기 위하여 밀폐된 용기에서 질산 용액을 이용하여 침출을 진행하고, 추가적으로 오존-니트로화 처리를 수행하였다. 그 결과, 세륨의 산화 상태를 Ce3+에서 Ce4+로 전환시켰다. 이때, 가스는 O3를 O2로 전환하는 CuO 및 MnO2의 촉매층이 구비된 촉매적 분해기로 주입되었다. 철-고갈된 잔류물 20 g을 오존의 공급 및 액고 비 10의 조건 하에서 다양한 농도의 질산 용액(0.5 내지 4.0 mol/L HNO3)에 의하여 침출시켰다. 또한, 3.0 L/min의 O3 유량 및 55 ℃의 온도 조건에서 4시간 동안 유지시켰다. 질산의 농도에 따른 3종의 희토류 금속(Ce, La 및 Y) 각각의 침출률을 도 4에 나타내었다.In order to leach rare earth metals (REM) in the iron-depleted residue obtained in Example 2, leaching was performed using a nitric acid solution in a closed container, and ozone-nitration treatment was additionally performed. As a result, the oxidation state of cerium was converted from Ce 3+ to Ce 4+ . At this time, the gas was injected into a catalytic cracker equipped with a catalyst layer of CuO and MnO 2 that converts O 3 into O 2 . 20 g of the iron-depleted residue was leached with various concentrations of nitric acid solutions (0.5 to 4.0 mol/L HNO 3 ) under the conditions of ozone supply and a liquid-to-liquid ratio of 10. Additionally, it was maintained for 4 hours at an O 3 flow rate of 3.0 L/min and a temperature of 55°C. The leaching rates of each of the three rare earth metals (Ce, La, and Y) according to the concentration of nitric acid are shown in Figure 4.
상기 도면을 참조하면, 0.5 mol/L의 HNO3 용액을 사용할 경우, 희토류 금속의 침출이 매우 낮았다. 그러나, 1.0 mol/L의 HNO3에서는 희토류 금속의 침출이 크게 증가하였고, 4.0 mol/L의 HNO3에서 최대 값을 나타내었다. 특히, 4.0 mol/L의 HNO3를 사용할 경우, 90%를 초과하는 Ce, 그리고 98% 이상의 Y 및 La이 산 용액에 침출되었으며, 침출액 내 희토류 금속 각각의 농도는 1046 mg/L Ce4+, 688 mg/L Y3+ 및 384 mg/L La3+로 확인되었다. Referring to the figure, when 0.5 mol/L HNO 3 solution was used, the leaching of rare earth metals was very low. However, leaching of rare earth metals increased significantly at 1.0 mol/L HNO 3 and reached its maximum value at 4.0 mol/L HNO 3 . In particular, when 4.0 mol/L of HNO 3 was used, more than 90% of Ce and more than 98% of Y and La were leached into the acid solution, and the concentrations of each rare earth metal in the leach solution were 1046 mg/L Ce 4+ , It was confirmed to be 688 mg/LY 3+ and 384 mg/L La 3+ .
실시예 4Example 4
실시예 3에서 3.0 mol/L의 HNO3를 사용하여 얻은 침출액은 1025 mg/L의 Ce4+, 682 mg/L의 Y3+, 그리고 372 mg/L의 La3+를 함유하였으며, 이를 대상으로 솔보-케미컬 분리 및 희토류 금속 회수를 수행하였다. The leachate obtained using 3.0 mol/L of HNO 3 in Example 3 contained 1025 mg/L of Ce 4+ , 682 mg/L of Y 3+ , and 372 mg/L of La 3+ , which was Solvo-chemical separation and rare earth metal recovery were performed.
다양한 농도(0.05 내지 0.25 mol/L)의 4가지 유기인 화합물 예비 혼합물(organophosphorus compounds pre-mixture)를 미리 평형화시켜 농도가 상이한 수불혼화성(water immiscible) 추출제 매질을 구성하였다. 특히, 유기인 화합물의 예비 혼합물은 31 중량%의 디옥틸-모노헥실 P=O; 42 중량%의 모노-옥틸 디헥실 P=O; 14중량%의 트리-헥실 P=O; 및 8 중량%의 트리옥틸 P=O를 상 개질제(phase modifier)로서 5 체적%와 혼합하고 방향족 용매에서 제조하였다. Pre-mixtures of four organophosphorus compounds at various concentrations (0.05 to 0.25 mol/L) were pre-equilibrated to form water immiscible extractant media with different concentrations. In particular, the premixture of organophosphorus compounds contains 31% by weight of dioctyl-monohexyl P=O; 42% by weight mono-octyl dihexyl P=O; 14% by weight tri-hexyl P=O; and 8% by weight of trioctyl P=O were mixed with 5% by volume as a phase modifier and prepared in an aromatic solvent.
희토류 금속 침출액 25 mL 및 수 불혼화성 용매 혼합물 50 mL를 100 mL 용량의 유리 분리 펀넬(funnel)에서 접촉시켰다. 실온에서 5분 간의 평형 시간 동안 평형화된 용액에 대하여 수상 및 유기 상을 모두 침강시키는 시간(10분) 동안 분리하였다. 라피네이트로서 바닥 침강 수계 스트림(aqueous stream)을 수집하였고, 라피네이트 내 희토류 금속의 농도를 적절히 희석한 후에 분석하였다. 유기계 추출제의 농도에 따른 침출액 내 3종의 희토류 금속(Ce, La 및 Y)의 추출율을 도 5에 나타내었다.25 mL of rare earth metal leachate and 50 mL of water immiscible solvent mixture were contacted in a 100 mL glass separation funnel. For the solution equilibrated for 5 minutes at room temperature, both the aqueous and organic phases were separated for a settling time (10 minutes). The bottom settling aqueous stream as raffinate was collected, and the concentration of rare earth metals in the raffinate was analyzed after appropriate dilution. The extraction rates of three rare earth metals (Ce, La, and Y) in the leachate according to the concentration of the organic extractant are shown in Figure 5.
상기 도면에 따르면, 유기 상으로 0.25 mol/L 추출제를 사용한 단일 추출 단계를 통하여 침출액 내 세륨의 정량적 추출을 달성하였다(대략 99%). 반면, 란탄 및 이트륨의 동시 추출은 3.5% 미만이었다. 이와 같이 동시 추출된 +3 산화가의 희토류 금속 및 유기 상에 로딩된 질산은 물과 접촉하여 스크러빙(scrubbing)함으로써 분리하였다.According to the figure, quantitative extraction of cerium in the leachate was achieved (approximately 99%) through a single extraction step using 0.25 mol/L extractant as the organic phase. On the other hand, the simultaneous extraction of lanthanum and yttrium was less than 3.5%. The rare earth metal with an oxidation value of +3 and the nitric acid loaded on the organic phase thus simultaneously extracted were separated by contact with water and scrubbing.
실시예 5Example 5
실시예 4에서 얻은 Ce(IV)-함유 익스트랙트(유기 용매)에 대하여 염산 수용액(2.0 M)을 이용하여 환원 스트리핑(reduction stripping)을 수행하였는 바, 이때 환원제(reducing agent)로서 H2O2(0.1 mol/L)를 첨가하였다. Reduction stripping was performed on the Ce(IV)-containing extract (organic solvent) obtained in Example 4 using an aqueous hydrochloric acid solution (2.0 M), where H 2 O 2 was used as a reducing agent. (0.1 mol/L) was added.
50 mL의 세륨-함유 익스트랙트 및 25 mL의 염산 수용액을 100 mL 용량의 분리 펀넬에서 접촉시켰다. 실온에서 5분의 평형 시간 동안 평형화된 용액에 대하여 수상 및 유기 상을 모두 침강시키는 시간(10분) 동안 분리하였다. 라피네이트로서 바닥 침전 수성 스트림을 수집하였고, 적절히 희석한 후에 세륨 농도를 측정하였다. 세륨-함유 익스트랙트에 대하여 H2O2(농도: 0.1 mol/L)를 이용한 염산 스트리핑을 수행하는 단계 중 염산 농도(0.5 내지 2.0 mol/L)에 따른 세륨 스트리핑율을 도 6에 나타내었다.50 mL of cerium-containing extract and 25 mL of aqueous hydrochloric acid solution were brought into contact in a 100 mL separation funnel. For the solution equilibrated for 5 minutes at room temperature, both the aqueous and organic phases were separated for a settling time (10 minutes). The bottom settling aqueous stream was collected as raffinate and the cerium concentration was measured after appropriate dilution. The cerium stripping rate according to the hydrochloric acid concentration (0.5 to 2.0 mol/L) during the step of performing hydrochloric acid stripping using H 2 O 2 (concentration: 0.1 mol/L) on the cerium-containing extract is shown in Figure 6.
상기 도면을 참조하면, 산 농도가 증가함에 따라 Ce(III)의 스트리핑이 증가하였고, 최대 96.2%의 세륨이 2.0 mol/L HCl로 스트리핑되었음을 알 수 있다. 또한, 스트리핑된 용액에 암모늄 옥살레이트 염을 첨가한 결과, 세륨 옥살레이트가 형성되었다(도 7 참조).Referring to the figure, it can be seen that the stripping of Ce(III) increased as the acid concentration increased, and up to 96.2% of cerium was stripped with 2.0 mol/L HCl. Additionally, when ammonium oxalate salt was added to the stripped solution, cerium oxalate was formed (see Figure 7).
실시예 6Example 6
실시예 4에서 세륨 추출 후에 생성된 라피네이트 100 mL에 침전 염으로서 암모늄 옥살레이트를 첨가하여 La3+ 및 Y3+을 침전시켰다. 이때, 침전 조건은 온도 90 ℃, 교반 속도 150 rpm, 그리고 접촉 시간 30분으로 설정하였고, 0.025 mol/L의 옥살레이트 이온을 사용하여 +3의 산화가를 갖는 희토류 금속의 약 98%를 침전물로 수득하였다. 이와 관련하여, 세륨 이외의 희토류 금속(La, Y)의 침전물(옥살레이트 침전물) 형성하는 과정 중 옥살레이트 이온의 농도에 따른 희토류 금속의 침전율을 도 8에 나타내었다. 또한, 희토류 금속(La, Y)의 옥살레이트 혼합 침전물에 대한 XRD 패턴을 도 9에 나타내었다.In Example 4, ammonium oxalate was added as a precipitating salt to 100 mL of raffinate produced after cerium extraction to precipitate La 3+ and Y 3+ . At this time, the precipitation conditions were set to a temperature of 90°C, a stirring speed of 150 rpm, and a contact time of 30 minutes, and about 98% of the rare earth metal with an oxidation value of +3 was deposited using 0.025 mol/L oxalate ions. Obtained. In this regard, the precipitation rate of rare earth metals (La, Y) other than cerium according to the concentration of oxalate ions during the formation of deposits (oxalate precipitates) is shown in Figure 8. Additionally, the XRD pattern for the oxalate mixed precipitate of rare earth metals (La, Y) is shown in Figure 9.
상기 도면을 참조하면, 옥살레이트 이온의 농도가 증가함에 따라 희토류 혼합물(La,Y)의 옥살레이트 염의 침전량이 증가하였음을 알 수 있다.Referring to the figure, it can be seen that as the concentration of oxalate ions increases, the amount of precipitation of the oxalate salt of the rare earth mixture (La, Y) increases.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily used by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (20)

  1. a) 인-가용성 미생물을 고상의 희토류 금속-함유 인산염 소스와 함께 배양시키면서 상기 미생물로부터 배출되는 대사 산(metabolic acid)에 의하여 희토류 금속-함유 인산염 소스 내 인을 침출시켜 인-함유 침출액 및 인-고갈된(depleted) 잔류물을 형성하는 단계, 상기 희토류 금속-함유 인산염 소스는, (i) 세륨, (ii) 세륨 이외의 적어도 하나의 희토류 금속, 및 (iii) 철을 포함함;a) While culturing phosphorus-soluble microorganisms with a solid rare earth metal-containing phosphate source, phosphorus in the rare earth metal-containing phosphate source is leached by metabolic acid released from the microorganisms to form a phosphorus-containing leachate and phosphorus-containing phosphate source. forming a depleted residue, the rare earth metal-containing phosphate source comprising: (i) cerium, (ii) at least one rare earth metal other than cerium, and (iii) iron;
    b) 황 및 철 산화능을 갖는 미생물을 상기 인-고갈된 잔류물과 함께 배양하여 상기 황 및 철 산화능을 갖는 미생물로부터 배출되는 대사생성 침출제에 의하여 인-고갈된 잔류물 내 철을 침출시켜 철-고갈(depleted) 잔류물을 형성하는 단계;b) Microorganisms with sulfur and iron oxidation capabilities are cultured with the phosphorus-depleted residue, and iron in the phosphorus-depleted residue is leached by a metabolic leaching agent released from the microorganisms with sulfur and iron oxidation capabilities to produce iron. - forming a depleted residue;
    c) 상기 철-고갈된 잔류물을 산으로 처리하여 희토류 금속을 침출시킴과 함께 희토류 금속 중 세륨(III)을 선택적으로 산화시켜 세륨(IV)으로 전환시키는 단계;c) treating the iron-depleted residue with acid to leach rare earth metals and selectively oxidize cerium(III) among the rare earth metals to convert it to cerium(IV);
    d) 상기 단계 c)에서 얻어진 침출액 내 세륨(IV)을 유기 용매에 의하여 추출하여 세륨-풍부(rich) 익스트랙트(extract) 및 세륨-고갈된(depleted) 라피네이트를 형성하는 단계; 및d) extracting cerium(IV) in the leachate obtained in step c) with an organic solvent to form a cerium-rich extract and a cerium-depleted raffinate; and
    e) 상기 익스트랙트로부터 세륨을 회수하는 단계;e) recovering cerium from the extract;
    를 포함하는 희토류 금속의 회수 방법.A method for recovering rare earth metals comprising:
  2. 제1항에 있어서, 상기 희토류 금속-함유 인산염 소스는, 원소 기준으로, 0.05 내지 0.6 중량%의 인(P)을 함유하는 것을 특징으로 하는 희토류 금속의 회수 방법.2. The method of claim 1, wherein the rare earth metal-containing phosphate source contains 0.05 to 0.6 weight percent phosphorus (P) on an elemental basis.
  3. 제1항에 있어서, 상기 희토류 금속-함유 인산염 소스는, 원소 기준으로, 0.5 내지 4 중량%의 세륨, 0.1 내지 3.5 중량%의 세륨 이외의 적어도 하나의 희토류 금속, 및 5 내지 30 중량%의 철을 포함하는 것을 특징으로 하는 희토류 금속의 회수 방법.2. The method of claim 1, wherein the rare earth metal-containing phosphate source comprises, on an elemental basis, 0.5 to 4% by weight cerium, 0.1 to 3.5% by weight of at least one rare earth metal other than cerium, and 5 to 30% by weight iron. A method for recovering rare earth metals comprising:
  4. 제3항에 있어서, 상기 희토류 금속-함유 인산염 소스는, 산화물 형태의 기타 금속을 25 중량%까지 포함하는 것을 특징으로 하는 희토류 금속의 회수 방법.4. The method of claim 3, wherein the rare earth metal-containing phosphate source contains up to 25% by weight of other metals in oxide form.
  5. 제3항에 있어서, 상기 희토류 금속-함유 인산염 소스는 모나자이트인 것을 특징으로 하는 희토류 금속의 회수 방법.4. The method of claim 3, wherein the rare earth metal-containing phosphate source is monazite.
  6. 제1항에 있어서, 상기 단계 a)에서 희토류 금속-함유 인산염 소스는 50 내지 400 메쉬 범위의 사이즈를 갖는 입자 또는 분쇄물 형태인 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 1, wherein the rare earth metal-containing phosphate source in step a) is in the form of particles or pulverized particles having a size ranging from 50 to 400 mesh.
  7. 제1항에 있어서, 상기 세륨 이외의 희토류 금속은 란탄(La) 및 이트륨(Y) 중 적어도 하나를 포함하는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of recovering rare earth metals according to claim 1, wherein the rare earth metals other than cerium include at least one of lanthanum (La) and yttrium (Y).
  8. 제3항에 있어서, 상기 기타 금속은 실리콘, 티타늄, 알루미늄, 지르코늄, 나트륨, 칼륨, 칼슘, 망간 및 마그네슘으로 이루어지는 군으로부터 선택되는 적어도 하나를 포함하는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 3, wherein the other metals include at least one selected from the group consisting of silicon, titanium, aluminum, zirconium, sodium, potassium, calcium, manganese, and magnesium.
  9. 제1항에 있어서, 상기 인-가용성 미생물은 Aspergillus 속 및 Penicillium 속으로 이루어진 군으로부터 선택되는 적어도 하나이고, 그리고The method of claim 1, wherein the phosphorus-soluble microorganism is at least one selected from the group consisting of Aspergillus genus and Penicillium genus, and
    상기 황 및 철 산화능을 갖는 미생물은 Alicyclobacillus 속 및 Sulfobacillus 속으로 이루어진 군으로부터 선택되는 적어도 하나인 것을 특징으로 하는 희토류 금속의 회수 방법.A method for recovering rare earth metals, wherein the microorganism having the ability to oxidize sulfur and iron is at least one selected from the group consisting of Alicyclobacillus genus and Sulfobacillus genus.
  10. 제1항에 있어서, 상기 단계 a)에서 대사 산은 옥살산을 포함하고, 이때 대사 산 중 옥살산의 농도는 적어도 200 mM의 범위에서 정하여지는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 1, wherein the metabolic acid in step a) includes oxalic acid, and the concentration of oxalic acid in the metabolic acid is set to at least 200 mM.
  11. 제1항에 있어서, 상기 단계 a)에서 인산염 소스 내 희토류 금속 중 일부가 대산 산에 의하여 유기 염 형태로 침전되어 잔류물에 함유되는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of recovering rare earth metals according to claim 1, wherein in step a), some of the rare earth metals in the phosphate source are precipitated in the form of organic salts by large acid and contained in the residue.
  12. 제1항에 있어서, 상기 단계 a)에서 배양은 성장 배지에서 초기 배양된 미생물의 존재 하에서 수행되며, 이때 성장 배지/인산염 소스의 액고 비(L/S ratio)는 5 내지 15의 범위에서 조절되는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 1, wherein the culturing in step a) is performed in the presence of microorganisms initially cultured in a growth medium, wherein the liquid-to-liquid ratio (L/S ratio) of the growth medium/phosphate source is adjusted in the range of 5 to 15. A method for recovering rare earth metals, characterized in that.
  13. 제1항에 있어서, 상기 단계 b)는 유황 및 영양소가 보충된 배지를 이용하여 수행되며, 이때 배지/인-고갈된 잔류물의 액고 비는 2 내지 5의 범위에서 조절되는 것을 특징으로 하는 희토류 금속의 회수 방법.2. The rare earth metal of claim 1, wherein step b) is performed using a medium supplemented with sulfur and nutrients, wherein the liquid ratio of the medium/phosphorus-depleted residue is adjusted in the range of 2 to 5. Recovery method.
  14. 제1항에 있어서, 상기 단계 c)에서 산은 질산이며, 오존-니트로화 처리를 수반하는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 1, wherein the acid in step c) is nitric acid and involves ozone-nitration treatment.
  15. 제1항에 있어서, 상기 단계 d)에서 유기 용매는 수 불혼화성의 유기 인 화합물을 포함하는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 1, wherein the organic solvent in step d) includes a water-immiscible organic phosphorus compound.
  16. 제15항에 있어서, 상기 유기 인 화합물의 농도는 0.05 내지 0.5 M의 범위이고, 이때 유기 상/수 상의 체적 비(O/A)는 5 : 1 내지 1 : 5의 범위에서 조절되는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 15, wherein the concentration of the organic phosphorus compound is in the range of 0.05 to 0.5 M, and the volume ratio (O/A) of the organic phase/water phase is adjusted in the range of 5:1 to 1:5. Method for recovering rare earth metals.
  17. 제1항에 있어서, 상기 단계 e)는 과산화수소를 환원제로 하여 세륨(IV)을 세륨(III)으로 전환시킨 후, 산 용액으로 세륨(III)을 스트리핑하여 세륨-함유 산 용액을 수득하는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 1, wherein step e) converts cerium(IV) into cerium(III) using hydrogen peroxide as a reducing agent, and then strips the cerium(III) with an acid solution to obtain a cerium-containing acid solution. A method for recovering rare earth metals.
  18. 제1항에 있어서, f) 상기 라피네이트로부터 세륨 이외의 희토류 금속을 회수하는 단계를 더 포함하는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 1, further comprising the step of f) recovering rare earth metals other than cerium from the raffinate.
  19. 제17항에 있어서, 상기 스트리핑에 의하여 산 용액에 함유된 내 세륨을 옥살산 이온에 의하여 세륨 옥살레이트 형태로 침전시켜 회수하는 단계를 더 포함하는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 17, further comprising recovering the cerium contained in the acid solution by precipitating it in the form of cerium oxalate using oxalate ions.
  20. 제18항에 있어서, 상기 단계 f)는 라피네이트 내 세륨 이외의 희토류 금속을 옥살산 이온에 의하여 옥살레이트 형태로 침전시키는 단계를 포함하는 것을 특징으로 하는 희토류 금속의 회수 방법.The method of claim 18, wherein step f) includes precipitating rare earth metals other than cerium in the raffinate in the form of oxalate using oxalate ions.
PCT/KR2023/009754 2022-07-11 2023-07-10 Method for recovering rare earth metal WO2024014804A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0085060 2022-07-11
KR1020220085060A KR102542076B1 (en) 2022-07-11 2022-07-11 Method for Recovering Rare Earth Metals

Publications (1)

Publication Number Publication Date
WO2024014804A1 true WO2024014804A1 (en) 2024-01-18

Family

ID=86762420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009754 WO2024014804A1 (en) 2022-07-11 2023-07-10 Method for recovering rare earth metal

Country Status (2)

Country Link
KR (1) KR102542076B1 (en)
WO (1) WO2024014804A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102542076B1 (en) * 2022-07-11 2023-06-13 한양대학교 산학협력단 Method for Recovering Rare Earth Metals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254024A (en) * 1998-11-13 2000-05-24 中国科学院长春应用化学研究所 Process for extracting and separating cerium and thorium from hamartite leachate
US20160138128A1 (en) * 2013-06-10 2016-05-19 Meurice Recherche Et Developpement Method for bioleaching a metal present in a material
KR102542076B1 (en) * 2022-07-11 2023-06-13 한양대학교 산학협력단 Method for Recovering Rare Earth Metals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254024A (en) * 1998-11-13 2000-05-24 中国科学院长春应用化学研究所 Process for extracting and separating cerium and thorium from hamartite leachate
US20160138128A1 (en) * 2013-06-10 2016-05-19 Meurice Recherche Et Developpement Method for bioleaching a metal present in a material
KR102542076B1 (en) * 2022-07-11 2023-06-13 한양대학교 산학협력단 Method for Recovering Rare Earth Metals

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CASTRO LAURA, BLÁZQUEZ MARIA LUISA, GONZÁLEZ FELISA, MUÑOZ JESÚS ANGEL: "Bioleaching of Phosphate Minerals Using Aspergillus niger: Recovery of Copper and Rare Earth Elements", METALS, M D P I AG, CH, vol. 10, no. 7, 20 July 2020 (2020-07-20), CH , pages 978, XP093128968, ISSN: 2075-4701, DOI: 10.3390/met10070978 *
HASSANIEN WESAM, DESOUKY OSMAN, HUSSIEN SHIMAA: "Bioleaching of some Rare Earth Elements from Egyptian Monazite using Aspergillus ficuum and Pseudomonas aeruginosa", WALAILAK JOURNAL OF SCIENCE & TECHNOLOGY, WALAILAK UNIVERSITY * INSTITUTE OF RESEARCH AND DEVELOPMENT, TH, vol. 11, no. 9, 1 December 2013 (2013-12-01), TH , pages 809 - 823, XP093128983, ISSN: 1686-3933, DOI: 10.2004/wjst.v11i6.481 *
ILYAS SADIA; KIM HYUNJUNG; RANJAN SRIVASTAVA RAJIV: "Extraction equilibria of cerium(IV) with Cyanex 923 followed by precipitation kinetics of cerium(III) oxalate from sulfate solution", SEPARATION AND PURIFICATION TECHNOLOGY, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 254, 25 August 2020 (2020-08-25), NL , XP086294715, ISSN: 1383-5866, DOI: 10.1016/j.seppur.2020.117634 *

Also Published As

Publication number Publication date
KR102542076B1 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2024014804A1 (en) Method for recovering rare earth metal
CN108118157B (en) Wiring board burns the recovery method of cigarette ash pretreatment and bromine
WO2013165071A1 (en) Method for producing high-purity manganese sulfate monohydrate and high-purity manganese sulfate monohydrate produced by the method
WO2012081897A2 (en) Method for enrichment-recovering ferronickel from raw material containing nickel, method for recovering nickel from enriched ferronickel, and method for recycling solution containing iron produced from same
Groudev Biobeneficiation of mineral raw materials
CN111893310A (en) Harmless recycling treatment method for solid hazardous waste
US20150027901A1 (en) Biomining enhancement method
KR20210151636A (en) Multi-stage reaction and separation systems of a co2-based hydrometallurgical process
WO2024058441A1 (en) Process for recovering platinum-group metal from waste catalyst by using biocyanide and ionic liquid
EP0659169B1 (en) Improvements in processes for the alkaline biodegradation of organic impurities
US7399454B2 (en) Metallurgical dust reclamation process
WO2021235699A1 (en) Method for recovering precious metals from waste printed circuit board
WO2023243827A1 (en) Method for producing aqueous solution containing nickel or cobalt
US6783744B2 (en) Method for the purification of zinc oxide controlling particle size
WO2022220477A1 (en) Method for producing lithium-concentrated solution with high recovery rate, and method for producing lithium compound using same
US20240132992A1 (en) Novel pseudomonas strain for metal recovery
WO2018194397A4 (en) Method for smelting ilmenite using red mud
WO2022154250A1 (en) Method for collecting calcium and rare earth metal from slag
CN108715937A (en) A kind of comprehensive utilization process of iron red mud and ardealite
WO2018052220A1 (en) Method and facility for preparing sodium bicarbonate and calcium carbonate
AU664856B2 (en) Process for the microbial oxidation of sulphidic wastes
WO2023182562A1 (en) Valuable metal recovery method using solvent extraction from zinc and copper waste material
Razali et al. Isolation and Characterisation of Copper Leaching Microbes from Sanitary Landfill for E-waste Bioleaching
WO2010074516A2 (en) Method for preparing high purity zinc oxide using secondary dust
CN110195162B (en) Method for synchronously leaching and separating antimony, arsenic and alkali in arsenic-alkali residue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839897

Country of ref document: EP

Kind code of ref document: A1