WO2024058087A1 - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
WO2024058087A1
WO2024058087A1 PCT/JP2023/032956 JP2023032956W WO2024058087A1 WO 2024058087 A1 WO2024058087 A1 WO 2024058087A1 JP 2023032956 W JP2023032956 W JP 2023032956W WO 2024058087 A1 WO2024058087 A1 WO 2024058087A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
substrate
wiring
axis direction
laser device
Prior art date
Application number
PCT/JP2023/032956
Other languages
French (fr)
Japanese (ja)
Inventor
智一郎 外山
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024058087A1 publication Critical patent/WO2024058087A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/02234Resin-filled housings; the housings being made of resin

Definitions

  • the present disclosure relates to a semiconductor laser device.
  • a semiconductor light emitting device including a light emitting diode (LED) as a light source is known (see, for example, Patent Document 1).
  • LED elements since semiconductor light emitting devices use LED elements, it is difficult to respond to increases in the output of the light source. Therefore, instead of the LED element, it may be possible to respond to higher output by using a semiconductor laser element such as a vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • the laser light emitted from the semiconductor laser element has higher directivity than the light emitted from the LED element. Therefore, semiconductor laser devices are generally suitable for applications requiring high directivity. On the contrary, in fields where semiconductor light emitting devices using LED elements as light sources are applied, a wider directivity angle is generally required. For this reason, semiconductor laser elements are generally not suitable for use in semiconductor light-emitting devices that use LED elements as light sources. As described above, it is difficult to achieve both a high output light source and a wide directivity angle.
  • a semiconductor laser device that solves the above problems includes a substrate having a substrate surface, a semiconductor laser element provided on the substrate surface, a sealing surface facing the same side as the substrate surface, and a semiconductor laser device that intersects with the sealing surface. a first sealing end surface, and a translucent sealing resin for sealing the semiconductor laser element, the sealing resin includes a diffusion material that diffuses light, and the semiconductor laser element includes a first light emitting surface that emits laser light toward the first sealed end surface.
  • FIG. 1 is a perspective view of a semiconductor laser device according to a first embodiment.
  • FIG. 2 is a plan view of the semiconductor laser device of FIG. 1.
  • 3 is a plan view of the substrate of the semiconductor laser device of FIG. 2.
  • FIG. 4 is a back view of the substrate of FIG. 3.
  • FIG. 5 is a cross-sectional view of the semiconductor laser device taken along line F5-F5 in FIG.
  • FIG. 6 is a cross-sectional view showing the first light emitting surface of the semiconductor laser element in the semiconductor laser device of FIG. 5 and its surroundings.
  • FIG. 7 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device of the first embodiment.
  • FIG. 8 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 7.
  • FIG. 7 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 7.
  • FIG. 7 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following
  • FIG. 9 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 8.
  • FIG. 10 is a cross-sectional view schematically showing the semiconductor laser device of FIG.
  • FIG. 11 is a plan view of a semiconductor laser device of a comparative example.
  • FIG. 12 is a cross-sectional view of a semiconductor laser device of a comparative example.
  • FIG. 13 is a plan view of the semiconductor laser device of the second embodiment.
  • FIG. 14 is a cross-sectional view of the semiconductor laser device taken along line F14-F14 in FIG.
  • FIG. 15 is a cross-sectional view showing the first light emitting surface of the semiconductor laser element and its surroundings in the semiconductor laser device of FIG. 14.
  • FIG. 16 is a plan view of the semiconductor laser device of the third embodiment.
  • FIG. 17 is a back view of the substrate of the semiconductor laser device of FIG. 16.
  • FIG. 18 is a cross-sectional view of the semiconductor laser device taken along line F18-F18 in FIG. 16.
  • FIG. 19 is a cross-sectional view showing the semiconductor laser device of FIG. 18 mounted on a circuit board.
  • FIG. 20 is a plan view of the semiconductor laser device of the fourth embodiment.
  • FIG. 21 is a plan view of the substrate of the semiconductor laser device of FIG. 20.
  • FIG. 22 is a back view of the substrate of FIG. 21.
  • FIG. 23 is a cross-sectional view of the semiconductor laser device taken along line F23-F23 in FIG.
  • FIG. 24 is a plan view of the semiconductor laser device of the fifth embodiment.
  • FIG. 25 is a back view of the substrate of the semiconductor laser device of FIG.
  • FIG. 26 is a cross-sectional view of the semiconductor laser device taken along line F26-F26 in FIG.
  • FIG. 27 is a plan view of the semiconductor laser device of the sixth embodiment.
  • FIG. 28 is a back view of the substrate of the semiconductor laser device of FIG. 27.
  • FIG. 29 is a cross-sectional view of the semiconductor laser device taken along line F29-F29 in FIG.
  • FIG. 30 is a plan view of the semiconductor laser device of the seventh embodiment.
  • FIG. 31 is a back view of the substrate of the semiconductor laser device of FIG. 30.
  • FIG. 32 is a cross-sectional view of the semiconductor laser device taken along line F32-F32 in FIG.
  • FIG. 33 is a circuit diagram of a laser system including the semiconductor laser device of FIG. 30.
  • FIG. 34 is a plan view of the semiconductor laser device of the eighth embodiment.
  • FIG. 35 is a cross-sectional view of the semiconductor laser device taken along line F35-F35 in FIG.
  • FIG. 36 is an enlarged view of the second light emitting surface of the semiconductor laser element and its surroundings in the semiconductor laser device of FIG. 35.
  • FIG. 37 is a plan view of the semiconductor laser device of the ninth embodiment.
  • FIG. 38 is a cross-sectional view of the semiconductor laser device taken along line F38-F38 in FIG.
  • FIG. 39 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device of the ninth embodiment.
  • FIG. 40 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 39.
  • FIG. 41 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 40.
  • FIG. 42 is a cross-sectional view schematically showing an example of the manufacturing process of the semiconductor laser device of FIG. 41.
  • FIG. 43 is a plan view of the semiconductor laser device of the tenth embodiment.
  • FIG. 44 is a plan view of the semiconductor laser device of FIG. 43 with the semiconductor laser element and wires omitted.
  • FIG. 45 is a cross-sectional view of the semiconductor laser device taken along line F45-F45 in FIG. 43.
  • FIG. 46 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 47 is a cross-sectional view of a semiconductor laser device according to a modification.
  • FIG. 48 is a cross-sectional view of a semiconductor laser device according to a modification.
  • FIG. 49 is a cross-sectional view of a semiconductor laser device according to a modification.
  • FIG. 50 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 51 is a cross-sectional view of the semiconductor laser device taken along line F51-F51 in FIG.
  • FIG. 52 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 53 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 54 is a cross-sectional view of the semiconductor laser device taken along line F54-F54 in FIG.
  • FIG. 55 is a cross-sectional view of a semiconductor laser device according to a modification.
  • FIG. 50 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 51 is a cross-sectional view of the semiconductor laser device taken along line F51-F51 in FIG.
  • FIG. 52 is
  • FIG. 56 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 57 is a cross-sectional view of a semiconductor laser device according to a modification.
  • FIG. 58 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 59 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 60 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 61 is a cross-sectional view of a semiconductor laser device according to a modification.
  • FIG. 62 is a cross-sectional view of a semiconductor laser device according to a modification.
  • FIG. 63 is a cross-sectional view of a semiconductor laser device according to a modification.
  • FIG. 64 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 65 is a cross-sectional view of the semiconductor laser device taken along line F65-F65 in FIG. 64.
  • FIG. 66 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device of FIG. 64.
  • FIG. 67 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 66.
  • FIG. 68 is a plan view of a semiconductor laser device according to a modification.
  • FIG. 69 is a cross-sectional view of the semiconductor laser device taken along line F69-F69 in FIG.
  • FIG. 70 is a plan view of a semiconductor laser device according to a modification.
  • FIGS. 1 to 10 show a schematic configuration of a semiconductor laser device 10 of the first embodiment
  • FIGS. 7 to 10 show an example of a method for manufacturing the semiconductor laser device 10 of the first embodiment.
  • planar view refers to viewing the semiconductor laser device 10 in the Z-axis direction of the mutually orthogonal XYZ axes shown in FIG. Further, in the semiconductor laser device 10 shown in FIG. 1, the +Z direction is defined as the top, and the -Z direction is defined as the bottom. Unless otherwise specified, “planar view” refers to viewing the semiconductor laser device 10 from above along the Z-axis.
  • FIG. 1 shows a perspective structure of a semiconductor laser device 10, and FIG. 2 shows a planar structure of the semiconductor laser device 10.
  • FIG. 3 shows a planar structure in which a semiconductor laser element 40, a wire W, a sealing resin 50, and a side wall 60, which will be described later, are omitted from FIG. 2.
  • FIG. 4 shows a backside structure of a substrate 20 of the semiconductor laser device 10, which will be described later.
  • the sealing resin 50 is omitted for easy understanding of the drawings.
  • FIG. 5 shows a schematic cross-sectional structure of the semiconductor laser device 10
  • FIG. 6 shows a schematic cross-sectional structure of a part of the semiconductor laser device 10 for explaining laser light emitted from the semiconductor laser device 10. There is. Note that in FIGS. 1 and 2, a diffusing material 57, which will be described later, is omitted for easy understanding of the drawings.
  • the semiconductor laser device 10 is formed into a rectangular flat plate shape with the thickness direction in the Z-axis direction.
  • the semiconductor laser device 10 includes a substrate 20 and a semiconductor laser element 40 arranged on the substrate 20.
  • the substrate 20 is a component that supports the semiconductor laser element 40.
  • the substrate 20 is formed into a flat plate shape with the Z-axis direction being the thickness direction.
  • planar view is synonymous with “viewed from the thickness direction of the substrate”.
  • the substrate 20 has a rectangular shape in which the X-axis direction is the lateral direction and the Y-axis direction is the longitudinal direction when viewed from above.
  • the substrate 20 includes a front surface 21, a back surface 22 opposite to the front surface 21, and first to fourth side surfaces 23 to 26 (see FIG. 2) that connect the front surface 21 and the back surface 22.
  • the first substrate side surface 23 and the second substrate side surface 24 constitute both end surfaces of the substrate 20 in the Y-axis direction
  • the third substrate side surface 25 and the fourth substrate side surface 26 constitute the end surfaces of the substrate 20 in the X-axis direction. It constitutes both end faces of.
  • each of the first substrate side surface 23 and the second substrate side surface 24 extends in the X-axis direction in plan view.
  • Each of the third substrate side surface 25 and the fourth substrate side surface 26 extends in the Y-axis direction in plan view.
  • the first substrate side surface 23 constitutes an end surface in the +Y direction of both end surfaces in the Y-axis direction of the substrate 20, and the second substrate side surface 24 constitutes an end surface in the -Y direction.
  • the third substrate side surface 25 constitutes an end surface in the +X direction of both end surfaces in the X-axis direction of the substrate 20, and the fourth substrate side surface 26 constitutes an end surface in the -X direction.
  • the substrate 20 is made of glass epoxy resin.
  • the substrate 20 may be formed of a material containing ceramic.
  • the ceramic-containing material include aluminum nitride (AlN) and alumina (Al 2 O 3 ).
  • AlN aluminum nitride
  • Al 2 O 3 alumina
  • the semiconductor laser device 10 includes a first wiring 31 and a second wiring 32 provided on the front surface 21 of the substrate, and a first electrode 33 and a second electrode 34 provided on the back surface 22 of the substrate. , a first via 35 that electrically connects the first wiring 31 and the first electrode 33, and a second via 36 that electrically connects the second wiring 32 and the second electrode 34.
  • Both the first wiring 31 and the second wiring 32 are formed on the substrate surface 21 in the first embodiment.
  • the first wiring 31 and the second wiring 32 are arranged so as to be spaced apart from each other in the longitudinal direction of the substrate 20, that is, in the Y-axis direction when viewed from above.
  • Each of the first wiring 31 and the second wiring 32 is formed of a material containing copper, for example. Note that the materials constituting each of the first wiring 31 and the second wiring 32 can be arbitrarily changed within the range of conductive materials.
  • the first wiring 31 is arranged closer to the first substrate side surface 23 with respect to the second wiring 32.
  • the first wiring 31 is arranged between the first substrate side surface 23 and the second wiring 32 in the Y-axis direction.
  • the second wiring 32 is arranged between the first wiring 31 and the second substrate side surface 24 in the Y-axis direction.
  • the first wiring 31 has a rectangular shape in which the X-axis direction is the short direction and the Y-axis direction is the long direction when viewed from above. That is, the longitudinal direction of the first wiring 31 and the longitudinal direction of the substrate 20 match, and the lateral direction of the first wiring 31 and the lateral direction of the substrate 20 match.
  • the second wiring 32 has a rectangular shape in which the X-axis direction is the longitudinal direction and the Y-axis direction is the lateral direction when viewed from above. That is, the lateral direction of the second wiring 32 coincides with the longitudinal direction of the substrate 20, and the longitudinal direction of the second wiring 32 coincides with the lateral direction of the substrate 20. It can also be said that the lateral direction of the second wiring 32 is the direction in which the first wiring 31 and the second wiring 32 are arranged.
  • the length of the first wiring 31 in the X-axis direction and the length of the second wiring 32 in the X-axis direction are equal to each other.
  • the length of the first wiring 31 in the Y-axis direction is longer than the length of the second wiring 32 in the Y-axis direction.
  • the first electrode 33 and the second electrode 34 are configured as external electrodes when the semiconductor laser device 10 is mounted on a circuit board (not shown). Both the first electrode 33 and the second electrode 34 are formed on the back surface 22 of the substrate in the first embodiment.
  • the first electrode 33 and the second electrode 34 are arranged so as to be spaced apart from each other in the longitudinal direction of the substrate 20, that is, in the Y-axis direction in a plan view.
  • Each of the first electrode 33 and the second electrode 34 is made of a material containing copper, for example. Note that each of the first electrode 33 and the second electrode 34 can be arbitrarily changed within the range of the conductive material.
  • the first electrode 33 is arranged closer to the first substrate side surface 23 than the second electrode 34 .
  • the first electrode 33 is arranged between the first substrate side surface 23 and the second electrode 34 in the Y-axis direction.
  • the second electrode 34 is arranged between the first electrode 33 and the second substrate side surface 24 in the Y-axis direction.
  • the first electrode 33 is arranged at a position overlapping the first wiring 31 in plan view.
  • the second electrode 34 is arranged at a position overlapping the second wiring 32.
  • the first electrode 33 has a rectangular shape in which the X-axis direction is the short direction and the Y-axis direction is the longitudinal direction when viewed from above.
  • the second electrode 34 has a rectangular shape in which the X-axis direction is the longitudinal direction and the Y-axis direction is the lateral direction when viewed from above.
  • the length of the first electrode 33 in the X-axis direction and the length of the second electrode 34 in the X-axis direction are equal to each other.
  • the length of the first electrode 33 in the Y-axis direction is longer than the length of the second electrode 34 in the Y-axis direction.
  • the area of the first electrode 33 is larger than the area of the first substrate side surface 23.
  • the area of the second electrode 34 is larger than the area of the second wiring 32.
  • the distance between the first electrode 33 and the second electrode 34 in the Y-axis direction is larger than the distance between the first wiring 31 and the second wiring 32 in the Y-axis direction.
  • the distance between the first electrode 33 and the second electrode 34 in the Y-axis direction can be changed arbitrarily. In one example, the distance between the first electrode 33 and the second electrode 34 in the Y-axis direction may be equal to the distance between the first wiring 31 and the second wiring 32 in the Y-axis direction.
  • a plurality of first vias 35 are provided. Each first via 35 is disposed at a position overlapping both the first wiring 31 and the first electrode 33 in a plan view. The multiple first vias 35 are arranged at a distance from each other in both the X-axis direction and the Y-axis direction. Each first via 35 penetrates the substrate 20 in the Z-axis direction. Each first via 35 is in contact with both the first wiring 31 and the first electrode 33.
  • a plurality of second vias 36 are provided. Each second via 36 is arranged at a position overlapping both the second wiring 32 and the second electrode 34 in plan view. The plurality of second vias 36 are spaced apart from each other and arranged in a line in the X-axis direction. Each second via 36 penetrates the substrate 20 in the Z-axis direction. Each second via 36 is in contact with both the second wiring 32 and the second electrode 34.
  • each of the first vias 35 and the second vias 36 can be changed arbitrarily.
  • the plurality of first vias 35 may be arranged in a region different from the region overlapping with the semiconductor laser element 40 in plan view.
  • the number of first vias 35 may be, for example, 13 or more.
  • the number of second vias 36 may be four or more.
  • the semiconductor laser element 40 is provided on the substrate surface 21.
  • the semiconductor laser element 40 is mounted on the first wiring 31.
  • the semiconductor laser element 40 is mounted on the first wiring 31. More specifically, as shown in FIG. 5, the semiconductor laser element 40 is bonded to the first wiring 31 using a conductive bonding material SD such as solder paste or silver paste. Therefore, the semiconductor laser element 40 is located closer to the first substrate side surface 23 (first sealed end surface 53) than the second wiring 32.
  • the second wiring 32 is located closer to the second substrate side surface 24 (second sealing end surface 54) than the semiconductor laser element 40 is. It can also be said that the second wiring 32 is provided at a position closer to the second sealing end surface 54 with respect to the second light emitting surface LS2 of the semiconductor laser element 40, which will be described later.
  • the semiconductor laser element 40 is a laser diode that emits light in a predetermined wavelength band, and functions as a light source of the semiconductor laser device 10.
  • the semiconductor laser device 40 is an edge-emitting laser device.
  • the configuration of the semiconductor laser device 40 as an edge-emitting laser device is not particularly limited, in the first embodiment, a Fabry-Perot laser diode device is employed.
  • the semiconductor laser element 40 is formed into a flat plate shape with the thickness direction in the Z-axis direction.
  • the semiconductor laser element 40 has a rectangular shape having a longitudinal direction and a lateral direction when viewed from above.
  • the semiconductor laser element 40 is arranged such that its longitudinal direction is along the Y-axis direction and its transversal direction is along the X-axis direction.
  • the semiconductor laser device 40 has a front surface 41, a back surface 42 facing opposite to the front surface 41, and first to fourth It has element side surfaces 43 to 46.
  • the element surface 41 faces the same side as the substrate surface 21 of the substrate 20, and the element back surface 42 faces the substrate surface 21.
  • the first element side surface 43 and the second element side surface 44 constitute both end surfaces of the semiconductor laser element 40 in the longitudinal direction
  • the third element side surface 45 and the fourth element side surface 46 constitute both end surfaces of the semiconductor laser element 40 in the lateral direction. It consists of In the first embodiment, the first device side surface 43 and the second device side surface 44 constitute both end surfaces of the semiconductor laser device 40 in the Y-axis direction
  • the third device side surface 45 and the fourth device side surface 46 constitute the semiconductor laser device 40 . It constitutes both end faces in the X-axis direction.
  • the first element side surface 43 constitutes an end surface in the +Y direction of both end surfaces in the Y-axis direction of the semiconductor laser element 40, and faces the same side as the first substrate side surface 23.
  • the second element side surface 44 constitutes an end surface in the -Y direction of both end surfaces in the Y-axis direction of the semiconductor laser element 40, and faces the same side as the second substrate side surface 24.
  • the third element side surface 45 constitutes an end surface in the +X direction of both end surfaces in the X-axis direction of the semiconductor laser element 40, and faces the same side as the third substrate side surface 25.
  • the fourth element side surface 46 constitutes an end surface in the -X direction of both end surfaces in the X-axis direction of the semiconductor laser element 40, and faces the same side as the fourth substrate side surface 26.
  • the first element side surface 43 constitutes a first light emitting surface LS1 that emits laser light. Since the first element side surface 43 faces in the direction intersecting the thickness direction of the substrate 20 (in the first embodiment, the direction perpendicular to the thickness direction of the substrate 20), the first light emitting surface LS1 faces in the thickness direction of the substrate 20. It can be said that it faces in a direction that intersects (perpendicularly) with.
  • the first element side surface 43 (first light emitting surface LS1) faces the same side as the first substrate side surface 23. Therefore, the semiconductor laser element 40 emits laser light mainly directed in the +Y direction.
  • the second element side surface 44 constitutes a second light emitting surface LS2 that emits laser light. Since the second element side surface 44 faces in the direction intersecting the thickness direction of the substrate 20 (in the first embodiment, the direction perpendicular to the thickness direction of the substrate 20), the second light emitting surface LS2 faces in the thickness direction of the substrate 20. It can be said that it faces in a direction that intersects (perpendicularly) with.
  • the second element side surface 44 (first light emitting side surface LS2) faces the same side as the second substrate side surface 24. That is, the second light emitting surface LS2 faces in the opposite direction to the first light emitting surface LS1. Therefore, the semiconductor laser element 40 emits laser light mainly directed in the -Y direction.
  • the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 may be different from each other.
  • the ratio of the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 is, for example, 9:1.
  • the output of the laser beam is adjusted, for example, by adjusting the reflectance of the reflective films formed on the first light emitting surface LS1 and the second light emitting surface LS2.
  • the reflectance of the reflective film formed on the first light emitting surface LS1 is set to be lower than the reflectance of the reflective film formed on the second light emitting surface LS2.
  • the semiconductor laser device 40 has an anode electrode 47 formed on the front surface 41 of the device, and a cathode electrode 48 formed on the back surface 42 of the device.
  • the cathode electrode 48 is in contact with the conductive bonding material SD. That is, the cathode electrode 48 is electrically connected to the first wiring 31 by the conductive bonding material SD. Therefore, the cathode electrode 48 is electrically connected to the first electrode 33 via the first wiring 31 and the plurality of first vias 35.
  • the semiconductor laser device 10 includes a wire W that electrically connects the anode electrode 47 and the second wiring 32. As shown in FIG. 2, the wire W extends along the Y-axis direction in plan view.
  • the wire W is made of, for example, gold (Au), silver (Ag), aluminum (Al), Cu, or the like.
  • the anode electrode 47 is electrically connected to the second electrode 34 via the second wiring 32 and a plurality of second vias 36 .
  • the wire W is a bonding wire formed by a wire bonding device.
  • the bonding portion of the wire W with the second wiring 32 is the first bonding
  • the bonding portion with the anode electrode 47 is the second bonding. This allows the height (maximum height) of the wire W to be lowered compared to a configuration in which the bonding portion of the wire W with the anode electrode 47 is first bonded and the bonding portion with the second wiring 32 is second bonding. can do.
  • the semiconductor laser device 10 of the first embodiment includes a transparent sealing resin 50 that seals the semiconductor laser element 40, and a side wall surrounding the sealing resin 50. 60.
  • the sealing resin 50 seals the first wiring 31, the second wiring 32, the semiconductor laser element 40, and the wire W in contact with the substrate surface 21.
  • the sealing resin 50 is provided on the substrate 20.
  • the sealing resin 50 plays a role of transmitting the laser light emitted from the semiconductor laser element 40 while refracting it.
  • the sealing resin 50 is made of a material containing at least one of silicone resin, epoxy resin, and acrylic resin. In one example, the sealing resin 50 is made of silicone resin.
  • the sealing resin 50 has a sealing surface 51 facing the same side as the substrate surface 21, and first to fourth sealing end surfaces 53 to 56 that intersect with the sealing surface 51.
  • the sealing surface 51 is a flat surface perpendicular to the thickness direction (Z-axis direction) of the substrate 20. In plan view, the area of the sealing surface 51 is smaller than the area of the substrate surface 21.
  • the first to fourth sealing end surfaces 53 to 56 are sealing end surfaces perpendicular to the sealing surface 51 in the first embodiment.
  • the first sealed end surface 53 and the second sealed end surface 54 constitute both end surfaces of the sealing resin 50 in the Y-axis direction.
  • Each of the first sealed end surface 53 and the second sealed end surface 54 extends along the X-axis direction in plan view.
  • the third sealed end surface 55 and the fourth sealed end surface 56 constitute both end surfaces of the sealing resin 50 in the X-axis direction.
  • Each of the third sealed end surface 55 and the fourth sealed end surface 56 extends along the Y-axis direction in plan view.
  • the first sealed end surface 53 faces the same side as the first substrate side surface 23, and the second sealed end surface 54 faces the same side as the second substrate side surface 24. That is, the second sealed end surface 54 is an end surface opposite to the first sealed end surface 53.
  • the first sealing end surface 53 is formed flush with the first substrate side surface 23 .
  • the first sealed end surface 53 is spaced apart from the first light emitting surface LS1 of the semiconductor laser element 40 in the +Y direction.
  • the second sealed end surface 54 is arranged closer to the first substrate side surface 23 than the second substrate side surface 24 . It can also be said that the second sealed end surface 54 is located between the semiconductor laser element 40 and the second substrate side surface 24 in the Y-axis direction.
  • the second sealing end surface 54 is spaced apart from the second light emitting surface LS2 of the semiconductor laser element 40 in the ⁇ Y direction.
  • the first sealed end surface 53 faces the same side as the first element side surface 43 of the semiconductor laser element 40. In other words, the first sealed end surface 53 faces the same side as the first light emitting surface LS1. Therefore, it can be said that the semiconductor laser element 40 includes the first light emitting surface LS1 that emits laser light toward the first sealed end surface 53.
  • the second sealed end face 54 faces the same side as the second element side surface 44 of the semiconductor laser element 40. In other words, the second sealed end surface 54 faces the same side as the second light emitting surface LS2. Therefore, it can be said that the semiconductor laser element 40 includes a second light emitting surface LS2 that emits laser light toward the second sealed end surface 54.
  • the first sealed end surface 53 is a dicing surface subjected to dicing processing. In this case, cutting marks are formed on the first sealing end surface 53 due to the dicing process.
  • first sealing end surface 53 may be rougher than sealing surface 51. Therefore, the arithmetic mean roughness (Ra) of the first sealing end surface 53 may be larger than the arithmetic mean roughness (Ra) of the sealing surface 51.
  • the third sealed end surface 55 faces the same side as the third substrate side surface 25, and the fourth sealed end surface 56 faces the same side as the fourth substrate side surface 26.
  • the third sealed end surface 55 is arranged closer to the fourth substrate side surface 26 than the third substrate side surface 25. It can also be said that the third sealed end surface 55 is located between the semiconductor laser element 40 and the third substrate side surface 25 in the X-axis direction.
  • the fourth sealed end surface 56 is arranged closer to the third substrate side surface 25 than the fourth substrate side surface 26 . It can also be said that the fourth sealed end surface 56 is located between the semiconductor laser element 40 and the fourth substrate side surface 26 in the X-axis direction.
  • the sealing resin 50 includes a diffusion material 57 that diffuses light. More specifically, the diffusion material 57 diffuses the light inside the sealing resin 50 by reflecting (scattering) the light at the interface between the resin in the sealing resin 50 and the diffusion material 57 . Thereby, the diffusion material 57 plays the role of diffusing the laser light emitted from the semiconductor laser element 40 inside the sealing resin 50 and widening the directivity angle of the laser light emitted from the sealing resin 50.
  • the material of the diffusion material 57 is not particularly limited, but for example, silica or other glass materials can be used. In the first embodiment, spherical silica filler is used as the diffusion material 57.
  • the particle size of the diffusing material 57 is not particularly limited, but is selected to be sufficiently small with respect to the wavelength of the laser light emitted from the semiconductor laser element 40, for example, so that scattering occurs dominantly.
  • the blending ratio of the diffusion material 57 to the resin of the sealing resin 50 is not particularly limited, and may be greater than 0% and less than 100%.
  • the blending ratio of the diffusion material 57 is preferably selected to be greater than 0% and less than or equal to 60%, and more preferably selected to be greater than or equal to 20% and less than or equal to 60%.
  • a material having a smaller coefficient of thermal expansion than the resin of the sealing resin 50 is selected as the diffusion material 57.
  • the diffusion material 57 is dispersed in the sealing resin 50 as fine particles.
  • the diffusion material 57 is mixed with the sealing resin 50 at a predetermined mixing ratio.
  • the diffusing material 57 is mixed into the sealing resin 50 so that the laser light of the semiconductor laser element 40 is scattered at a position different from the peak position of the laser light output of the semiconductor laser element 40.
  • the diffusion material 57 is evenly distributed within the sealing resin 50.
  • the side wall 60 is provided on the substrate 20.
  • the side wall 60 is made of, for example, a light-shielding material.
  • a black epoxy resin is used as an example of a light-shielding material.
  • a heat-resistant engineered plastic can be used as the material of the side wall 60.
  • the side wall 60 is arranged on the outer periphery of the substrate 20. Note that the material constituting the side wall 60 can be changed arbitrarily.
  • the side wall 60 may be made of a translucent material.
  • the side wall 60 may be made of a metal material, ceramic, or the like instead of the resin material.
  • the side wall 60 includes a pair of first side wall portions 61 that are spaced apart from each other, and a second side wall portion 62 that connects the pair of first side wall portions 61.
  • the pair of first side wall portions 61 and second side wall portions 62 are integrally formed.
  • the side wall 60 is formed by resin molding.
  • the pair of first side wall portions 61 are arranged to be spaced apart from each other in the X-axis direction.
  • each first side wall portion 61 extends in the Y-axis direction, that is, in the longitudinal direction of the substrate 20.
  • the second side wall portion 62 extends in the X-axis direction, that is, in the lateral direction of the substrate 20. The second side wall portion 62 is arranged closer to the second substrate side surface 24 of the substrate 20 than the semiconductor laser element 40 is.
  • the pair of first side wall portions 61 are arranged on both sides of the sealing resin 50 in the X-axis direction.
  • One of the pair of first side wall parts 61 is in contact with the third sealing end surface 55 of the sealing resin 50 , and the other one is in contact with the fourth sealing end surface 56 of the sealing resin 50 .
  • the second side wall portion 62 covers the second sealing end surface 54 of the sealing resin 50.
  • the second side wall portion 62 is in contact with the second sealing end surface 54 .
  • the side wall 60 surrounds the sealing resin 50 and has an opening that exposes the first sealing end surface 53. Therefore, it can be said that the side wall 60 surrounds the semiconductor laser element 40 and is open to expose the first light emitting surface LS1 of the semiconductor laser element 40.
  • the area of the first wiring 31 is larger than the area of the semiconductor laser element 40 in plan view. More specifically, the length of the first wiring 31 in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction, and the length of the first wiring 31 in the Y-axis direction is longer than the length of the semiconductor laser element 40 in the Y-axis direction. longer than the length in the direction.
  • the semiconductor laser element 40 is arranged in a portion of the first wiring 31 closer to the second wiring 32 (second substrate side surface 24). More specifically, the center of the semiconductor laser element 40 in the Y-axis direction is located closer to the second interconnect 32 (second substrate side surface 24) than the center of the first interconnect 31 in the Y-axis direction.
  • the first wiring 31 includes a first end surface 31A and a second end surface 31B that constitute both ends of the first wiring 31 in the Y-axis direction.
  • the first end surface 31A is the end surface of the first wiring 31 that is closer to the first substrate side surface 23, and the second end surface 31B is the end surface of the first wiring 31 that is closer to the second substrate side surface 24. It is an end face.
  • the first end surface 31A is arranged inside the first substrate side surface 23 (closer to the second substrate side surface 24).
  • the first end surface 31A is closer to the first substrate side surface 23 than the center in the Y-axis direction between the first substrate side surface 23 and the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40 in a plan view. It is located in
  • the first wiring 31 is connected to the first light emitting surface LS1 of the semiconductor laser element 40 and the first
  • the first extending portion 31C is a portion between the end surface 31A and the second extending portion 31D is a portion between the second light emitting surface LS2 and the second end surface 31B.
  • the first wiring 31 has a first extending portion 31C that is a portion extending from the first device side surface 43 (first light emitting surface LS1) of the semiconductor laser device 40 toward the first sealing end surface 53. It can also be said that it has.
  • the first extending portion 31C includes a first end surface 31A.
  • the second extending portion 31D includes a second end surface 31B.
  • the distance D1 between the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40 and the first end surface 31A of the first wiring 31 in the Y-axis direction is equal to the distance D1 between the second element side surface 44 of the semiconductor laser element 40 and It is larger than the distance D2 between the first wiring 31 and the second end surface 31B in the Y-axis direction.
  • the distance D1 can be said to be the length of the first extension part 31C in the Y-axis direction
  • the distance D2 can be said to be the length of the second extension part 31D in the Y-axis direction.
  • the laser light emitted by the semiconductor laser element 40 has higher directivity than a light emitting diode (LED).
  • Laser light from the semiconductor laser device 40 configured as a Fabry-Perot laser diode device as in the first embodiment is emitted in the +Y direction that is substantially perpendicular to the thickness direction (Z-axis direction) of the substrate 20. be done.
  • the laser light from the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57.
  • the laser light includes laser light directed toward the substrate surface 21.
  • the first extension portion 31C reflects a portion of the laser beam directed toward the substrate surface 21.
  • the reflected laser light passes through the first sealing end face 53 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 .
  • the semiconductor laser device 10 can be said to include the first reflection section 70 that reflects a portion of the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 and directed toward the substrate surface 21.
  • the first extending portion 31C of the first wiring 31 constitutes the first reflecting portion 70.
  • the first wiring 31 has a portion extending from the first light emitting surface LS1 toward the first sealed end surface 53 as the first reflecting portion 70.
  • the position of the first end surface 31A in the Y-axis direction can be changed arbitrarily.
  • the first end surface 31A may be arranged flush with the first substrate side surface 23 in plan view.
  • the position of the first end surface 31A in the Y-axis direction may be such a position that the first extension portion 31C can reflect at least a portion of the laser beam directed toward the substrate surface 21.
  • FIGS. 7 to 10 show a configuration in which four semiconductor laser devices 10 can be manufactured at once for convenience, the configuration is not limited to this, and the configuration can be configured so that more semiconductor laser devices 10 can be manufactured at once. You can.
  • the method for manufacturing the semiconductor laser device 10 includes a step of preparing a substrate 820, a step of forming a side wall 860 on the substrate 820, a step of mounting the semiconductor laser element 40 on the first wiring 31, and a step of forming the wire W. , a step of forming a sealing resin 850, and a step of dividing into pieces.
  • a substrate 820 on which a first via 35 and a second via 36 are formed is prepared.
  • glass epoxy resin is used for the substrate 820.
  • the substrate 820 may be made of ceramic, for example.
  • the substrate 820 is formed in a size that includes, for example, a plurality of substrates 20, and includes first wirings 31, second wirings 32, first electrodes 33, second electrodes 34, first vias 35, and the like according to the number of substrates 20. and a second via 36 are formed. Both the first wiring 31 and the second wiring 32 are provided on the substrate surface 821 of the substrate 820. Both the first electrode 33 and the second electrode 34 are provided on the back surface 822 of the substrate 820 (see FIG. 10).
  • the sidewall 860 is formed on the substrate 820 by, for example, resin molding.
  • resin molding include transfer molding and compression molding.
  • the side wall 860 is integrated with the substrate 820.
  • the side wall 860 is a component that constitutes the side wall 60, and includes a plurality of unit side walls surrounding the first wiring 31 and the second wiring 32 in plan view.
  • the number of the plurality of unit side walls is set depending on, for example, the number of first wirings 31 on the substrate 820.
  • the side wall 860 which is a molded product previously formed by resin molding such as injection molding, may be attached onto the substrate 820 using, for example, an adhesive.
  • the side wall 860 and the substrate 820 are integrated.
  • the side wall 860 is not limited to being made of resin, and may be made of metal or ceramic. In this case as well, the preformed sidewall 860 may be bonded to the substrate 820 by adhesive or metal bonding.
  • the process of mounting the semiconductor laser element 40 on the first wiring 31 is the process of mounting the semiconductor laser element 40 on the first wiring 31 in the first embodiment.
  • the semiconductor laser element 40 is die-bonded onto the first wiring 31, for example.
  • the cathode electrode 48 (see FIG. 10) of the semiconductor laser element 40 and the first wiring 31 are electrically connected.
  • the wire W that electrically connects the anode electrode 47 of the semiconductor laser element 40 and the second wiring 32 is formed.
  • the wire W is a bonding wire formed by a wire bonding device.
  • first bonding is performed on the second wiring 32 side of the wire W, and second bonding is performed on the anode electrode 47 side of the semiconductor laser element 40.
  • the sealing resin 850 is formed in a space surrounded by the substrate 820 and the unit side walls of the side walls 860, for example, by resin molding. It can be said that the side wall 860 (unit side wall) surrounds the sealing resin 850.
  • the sealing resin 850 seals the first wiring 31, the second wiring 32, the semiconductor laser element 40, and the wire W.
  • the sealing resin 850 is made of a translucent material.
  • the sealing resin 850 is formed of a material containing at least one of silicone resin, epoxy resin, and acrylic resin.
  • the sealing resin 850 is formed by, for example, transfer molding or compression molding. Note that the sealing resin 850 may be filled in a space surrounded by the substrate 820 and the unit side walls of the side walls 860 by potting.
  • the sealing resin 850 includes the diffusion material 57 (see FIG. 10).
  • both the side wall 860 and the substrate 820 are cut along the cutting line CL in FIG. 9 by a dicing blade.
  • the substrate 20, side walls 60, and sealing resin 50 are formed.
  • the semiconductor laser element 40 is mounted on the first wiring 31 so that the first light emitting surface LS1 that emits laser light emits the laser light toward the first sealing end surface 53 of the sealing resin 50. That is, the semiconductor laser element 40 is mounted on the first wiring 31 so that the first light emitting surface LS1 faces the same side as the first sealed end surface 53.
  • the order of the manufacturing steps of the semiconductor laser device 10 can be changed arbitrarily.
  • a step of forming the side wall 860 on the substrate 820 is performed. may be implemented.
  • the side wall 860 which is a molded article previously formed by resin molding such as injection molding, may be attached onto the substrate 820 using, for example, an adhesive.
  • a step of forming the sealing resin 850 and a step of dividing into pieces are performed in this order.
  • FIG. 11 shows a planar structure of a semiconductor light emitting device 10X of a comparative example.
  • FIG. 12 shows a schematic cross-sectional structure of a semiconductor light emitting device 10X of a comparative example in a state where the semiconductor light emitting device 10X is arranged as a side-emitting type.
  • the semiconductor light emitting device 10X of the comparative example includes a flat substrate 20X, a first conductor 30XA and a second conductor 30XB provided on the substrate 20X, an LED element 40X, and a plurality of wires W. , a sealing resin 50X that seals the LED element 40X and each wire W, and a side wall 60X that surrounds the sealing resin 50X in plan view.
  • the sealing resin 50X differs from the sealing resin 50 in that it does not contain a diffusion material 57 (see FIG. 5).
  • the first conductor 30XA includes a first wiring 31X formed on the front surface 21X of the substrate 20X, a first electrode 33X formed on the back surface 22X of the substrate, and a side surface 23X of the first substrate. and a first side electrode 37X.
  • the first side electrode 37X connects the first wiring 31X and the first electrode 33X.
  • the second conductor 30XB includes a second wiring 32X formed on the front surface 21X of the substrate 20X, a second electrode 34X formed on the back surface 22X of the substrate, and a second side electrode 38X formed on the side surface 24X of the second substrate. ,including.
  • the second side electrode 38X connects the second wiring 32X and the second electrode 34X.
  • the LED element 40X is mounted on the first wiring 31X.
  • the element surface 41X serves as a light emitting surface LSX. Therefore, the LED element 40X emits light in the +Z direction in FIG. 12.
  • the LED element 40X is electrically connected to the second wiring 32X by a plurality of wires W.
  • the semiconductor light emitting device 10X of the comparative example when used as a side emission type, the first side electrode 37X is connected to the circuit board (not shown). That is, the semiconductor light emitting device 10X of the comparative example is mounted on a circuit board with the first substrate side surface 23 facing the circuit board. Therefore, the heat of the semiconductor light emitting device 10X of the comparative example mainly moves to the circuit board via the first side electrode 37X. Therefore, the semiconductor light emitting device 10X of the comparative example has low heat dissipation.
  • the semiconductor light emitting device 10X of the comparative example is arranged on the circuit board so that the direction perpendicular to the surface of the circuit board matches the Y-axis direction of the substrate 20X, the height of the semiconductor light emitting device 10X can be reduced. becomes difficult.
  • the output of the semiconductor light emitting device 10X of the comparative example increases, the amount of heat generated also increases. For this reason, when the semiconductor light emitting device 10X of the comparative example is used as a side-emitting type, the temperature of the LED element 40X may become excessively high due to poor heat dissipation.
  • a configuration using a VCSEL element in place of the LED element 40X can be considered.
  • the VCSEL element has a narrower directivity angle than the LED element 40X, it is difficult to use it as a semiconductor light emitting device 10X including the LED element 40X.
  • the semiconductor laser device 40 for increasing output is an edge-emitting laser device that emits laser light in the +Y direction perpendicular to the thickness direction (Z-axis direction) of the substrate 20. is used. That is, the semiconductor laser element 40 is mounted on the first wiring 31 formed on the substrate surface 21 of the substrate 20, with the first light emitting surface LS1 facing the +Y direction. Therefore, when the semiconductor laser device 10 is mounted on a circuit board, the first electrode 33 and the second electrode 34 formed on the back surface 22 of the board are mounted on the circuit board. Thereby, the semiconductor laser device 10 can achieve a lower height when mounted on a circuit board compared to the semiconductor light emitting device 10X of the comparative example.
  • the heat of the semiconductor laser device 10 is transferred to the circuit board via the first electrode 33 and the second electrode 34. Since the area of the first electrode 33 is larger than, for example, the area of the first substrate side surface 23, the semiconductor laser device 10 has higher heat dissipation than the semiconductor light emitting device 10X of the comparative example.
  • the sealing resin 50 that seals the semiconductor laser element 40 includes a diffusion material 57. Therefore, the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57. As a result, as shown in FIG. 6, laser light is emitted not only from the first sealing end surface 53 of the sealing resin 50 but also from the end portion of the sealing surface 51 closer to the first sealing end surface 53. Therefore, the laser light emitted by the semiconductor laser device 10 has a wide directivity angle, and can be used as a semiconductor light emitting device including an LED element.
  • the semiconductor laser device 10 includes a substrate 20 having a substrate surface 21, a semiconductor laser element 40 provided on the substrate surface 21, a sealing surface 51 facing the same side as the substrate surface 21, and a sealing surface 51 facing the same side as the substrate surface 21.
  • a transparent sealing resin 50 having a first sealing end surface 53 that intersects with the surface 51 and sealing the semiconductor laser element 40 is provided.
  • the sealing resin 50 includes a diffusion material 57 that diffuses light.
  • the semiconductor laser element 40 includes a first light emitting surface LS1 that emits laser light toward the first sealed end surface 53.
  • the laser light emitted from the semiconductor laser element 40 toward the first sealing end face 53 is diffused (scattered) inside the sealing resin 50 by the diffusion material 57.
  • the laser light emitted from the semiconductor laser device 10 has wide directivity.
  • the semiconductor laser device 10 can achieve directivity equivalent to that obtained with a semiconductor light emitting device including an LED element.
  • the semiconductor laser device 40 has high output and low power consumption compared to an LED device. Therefore, the semiconductor laser device 10 can be applied to a semiconductor light emitting device including an LED element by using the semiconductor laser device 40 which has the advantages of high output and low power consumption.
  • the semiconductor laser device 10 includes a first wiring 31 provided on the substrate surface 21.
  • the semiconductor laser element 40 is mounted on the first wiring 31 and provided on the substrate surface 21 via the first wiring 31.
  • the semiconductor laser device 10 is provided at a position on the first sealing end surface 53 side with respect to the first light emitting surface LS1 of the semiconductor laser element 40, and has a first surface that reflects a part of the laser light emitted from the first light emitting surface LS1. 1 reflection section 70 is further provided.
  • the laser light emitted from the first light emitting surface LS1 is reflected by the first reflecting section 70, the reflected laser light is directed upward from the substrate surface 21 to the first sealing end surface 53. It is emitted from. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
  • the semiconductor laser device 10 since laser light is suppressed from being emitted from the first light emitting surface LS1 toward a region below the substrate surface 21, for example, when the semiconductor laser device 10 is mounted on a circuit board, the first light emitting surface LS1 Emission of laser light from LS1 toward the surface of the circuit board can be suppressed.
  • the first wiring 31 has a portion (first extension portion 31C) extending from the first light emitting surface LS1 toward the first sealing end surface 53 in plan view as the first reflection portion 70.
  • the first reflecting section 70 can be configured without adding any parts dedicated to the first reflecting section 70, so an increase in the number of parts of the semiconductor laser device 10 can be suppressed.
  • the semiconductor laser device 10 further includes a side wall 60 that surrounds the sealing resin 50 and has an opening that exposes the first sealing end surface 53. According to this configuration, for example, when the mounter holds the semiconductor laser device 10 when mounting the semiconductor laser device 10 on a circuit board, the external force applied to the sealing resin 50 is reduced by holding the side wall 60. Thereby, the force applied to the wire W sealed in the sealing resin 50 can be reduced.
  • the length of the first extending portion 31C in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction. According to this configuration, the laser light emitted from the first light emitting surface LS1 and diffused by the diffusing material 57 in a direction parallel to the substrate surface 21 can be reflected by the first extending portion 31C. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
  • the wire W is formed so that the bonded portion with the second wiring 32 is the first bonding, and the bonded portion with the anode electrode 47 is the second bonding. According to this configuration, the height (maximum height) of the wire W from the substrate surface 21 can be reduced, in other words, the distance between the substrate surface 21 and the wire W in the Z-axis direction can be reduced, thereby making it possible to reduce the height of the semiconductor laser device 10.
  • the blending ratio of the diffusion material 57 to the sealing resin 50 is selected to be greater than 0% and less than 60%. According to this configuration, by selecting the blending ratio of the diffusing material 57 in a range greater than 0% and less than 60%, it is possible to suppress a decrease in the output of the laser light of the semiconductor laser device 10 and widen the directivity angle. Can be done.
  • the blending ratio of the diffusion material 57 to the sealing resin 50 is selected within the range of 20% to 60%. According to this configuration, by selecting the blending ratio of the diffusing material 57 in the range of 20% or more and 60% or less, it is possible to suppress a decrease in the output of the laser light of the semiconductor laser device 10 and a large decrease in the radiation intensity, and to suppress the directivity. You can widen the corners.
  • the semiconductor laser device 10 of the second embodiment will be described with reference to FIGS. 13 to 15.
  • the semiconductor laser device 10 of the second embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configuration of the first reflection section 70.
  • the configuration of the first reflecting section 70 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 13, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • the semiconductor laser device 10 includes a reflector 80 as the first reflecting section 70.
  • the reflector 80 is provided on the substrate surface 21 of the substrate 20 and is at least partially covered with the sealing resin 50.
  • the reflector 80 is made of, for example, a metal material.
  • the metal material for example, Al, Cu, or an alloy thereof can be used.
  • the configuration of the reflector 80 can be changed arbitrarily.
  • the reflector 80 may have a structure in which surface plating (reflection film) is formed on the surface of a structure formed of a metal material.
  • the reflector 80 may have a structure in which surface plating (reflection film) is formed on the surface of a structure formed of a resin material.
  • the reflector 80 is arranged on the substrate surface 21 closer to the first substrate side surface 23 (closer to the first sealing end surface 53) with respect to the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40. More specifically, the reflector 80 is arranged on the first extending portion 31C of the first wiring 31. In the second embodiment, the first wiring 31 is formed such that the first end surface 31A is at the same position as the first substrate side surface 23 in plan view. The reflector 80 is bonded to the first wiring 31 by, for example, an adhesive (not shown).
  • the arrangement of the reflector 80 can be changed arbitrarily.
  • the reflector 80 may be placed closer to the first substrate side surface 23 than the first wiring 31 on the substrate surface 21 . That is, the substrate 20 has a space for arranging the reflector 80 between the first wiring 31 and the first substrate side surface 23 in the Y-axis direction. In this case, reflector 80 is bonded to substrate surface 21, for example by adhesive.
  • the reflector 80 extends in the X-axis direction.
  • the length of the reflector 80 in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction, for example.
  • the length of the reflector 80 in the X-axis direction is longer than the length of the first wiring 31 in the X-axis direction, for example.
  • both end surfaces of the reflector 80 in the X-axis direction are in contact with the pair of first side wall portions 61 of the side wall 60. Note that the length of the reflector 80 in the X-axis direction can be changed arbitrarily.
  • the reflector 80 has a bottom surface 81 facing the substrate surface 21, a side surface 82 extending upward from the bottom surface 81, and a reflective surface 83 connecting the bottom surface 81 and the side surface 82.
  • the bottom surface 81 is a surface in contact with the adhesive, and is formed by a flat surface perpendicular to the thickness direction (Z-axis direction) of the substrate 20.
  • the side surface 82 extends upward from the edge of the bottom surface 81 in the Y-axis direction that is closer to the first substrate side surface 23 .
  • the side surface 82 is flush with the first sealing end surface 53 of the sealing resin 50. That is, the side surface 82 is exposed from the sealing resin 50.
  • the reflective surface 83 connects the edge of the bottom surface 81 in the Y-axis direction that is closer to the semiconductor laser element 40 and the upper edge of the side surface 82 .
  • Reflective surface 83 faces in a direction intersecting substrate surface 21 . More specifically, the reflective surface 83 is an inclined surface that slopes upward toward the first substrate side surface 23 (as it moves away from the semiconductor laser element 40).
  • the inclination angle of the reflective surface 83 is set according to the range of laser light emitted from the sealing resin 50. In one example, the inclination angle of the reflective surface 83 is greater than 0° and less than 45°.
  • the inclination angle of the reflective surface 83 is an acute angle formed by the bottom surface 81 and the reflective surface 83.
  • the height dimension (size in the Z-axis direction) of the side surface 82 is greater than or equal to the thickness dimension (size in the Z-axis direction) of the semiconductor laser element 40. Therefore, when viewed from the Y-axis direction, the reflective surface 83 is formed to overlap the entire surface of the first light emitting surface LS1.
  • the laser light emitted from the first light emitting surface LS1 is diffused (scattered) by the diffusing material 57 within the sealing resin 50 and is reflected at the reflective surface 83 of the reflector 80.
  • the laser beam is emitted from the portion of the first sealing end surface 53 of the sealing resin 50 that is closer to the sealing surface 51 and from the sealing surface 51 .
  • the laser beam is reflected by the reflective surface 83 and is emitted from a portion of the sealing surface 51 that is closer to the second sealing end surface 54 than the first light emitting surface LS1 of the semiconductor laser element 40 .
  • the semiconductor laser device 10 includes a reflector 80, which is provided on the substrate surface 21 and includes a reflection surface 83 that intersects the substrate surface 21, as the first reflection section 70.
  • the laser light directed from the first light emitting surface LS1 toward the substrate surface 21 is reflected by the first reflecting section 70, the laser light emitted from the first light emitting surface LS1 is directed upward from the substrate surface 21.
  • the light is emitted from the first sealed end surface 53 toward. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
  • the laser beam emitted from the first light emitting surface LS1 can be emitted from the sealing resin 50 in a desired direction in the region above the substrate surface 21. can do.
  • the inclination angle of the reflective surface 83 of the reflector 80 is greater than 0° and less than 45°. According to this configuration, a portion of the laser light emitted from the first light emitting surface LS1 can be emitted upward in the +Y direction.
  • the length of the reflector 80 in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction. According to this configuration, the laser light emitted from the first light emitting surface LS1 and diffused by the diffusing material 57 is easily reflected by the reflector 80. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
  • Both end portions of the reflector 80 in the X-axis direction are in contact with the pair of first side wall portions 61 of the side wall 60. According to this configuration, the laser light emitted from the first light emitting surface LS1 and diffused by the diffusing material 57 is more easily reflected by the reflector 80. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
  • a semiconductor laser device 10 according to a third embodiment will be described with reference to FIGS. 16 to 19.
  • the semiconductor laser device 10 of the third embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configuration of the substrate 20.
  • the structure of the substrate 20 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted.
  • the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • the first end surface 31A of the first wiring 31 is formed at the same position as the first substrate side surface 23 in plan view. That is, in the third embodiment, the length of the first extension part 31C in the Y-axis direction is longer than the length of the first extension part 31C in the Y-axis direction of the first embodiment.
  • the end closer to the second substrate side surface 24 is formed to be at the same position as the second substrate side surface 24 in plan view. Therefore, a portion of the second wiring 32 is formed at a position overlapping the second side wall portion 62 of the side wall 60 in plan view.
  • the length of the second wiring 32 in the Y-axis direction is longer than the length of the second wiring 32 in the Y-axis direction of the first embodiment.
  • the end closer to the first substrate side surface 23 is formed at the same position as the first substrate side surface 23 in plan view. ing. That is, in the third embodiment, the length of the first electrode 33 in the Y-axis direction is longer than the length of the first electrode 33 in the Y-axis direction of the first embodiment.
  • the end closer to the second substrate side surface 24 is formed to be at the same position as the second substrate side surface 24 in plan view. That is, in the third embodiment, the length of the second electrode 34 in the Y-axis direction is longer than the length of the second electrode 34 in the Y-axis direction of the first embodiment.
  • the substrate 20 has a first side electrode 37 formed on the first substrate side surface 23 and a second side electrode 38 formed on the second substrate side surface 24.
  • the first side electrode 37 is formed continuously from the first electrode 33. More specifically, the first side electrode 37 is connected to the end closer to the first substrate side 23 of both ends of the first electrode 33 in the Y-axis direction.
  • the length of the first side electrode 37 in the X-axis direction is, for example, equal to the length of the first electrode 33 in the X-axis direction.
  • the first side electrode 37 is connected to the first wiring 31. More specifically, the first side electrode 37 is connected to the first end surface 31A of the first wiring 31. In this way, in the third embodiment, the first side electrode 37 connects the first electrode 33 and the first wiring 31. Since the length of the first wiring 31 in the X-axis direction is equal to the length of the first electrode 33 in the X-axis direction, the length of the first side electrode 37 in the X-axis direction is, for example, equal to the length of the first wiring 31 in the X-axis direction. equal to length.
  • the second side electrode 38 is formed continuously from the second electrode 34. More specifically, the second side electrode 38 is connected to the end closer to the second substrate side surface 24 of both ends of the second electrode 34 in the Y-axis direction.
  • the length of the second side electrode 38 in the X-axis direction is, for example, equal to the length of the second electrode 34 in the X-axis direction.
  • the second side electrode 38 is connected to the second wiring 32. More specifically, the second side electrode 38 is connected to the end closer to the second substrate side 24 of both ends of the second wiring 32 in the Y-axis direction. In this manner, in the third embodiment, the second side electrode 38 connects the second electrode 34 and the second wiring 32. Since the length of the second wiring 32 in the X-axis direction is equal to the length of the second electrode 34 in the X-axis direction, the length of the second side electrode 38 in the X-axis direction is, for example, equal to the length of the second wiring 32 in the X-axis direction. equal to length.
  • the solder paste SP is applied to the first electrode 33, the second electrode 34, the first side electrode 37, and the second side surface. It is formed so as to be in contact with the electrode 38.
  • the solder paste SP forms a fillet SPA on both the first substrate side surface 23 and the second substrate side surface 24 by the first side surface electrode 37 and the second side surface electrode 38 .
  • the length of the first side electrode 37 in the X-axis direction and the length of the second side electrode 38 in the X-axis direction can be changed arbitrarily.
  • the length of the first side electrode 37 in the X-axis direction may be less than the length of the first wiring 31 in the X-axis direction, or may be longer than the length of the first wiring 31 in the X-axis direction.
  • the length of the first side electrode 37 in the X-axis direction may be less than the length of the first electrode 33 in the X-axis direction, or may be longer than the length of the first electrode 33 in the X-axis direction.
  • the length of the first side surface electrode 37 in the X-axis direction may be equal to the length of the first substrate side surface 23 in the X-axis direction.
  • the length of the second side electrode 38 in the X-axis direction may be less than the length of the second wiring 32 in the X-axis direction, or may be longer than the length of the second wiring 32 in the X-axis direction.
  • the length of the second side electrode 38 in the X-axis direction may be less than the length of the second electrode 34 in the X-axis direction, or may be longer than the length of the second electrode 34 in the X-axis direction.
  • the length of the second side surface electrode 38 in the X-axis direction may be equal to the length of the second substrate side surface 24 in the X-axis direction.
  • each of the length of the first side electrode 37 in the Z-axis direction and the length of the second side electrode 38 in the Z-axis direction can be changed arbitrarily.
  • the length of the first side surface electrode 37 in the Z-axis direction may be shorter than the length of the first substrate side surface 23 in the Z-axis direction, that is, the thickness of the substrate 20 .
  • the first side electrode 37 is not connected to the first wiring 31.
  • the length of the second side surface electrode 38 in the Z-axis direction may be shorter than the length of the second substrate side surface 24 in the Z-axis direction, that is, the thickness of the substrate 20. In this case, the second side electrode 38 is not connected to the second wiring 32.
  • the position of the first end surface 31A of the first wiring 31 can be changed arbitrarily.
  • the first end surface 31A may be located inside the first substrate side surface 23 (closer to the second substrate side surface 24). In this case, the first wiring 31 is not connected to the first side electrode 37.
  • the position of the first end surface which is the end surface closer to the second substrate side surface 24 of both end surfaces of the second wiring 32 in the Y-axis direction, can be arbitrarily changed.
  • the first end surface of the second wiring 32 may be located inside the second substrate side surface 24 (closer to the first substrate side surface 23). In this case, the second wiring 32 is not connected to the second side electrode 38.
  • each of the number of first side electrodes 37 and the number of second side electrodes 38 can be changed arbitrarily.
  • a plurality of first side electrodes 37 may be provided spaced apart from each other in the X-axis direction.
  • a plurality of second side electrodes 38 may be provided spaced apart from each other in the X-axis direction.
  • each of the first side electrode 37 and the second side electrode 38 may have any configuration as long as it can form a fillet SPA of the solder paste SP.
  • At least one of the first via 35 and the second via 36 may be omitted.
  • the configuration of the semiconductor laser device 10 can be simplified and the cost of the semiconductor laser device 10 can be reduced.
  • the cost reduction effect of the semiconductor laser device 10 can be enhanced.
  • the substrate 20 includes a first substrate side surface 23 and a second substrate side surface 24 that connect the substrate front surface 21 and the substrate back surface 22.
  • the first substrate side surface 23 faces the same side as the first light emitting surface LS1, and the second substrate side surface 24 faces the opposite side to the first substrate side surface 23.
  • a first side electrode 37 is formed on the first substrate side surface 23 and is formed continuously from the first electrode 33 .
  • a second side surface electrode 38 is formed on the second substrate side surface 24 and is formed continuously from the second electrode 34 .
  • the heat transferred from the semiconductor laser element 40 to the substrate 20 is transmitted to the first side electrode 37 and the second side electrode 38. Since both the first side electrode 37 and the second side electrode 38 are exposed to the outside of the semiconductor laser device 10 , the heat transferred to the first side electrode 37 and the second side electrode 38 is transferred to the semiconductor laser device 10 . Heat is radiated to the outside. In this way, the heat of the semiconductor laser element 40 is easily radiated to the outside of the substrate 20. Therefore, the heat dissipation performance of the semiconductor laser device 10 can be improved.
  • a fillet SPA is formed by the first side electrode 37 and the second side electrode 38. Therefore, the operator can visually confirm the mounting state of the semiconductor laser device 10 on the circuit board PCB based on the fillet SPA.
  • the fillet SPA the bonding area between the semiconductor laser device 10 and the circuit board PCB increases. Thereby, heat can be easily radiated from the semiconductor laser device 10 to the circuit board PCB, and the bonding strength between the semiconductor laser device 10 and the circuit board PCB can be improved.
  • the first side electrode 37 connects the first electrode 33 and the first wiring 31.
  • the second side electrode 38 connects the second wiring 32 and the second electrode 34. According to this configuration, the heat of the first wiring 31 moves to the first electrode 33 via the first side electrode 37. Further, the heat of the second wiring 32 moves to the second electrode 34 via the second side electrode 38. Thereby, the heat dissipation performance of the semiconductor laser device 10 can be improved.
  • the height of the fillet SPA formed by the first side electrode 37 and the second side electrode 38 can be increased, so that the operator can This makes it easier to visually confirm the mounting state of the semiconductor laser device 10 on the circuit board PCB.
  • the semiconductor laser device 10 of the fourth embodiment will be described with reference to FIGS. 20 to 23.
  • the semiconductor laser device 10 of the fourth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configuration of the substrate 20.
  • the structure of the substrate 20 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 20, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • the substrate 20 has a first end surface through hole 39A formed on the first substrate side surface 23 and a second end surface through hole 39B formed on the second substrate side surface 24.
  • the first end surface through hole 39A is formed at the center of the first substrate side surface 23 in the X-axis direction in plan view.
  • the first end surface through hole 39A is recessed from the first substrate side surface 23 toward the second substrate side surface 24.
  • the second end surface through hole 39B is formed at the center of the second substrate side surface 24 in the X-axis direction in plan view.
  • the second end surface through hole 39B is recessed from the second substrate side surface 24 toward the first substrate side surface 23.
  • each of the first end surface through hole 39A and the second end surface through hole 39B when viewed from above is approximately semicircular. Both the first end surface through hole 39A and the second end surface through hole 39B are provided so as to penetrate the substrate 20 in its thickness direction (Z-axis direction). As shown in FIG. 23, the first end surface through hole 39A connects the first wiring 31 and the first electrode 33.
  • the first end surface through hole 39A is made of a material containing copper, for example. Thereby, the first wiring 31 and the first electrode 33 are electrically connected through the first end surface through hole 39A.
  • the second end surface through hole 39B connects the second wiring 32 and the second electrode 34.
  • the second end surface through hole 39B is formed of a material containing copper, for example. Thereby, the second wiring 32 and the second electrode 34 are electrically connected by the second end surface through hole 39B.
  • a portion of the first end surface through hole 39A is provided so as to overlap the first end surface 31A of the first wiring 31. That is, a recessed portion recessed from the first end surface 31A toward the second substrate side surface 24 is formed in the center portion of the first end surface 31A in the X-axis direction.
  • the second end surface through hole 39B is provided so as to overlap the second wiring 32. That is, in the central portion of the second wiring 32 in the X-axis direction, a recessed portion is formed that is recessed from the second substrate side surface 24 toward the first substrate side surface 23.
  • a portion of the first end surface through hole 39A is provided so as to overlap the first electrode 33. That is, at the end of the first electrode 33 in the Y-axis direction that is closer to the first substrate side surface 23, the center portion in the X-axis direction is recessed from the end toward the second substrate side surface 24. A recess is formed.
  • the second end surface through hole 39B is provided so as to overlap the second electrode 34. That is, in the central portion of the second electrode 34 in the X-axis direction, a recessed portion is formed that is recessed from the second substrate side surface 24 toward the first substrate side surface 23.
  • the semiconductor laser device 10 includes a resist 90 that covers the first end surface through hole 39A.
  • the resist 90 is formed to cover the entire first end surface through hole 39A.
  • the shape of the resist 90 in a plan view is a rectangle whose longitudinal direction is in the X-axis direction and whose transverse direction is in the Y-axis direction. In plan view, the resist 90 is spaced apart from the semiconductor laser element 40 in the Y-axis direction.
  • a resist 90 is provided on the substrate surface 21.
  • a portion of the resist 90 is provided on the first wiring 31.
  • the resist 90 is made of, for example, an insulating material.
  • the length of the resist 90 in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction.
  • the length of the resist 90 in the X-axis direction can be changed arbitrarily.
  • the length of the resist 90 in the X-axis direction may be equal to or less than the length of the semiconductor laser element 40 in the X-axis direction.
  • the length of the resist 90 in the X-axis direction may be equal to or longer than the length of the first wiring 31 in the X-axis direction.
  • the resist 90 may be formed of a material with higher reflectance than the substrate 20.
  • resist 90 is formed of a white material.
  • the resist 90 constitutes the first reflecting section 70. That is, at least a portion of the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 and directed toward the substrate surface 21 is reflected by the resist 90 toward the first sealing end surface 53.
  • the second end surface through hole 39B is covered by the second side wall portion 62 of the side wall 60.
  • the second side wall portion 62 covers the entire second end surface through hole 39B.
  • the semiconductor laser device 10 of the fourth embodiment may include at least one of the first via 35 and the second via 36. Thereby, the heat dissipation performance of the semiconductor laser device 10 can be improved.
  • the semiconductor laser device 10 may include a second via 36 instead of the second end surface through hole 39B. Furthermore, the semiconductor laser device 10 may include a second side electrode 38 (see FIG. 18) instead of the second end surface through hole 39B.
  • the substrate 20 has a substrate back surface 22 opposite to the substrate front surface 21, and a first substrate side surface 23 that connects the substrate surface 21 and the substrate back surface 22 and faces the same side as the first light emitting surface LS1; a second substrate side surface 24 opposite to the first substrate side surface 23 .
  • the semiconductor laser device 10 further includes a first end surface through hole 39A that is recessed from the first substrate side surface 23 toward the second substrate side surface 24 and is provided so as to penetrate the substrate 20 in the thickness direction.
  • the heat of the first wiring 31 moves to the first electrode 33 via the first end surface through hole 39A.
  • the heat of the first wiring 31 is radiated to the outside of the semiconductor laser device 10 through the first end surface through hole 39A. Therefore, the heat dissipation performance of the semiconductor laser device 10 can be improved.
  • a fillet SPA is formed by the first end surface through hole 39A. Therefore, the operator can visually confirm the mounting state of the semiconductor laser device 10 on the circuit board PCB.
  • the fillet SPA the bonding area between the semiconductor laser device 10 and the circuit board PCB increases. Thereby, heat can be easily radiated from the semiconductor laser device 10 to the circuit board PCB, and the bonding strength between the semiconductor laser device 10 and the circuit board PCB can be improved.
  • the semiconductor laser device 10 further includes a resist 90 that covers the first end surface through hole 39A from the substrate surface 21 side. According to this configuration, it is possible to suppress the fillet SPA formed by the first end surface through hole 39A from protruding from the substrate surface 21.
  • the resist 90 may be made of a material with higher reflectance than the substrate 20. According to this configuration, the resist 90 can constitute the first reflecting section 70.
  • the semiconductor laser device 10 further includes a second end surface through hole 39B that is recessed from the second substrate side surface 24 toward the first substrate side surface 23 and is provided so as to penetrate the substrate 20 in the thickness direction. Be prepared. According to this configuration, the same effect as (4-1) above can be obtained.
  • the semiconductor laser device 10 of the fifth embodiment will be described with reference to FIGS. 24 to 26.
  • the semiconductor laser device 10 of the fifth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in that a photodiode 110 is added and in wiring.
  • the structure of the substrate 20 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 24, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • the semiconductor laser device 10 includes a third wiring 100 formed on the substrate surface 21 of the substrate 20 and a photodiode that receives laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40. 110.
  • the third wiring 100 is arranged closer to the second substrate side surface 24 with respect to the first wiring 31.
  • the third wiring 100 is arranged at a position aligned with the second wiring 32 in the Y-axis direction.
  • the third wiring 100 is arranged closer to the third substrate side surface 25 with respect to the second wiring 32. In this manner, in the fifth embodiment, the length of the second wiring 32 in the X-axis direction is shorter than that in the first embodiment in order to form a space for arranging the third wiring 100.
  • the semiconductor laser device 10 includes a third electrode 101 formed on the back surface 22 of the substrate 20, and a via 102 that electrically connects the third wiring 100 and the third electrode 101. And, it further includes.
  • the third electrode 101 is arranged closer to the second substrate side surface 24 with respect to the first electrode 33.
  • the third electrode 101 is arranged at a position aligned with the second electrode 34 in the Y-axis direction.
  • the third electrode 101 is arranged closer to the third substrate side surface 25 with respect to the second electrode 34 .
  • the third electrode 101 is arranged at a position overlapping the third wiring 100 in a plan view. In this manner, in the fifth embodiment, the length of the second electrode 34 in the X-axis direction is shorter than that in the first embodiment in order to form a space for arranging the third electrode 101.
  • the via 102 is provided at a position overlapping both the third wiring 100 and the third electrode 101 in a plan view.
  • the via 102 is provided so as to penetrate the substrate 20 in its thickness direction (Z-axis direction).
  • the via 102 is connected to both the third wiring 100 and the third electrode 101. Therefore, the third wiring 100 and the third electrode 101 are electrically connected through the via 102.
  • the number of second vias 36 in the fifth embodiment is smaller than that in the first embodiment. There are also few. In the illustrated example, two second vias 36 are provided.
  • each of the first vias 35, the second vias 36, and the vias 102 can be changed arbitrarily.
  • the number of second vias 36 may be one, or three or more.
  • the two second vias 36 may be aligned with each other in the X-axis direction and spaced apart from each other in the Y-axis direction. Further, the two second vias 36 may be arranged so as to be spaced apart from each other in a direction intersecting both the X-axis direction and the Y-axis direction in a plan view.
  • the photodiode 110 is mounted on the third wiring 100. More specifically, the photodiode 110 is bonded to the third wiring 100 using a conductive bonding material SD. That is, the photodiode 110 is mounted on the third wiring 100. Both the third wiring 100 and the photodiode 110 are sealed with a sealing resin 50.
  • the photodiode 110 is arranged closer to the second substrate side surface 24 with respect to the semiconductor laser element 40 in plan view.
  • Photodiode 110 is provided on substrate surface 21 between semiconductor laser element 40 and second sealed end surface 54 .
  • the photodiode 110 is arranged at a position overlapping the semiconductor laser element 40 when viewed from the Y-axis direction.
  • the photodiode 110 is arranged at a position partially overlapping with the semiconductor laser element 40 when viewed from the Y-axis direction.
  • the photodiode 110 may be arranged so that the semiconductor laser element 40 and the photodiode 110 entirely overlap when viewed from the Y-axis direction. In one example, the photodiode 110 may be arranged closer to the third substrate side surface 25 than the semiconductor laser element 40 when viewed from the Y-axis direction.
  • the photodiode 110 has an anode electrode 111 formed on its front surface and a cathode electrode 112 formed on its back surface.
  • the front surface of photodiode 110 faces the same side as substrate surface 21, and the back surface of photodiode 110 faces substrate surface 21.
  • the cathode electrode 112 is in contact with the conductive bonding material SD. Therefore, the cathode electrode 112 is electrically connected to the third wiring 100 by the conductive bonding material SD. Since the third wiring 100 is electrically connected to the third electrode 101, it can be said that the cathode electrode 112 is electrically connected to the third electrode 101.
  • the semiconductor laser device 10 includes a wire WD that connects the photodiode 110 and the second wiring 32.
  • the wire WD is sealed with a sealing resin 50.
  • the wire WD is made of the same material as the wire W, for example.
  • the wire WD is connected to an anode electrode 111 formed on the surface of the photodiode 110. Thereby, the anode electrode 111 is electrically connected to the second wiring 32 by the wire WD. Since the second wiring 32 is electrically connected to the second electrode 34 (see FIG. 25), it can be said that the anode electrode 111 is electrically connected to the second electrode 34.
  • the photodiode 110 When the photodiode 110 receives the laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40, a current flows from the anode electrode 111 to the cathode electrode 112. The current flowing through the photodiode 110 changes depending on, for example, the intensity of the received light.
  • control device obtains the current of the photodiode 110 through the second electrode 34 and the third electrode 101.
  • the control device can control the output of the semiconductor laser element 40 to be constant according to the current of the photodiode 110.
  • the semiconductor laser device 10 includes a photodiode that is provided between the semiconductor laser element 40 and the second sealing end surface 54 on the substrate surface 21 and receives laser light emitted from the second light emitting surface LS2. 110.
  • the control device outside the semiconductor laser device 10 receives the laser light emitted from the second light emitting surface LS2, for example. It can provide information about radiant intensity. Thereby, the control device can control the output of the semiconductor laser element 40 to be constant.
  • the second wiring 32 is a wiring common to the wire W connected to the anode electrode 47 of the semiconductor laser element 40 and the wire WD connected to the anode electrode 111 of the photodiode 110.
  • the semiconductor The laser device 10 can be made smaller.
  • the semiconductor laser device 10 of the sixth embodiment will be described with reference to FIGS. 27 to 29.
  • the semiconductor laser device 10 of the sixth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configuration of the semiconductor laser element and wiring.
  • the structure of the semiconductor laser element and the wiring will be explained in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 27, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • the semiconductor laser device 10 includes a multi-array type semiconductor laser element 120.
  • the semiconductor laser element 120 employs a Fabry-Perot type laser diode element.
  • the semiconductor laser element 120 is formed into a flat plate shape whose thickness direction is in the Z-axis direction.
  • the semiconductor laser element 120 is formed in a rectangular shape with the X-axis direction being the short direction and the Y-axis direction being the long direction.
  • Semiconductor laser element 120 includes a plurality of light emitting sections.
  • the plurality of light emitting sections include a first light emitting section PD1, a second light emitting section PD2, a third light emitting section PD3, and a fourth light emitting section PD4.
  • the first to fourth light emitting parts PD1 to PD4 are arranged in the X-axis direction on the first light emitting surface LS1.
  • the semiconductor laser device 120 has a device front surface 121, a device back surface 122 facing opposite to the device front surface 121, and first to fourth device side surfaces 123 to 126 that connect the device front surface 121 and the device back surface 122.
  • the element surface 121 faces the same side as the substrate surface 21 of the substrate 20, and the element back surface 122 faces the substrate surface 21.
  • the first element side surface 123 and the second element side surface 124 constitute both end surfaces of the semiconductor laser element 120 in the longitudinal direction
  • the third element side surface 125 and the fourth element side surface 126 constitute both end surfaces of the semiconductor laser element 120 in the lateral direction.
  • the first device side surface 123 and the second device side surface 124 constitute both end surfaces of the semiconductor laser device 120 in the Y-axis direction
  • the third device side surface 125 and the fourth device side surface 126 constitute the semiconductor laser device 40 . It constitutes both end faces in the X-axis direction.
  • the first element side surface 123 constitutes a first light emitting surface LS1 that emits the laser light of the semiconductor laser element 120.
  • the first element side surface 123 (first light emitting surface LS1) faces the same side as the first substrate side surface 23. Therefore, in plan view, the semiconductor laser element 120 emits laser light mainly directed in the +Y direction.
  • the second element side surface 124 constitutes a second light emitting surface LS2 that emits the laser light of the semiconductor laser element 120.
  • the second element side surface 124 (first light emitting surface LS2) faces the same side as the second substrate side surface 24. Therefore, in plan view, the semiconductor laser element 120 emits laser light mainly directed in the ⁇ Y direction.
  • the ratio of the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 is, for example, 9:1.
  • the ratio between the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 is, for example, 9: It is 1.
  • the semiconductor laser device 120 has anode electrodes 127A to 127D formed on the front surface 121 of the device and a cathode electrode 128 formed on the back surface 122 of the device.
  • Each of the anode electrodes 127A to 127D is formed at an end of the element surface 121 closer to the second substrate side surface 24.
  • the anode electrodes 127A to 127D are aligned with each other in the Y-axis direction and spaced apart from each other in the X-axis direction.
  • the anode electrodes 127A to 127D are arranged in the order of anode electrodes 127A, 127B, 127C, and 127D from the third element side surface 125 to the fourth element side surface 126.
  • the semiconductor laser device 10 includes second wirings 32A to 32D instead of the second wiring 32 (see FIG. 2).
  • the second wirings 32A to 32D are made of a material containing copper, for example.
  • Each of the second wirings 32A to 32D is arranged closer to the second substrate side surface 24 with respect to the first wiring 31.
  • the second wirings 32A to 32D are arranged to be aligned with each other in the Y-axis direction and spaced apart from each other in the X-axis direction.
  • the second wirings 32A to 32D are arranged in the order of second wirings 32A, 32B, 32C, and 32D from the third substrate side surface 25 toward the fourth substrate side surface 26.
  • the semiconductor laser device 10 includes second electrodes 34A to 34D instead of the second electrode 34 (see FIG. 4).
  • the second electrodes 34A to 34D are made of a material containing copper, for example.
  • Each of the second electrodes 34A to 34D is arranged closer to the second substrate side surface 24 with respect to the first electrode 33.
  • the second electrodes 34A to 34D are aligned with each other in the Y-axis direction and spaced apart from each other in the X-axis direction.
  • the second electrodes 34A to 34D are arranged in the order of second electrodes 34A, 34B, 34C, and 34D from the third substrate side surface 25 toward the fourth substrate side surface 26.
  • the second electrodes 34A to 34D are individually electrically connected to the second wirings 32A to 32D by second vias 36A to 36D. More specifically, the second wiring 32A is electrically connected to the second electrode 34A via the second via 36A. The second wiring 32B is electrically connected to the second electrode 34B via a second via 36B. The second wiring 32C is electrically connected to the second electrode 34C via a second via 36C. The second wiring 32D is electrically connected to the second electrode 34D via a second via 36D. Note that the number and arrangement of each of the second vias 36A to 36D can be changed arbitrarily.
  • the cathode electrode 128 is in contact with the conductive bonding material SD. That is, the cathode electrode 128 is electrically connected to the first wiring 31 by the conductive bonding material SD. Therefore, the cathode electrode 128 is electrically connected to the first electrode 33 via the first wiring 31 and the plurality of first vias 35.
  • the semiconductor laser device 10 includes wires W1 to W4 that individually electrically connect anode electrodes 127A to 127D and second wirings 32A to 32D.
  • the wires W1 to W4 are made of the same material as the wire W of the first embodiment (see FIG. 2).
  • the anode electrode 127A is electrically connected to the second wiring 32A by a wire W1.
  • the anode electrode 127B is electrically connected to the second wiring 32B by a wire W2.
  • the anode electrode 127C is electrically connected to the second wiring 32C by a wire W3.
  • the anode electrode 127D is electrically connected to the second wiring 32D by a wire W4.
  • the anode electrodes 127A to 127D are individually electrically connected to the second electrodes 34A to 34D via second wirings 32A to 32D and a plurality of second vias 36A to 36D, respectively.
  • the semiconductor laser element 120 has a configuration in which a plurality of light emitting parts are lined up on one light emitting surface. More specifically, the semiconductor laser device 120 has a configuration in which first to fourth light emitting parts PD1 to PD4 are arranged in the X-axis direction with respect to the first light emitting surface LS1. It can also be said that the semiconductor laser element 120 has a configuration in which the first to fourth light emitting parts PD1 to PD4 are arranged in the X-axis direction with respect to the second light emitting surface LS2.
  • the first to fourth light emitting units PD1 to PD4 may be configured to have different outputs of laser light, or may be configured to have the same output of laser light.
  • One to three of the first to fourth light emitting units PD1 to PD4 may be configured to output laser light differently from the other light emitting units.
  • the semiconductor laser device 120 can adjust the laser light output of the semiconductor laser device 120 by changing the number of light emitting sections that emit laser light among the first to fourth light emitting sections PD1 to PD4. .
  • the semiconductor laser element 120 has a plurality of light emitting parts (first to fourth light emitting parts PD1 to PD4).
  • the output of the laser light emitted from the semiconductor laser element 120 is improved compared to a configuration in which laser light is emitted from one light emitting part. can be done. Furthermore, by changing the number of light emitting sections that emit laser light, the output of the laser light emitted from the semiconductor laser element 120 can be easily adjusted.
  • a semiconductor laser device 10 according to a seventh embodiment will be described with reference to FIGS. 30 to 33.
  • the semiconductor laser device 10 of the seventh embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in that it further includes a drive circuit element 130 and in the configuration of wiring.
  • the structure of the drive circuit element 130 and the structure of the wiring will be explained in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 30, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • the semiconductor laser device 10 further includes a drive circuit wiring 140, a gate wiring 141G, and a source wiring 141S.
  • the drive circuit wiring 140 is arranged closer to the second substrate side surface 24 with respect to the first wiring 31.
  • the drive circuit wiring 140 is arranged between the first wiring 31 and the second substrate side surface 24 in the Y-axis direction.
  • the drive circuit wiring 140 is formed in a rectangular shape, with the X-axis direction being the longitudinal direction and the Y-axis direction being the lateral direction when viewed from above.
  • Both the gate wiring 141G and the source wiring 141S are arranged closer to the second substrate side surface 24 with respect to the drive circuit wiring 140.
  • both the gate wiring 141G and the source wiring 141S are arranged between the drive circuit wiring 140 and the second substrate side surface 24 in the Y-axis direction.
  • the drive circuit wiring 140 is formed in a rectangular shape, with the X-axis direction being the longitudinal direction and the Y-axis direction being the lateral direction when viewed from above.
  • the length of the gate wiring 141G in the X-axis direction and the length of the source wiring 141S in the X-axis direction are each shorter than the length of the drive circuit wiring 140 in the X-axis direction.
  • the gate wiring 141G is arranged at the center of the substrate surface 21 in the X-axis direction.
  • the source wiring 141S is arranged closer to the third substrate side surface 25 than the gate wiring 141G in the X-axis direction. Note that the length and arrangement of each of the gate wiring 141G and the source wiring 141S in the X-axis direction can be changed arbitrarily.
  • the first wiring 31 of the seventh embodiment has a longer length in the X-axis direction to match the drive circuit wiring 140.
  • the length of the first wiring 31 in the X-axis direction is equal to the length of the drive circuit wiring 140 in the X-axis direction. Note that the length of the first wiring 31 in the X-axis direction and the length of the drive circuit wiring 140 in the X-axis direction may be different from each other.
  • the semiconductor laser device 10 further includes a drive circuit electrode 142, a gate electrode 143G, and a source electrode 143S.
  • the drive circuit electrode 142 is arranged closer to the second substrate side surface 24 than the first electrode 33 is. Both the gate electrode 143G and the source electrode 143S are arranged closer to the second substrate side surface 24 than the drive circuit electrode 142. That is, in plan view, both the gate electrode 143G and the source electrode 143S are arranged between the drive circuit electrode 142 and the second substrate side surface 24 in the Y-axis direction. In plan view, the drive circuit electrode 142 is arranged between the first electrode 33, the gate electrode 143G, and the source electrode 143S in the Y-axis direction.
  • the semiconductor laser device 10 includes a drive circuit via 144 that electrically connects a drive circuit wiring 140 and a drive circuit electrode 142, and a gate wiring 141G and a gate electrode 143G. It further includes a gate via 145G that electrically connects and a source via 145S that electrically connects the source wiring 141S and the source electrode 143S.
  • a plurality of drive circuit vias 144 are provided. Each drive circuit via 144 is arranged at a position overlapping both the drive circuit wiring 140 and the drive circuit electrode 142 in plan view. The plurality of drive circuit vias 144 are arranged to be spaced apart from each other in both the X-axis direction and the Y-axis direction. Each drive circuit via 144 penetrates the substrate 20 in the Z-axis direction. Each drive circuit via 144 is in contact with both the drive circuit wiring 140 and the drive circuit electrode 142.
  • the gate via 145G is arranged at a position overlapping both the gate wiring 141G and the gate electrode 143G in plan view.
  • the gate via 145G penetrates the substrate 20 in the Z-axis direction.
  • the gate via 145G is in contact with both the gate wiring 141G and the gate electrode 143G.
  • the source via 145S is arranged at a position overlapping both the source wiring 141S and the source electrode 143S in plan view.
  • the source via 145S penetrates the substrate 20 in the Z-axis direction.
  • the source via 145S is in contact with both the source wiring 141S and the source electrode 143S. Note that the number and arrangement of each of the drive circuit vias 144, gate vias 145G, and source vias 145S can be changed as desired.
  • the drive circuit element 130 is an element that drives the semiconductor laser element 40.
  • Drive circuit element 130 includes a switching element 131 and a capacitor 132.
  • Drive circuit element 130 is mounted on substrate surface 21 . More specifically, switching element 131 and two capacitors 132 are each mounted on substrate surface 21.
  • the switching element 131 is a semiconductor element that controls the current supplied to the semiconductor laser element 40.
  • Switching element 131 is, for example, a transistor.
  • a MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the switching element 131 includes a source electrode 131S, a drain electrode 131D (see FIG. 32), and a gate electrode 131G.
  • the switching element 131 is formed into a flat plate shape. As shown in FIG. 32, the thickness of the switching element 131 is thicker than the thickness of the semiconductor laser element 40.
  • the shape of the switching element 131 in plan view is rectangular. In the seventh embodiment, the shape of the switching element 131 in plan view is a square. Note that the shape of the switching element 131 in plan view can be arbitrarily changed. In one example, the shape of the switching element 131 in a plan view may be a rectangular shape in which the X-axis direction is the longitudinal direction and the Y-axis direction is the lateral direction.
  • the area of the switching element 131 in plan view is larger than the area of the semiconductor laser element 40.
  • the chip size of the switching element 131 is larger than the chip size of the semiconductor laser element 40.
  • the chip size of the switching element 131 can be changed arbitrarily.
  • the thickness of the switching element 131 may be less than or equal to the thickness of the semiconductor laser element 40.
  • the switching element 131 has a switching element front surface 131A and a switching element back surface 131B facing oppositely to each other in the Z-axis direction.
  • the switching element surface 131A is a surface facing the same side as the substrate surface 21.
  • a source electrode 131S and a gate electrode 131G are formed on the switching element surface 131A.
  • the source electrode 131S is formed over most of the switching element surface 131A.
  • the gate electrode 131G is formed at the end closer to the second substrate side surface 24 of both ends of the switching element surface 131A in the Y-axis direction and at the center in the X-axis direction.
  • the switching element back surface 131B is a surface facing the same side as the substrate back surface 22.
  • the switching element back surface 131B can also be said to be a surface facing the substrate surface 21.
  • a drain electrode 131D is formed on the back surface 131B of the switching element. In this way, the switching element 131 of the seventh embodiment uses a vertically structured MOSFET.
  • the back surface 131B of the switching element is bonded to the drive circuit wiring 140 using a conductive bonding material SD. Therefore, the drain electrode 131D is electrically connected to the drive circuit wiring 140 via the conductive bonding material SD.
  • the source electrode 131S and the anode electrode 47 of the semiconductor laser element 40 are connected by a wire WF. Thereby, the source electrode 131S and the anode electrode 47 are electrically connected.
  • the gate electrode 131G and the gate wiring 141G are connected by a wire WG. Thereby, the gate electrode 131G and the gate wiring 141G are electrically connected.
  • the source electrode 131S and the source wiring 141S are connected by a wire WS. Thereby, the source electrode 131S and the source wiring 141S are electrically connected.
  • the wires WF, WG, and WS are made of, for example, the same material as the wire W of the first embodiment (see FIG. 2). Note that the numbers of wires WF, WG, and WS can be changed arbitrarily.
  • the capacitor 132 is an electronic component that cooperates with the switching element 131 to supply current to the semiconductor laser element 40.
  • a plurality of capacitors 132 are provided.
  • Each capacitor 132 is formed into a substantially rectangular parallelepiped shape.
  • the shape of the capacitor 132 in a plan view is a rectangular shape in which the Y-axis direction is the longitudinal direction and the X-axis direction is the lateral direction.
  • the capacitor 132 includes a first electrode 132A and a second electrode 132B.
  • the first electrode 132A and the second electrode 132B are formed apart from each other in the longitudinal direction of the capacitor 132, that is, in the Y-axis direction.
  • the first electrode 132A is provided at the end of the capacitor 132 in the Y-axis direction that is closer to the first substrate side surface 23, and the second electrode 132B is provided in the Y-axis direction of the capacitor 132. It is provided at the end closer to the second substrate side surface 24 of both ends.
  • the shapes and sizes of the plurality of capacitors 132 are the same. Furthermore, the capacitances of the plurality of capacitors 132 are equal to each other.
  • Each capacitor 132 is arranged so as to straddle the first wiring 31 and the drive circuit wiring 140 in the Y-axis direction.
  • the first electrode 132A of each capacitor 132 is bonded to the first wiring 31 with a conductive bonding material (not shown). Thereby, the first electrode 132A of each capacitor 132 is electrically connected to the first wiring 31. Since the cathode electrode 48 (see FIG. 32) of the semiconductor laser element 40 is electrically connected to the first wiring 31, the first electrode 132A is electrically connected to the cathode electrode 48 via the first wiring 31. It can be said that there are. Since the first wiring 31 is electrically connected to the first electrode 33 (see FIG. 32), both the first electrode 132A of each capacitor 132 and the cathode electrode 48 of the semiconductor laser element 40 are connected to the first electrode 33. electrically connected.
  • the second electrode 132B of each capacitor 132 is bonded to the drive circuit wiring 140 with a conductive bonding material (not shown). More specifically, the second electrode 132B of each capacitor 132 is electrically connected to the drive circuit wiring 140. Since the drain electrode 131D (see FIG. 32) of the switching element 131 is electrically connected to the drive circuit wiring 140, the second electrode 132B of each capacitor 132 is electrically connected to the drain electrode 131D. Since the drive circuit wiring 140 is electrically connected to the drive circuit electrode 142, both the second electrode 132B and the drain electrode 131D of each capacitor 132 are electrically connected to the drive circuit electrode 142. . Note that the conductive bonding material used for mounting the capacitor 132 is, for example, the same conductive bonding material SD used for mounting the semiconductor laser element 40.
  • the plurality of capacitors 132 are arranged spaced apart from each other in the X-axis direction. For this reason, the plurality of capacitors 132 are arranged so that the arrangement direction thereof is the lateral direction of the capacitors 132. The plurality of capacitors 132 are distributed and arranged on both sides of the switching element 131 in the X-axis direction.
  • Each capacitor 132 is arranged at a position overlapping both the semiconductor laser element 40 and the switching element 131 when viewed from the X-axis direction. More specifically, the first electrode 132A of each capacitor 132 is arranged at a position overlapping the semiconductor laser element 40 when viewed from the X-axis direction. The second electrode 132B of each capacitor 132 is arranged at a position overlapping the switching element 131 when viewed from the X-axis direction.
  • the first electrode 132A of each capacitor 132 is arranged to be shifted toward the switching element 131 with respect to the semiconductor laser element 40.
  • the first electrode 132A of each capacitor 132 is arranged to be shifted closer to the switching element 131 than the center of the semiconductor laser element 40 in the Y-axis direction.
  • the plurality of capacitors 132 are arranged symmetrically with respect to the semiconductor laser element 40 and the switching element 131 in plan view. This creates a loop-shaped first wiring path through which current flows from the capacitor 132 disposed on one side of the switching element 131 in the X-axis direction to the semiconductor laser element 40 via the switching element 131, and A loop-shaped second wiring path through which current flows from the capacitor 132 disposed on the other side to the semiconductor laser element 40 via the switching element 131 is formed symmetrically with respect to the semiconductor laser element 40 and the switching element 131.
  • the sealing resin 50 in addition to the semiconductor laser element 40 and the first wiring 31, the sealing resin 50 includes a drive circuit element 130 (switching element 131 and a capacitor 132), a drive circuit wiring 140, The gate wiring 141G and wires WF and WG are sealed.
  • the side wall 60 (see FIG. 2) is omitted from the semiconductor laser device 10.
  • a sealing resin 50 is formed over the entire substrate surface 21. Therefore, the first sealed end surface 53 and the first substrate side surface 23 are flush with each other, the second sealed end surface 54 is flush with the second substrate side surface 24, and the third sealed end surface 55 and the third substrate side surface 25 are flush with each other. are flush with each other, and the fourth sealing end surface 56 and the fourth substrate side surface 26 are flush with each other.
  • the size of the sealing resin 50 can be changed arbitrarily.
  • the sealing resin 50 may be one size smaller than the substrate 20 in plan view.
  • the first to fourth sealing end surfaces 53 to 56 are located inside the first to fourth substrate side surfaces 23 to 26.
  • FIG. 33 shows a circuit configuration of a laser system LS using the semiconductor laser device 10.
  • the laser system LS includes a semiconductor laser device 10, a drive power source DV, a resistance element R, a diode D, and a driver circuit PM.
  • Each of the drive power supply DV, the resistance element R, the diode D, and the driver circuit PM is provided outside the semiconductor laser device 10.
  • the drive power supply DV is, for example, a DC power supply.
  • the drain electrode 131D of the switching element 131 and the second electrode 132B of the capacitor 132 are electrically connected to the positive electrode of the drive power supply DV via the resistance element R.
  • the source electrode 131S of the switching element 131 is electrically connected to the anode electrode 47 of the semiconductor laser element 40. Further, the source electrode 131S is electrically connected to the negative electrode of the drive power source DV.
  • the cathode electrode 48 of the semiconductor laser element 40 is electrically connected to the first electrode 132A of the capacitor 132.
  • the gate electrode 131G of the switching element 131 is electrically connected to the driver circuit PM.
  • the driver circuit PM includes, for example, a rectangular wave oscillation circuit that generates a pulsed signal, and a gate driver IC (Integrated Circuit) provided between the rectangular wave oscillation circuit and the semiconductor laser device 10.
  • the gate driver IC generates a control signal for the switching element 131 based on a signal from the rectangular wave oscillation circuit.
  • a diode D is connected in antiparallel to the semiconductor laser element 40.
  • the semiconductor laser device 10 operates as follows. That is, when the switching element 131 is turned off by the control signal of the driver circuit PM, the capacitor 132 is charged by the drive power supply DV. When the switching element 131 is turned on by the control signal from the driver circuit PM, the capacitor 132 is discharged and current flows through the semiconductor laser element 40. Thereby, the semiconductor laser element 40 emits pulsed laser light.
  • the semiconductor laser device 10 further includes a drive circuit element 130 that is mounted on the substrate surface 21 and drives the semiconductor laser element 40.
  • a drive circuit element 130 that is mounted on the substrate surface 21 and drives the semiconductor laser element 40.
  • the semiconductor laser device 10 of the eighth embodiment will be described with reference to FIGS. 34 to 36.
  • the semiconductor laser device 10 of the eighth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configurations of the semiconductor laser element 40 and the sidewalls 60.
  • the configurations of the semiconductor laser element 40 and the side wall 60 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the description thereof will be omitted. Note that in FIG. 34, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • the output of the laser light emitted from the first light emitting surface LS1 is adjusted to be equal to the output of the laser light emitted from the second light emitting surface LS2, for example.
  • the reflectance of the reflective film formed on the first light emitting surface LS1 and the reflectance of the reflective film formed on the second light emitting surface LS2 are set to be equal to each other.
  • the relationship between the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 can be arbitrarily changed.
  • the output of the laser light emitted from the first light emitting surface LS1 may be greater than the output of the laser light emitted from the second light emitting surface LS2.
  • the output of the laser light emitted from the second light emitting surface LS2 may be greater than the output of the laser light emitted from the first light emitting surface LS1.
  • the side wall 60 differs from the first embodiment in that the second side wall portion 62 (see FIG. 2) is omitted. That is, the side wall 60 is composed of a pair of first side wall parts 61. In other words, the side wall 60 has an opening that exposes the second sealing end surface 54 of the sealing resin 50. That is, the side wall 60 has openings that expose the first sealed end surface 53 and the second sealed end surface 54, respectively.
  • the second sealed end surface 54 is flush with the second substrate side surface 24.
  • the second sealing end surface 54 may be rougher than the sealing surface 51.
  • the arithmetic mean roughness of the second sealing end surface 54 may be larger than the arithmetic mean roughness of the sealing surface 51, similarly to the first sealing end surface 53.
  • the second sealed end surface 54 is a dicing surface formed by dicing. In this case, cutting marks are formed on the second sealing end surface 54 by the dicing process.
  • the first laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57.
  • the first laser light includes laser light directed toward the substrate surface 21.
  • the first extension portion 31C reflects at least a portion of the laser beam directed toward the substrate surface 21.
  • the reflected laser light passes through the first sealing end face 53 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 .
  • the semiconductor laser device 10 can be said to include the first reflecting section 70 that reflects at least a portion of the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 and directed toward the substrate surface 21.
  • the first extending portion 31C of the first wiring 31 constitutes the first reflecting portion 70.
  • the first wiring 31 can be said to have a portion extending from the first light emitting surface LS1 toward the first sealed end surface 53 as the first reflecting portion 70.
  • the second laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57.
  • the second laser light includes laser light directed toward the substrate surface 21.
  • the second wiring 32 reflects at least a portion of the laser beam directed toward the substrate surface 21.
  • the reflected laser light passes through the second sealing end face 54 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 .
  • the semiconductor laser device 10 can be said to include the second reflection section 150 that reflects at least a portion of the laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40 and directed toward the substrate surface 21.
  • the second wiring 32 constitutes the second reflection section 150.
  • the position of the end surface of the second wiring 32 in the Y-axis direction that is closer to the second substrate side surface 24 can be changed arbitrarily.
  • the end surface may be located closer to the second substrate side surface 24 than the position shown in FIG. 34 in plan view, or may be located at the same position as the second substrate side surface 24. This makes it easier to reflect the laser beam directed toward the substrate surface 21 among the second laser beams.
  • the sealing resin 50 includes a second sealing end surface 54 opposite to the first sealing end surface 53.
  • the semiconductor laser element 40 includes a second light emitting surface LS2 that emits laser light toward the second sealed end surface 54.
  • the semiconductor laser device 10 emits a first laser beam with a wide directivity angle that is emitted in the +Y direction and a second laser beam with a wide directivity angle that is emitted in the -Y direction. can do. Therefore, the directivity angle of the laser light emitted from the semiconductor laser device 10 can be further expanded.
  • the semiconductor laser device 10 further includes a second reflection section 150 that reflects at least a portion of the laser light emitted from the second light emitting surface LS2 and directed toward the substrate surface 21.
  • the second reflecting section 150 is provided at a position closer to the second sealing end surface 54 with respect to the second light emitting surface LS2.
  • the laser light directed from the second light emitting surface LS2 toward the substrate surface 21 is reflected by the second reflecting section 150, the laser light emitted from the second light emitting surface LS2 is directed upward from the substrate surface 21.
  • the light is emitted from the second sealed end surface 54 toward. Therefore, for example, when the semiconductor laser device 10 is mounted on a circuit board, laser light can be suppressed from being emitted from the second light emitting surface LS2 toward the surface of the circuit board.
  • the semiconductor laser device 10 further includes a second wiring 32 provided on the substrate 20 and electrically connected to the semiconductor laser element 40 by a wire W.
  • the second wiring 32 is arranged at a position closer to the second sealing end surface 54 with respect to the second light emitting surface LS2 of the semiconductor laser element 40.
  • the second reflective section 150 is configured by the second wiring 32.
  • the second reflecting section 150 can be configured without adding any parts dedicated to the second reflecting section 150. Therefore, an increase in the number of parts of the semiconductor laser device 10 can be suppressed.
  • the semiconductor laser device 10 of the ninth embodiment will be described with reference to FIGS. 37 to 42.
  • the semiconductor laser device 10 of the ninth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the structure of the substrate.
  • the structure of the substrate 20 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 37, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • the semiconductor laser device 10 includes a substrate 20, a first wiring 31, a second wiring 32, a first electrode 33, a second electrode 34, a first via 35, and a second via 36 (both shown in FIG. (see), a substrate 160 is provided.
  • the substrate 160 is configured as a component that supports the semiconductor laser element 40.
  • the substrate 160 includes an insulating substrate 160A made of, for example, black epoxy resin.
  • the insulating substrate 160A can be formed of a heat-resistant material such as engineered plastic.
  • the structure formed on the substrate surface 21 such as the wiring such as the first wiring 31 of the first embodiment (see FIG. 2), and the external electrode (such as the first electrode 33) are described.
  • the substrate 160 includes a first conductive part 180 and a second conductive part 190 formed of a conductive material in place of the above-mentioned wiring and external electrode configuration.
  • the first conductive part 180 and the second conductive part 190 are formed of, for example, a metal frame. In one example, a copper frame is used for the first conductive part 180 and the second conductive part 190.
  • a plating film may be provided on the surface of the frame configured as the first conductive part 180 and the second conductive part 190.
  • the plating film include Ag plating and Ni/Pd/Au plating.
  • the first conductive part 180 and the second conductive part 190 are provided on the insulating substrate 160A.
  • the substrate 160 of the ninth embodiment includes the first conductive part 180, the second conductive part 190, and the insulating substrate 160A.
  • the substrate 160 has a rectangular outer shape with the X-axis direction being the lateral direction and the Y-axis direction being the longitudinal direction.
  • the substrate 160 has a substrate front surface 161 and a substrate back surface 162 facing oppositely to each other in the Z-axis direction, and first to fourth substrate side surfaces 163 to 166 that connect the substrate front surface 161 and the substrate back surface 162.
  • the first substrate side surface 163 and the second substrate side surface 164 constitute both end surfaces of the substrate 160 in the Y-axis direction.
  • each of the first substrate side surface 163 and the second substrate side surface 164 extends in the X-axis direction.
  • the third substrate side surface 165 and the fourth substrate side surface 166 constitute both end surfaces of the substrate 160 in the X-axis direction. In plan view, each of the third substrate side surface 165 and the fourth substrate side surface 166 extends in the Y-axis direction.
  • the insulating substrate 160A holds both the first conductive part 180 and the second conductive part 190.
  • the insulating substrate 160A is integrally formed with the first conductive part 180 and the second conductive part 190 by resin molding. That is, the insulating substrate 160A is a molded resin that holds both the first conductive part 180 and the second conductive part 190.
  • the insulating substrate 160A has a bottom wall portion 171 and a side wall portion 172.
  • the bottom wall portion 171 and the side wall portion 172 are integrally formed.
  • the bottom wall portion 171 is formed into a flat plate shape whose thickness direction is in the Z-axis direction. In other words, the Z-axis direction can also be said to be the thickness direction of the substrate 160.
  • the bottom wall portion 171 has a substrate front surface 161 and a substrate back surface 162.
  • the substrate surface 161 is configured as a surface of the bottom wall portion 171 facing in the +Z direction.
  • the substrate back surface 162 is configured as a surface of the bottom wall portion 171 facing in the ⁇ Z direction.
  • the bottom wall portion 171 is provided with a first conductive portion 180 and a second conductive portion 190.
  • the first conductive part 180 and the second conductive part 190 penetrate the bottom wall part 171 in the Z-axis direction.
  • the side wall portion 172 is provided on the bottom wall portion 171. As shown in FIG. 37, the side wall portion 172 surrounds the semiconductor laser element 40 in plan view.
  • the side wall portion 172 includes a pair of first side wall portions 172A that are spaced apart from each other, and a second side wall portion 172B that connects the pair of first side wall portions 172A.
  • the pair of first side wall portions 172A and second side wall portions 172B are integrally formed.
  • the pair of first side wall portions 172A are spaced apart from each other in the X-axis direction. In plan view, each first side wall portion 172A extends in the Y-axis direction, that is, in the longitudinal direction of the substrate 160.
  • the second side wall portion 172B extends in the X-axis direction, that is, in the lateral direction of the substrate 160.
  • the second side wall portion 172B is arranged closer to the second substrate side surface 164 of the substrate 160 than the semiconductor laser element 40 is.
  • the insulating substrate 160A of the ninth embodiment has a structure in which a portion corresponding to the substrate 20 (see FIG. 5) of the first embodiment and a portion corresponding to the side wall 60 (see FIG. 5) are integrated. It is.
  • the first conductive part 180 provided on the bottom wall part 171 has a first conductive surface 181 and a first conductive back surface 182 facing oppositely to each other in the Z-axis direction.
  • the first conductive surface 181 faces the same side as the substrate front surface 161 and the first conductive back surface 182 faces the same side as the substrate back surface 162.
  • the first conductive surface 181 is exposed from the bottom wall portion 171 and is formed flush with the substrate surface 161 in the illustrated example.
  • the first conductive back surface 182 is exposed from the bottom wall portion 171 and is formed flush with the substrate back surface 162 in the illustrated example.
  • the first conductive surface 181 corresponds to a "conductive surface".
  • the first conductive part 180 includes a first mounting part 183 and a plurality (for example, three) of first hanging lead parts 184 extending from the side edge of the first mounting part 183.
  • first mounting portion 183 is a portion of the first conductive portion 180 exposed from the substrate surface 161, and corresponds to the first wiring in the first embodiment. Therefore, it can be said that the first conductive section 180 includes the first wiring.
  • the first conductive back surface 182 exposed from the substrate back surface 162 corresponds to the first electrode of the first embodiment. Therefore, it can be said that the first conductive part 180 includes the first electrode.
  • the semiconductor laser element 40 is mounted on the first mounting section 183 (first conductive surface 181) of the first conductive section 180. More specifically, the semiconductor laser element 40 is bonded to the surface of the first conductive surface 181 of the first mounting portion 183 exposed from the bottom wall portion 171 using a conductive bonding material SD. Therefore, it can be said that the semiconductor laser element 40 is mounted on the first conductive section 180 (first mounting section 183).
  • the three first hanging lead parts 184 extend from the side edge of the first mounting part 183 on the first board side surface 163 side, the side edge part on the third board side surface 165 side, and the side edge on the fourth board side surface 166 side. It is extending. Therefore, the three first suspension lead parts 184 are exposed from the first substrate side surface 163, the third substrate side surface 165, and the fourth substrate side surface 166.
  • the first suspension lead portion 184 extending from the side edge of the first mounting portion 183 on the side of the first substrate side surface 163 is also exposed from the substrate surface 161 of the bottom wall portion 171 .
  • the first hanging lead portion 184 extending from the side edge portions on the side of the third substrate side surface 165 and the fourth substrate side surface 166 is provided at a position overlapping with the side wall portion 172 in plan view.
  • the second conductive part 190 is arranged closer to the second substrate side surface 164 than the first conductive part 180. As shown in FIG. 38, the second conductive part 190 has a second conductive surface 191 and a second conductive back surface 192 facing oppositely to each other in the Z-axis direction.
  • the second conductive surface 191 faces the same side as the substrate front surface 161 and the second conductive back surface 192 faces the same side as the substrate back surface 162.
  • the second conductive surface 191 is exposed from the bottom wall portion 171 and is formed flush with the substrate surface 161 in the illustrated example.
  • the second conductive back surface 192 is exposed from the bottom wall portion 171 and is formed flush with the substrate back surface 162 in the illustrated example.
  • the substrate surface 161 of the substrate 160 includes the insulating substrate surface of the insulating substrate 160A, the first conductive surface 181 of the first conductive part 180, and the second conductive surface 191 of the second conductive part 190.
  • the insulating substrate surface is a surface of the bottom wall portion 171 of the insulating substrate 160A that faces the same side as the substrate surface 161.
  • the substrate back surface 162 of the substrate 160 includes the insulating substrate back surface of the insulating substrate 160A, the first conductive back surface 182 of the first conductive part 180, and the second conductive back surface 192 of the second conductive part 190.
  • the insulating substrate back surface is a surface of the bottom wall portion 171 of the insulating substrate 160A that faces the same side as the substrate back surface 162.
  • the second conductive part 190 includes a second mounting part 193 and a plurality (for example, three) of second hanging lead parts 194 extending from the side edge of the second mounting part 193.
  • the second mounting portion 193 is a portion of the second conductive portion 190 exposed from the substrate surface 161, and corresponds to the second wiring in the first embodiment. Therefore, it can be said that the second conductive section 190 includes the second wiring.
  • the second conductive back surface 192 exposed from the substrate back surface 162 corresponds to the second electrode of the first embodiment. Therefore, it can be said that the second conductive part 190 includes a second electrode.
  • the anode electrode 47 of the semiconductor laser element 40 is electrically connected to the second mounting portion 193 by a wire W. More specifically, the wire W connected to the anode electrode 47 is joined to the surface of the second conductive surface 191 of the second mounting section 193 exposed from the bottom wall section 171.
  • the wire W is made of the same material as the wire W of the first embodiment, for example.
  • the three second hanging lead parts 194 extend from the side edge of the second mounting part 193 on the second board side surface 164 side, the side edge part on the third board side surface 165 side, and the side edge on the fourth board side surface 166 side. It is extending. Therefore, the three second hanging lead portions 194 are exposed from the second substrate side surface 164, the third substrate side surface 165, and the fourth substrate side surface 166.
  • the second suspension lead portion 194 extending from the side edges of the second substrate side surface 164, the third substrate side surface 165, and the fourth substrate side surface 166 is provided at a position overlapping with the side wall portion 172 in plan view.
  • the semiconductor laser element 40 is sealed with a sealing resin 50.
  • the sealing resin 50 is provided in a space surrounded by the bottom wall part 171 and the side wall part 172. Therefore, the second sealing end surface 54 of the sealing resin 50 is in contact with the second side wall portion 172B, and both the third sealing end surface 55 and the fourth sealing end surface 56 are in contact with the pair of first side wall portions 172A. ing.
  • the first sealed end surface 53 is exposed from the side wall portion 172. In the illustrated example, the first sealing end surface 53 is formed flush with the first substrate side surface 163. Further, the sealing resin 50 is mixed with a diffusion material 57 as in the first embodiment.
  • the area of the portion of the first mounting portion 183 exposed from the bottom wall portion 171 is larger than the area of the semiconductor laser element 40 in plan view. More specifically, the length of the first mounting portion 183 in the X-axis direction is longer than the length of the semiconductor laser device 40 in the X-axis direction, and the length of the first mounting portion 183 in the Y-axis direction is longer than the length of the semiconductor laser device 40 in the X-axis direction. It is longer than the length in the Y-axis direction.
  • the semiconductor laser element 40 is arranged in a portion of the first mounting section 183 closer to the second mounting section 193 (second substrate side surface 164). More specifically, the center of the semiconductor laser element 40 in the Y-axis direction is located closer to the second mounting portion 193 (second substrate side surface 164) than the center of the first mounting portion 183 in the Y-axis direction.
  • the first mounting section 183 includes a first end surface 183A and a second end surface 183B that constitute both ends of the first mounting section 183 in the Y-axis direction.
  • the first end surface 183A is the end surface of the first mounting section 183 that is closer to the first board side surface 163, and the second end surface 183B is the end surface of the first mounting section 183 that is closer to the second board side surface 164.
  • the first end surface 183A is arranged inside the first substrate side surface 163 (closer to the second substrate side surface 164).
  • the first end surface 183A is closer to the first substrate side surface 163 than the center between the first substrate side surface 163 and the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40 in the Y-axis direction in a plan view. It is located in
  • the length of the first mounting portion 183 in the Y-axis direction is longer than the length of the semiconductor laser device 40 in the Y-axis direction, so the first mounting portion 183 is connected to the first light emitting surface LS1 of the semiconductor laser device 40. It includes a first extending portion 183C that is a portion between the first end surface 183A and a second extending portion 183D that is a portion between the second light emitting surface LS2 and the second end surface 183B.
  • the first mounting portion 183 (first conductive surface 181) is a portion extending from the first device side surface 43 (first light emitting surface LS1) of the semiconductor laser device 40 toward the first sealing end surface 53. It can also be said that it has a certain first extending portion 183C.
  • the first extending portion 183C includes a first end surface 183A.
  • the second extending portion 183D includes a second end surface 183B.
  • the distance DA1 between the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40 and the first end surface 183A of the first mounting section 183 in the Y-axis direction is equal to the second element side surface 44 of the semiconductor laser element 40. and the second end surface 183B of the first mounting portion 183 in the Y-axis direction.
  • the distance DA1 can be said to be the length of the first extension part 183C in the Y-axis direction
  • the distance DA2 can be said to be the length of the second extension part 183D in the Y-axis direction.
  • the first light emitting surface LS1 of the semiconductor laser element 40 faces the same side as the first sealing end surface 53.
  • the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57.
  • the laser light includes laser light directed toward the substrate surface 161.
  • the first extension portion 183C reflects at least a portion of the laser beam directed toward the substrate surface 161.
  • the reflected laser light passes through the first sealing end face 53 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 .
  • the semiconductor laser device 10 can be said to include the first reflecting section 70 that reflects at least a portion of the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 and directed toward the substrate surface 161.
  • the first extending portion 183C of the first mounting portion 183 constitutes the first reflecting portion 70.
  • the first mounting section 183 has a portion extending from the first light emitting surface LS1 toward the first sealing end surface 53 as the first reflecting section 70.
  • FIGS. 39 to 42 show a configuration in which four semiconductor laser devices 10 can be manufactured at once for convenience, the present invention is not limited to this, and the configuration can be configured so that more semiconductor laser devices 10 can be manufactured at once. You can.
  • the method for manufacturing the semiconductor laser device 10 includes a step of preparing a lead frame 980, a step of forming an insulating substrate 960, a step of mounting the semiconductor laser element 40, a step of forming the wire W, and a step of forming the sealing resin 950. It includes a step of forming and a step of singulating.
  • a lead frame 980 including a plurality of first conductive parts 180 and a plurality of second conductive parts 190 is prepared.
  • Lead frame 980 is made of a material containing Cu, for example.
  • the lead frame 980 includes a plurality of first conductive parts 180 and a plurality of second conductive parts 190. Two first conductive parts 180 adjacent in the X-axis direction are connected to each other by a first hanging lead part 184. Two second conductive parts 190 adjacent in the X-axis direction are connected by a second hanging lead part 194. The first conductive part 180 and the second conductive part 190 that are adjacent in the Y-axis direction are connected by a first hanging lead part 184 and a second hanging lead part 194.
  • the lead frame 980 has a frame portion. The frame portion connects the plurality of first conductive parts 180 and the plurality of second conductive parts 190.
  • the insulating substrate 960 is formed by resin molding so as to be integrated with the lead frame 980.
  • Insulating substrate 960 supports lead frame 980.
  • the insulating substrate 960 is formed in a size that includes a plurality of substrates 160 (insulating substrates 160A).
  • the insulating substrate 960 is made of, for example, black epoxy resin.
  • Insulating substrate 960 includes a plurality of bottom wall sections 971 and a plurality of side wall sections 972. The number of each of the bottom wall part 971 and the side wall part 972 is set according to the number of substrates 160 (insulating substrates 160A) in the insulating substrate 960.
  • a unit side wall surrounding the first mounting section 183 and the second mounting section 193 is formed by side wall sections 972 that are adjacent in plan view.
  • the step of mounting the semiconductor laser device 40 is a step of mounting the semiconductor laser device 40 on the first mounting portion 183 of the first conductive portion 180.
  • the semiconductor laser element 40 is die-bonded to the first mounting section 183 of the first conductive section 180, for example.
  • the cathode electrode 48 of the semiconductor laser element 40 and the first conductive part 180 are electrically connected.
  • the wire W that electrically connects the anode electrode 47 of the semiconductor laser element 40 and the second mounting section 193 of the second conductive section 190 is formed.
  • the wire W is a bonding wire formed by a wire bonding device.
  • first bonding is performed on the second mounting portion 193 side of the wire W, and second bonding is performed on the anode electrode 47 side of the semiconductor laser element 40.
  • the sealing resin 950 is formed in a space surrounded by an insulating substrate 960 and a unit side wall formed by a plurality of side wall parts 972. It can be said that the side wall portion 972 (unit side wall) surrounds the sealing resin 950.
  • the sealing resin 950 is formed by resin molding, for example.
  • the sealing resin 950 seals the first mounting section 183, the second mounting section 193, the semiconductor laser element 40, and the wire W.
  • the sealing resin 950 is made of a translucent material.
  • the sealing resin 950 is formed of a material containing at least one of silicone resin, epoxy resin, and acrylic resin.
  • the sealing resin 950 is formed by, for example, transfer molding or compression molding. Note that the sealing resin 950 may be filled in a space surrounded by the bottom wall portion 971 of the insulating substrate 960 and the unit side walls of the side wall portions 972 by potting. Note that the sealing resin 950 includes a diffusion material 57 (see FIG. 42).
  • both the side wall portion 972 and the bottom wall portion 971 are cut along the cutting line CL in FIG. 41 by a dicing blade.
  • the substrate 160 and the sealing resin 50 are formed.
  • the semiconductor laser element 40 is mounted on the first wiring 31 so that the first light emitting surface LS1 that emits laser light emits the laser light toward the first sealing end surface 53 of the sealing resin 50. That is, the semiconductor laser element 40 is mounted on the first wiring 31 so that the first light emitting surface LS1 faces the same side as the first sealed end surface 53.
  • the semiconductor laser device 10 includes a first conductive section 180.
  • the insulating substrate 160A is a molded resin that holds the first conductive part 180.
  • the insulating substrate 160A is integrally formed with a bottom wall portion 171 that holds the first conductive portion 180 and a side wall portion 172 that rises from the bottom wall portion 171 and surrounds the sealing resin 50 in a plan view.
  • the number of man-hours for manufacturing the insulating substrate 160A can be reduced compared to a configuration in which the bottom wall portion 171 and the side wall portion 172 are formed individually and then bonded together. , the substrate 160 can be easily manufactured.
  • the first conductive surface 181 (first mounting portion 183) of the first conductive portion 180 serves as the first reflective portion 70, and the first conductive surface 181 (first mounting portion 183) of the first conductive portion 180 is connected to It has a portion extending toward the sealing end surface 53.
  • the first reflecting section 70 can be configured by the first conductive section 180 without adding any parts dedicated to the first reflecting section 70. Therefore, an increase in the number of parts of the semiconductor laser device 10 can be suppressed.
  • a semiconductor laser device 10 according to a tenth embodiment will be described with reference to FIGS. 43 to 45.
  • the semiconductor laser device 10 of the tenth embodiment differs from the semiconductor laser device 10 of the first embodiment in that a submount substrate is interposed between the semiconductor laser element 40 and the first wiring 31.
  • points different from the first embodiment will be described in detail, and components common to those of the semiconductor laser device 10 of the first embodiment are denoted by the same reference numerals, and their explanations will be omitted. Note that in FIG. 43, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
  • a submount substrate 200 is interposed between the semiconductor laser element 40 and the first wiring 31.
  • the submount substrate 200 electrically connects the semiconductor laser element 40 and the first wiring 31. More specifically, the submount substrate 200 electrically connects the cathode electrode 48 of the semiconductor laser element 40 and the first wiring 31.
  • the submount substrate 200 is made of a material having a coefficient of thermal expansion closer to that of the semiconductor laser element 40 than that of the first wiring 31, for example. That is, the difference in thermal expansion coefficient between the submount substrate 200 and the semiconductor laser element 40 is smaller than the difference in the thermal expansion coefficient between the first wiring 31 and the semiconductor laser element 40.
  • the semiconductor laser element 40 is formed of a Si substrate, its thermal expansion coefficient is approximately 2.6 ⁇ 10 ⁇ 6 /K.
  • the first wiring 31 is formed of a material containing copper, its coefficient of thermal expansion is approximately 16.5 ⁇ 10 ⁇ 6 /K. Therefore, the submount substrate 200 is formed of a material with a coefficient of thermal expansion smaller than 16.5 ⁇ 10 ⁇ 6 /K.
  • submount substrate 200 is made of alumina. In this case, the coefficient of thermal expansion of the submount substrate 200 is approximately 7.2 ⁇ 10 ⁇ 6 /K. Furthermore, the submount substrate 200 may be made of aluminum nitride. In this case, the coefficient of thermal expansion of the submount substrate 200 is approximately 4.6 ⁇ 10 ⁇ 6 /K.
  • the submount substrate 200 is formed into a flat plate shape with the thickness direction in the Z-axis direction.
  • the shape of the submount substrate 200 in plan view is a rectangular shape with the Y-axis direction as the longitudinal direction and the X-axis direction as the lateral direction.
  • the submount substrate 200 is formed to be one size larger than the semiconductor laser element 40 in plan view.
  • the submount substrate 200 has a front surface 201, a back surface 202, and first to fourth side surfaces 203 to 206 connecting the front surface 201 and the back surface 202.
  • the front surface 201 faces the same side as the substrate front surface 21, and the back surface 202 faces the same side as the substrate back surface 22.
  • the back surface 202 faces the first wiring 31.
  • the first to fourth side surfaces 203 to 206 are surfaces that intersect with both the front surface 201 and the back surface 202.
  • each of the first to fourth side surfaces 203 to 206 is a surface that is perpendicular to the front surface 201 and the back surface 202.
  • the first side surface 203 and the second side surface 204 constitute both end surfaces of the submount substrate 200 in the Y-axis direction.
  • the first side surface 203 faces the same side as the first substrate side surface 23, and the second side surface 204 faces the same side as the second substrate side surface 24.
  • the third side surface 205 and the fourth side surface 206 constitute both end surfaces in the X-axis direction of the submount substrate 200.
  • the third side surface 205 faces the same side as the third substrate side surface 25, and the fourth side surface 206 faces the same side as the fourth substrate side surface 26.
  • the semiconductor laser device 10 includes a front side wiring 207 provided on the front side 201 of the submount substrate 200, a back side wiring 208 provided on the back side 202, and a via 209 connecting the front side wiring 207 and the back side wiring 208. and.
  • Each of the front side wiring 207 and the back side wiring 208 is formed of a material containing copper, for example.
  • Via 209 is formed of a material containing Cu, for example.
  • the front-side wiring 207 is formed into a rectangular shape that is one size smaller than the submount substrate 200 in plan view.
  • the back side wiring 208 is formed in a rectangular shape with the same size as the front side wiring 207 in plan view.
  • the front side wiring 207 is formed on the front surface 201 of the submount substrate 200.
  • a plurality of vias 209 are provided, for example.
  • the vias 209 are formed by two rows of four vias 209 arranged in a row spaced apart from each other in the Y-axis direction and spaced apart from each other in the X-axis direction.
  • each of the front-side wiring 207 and the back-side wiring 208 can be changed arbitrarily.
  • the area of the front-side wiring 207 and the area of the back-side wiring 208 may be different from each other in plan view.
  • the number of vias 209 can be changed arbitrarily.
  • the submount substrate 200 is bonded to the first wiring 31 using a conductive bonding material SD. That is, the submount substrate 200 is mounted on the first wiring 31.
  • the submount substrate 200 is arranged closer to the second end surface 31B of the first wiring 31 in the Y-axis direction.
  • the distance DB1 between the submount board 200 and the first end surface 31A of the first wiring 31 in the Y-axis direction is equal to the distance DB1 between the submount board 200 and the second end surface 31B of the first wiring 31.
  • the distance between DB2 and DB2 in the Y-axis direction is greater than DB2.
  • the semiconductor laser element 40 is mounted on a submount substrate 200. More specifically, the cathode electrode 48 of the semiconductor laser element 40 is bonded to the front side wiring 207 of the submount substrate 200 using a conductive bonding material SD. Thereby, the cathode electrode 48 is electrically connected to the front side wiring 207. Since the front side wiring 207 is electrically connected to the back side wiring 208 via the via 209, the cathode electrode 48 is electrically connected to the back side wiring 208. Since the back side wiring 208 is electrically connected to the first wiring 31 by the conductive bonding material SD, the cathode electrode 48 is electrically connected to the first wiring 31. In the tenth embodiment, the semiconductor laser element 40 is arranged at the center of the submount substrate 200 in the Y-axis direction.
  • the submount substrate 200, the semiconductor laser element 40, and the wire W are sealed with a sealing resin 50.
  • the first side surface 203 of the submount substrate 200 is arranged inside the first sealing end surface 53 of the sealing resin 50 (closer to the semiconductor laser element 40).
  • the semiconductor laser device 10 does not include the first reflection section 70 (see FIG. 5). That is, the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is emitted from the first sealing end surface 53 and the sealing surface 51 via the sealing resin 50.
  • the semiconductor laser device 10 further includes a submount substrate 200 that is interposed between the first wiring 31 and the semiconductor laser element 40 and electrically connects the first wiring 31 and the semiconductor laser element 40.
  • the submount substrate 200 is made of a material having a coefficient of thermal expansion closer to that of the semiconductor laser element 40 than that of the first wiring 31.
  • the force applied to the semiconductor laser element 40 due to the difference in thermal expansion coefficient between the first wiring 31 and the semiconductor laser element 40 can be reduced. Therefore, it is possible to reduce the influence on the electrical characteristics of the semiconductor laser element 40 due to temperature changes.
  • the distance DB1 between the submount board 200 and the first end surface 31A of the first wiring 31 in the Y-axis direction is the distance DB1 between the submount board 200 and the second end surface 31B of the first wiring 31 in the Y-axis direction.
  • the distance between DB2 is greater than DB2.
  • the semiconductor laser element 40 can be further separated from the first sealed end surface 53. Therefore, the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is easily diffused (scattered) by the diffusion material 57 within the sealing resin 50. Therefore, the directivity angle of the laser light emitted from the semiconductor laser device 10 can be further expanded.
  • the first side electrode 37 and the second side electrode 38 of the third embodiment may be added to the second and fourth to tenth embodiments.
  • the first side electrode 37 and the first end surface through hole 39A are connected to each other.
  • the second side electrode 38 and the second end surface through hole 39B are connected to each other.
  • the second side electrode 38 is connected to the third substrate side surface 25 and the fourth substrate side surface 26, for example, continuously with the drive circuit electrode 142. It may be formed on at least one of the following.
  • the semiconductor laser device 10 may further include a gate side electrode formed on the second substrate side surface 24 continuously with the gate electrode 143G.
  • At least one of the first end surface through hole 39A and the second end surface through hole 39B of the fourth embodiment may be added to the second and fifth to tenth embodiments.
  • a reflector 80 may be placed on the first end surface through hole 39A.
  • the resist 90 may be omitted.
  • the first end surface through hole 39A may be provided on at least one of the first substrate side surface 23 and the second substrate side surface 24.
  • the second, fifth, sixth, and eighth to tenth embodiments include the drive circuit element 130 of the seventh embodiment, the drive circuit wiring 140, the gate wiring 141G, the source wiring 141S, the drive circuit electrode 142, and the gate An electrode 143G and a source electrode 143S may be added.
  • the semiconductor laser device 10 may include, for example, a drive circuit via 144 as a configuration for electrically connecting the drive circuit wiring 140 and the drive circuit electrode 142.
  • the semiconductor laser device 10 may include, for example, a gate via 145G to electrically connect the gate wiring 141G and the gate electrode 143G.
  • the semiconductor laser device 10 may include, for example, a source via 145S to electrically connect the source wiring 141S and the source electrode 143S.
  • the photodiode 110, third wiring 100, and third electrode 101 of the fifth embodiment may be added to the sixth to ninth embodiments.
  • the semiconductor laser device 10 may include a via 102 to electrically connect the third wiring 100 and the third electrode 101.
  • the semiconductor laser device 120 of the sixth embodiment may be applied instead of the semiconductor laser device 40 of the seventh to tenth embodiments.
  • the configuration of the side wall 60 of the eighth embodiment may be applied to the ninth and tenth embodiments. That is, in the ninth embodiment, the second side wall portion 172B may be omitted from the side wall portion 172.
  • the submount substrate 200 of the tenth embodiment may be applied to the ninth embodiment.
  • the submount substrate 200 is bonded to the first mounting portion 183 using the conductive bonding material SD.
  • the semiconductor laser element 40 is bonded to the submount substrate 200 using a conductive bonding material SD.
  • a reflective film 210 may be formed on the substrate surface 21 as the first reflective section 70.
  • the semiconductor laser device 10 includes the reflective film 210 formed on the substrate surface 21 as the first reflective section 70 .
  • the reflective film 210 is disposed closer to the first substrate side surface 23 than the first wiring 31 on the substrate surface 21 .
  • the reflective film 210 is arranged apart from the first wiring 31 in the Y-axis direction.
  • the reflective film 210 may be formed of a material containing copper like the first wiring 31, or may be formed of a material different from the material of the first wiring 31 (for example, Al).
  • the reflective film 210 may be in an electrically floating state, for example.
  • the length of the first extending portion 31C of the first wiring 31 in the Y-axis direction is shorter than the length of the first extending portion 31C of the first embodiment in the Y-axis direction. Further, the first extending portion 31C may be omitted.
  • the thickness of the reflective film 210 is equal to the thickness of the first wiring 31. Note that the thickness of the reflective film 210 can be changed arbitrarily, and may be thicker than the thickness of the first wiring 31, for example.
  • the length of the reflective film 210 in the X-axis direction is equal to the length of the first wiring 31 in the X-axis direction. Note that the length of the reflective film 210 in the X-axis direction can be changed arbitrarily. The length of the reflective film 210 in the X-axis direction may be longer than the length of the first wiring 31 in the X-axis direction. Further, the length of the reflective film 210 in the X-axis direction may be shorter than the length of the first wiring 31 in the X-axis direction.
  • the length of the reflective film 210 in the X-axis direction is shorter than the length of the first wiring 31 in the X-axis direction, for example, the length of the reflective film 210 in the X-axis direction is equal to the length of the semiconductor laser element 40 in the X-axis direction. It is good if it is above.
  • the position of the reflector 80 can be changed arbitrarily.
  • the reflector 80 may be disposed between the first light emitting surface LS1 of the semiconductor laser element 40 and the first substrate side surface 23 of the substrate 20 in the Y-axis direction in plan view. good.
  • the reflector 80 may be arranged between the first light emitting surface LS1 and the first sealing end surface 53 of the sealing resin 50 in the Y-axis direction in a plan view. That is, the reflector 80 may be entirely sealed with the sealing resin 50.
  • the reflector 80 may be arranged so that a portion thereof protrudes from the first substrate side surface 23. Further, the reflector 80 may be arranged so that a portion thereof protrudes from the first sealed end surface 53.
  • the height dimension of the reflector 80 (the size of the reflector 80 in the Z-axis direction) can be changed arbitrarily.
  • the height dimension of the reflector 80 may be smaller than the thickness of the semiconductor laser element 40 (the size of the semiconductor laser element 40 in the Z-axis direction).
  • the substrate 160 may have a reflector section 173.
  • the reflector section 173 is formed on the bottom wall section 171.
  • the reflector portion 173 may be formed integrally with the bottom wall portion 171.
  • the reflector section 173 is made of, for example, black epoxy resin, like the bottom wall section 171.
  • the reflector portion 173 has an inclined surface 173A.
  • the inclined surface 173A is inclined upward toward the first substrate side surface 23.
  • a reflective film 174 is formed on the inclined surface 173A.
  • the reflective film 174 is formed of, for example, a metal film. Examples of the metal film include a Cu film and an Al film. Note that for the reflective film 174, a resist with high reflectance may be used instead of a metal film. As the resist with high reflectance, for example, a white resist may be used.
  • the reflector 80 may be integrated with the first mounting section 183. That is, in the method for manufacturing the semiconductor laser device 10, the reflector 80 may be integrally formed with the lead frame 980 in the step of preparing the lead frame 980. More specifically, the reflector 80 is integrally formed with each first conductive part 180.
  • the length of the submount substrate 200 in the Y-axis direction may be increased.
  • the semiconductor laser element 40 is arranged closer to the second side surface 204 with respect to the submount substrate 200 in plan view. That is, in plan view, the distance between the first light emitting surface LS1 of the semiconductor laser device 40 and the first side surface 203 of the submount substrate 200 in the Y-axis direction is This is larger than the distance between the light emitting surface LS2) and the second side surface 204 of the submount substrate 200 in the Y-axis direction.
  • the front side wiring 207 can have a long first extension portion 207A extending from the first light emitting surface LS1 to the first side surface 203 in plan view.
  • the first extending portion 207A constitutes the first reflecting portion 70.
  • the front side wiring 207 has a portion (first extension portion 207A) extending from the first light emitting surface LS1 toward the first sealing end surface 53 as the first reflection portion 70.
  • the front side wiring 207 corresponds to the "connection wiring".
  • the semiconductor laser device 10 may include a reflector 80 as the first reflecting section 70.
  • the reflector 80 may be mounted on the surface 201 of the submount substrate 200, for example. Further, the reflector 80 may be mounted, for example, on the front side wiring 207 of the submount substrate 200.
  • the semiconductor laser device 10 may include a reflective film formed on the surface 201 of the submount substrate 200 as the first reflective section 70.
  • the reflective film is formed of a metal film such as a Cu film or an Al film.
  • the reflective film is arranged closer to the first side surface 203 than the front side wiring 207, for example.
  • the reflective film is, for example, in an electrically floating state.
  • the first reflecting section 70 may be omitted from the semiconductor laser device 10. More specifically, the first extension portion 31C of the first wiring 31 may be formed so that the laser light directed toward the substrate surface 21 out of the laser light from the semiconductor laser element 40 does not hit the first extension portion 31C. Alternatively, the first extending portion 31C may be omitted from the first wiring 31. In this case, of the laser light from the semiconductor laser element 40, the laser light directed toward the substrate surface 21 may be emitted from the first sealing end surface 53 of the sealing resin 50 without being reflected on the substrate surface 21.
  • the distance D2 in the X-axis direction from the second light-emitting surface LS2 of the semiconductor laser element 40 to the second end surface 31B of the first wire 31 is the distance D2 in the X-axis direction from the first light-emitting surface LS1 to the first end surface 31A of the first wire 31. It is equal to the distance D1 in the direction.
  • the second extending portion 31D constitutes the second reflecting portion 150.
  • the second laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57.
  • the second laser light includes laser light directed toward the substrate surface 21.
  • the second extension 31D of the first wiring 31 reflects at least a portion of the laser beam directed toward the substrate surface 21.
  • the reflected laser light passes through the second sealing end face 54 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 .
  • the semiconductor laser device 10 can be said to include the second reflection section 150 that reflects at least a portion of the laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40 and directed toward the substrate surface 21.
  • the second extending portion 31D of the first wiring 31 constitutes the second reflecting portion 150. That is, it can be said that the first wiring 31 has a portion extending from the second light emitting surface LS2 toward the second sealing end surface 54 as the second reflecting portion 150 in plan view.
  • the laser beam of the second laser beam that is directed toward the substrate surface 21 is also reflected by the second wiring 32 .
  • the reflected laser light passes through the second sealing end face 54 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . Therefore, it can be said that the second wiring 32 also constitutes the second reflection section 150.
  • a reflective film 220 may be formed on the substrate surface 21 between the first wiring 31 and the second wiring 32 in the Y-axis direction.
  • the reflective film 220 constitutes the second reflective section 150.
  • the reflective film 220 may be formed of a material containing copper like the first wiring 31 and the second wiring 32, or may be formed of a material different from the material of the first wiring 31 and the second wiring 32 (for example, Al). may be done.
  • the reflective film 220 may be in an electrically floating state, for example.
  • the area of the reflective film 220 in plan view is equal to the area of the second wiring 32. More specifically, the length of the reflective film 220 in the X-axis direction is equal to the length of the second wiring 32 in the X-axis direction. The length of the reflective film 220 in the Y-axis direction is equal to the length of the second wiring 32 in the Y-axis direction.
  • the length of the reflective film 220 in the X-axis direction can be changed arbitrarily.
  • the length of the reflective film 220 in the X-axis direction may be longer than the length of the second wiring 32 in the X-axis direction.
  • the length of the reflective film 220 in the X-axis direction may be longer than the length of the first wiring 31 in the X-axis direction.
  • the length of the reflective film 220 in the X-axis direction may be shorter than the length of the second wiring 32 in the X-axis direction.
  • the length of the reflective film 220 in the X-axis direction may be shorter than the length of the first wiring 31 in the X-axis direction.
  • the length of the reflective film 220 in the X-axis direction is preferably equal to or longer than the length of the semiconductor laser element 40 in the X-axis direction.
  • the length of the reflective film 220 in the Y-axis direction can be changed arbitrarily.
  • the length of the reflective film 220 in the Y-axis direction may be longer than the length of the second wiring 32 in the Y-axis direction.
  • the length of the reflective film 220 in the Y-axis direction may be shorter than the length of the second wiring 32 in the Y-axis direction.
  • a reflector 230 as the second reflection section 150 may be arranged between the semiconductor laser element 40 and the second wiring 32 in the Y-axis direction.
  • Reflector 230 is provided on substrate surface 21 .
  • the reflector 230 is arranged on the first wiring 31, as shown in FIG. More specifically, the reflector 230 is arranged on the second extending portion 31D of the first wiring 31.
  • the reflector 230 is not limited to being placed on the first wiring 31, but may be placed on the substrate surface 21. In this case, the reflector 230 is arranged in a portion of the substrate surface 21 between the first wiring 31 and the second wiring 32 in the Y-axis direction.
  • the reflector 230 is made of a metal material such as Cu or Al.
  • the reflector 230 is bonded to the first wiring 31 with adhesive, for example.
  • the reflector 230 is sealed with a sealing resin 50.
  • the reflector 230 has a bottom surface 231 facing the substrate surface 21 (first wiring 31), a side surface 232 extending upward from the bottom surface 231, and a reflective surface 233 connecting the bottom surface 231 and the side surface 232.
  • the bottom surface 231 is a surface in contact with the adhesive, and is formed by a flat surface perpendicular to the thickness direction (Z-axis direction) of the substrate 20.
  • the side surface 232 extends upward from the edge of the bottom surface 231 in the Y-axis direction that is closer to the second substrate side surface 24 .
  • the reflective surface 233 connects the edge of the bottom surface 231 in the Y-axis direction that is closer to the semiconductor laser element 40 and the upper edge of the side surface 232 . Reflective surface 233 faces in a direction intersecting substrate surface 21 .
  • the reflective surface 233 is an inclined surface that slopes upward toward the second substrate side surface 24 (as it moves away from the semiconductor laser element 40).
  • the angle of inclination of the reflective surface 233 is set according to the range of laser light emitted from the sealing resin 50. In one example, the inclination angle of the reflective surface 233 is greater than 0° and less than 45°. Here, the inclination angle of the reflective surface 233 is an acute angle formed by the bottom surface 231 and the reflective surface 233.
  • the height dimension (size in the Z-axis direction) of the side surface 232 is equal to the thickness dimension (size in the Z-axis direction) of the semiconductor laser element 40. Therefore, when viewed from the Y-axis direction, the reflective surface 233 is formed to overlap the entire surface of the first light emitting surface LS1.
  • the shape of the reflector 230 can be changed arbitrarily.
  • the height dimension of the reflector 230 (the size of the reflector 230 in the Z-axis direction) may be smaller than the thickness of the semiconductor laser element 40.
  • the angle of inclination of the reflector 230 may be smaller than the angle of inclination of the reflector 80 as the first reflecting section 70. That is, the inclination angles of the reflectors 80 and 230 may be set individually. As a result, the angle of inclination of reflector 80 and the angle of inclination of reflector 230 may be different from each other.
  • the arrangement position of the reflector 230 can be changed arbitrarily.
  • the reflector 230 may be arranged closer to the second substrate side surface 24 than the second wiring 32.
  • Reflector 230 is arranged, for example, on substrate surface 21. In this case, reflector 230 is bonded to substrate surface 21, for example by adhesive.
  • the reflector 230 may be arranged such that its side surface 232 is inside the second substrate side surface 24 (closer to the second wiring 32). When the reflector 230 is arranged closer to the second substrate side surface 24 than the second wiring 32, it can be said that the reflector 230 is arranged between the second wiring 32 and the second substrate side surface 24 in the Y-axis direction.
  • the reflector 230 is not limited to being placed on the substrate surface 21, but may be placed on the second wiring 32. In this case, the length of the second wiring 32 in the Y-axis direction is increased, and the reflector 230 is arranged in a portion of the second wiring 32 closer to the second substrate side surface 24 than the area where the wire W is bonded. You can.
  • the reflector 230 is bonded to the second wiring 32 with adhesive, for example.
  • the length of the submount substrate 200 in the Y-axis direction may be increased.
  • the semiconductor laser element 40 is arranged at the center of the submount substrate 200 in the Y-axis direction in plan view. That is, in plan view, the distance between the first light emitting surface LS1 of the semiconductor laser device 40 and the first side surface 203 of the submount substrate 200 in the Y-axis direction is It is equal to the distance between the light emitting surface LS2) and the second side surface 204 of the submount substrate 200 in the Y-axis direction.
  • the front side wiring 207 has a first extending portion 207A extending from the first light emitting surface LS1 to the first side surface 203 and a second extending portion 207B extending from the second light emitting surface LS2 to the second side surface 204 in plan view. Both can be kept for a long time.
  • the first extending portion 207A constitutes the first reflecting portion 70
  • the second extending portion 207B constitutes the second reflecting portion 150. That is, it can be said that the front-side wiring 207 has a portion (second extending portion 207B) extending from the second light emitting surface LS2 toward the second sealing end surface 54 as the second reflecting portion 150.
  • the front side wiring 207 corresponds to the "connection wiring".
  • the semiconductor laser device 10 may include a reflector 230 as the second reflection section 150.
  • the reflector 230 may be mounted on the surface 201 of the submount substrate 200, for example. Further, the reflector 230 may be mounted, for example, on the front side wiring 207 of the submount substrate 200.
  • the semiconductor laser device 10 may include a reflective film formed on the surface 201 of the submount substrate 200 as the second reflective section 150.
  • the reflective film is formed of a metal film such as a Cu film or an Al film.
  • the reflective film may be formed of a white insulating film with high reflectance.
  • the reflective film is arranged closer to the second side surface 204 than the front side wiring 207, for example.
  • the reflective film is, for example, in an electrically floating state.
  • the semiconductor laser device 10 may include a reflector 230 shown in FIG. 54 as the second reflection section 150.
  • the reflector 230 may have the shape shown in FIG. 55. Further, the reflector 230 may be arranged closer to the second substrate side surface 24 than the second wiring 32, as shown in FIG.
  • the semiconductor laser device 10 may include a reflector 80 (see FIG. 14) as the first reflecting section 70.
  • the reflector 80 may be placed closer to the first substrate side surface 23 (first sealed end surface 53) than the semiconductor laser element 40. Further, as shown in FIG. 47, the reflector 80 is arranged between the semiconductor laser element 40 and the first substrate side surface 23 (first sealing end surface 53) in the Y-axis direction. Good too.
  • the semiconductor laser device 10 may include a reflector 80 as the first reflective section 70.
  • the reflector 80 may be arranged so that its side surface 82 is flush with the first sealed end surface 53 (first substrate side surface 23). Further, the side surface 82 of the reflector 80 may be arranged inside (closer to the semiconductor laser element 40) than the first sealed end surface 53 (first substrate side surface 23). In this case, it can be said that the reflector 80 is disposed between the first sealed end surface 53 (first substrate side surface 23) and the semiconductor laser element 40 in the Y-axis direction.
  • the semiconductor laser device 10 may include a reflective film 210 (see FIG. 46) as the first reflective section 70.
  • the semiconductor laser device 10 of the present disclosure may include both the first reflecting section 70 and the second reflecting section 150.
  • Each of the configurations of the first reflecting section 70 and the second reflecting section 150 can be changed arbitrarily.
  • the semiconductor laser device 10 of the present disclosure may not include the first reflecting section 70 but may include the second reflecting section 150, or may include both the first reflecting section 70 and the second reflecting section 150. It is not necessary to have
  • the shape of the semiconductor laser element 40 in plan view can be arbitrarily changed.
  • the shape of the semiconductor laser element 40 in plan view may be square, or may be rectangular with the Y-axis direction being the short direction and the X-axis direction being the long direction.
  • the semiconductor laser device 10 may include a plurality of semiconductor laser elements 40.
  • the semiconductor laser device 10 includes three semiconductor laser elements 40A, 40B, and 40C. These semiconductor laser elements 40A to 40C are arranged spaced apart from each other in the X-axis direction. In other words, the semiconductor laser elements 40A to 40C are arranged side by side in a direction perpendicular to the direction in which the laser beams of the semiconductor laser elements 40A to 40C emit when viewed in plan.
  • the semiconductor laser elements 40A to 40C may be configured such that the wavelengths of the laser beams of the semiconductor laser elements 40A to 40C are different from each other.
  • the semiconductor laser element 40A is configured to emit red laser light
  • the semiconductor laser element 40B is configured to emit green laser light
  • the semiconductor laser element 40C is configured to emit blue laser light. ing.
  • the position of the wire W can be changed arbitrarily.
  • the wire W may be formed so as not to overlap the second light emitting surface LS2 of the semiconductor laser element 40 when viewed from the Y-axis direction.
  • the wire W includes a joint WX connected to the second wiring 32. This joint portion WX is provided at a position shifted from the second light emitting surface LS2 in the direction along the second light emitting surface LS2 (the X-axis direction in FIG. 59).
  • the joint WX is located closer to the fourth substrate side surface 26 than the second light emitting surface LS2.
  • the bonding portion WX of the wire W may be arranged, for example, at a position closer to the third substrate side surface 25 than the second light emitting surface LS2.
  • the number of wires W can be changed arbitrarily.
  • the anode electrode 47 of the semiconductor laser element 40 and the second wiring 32 (second mounting portion 193) may be connected by a plurality of wires W.
  • the part of the wire W that is connected to the anode electrode 47 of the semiconductor laser element 40 is the first bonding, and the part that is connected to the second wiring 32 is the second bonded.
  • the wire W may be formed as shown in FIG.
  • the wires are arranged such that the bonding portions of the wires W1 to W4 with the anode electrodes 127A to 127D of the semiconductor laser element 120 are the first bonding, and the bonding portions of the second wirings 32A to 32D are the second bonding.
  • W1 to W4 may be formed.
  • the number and position of the first end surface through holes 39A can be changed arbitrarily.
  • the two first end surface through-holes 39A are formed dispersedly on both sides of the first substrate side surface 23 in the X-axis direction of the semiconductor laser element 40. That is, one of the two first end surface through holes 39A is arranged closer to the third substrate side surface 25 than the semiconductor laser element 40 when viewed from the Y-axis direction. The other one of the two first end surface through holes 39A is arranged closer to the fourth substrate side surface 26 than the semiconductor laser element 40 when viewed from the Y-axis direction.
  • a resist 90 is provided on each first end surface through hole 39A to cover the corresponding first end surface through hole 39A from above.
  • the resist 90 is not placed in a position overlapping with the semiconductor laser element 40 in the X-axis direction when viewed from the Y-axis direction, and the first wiring 31 (first extension portion 31C) is exposed.
  • the first wiring 31 (the first extension portion 31C) reflects at least a portion of the laser light directed toward the substrate surface 21 among the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40.
  • the reflected laser light passes through the first sealing end face 53 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . Therefore, the directivity angle of the laser light emitted by the semiconductor laser device 10 can be widened.
  • the first end surface through hole 39A is not limited to the first substrate side surface 23, and may be formed on at least one of the third substrate side surface 25 and the fourth substrate side surface 26.
  • the first end surface through hole 39A formed in the third substrate side surface 25 is formed to be connected to the end of the first wiring 31 on the third substrate side surface 25 side.
  • the first end surface through hole 39A formed in the fourth substrate side surface 26 is formed so as to be connected to the end of the first wiring 31 on the fourth substrate side surface 26 side. In such a case, by increasing the length of the first wiring 31 in the X-axis direction, the first end surface through hole 39A formed in at least one of the third substrate side surface 25 and the fourth substrate side surface 26 is connected to the first wiring 31.
  • the first end surface through hole 39A only needs to be formed in at least one of the first substrate side surface 23, the third substrate side surface 25, and the fourth substrate side surface 26.
  • the resist 90 may be omitted. good.
  • the number and position of the second end surface through-holes 39B can be changed arbitrarily.
  • the plurality of second end surface through holes 39B may be formed in the second substrate side surface 24 to be spaced apart in the X-axis direction.
  • the second end surface through hole 39B is not limited to the second substrate side surface 24, and may be formed on at least one of the third substrate side surface 25 and the fourth substrate side surface 26.
  • the second end surface through hole 39B formed in the third substrate side surface 25 is formed to be connected to the end of the second wiring 32 on the third substrate side surface 25 side.
  • the second end surface through hole 39B formed in the fourth substrate side surface 26 is formed to be connected to the end of the second wiring 32 on the fourth substrate side surface 26 side.
  • the second end surface through hole 39B formed in at least one of the third substrate side surface 25 and the fourth substrate side surface 26 is connected to the second wiring 32. easier to connect to.
  • the second end surface through hole 39B only needs to be formed in at least one of the first substrate side surface 23, the third substrate side surface 25, and the fourth substrate side surface 26.
  • the shape of the sealing resin 50 is not limited to a rectangular parallelepiped, and can be arbitrarily changed.
  • the first sealing end surface 53 may be an inclined surface that is inclined toward the second substrate side surface 24 as the distance from the substrate surface 21 increases.
  • the second sealing end surface 54 may be an inclined surface that is inclined toward the first substrate side surface 23 as the second sealing end surface 54 moves away from the substrate surface 21 .
  • the third sealing end surface 55 may be an inclined surface that is inclined toward the fourth substrate side surface 26 as the third sealing end surface 55 moves away from the substrate surface 21 .
  • the fourth sealing end surface 56 may be an inclined surface that is inclined toward the third substrate side surface 25 as the fourth sealing end surface 56 moves away from the substrate surface 21 .
  • the sealing surface 51 may be formed as a spherical surface that curves upward toward the center of the substrate surface 21.
  • the sealing surface 51 may be formed as a curved surface that becomes upwardly curved and convex toward the center of the substrate surface 21 in the Y-axis direction.
  • the sealing surface 51 may be formed in a hemispherical shape.
  • the position of the first sealed end surface 53 in the Y-axis direction can be changed arbitrarily.
  • the first sealed end surface 53 may be located inside the first substrate side surface 23 (closer to the semiconductor laser element 40).
  • the position of the second sealed end surface 54 in the Y-axis direction can be changed arbitrarily.
  • the second sealed end surface 54 may be located inside the second substrate side surface 24 (closer to the semiconductor laser element 40).
  • the sealing resin 50 may include a phosphor 240 mixed into the resin in addition to the diffusion material 57.
  • the phosphor 240 is configured to absorb the light from the semiconductor laser element 40 and emit light in a wavelength range different from that of the light from the semiconductor laser element 40.
  • the semiconductor laser element 40 may be configured to emit blue laser light.
  • the phosphor 240 may be configured to absorb blue laser light and emit yellow light. In this way, white laser light can be emitted to the outside of the semiconductor laser device 10 by using the blue laser light and the phosphor 240 that emits yellow light.
  • the configuration of the phosphor 240 can be arbitrarily changed, and may be configured to absorb light and emit infrared light.
  • the shape of the second side wall portion 62 of the side wall 60 can be changed arbitrarily.
  • the inner surface 62A of the second side wall portion 62 may be an inclined surface that slopes upward (away from the substrate surface 21 in the Z-axis direction) as it approaches the second substrate side surface 24.
  • a reflective film 250 may be formed on the inner surface 62A.
  • the reflective film 250 is formed of a metal film such as a Cu film or an Al film.
  • the bonding structure between the side wall 60 and the substrate 20 can be arbitrarily changed.
  • the bonding structure between the sidewall 60 and the substrate 20 may be configured such that the sidewall 60 formed in advance is bonded to the substrate surface 21 of the substrate 20 using an adhesive.
  • the joining structure between the side wall part 172 and the bottom wall part 171 is such that the side wall part 172 is formed separately from the bottom wall part 171, and then the bottom wall part 171 and the side wall part 172 are connected. It may also be configured to be joined using an adhesive.
  • the semiconductor laser device 10 may include a side wall 60.
  • the side wall 60 is formed to surround both the semiconductor laser element 40 and the drive circuit element 130 in plan view.
  • the side wall 60 may be omitted from the semiconductor laser device 10.
  • the first sealing end surface 53 of the sealing resin 50 is flush with the first substrate side surface 23 of the substrate 20, and the second sealing end surface 54 is flush with the first substrate side surface 23 of the substrate 20. It is formed so that it is flush with the second substrate side surface 24, the third sealed end surface 55 is flush with the third substrate side surface 25, and the fourth sealed end surface 56 is flush with the fourth substrate side surface 26. Good too.
  • FIGS. 66 and 67 show a configuration in which four semiconductor laser devices 10 can be manufactured at once for convenience, the present invention is not limited to this, and the configuration can be configured so that more semiconductor laser devices 10 can be manufactured at once. You can.
  • FIG. 67 in order to easily understand the drawing, the diffusion material 57 in the sealing resin 850, which will be described later, is omitted.
  • the method for manufacturing the semiconductor laser device 10 includes a step of preparing a substrate 820, a step of mounting the semiconductor laser element 40, a step of forming the wire W, a step of forming the sealing resin 850, and a step of singulating. and, including.
  • the process of preparing the substrate 820 is the same as the process of preparing the substrate 820 of the first embodiment.
  • the step of mounting the semiconductor laser element 40 is performed in a state where the side wall 860 (see FIG. 8) is not provided on the substrate 820, as shown in FIG. be done.
  • the process of mounting the semiconductor laser element 40 includes the process of mounting the semiconductor laser element 40 on the first wiring 31. In this step, the semiconductor laser element 40 is die-bonded to the first wiring 31. Subsequently, in the step of forming the wire W, the wire W is formed by a wire bonding device as in the first embodiment.
  • a frame 870 is first provided on the substrate 820.
  • the frame 870 is formed to surround the four first wirings 31, the four second wirings 32, and the four semiconductor laser elements 40 in a plan view.
  • the sealing resin 850 is formed by filling the frame 870 with a translucent resin material by, for example, potting.
  • the resin material is made of, for example, a material containing at least one of silicone resin, epoxy resin, and acrylic resin.
  • the sealing resin 50 is made of silicone resin.
  • the sealing resin 850 includes the diffusion material 57 (see FIG. 65).
  • the method of forming the sealing resin 850 is not limited to this, and the sealing resin 850 may be formed on the substrate 820 by resin molding.
  • resin molding include transfer molding and compression molding. After the sealing resin 850 is formed, the frame 870 is removed.
  • both the sealing resin 850 and the substrate 820 are cut along the cutting line CL in FIG. 67 using a dicing blade. Thereby, the sealing resin 50 and the substrate 20 are formed. Through the above steps, the semiconductor laser device 10 is manufactured.
  • the material of the submount substrate 200 can be changed arbitrarily.
  • the submount substrate 200 may be formed of a Si substrate. Further, in one example, the submount substrate 200 may be made of glass epoxy resin like the substrate 20.
  • the submount substrate 200 may be made of a conductive material instead of an insulating material such as alumina.
  • the submount substrate 200 may be made of a material containing Cu.
  • the submount substrate 200 may be formed of a material containing conductive Si. In this way, when the submount substrate 200 is formed of a conductive material, the vias 209 may be omitted from the submount substrate 200.
  • the semiconductor laser device 10 is provided with a submount substrate 200 that is provided to penetrate the submount substrate 200 in the thickness direction (Z-axis direction) instead of the front side wiring 207, the back side wiring 208, and the via 209.
  • the conductive portion may be provided with a conductive portion.
  • a semiconductor laser element 40 is mounted on a surface of the conductive portion exposed from the surface 201 of the submount substrate 200 using a conductive bonding material SD.
  • a surface of the conductive portion exposed from the back surface 202 of the submount substrate 200 is bonded to the first wiring 31 using a conductive bonding material SD.
  • the electrical connection structure between the semiconductor laser element 40 and the first wiring 31 can be changed arbitrarily.
  • the submount substrate 200 may have a configuration in which the semiconductor laser element 40 and the first wiring 31 are not electrically connected.
  • the backside wiring 208 and the vias 209 may be omitted from the submount substrate 200.
  • the semiconductor laser device 10 includes a wire that connects the front side wiring 207 and the first wiring 31. In this way, the semiconductor laser element 40 and the first wiring 31 are electrically connected by the front side wiring 207 and the wire.
  • the semiconductor laser device 10 may further include a protection element 260 that protects the semiconductor laser element 40.
  • 68 and 69 show an example of the configuration of a semiconductor laser device 10 including a protection element 260. Note that in FIG. 69, the wires WA and WB are omitted for convenience.
  • the semiconductor laser device 10 includes a fourth wiring 270 provided on the front surface 21 of the substrate 20, a fourth electrode 271 provided on the back surface 22 of the substrate 20, and a fourth It further includes a via 272 that electrically connects the wiring 270 and the fourth electrode 271.
  • the fourth wiring 270 is formed on the front surface 21 of the substrate
  • the fourth electrode 271 is formed on the back surface 22 of the substrate.
  • the fourth wiring 270 is arranged closer to the second substrate side surface 24 with respect to the first wiring 31.
  • the fourth wiring 270 is arranged at a position aligned with the second wiring 32 in the Y-axis direction.
  • the fourth wiring 270 is arranged closer to the third substrate side surface 25 with respect to the second wiring 32.
  • the length of the second wiring 32 in the X-axis direction is shorter than in the first embodiment in order to form a space for arranging the fourth wiring 270.
  • the fourth electrode 271 is arranged closer to the second substrate side surface 24 with respect to the first electrode 33.
  • the fourth electrode 271 is arranged at a position overlapping the fourth wiring 270 in plan view.
  • the length of the second electrode 34 (not shown) in the X-axis direction is shorter than that of the first embodiment in order to form a space for arranging the fourth electrode 271.
  • the via 272 is provided to penetrate the substrate 20 in its thickness direction (Z-axis direction).
  • the via 272 is connected to both the fourth wiring 270 and the fourth electrode 271. Therefore, the fourth wiring 270 and the fourth electrode 271 are electrically connected through the via 272.
  • the protection element 260 is mounted on the fourth wiring 270. More specifically, the protection element 260 is bonded to the fourth wiring 270 using a conductive bonding material SD. That is, the protection element 260 is mounted on the fourth wiring 270. Both the fourth wiring 270 and the protection element 260 are sealed with the sealing resin 50.
  • the protection element 260 is arranged closer to the second substrate side surface 24 with respect to the semiconductor laser element 40 in plan view.
  • Protective element 260 is provided between semiconductor laser element 40 and second sealing end surface 54 on substrate surface 21 .
  • the protection element 260 is arranged at a position overlapping the semiconductor laser element 40 when viewed from the Y-axis direction. Note that the arrangement position of the protection element 260 can be changed arbitrarily.
  • the protection element 260 For example, a diode is used as the protection element 260.
  • the protection element 260 has an anode electrode 261 formed on its front surface and a cathode electrode 262 formed on its back surface.
  • the front surface of the protection element 260 faces the same side as the substrate surface 21, and the back surface of the protection element 260 faces the substrate surface 21.
  • the cathode electrode 262 is in contact with the conductive bonding material SD. Therefore, the cathode electrode 262 is electrically connected to the fourth wiring 270 by the conductive bonding material SD. Since the fourth wiring 270 is electrically connected to the fourth electrode 271, it can be said that the cathode electrode 262 is electrically connected to the fourth electrode 271.
  • the semiconductor laser device 10 includes a wire WA that connects the semiconductor laser element 40 and the fourth wiring 270, and a wire WB that connects the protection element 260 and the first wiring 31.
  • Each of the wires WA and WB is sealed with a sealing resin 50.
  • Each of the wires WA and WB is made of the same material as the wire W, for example.
  • the wire WA is connected to the anode electrode 47 of the semiconductor laser element 40.
  • the anode electrode 47 of the semiconductor laser element 40 is electrically connected to the fourth wiring 270 by the wire WA. Since the fourth wiring 270 is electrically connected to the cathode electrode 262 of the protection element 260, it can be said that the anode electrode 47 of the semiconductor laser element 40 is electrically connected to the cathode electrode 262 of the protection element 260.
  • the wire WB is connected to the anode electrode 261 of the protection element 260.
  • the anode electrode 261 of the protection element 260 is electrically connected to the first wiring 31 by the wire WB. Since the first wiring 31 is electrically connected to the cathode electrode 48 of the semiconductor laser element 40 (see FIG. 69), the anode electrode 261 of the protection element 260 is electrically connected to the cathode electrode 48 of the semiconductor laser element 40. It can be said that this has been done. In this way, the protection element 260 is connected in antiparallel to the semiconductor laser element 40.
  • a laser via 280 may be formed on the first substrate side surface 23 of the substrate 20.
  • the laser via 280 includes a recess that is curved from the first substrate side surface 23 toward the second substrate side surface 24 and that penetrates the substrate 20 in the thickness direction (Z-axis direction), and a conductor embedded in the recess. It is made up of. For example, Cu is used as the conductor.
  • a plurality of laser vias 280 (six in the illustrated example) are provided. The plurality of laser vias 280 are spaced apart from each other in the X-axis direction. Each laser via 280 connects the first wiring 31 and the first electrode 33 (see FIG. 5).
  • the term “on” includes the meanings of “on” and “over” unless the context clearly dictates otherwise. Therefore, the expression “A is formed on B” means that in each of the above embodiments, A can be placed directly on B by contacting B, but as a modification, A can be placed directly on B without contacting B. It is contemplated that it may be placed above the. That is, the term “on” does not exclude structures in which other members are formed between A and B.
  • the Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction. Therefore, various structures according to the present disclosure are not limited to the "upper” and “lower” in the Z-axis direction described herein being “upper” and “lower” in the vertical direction.
  • the X-axis direction may be a vertical direction
  • the Y-axis direction may be a vertical direction.
  • the sealing resin (50) includes a diffusion material (57) that diffuses light,
  • the semiconductor laser device (10) includes a first light emitting surface (LS1) that emits laser light toward the first sealed end surface (53).
  • Appendix A2 comprising a first wiring (31) provided on the substrate surface (21),
  • the semiconductor laser element (40) is mounted on the first wiring (31) and provided on the substrate surface (21) via the first wiring (31),
  • a first reflector that is provided at a position closer to the first sealing end surface (53) with respect to the first light emitting surface (LS1) and reflects a part of the laser light emitted from the first light emitting surface (LS1).
  • the first wiring (31) has a portion (31C) extending from the first light emitting surface (LS1) toward the first sealing end surface (53) in plan view as the first reflecting portion (70).
  • Appendix A4 The semiconductor laser device according to appendix A2, wherein the first reflective portion (70) includes a reflective film (210) formed on the substrate surface (21) separately from the first wiring (31).
  • the first reflecting section (70) includes a reflector (80) provided on the substrate surface (21) and including a reflecting surface (83) facing in a direction intersecting the substrate surface (21). semiconductor laser equipment.
  • connection wiring (207) provided on the surface (201) of the submount substrate (200) on the side facing the semiconductor laser element (40); A first reflector that is provided at a position closer to the first sealing end surface (53) with respect to the first light emitting surface (LS1) and reflects a part of the laser light emitted from the first light emitting surface (LS1). further comprising a part (70);
  • the connection wiring (207) has a portion (207A) extending from the first light emitting surface (LS1) toward the first sealing end surface (53) as the first reflective portion (70).
  • the substrate (160) includes a conductive part (180) made of a conductive material,
  • the substrate surface (161) includes a conductive surface (181) configured by the surface of the conductive part (180),
  • the semiconductor laser element (40) is mounted on the conductive surface (181),
  • a first reflector that is provided at a position closer to the first sealing end surface (53) with respect to the first light emitting surface (LS1) and reflects a part of the laser light emitted from the first light emitting surface (LS1).
  • the conductive surface (181) has a portion extending from the first light emitting surface (LS1) toward the first sealing end surface (53) in plan view as the first reflecting portion (70).
  • Appendix A8 The semiconductor laser device described in .
  • Appendix A10 The semiconductor laser according to any one of appendices A1 to A9, further comprising a side wall (60) that surrounds the sealing resin (50) and has an opening that exposes the first sealing end surface (53). Device.
  • the sealing resin (50) includes a second sealing end surface (54) opposite to the first sealing end surface (53),
  • the semiconductor laser device according to any one of appendices A1 to A10, wherein the semiconductor laser element (40) includes a second light emitting surface (LS2) that emits laser light toward the second sealed end surface (54). .
  • Appendix A12 a second reflection that is provided at a position closer to the second sealing end surface (54) with respect to the second light emitting surface (LS2) and reflects a part of the laser light emitted from the second light emitting surface (LS2);
  • Appendix A13 further comprising a second wiring (32) provided on the substrate surface (21) and electrically connected to the semiconductor laser element (40) by a wire (W),
  • the second wiring (32) is arranged at a position closer to the second sealing end surface (54) with respect to the second light emitting surface (LS2),
  • a first wiring (31) is provided on the substrate surface (21),
  • the semiconductor laser element (40) is mounted on the first wiring (31) and is provided on the substrate surface (21) via the first wiring (31);
  • the second reflecting portion (150) includes a reflector (230) provided on the substrate surface (21) and including a reflecting surface (233) facing in a direction intersecting the substrate surface (21). semiconductor laser equipment.
  • the semiconductor laser element (40) is mounted on the submount substrate (200),
  • the submount substrate (200) electrically connects the first wiring (31) and the semiconductor laser element (40),
  • the connection wiring (207) has a portion (207B) extending from the second light emitting surface (LS2) toward the second sealing end surface (54) as the second reflective portion (150).
  • Appendix A11 The semiconductor laser device described in .
  • a photoreceptor is provided on the substrate surface (21) between the semiconductor laser element (40) and the second sealing end surface (LS2) and receives the laser light emitted from the second light emitting surface (LS2).
  • the semiconductor laser device according to any one of appendices A11 to A16, further comprising a diode (110).
  • Appendix A18 The semiconductor laser device according to any one of Appendices A1 to A10, further comprising a drive circuit element (130) mounted on the substrate surface (21) and driving the semiconductor laser element (40).
  • the sealing resin (50) further includes a phosphor (240), The semiconductor laser device according to any one of appendices A1 to A19, wherein the phosphor (240) is configured to absorb light from the semiconductor laser element (40) and emit infrared light.
  • Appendix A22 The semiconductor laser device according to any one of Appendices A1 to A20, wherein the first sealing end surface (53) is rougher than the sealing surface (51).
  • the substrate (20) includes a substrate back surface (22) opposite to the substrate surface (21), a second wiring (32) provided on the substrate surface (21) and electrically connected to the semiconductor laser element (40) by a wire (W); a first electrode (33) provided on the back surface (22) of the substrate; a second electrode (34) provided on the back surface (22) of the substrate; a first via (35) that penetrates the substrate (20) and connects the first wiring (31) and the first electrode (33); A second via (36) that penetrates the substrate (20) and connects the second wiring (32) and the second electrode (34) is described in any one of Appendices A2 to A7. semiconductor laser equipment.
  • the substrate (20) includes a first substrate side surface (23) and a second substrate side surface (24) that connect the substrate front surface (21) and the substrate back surface (22),
  • the first substrate side surface (23) faces the same side as the first light emitting surface (LS1)
  • the second substrate side surface (24) faces opposite to the first substrate side surface (23)
  • a first side electrode (37) formed continuously from the first electrode (33) is formed on the first substrate side surface (23)
  • the first side electrode (37) connects the first electrode (33) and the first wiring (31), The semiconductor laser device according to appendix A26, wherein the second side electrode (38) connects the second electrode (34) and the second wiring (32).
  • [Appendix A28] a second wiring (32) provided on the substrate surface (21) and electrically connected to the semiconductor laser element (40) by a wire (W);
  • the first wiring (31) is electrically connected to the cathode electrode (48) of the semiconductor laser element (40),
  • the semiconductor laser device according to any one of appendices A2 to A7, wherein the second wiring (32) is electrically connected to the anode electrode (47) of the semiconductor laser element (40).
  • the substrate (20) connects the back surface (22) of the substrate opposite to the front surface (21) of the substrate, the front surface (21) of the substrate, and the back surface (22) of the substrate, and the first light emitting surface (LS1). a first substrate side surface (23) facing the same side as the first substrate side surface (23), and a second substrate side surface (24) opposite to the first substrate side surface (23), An end surface through hole (39) is recessed from the first substrate side surface (23) toward the second substrate side surface (24) and is provided so as to penetrate the substrate (20) in the thickness direction (Z-axis direction). )
  • the semiconductor laser device according to any one of Appendices A1 to A28.
  • Appendix A30 The semiconductor laser device according to appendix A29, further comprising a resist (90) that covers the end surface through hole (39) from the substrate surface (21) side.
  • Appendix A31 The semiconductor laser device according to appendix A30, wherein the resist (90) is made of a material with higher reflectance than the substrate (20).
  • the end surface through hole (39) is provided at a position shifted from the first light emitting surface (LS1) in the direction (X-axis direction) along the first sealed end surface (53) in plan view.
  • Appendix A33 The semiconductor laser device according to any one of Appendices A29 to A31, wherein a plurality of end face through holes (39) are provided.
  • the sealing resin (50) includes a second sealing end surface (54) opposite to the first sealing end surface (53),
  • the semiconductor laser element (40) includes a second light emitting surface (LS2) that emits laser light toward the second sealed end surface (54), Further comprising a wire (W) electrically connecting the semiconductor laser element (40) and the second wiring (32),
  • the wire (W) includes a joint part joined to the second wiring (32),
  • the bonding portion is arranged to connect the second light emitting surface (LS2) in a direction along the second light emitting surface (LS2) (X-axis direction) in a direction perpendicular to the thickness direction (Z-axis direction) of the substrate (20). ), the semiconductor laser device according to any one of appendices A25 to A27.
  • Appendix A35 Further comprising a wire (W) electrically connecting the semiconductor laser element (40) and the second wiring (32),
  • the wire (W) is a bonding wire
  • the bonding portion of the wire (W) with the second wiring (32) is first bonded
  • the semiconductor laser device according to any one of appendices A25 to A27, wherein a bonding portion of the wire (W) with the semiconductor laser element (40) is a second bonding.
  • the substrate (160) includes: a first conductive part (180) formed of a conductive material;
  • the semiconductor laser device according to Appendix A1 further comprising: an insulating substrate (160A) that is a molded resin that holds the first conductive part (180).
  • the insulating substrate (160A) includes a bottom wall portion (171) that holds the first conductive portion (180), and a side wall that rises from the bottom wall portion (171) and surrounds the sealing resin (50) in plan view.
  • Appendix A38 The semiconductor laser device according to any one of appendices A1 to A35, wherein the substrate (20) is formed of a material containing ceramic.
  • Appendix A40 The semiconductor laser device according to appendix A6, wherein the submount substrate (200) is formed of a material having a coefficient of thermal expansion closer to that of the semiconductor laser element (40) than that of the first wiring (31).
  • Appendix A42 The semiconductor laser device according to any one of appendices A1 to A41, wherein a plurality of the semiconductor laser elements (40P, 40Q, 40R) are provided.
  • [Appendix B1] a step of preparing a substrate (820) with a first wiring (31) provided on the substrate surface (821); a step of mounting a semiconductor laser element (40) on the first wiring (31); forming a translucent sealing resin (850) for sealing the semiconductor laser element (40),
  • the sealing resin (850) has a sealing surface (51) facing the same side as the substrate surface (821), a first sealing end surface (53) that intersects the sealing surface (51), and a first sealing end surface (53) that allows light to pass through.
  • the semiconductor laser element (40) includes a first light emitting surface (LS1) that emits laser light, A semiconductor laser device in which the semiconductor laser element (40) is mounted on the first wiring (31) so that the first light emitting surface (LS1) emits laser light toward the first sealing end surface (53). (10) Manufacturing method.
  • Appendix B2 further comprising forming a side wall (860) on the substrate (820) by resin molding, The method for manufacturing a semiconductor laser device according to Appendix B1, wherein the side wall (860) surrounds the sealing resin (850) in plan view.
  • Appendix B3 The method for manufacturing a semiconductor laser device according to appendix B2, wherein the sealing resin (850) is filled into a space surrounded by the side wall (860) and the substrate (820) by potting or resin molding.
  • [Appendix B4] preparing a lead frame (980) including a first mounting portion (183); forming an insulating substrate (960) that supports the lead frame (980) by resin molding; a step of mounting a semiconductor laser element (40) on the first mounting section (183); forming a translucent sealing resin (950) for sealing the semiconductor laser element (40),
  • the sealing resin (950) has a sealing surface (51) facing the same side as the substrate surface (21), a first sealing end surface (53) that intersects the sealing surface (51), and a first sealing end surface (53) that allows light to pass through.
  • the semiconductor laser element (40) includes a first light emitting surface (LS1) that emits laser light,
  • the semiconductor laser element (40) is mounted on the first mounting portion (183) so that the first light emitting surface (LS1) emits laser light toward the first sealing end surface (53). Method of manufacturing the device.
  • Cathode electrode 50 Sealing resin 51... Sealing surface 53-56... First to fourth sealing end surfaces 57... Diffusion material 60... Side wall 61... First side wall portion 62... Second side wall portion 62A...Inner surface 70...First reflective part 80...Reflector 81...Bottom surface 82...Side surface 83...Reflective surface 90...Resist 100...Third wiring 101...Third electrode 102...Via 110...Photodiode 111...Anode electrode 112...Cathode electrode 120... Semiconductor laser element 121... Element surface 122... Element back surface 123-126... First to fourth element side surfaces 127A-127D... Anode electrode 128... Cathode electrode 32A-32D...
  • Insulating substrate 161 ...Substrate surface 162...Board back surface 163-166...First to fourth board side surfaces 171...Bottom wall portion 172...Side wall portion 180...First conductive portion 181...First conductive surface 182...First conductive back surface 183...First mounting Part 183A...First end face 183B...Second end face 183C...First extension part 184...First hanging lead part 190...Second conductive part 191...Second conductive surface 192...Second conductive back surface 193...Second mounting part 194 ...Second hanging lead part 210...Reflection film 173...Reflector part 173A...Slanted surface 174...Reflection film 200...Submount board 201...Front surface 202...Back surface 203-206...First to fourth side surfaces 207...Front side wiring 207A...

Abstract

This semiconductor laser device comprises a substrate that has a substrate surface, a semiconductor laser element that is provided on the substrate surface, and a translucent sealing resin that seals the semiconductor laser element. The sealing resin has a sealing surface that faces the same side as the substrate surface, and a first sealing end surface that intersects the sealing surface. The sealing resin includes a diffusion material that diffuses light. The semiconductor laser element includes a first light emitting surface that emits laser light toward the first sealing end surface.

Description

半導体レーザ装置semiconductor laser equipment
 本開示は、半導体レーザ装置に関する。 The present disclosure relates to a semiconductor laser device.
 従来、様々な電子機器に搭載される光源装置として、光源として発光ダイオード(LED:Light Emitting Diode)を備える半導体発光装置が知られている(たとえば特許文献1参照)。 Conventionally, as a light source device installed in various electronic devices, a semiconductor light emitting device including a light emitting diode (LED) as a light source is known (see, for example, Patent Document 1).
特開2013-41866号公報JP2013-41866A
 ところで、半導体発光装置では、LED素子が用いられるため、光源の高出力化に対応することが困難である。そこで、LED素子に代えて、たとえば垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)などの半導体レーザ素子によって高出力化に対応することが考えられる。 Incidentally, since semiconductor light emitting devices use LED elements, it is difficult to respond to increases in the output of the light source. Therefore, instead of the LED element, it may be possible to respond to higher output by using a semiconductor laser element such as a vertical cavity surface emitting laser (VCSEL).
 しかし、半導体レーザ素子から出射されるレーザ光は、LED素子から出射される光と比較して高い指向性を有する。したがって、一般的に、半導体レーザ素子は、高い指向性が要求される用途に適している。これとは逆に、LED素子を光源とする半導体発光装置が適用される分野では、一般的に、より広い指向角が要求される。このため、半導体レーザ素子は通常、LED素子を光源とする半導体発光装置の用途に向かない。このように、光源の高出力化と広指向角とを両立することが困難である。 However, the laser light emitted from the semiconductor laser element has higher directivity than the light emitted from the LED element. Therefore, semiconductor laser devices are generally suitable for applications requiring high directivity. On the contrary, in fields where semiconductor light emitting devices using LED elements as light sources are applied, a wider directivity angle is generally required. For this reason, semiconductor laser elements are generally not suitable for use in semiconductor light-emitting devices that use LED elements as light sources. As described above, it is difficult to achieve both a high output light source and a wide directivity angle.
 上記課題を解決する半導体レーザ装置は、基板表面を有する基板と、前記基板表面上に設けられた半導体レーザ素子と、前記基板表面と同じ側を向く封止表面と、前記封止表面と交差する第1封止端面と、を有し、前記半導体レーザ素子を封止する透光性の封止樹脂と、を備え、前記封止樹脂は、光を拡散させる拡散材を含み、前記半導体レーザ素子は、前記第1封止端面に向けてレーザ光を出射する第1発光面を含む。 A semiconductor laser device that solves the above problems includes a substrate having a substrate surface, a semiconductor laser element provided on the substrate surface, a sealing surface facing the same side as the substrate surface, and a semiconductor laser device that intersects with the sealing surface. a first sealing end surface, and a translucent sealing resin for sealing the semiconductor laser element, the sealing resin includes a diffusion material that diffuses light, and the semiconductor laser element includes a first light emitting surface that emits laser light toward the first sealed end surface.
 上記半導体レーザ装置によれば、出射光の出力の向上と指向角を広げることとの両立を図ることができる。 According to the semiconductor laser device described above, it is possible to simultaneously improve the output of emitted light and widen the directivity angle.
図1は、第1実施形態の半導体レーザ装置の斜視図である。FIG. 1 is a perspective view of a semiconductor laser device according to a first embodiment. 図2は、図1の半導体レーザ装置の平面図である。FIG. 2 is a plan view of the semiconductor laser device of FIG. 1. 図3は、図2の半導体レーザ装置の基板の平面図である。3 is a plan view of the substrate of the semiconductor laser device of FIG. 2. FIG. 図4は、図3の基板の裏面図である。FIG. 4 is a back view of the substrate of FIG. 3. 図5は、図2のF5-F5線で半導体レーザ装置を切断した断面図である。FIG. 5 is a cross-sectional view of the semiconductor laser device taken along line F5-F5 in FIG. 図6は、図5の半導体レーザ装置における半導体レーザ素子の第1発光面およびその周辺を示す断面図である。FIG. 6 is a cross-sectional view showing the first light emitting surface of the semiconductor laser element in the semiconductor laser device of FIG. 5 and its surroundings. 図7は、第1実施形態の半導体レーザ装置の製造工程の一例を模式的に示す平面図である。FIG. 7 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device of the first embodiment. 図8は、図7に続く半導体レーザ装置の製造工程の一例を模式的に示す平面図である。FIG. 8 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 7. 図9は、図8に続く半導体レーザ装置の製造工程の一例を模式的に示す平面図である。FIG. 9 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 8. 図10は、図9の半導体レーザ装置を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing the semiconductor laser device of FIG. 図11は、比較例の半導体レーザ装置の平面図である。FIG. 11 is a plan view of a semiconductor laser device of a comparative example. 図12は、比較例の半導体レーザ装置の断面図である。FIG. 12 is a cross-sectional view of a semiconductor laser device of a comparative example. 図13は、第2実施形態の半導体レーザ装置の平面図である。FIG. 13 is a plan view of the semiconductor laser device of the second embodiment. 図14は、図13のF14-F14線で半導体レーザ装置を切断した断面図である。FIG. 14 is a cross-sectional view of the semiconductor laser device taken along line F14-F14 in FIG. 図15は、図14の半導体レーザ装置における半導体レーザ素子の第1発光面およびその周辺を示す断面図である。FIG. 15 is a cross-sectional view showing the first light emitting surface of the semiconductor laser element and its surroundings in the semiconductor laser device of FIG. 14. 図16は、第3実施形態の半導体レーザ装置の平面図である。FIG. 16 is a plan view of the semiconductor laser device of the third embodiment. 図17は、図16の半導体レーザ装置の基板の裏面図である。FIG. 17 is a back view of the substrate of the semiconductor laser device of FIG. 16. 図18は、図16のF18-F18線で半導体レーザ装置を切断した断面図である。FIG. 18 is a cross-sectional view of the semiconductor laser device taken along line F18-F18 in FIG. 16. 図19は、図18の半導体レーザ装置を回路基板に実装した状態を示す断面図である。FIG. 19 is a cross-sectional view showing the semiconductor laser device of FIG. 18 mounted on a circuit board. 図20は、第4実施形態の半導体レーザ装置の平面図である。FIG. 20 is a plan view of the semiconductor laser device of the fourth embodiment. 図21は、図20の半導体レーザ装置の基板の平面図である。FIG. 21 is a plan view of the substrate of the semiconductor laser device of FIG. 20. 図22は、図21の基板の裏面図である。FIG. 22 is a back view of the substrate of FIG. 21. 図23は、図20のF23-F23線で半導体レーザ装置を切断した断面図である。FIG. 23 is a cross-sectional view of the semiconductor laser device taken along line F23-F23 in FIG. 図24は、第5実施形態の半導体レーザ装置の平面図である。FIG. 24 is a plan view of the semiconductor laser device of the fifth embodiment. 図25は、図24の半導体レーザ装置の基板の裏面図である。FIG. 25 is a back view of the substrate of the semiconductor laser device of FIG. 24. 図26は、図24のF26-F26線で半導体レーザ装置を切断した断面図である。FIG. 26 is a cross-sectional view of the semiconductor laser device taken along line F26-F26 in FIG. 図27は、第6実施形態の半導体レーザ装置の平面図である。FIG. 27 is a plan view of the semiconductor laser device of the sixth embodiment. 図28は、図27の半導体レーザ装置の基板の裏面図である。FIG. 28 is a back view of the substrate of the semiconductor laser device of FIG. 27. 図29は、図27のF29-F29線で半導体レーザ装置を切断した断面図である。FIG. 29 is a cross-sectional view of the semiconductor laser device taken along line F29-F29 in FIG. 図30は、第7実施形態の半導体レーザ装置の平面図である。FIG. 30 is a plan view of the semiconductor laser device of the seventh embodiment. 図31は、図30の半導体レーザ装置の基板の裏面図である。FIG. 31 is a back view of the substrate of the semiconductor laser device of FIG. 30. 図32は、図30のF32-F32線で半導体レーザ装置を切断した断面図である。FIG. 32 is a cross-sectional view of the semiconductor laser device taken along line F32-F32 in FIG. 図33は、図30の半導体レーザ装置を含むレーザシステムの回路図である。FIG. 33 is a circuit diagram of a laser system including the semiconductor laser device of FIG. 30. 図34は、第8実施形態の半導体レーザ装置の平面図である。FIG. 34 is a plan view of the semiconductor laser device of the eighth embodiment. 図35は、図34のF35-F35線で半導体レーザ装置を切断した断面図である。FIG. 35 is a cross-sectional view of the semiconductor laser device taken along line F35-F35 in FIG. 図36は、図35の半導体レーザ装置における半導体レーザ素子の第2発光面およびその周辺の拡大図である。FIG. 36 is an enlarged view of the second light emitting surface of the semiconductor laser element and its surroundings in the semiconductor laser device of FIG. 35. 図37は、第9実施形態の半導体レーザ装置の平面図である。FIG. 37 is a plan view of the semiconductor laser device of the ninth embodiment. 図38は、図37のF38-F38線で半導体レーザ装置を切断した断面図である。FIG. 38 is a cross-sectional view of the semiconductor laser device taken along line F38-F38 in FIG. 図39は、第9実施形態の半導体レーザ装置の製造工程の一例を模式的に示す平面図である。FIG. 39 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device of the ninth embodiment. 図40は、図39に続く半導体レーザ装置の製造工程の一例を模式的に示す平面図である。FIG. 40 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 39. 図41は、図40に続く半導体レーザ装置の製造工程の一例を模式的に示す平面図である。FIG. 41 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 40. 図42は、図41の半導体レーザ装置の製造工程の一例を模式的に示す断面図である。FIG. 42 is a cross-sectional view schematically showing an example of the manufacturing process of the semiconductor laser device of FIG. 41. 図43は、第10実施形態の半導体レーザ装置の平面図である。FIG. 43 is a plan view of the semiconductor laser device of the tenth embodiment. 図44は、図43の半導体レーザ装置から半導体レーザ素子およびワイヤを省略した状態の平面図である。FIG. 44 is a plan view of the semiconductor laser device of FIG. 43 with the semiconductor laser element and wires omitted. 図45は、図43のF45-F45線で半導体レーザ装置を切断した断面図である。FIG. 45 is a cross-sectional view of the semiconductor laser device taken along line F45-F45 in FIG. 43. 図46は、変更例の半導体レーザ装置の平面図である。FIG. 46 is a plan view of a semiconductor laser device according to a modification. 図47は、変更例の半導体レーザ装置の断面図である。FIG. 47 is a cross-sectional view of a semiconductor laser device according to a modification. 図48は、変更例の半導体レーザ装置の断面図である。FIG. 48 is a cross-sectional view of a semiconductor laser device according to a modification. 図49は、変更例の半導体レーザ装置の断面図である。FIG. 49 is a cross-sectional view of a semiconductor laser device according to a modification. 図50は、変更例の半導体レーザ装置の平面図である。FIG. 50 is a plan view of a semiconductor laser device according to a modification. 図51は、図50のF51-F51線で半導体レーザ装置を切断した断面図である。FIG. 51 is a cross-sectional view of the semiconductor laser device taken along line F51-F51 in FIG. 図52は、変更例の半導体レーザ装置の平面図である。FIG. 52 is a plan view of a semiconductor laser device according to a modification. 図53は、変更例の半導体レーザ装置の平面図である。FIG. 53 is a plan view of a semiconductor laser device according to a modification. 図54は、図53のF54-F54線で半導体レーザ装置を切断した断面図である。FIG. 54 is a cross-sectional view of the semiconductor laser device taken along line F54-F54 in FIG. 図55は、変更例の半導体レーザ装置の断面図である。FIG. 55 is a cross-sectional view of a semiconductor laser device according to a modification. 図56は、変更例の半導体レーザ装置の平面図である。FIG. 56 is a plan view of a semiconductor laser device according to a modification. 図57は、変更例の半導体レーザ装置の断面図である。FIG. 57 is a cross-sectional view of a semiconductor laser device according to a modification. 図58は、変更例の半導体レーザ装置の平面図である。FIG. 58 is a plan view of a semiconductor laser device according to a modification. 図59は、変更例の半導体レーザ装置の平面図である。FIG. 59 is a plan view of a semiconductor laser device according to a modification. 図60は、変更例の半導体レーザ装置の平面図である。FIG. 60 is a plan view of a semiconductor laser device according to a modification. 図61は、変更例の半導体レーザ装置の断面図である。FIG. 61 is a cross-sectional view of a semiconductor laser device according to a modification. 図62は、変更例の半導体レーザ装置の断面図である。FIG. 62 is a cross-sectional view of a semiconductor laser device according to a modification. 図63は、変更例の半導体レーザ装置の断面図である。FIG. 63 is a cross-sectional view of a semiconductor laser device according to a modification. 図64は、変更例の半導体レーザ装置の平面図である。FIG. 64 is a plan view of a semiconductor laser device according to a modification. 図65は、図64のF65-F65線で半導体レーザ装置を切断した断面図である。FIG. 65 is a cross-sectional view of the semiconductor laser device taken along line F65-F65 in FIG. 64. 図66は、図64の半導体レーザ装置の製造工程の一例を模式的に示す平面図である。FIG. 66 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device of FIG. 64. 図67は、図66に続く半導体レーザ装置の製造工程の一例を模式的に示す平面図である。FIG. 67 is a plan view schematically showing an example of the manufacturing process of the semiconductor laser device following FIG. 66. 図68は、変更例の半導体レーザ装置の平面図である。FIG. 68 is a plan view of a semiconductor laser device according to a modification. 図69は、図68のF69-F69線で半導体レーザ装置を切断した断面図である。FIG. 69 is a cross-sectional view of the semiconductor laser device taken along line F69-F69 in FIG. 図70は、変更例の半導体レーザ装置の平面図である。FIG. 70 is a plan view of a semiconductor laser device according to a modification.
 以下、添付図面を参照して本開示における半導体レーザ装置のいくつかの実施形態を説明する。なお、説明を簡単かつ明確にするために、図面に示される構成要素は、必ずしも一定の縮尺で描かれていない。また、理解を容易にするために、断面図ではハッチング線が省略されている場合がある。添付の図面は、本開示の実施形態を例示するに過ぎず、本開示を制限するものとみなされるべきではない。 Hereinafter, some embodiments of a semiconductor laser device according to the present disclosure will be described with reference to the accompanying drawings. It should be noted that, for simplicity and clarity of explanation, the components shown in the drawings are not necessarily drawn to scale. Further, in order to facilitate understanding, hatching lines may be omitted in the cross-sectional views. The accompanying drawings are merely illustrative of embodiments of the disclosure and should not be considered as limiting the disclosure.
 以下の詳細な記載は、本開示の例示的な実施形態を具体化する装置、システム、および方法を含む。この詳細な記載は本来説明のためのものに過ぎず、本開示の実施形態またはこのような実施形態の適用および使用を限定することを意図しない。 The following detailed description includes devices, systems, and methods that embody example embodiments of the present disclosure. This detailed description is illustrative in nature and is not intended to limit the embodiments of the disclosure or the application and uses of such embodiments.
 <第1実施形態>
 図1~図10を参照して、第1実施形態の半導体レーザ装置10について説明する。
 図1~図6は第1実施形態の半導体レーザ装置10の概略的な構成を示し、図7~図10は第1実施形態の半導体レーザ装置10の製造方法の一例を示している。
<First embodiment>
A semiconductor laser device 10 according to the first embodiment will be described with reference to FIGS. 1 to 10.
1 to 6 show a schematic configuration of a semiconductor laser device 10 of the first embodiment, and FIGS. 7 to 10 show an example of a method for manufacturing the semiconductor laser device 10 of the first embodiment.
 なお、本開示において使用される「平面視」という用語は、図1に示される互いに直交するXYZ軸のZ軸方向に半導体レーザ装置10を視ることをいう。また、図1に示される半導体レーザ装置10において、+Z方向を上、-Z方向を下と定義する。特に断りが無い場合、「平面視」とは、半導体レーザ装置10をZ軸に沿って上方から視ることを指す。 Note that the term "planar view" used in the present disclosure refers to viewing the semiconductor laser device 10 in the Z-axis direction of the mutually orthogonal XYZ axes shown in FIG. Further, in the semiconductor laser device 10 shown in FIG. 1, the +Z direction is defined as the top, and the -Z direction is defined as the bottom. Unless otherwise specified, "planar view" refers to viewing the semiconductor laser device 10 from above along the Z-axis.
 [半導体レーザ装置の全体構成]
 図1は半導体レーザ装置10の斜視構造を示し、図2は半導体レーザ装置10の平面構造を示している。図3は、後述する半導体レーザ素子40、ワイヤW、封止樹脂50、および側壁60を図2から省略した状態の平面構造を示している。図4は、半導体レーザ装置10の後述する基板20の裏面構造を示している。図2および図3では、図面の理解を容易にするため、封止樹脂50を省略して示している。図5は半導体レーザ装置10の概略的な断面構造を示し、図6は半導体レーザ装置10から出射されるレーザ光を説明するための半導体レーザ装置10の一部の概略的な断面構造を示している。なお、図1および図2では、図面を容易に理解するために、後述する拡散材57を省略している。
[Overall configuration of semiconductor laser device]
FIG. 1 shows a perspective structure of a semiconductor laser device 10, and FIG. 2 shows a planar structure of the semiconductor laser device 10. FIG. 3 shows a planar structure in which a semiconductor laser element 40, a wire W, a sealing resin 50, and a side wall 60, which will be described later, are omitted from FIG. 2. FIG. 4 shows a backside structure of a substrate 20 of the semiconductor laser device 10, which will be described later. In FIGS. 2 and 3, the sealing resin 50 is omitted for easy understanding of the drawings. FIG. 5 shows a schematic cross-sectional structure of the semiconductor laser device 10, and FIG. 6 shows a schematic cross-sectional structure of a part of the semiconductor laser device 10 for explaining laser light emitted from the semiconductor laser device 10. There is. Note that in FIGS. 1 and 2, a diffusing material 57, which will be described later, is omitted for easy understanding of the drawings.
 図1および図2に示すように、半導体レーザ装置10は、Z軸方向を厚さ方向とする矩形平板状に形成されている。半導体レーザ装置10は、基板20と、基板20上に配置された半導体レーザ素子40と、を備える。 As shown in FIGS. 1 and 2, the semiconductor laser device 10 is formed into a rectangular flat plate shape with the thickness direction in the Z-axis direction. The semiconductor laser device 10 includes a substrate 20 and a semiconductor laser element 40 arranged on the substrate 20.
 基板20は、半導体レーザ素子40を支持する部品である。基板20は、Z軸方向が厚さ方向となる平板状に形成されている。以降の説明において、「平面視」は、「基板の厚さ方向から視て」と同義である。 The substrate 20 is a component that supports the semiconductor laser element 40. The substrate 20 is formed into a flat plate shape with the Z-axis direction being the thickness direction. In the following description, "planar view" is synonymous with "viewed from the thickness direction of the substrate".
 第1実施形態では、平面視において、基板20は、X軸方向が短手方向となり、Y軸方向が長手方向となる矩形状である。基板20は、基板表面21と、基板表面21とは反対側の基板裏面22と、基板表面21と基板裏面22とを繋ぐ第1~第4基板側面23~26(図2参照)と、を有する。図2に示すように、第1基板側面23および第2基板側面24は基板20のY軸方向の両端面を構成し、第3基板側面25および第4基板側面26は基板20のX軸方向の両端面を構成している。第1実施形態では、第1基板側面23および第2基板側面24の各々は、平面視においてX軸方向に延びている。第3基板側面25および第4基板側面26の各々は、平面視においてY軸方向に延びている。第1基板側面23は基板20のY軸方向の両端面のうち+Y方向の端面を構成し、第2基板側面24は-Y方向の端面を構成している。第3基板側面25は基板20のX軸方向の両端面のうち+X方向の端面を構成し、第4基板側面26は-X方向の端面を構成している。 In the first embodiment, the substrate 20 has a rectangular shape in which the X-axis direction is the lateral direction and the Y-axis direction is the longitudinal direction when viewed from above. The substrate 20 includes a front surface 21, a back surface 22 opposite to the front surface 21, and first to fourth side surfaces 23 to 26 (see FIG. 2) that connect the front surface 21 and the back surface 22. have As shown in FIG. 2, the first substrate side surface 23 and the second substrate side surface 24 constitute both end surfaces of the substrate 20 in the Y-axis direction, and the third substrate side surface 25 and the fourth substrate side surface 26 constitute the end surfaces of the substrate 20 in the X-axis direction. It constitutes both end faces of. In the first embodiment, each of the first substrate side surface 23 and the second substrate side surface 24 extends in the X-axis direction in plan view. Each of the third substrate side surface 25 and the fourth substrate side surface 26 extends in the Y-axis direction in plan view. The first substrate side surface 23 constitutes an end surface in the +Y direction of both end surfaces in the Y-axis direction of the substrate 20, and the second substrate side surface 24 constitutes an end surface in the -Y direction. The third substrate side surface 25 constitutes an end surface in the +X direction of both end surfaces in the X-axis direction of the substrate 20, and the fourth substrate side surface 26 constitutes an end surface in the -X direction.
 第1実施形態では、基板20は、ガラスエポキシ樹脂によって形成されている。なお、基板20がセラミックを含む材料によって形成されていてもよい。セラミックを含む材料としては、たとえば窒化アルミニウム(AlN)またはアルミナ(Al)などが挙げられる。基板20がセラミックを含む材料によって形成されている場合、基板20の放熱性能が向上するため、半導体レーザ素子40の温度が過度に高くなることを抑制できる。 In the first embodiment, the substrate 20 is made of glass epoxy resin. Note that the substrate 20 may be formed of a material containing ceramic. Examples of the ceramic-containing material include aluminum nitride (AlN) and alumina (Al 2 O 3 ). When the substrate 20 is made of a material containing ceramic, the heat dissipation performance of the substrate 20 is improved, so that the temperature of the semiconductor laser element 40 can be prevented from becoming excessively high.
 図3~図5に示すように、半導体レーザ装置10は、基板表面21に設けられた第1配線31および第2配線32と、基板裏面22に設けられた第1電極33および第2電極34と、第1配線31と第1電極33とを電気的に接続する第1ビア35と、第2配線32と第2電極34とを電気的に接続する第2ビア36と、を備える。 As shown in FIGS. 3 to 5, the semiconductor laser device 10 includes a first wiring 31 and a second wiring 32 provided on the front surface 21 of the substrate, and a first electrode 33 and a second electrode 34 provided on the back surface 22 of the substrate. , a first via 35 that electrically connects the first wiring 31 and the first electrode 33, and a second via 36 that electrically connects the second wiring 32 and the second electrode 34.
 第1配線31および第2配線32の双方は、第1実施形態では、基板表面21に形成されている。第1配線31および第2配線32は、平面視において基板20の長手方向、すなわちY軸方向に互いに離隔して配列されている。第1配線31および第2配線32の各々は、たとえば銅を含む材料によって形成されている。なお、第1配線31および第2配線32の各々を構成する材料は、導電材料の範囲内において任意に変更可能である。 Both the first wiring 31 and the second wiring 32 are formed on the substrate surface 21 in the first embodiment. The first wiring 31 and the second wiring 32 are arranged so as to be spaced apart from each other in the longitudinal direction of the substrate 20, that is, in the Y-axis direction when viewed from above. Each of the first wiring 31 and the second wiring 32 is formed of a material containing copper, for example. Note that the materials constituting each of the first wiring 31 and the second wiring 32 can be arbitrarily changed within the range of conductive materials.
 図3に示すように、第1配線31は、第2配線32に対して第1基板側面23寄りに配置されている。平面視において、第1配線31は、第1基板側面23と第2配線32とのY軸方向の間に配置されているともいえる。平面視において、第2配線32は、第1配線31と第2基板側面24とのY軸方向の間に配置されているともいえる。第1配線31は、平面視において、X軸方向が短手方向となり、Y軸方向が長手方向となる矩形状である。つまり、第1配線31の長手方向と基板20の長手方向とが一致し、第1配線31の短手方向と基板20の短手方向とが一致している。第2配線32は、平面視において、X軸方向が長手方向となり、Y軸方向が短手方向となる矩形状である。つまり、第2配線32の短手方向は基板20の長手方向と一致し、第2配線32の長手方向は基板20の短手方向と一致している。第2配線32の短手方向は、第1配線31と第2配線32との配列方向であるともいえる。第1実施形態では、第1配線31のX軸方向の長さと第2配線32のX軸方向の長さとは互いに等しい。第1配線31のY軸方向の長さは、第2配線32のY軸方向の長さよりも長い。 As shown in FIG. 3, the first wiring 31 is arranged closer to the first substrate side surface 23 with respect to the second wiring 32. In plan view, it can be said that the first wiring 31 is arranged between the first substrate side surface 23 and the second wiring 32 in the Y-axis direction. In plan view, it can be said that the second wiring 32 is arranged between the first wiring 31 and the second substrate side surface 24 in the Y-axis direction. The first wiring 31 has a rectangular shape in which the X-axis direction is the short direction and the Y-axis direction is the long direction when viewed from above. That is, the longitudinal direction of the first wiring 31 and the longitudinal direction of the substrate 20 match, and the lateral direction of the first wiring 31 and the lateral direction of the substrate 20 match. The second wiring 32 has a rectangular shape in which the X-axis direction is the longitudinal direction and the Y-axis direction is the lateral direction when viewed from above. That is, the lateral direction of the second wiring 32 coincides with the longitudinal direction of the substrate 20, and the longitudinal direction of the second wiring 32 coincides with the lateral direction of the substrate 20. It can also be said that the lateral direction of the second wiring 32 is the direction in which the first wiring 31 and the second wiring 32 are arranged. In the first embodiment, the length of the first wiring 31 in the X-axis direction and the length of the second wiring 32 in the X-axis direction are equal to each other. The length of the first wiring 31 in the Y-axis direction is longer than the length of the second wiring 32 in the Y-axis direction.
 図4に示すように、第1電極33および第2電極34は、半導体レーザ装置10が回路基板(図示略)に実装される場合の外部電極として構成されている。第1電極33および第2電極34の双方は、第1実施形態では、基板裏面22に形成されている。第1電極33および第2電極34は、平面視において基板20の長手方向、すなわちY軸方向に互いに離隔して配列されている。第1電極33および第2電極34の各々は、たとえば銅を含む材料によって形成されている。なお、第1電極33および第2電極34の各々は、導電材料の範囲内において任意に変更可能である。 As shown in FIG. 4, the first electrode 33 and the second electrode 34 are configured as external electrodes when the semiconductor laser device 10 is mounted on a circuit board (not shown). Both the first electrode 33 and the second electrode 34 are formed on the back surface 22 of the substrate in the first embodiment. The first electrode 33 and the second electrode 34 are arranged so as to be spaced apart from each other in the longitudinal direction of the substrate 20, that is, in the Y-axis direction in a plan view. Each of the first electrode 33 and the second electrode 34 is made of a material containing copper, for example. Note that each of the first electrode 33 and the second electrode 34 can be arbitrarily changed within the range of the conductive material.
 第1電極33は、第2電極34に対して第1基板側面23寄りに配置されている。平面視において、第1電極33は、第1基板側面23と第2電極34とのY軸方向の間に配置されているともいえる。平面視において、第2電極34は、第1電極33と第2基板側面24とのY軸方向の間に配置されているともいえる。図5に示すように、平面視において、第1電極33は、第1配線31と重なる位置に配置されている。平面視において、第2電極34は、第2配線32と重なる位置に配置されている。 The first electrode 33 is arranged closer to the first substrate side surface 23 than the second electrode 34 . In plan view, it can be said that the first electrode 33 is arranged between the first substrate side surface 23 and the second electrode 34 in the Y-axis direction. In plan view, it can be said that the second electrode 34 is arranged between the first electrode 33 and the second substrate side surface 24 in the Y-axis direction. As shown in FIG. 5, the first electrode 33 is arranged at a position overlapping the first wiring 31 in plan view. In plan view, the second electrode 34 is arranged at a position overlapping the second wiring 32.
 図4に示すように、第1電極33は、平面視において、X軸方向が短手方向となり、Y軸方向が長手方向となる矩形状である。第2電極34は、平面視において、X軸方向が長手方向となり、Y軸方向が短手方向となる矩形状である。第1実施形態では、第1電極33のX軸方向の長さと第2電極34のX軸方向の長さとは互いに等しい。第1電極33のY軸方向の長さは、第2電極34のY軸方向の長さよりも長い。また第1実施形態では、第1電極33の面積は、第1基板側面23の面積よりも大きい。第2電極34の面積は、第2配線32の面積よりも大きい。 As shown in FIG. 4, the first electrode 33 has a rectangular shape in which the X-axis direction is the short direction and the Y-axis direction is the longitudinal direction when viewed from above. The second electrode 34 has a rectangular shape in which the X-axis direction is the longitudinal direction and the Y-axis direction is the lateral direction when viewed from above. In the first embodiment, the length of the first electrode 33 in the X-axis direction and the length of the second electrode 34 in the X-axis direction are equal to each other. The length of the first electrode 33 in the Y-axis direction is longer than the length of the second electrode 34 in the Y-axis direction. Further, in the first embodiment, the area of the first electrode 33 is larger than the area of the first substrate side surface 23. The area of the second electrode 34 is larger than the area of the second wiring 32.
 図3~図5に示す例においては、第1電極33および第2電極34のY軸方向の間の距離は、第1配線31および第2配線32のY軸方向の間の距離よりも大きい。
 なお、第1電極33および第2電極34のY軸方向の間の距離は、任意に変更可能である。一例では、第1電極33および第2電極34のY軸方向の間の距離は、第1配線31および第2配線32のY軸方向の間の距離と等しくてもよい。
In the examples shown in FIGS. 3 to 5, the distance between the first electrode 33 and the second electrode 34 in the Y-axis direction is larger than the distance between the first wiring 31 and the second wiring 32 in the Y-axis direction. .
Note that the distance between the first electrode 33 and the second electrode 34 in the Y-axis direction can be changed arbitrarily. In one example, the distance between the first electrode 33 and the second electrode 34 in the Y-axis direction may be equal to the distance between the first wiring 31 and the second wiring 32 in the Y-axis direction.
 図3~図5に示すように、第1ビア35は複数設けられている。各第1ビア35は、平面視において第1配線31および第1電極33の双方と重なる位置に配置されている。複数の第1ビア35は、X軸方向およびY軸方向の双方において互いに離隔して配列されている。各第1ビア35は、基板20をZ軸方向に貫通している。各第1ビア35は、第1配線31および第1電極33の双方と接している。 As shown in Figures 3 to 5, a plurality of first vias 35 are provided. Each first via 35 is disposed at a position overlapping both the first wiring 31 and the first electrode 33 in a plan view. The multiple first vias 35 are arranged at a distance from each other in both the X-axis direction and the Y-axis direction. Each first via 35 penetrates the substrate 20 in the Z-axis direction. Each first via 35 is in contact with both the first wiring 31 and the first electrode 33.
 第2ビア36は複数設けられている。各第2ビア36は、平面視において第2配線32および第2電極34の双方と重なる位置に配置されている。複数の第2ビア36は、X軸方向において互いに離隔して一列に配列されている。各第2ビア36は、基板20をZ軸方向に貫通している。各第2ビア36は、第2配線32および第2電極34の双方と接している。 A plurality of second vias 36 are provided. Each second via 36 is arranged at a position overlapping both the second wiring 32 and the second electrode 34 in plan view. The plurality of second vias 36 are spaced apart from each other and arranged in a line in the X-axis direction. Each second via 36 penetrates the substrate 20 in the Z-axis direction. Each second via 36 is in contact with both the second wiring 32 and the second electrode 34.
 なお、第1ビア35および第2ビア36の各々の個数および配置態様は任意に変更可能である。一例では、複数の第1ビア35は、平面視において半導体レーザ素子40と重なる領域とは異なる領域に配置されていてもよい。この場合、第1ビア35の個数は、たとえば13個以上であってもよい。また一例では、第2ビア36の個数は、4個以上であってもよい。 Note that the number and arrangement of each of the first vias 35 and the second vias 36 can be changed arbitrarily. In one example, the plurality of first vias 35 may be arranged in a region different from the region overlapping with the semiconductor laser element 40 in plan view. In this case, the number of first vias 35 may be, for example, 13 or more. Further, in one example, the number of second vias 36 may be four or more.
 図1および図2に示すように、半導体レーザ素子40は、基板表面21上に設けられている。一例では、半導体レーザ素子40は、第1配線31に搭載されている。第1実施形態では、半導体レーザ素子40は、第1配線31に実装されている。より詳細には、図5に示すように、半導体レーザ素子40は、はんだペーストまたは銀ペーストなどの導電性接合材SDによって第1配線31に接合されている。このため、半導体レーザ素子40は、第2配線32よりも第1基板側面23(第1封止端面53)寄りに位置している。換言すると、第2配線32は、半導体レーザ素子40よりも第2基板側面24(第2封止端面54)寄りに位置している。第2配線32は、半導体レーザ素子40の後述する第2発光面LS2に対して第2封止端面54寄りの位置に設けられているともいえる。 As shown in FIGS. 1 and 2, the semiconductor laser element 40 is provided on the substrate surface 21. In one example, the semiconductor laser element 40 is mounted on the first wiring 31. In the first embodiment, the semiconductor laser element 40 is mounted on the first wiring 31. More specifically, as shown in FIG. 5, the semiconductor laser element 40 is bonded to the first wiring 31 using a conductive bonding material SD such as solder paste or silver paste. Therefore, the semiconductor laser element 40 is located closer to the first substrate side surface 23 (first sealed end surface 53) than the second wiring 32. In other words, the second wiring 32 is located closer to the second substrate side surface 24 (second sealing end surface 54) than the semiconductor laser element 40 is. It can also be said that the second wiring 32 is provided at a position closer to the second sealing end surface 54 with respect to the second light emitting surface LS2 of the semiconductor laser element 40, which will be described later.
 半導体レーザ素子40は、所定の波長帯の光を出射するレーザダイオードであり、半導体レーザ装置10の光源として機能する。半導体レーザ素子40は、端面発光型レーザ素子である。端面発光型レーザ素子としての半導体レーザ素子40の構成は特に限定されないが、第1実施形態では、ファブリ・ペロー型レーザダイオード素子が採用されている。 The semiconductor laser element 40 is a laser diode that emits light in a predetermined wavelength band, and functions as a light source of the semiconductor laser device 10. The semiconductor laser device 40 is an edge-emitting laser device. Although the configuration of the semiconductor laser device 40 as an edge-emitting laser device is not particularly limited, in the first embodiment, a Fabry-Perot laser diode device is employed.
 半導体レーザ素子40は、Z軸方向を厚さ方向とする平板状に形成されている。半導体レーザ素子40は、平面視において、長手方向および短手方向を有する矩形状である。第1実施形態では、半導体レーザ素子40は、長手方向がY軸方向に沿い、短手方向がX軸方向に沿うように配置されている。 The semiconductor laser element 40 is formed into a flat plate shape with the thickness direction in the Z-axis direction. The semiconductor laser element 40 has a rectangular shape having a longitudinal direction and a lateral direction when viewed from above. In the first embodiment, the semiconductor laser element 40 is arranged such that its longitudinal direction is along the Y-axis direction and its transversal direction is along the X-axis direction.
 図2および図5に示すように、半導体レーザ素子40は、素子表面41と、素子表面41とは反対側を向く素子裏面42と、素子表面41と素子裏面42とを繋ぐ第1~第4素子側面43~46と、を有する。 As shown in FIGS. 2 and 5, the semiconductor laser device 40 has a front surface 41, a back surface 42 facing opposite to the front surface 41, and first to fourth It has element side surfaces 43 to 46.
 素子表面41は基板20の基板表面21と同じ側を向き、素子裏面42は基板表面21と対面している。第1素子側面43および第2素子側面44は半導体レーザ素子40の長手方向の両端面を構成し、第3素子側面45および第4素子側面46は半導体レーザ素子40の短手方向の両端面を構成している。第1実施形態では、第1素子側面43および第2素子側面44は半導体レーザ素子40のY軸方向の両端面を構成し、第3素子側面45および第4素子側面46は半導体レーザ素子40のX軸方向の両端面を構成している。第1実施形態では、第1素子側面43は、半導体レーザ素子40のY軸方向の両端面のうち+Y方向の端面を構成し、第1基板側面23と同じ側を向いている。第2素子側面44は、半導体レーザ素子40のY軸方向の両端面のうち-Y方向の端面を構成し、第2基板側面24と同じ側を向いている。第3素子側面45は、半導体レーザ素子40のX軸方向の両端面のうち+X方向の端面を構成し、第3基板側面25と同じ側を向いている。第4素子側面46は、半導体レーザ素子40のX軸方向の両端面のうち-X方向の端面を構成し、第4基板側面26と同じ側を向いている。 The element surface 41 faces the same side as the substrate surface 21 of the substrate 20, and the element back surface 42 faces the substrate surface 21. The first element side surface 43 and the second element side surface 44 constitute both end surfaces of the semiconductor laser element 40 in the longitudinal direction, and the third element side surface 45 and the fourth element side surface 46 constitute both end surfaces of the semiconductor laser element 40 in the lateral direction. It consists of In the first embodiment, the first device side surface 43 and the second device side surface 44 constitute both end surfaces of the semiconductor laser device 40 in the Y-axis direction, and the third device side surface 45 and the fourth device side surface 46 constitute the semiconductor laser device 40 . It constitutes both end faces in the X-axis direction. In the first embodiment, the first element side surface 43 constitutes an end surface in the +Y direction of both end surfaces in the Y-axis direction of the semiconductor laser element 40, and faces the same side as the first substrate side surface 23. The second element side surface 44 constitutes an end surface in the -Y direction of both end surfaces in the Y-axis direction of the semiconductor laser element 40, and faces the same side as the second substrate side surface 24. The third element side surface 45 constitutes an end surface in the +X direction of both end surfaces in the X-axis direction of the semiconductor laser element 40, and faces the same side as the third substrate side surface 25. The fourth element side surface 46 constitutes an end surface in the -X direction of both end surfaces in the X-axis direction of the semiconductor laser element 40, and faces the same side as the fourth substrate side surface 26.
 ここで、第1実施形態では、第1素子側面43は、レーザ光を出射する第1発光面LS1を構成している。第1素子側面43は基板20の厚さ方向と交差する方向(第1実施形態では基板20の厚さ方向と直交する方向)を向くため、第1発光面LS1は、基板20の厚さ方向と交差(直交)する方向を向くといえる。第1素子側面43(第1発光面LS1)は、第1基板側面23と同じ側を向いている。このため、半導体レーザ素子40は、主に+Y方向に向かうレーザ光を出射する。 Here, in the first embodiment, the first element side surface 43 constitutes a first light emitting surface LS1 that emits laser light. Since the first element side surface 43 faces in the direction intersecting the thickness direction of the substrate 20 (in the first embodiment, the direction perpendicular to the thickness direction of the substrate 20), the first light emitting surface LS1 faces in the thickness direction of the substrate 20. It can be said that it faces in a direction that intersects (perpendicularly) with. The first element side surface 43 (first light emitting surface LS1) faces the same side as the first substrate side surface 23. Therefore, the semiconductor laser element 40 emits laser light mainly directed in the +Y direction.
 第2素子側面44は、レーザ光を出射する第2発光面LS2を構成している。第2素子側面44は基板20の厚さ方向と交差する方向(第1実施形態では基板20の厚さ方向と直交する方向)を向くため、第2発光面LS2は、基板20の厚さ方向と交差(直交)する方向を向くといえる。第2素子側面44(第1発光側面LS2)は、第2基板側面24と同じ側を向いている。つまり、第2発光面LS2は、第1発光面LS1とは反対方向を向く。このため、半導体レーザ素子40は、主に-Y方向に向かうレーザ光を出射する。 The second element side surface 44 constitutes a second light emitting surface LS2 that emits laser light. Since the second element side surface 44 faces in the direction intersecting the thickness direction of the substrate 20 (in the first embodiment, the direction perpendicular to the thickness direction of the substrate 20), the second light emitting surface LS2 faces in the thickness direction of the substrate 20. It can be said that it faces in a direction that intersects (perpendicularly) with. The second element side surface 44 (first light emitting side surface LS2) faces the same side as the second substrate side surface 24. That is, the second light emitting surface LS2 faces in the opposite direction to the first light emitting surface LS1. Therefore, the semiconductor laser element 40 emits laser light mainly directed in the -Y direction.
 第1発光面LS1から出射するレーザ光の出力と第2発光面LS2から出射するレーザ光の出力とは、互いに異なっていてもよい。第1実施形態では、第1発光面LS1から出射するレーザ光の出力と第2発光面LS2から出射するレーザ光の出力との比率は、たとえば9:1である。レーザ光の出力の調整は、たとえば第1発光面LS1および第2発光面LS2に形成された反射膜の反射率を調整することによって実施される。第1実施形態では、第1発光面LS1に形成された反射膜の反射率は、第2発光面LS2に形成された反射膜の反射率よりも低くなるように設定されている。 The output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 may be different from each other. In the first embodiment, the ratio of the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 is, for example, 9:1. The output of the laser beam is adjusted, for example, by adjusting the reflectance of the reflective films formed on the first light emitting surface LS1 and the second light emitting surface LS2. In the first embodiment, the reflectance of the reflective film formed on the first light emitting surface LS1 is set to be lower than the reflectance of the reflective film formed on the second light emitting surface LS2.
 図5に示すように、半導体レーザ素子40は、素子表面41に形成されたアノード電極47と、素子裏面42に形成されたカソード電極48と、を有する。カソード電極48は、導電性接合材SDと接している。つまり、カソード電極48は、導電性接合材SDによって第1配線31と電気的に接続されている。このため、カソード電極48は、第1配線31および複数の第1ビア35を介して第1電極33と電気的に接続されている。 As shown in FIG. 5, the semiconductor laser device 40 has an anode electrode 47 formed on the front surface 41 of the device, and a cathode electrode 48 formed on the back surface 42 of the device. The cathode electrode 48 is in contact with the conductive bonding material SD. That is, the cathode electrode 48 is electrically connected to the first wiring 31 by the conductive bonding material SD. Therefore, the cathode electrode 48 is electrically connected to the first electrode 33 via the first wiring 31 and the plurality of first vias 35.
 半導体レーザ装置10は、アノード電極47と第2配線32とを電気的に接続するワイヤWを備える。図2に示すように、ワイヤWは、平面視においてY軸方向に沿って延びている。ワイヤWは、たとえば金(Au)、銀(Ag)、アルミニウム(Al)、Cu等によって形成されている。アノード電極47は、第2配線32および複数の第2ビア36を介して第2電極34と電気的に接続されている。 The semiconductor laser device 10 includes a wire W that electrically connects the anode electrode 47 and the second wiring 32. As shown in FIG. 2, the wire W extends along the Y-axis direction in plan view. The wire W is made of, for example, gold (Au), silver (Ag), aluminum (Al), Cu, or the like. The anode electrode 47 is electrically connected to the second electrode 34 via the second wiring 32 and a plurality of second vias 36 .
 ワイヤWは、ワイヤボンディング装置によって形成されたボンディングワイヤである。第1実施形態では、ワイヤWのうち第2配線32との接合部がファーストボンディングとなり、アノード電極47との接合部がセカンドボンディングとなる。これにより、ワイヤWのうちアノード電極47との接合部がファーストボンディングとなり、第2配線32との接合部がセカンドボンディングとなる構成と比較して、ワイヤWの高さ(最大高さ)を低くすることができる。 The wire W is a bonding wire formed by a wire bonding device. In the first embodiment, the bonding portion of the wire W with the second wiring 32 is the first bonding, and the bonding portion with the anode electrode 47 is the second bonding. This allows the height (maximum height) of the wire W to be lowered compared to a configuration in which the bonding portion of the wire W with the anode electrode 47 is first bonded and the bonding portion with the second wiring 32 is second bonding. can do.
 図1、図2、および図5に示すように、第1実施形態の半導体レーザ装置10は、半導体レーザ素子40を封止する透光性の封止樹脂50と、封止樹脂50を囲む側壁60と、をさらに備える。 As shown in FIGS. 1, 2, and 5, the semiconductor laser device 10 of the first embodiment includes a transparent sealing resin 50 that seals the semiconductor laser element 40, and a side wall surrounding the sealing resin 50. 60.
 封止樹脂50は、基板表面21と接した状態で、第1配線31、第2配線32、半導体レーザ素子40、およびワイヤWを封止している。封止樹脂50は、基板20上に設けられている。封止樹脂50は、半導体レーザ素子40から出射されたレーザ光を屈折させつつ透過させる役割を果たす。封止樹脂50は、シリコーン樹脂、エポキシ樹脂、およびアクリル樹脂の少なくとも1つを含む材料によって形成されている。一例では、封止樹脂50は、シリコーン樹脂によって形成されている。 The sealing resin 50 seals the first wiring 31, the second wiring 32, the semiconductor laser element 40, and the wire W in contact with the substrate surface 21. The sealing resin 50 is provided on the substrate 20. The sealing resin 50 plays a role of transmitting the laser light emitted from the semiconductor laser element 40 while refracting it. The sealing resin 50 is made of a material containing at least one of silicone resin, epoxy resin, and acrylic resin. In one example, the sealing resin 50 is made of silicone resin.
 封止樹脂50は、基板表面21と同じ側を向く封止表面51と、封止表面51と交差する第1~第4封止端面53~56と、を有する。
 封止表面51は、第1実施形態では、基板20の厚さ方向(Z軸方向)と直交する平坦面である。平面視において、封止表面51の面積は、基板表面21の面積よりも小さい。
The sealing resin 50 has a sealing surface 51 facing the same side as the substrate surface 21, and first to fourth sealing end surfaces 53 to 56 that intersect with the sealing surface 51.
In the first embodiment, the sealing surface 51 is a flat surface perpendicular to the thickness direction (Z-axis direction) of the substrate 20. In plan view, the area of the sealing surface 51 is smaller than the area of the substrate surface 21.
 図2に示すように、第1~第4封止端面53~56は、第1実施形態では、封止表面51と直交する封止端面である。第1封止端面53および第2封止端面54は、封止樹脂50のY軸方向の両端面を構成している。第1封止端面53および第2封止端面54の各々は、平面視においてX軸方向に沿って延びている。第3封止端面55および第4封止端面56は、封止樹脂50のX軸方向の両端面を構成している。第3封止端面55および第4封止端面56の各々は、平面視においてY軸方向に沿って延びている。 As shown in FIG. 2, the first to fourth sealing end surfaces 53 to 56 are sealing end surfaces perpendicular to the sealing surface 51 in the first embodiment. The first sealed end surface 53 and the second sealed end surface 54 constitute both end surfaces of the sealing resin 50 in the Y-axis direction. Each of the first sealed end surface 53 and the second sealed end surface 54 extends along the X-axis direction in plan view. The third sealed end surface 55 and the fourth sealed end surface 56 constitute both end surfaces of the sealing resin 50 in the X-axis direction. Each of the third sealed end surface 55 and the fourth sealed end surface 56 extends along the Y-axis direction in plan view.
 第1封止端面53は第1基板側面23と同じ側を向き、第2封止端面54は第2基板側面24と同じ側を向いている。つまり、第2封止端面54は、第1封止端面53とは反対側の端面である。第1実施形態では、第1封止端面53は、第1基板側面23と面一となるように形成されている。第1封止端面53は、半導体レーザ素子40の第1発光面LS1に対して+Y方向に離隔して配置されている。第2封止端面54は、第2基板側面24よりも第1基板側面23寄りに配置されている。第2封止端面54は、半導体レーザ素子40と第2基板側面24とのY軸方向の間に位置しているともいえる。第2封止端面54は、半導体レーザ素子40の第2発光面LS2に対して-Y方向に離隔して配置されている。 The first sealed end surface 53 faces the same side as the first substrate side surface 23, and the second sealed end surface 54 faces the same side as the second substrate side surface 24. That is, the second sealed end surface 54 is an end surface opposite to the first sealed end surface 53. In the first embodiment, the first sealing end surface 53 is formed flush with the first substrate side surface 23 . The first sealed end surface 53 is spaced apart from the first light emitting surface LS1 of the semiconductor laser element 40 in the +Y direction. The second sealed end surface 54 is arranged closer to the first substrate side surface 23 than the second substrate side surface 24 . It can also be said that the second sealed end surface 54 is located between the semiconductor laser element 40 and the second substrate side surface 24 in the Y-axis direction. The second sealing end surface 54 is spaced apart from the second light emitting surface LS2 of the semiconductor laser element 40 in the −Y direction.
 第1封止端面53は、半導体レーザ素子40の第1素子側面43と同じ側を向いている。換言すると、第1封止端面53は、第1発光面LS1と同じ側を向いている。このため、半導体レーザ素子40は、第1封止端面53に向けてレーザ光を出射する第1発光面LS1を含むともいえる。第2封止端面54は、半導体レーザ素子40の第2素子側面44と同じ側を向いている。換言すると、第2封止端面54は、第2発光面LS2と同じ側を向いている。このため、半導体レーザ素子40は、第2封止端面54に向けてレーザ光を出射する第2発光面LS2を含むともいえる。 The first sealed end surface 53 faces the same side as the first element side surface 43 of the semiconductor laser element 40. In other words, the first sealed end surface 53 faces the same side as the first light emitting surface LS1. Therefore, it can be said that the semiconductor laser element 40 includes the first light emitting surface LS1 that emits laser light toward the first sealed end surface 53. The second sealed end face 54 faces the same side as the second element side surface 44 of the semiconductor laser element 40. In other words, the second sealed end surface 54 faces the same side as the second light emitting surface LS2. Therefore, it can be said that the semiconductor laser element 40 includes a second light emitting surface LS2 that emits laser light toward the second sealed end surface 54.
 第1実施形態では、第1封止端面53は、ダイシング加工されたダイシング面である。この場合、第1封止端面53には、ダイシング加工による切削痕が形成される。一例では、第1封止端面53は、封止表面51よりも粗面であってよい。このため、第1封止端面53の算術平均粗さ(Ra)は、封止表面51の算術平均粗さ(Ra)よりも大きくてもよい。これにより、第1発光面LS1から出射したレーザ光が第1封止端面53を通過する際に散乱するため、半導体レーザ装置10から出射されるレーザ光の指向角を広げることができる。 In the first embodiment, the first sealed end surface 53 is a dicing surface subjected to dicing processing. In this case, cutting marks are formed on the first sealing end surface 53 due to the dicing process. In one example, first sealing end surface 53 may be rougher than sealing surface 51. Therefore, the arithmetic mean roughness (Ra) of the first sealing end surface 53 may be larger than the arithmetic mean roughness (Ra) of the sealing surface 51. Thereby, since the laser light emitted from the first light emitting surface LS1 is scattered when passing through the first sealed end face 53, the directivity angle of the laser light emitted from the semiconductor laser device 10 can be widened.
 第3封止端面55は第3基板側面25と同じ側を向き、第4封止端面56は第4基板側面26と同じ側を向いている。第1実施形態では、第3封止端面55は、第3基板側面25よりも第4基板側面26寄りに配置されている。第3封止端面55は、半導体レーザ素子40と第3基板側面25とのX軸方向の間に位置しているともいえる。第4封止端面56は、第4基板側面26よりも第3基板側面25寄りに配置されている。第4封止端面56は、半導体レーザ素子40と第4基板側面26とのX軸方向の間に位置しているともいえる。 The third sealed end surface 55 faces the same side as the third substrate side surface 25, and the fourth sealed end surface 56 faces the same side as the fourth substrate side surface 26. In the first embodiment, the third sealed end surface 55 is arranged closer to the fourth substrate side surface 26 than the third substrate side surface 25. It can also be said that the third sealed end surface 55 is located between the semiconductor laser element 40 and the third substrate side surface 25 in the X-axis direction. The fourth sealed end surface 56 is arranged closer to the third substrate side surface 25 than the fourth substrate side surface 26 . It can also be said that the fourth sealed end surface 56 is located between the semiconductor laser element 40 and the fourth substrate side surface 26 in the X-axis direction.
 図5に示すように、封止樹脂50は、光を拡散させる拡散材57を含む。拡散材57は、より詳細には、封止樹脂50内の樹脂と拡散材57との界面で光を反射(散乱)させることによって封止樹脂50の内部で光を拡散させる。これにより、拡散材57は、半導体レーザ素子40から出射されたレーザ光を封止樹脂50の内部で拡散させて、封止樹脂50から出射されるレーザ光の指向角を広げる役割を果たす。 As shown in FIG. 5, the sealing resin 50 includes a diffusion material 57 that diffuses light. More specifically, the diffusion material 57 diffuses the light inside the sealing resin 50 by reflecting (scattering) the light at the interface between the resin in the sealing resin 50 and the diffusion material 57 . Thereby, the diffusion material 57 plays the role of diffusing the laser light emitted from the semiconductor laser element 40 inside the sealing resin 50 and widening the directivity angle of the laser light emitted from the sealing resin 50.
 拡散材57の材料は特に限定されないが、たとえばシリカまたは他のガラス材料等を用いることができる。第1実施形態では、拡散材57として球状のシリカフィラーが採用されている。拡散材57の粒径は特に限定されないが、たとえば散乱が支配的に生じるように半導体レーザ素子40から出射されるレーザ光の波長に対して十分に小さなサイズの粒径が選択される。 The material of the diffusion material 57 is not particularly limited, but for example, silica or other glass materials can be used. In the first embodiment, spherical silica filler is used as the diffusion material 57. The particle size of the diffusing material 57 is not particularly limited, but is selected to be sufficiently small with respect to the wavelength of the laser light emitted from the semiconductor laser element 40, for example, so that scattering occurs dominantly.
 封止樹脂50の樹脂に対する拡散材57の配合比は特に限定されるものではなく、0%よりも大きく100%未満であればよい。拡散材57の配合比を大きくするほど、半導体レーザ装置10から出射されるレーザ光の指向角を広げることができる。また、拡散材57の配合比の上限を所定値に制限することによって、半導体レーザ装置10のレーザ光出力および放射強度の大きな低下を抑制することができる。たとえば、第1実施形態では、拡散材57の配合比は、好ましくは0%よりも大きく60%以下の範囲で選択され、より好ましくは20%以上60%以下の範囲で選択される。 The blending ratio of the diffusion material 57 to the resin of the sealing resin 50 is not particularly limited, and may be greater than 0% and less than 100%. The larger the blending ratio of the diffusing material 57 is, the wider the directivity angle of the laser light emitted from the semiconductor laser device 10 can be. Further, by limiting the upper limit of the blending ratio of the diffusing material 57 to a predetermined value, it is possible to suppress a large decrease in the laser light output and radiation intensity of the semiconductor laser device 10. For example, in the first embodiment, the blending ratio of the diffusion material 57 is preferably selected to be greater than 0% and less than or equal to 60%, and more preferably selected to be greater than or equal to 20% and less than or equal to 60%.
 第1実施形態では、拡散材57として、封止樹脂50の樹脂よりも熱膨張係数が小さいものが選択されている。この構成では、封止樹脂50が樹脂のみによって構成される場合と比較して、拡散材57によって封止樹脂50に発生する熱応力を低減することができる。これにより、封止樹脂50の熱応力に起因してワイヤWが断線する等を抑制することができる。 In the first embodiment, a material having a smaller coefficient of thermal expansion than the resin of the sealing resin 50 is selected as the diffusion material 57. With this configuration, the thermal stress generated in the sealing resin 50 by the diffusion material 57 can be reduced compared to the case where the sealing resin 50 is made of only resin. Thereby, disconnection of the wire W due to thermal stress of the sealing resin 50 can be suppressed.
 拡散材57は、封止樹脂50に微粒子として分散されている。拡散材57は、封止樹脂50に対して所定の配合比で混合されている。第1実施形態では、拡散材57は、半導体レーザ素子40のレーザ光出力のピーク位置とは異なる位置に半導体レーザ素子40のレーザ光が散乱されるように封止樹脂50に混合されている。一例では、拡散材57は、封止樹脂50内に均等に分散されている。 The diffusion material 57 is dispersed in the sealing resin 50 as fine particles. The diffusion material 57 is mixed with the sealing resin 50 at a predetermined mixing ratio. In the first embodiment, the diffusing material 57 is mixed into the sealing resin 50 so that the laser light of the semiconductor laser element 40 is scattered at a position different from the peak position of the laser light output of the semiconductor laser element 40. In one example, the diffusion material 57 is evenly distributed within the sealing resin 50.
 側壁60は、基板20上に設けられている。側壁60は、たとえば遮光性の材料によって形成されている。遮光性の材料の一例として、黒色のエポキシ樹脂が用いられている。なお、側壁60の材料としては、耐熱性を有するエンジニアプラスチックを用いることができる。図2に示すとおり、側壁60は、基板20の外周部に配置されている。なお、側壁60を構成する材料は任意に変更可能である。一例では、側壁60として、透光性の材料が用いられてもよい。また一例では、側壁60は、樹脂材料に代えて、金属材料、セラミック等によって構成されていてもよい。 The side wall 60 is provided on the substrate 20. The side wall 60 is made of, for example, a light-shielding material. A black epoxy resin is used as an example of a light-shielding material. Note that as the material of the side wall 60, a heat-resistant engineered plastic can be used. As shown in FIG. 2, the side wall 60 is arranged on the outer periphery of the substrate 20. Note that the material constituting the side wall 60 can be changed arbitrarily. In one example, the side wall 60 may be made of a translucent material. Further, in one example, the side wall 60 may be made of a metal material, ceramic, or the like instead of the resin material.
 側壁60は、互いに離隔して配置された一対の第1側壁部61と、一対の第1側壁部61を繋ぐ第2側壁部62と、を有する。第1実施形態では、一対の第1側壁部61および第2側壁部62は一体に形成されている。一例では、側壁60は、樹脂モールド成形によって形成されている。 The side wall 60 includes a pair of first side wall portions 61 that are spaced apart from each other, and a second side wall portion 62 that connects the pair of first side wall portions 61. In the first embodiment, the pair of first side wall portions 61 and second side wall portions 62 are integrally formed. In one example, the side wall 60 is formed by resin molding.
 一対の第1側壁部61は、X軸方向において互いに離隔して配列されている。平面視において、各第1側壁部61は、Y軸方向、すなわち基板20の長手方向に延びている。平面視において、第2側壁部62は、X軸方向、すなわち基板20の短手方向に延びている。第2側壁部62は、半導体レーザ素子40よりも基板20の第2基板側面24寄りに配置されている。 The pair of first side wall portions 61 are arranged to be spaced apart from each other in the X-axis direction. In plan view, each first side wall portion 61 extends in the Y-axis direction, that is, in the longitudinal direction of the substrate 20. In plan view, the second side wall portion 62 extends in the X-axis direction, that is, in the lateral direction of the substrate 20. The second side wall portion 62 is arranged closer to the second substrate side surface 24 of the substrate 20 than the semiconductor laser element 40 is.
 一対の第1側壁部61は、封止樹脂50のX軸方向の両側に配置されている。一対の第1側壁部61のうち1つは封止樹脂50の第3封止端面55と接しており、他の1つは封止樹脂50の第4封止端面56と接している。第2側壁部62は、封止樹脂50の第2封止端面54を覆っている。第2側壁部62は、第2封止端面54と接している。このように、側壁60は、封止樹脂50を囲むものであって第1封止端面53を露出する開口を有する。このため、側壁60は、半導体レーザ素子40を囲むものであって、半導体レーザ素子40の第1発光面LS1を露出するように開口しているともいえる。 The pair of first side wall portions 61 are arranged on both sides of the sealing resin 50 in the X-axis direction. One of the pair of first side wall parts 61 is in contact with the third sealing end surface 55 of the sealing resin 50 , and the other one is in contact with the fourth sealing end surface 56 of the sealing resin 50 . The second side wall portion 62 covers the second sealing end surface 54 of the sealing resin 50. The second side wall portion 62 is in contact with the second sealing end surface 54 . In this way, the side wall 60 surrounds the sealing resin 50 and has an opening that exposes the first sealing end surface 53. Therefore, it can be said that the side wall 60 surrounds the semiconductor laser element 40 and is open to expose the first light emitting surface LS1 of the semiconductor laser element 40.
 [半導体レーザ素子の配置態様と半導体レーザ素子のレーザ光の反射]
 図2に示すように、平面視において、第1配線31の面積は、半導体レーザ素子40の面積よりも大きい。より詳細には、第1配線31のX軸方向の長さは半導体レーザ素子40のX軸方向の長さよりも長く、第1配線31のY軸方向の長さは半導体レーザ素子40のY軸方向の長さよりも長い。
[Arrangement of semiconductor laser device and reflection of laser light from the semiconductor laser device]
As shown in FIG. 2, the area of the first wiring 31 is larger than the area of the semiconductor laser element 40 in plan view. More specifically, the length of the first wiring 31 in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction, and the length of the first wiring 31 in the Y-axis direction is longer than the length of the semiconductor laser element 40 in the Y-axis direction. longer than the length in the direction.
 半導体レーザ素子40は、第1配線31のうち第2配線32(第2基板側面24)寄りの部分に配置されている。より詳細には、半導体レーザ素子40のY軸方向の中心は、第1配線31のY軸方向の中心よりも第2配線32(第2基板側面24)寄りに位置している。 The semiconductor laser element 40 is arranged in a portion of the first wiring 31 closer to the second wiring 32 (second substrate side surface 24). More specifically, the center of the semiconductor laser element 40 in the Y-axis direction is located closer to the second interconnect 32 (second substrate side surface 24) than the center of the first interconnect 31 in the Y-axis direction.
 第1配線31は、第1配線31のY軸方向の両端部を構成する第1端面31Aおよび第2端面31Bを含む。第1端面31Aは第1配線31の両端部のうち第1基板側面23に近い方の端面であり、第2端面31Bは第1配線31の両端部のうち第2基板側面24に近い方の端面である。第1実施形態では、第1端面31Aは、第1基板側面23よりも内側(第2基板側面24寄り)に配置されている。第1端面31Aは、平面視において、第1基板側面23と半導体レーザ素子40の第1素子側面43(第1発光面LS1)とのY軸方向の間の中央よりも第1基板側面23寄りに配置されている。 The first wiring 31 includes a first end surface 31A and a second end surface 31B that constitute both ends of the first wiring 31 in the Y-axis direction. The first end surface 31A is the end surface of the first wiring 31 that is closer to the first substrate side surface 23, and the second end surface 31B is the end surface of the first wiring 31 that is closer to the second substrate side surface 24. It is an end face. In the first embodiment, the first end surface 31A is arranged inside the first substrate side surface 23 (closer to the second substrate side surface 24). The first end surface 31A is closer to the first substrate side surface 23 than the center in the Y-axis direction between the first substrate side surface 23 and the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40 in a plan view. It is located in
 平面視において、第1配線31のY軸方向の長さが半導体レーザ素子40のY軸方向の長さよりも長いため、第1配線31は、半導体レーザ素子40の第1発光面LS1と第1端面31Aとの間の部分である第1延出部31Cと、第2発光面LS2と第2端面31Bとの間の部分である第2延出部31Dと、を含む。このように、第1配線31は、半導体レーザ素子40の第1素子側面43(第1発光面LS1)から第1封止端面53に向けて延出した部分である第1延出部31Cを有するともいえる。第1延出部31Cは、第1端面31Aを含む。第2延出部31Dは、第2端面31Bを含む。 In plan view, since the length of the first wiring 31 in the Y-axis direction is longer than the length of the semiconductor laser element 40 in the Y-axis direction, the first wiring 31 is connected to the first light emitting surface LS1 of the semiconductor laser element 40 and the first The first extending portion 31C is a portion between the end surface 31A and the second extending portion 31D is a portion between the second light emitting surface LS2 and the second end surface 31B. In this way, the first wiring 31 has a first extending portion 31C that is a portion extending from the first device side surface 43 (first light emitting surface LS1) of the semiconductor laser device 40 toward the first sealing end surface 53. It can also be said that it has. The first extending portion 31C includes a first end surface 31A. The second extending portion 31D includes a second end surface 31B.
 半導体レーザ素子40の第1素子側面43(第1発光面LS1)と第1配線31の第1端面31AとのY軸方向の間の距離D1は、半導体レーザ素子40の第2素子側面44と第1配線31の第2端面31BとのY軸方向の間の距離D2よりも大きい。ここで、距離D1は第1延出部31CのY軸方向の長さであるともいえ、距離D2は第2延出部31DのY軸方向の長さであるともいえる。 The distance D1 between the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40 and the first end surface 31A of the first wiring 31 in the Y-axis direction is equal to the distance D1 between the second element side surface 44 of the semiconductor laser element 40 and It is larger than the distance D2 between the first wiring 31 and the second end surface 31B in the Y-axis direction. Here, the distance D1 can be said to be the length of the first extension part 31C in the Y-axis direction, and the distance D2 can be said to be the length of the second extension part 31D in the Y-axis direction.
 半導体レーザ素子40が出射するレーザ光は、発光ダイオード(LED)よりも指向性が高い。第1実施形態のようにファブリ・ペロー型レーザダイオード素子として構成された半導体レーザ素子40のレーザ光は、基板20の厚さ方向(Z軸方向)に対してほぼ直交する+Y方向に向けて出射される。 The laser light emitted by the semiconductor laser element 40 has higher directivity than a light emitting diode (LED). Laser light from the semiconductor laser device 40 configured as a Fabry-Perot laser diode device as in the first embodiment is emitted in the +Y direction that is substantially perpendicular to the thickness direction (Z-axis direction) of the substrate 20. be done.
 図6に示すように、半導体レーザ素子40のレーザ光は、拡散材57によって拡散(散乱)される。これにより、レーザ光は、基板表面21に向かうレーザ光を含む。第1延出部31Cは、基板表面21に向かうレーザ光の一部を反射する。反射されたレーザ光は、第1封止端面53または封止表面51を通過して半導体レーザ装置10の外部に出射される。このように、半導体レーザ装置10は、半導体レーザ素子40の第1発光面LS1から出射されかつ基板表面21に向かうレーザ光の一部を反射する第1反射部70を備えているともいえる。第1実施形態では、第1配線31の第1延出部31Cが第1反射部70を構成している。つまり、第1配線31は、第1反射部70として、第1発光面LS1から第1封止端面53に向けて延出した部分を有するともいえる。 As shown in FIG. 6, the laser light from the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57. Thereby, the laser light includes laser light directed toward the substrate surface 21. The first extension portion 31C reflects a portion of the laser beam directed toward the substrate surface 21. The reflected laser light passes through the first sealing end face 53 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . In this way, the semiconductor laser device 10 can be said to include the first reflection section 70 that reflects a portion of the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 and directed toward the substrate surface 21. In the first embodiment, the first extending portion 31C of the first wiring 31 constitutes the first reflecting portion 70. In other words, it can be said that the first wiring 31 has a portion extending from the first light emitting surface LS1 toward the first sealed end surface 53 as the first reflecting portion 70.
 なお、第1端面31AのY軸方向の位置は任意に変更可能である。一例では、第1端面31Aは、平面視において、第1基板側面23と面一となる位置に配置されていてもよい。第1端面31AのY軸方向の位置は、第1延出部31Cが基板表面21に向かうレーザ光の少なくとも一部を反射することができる長さとなる位置であればよい。 Note that the position of the first end surface 31A in the Y-axis direction can be changed arbitrarily. In one example, the first end surface 31A may be arranged flush with the first substrate side surface 23 in plan view. The position of the first end surface 31A in the Y-axis direction may be such a position that the first extension portion 31C can reflect at least a portion of the laser beam directed toward the substrate surface 21.
 [半導体レーザ装置の製造方法]
 図7~図10を参照して、半導体レーザ装置10の製造方法の一例について説明する。なお、図7~図10では、便宜上、4つの半導体レーザ装置10を一度に製造できる構成を示しているが、これに限られず、より多くの半導体レーザ装置10を一度に製造できるように構成してもよい。
[Method for manufacturing semiconductor laser device]
An example of a method for manufacturing the semiconductor laser device 10 will be described with reference to FIGS. 7 to 10. Note that although FIGS. 7 to 10 show a configuration in which four semiconductor laser devices 10 can be manufactured at once for convenience, the configuration is not limited to this, and the configuration can be configured so that more semiconductor laser devices 10 can be manufactured at once. You can.
 半導体レーザ装置10の製造方法は、基板820を用意する工程と、基板820上に側壁860を形成する工程と、第1配線31に半導体レーザ素子40を搭載する工程と、ワイヤWを形成する工程と、封止樹脂850を形成する工程と、個片化する工程と、を含む。 The method for manufacturing the semiconductor laser device 10 includes a step of preparing a substrate 820, a step of forming a side wall 860 on the substrate 820, a step of mounting the semiconductor laser element 40 on the first wiring 31, and a step of forming the wire W. , a step of forming a sealing resin 850, and a step of dividing into pieces.
 図7に示すように、基板820を用意する工程では、第1配線31、第2配線32、第1電極33、第2電極34(第1電極33および第2電極34は図10参照)、第1ビア35、および第2ビア36が形成された基板820が用意される。基板820は、たとえばガラスエポキシ樹脂が用いられる。なお、基板820は、たとえばセラミックが用いられてもよい。基板820は、たとえば複数の基板20を含むサイズに形成されており、基板20の個数に応じた第1配線31、第2配線32、第1電極33、第2電極34、第1ビア35、および第2ビア36が形成されている。第1配線31および第2配線32の双方は基板820の基板表面821に設けられている。第1電極33および第2電極34の双方は基板820の基板裏面822(図10参照)に設けられている。 As shown in FIG. 7, in the step of preparing the substrate 820, the first wiring 31, the second wiring 32, the first electrode 33, the second electrode 34 (see FIG. 10 for the first electrode 33 and the second electrode 34), A substrate 820 on which a first via 35 and a second via 36 are formed is prepared. For example, glass epoxy resin is used for the substrate 820. Note that the substrate 820 may be made of ceramic, for example. The substrate 820 is formed in a size that includes, for example, a plurality of substrates 20, and includes first wirings 31, second wirings 32, first electrodes 33, second electrodes 34, first vias 35, and the like according to the number of substrates 20. and a second via 36 are formed. Both the first wiring 31 and the second wiring 32 are provided on the substrate surface 821 of the substrate 820. Both the first electrode 33 and the second electrode 34 are provided on the back surface 822 of the substrate 820 (see FIG. 10).
 図8に示すように、基板820上に側壁860を形成する工程では、たとえば樹脂成形によって基板820上に側壁860が形成される。樹脂成形として、たとえばトランスファモールド、コンプレッションモールドが挙げられる。このような樹脂成形によって、側壁860は基板820と一体化される。 As shown in FIG. 8, in the step of forming the sidewall 860 on the substrate 820, the sidewall 860 is formed on the substrate 820 by, for example, resin molding. Examples of resin molding include transfer molding and compression molding. By such resin molding, the side wall 860 is integrated with the substrate 820.
 側壁860は、側壁60を構成する部品であり、平面視において第1配線31および第2配線32を囲む単位側壁が複数形成されている。複数の単位側壁の個数は、たとえば基板820の第1配線31の個数に応じて設定される。 The side wall 860 is a component that constitutes the side wall 60, and includes a plurality of unit side walls surrounding the first wiring 31 and the second wiring 32 in plan view. The number of the plurality of unit side walls is set depending on, for example, the number of first wirings 31 on the substrate 820.
 なお、基板820上に側壁860を形成する工程では、たとえばインジェクションモールド等の樹脂成形によって予め成形された成形品である側壁860を、たとえば接着剤によって基板820上に貼り付けてもよい。これにより、側壁860と基板820とが一体化される。また、側壁860は、樹脂製に限られず、金属製やセラミック製であってもよい。この場合においても、予め成形した側壁860を接着剤または金属接合によって基板820に接合してもよい。 Note that in the step of forming the side wall 860 on the substrate 820, the side wall 860, which is a molded product previously formed by resin molding such as injection molding, may be attached onto the substrate 820 using, for example, an adhesive. Thereby, the side wall 860 and the substrate 820 are integrated. Further, the side wall 860 is not limited to being made of resin, and may be made of metal or ceramic. In this case as well, the preformed sidewall 860 may be bonded to the substrate 820 by adhesive or metal bonding.
 図9に示すように、第1配線31に半導体レーザ素子40を搭載する工程は、第1実施形態では、半導体レーザ素子40を第1配線31に実装する工程である。この工程では、たとえば第1配線31上に半導体レーザ素子40がダイボンディングされる。これにより、半導体レーザ素子40のカソード電極48(図10参照)と第1配線31とが電気的に接続される。 As shown in FIG. 9, the process of mounting the semiconductor laser element 40 on the first wiring 31 is the process of mounting the semiconductor laser element 40 on the first wiring 31 in the first embodiment. In this step, the semiconductor laser element 40 is die-bonded onto the first wiring 31, for example. Thereby, the cathode electrode 48 (see FIG. 10) of the semiconductor laser element 40 and the first wiring 31 are electrically connected.
 続いて、ワイヤWを形成する工程では、半導体レーザ素子40のアノード電極47と第2配線32とを電気的に接続するワイヤWが形成される。ワイヤWは、ワイヤボンディング装置によって形成されたボンディングワイヤである。ここで、第1実施形態では、ワイヤWのうち第2配線32側をファーストボンディングとし、半導体レーザ素子40のアノード電極47側をセカンドボンディングとしている。 Subsequently, in the step of forming the wire W, the wire W that electrically connects the anode electrode 47 of the semiconductor laser element 40 and the second wiring 32 is formed. The wire W is a bonding wire formed by a wire bonding device. Here, in the first embodiment, first bonding is performed on the second wiring 32 side of the wire W, and second bonding is performed on the anode electrode 47 side of the semiconductor laser element 40.
 図10に示すように、封止樹脂850を形成する工程では、たとえば樹脂成形によって基板820と側壁860の単位側壁とによって囲まれた空間に封止樹脂850が形成される。側壁860(単位側壁)は、封止樹脂850を囲んでいるといえる。 As shown in FIG. 10, in the step of forming the sealing resin 850, the sealing resin 850 is formed in a space surrounded by the substrate 820 and the unit side walls of the side walls 860, for example, by resin molding. It can be said that the side wall 860 (unit side wall) surrounds the sealing resin 850.
 封止樹脂850は、第1配線31、第2配線32、半導体レーザ素子40、およびワイヤWを封止している。封止樹脂850は、透光性の材料によって形成されている。一例では、封止樹脂850は、シリコーン樹脂、エポキシ樹脂、およびアクリル樹脂の少なくとも1つを含む材料によって形成されている。ここで、封止樹脂850は、たとえばトランスファモールドまたはコンプレッションモールドによって形成される。なお、封止樹脂850は、ポッティングによって基板820と側壁860の単位側壁とによって囲まれた空間に充填されてもよい。封止樹脂850は、拡散材57(図10参照)を含む。 The sealing resin 850 seals the first wiring 31, the second wiring 32, the semiconductor laser element 40, and the wire W. The sealing resin 850 is made of a translucent material. In one example, the sealing resin 850 is formed of a material containing at least one of silicone resin, epoxy resin, and acrylic resin. Here, the sealing resin 850 is formed by, for example, transfer molding or compression molding. Note that the sealing resin 850 may be filled in a space surrounded by the substrate 820 and the unit side walls of the side walls 860 by potting. The sealing resin 850 includes the diffusion material 57 (see FIG. 10).
 続いて、個片化する工程では、ダイシングブレードによって、図9の切断線CLに沿って側壁860および基板820の双方が切断される。これにより、基板20、側壁60、および封止樹脂50が形成される。半導体レーザ素子40は、レーザ光を出射する第1発光面LS1が封止樹脂50の第1封止端面53に向けてレーザ光を出射するように第1配線31に搭載されている。つまり、半導体レーザ素子40は、第1発光面LS1が第1封止端面53と同じ側を向くように第1配線31に搭載されている。以上の工程を経て、半導体レーザ装置10が製造される。 Subsequently, in the step of singulating, both the side wall 860 and the substrate 820 are cut along the cutting line CL in FIG. 9 by a dicing blade. As a result, the substrate 20, side walls 60, and sealing resin 50 are formed. The semiconductor laser element 40 is mounted on the first wiring 31 so that the first light emitting surface LS1 that emits laser light emits the laser light toward the first sealing end surface 53 of the sealing resin 50. That is, the semiconductor laser element 40 is mounted on the first wiring 31 so that the first light emitting surface LS1 faces the same side as the first sealed end surface 53. Through the above steps, the semiconductor laser device 10 is manufactured.
 なお、半導体レーザ装置10の製造工程の順番は任意に変更可能である。一例では、第1配線31に半導体レーザ素子40を搭載する工程およびワイヤWを形成する工程の後、かつ封止樹脂850を形成する工程の前に、基板820上に側壁860を形成する工程が実施されてもよい。この場合、基板820上に側壁860を形成する工程では、たとえばインジェクションモールド等の樹脂成形によって予め成形された成形品である側壁860を、たとえば接着剤によって基板820上に貼り付けてもよい。その後、封止樹脂850を形成する工程および個片化する工程が順に実施される。 Note that the order of the manufacturing steps of the semiconductor laser device 10 can be changed arbitrarily. In one example, after the step of mounting the semiconductor laser element 40 on the first wiring 31 and the step of forming the wire W, and before the step of forming the sealing resin 850, a step of forming the side wall 860 on the substrate 820 is performed. may be implemented. In this case, in the step of forming the side wall 860 on the substrate 820, the side wall 860, which is a molded article previously formed by resin molding such as injection molding, may be attached onto the substrate 820 using, for example, an adhesive. After that, a step of forming the sealing resin 850 and a step of dividing into pieces are performed in this order.
 [作用]
 第1実施形態の半導体レーザ装置10の作用について説明する。
 図11は、比較例の半導体発光装置10Xの平面構造を示している。図12は、比較例の半導体発光装置10Xを側面発光型として配置した状態における半導体発光装置10Xの模式的な断面構造を示している。
[Effect]
The operation of the semiconductor laser device 10 of the first embodiment will be explained.
FIG. 11 shows a planar structure of a semiconductor light emitting device 10X of a comparative example. FIG. 12 shows a schematic cross-sectional structure of a semiconductor light emitting device 10X of a comparative example in a state where the semiconductor light emitting device 10X is arranged as a side-emitting type.
 図11に示すように、比較例の半導体発光装置10Xは、平板状の基板20Xと、基板20Xに設けられた第1導体30XAおよび第2導体30XBと、LED素子40Xと、複数本のワイヤWと、LED素子40Xおよび各ワイヤWを封止する封止樹脂50Xと、平面視において封止樹脂50Xを囲む側壁60Xと、を備える。封止樹脂50Xは、封止樹脂50とは異なり、拡散材57(図5参照)を含んでいない。 As shown in FIG. 11, the semiconductor light emitting device 10X of the comparative example includes a flat substrate 20X, a first conductor 30XA and a second conductor 30XB provided on the substrate 20X, an LED element 40X, and a plurality of wires W. , a sealing resin 50X that seals the LED element 40X and each wire W, and a side wall 60X that surrounds the sealing resin 50X in plan view. The sealing resin 50X differs from the sealing resin 50 in that it does not contain a diffusion material 57 (see FIG. 5).
 図12に示すように、第1導体30XAは、基板20Xの基板表面21Xに形成された第1配線31Xと、基板裏面22Xに形成された第1電極33Xと、第1基板側面23Xに形成された第1側面電極37Xと、を含む。第1側面電極37Xは、第1配線31Xと第1電極33Xとを繋いでいる。 As shown in FIG. 12, the first conductor 30XA includes a first wiring 31X formed on the front surface 21X of the substrate 20X, a first electrode 33X formed on the back surface 22X of the substrate, and a side surface 23X of the first substrate. and a first side electrode 37X. The first side electrode 37X connects the first wiring 31X and the first electrode 33X.
 第2導体30XBは、基板20Xの基板表面21Xに形成された第2配線32Xと、基板裏面22Xに形成された第2電極34Xと、第2基板側面24Xに形成された第2側面電極38Xと、を含む。第2側面電極38Xは、第2配線32Xと第2電極34Xとを繋いでいる。 The second conductor 30XB includes a second wiring 32X formed on the front surface 21X of the substrate 20X, a second electrode 34X formed on the back surface 22X of the substrate, and a second side electrode 38X formed on the side surface 24X of the second substrate. ,including. The second side electrode 38X connects the second wiring 32X and the second electrode 34X.
 LED素子40Xは、第1配線31Xに実装されている。LED素子40Xは、素子表面41Xが発光面LSXとなる。このため、LED素子40Xは、図12においては、+Z方向に向けて光を出射する。LED素子40Xは、複数本のワイヤWによって第2配線32Xと電気的に接続されている。 The LED element 40X is mounted on the first wiring 31X. In the LED element 40X, the element surface 41X serves as a light emitting surface LSX. Therefore, the LED element 40X emits light in the +Z direction in FIG. 12. The LED element 40X is electrically connected to the second wiring 32X by a plurality of wires W.
 ところで、図12に示すように、比較例の半導体発光装置10Xを側面発光型として用いられる場合、回路基板(図示略)には、第1側面電極37Xが接続される。つまり、比較例の半導体発光装置10Xは、第1基板側面23が回路基板に対面した状態で回路基板に実装される。このため、比較例の半導体発光装置10Xの熱は、主に第1側面電極37Xを介して回路基板に移動する。したがって、比較例の半導体発光装置10Xは、放熱性が低い。 By the way, as shown in FIG. 12, when the semiconductor light emitting device 10X of the comparative example is used as a side emission type, the first side electrode 37X is connected to the circuit board (not shown). That is, the semiconductor light emitting device 10X of the comparative example is mounted on a circuit board with the first substrate side surface 23 facing the circuit board. Therefore, the heat of the semiconductor light emitting device 10X of the comparative example mainly moves to the circuit board via the first side electrode 37X. Therefore, the semiconductor light emitting device 10X of the comparative example has low heat dissipation.
 加えて、回路基板の表面に対して垂直方向と基板20XのY軸方向とが一致するように、比較例の半導体発光装置10Xが回路基板に配置されるため、半導体発光装置10Xの低背化が困難となる。 In addition, since the semiconductor light emitting device 10X of the comparative example is arranged on the circuit board so that the direction perpendicular to the surface of the circuit board matches the Y-axis direction of the substrate 20X, the height of the semiconductor light emitting device 10X can be reduced. becomes difficult.
 さらに、このような光源では、高出力化の要求がある。高出力化を実現するため、比較例の半導体発光装置10Xでは、LED素子40Xの高出力化を図る必要がある。これにより、比較例の半導体発光装置10Xのチップサイズが大きくなる。このため、比較例の半導体発光装置10Xの低背化がさらに困難となる。 Furthermore, such light sources are required to have high output. In order to achieve high output, in the semiconductor light emitting device 10X of the comparative example, it is necessary to increase the output of the LED element 40X. This increases the chip size of the semiconductor light emitting device 10X of the comparative example. Therefore, it becomes more difficult to reduce the height of the semiconductor light emitting device 10X of the comparative example.
 また、比較例の半導体発光装置10Xの高出力化にともない発熱量も多くなる。このため、比較例の半導体発光装置10Xを側面発光型として用いられる場合、放熱性が悪いのでLED素子40Xの温度が過度に高くなるおそれがある。 Additionally, as the output of the semiconductor light emitting device 10X of the comparative example increases, the amount of heat generated also increases. For this reason, when the semiconductor light emitting device 10X of the comparative example is used as a side-emitting type, the temperature of the LED element 40X may become excessively high due to poor heat dissipation.
 比較例の半導体発光装置10Xの高出力化として、LED素子40Xに代えて、VCSEL素子を用いる構成が考えられる。しかし、VCSEL素子はLED素子40Xと比較して指向角が狭いため、LED素子40Xを備える半導体発光装置10Xの用途として用いることは困難である。 In order to increase the output of the semiconductor light emitting device 10X of the comparative example, a configuration using a VCSEL element in place of the LED element 40X can be considered. However, since the VCSEL element has a narrower directivity angle than the LED element 40X, it is difficult to use it as a semiconductor light emitting device 10X including the LED element 40X.
 この点、第1実施形態では、高出力化のための半導体レーザ素子40として、基板20の厚さ方向(Z軸方向)と直交する+Y方向に向けてレーザ光を出射する端面発光型レーザ素子が用いられている。つまり、半導体レーザ素子40は、基板20の基板表面21に形成された第1配線31に実装された状態で、第1発光面LS1が+Y方向を向いている。このため、半導体レーザ装置10が回路基板に実装される場合、基板裏面22に形成された第1電極33および第2電極34が回路基板に実装される。これにより、半導体レーザ装置10は、比較例の半導体発光装置10Xと比較して、回路基板に実装された状態における低背化を図ることができる。 In this regard, in the first embodiment, the semiconductor laser device 40 for increasing output is an edge-emitting laser device that emits laser light in the +Y direction perpendicular to the thickness direction (Z-axis direction) of the substrate 20. is used. That is, the semiconductor laser element 40 is mounted on the first wiring 31 formed on the substrate surface 21 of the substrate 20, with the first light emitting surface LS1 facing the +Y direction. Therefore, when the semiconductor laser device 10 is mounted on a circuit board, the first electrode 33 and the second electrode 34 formed on the back surface 22 of the board are mounted on the circuit board. Thereby, the semiconductor laser device 10 can achieve a lower height when mounted on a circuit board compared to the semiconductor light emitting device 10X of the comparative example.
 加えて、半導体レーザ装置10の熱は、第1電極33および第2電極34を介して回路基板に移動する。第1電極33の面積は、たとえば第1基板側面23の面積よりも大きいため、半導体レーザ装置10は、比較例の半導体発光装置10Xと比較して、放熱性が高くなる。 In addition, the heat of the semiconductor laser device 10 is transferred to the circuit board via the first electrode 33 and the second electrode 34. Since the area of the first electrode 33 is larger than, for example, the area of the first substrate side surface 23, the semiconductor laser device 10 has higher heat dissipation than the semiconductor light emitting device 10X of the comparative example.
 また、半導体レーザ装置10においては、半導体レーザ素子40を封止する封止樹脂50に拡散材57が含まれている。このため、半導体レーザ素子40の第1発光面LS1から出射したレーザ光は、拡散材57によって拡散(散乱)される。これにより、図6に示すように、封止樹脂50の第1封止端面53に加え、封止表面51のうち第1封止端面53寄りの端部からもレーザ光が出射される。したがって、半導体レーザ装置10が出射するレーザ光は広指向角となり、LED素子を備える半導体発光装置の用途としても用いることができる。 Furthermore, in the semiconductor laser device 10, the sealing resin 50 that seals the semiconductor laser element 40 includes a diffusion material 57. Therefore, the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57. As a result, as shown in FIG. 6, laser light is emitted not only from the first sealing end surface 53 of the sealing resin 50 but also from the end portion of the sealing surface 51 closer to the first sealing end surface 53. Therefore, the laser light emitted by the semiconductor laser device 10 has a wide directivity angle, and can be used as a semiconductor light emitting device including an LED element.
 [効果]
 第1実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (1-1)半導体レーザ装置10は、基板表面21を有する基板20と、基板表面21上に設けられた半導体レーザ素子40と、基板表面21と同じ側を向く封止表面51と、封止表面51と交差する第1封止端面53と、を有し、半導体レーザ素子40を封止する透光性の封止樹脂50と、を備える。封止樹脂50は、光を拡散させる拡散材57を含む。半導体レーザ素子40は、第1封止端面53に向けてレーザ光を出射する第1発光面LS1を含む。
[effect]
According to the semiconductor laser device 10 of the first embodiment, the following effects can be obtained.
(1-1) The semiconductor laser device 10 includes a substrate 20 having a substrate surface 21, a semiconductor laser element 40 provided on the substrate surface 21, a sealing surface 51 facing the same side as the substrate surface 21, and a sealing surface 51 facing the same side as the substrate surface 21. A transparent sealing resin 50 having a first sealing end surface 53 that intersects with the surface 51 and sealing the semiconductor laser element 40 is provided. The sealing resin 50 includes a diffusion material 57 that diffuses light. The semiconductor laser element 40 includes a first light emitting surface LS1 that emits laser light toward the first sealed end surface 53.
 この構成によれば、半導体レーザ素子40から第1封止端面53に向けて出射されたレーザ光は、拡散材57によって封止樹脂50の内部で拡散(散乱)される。これにより、半導体レーザ装置10から出射されるレーザ光は、広い指向性を有する。これにより、LED素子を備える半導体発光装置で得られる場合と同等な指向性を、半導体レーザ装置10で実現することができる。典型的に、半導体レーザ素子40は、LED素子と比較して、高出力かつ低消費電力である。したがって、高出力かつ低消費電力の利点を有する半導体レーザ素子40を利用して半導体レーザ装置10を、LED素子を備える半導体発光装置の用途に適用することができる。 According to this configuration, the laser light emitted from the semiconductor laser element 40 toward the first sealing end face 53 is diffused (scattered) inside the sealing resin 50 by the diffusion material 57. Thereby, the laser light emitted from the semiconductor laser device 10 has wide directivity. Thereby, the semiconductor laser device 10 can achieve directivity equivalent to that obtained with a semiconductor light emitting device including an LED element. Typically, the semiconductor laser device 40 has high output and low power consumption compared to an LED device. Therefore, the semiconductor laser device 10 can be applied to a semiconductor light emitting device including an LED element by using the semiconductor laser device 40 which has the advantages of high output and low power consumption.
 (1-2)半導体レーザ装置10は、基板表面21に設けられた第1配線31を備える。半導体レーザ素子40は、第1配線31に搭載され、この第1配線31を介して基板表面21上に設けられている。半導体レーザ装置10は、半導体レーザ素子40の第1発光面LS1に対して第1封止端面53側の位置に設けられ、第1発光面LS1から出射されたレーザ光の一部を反射する第1反射部70をさらに備える。 (1-2) The semiconductor laser device 10 includes a first wiring 31 provided on the substrate surface 21. The semiconductor laser element 40 is mounted on the first wiring 31 and provided on the substrate surface 21 via the first wiring 31. The semiconductor laser device 10 is provided at a position on the first sealing end surface 53 side with respect to the first light emitting surface LS1 of the semiconductor laser element 40, and has a first surface that reflects a part of the laser light emitted from the first light emitting surface LS1. 1 reflection section 70 is further provided.
 この構成によれば、第1反射部70によって第1発光面LS1から出射されたレーザ光が反射されるため、反射したレーザ光は、基板表面21よりも上方に向けて第1封止端面53から出射される。このため、基板表面21よりも上方の領域に向けて出射するレーザ光の光量の増加を図ることができる。 According to this configuration, since the laser light emitted from the first light emitting surface LS1 is reflected by the first reflecting section 70, the reflected laser light is directed upward from the substrate surface 21 to the first sealing end surface 53. It is emitted from. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
 加えて、第1発光面LS1から基板表面21よりも下方の領域に向けてレーザ光が出射することが抑制されるため、たとえば半導体レーザ装置10が回路基板に実装された場合、第1発光面LS1から回路基板の表面に向けてレーザ光が出射することを抑制できる。 In addition, since laser light is suppressed from being emitted from the first light emitting surface LS1 toward a region below the substrate surface 21, for example, when the semiconductor laser device 10 is mounted on a circuit board, the first light emitting surface LS1 Emission of laser light from LS1 toward the surface of the circuit board can be suppressed.
 (1-3)第1配線31は、第1反射部70として、平面視において第1発光面LS1から第1封止端面53に向けて延出した部分(第1延出部31C)を有する。
 この構成によれば、第1反射部70専用の部品を追加することなく、第1反射部70を構成することができるため、半導体レーザ装置10の部品点数の増加を抑制できる。
(1-3) The first wiring 31 has a portion (first extension portion 31C) extending from the first light emitting surface LS1 toward the first sealing end surface 53 in plan view as the first reflection portion 70. .
According to this configuration, the first reflecting section 70 can be configured without adding any parts dedicated to the first reflecting section 70, so an increase in the number of parts of the semiconductor laser device 10 can be suppressed.
 (1-4)半導体レーザ装置10は、封止樹脂50を囲むものであって、第1封止端面53を露出する開口を有する側壁60をさらに備える。
 この構成によれば、たとえば半導体レーザ装置10を回路基板に実装する際にマウンタが半導体レーザ装置10を保持する場合、側壁60を保持することによって封止樹脂50に加えられる外力が低減される。これにより、封止樹脂50に封止されたワイヤWに加わる力を低減できる。
(1-4) The semiconductor laser device 10 further includes a side wall 60 that surrounds the sealing resin 50 and has an opening that exposes the first sealing end surface 53.
According to this configuration, for example, when the mounter holds the semiconductor laser device 10 when mounting the semiconductor laser device 10 on a circuit board, the external force applied to the sealing resin 50 is reduced by holding the side wall 60. Thereby, the force applied to the wire W sealed in the sealing resin 50 can be reduced.
 (1-5)第1延出部31CのX軸方向の長さは、半導体レーザ素子40のX軸方向の長さよりも長い。
 この構成によれば、第1発光面LS1から出射されるとともに拡散材57によって基板表面21と平行な方向に向けて拡散されたレーザ光を第1延出部31Cによって反射できる。このため、基板表面21よりも上方の領域に向けて出射するレーザ光の光量の増加を図ることができる。
(1-5) The length of the first extending portion 31C in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction.
According to this configuration, the laser light emitted from the first light emitting surface LS1 and diffused by the diffusing material 57 in a direction parallel to the substrate surface 21 can be reflected by the first extending portion 31C. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
 (1-6)ワイヤWは、第2配線32との接合部がファーストボンディングとなり、アノード電極47との接合部がセカンドボンディングとなるように形成されている。
 この構成によれば、基板表面21からのワイヤWの高さ(最大高さ)を低くすることができるため、換言すると、基板表面21とワイヤWとのZ軸方向の間の距離を小さくすることができるため、半導体レーザ装置10の低背化を図ることができる。
(1-6) The wire W is formed so that the bonded portion with the second wiring 32 is the first bonding, and the bonded portion with the anode electrode 47 is the second bonding.
According to this configuration, the height (maximum height) of the wire W from the substrate surface 21 can be reduced, in other words, the distance between the substrate surface 21 and the wire W in the Z-axis direction can be reduced, thereby making it possible to reduce the height of the semiconductor laser device 10.
 (1-7)封止樹脂50に対する拡散材57の配合比が0%よりも大きく60%以下の範囲で選択されている。
 この構成によれば、拡散材57の配合比が0%よりも大きく60%以下の範囲で選択されることによって、半導体レーザ装置10のレーザ光の出力の低下を抑制するとともに指向角を広げることができる。
(1-7) The blending ratio of the diffusion material 57 to the sealing resin 50 is selected to be greater than 0% and less than 60%.
According to this configuration, by selecting the blending ratio of the diffusing material 57 in a range greater than 0% and less than 60%, it is possible to suppress a decrease in the output of the laser light of the semiconductor laser device 10 and widen the directivity angle. Can be done.
 (1-8)封止樹脂50に対する拡散材57の配合比が20%以上60%以下の範囲で選択されている。
 この構成によれば、拡散材57の配合比が20%以上60%以下の範囲で選択されることによって、半導体レーザ装置10のレーザ光の出力の低下および放射強度の大きな低下を抑制するとともに指向角を広げることができる。
(1-8) The blending ratio of the diffusion material 57 to the sealing resin 50 is selected within the range of 20% to 60%.
According to this configuration, by selecting the blending ratio of the diffusing material 57 in the range of 20% or more and 60% or less, it is possible to suppress a decrease in the output of the laser light of the semiconductor laser device 10 and a large decrease in the radiation intensity, and to suppress the directivity. You can widen the corners.
 <第2実施形態>
 図13~図15を参照して、第2実施形態の半導体レーザ装置10について説明する。第2実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、第1反射部70の構成が主に異なる。以下では、第1反射部70の構成について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図13においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Second embodiment>
The semiconductor laser device 10 of the second embodiment will be described with reference to FIGS. 13 to 15. The semiconductor laser device 10 of the second embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configuration of the first reflection section 70. Below, the configuration of the first reflecting section 70 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 13, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 図13および図14に示すように、半導体レーザ装置10は、第1反射部70としてリフレクタ80を備える。リフレクタ80は、基板20の基板表面21上に設けられており、少なくとも一部が封止樹脂50によって覆われている。リフレクタ80は、たとえば金属材料によって形成されている。金属材料としては、たとえば、Al、Cu、またはこれらの合金を用いることができる。 As shown in FIGS. 13 and 14, the semiconductor laser device 10 includes a reflector 80 as the first reflecting section 70. The reflector 80 is provided on the substrate surface 21 of the substrate 20 and is at least partially covered with the sealing resin 50. The reflector 80 is made of, for example, a metal material. As the metal material, for example, Al, Cu, or an alloy thereof can be used.
 なお、リフレクタ80の構成は任意に変更可能である。一例では、リフレクタ80は、金属材料によって形成された構成物の表面に表面めっき(反射膜)が形成された構成であってもよい。また、リフレクタ80は、樹脂材料によって形成された構成物の表面に表面めっき(反射膜)が形成された構成であってもよい。 Note that the configuration of the reflector 80 can be changed arbitrarily. In one example, the reflector 80 may have a structure in which surface plating (reflection film) is formed on the surface of a structure formed of a metal material. Further, the reflector 80 may have a structure in which surface plating (reflection film) is formed on the surface of a structure formed of a resin material.
 リフレクタ80は、基板表面21のうち半導体レーザ素子40の第1素子側面43(第1発光面LS1)に対して第1基板側面23寄り(第1封止端面53寄り)に配置されている。より詳細には、リフレクタ80は、第1配線31の第1延出部31C上に配置されている。第2実施形態では、第1配線31は、第1端面31Aが平面視において第1基板側面23と同じ位置となるように形成されている。リフレクタ80は、たとえば接着剤(図示略)によって第1配線31に接合されている。 The reflector 80 is arranged on the substrate surface 21 closer to the first substrate side surface 23 (closer to the first sealing end surface 53) with respect to the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40. More specifically, the reflector 80 is arranged on the first extending portion 31C of the first wiring 31. In the second embodiment, the first wiring 31 is formed such that the first end surface 31A is at the same position as the first substrate side surface 23 in plan view. The reflector 80 is bonded to the first wiring 31 by, for example, an adhesive (not shown).
 なお、リフレクタ80の配置態様は任意に変更可能である。一例では、リフレクタ80は、基板表面21のうち第1配線31よりも第1基板側面23寄りに配置されていてもよい。つまり、基板20は、第1配線31と第1基板側面23とのY軸方向の間にリフレクタ80を配置するためのスペースを有する。この場合、リフレクタ80は、たとえば接着剤によって基板表面21に接合されている。 Note that the arrangement of the reflector 80 can be changed arbitrarily. In one example, the reflector 80 may be placed closer to the first substrate side surface 23 than the first wiring 31 on the substrate surface 21 . That is, the substrate 20 has a space for arranging the reflector 80 between the first wiring 31 and the first substrate side surface 23 in the Y-axis direction. In this case, reflector 80 is bonded to substrate surface 21, for example by adhesive.
 第2実施形態では、リフレクタ80は、X軸方向に延びている。リフレクタ80のX軸方向の長さは、たとえば半導体レーザ素子40のX軸方向の長さよりも長い。リフレクタ80のX軸方向の長さは、たとえば第1配線31のX軸方向の長さよりも長い。第2実施形態では、リフレクタ80のX軸方向の両端面は、側壁60の一対の第1側壁部61と接している。なお、リフレクタ80のX軸方向の長さは任意に変更可能である。 In the second embodiment, the reflector 80 extends in the X-axis direction. The length of the reflector 80 in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction, for example. The length of the reflector 80 in the X-axis direction is longer than the length of the first wiring 31 in the X-axis direction, for example. In the second embodiment, both end surfaces of the reflector 80 in the X-axis direction are in contact with the pair of first side wall portions 61 of the side wall 60. Note that the length of the reflector 80 in the X-axis direction can be changed arbitrarily.
 リフレクタ80は、基板表面21と対面する底面81と、底面81から上方に向けて延びる側面82と、底面81と側面82とを繋ぐ反射面83と、を有する。
 底面81は、接着剤と接する面であり、基板20の厚さ方向(Z軸方向)と直交する平坦面によって形成されている。側面82は、底面81のY軸方向の両端縁のうち第1基板側面23に近い方の端縁から上方に向けて延びている。第2実施形態では、側面82は、封止樹脂50の第1封止端面53と面一となっている。つまり、側面82は、封止樹脂50から露出している。反射面83は、底面81のY軸方向の両端縁のうち半導体レーザ素子40に近い方の端縁と、側面82の上端縁とを繋いでいる。反射面83は、基板表面21と交差する方向を向いている。より詳細には、反射面83は、第1基板側面23に向かうにつれて(半導体レーザ素子40から離れるにつれて)上方に向けて傾斜する傾斜面である。反射面83の傾斜角度は、封止樹脂50から出射させるレーザ光の範囲に応じて設定される。一例では、反射面83の傾斜角度は0°よりも大きく45°未満である。ここで、反射面83の傾斜角度は、底面81と反射面83とが成す鋭角である。
The reflector 80 has a bottom surface 81 facing the substrate surface 21, a side surface 82 extending upward from the bottom surface 81, and a reflective surface 83 connecting the bottom surface 81 and the side surface 82.
The bottom surface 81 is a surface in contact with the adhesive, and is formed by a flat surface perpendicular to the thickness direction (Z-axis direction) of the substrate 20. The side surface 82 extends upward from the edge of the bottom surface 81 in the Y-axis direction that is closer to the first substrate side surface 23 . In the second embodiment, the side surface 82 is flush with the first sealing end surface 53 of the sealing resin 50. That is, the side surface 82 is exposed from the sealing resin 50. The reflective surface 83 connects the edge of the bottom surface 81 in the Y-axis direction that is closer to the semiconductor laser element 40 and the upper edge of the side surface 82 . Reflective surface 83 faces in a direction intersecting substrate surface 21 . More specifically, the reflective surface 83 is an inclined surface that slopes upward toward the first substrate side surface 23 (as it moves away from the semiconductor laser element 40). The inclination angle of the reflective surface 83 is set according to the range of laser light emitted from the sealing resin 50. In one example, the inclination angle of the reflective surface 83 is greater than 0° and less than 45°. Here, the inclination angle of the reflective surface 83 is an acute angle formed by the bottom surface 81 and the reflective surface 83.
 第2実施形態では、側面82の高さ寸法(Z軸方向の大きさ)は、半導体レーザ素子40の厚さ寸法(Z軸方向の大きさ)以上である。このため、Y軸方向から視て、反射面83は、第1発光面LS1の全面と重なるように形成されている。 In the second embodiment, the height dimension (size in the Z-axis direction) of the side surface 82 is greater than or equal to the thickness dimension (size in the Z-axis direction) of the semiconductor laser element 40. Therefore, when viewed from the Y-axis direction, the reflective surface 83 is formed to overlap the entire surface of the first light emitting surface LS1.
 図15に示すように、第1発光面LS1から出射したレーザ光は、封止樹脂50内において拡散材57によって拡散(散乱)するとともに、リフレクタ80の反射面83において反射する。これにより、レーザ光は、封止樹脂50の第1封止端面53のうち封止表面51寄りの部分および封止表面51から出射する。また、レーザ光は、反射面83で反射して封止表面51のうち半導体レーザ素子40の第1発光面LS1よりも第2封止端面54寄りの部分から出射する。 As shown in FIG. 15, the laser light emitted from the first light emitting surface LS1 is diffused (scattered) by the diffusing material 57 within the sealing resin 50 and is reflected at the reflective surface 83 of the reflector 80. Thereby, the laser beam is emitted from the portion of the first sealing end surface 53 of the sealing resin 50 that is closer to the sealing surface 51 and from the sealing surface 51 . Further, the laser beam is reflected by the reflective surface 83 and is emitted from a portion of the sealing surface 51 that is closer to the second sealing end surface 54 than the first light emitting surface LS1 of the semiconductor laser element 40 .
 [効果]
 第2実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (2-1)半導体レーザ装置10は、第1反射部70として、基板表面21上に設けられ、基板表面21と交差する反射面83を含むリフレクタ80を備える。
[effect]
According to the semiconductor laser device 10 of the second embodiment, the following effects can be obtained.
(2-1) The semiconductor laser device 10 includes a reflector 80, which is provided on the substrate surface 21 and includes a reflection surface 83 that intersects the substrate surface 21, as the first reflection section 70.
 この構成によれば、第1反射部70によって第1発光面LS1から基板表面21に向かうレーザ光が反射されるため、第1発光面LS1から出射されたレーザ光は、基板表面21よりも上方に向けて第1封止端面53から出射される。したがって、基板表面21よりも上方の領域に向けて出射するレーザ光の光量の増加を図ることができる。 According to this configuration, since the laser light directed from the first light emitting surface LS1 toward the substrate surface 21 is reflected by the first reflecting section 70, the laser light emitted from the first light emitting surface LS1 is directed upward from the substrate surface 21. The light is emitted from the first sealed end surface 53 toward. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
 加えて、リフレクタ80の反射面83の傾斜角度を調整することによって、第1発光面LS1から出射されたレーザ光を基板表面21よりも上方の領域のうち所望の方向において封止樹脂50から出射することができる。 In addition, by adjusting the inclination angle of the reflective surface 83 of the reflector 80, the laser beam emitted from the first light emitting surface LS1 can be emitted from the sealing resin 50 in a desired direction in the region above the substrate surface 21. can do.
 (2-2)リフレクタ80の反射面83の傾斜角度は0°よりも大きく45°未満である。
 この構成によれば、第1発光面LS1から出射するレーザ光の一部を+Y方向かつ上方に向けて出射することができる。
(2-2) The inclination angle of the reflective surface 83 of the reflector 80 is greater than 0° and less than 45°.
According to this configuration, a portion of the laser light emitted from the first light emitting surface LS1 can be emitted upward in the +Y direction.
 (2-3)リフレクタ80のX軸方向の長さは、半導体レーザ素子40のX軸方向の長さよりも長い。
 この構成によれば、第1発光面LS1から出射されるとともに拡散材57によって拡散されたレーザ光をリフレクタ80によって反射しやすくなる。このため、基板表面21よりも上方の領域に向けて出射するレーザ光の光量の増加を図ることができる。
(2-3) The length of the reflector 80 in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction.
According to this configuration, the laser light emitted from the first light emitting surface LS1 and diffused by the diffusing material 57 is easily reflected by the reflector 80. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
 (2-4)リフレクタ80のX軸方向の両端部は、側壁60の一対の第1側壁部61と接している。
 この構成によれば、第1発光面LS1から出射されるとともに拡散材57によって拡散されたレーザ光をリフレクタ80によってさらに反射しやすくなる。このため、基板表面21よりも上方の領域に向けて出射するレーザ光の光量の増加を図ることができる。
(2-4) Both end portions of the reflector 80 in the X-axis direction are in contact with the pair of first side wall portions 61 of the side wall 60.
According to this configuration, the laser light emitted from the first light emitting surface LS1 and diffused by the diffusing material 57 is more easily reflected by the reflector 80. Therefore, it is possible to increase the amount of laser light emitted toward the region above the substrate surface 21.
 <第3実施形態>
 図16~図19を参照して、第3実施形態の半導体レーザ装置10について説明する。第3実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、基板20の構成が主に異なる。以下では、基板20の構成について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図16においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Third embodiment>
A semiconductor laser device 10 according to a third embodiment will be described with reference to FIGS. 16 to 19. The semiconductor laser device 10 of the third embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configuration of the substrate 20. Below, the structure of the substrate 20 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 16, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 図16に示すように、第1配線31の第1端面31Aは、平面視において第1基板側面23と同じ位置となるように形成されている。つまり、第3実施形態では、第1延出部31CのY軸方向の長さが第1実施形態の第1延出部31CのY軸方向の長さよりも長くなる。 As shown in FIG. 16, the first end surface 31A of the first wiring 31 is formed at the same position as the first substrate side surface 23 in plan view. That is, in the third embodiment, the length of the first extension part 31C in the Y-axis direction is longer than the length of the first extension part 31C in the Y-axis direction of the first embodiment.
 第2配線32のY軸方向の両端部のうち第2基板側面24に近い方の端部は、平面視において第2基板側面24と同じ位置となるように形成されている。このため、第2配線32の一部は、平面視において側壁60の第2側壁部62と重なる位置に形成されている。第3実施形態では、第2配線32のY軸方向の長さは、第1実施形態の第2配線32のY軸方向の長さよりも長い。 Of both ends of the second wiring 32 in the Y-axis direction, the end closer to the second substrate side surface 24 is formed to be at the same position as the second substrate side surface 24 in plan view. Therefore, a portion of the second wiring 32 is formed at a position overlapping the second side wall portion 62 of the side wall 60 in plan view. In the third embodiment, the length of the second wiring 32 in the Y-axis direction is longer than the length of the second wiring 32 in the Y-axis direction of the first embodiment.
 図17に示すように、第1電極33のY軸方向の両端部のうち第1基板側面23に近い方の端部は、平面視において第1基板側面23と同じ位置となるように形成されている。つまり、第3実施形態では、第1電極33のY軸方向の長さは、第1実施形態の第1電極33のY軸方向の長さよりも長い。 As shown in FIG. 17, of both ends of the first electrode 33 in the Y-axis direction, the end closer to the first substrate side surface 23 is formed at the same position as the first substrate side surface 23 in plan view. ing. That is, in the third embodiment, the length of the first electrode 33 in the Y-axis direction is longer than the length of the first electrode 33 in the Y-axis direction of the first embodiment.
 第2電極34のY軸方向の両端部のうち第2基板側面24に近い方の端部は、平面視において第2基板側面24と同じ位置となるように形成されている。つまり、第3実施形態では、第2電極34のY軸方向の長さは、第1実施形態の第2電極34のY軸方向の長さよりも長い。 Of both ends of the second electrode 34 in the Y-axis direction, the end closer to the second substrate side surface 24 is formed to be at the same position as the second substrate side surface 24 in plan view. That is, in the third embodiment, the length of the second electrode 34 in the Y-axis direction is longer than the length of the second electrode 34 in the Y-axis direction of the first embodiment.
 図18に示すように、基板20は、第1基板側面23に形成された第1側面電極37と、第2基板側面24に形成された第2側面電極38と、を有する。
 第1側面電極37は、第1電極33から連続して形成されている。より詳細には、第1側面電極37は、第1電極33のY軸方向の両端部のうち第1基板側面23に近い方の端部と繋がっている。図示していないが、第1側面電極37のX軸方向の長さは、たとえば第1電極33のX軸方向の長さと等しい。
As shown in FIG. 18, the substrate 20 has a first side electrode 37 formed on the first substrate side surface 23 and a second side electrode 38 formed on the second substrate side surface 24.
The first side electrode 37 is formed continuously from the first electrode 33. More specifically, the first side electrode 37 is connected to the end closer to the first substrate side 23 of both ends of the first electrode 33 in the Y-axis direction. Although not shown, the length of the first side electrode 37 in the X-axis direction is, for example, equal to the length of the first electrode 33 in the X-axis direction.
 第1側面電極37は、第1配線31と繋がっている。より詳細には、第1側面電極37は、第1配線31の第1端面31Aと繋がっている。このように、第3実施形態では、第1側面電極37は、第1電極33と第1配線31とを繋いでいる。第1配線31のX軸方向の長さは第1電極33のX軸方向の長さと等しいため、第1側面電極37のX軸方向の長さは、たとえば第1配線31のX軸方向の長さと等しい。 The first side electrode 37 is connected to the first wiring 31. More specifically, the first side electrode 37 is connected to the first end surface 31A of the first wiring 31. In this way, in the third embodiment, the first side electrode 37 connects the first electrode 33 and the first wiring 31. Since the length of the first wiring 31 in the X-axis direction is equal to the length of the first electrode 33 in the X-axis direction, the length of the first side electrode 37 in the X-axis direction is, for example, equal to the length of the first wiring 31 in the X-axis direction. equal to length.
 第2側面電極38は、第2電極34から連続して形成されている。より詳細には、第2側面電極38は、第2電極34のY軸方向の両端部のうち第2基板側面24に近い方の端部に繋がっている。第2側面電極38のX軸方向の長さは、たとえば第2電極34のX軸方向の長さと等しい。 The second side electrode 38 is formed continuously from the second electrode 34. More specifically, the second side electrode 38 is connected to the end closer to the second substrate side surface 24 of both ends of the second electrode 34 in the Y-axis direction. The length of the second side electrode 38 in the X-axis direction is, for example, equal to the length of the second electrode 34 in the X-axis direction.
 第2側面電極38は、第2配線32と繋がっている。より詳細には、第2側面電極38は、第2配線32のY軸方向の両端部のうち第2基板側面24に近い方の端部と繋がっている。このように、第3実施形態では、第2側面電極38は、第2電極34と第2配線32とを繋いでいる。第2配線32のX軸方向の長さは第2電極34のX軸方向の長さと等しいため、第2側面電極38のX軸方向の長さは、たとえば第2配線32のX軸方向の長さと等しい。 The second side electrode 38 is connected to the second wiring 32. More specifically, the second side electrode 38 is connected to the end closer to the second substrate side 24 of both ends of the second wiring 32 in the Y-axis direction. In this manner, in the third embodiment, the second side electrode 38 connects the second electrode 34 and the second wiring 32. Since the length of the second wiring 32 in the X-axis direction is equal to the length of the second electrode 34 in the X-axis direction, the length of the second side electrode 38 in the X-axis direction is, for example, equal to the length of the second wiring 32 in the X-axis direction. equal to length.
 図19に示すように、半導体レーザ装置10がはんだペーストSPによって回路基板PCBに実装される場合、はんだペーストSPは、第1電極33、第2電極34、第1側面電極37、および第2側面電極38に接するように形成されている。はんだペーストSPは、第1側面電極37および第2側面電極38によって第1基板側面23および第2基板側面24の双方にフィレットSPAを形成している。 As shown in FIG. 19, when the semiconductor laser device 10 is mounted on the circuit board PCB using the solder paste SP, the solder paste SP is applied to the first electrode 33, the second electrode 34, the first side electrode 37, and the second side surface. It is formed so as to be in contact with the electrode 38. The solder paste SP forms a fillet SPA on both the first substrate side surface 23 and the second substrate side surface 24 by the first side surface electrode 37 and the second side surface electrode 38 .
 なお、第1側面電極37のX軸方向の長さと、第2側面電極38のX軸方向の長さとの各々は任意に変更可能である。
 第1側面電極37のX軸方向の長さは、第1配線31のX軸方向の長さ未満であってもよいし、第1配線31のX軸方向の長さよりも長くてもよい。第1側面電極37のX軸方向の長さは、第1電極33のX軸方向の長さ未満であってもよいし、第1電極33のX軸方向の長さよりも長くてもよい。また、第1側面電極37のX軸方向の長さは、第1基板側面23のX軸方向の長さと等しくてもよい。
Note that the length of the first side electrode 37 in the X-axis direction and the length of the second side electrode 38 in the X-axis direction can be changed arbitrarily.
The length of the first side electrode 37 in the X-axis direction may be less than the length of the first wiring 31 in the X-axis direction, or may be longer than the length of the first wiring 31 in the X-axis direction. The length of the first side electrode 37 in the X-axis direction may be less than the length of the first electrode 33 in the X-axis direction, or may be longer than the length of the first electrode 33 in the X-axis direction. Further, the length of the first side surface electrode 37 in the X-axis direction may be equal to the length of the first substrate side surface 23 in the X-axis direction.
 第2側面電極38のX軸方向の長さは、第2配線32のX軸方向の長さ未満であってもよいし、第2配線32のX軸方向の長さよりも長くてもよい。第2側面電極38のX軸方向の長さは、第2電極34のX軸方向の長さ未満であってもよいし、第2電極34のX軸方向の長さよりも長くてもよい。また、第2側面電極38のX軸方向の長さは、第2基板側面24のX軸方向の長さと等しくてもよい。 The length of the second side electrode 38 in the X-axis direction may be less than the length of the second wiring 32 in the X-axis direction, or may be longer than the length of the second wiring 32 in the X-axis direction. The length of the second side electrode 38 in the X-axis direction may be less than the length of the second electrode 34 in the X-axis direction, or may be longer than the length of the second electrode 34 in the X-axis direction. Further, the length of the second side surface electrode 38 in the X-axis direction may be equal to the length of the second substrate side surface 24 in the X-axis direction.
 また、第1側面電極37のZ軸方向の長さと、第2側面電極38のZ軸方向の長さとの各々は任意に変更可能である。
 第1側面電極37のZ軸方向の長さは、第1基板側面23のZ軸方向の長さ、つまり基板20の厚さよりも短くてもよい。この場合、第1側面電極37は、第1配線31と接続されていない。
Further, each of the length of the first side electrode 37 in the Z-axis direction and the length of the second side electrode 38 in the Z-axis direction can be changed arbitrarily.
The length of the first side surface electrode 37 in the Z-axis direction may be shorter than the length of the first substrate side surface 23 in the Z-axis direction, that is, the thickness of the substrate 20 . In this case, the first side electrode 37 is not connected to the first wiring 31.
 第2側面電極38のZ軸方向の長さは、第2基板側面24のZ軸方向の長さ、つまり基板20の厚さよりも短くてもよい。この場合、第2側面電極38は、第2配線32と接続されていない。 The length of the second side surface electrode 38 in the Z-axis direction may be shorter than the length of the second substrate side surface 24 in the Z-axis direction, that is, the thickness of the substrate 20. In this case, the second side electrode 38 is not connected to the second wiring 32.
 第1配線31の第1端面31Aの位置は任意に変更可能である。一例では、第1端面31Aは、第1基板側面23よりも内側(第2基板側面24寄り)に位置していてもよい。この場合、第1配線31は、第1側面電極37と接続されていない。 The position of the first end surface 31A of the first wiring 31 can be changed arbitrarily. In one example, the first end surface 31A may be located inside the first substrate side surface 23 (closer to the second substrate side surface 24). In this case, the first wiring 31 is not connected to the first side electrode 37.
 第2配線32のY軸方向の両端面のうち第2基板側面24に近い方の端面である第1端面の位置は任意に変更可能である。一例では、第2配線32の第1端面は、第2基板側面24よりも内側(第1基板側面23寄りに)に位置していてもよい。この場合、第2配線32は、第2側面電極38と接続されていない。 The position of the first end surface, which is the end surface closer to the second substrate side surface 24 of both end surfaces of the second wiring 32 in the Y-axis direction, can be arbitrarily changed. In one example, the first end surface of the second wiring 32 may be located inside the second substrate side surface 24 (closer to the first substrate side surface 23). In this case, the second wiring 32 is not connected to the second side electrode 38.
 また、第1側面電極37の個数および第2側面電極38の個数の各々は、任意に変更可能である。第1側面電極37は、X軸方向において互いに離隔して複数設けられていてもよい。第2側面電極38は、X軸方向において互いに離隔して複数設けられていてもよい。要するに、第1側面電極37および第2側面電極38の各々は、はんだペーストSPのフィレットSPAが形成可能な構成であればよい。 Furthermore, each of the number of first side electrodes 37 and the number of second side electrodes 38 can be changed arbitrarily. A plurality of first side electrodes 37 may be provided spaced apart from each other in the X-axis direction. A plurality of second side electrodes 38 may be provided spaced apart from each other in the X-axis direction. In short, each of the first side electrode 37 and the second side electrode 38 may have any configuration as long as it can form a fillet SPA of the solder paste SP.
 また、第1ビア35および第2ビア36の少なくとも一方を省略してもよい。第1ビア35および第2ビア36の少なくとも一方を省略することによって、半導体レーザ装置10の構成を簡素化することによって半導体レーザ装置10のコスト低減を図ることができる。第1ビア35および第2ビア36の双方を省略することによって半導体レーザ装置10のコスト低減の効果を高めることができる。 Furthermore, at least one of the first via 35 and the second via 36 may be omitted. By omitting at least one of the first via 35 and the second via 36, the configuration of the semiconductor laser device 10 can be simplified and the cost of the semiconductor laser device 10 can be reduced. By omitting both the first via 35 and the second via 36, the cost reduction effect of the semiconductor laser device 10 can be enhanced.
 [効果]
 第3実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (3-1)基板20は、基板表面21と基板裏面22とを繋ぐ第1基板側面23および第2基板側面24を含む。第1基板側面23は第1発光面LS1と同じ側を向き、第2基板側面24は第1基板側面23とは反対側を向いている。第1基板側面23には、第1電極33から連続して形成された第1側面電極37が形成されている。第2基板側面24には、第2電極34から連続して形成された第2側面電極38が形成されている。
[effect]
According to the semiconductor laser device 10 of the third embodiment, the following effects can be obtained.
(3-1) The substrate 20 includes a first substrate side surface 23 and a second substrate side surface 24 that connect the substrate front surface 21 and the substrate back surface 22. The first substrate side surface 23 faces the same side as the first light emitting surface LS1, and the second substrate side surface 24 faces the opposite side to the first substrate side surface 23. A first side electrode 37 is formed on the first substrate side surface 23 and is formed continuously from the first electrode 33 . A second side surface electrode 38 is formed on the second substrate side surface 24 and is formed continuously from the second electrode 34 .
 この構成によれば、半導体レーザ素子40から基板20に移動した熱は、第1側面電極37および第2側面電極38に伝わる。第1側面電極37および第2側面電極38の双方は、半導体レーザ装置10の外部に露出しているため、第1側面電極37および第2側面電極38に伝わった熱は、半導体レーザ装置10の外部に放熱される。このように、半導体レーザ素子40の熱は、基板20の外部に放熱しやすくなる。したがって、半導体レーザ装置10の放熱性能の向上を図ることができる。 According to this configuration, the heat transferred from the semiconductor laser element 40 to the substrate 20 is transmitted to the first side electrode 37 and the second side electrode 38. Since both the first side electrode 37 and the second side electrode 38 are exposed to the outside of the semiconductor laser device 10 , the heat transferred to the first side electrode 37 and the second side electrode 38 is transferred to the semiconductor laser device 10 . Heat is radiated to the outside. In this way, the heat of the semiconductor laser element 40 is easily radiated to the outside of the substrate 20. Therefore, the heat dissipation performance of the semiconductor laser device 10 can be improved.
 またたとえば、半導体レーザ装置10がはんだペーストSPによって回路基板PCBに実装された場合、第1側面電極37および第2側面電極38によってフィレットSPAが形成される。このため、作業者は、フィレットSPAに基づいて半導体レーザ装置10の回路基板PCBへの実装状態を目視にて確認することができる。加えて、フィレットSPAが形成されることによって、半導体レーザ装置10と回路基板PCBとの接合面積が増加する。これにより、半導体レーザ装置10から回路基板PCBに放熱しやすくなるとともに半導体レーザ装置10と回路基板PCBとの接合強度の向上を図ることができる。 For example, when the semiconductor laser device 10 is mounted on the circuit board PCB using solder paste SP, a fillet SPA is formed by the first side electrode 37 and the second side electrode 38. Therefore, the operator can visually confirm the mounting state of the semiconductor laser device 10 on the circuit board PCB based on the fillet SPA. In addition, by forming the fillet SPA, the bonding area between the semiconductor laser device 10 and the circuit board PCB increases. Thereby, heat can be easily radiated from the semiconductor laser device 10 to the circuit board PCB, and the bonding strength between the semiconductor laser device 10 and the circuit board PCB can be improved.
 (3-2)第1側面電極37は、第1電極33と第1配線31とを繋いでいる。第2側面電極38は、第2配線32と第2電極34とを繋いでいる。
 この構成によれば、第1配線31の熱が第1側面電極37を介して第1電極33に移動する。また第2配線32の熱が第2側面電極38を介して第2電極34に移動する。これにより、半導体レーザ装置10の放熱性能の向上を図ることができる。
(3-2) The first side electrode 37 connects the first electrode 33 and the first wiring 31. The second side electrode 38 connects the second wiring 32 and the second electrode 34.
According to this configuration, the heat of the first wiring 31 moves to the first electrode 33 via the first side electrode 37. Further, the heat of the second wiring 32 moves to the second electrode 34 via the second side electrode 38. Thereby, the heat dissipation performance of the semiconductor laser device 10 can be improved.
 また、半導体レーザ装置10がはんだペーストSPによって回路基板PCBに実装された場合、第1側面電極37および第2側面電極38によって形成されたフィレットSPAの高さを高くすることができるため、作業者が半導体レーザ装置10の回路基板PCBへの実装状態を目視にて確認しやすくなる。 Furthermore, when the semiconductor laser device 10 is mounted on the circuit board PCB using the solder paste SP, the height of the fillet SPA formed by the first side electrode 37 and the second side electrode 38 can be increased, so that the operator can This makes it easier to visually confirm the mounting state of the semiconductor laser device 10 on the circuit board PCB.
 <第4実施形態>
 図20~図23を参照して、第4実施形態の半導体レーザ装置10について説明する。第4実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、基板20の構成が主に異なる。以下では、基板20の構成について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図20においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Fourth embodiment>
The semiconductor laser device 10 of the fourth embodiment will be described with reference to FIGS. 20 to 23. The semiconductor laser device 10 of the fourth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configuration of the substrate 20. Below, the structure of the substrate 20 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 20, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 図20に示すように、基板20は、第1基板側面23に形成された第1端面スルーホール39Aと、第2基板側面24に形成された第2端面スルーホール39Bと、を有する。第4実施形態では、第1端面スルーホール39Aは、平面視において、第1基板側面23のX軸方向の中央に形成されている。第1端面スルーホール39Aは、第1基板側面23から第2基板側面24に向けて凹んでいる。第2端面スルーホール39Bは、平面視において、第2基板側面24のX軸方向の中央に形成されている。第2端面スルーホール39Bは、第2基板側面24から第1基板側面23に向けて凹んでいる。平面視から視た第1端面スルーホール39Aおよび第2端面スルーホール39Bの各々の形状は、略半円状である。第1端面スルーホール39Aおよび第2端面スルーホール39Bの双方は、基板20をその厚さ方向(Z軸方向)に貫通するように設けられている。図23に示すように、第1端面スルーホール39Aは、第1配線31と第1電極33とを繋いでいる。第1端面スルーホール39Aは、たとえば銅を含む材料によって形成されている。これにより、第1端面スルーホール39Aによって第1配線31と第1電極33とは電気的に接続されている。第2端面スルーホール39Bは、第2配線32と第2電極34とを繋いでいる。第2端面スルーホール39Bは、たとえば銅を含む材料によって形成されている。これにより、第2端面スルーホール39Bによって第2配線32と第2電極34とは電気的に接続されている。 As shown in FIG. 20, the substrate 20 has a first end surface through hole 39A formed on the first substrate side surface 23 and a second end surface through hole 39B formed on the second substrate side surface 24. In the fourth embodiment, the first end surface through hole 39A is formed at the center of the first substrate side surface 23 in the X-axis direction in plan view. The first end surface through hole 39A is recessed from the first substrate side surface 23 toward the second substrate side surface 24. The second end surface through hole 39B is formed at the center of the second substrate side surface 24 in the X-axis direction in plan view. The second end surface through hole 39B is recessed from the second substrate side surface 24 toward the first substrate side surface 23. The shape of each of the first end surface through hole 39A and the second end surface through hole 39B when viewed from above is approximately semicircular. Both the first end surface through hole 39A and the second end surface through hole 39B are provided so as to penetrate the substrate 20 in its thickness direction (Z-axis direction). As shown in FIG. 23, the first end surface through hole 39A connects the first wiring 31 and the first electrode 33. The first end surface through hole 39A is made of a material containing copper, for example. Thereby, the first wiring 31 and the first electrode 33 are electrically connected through the first end surface through hole 39A. The second end surface through hole 39B connects the second wiring 32 and the second electrode 34. The second end surface through hole 39B is formed of a material containing copper, for example. Thereby, the second wiring 32 and the second electrode 34 are electrically connected by the second end surface through hole 39B.
 図21に示すように、第1端面スルーホール39Aの一部は、第1配線31の第1端面31Aに重なるように設けられている。つまり、第1端面31AのうちX軸方向の中央部は、第1端面31Aから第2基板側面24に向けて凹む凹部が形成されている。 As shown in FIG. 21, a portion of the first end surface through hole 39A is provided so as to overlap the first end surface 31A of the first wiring 31. That is, a recessed portion recessed from the first end surface 31A toward the second substrate side surface 24 is formed in the center portion of the first end surface 31A in the X-axis direction.
 また、第2端面スルーホール39Bは、第2配線32に重なるように設けられている。つまり、第2配線32のX軸方向の中央部は、第2基板側面24から第1基板側面23に向けて凹む凹部が形成されている。 Further, the second end surface through hole 39B is provided so as to overlap the second wiring 32. That is, in the central portion of the second wiring 32 in the X-axis direction, a recessed portion is formed that is recessed from the second substrate side surface 24 toward the first substrate side surface 23.
 図22に示すように、第1端面スルーホール39Aの一部は、第1電極33に重なるように設けられている。つまり、第1電極33のY軸方向の両端部のうち第1基板側面23に近い方の端部には、そのX軸方向の中央部が当該端部から第2基板側面24に向けて凹む凹部が形成されている。 As shown in FIG. 22, a portion of the first end surface through hole 39A is provided so as to overlap the first electrode 33. That is, at the end of the first electrode 33 in the Y-axis direction that is closer to the first substrate side surface 23, the center portion in the X-axis direction is recessed from the end toward the second substrate side surface 24. A recess is formed.
 また、第2端面スルーホール39Bは、第2電極34に重なるように設けられている。つまり、第2電極34のX軸方向の中央部は、第2基板側面24から第1基板側面23に向けて凹む凹部が形成されている。 Further, the second end surface through hole 39B is provided so as to overlap the second electrode 34. That is, in the central portion of the second electrode 34 in the X-axis direction, a recessed portion is formed that is recessed from the second substrate side surface 24 toward the first substrate side surface 23.
 図20に示すように、半導体レーザ装置10は、第1端面スルーホール39Aを覆うレジスト90を備える。第4実施形態では、レジスト90は、第1端面スルーホール39Aの全体を覆うように形成されている。平面視におけるレジスト90の形状は、X軸方向が長手方向となり、Y軸方向が短手方向となる矩形状である。平面視において、レジスト90は、半導体レーザ素子40からY軸方向に離隔して配置されている。レジスト90は、基板表面21上に設けられている。レジスト90の一部は、第1配線31上に設けられている。レジスト90は、たとえば絶縁材料によって形成されている。 As shown in FIG. 20, the semiconductor laser device 10 includes a resist 90 that covers the first end surface through hole 39A. In the fourth embodiment, the resist 90 is formed to cover the entire first end surface through hole 39A. The shape of the resist 90 in a plan view is a rectangle whose longitudinal direction is in the X-axis direction and whose transverse direction is in the Y-axis direction. In plan view, the resist 90 is spaced apart from the semiconductor laser element 40 in the Y-axis direction. A resist 90 is provided on the substrate surface 21. A portion of the resist 90 is provided on the first wiring 31. The resist 90 is made of, for example, an insulating material.
 レジスト90のX軸方向の長さは、半導体レーザ素子40のX軸方向の長さよりも長い。なお、レジスト90のX軸方向の長さは、任意に変更可能である。一例では、レジスト90のX軸方向の長さは、半導体レーザ素子40のX軸方向の長さ以下であってもよい。また、レジスト90のX軸方向の長さは、第1配線31のX軸方向の長さ以上であってもよい。 The length of the resist 90 in the X-axis direction is longer than the length of the semiconductor laser element 40 in the X-axis direction. Note that the length of the resist 90 in the X-axis direction can be changed arbitrarily. In one example, the length of the resist 90 in the X-axis direction may be equal to or less than the length of the semiconductor laser element 40 in the X-axis direction. Further, the length of the resist 90 in the X-axis direction may be equal to or longer than the length of the first wiring 31 in the X-axis direction.
 また、レジスト90は、基板20よりも反射率の高い材料によって形成されていてもよい。一例では、レジスト90は、白色の材料によって形成されている。この場合、レジスト90は、第1反射部70を構成しているといえる。つまり、半導体レーザ素子40の第1発光面LS1から出射し、基板表面21に向かうレーザ光の少なくとも一部は、レジスト90によって第1封止端面53に向けて反射する。 Furthermore, the resist 90 may be formed of a material with higher reflectance than the substrate 20. In one example, resist 90 is formed of a white material. In this case, it can be said that the resist 90 constitutes the first reflecting section 70. That is, at least a portion of the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 and directed toward the substrate surface 21 is reflected by the resist 90 toward the first sealing end surface 53.
 また、第2端面スルーホール39Bは、側壁60の第2側壁部62によって覆われている。第4実施形態では、第2側壁部62は、第2端面スルーホール39Bの全体を覆っている。 Further, the second end surface through hole 39B is covered by the second side wall portion 62 of the side wall 60. In the fourth embodiment, the second side wall portion 62 covers the entire second end surface through hole 39B.
 図21および図22に示すとおり、第4実施形態では、第1ビア35および第2ビア36(ともに図3参照)が省略されている。なお、第4実施形態の半導体レーザ装置10は、第1ビア35および第2ビア36の少なくとも一方を備えていてもよい。これにより、半導体レーザ装置10の放熱性能の向上を図ることができる。 As shown in FIGS. 21 and 22, in the fourth embodiment, the first via 35 and the second via 36 (both shown in FIG. 3) are omitted. Note that the semiconductor laser device 10 of the fourth embodiment may include at least one of the first via 35 and the second via 36. Thereby, the heat dissipation performance of the semiconductor laser device 10 can be improved.
 また、半導体レーザ装置10は、第2端面スルーホール39Bに代えて、第2ビア36を備えていてもよい。また、半導体レーザ装置10は、第2端面スルーホール39Bに代えて、第2側面電極38(図18参照)を備えていてもよい。 Furthermore, the semiconductor laser device 10 may include a second via 36 instead of the second end surface through hole 39B. Furthermore, the semiconductor laser device 10 may include a second side electrode 38 (see FIG. 18) instead of the second end surface through hole 39B.
 [効果]
 第4実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (4-1)基板20は、基板表面21とは反対側の基板裏面22と、基板表面21と基板裏面22とを繋ぎ、第1発光面LS1と同じ側を向く第1基板側面23と、第1基板側面23とは反対側の第2基板側面24と、を含む。半導体レーザ装置10は、第1基板側面23から第2基板側面24に向けて凹むとともに基板20をその厚さ方向に貫通するように設けられた第1端面スルーホール39Aをさらに備える。
[effect]
According to the semiconductor laser device 10 of the fourth embodiment, the following effects can be obtained.
(4-1) The substrate 20 has a substrate back surface 22 opposite to the substrate front surface 21, and a first substrate side surface 23 that connects the substrate surface 21 and the substrate back surface 22 and faces the same side as the first light emitting surface LS1; a second substrate side surface 24 opposite to the first substrate side surface 23 . The semiconductor laser device 10 further includes a first end surface through hole 39A that is recessed from the first substrate side surface 23 toward the second substrate side surface 24 and is provided so as to penetrate the substrate 20 in the thickness direction.
 この構成によれば、第1配線31の熱は、第1端面スルーホール39Aを介して第1電極33に移動する。加えて、第1配線31の熱は、第1端面スルーホール39Aから半導体レーザ装置10の外部に放熱される。したがって、半導体レーザ装置10の放熱性能の向上を図ることができる。 According to this configuration, the heat of the first wiring 31 moves to the first electrode 33 via the first end surface through hole 39A. In addition, the heat of the first wiring 31 is radiated to the outside of the semiconductor laser device 10 through the first end surface through hole 39A. Therefore, the heat dissipation performance of the semiconductor laser device 10 can be improved.
 加えて、半導体レーザ装置10がはんだペーストSPによって回路基板PCB(ともに図19参照)に実装された場合、第1端面スルーホール39AによってフィレットSPAが形成される。このため、半導体レーザ装置10の回路基板PCBへの実装状態を作業者が目視にて確認することができる。加えて、フィレットSPAが形成されることによって、半導体レーザ装置10と回路基板PCBとの接合面積が増加する。これにより、半導体レーザ装置10から回路基板PCBに放熱しやすくなるとともに半導体レーザ装置10と回路基板PCBとの接合強度の向上を図ることができる。 In addition, when the semiconductor laser device 10 is mounted on the circuit board PCB (see FIG. 19) using the solder paste SP, a fillet SPA is formed by the first end surface through hole 39A. Therefore, the operator can visually confirm the mounting state of the semiconductor laser device 10 on the circuit board PCB. In addition, by forming the fillet SPA, the bonding area between the semiconductor laser device 10 and the circuit board PCB increases. Thereby, heat can be easily radiated from the semiconductor laser device 10 to the circuit board PCB, and the bonding strength between the semiconductor laser device 10 and the circuit board PCB can be improved.
 (4-2)半導体レーザ装置10は、基板表面21側から第1端面スルーホール39Aを覆うレジスト90をさらに備える。
 この構成によれば、第1端面スルーホール39Aによって形成されたフィレットSPAが基板表面21から盛り上がることを抑制できる。
(4-2) The semiconductor laser device 10 further includes a resist 90 that covers the first end surface through hole 39A from the substrate surface 21 side.
According to this configuration, it is possible to suppress the fillet SPA formed by the first end surface through hole 39A from protruding from the substrate surface 21.
 (4-3)レジスト90は、基板20よりも反射率の高い材料によって構成されていてもよい。
 この構成によれば、レジスト90が第1反射部70を構成することができる。
(4-3) The resist 90 may be made of a material with higher reflectance than the substrate 20.
According to this configuration, the resist 90 can constitute the first reflecting section 70.
 (4-4)半導体レーザ装置10は、第2基板側面24から第1基板側面23に向けて凹むとともに基板20をその厚さ方向に貫通するように設けられた第2端面スルーホール39Bをさらに備える。この構成によれば、上記(4-1)と同様の効果が得られる。 (4-4) The semiconductor laser device 10 further includes a second end surface through hole 39B that is recessed from the second substrate side surface 24 toward the first substrate side surface 23 and is provided so as to penetrate the substrate 20 in the thickness direction. Be prepared. According to this configuration, the same effect as (4-1) above can be obtained.
 <第5実施形態>
 図24~図26を参照して、第5実施形態の半導体レーザ装置10について説明する。第5実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、フォトダイオード110が追加された点および配線が主に異なる。以下では、基板20の構成について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図24においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Fifth embodiment>
The semiconductor laser device 10 of the fifth embodiment will be described with reference to FIGS. 24 to 26. The semiconductor laser device 10 of the fifth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in that a photodiode 110 is added and in wiring. Below, the structure of the substrate 20 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 24, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 図24に示すように、半導体レーザ装置10は、基板20の基板表面21に形成された第3配線100と、半導体レーザ素子40の第2発光面LS2から出射されるレーザ光を受光するフォトダイオード110と、をさらに備える。 As shown in FIG. 24, the semiconductor laser device 10 includes a third wiring 100 formed on the substrate surface 21 of the substrate 20 and a photodiode that receives laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40. 110.
 第3配線100は、第1配線31に対して第2基板側面24寄りに配置されている。第3配線100は、第2配線32に対してY軸方向に揃った位置に配置されている。第3配線100は、第2配線32に対して第3基板側面25寄りに配置されている。このように、第5実施形態では、第3配線100の配置スペースを形成するため、第2配線32のX軸方向の長さが第1実施形態よりも短くなっている。 The third wiring 100 is arranged closer to the second substrate side surface 24 with respect to the first wiring 31. The third wiring 100 is arranged at a position aligned with the second wiring 32 in the Y-axis direction. The third wiring 100 is arranged closer to the third substrate side surface 25 with respect to the second wiring 32. In this manner, in the fifth embodiment, the length of the second wiring 32 in the X-axis direction is shorter than that in the first embodiment in order to form a space for arranging the third wiring 100.
 図25および図26に示すように、半導体レーザ装置10は、基板20の基板裏面22に形成された第3電極101と、第3配線100と第3電極101とを電気的に接続するビア102と、をさらに備える。 As shown in FIGS. 25 and 26, the semiconductor laser device 10 includes a third electrode 101 formed on the back surface 22 of the substrate 20, and a via 102 that electrically connects the third wiring 100 and the third electrode 101. And, it further includes.
 図25に示すように、第3電極101は、第1電極33に対して第2基板側面24寄りに配置されている。第3電極101は、第2電極34に対してY軸方向に揃った位置に配置されている。第3電極101は、第2電極34に対して第3基板側面25寄りに配置されている。第3電極101は、平面視において第3配線100と重なる位置に配置されている。このように、第5実施形態では、第3電極101の配置スペースを形成するため、第2電極34のX軸方向の長さが第1実施形態よりも短くなっている。 As shown in FIG. 25, the third electrode 101 is arranged closer to the second substrate side surface 24 with respect to the first electrode 33. The third electrode 101 is arranged at a position aligned with the second electrode 34 in the Y-axis direction. The third electrode 101 is arranged closer to the third substrate side surface 25 with respect to the second electrode 34 . The third electrode 101 is arranged at a position overlapping the third wiring 100 in a plan view. In this manner, in the fifth embodiment, the length of the second electrode 34 in the X-axis direction is shorter than that in the first embodiment in order to form a space for arranging the third electrode 101.
 図26に示すように、ビア102は、平面視において第3配線100および第3電極101の双方と重なる位置に設けられている。ビア102は、基板20をその厚さ方向(Z軸方向)に貫通するように設けられている。ビア102は、第3配線100および第3電極101の双方と接続されている。このため、第3配線100および第3電極101は、ビア102によって電気的に接続されている。 As shown in FIG. 26, the via 102 is provided at a position overlapping both the third wiring 100 and the third electrode 101 in a plan view. The via 102 is provided so as to penetrate the substrate 20 in its thickness direction (Z-axis direction). The via 102 is connected to both the third wiring 100 and the third electrode 101. Therefore, the third wiring 100 and the third electrode 101 are electrically connected through the via 102.
 図示された例においては、第2配線32および第2電極34の双方のX軸方向の長さが短くなったことにともない、第5実施形態の第2ビア36の個数は第1実施形態よりも少ない。図示された例においては、第2ビア36は、2つ設けられている。 In the illustrated example, since the lengths of both the second wiring 32 and the second electrode 34 in the X-axis direction are shorter, the number of second vias 36 in the fifth embodiment is smaller than that in the first embodiment. There are also few. In the illustrated example, two second vias 36 are provided.
 なお、第1ビア35、第2ビア36、およびビア102の各々の個数および配置態様は任意に変更可能である。一例では、第2ビア36は、1つでもよいし、3つ以上であってもよい。2つの第2ビア36は、X軸方向において互いに揃った状態でY軸方向において互いに離隔して配列されてもよい。また、2つの第2ビア36は、平面視においてX軸方向およびY軸方向の双方に交差する方向において互いに離隔して配列されていてもよい。 Note that the number and arrangement of each of the first vias 35, the second vias 36, and the vias 102 can be changed arbitrarily. In one example, the number of second vias 36 may be one, or three or more. The two second vias 36 may be aligned with each other in the X-axis direction and spaced apart from each other in the Y-axis direction. Further, the two second vias 36 may be arranged so as to be spaced apart from each other in a direction intersecting both the X-axis direction and the Y-axis direction in a plan view.
 図26に示すように、フォトダイオード110は、第3配線100に搭載されている。より詳細には、フォトダイオード110は、導電性接合材SDによって第3配線100に接合されている。つまり、フォトダイオード110は、第3配線100に実装されている。第3配線100およびフォトダイオード110の双方は、封止樹脂50によって封止されている。 As shown in FIG. 26, the photodiode 110 is mounted on the third wiring 100. More specifically, the photodiode 110 is bonded to the third wiring 100 using a conductive bonding material SD. That is, the photodiode 110 is mounted on the third wiring 100. Both the third wiring 100 and the photodiode 110 are sealed with a sealing resin 50.
 図24に示すように、フォトダイオード110は、平面視において、半導体レーザ素子40に対して第2基板側面24寄りに配置されている。フォトダイオード110は、基板表面21のうち半導体レーザ素子40と第2封止端面54との間に設けられている。フォトダイオード110は、Y軸方向から視て、半導体レーザ素子40と重なる位置に配置されている。図示された例においては、フォトダイオード110は、Y軸方向から視て、半導体レーザ素子40と部分的に重なる位置に配置されている。 As shown in FIG. 24, the photodiode 110 is arranged closer to the second substrate side surface 24 with respect to the semiconductor laser element 40 in plan view. Photodiode 110 is provided on substrate surface 21 between semiconductor laser element 40 and second sealed end surface 54 . The photodiode 110 is arranged at a position overlapping the semiconductor laser element 40 when viewed from the Y-axis direction. In the illustrated example, the photodiode 110 is arranged at a position partially overlapping with the semiconductor laser element 40 when viewed from the Y-axis direction.
 なお、フォトダイオード110のX軸方向の位置は任意に変更可能である。一例では、フォトダイオード110は、Y軸方向から視て、半導体レーザ素子40とフォトダイオード110の全体が重なるように配置されていてもよい。また一例では、フォトダイオード110は、Y軸方向から視て、半導体レーザ素子40よりも第3基板側面25寄りに配置されていてもよい。 Note that the position of the photodiode 110 in the X-axis direction can be changed arbitrarily. In one example, the photodiode 110 may be arranged so that the semiconductor laser element 40 and the photodiode 110 entirely overlap when viewed from the Y-axis direction. In one example, the photodiode 110 may be arranged closer to the third substrate side surface 25 than the semiconductor laser element 40 when viewed from the Y-axis direction.
 図26に示すように、フォトダイオード110は、その表面に形成されたアノード電極111と、その裏面に形成されたカソード電極112とを有する。フォトダイオード110の表面は基板表面21と同じ側を向き、フォトダイオード110の裏面は基板表面21と対面している。 As shown in FIG. 26, the photodiode 110 has an anode electrode 111 formed on its front surface and a cathode electrode 112 formed on its back surface. The front surface of photodiode 110 faces the same side as substrate surface 21, and the back surface of photodiode 110 faces substrate surface 21.
 カソード電極112は、導電性接合材SDに接している。このため、カソード電極112は、導電性接合材SDによって第3配線100と電気的に接続されている。第3配線100は第3電極101と電気的に接続されているため、カソード電極112は、第3電極101と電気的に接続されているといえる。 The cathode electrode 112 is in contact with the conductive bonding material SD. Therefore, the cathode electrode 112 is electrically connected to the third wiring 100 by the conductive bonding material SD. Since the third wiring 100 is electrically connected to the third electrode 101, it can be said that the cathode electrode 112 is electrically connected to the third electrode 101.
 図24に示すように、半導体レーザ装置10は、フォトダイオード110と第2配線32とを接続するワイヤWDを備える。ワイヤWDは、封止樹脂50によって封止されている。ワイヤWDは、たとえばワイヤWと同じ材料によって形成されている。ワイヤWDは、フォトダイオード110の表面に形成されたアノード電極111と接続されている。これにより、アノード電極111は、ワイヤWDによって第2配線32と電気的に接続されている。第2配線32は第2電極34(図25参照)と電気的に接続されているため、アノード電極111は、第2電極34と電気的に接続されているといえる。 As shown in FIG. 24, the semiconductor laser device 10 includes a wire WD that connects the photodiode 110 and the second wiring 32. The wire WD is sealed with a sealing resin 50. The wire WD is made of the same material as the wire W, for example. The wire WD is connected to an anode electrode 111 formed on the surface of the photodiode 110. Thereby, the anode electrode 111 is electrically connected to the second wiring 32 by the wire WD. Since the second wiring 32 is electrically connected to the second electrode 34 (see FIG. 25), it can be said that the anode electrode 111 is electrically connected to the second electrode 34.
 フォトダイオード110は、半導体レーザ素子40の第2発光面LS2から出射されるレーザ光を受光すると、アノード電極111からカソード電極112に電流が流れる。フォトダイオード110に流れる電流は、たとえば受光した光の強さに応じて変化する。 When the photodiode 110 receives the laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40, a current flows from the anode electrode 111 to the cathode electrode 112. The current flowing through the photodiode 110 changes depending on, for example, the intensity of the received light.
 たとえば、半導体レーザ装置10の外部に半導体レーザ装置10を制御する制御装置が設けられている場合、制御装置は、フォトダイオード110の電流を第2電極34および第3電極101を通じて取得する。制御装置は、フォトダイオード110の電流に応じて半導体レーザ素子40の出力が一定となるように制御することができる。 For example, if a control device that controls the semiconductor laser device 10 is provided outside the semiconductor laser device 10, the control device obtains the current of the photodiode 110 through the second electrode 34 and the third electrode 101. The control device can control the output of the semiconductor laser element 40 to be constant according to the current of the photodiode 110.
 [効果]
 第5実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (5-1)半導体レーザ装置10は、基板表面21のうち半導体レーザ素子40と第2封止端面54との間に設けられ、第2発光面LS2から出射されるレーザ光を受光するフォトダイオード110をさらに備える。
[effect]
According to the semiconductor laser device 10 of the fifth embodiment, the following effects can be obtained.
(5-1) The semiconductor laser device 10 includes a photodiode that is provided between the semiconductor laser element 40 and the second sealing end surface 54 on the substrate surface 21 and receives laser light emitted from the second light emitting surface LS2. 110.
 この構成によれば、フォトダイオード110が第2発光面LS2から出射されるレーザ光を受光することによって、たとえば半導体レーザ装置10の外部の制御装置に第2発光面LS2から出射されるレーザ光の放射強度に関する情報を提供できる。これにより、制御装置が半導体レーザ素子40の出力が一定になるように制御することができる。 According to this configuration, when the photodiode 110 receives the laser light emitted from the second light emitting surface LS2, the control device outside the semiconductor laser device 10 receives the laser light emitted from the second light emitting surface LS2, for example. It can provide information about radiant intensity. Thereby, the control device can control the output of the semiconductor laser element 40 to be constant.
 (5-2)第2配線32は、半導体レーザ素子40のアノード電極47に接続されたワイヤWと、フォトダイオード110のアノード電極111に接続されたワイヤWDとに共通した配線である。 (5-2) The second wiring 32 is a wiring common to the wire W connected to the anode electrode 47 of the semiconductor laser element 40 and the wire WD connected to the anode electrode 111 of the photodiode 110.
 この構成によれば、ワイヤWが接続される専用の第2配線と、ワイヤWDが接続される専用の第2配線との2つの第2配線を形成する場合と比較して、平面視における半導体レーザ装置10の小型化を図ることができる。 According to this configuration, compared to the case where two second wirings are formed, that is, a second wiring dedicated to the wire W and a second wiring dedicated to the wire WD, the semiconductor The laser device 10 can be made smaller.
 <第6実施形態>
 図27~図29を参照して、第6実施形態の半導体レーザ装置10について説明する。第6実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、半導体レーザ素子および配線の構成が主に異なる。以下では、半導体レーザ素子および配線の構成について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図27においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Sixth embodiment>
The semiconductor laser device 10 of the sixth embodiment will be described with reference to FIGS. 27 to 29. The semiconductor laser device 10 of the sixth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configuration of the semiconductor laser element and wiring. Below, the structure of the semiconductor laser element and the wiring will be explained in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 27, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 図27に示すように、半導体レーザ装置10は、マルチアレイ型の半導体レーザ素子120を備える。半導体レーザ素子120は、ファブリ・ペロー型レーザダイオード素子が採用されている。半導体レーザ素子120は、Z軸方向を厚さ方向とする平板状に形成されている。 As shown in FIG. 27, the semiconductor laser device 10 includes a multi-array type semiconductor laser element 120. The semiconductor laser element 120 employs a Fabry-Perot type laser diode element. The semiconductor laser element 120 is formed into a flat plate shape whose thickness direction is in the Z-axis direction.
 第6実施形態では、平面視において、半導体レーザ素子120は、X軸方向が短手方向となり、Y軸方向が長手方向となる矩形状に形成されている。半導体レーザ素子120は、複数の発光部を含む。複数の発光部は、第1発光部PD1、第2発光部PD2、第3発光部PD3、および第4発光部PD4を含む。第1~第4発光部PD1~PD4は、第1発光面LS1においてX軸方向に並んでいる。 In the sixth embodiment, in plan view, the semiconductor laser element 120 is formed in a rectangular shape with the X-axis direction being the short direction and the Y-axis direction being the long direction. Semiconductor laser element 120 includes a plurality of light emitting sections. The plurality of light emitting sections include a first light emitting section PD1, a second light emitting section PD2, a third light emitting section PD3, and a fourth light emitting section PD4. The first to fourth light emitting parts PD1 to PD4 are arranged in the X-axis direction on the first light emitting surface LS1.
 半導体レーザ素子120は、素子表面121と、素子表面121とは反対側を向く素子裏面122と、素子表面121と素子裏面122とを繋ぐ第1~第4素子側面123~126と、を有する。 The semiconductor laser device 120 has a device front surface 121, a device back surface 122 facing opposite to the device front surface 121, and first to fourth device side surfaces 123 to 126 that connect the device front surface 121 and the device back surface 122.
 素子表面121は基板20の基板表面21と同じ側を向き、素子裏面122は基板表面21と対面している。第1素子側面123および第2素子側面124は半導体レーザ素子120の長手方向の両端面を構成し、第3素子側面125および第4素子側面126は半導体レーザ素子120の短手方向の両端面を構成している。第6実施形態では、第1素子側面123および第2素子側面124は半導体レーザ素子120のY軸方向の両端面を構成し、第3素子側面125および第4素子側面126は半導体レーザ素子40のX軸方向の両端面を構成している。 The element surface 121 faces the same side as the substrate surface 21 of the substrate 20, and the element back surface 122 faces the substrate surface 21. The first element side surface 123 and the second element side surface 124 constitute both end surfaces of the semiconductor laser element 120 in the longitudinal direction, and the third element side surface 125 and the fourth element side surface 126 constitute both end surfaces of the semiconductor laser element 120 in the lateral direction. It consists of In the sixth embodiment, the first device side surface 123 and the second device side surface 124 constitute both end surfaces of the semiconductor laser device 120 in the Y-axis direction, and the third device side surface 125 and the fourth device side surface 126 constitute the semiconductor laser device 40 . It constitutes both end faces in the X-axis direction.
 ここで、第6実施形態では、第1素子側面123は、半導体レーザ素子120のレーザ光を出射する第1発光面LS1を構成している。第1素子側面123(第1発光面LS1)は、第1基板側面23と同じ側を向いている。このため、平面視において、半導体レーザ素子120は、主に+Y方向に向かうレーザ光を出射する。 Here, in the sixth embodiment, the first element side surface 123 constitutes a first light emitting surface LS1 that emits the laser light of the semiconductor laser element 120. The first element side surface 123 (first light emitting surface LS1) faces the same side as the first substrate side surface 23. Therefore, in plan view, the semiconductor laser element 120 emits laser light mainly directed in the +Y direction.
 第2素子側面124は、半導体レーザ素子120のレーザ光を出射する第2発光面LS2を構成している。第2素子側面124(第1発光面LS2)は、第2基板側面24と同じ側を向いている。このため、平面視において、半導体レーザ素子120は、主に-Y方向に向かうレーザ光を出射する。 The second element side surface 124 constitutes a second light emitting surface LS2 that emits the laser light of the semiconductor laser element 120. The second element side surface 124 (first light emitting surface LS2) faces the same side as the second substrate side surface 24. Therefore, in plan view, the semiconductor laser element 120 emits laser light mainly directed in the −Y direction.
 第6実施形態では、第1発光面LS1から出射するレーザ光の出力と第2発光面LS2から出射するレーザ光の出力との比率は、たとえば9:1である。一例では、第1~第4発光部PD1~PD4の各々において、第1発光面LS1から出射するレーザ光の出力と第2発光面LS2から出射するレーザ光の出力との比率は、たとえば9:1である。 In the sixth embodiment, the ratio of the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 is, for example, 9:1. In one example, in each of the first to fourth light emitting parts PD1 to PD4, the ratio between the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 is, for example, 9: It is 1.
 半導体レーザ素子120は、素子表面121に形成されたアノード電極127A~127Dおよび素子裏面122に形成されたカソード電極128を有する。アノード電極127A~127Dの各々は、素子表面121のうち第2基板側面24寄りの端部に形成されている。アノード電極127A~127Dは、Y軸方向において互いに揃った状態でX軸方向において互いに離隔して配置されている。図示された例においては、アノード電極127A~127Dは、第3素子側面125から第4素子側面126に向けて、アノード電極127A,127B,127C,127Dの順に配列されている。 The semiconductor laser device 120 has anode electrodes 127A to 127D formed on the front surface 121 of the device and a cathode electrode 128 formed on the back surface 122 of the device. Each of the anode electrodes 127A to 127D is formed at an end of the element surface 121 closer to the second substrate side surface 24. The anode electrodes 127A to 127D are aligned with each other in the Y-axis direction and spaced apart from each other in the X-axis direction. In the illustrated example, the anode electrodes 127A to 127D are arranged in the order of anode electrodes 127A, 127B, 127C, and 127D from the third element side surface 125 to the fourth element side surface 126.
 図27に示すように、第6実施形態では、半導体レーザ装置10は、第2配線32(図2参照)に代えて、第2配線32A~32Dを備える。第2配線32A~32Dは、第2配線32と同様にたとえば銅を含む材料によって形成されている。 As shown in FIG. 27, in the sixth embodiment, the semiconductor laser device 10 includes second wirings 32A to 32D instead of the second wiring 32 (see FIG. 2). Like the second wiring 32, the second wirings 32A to 32D are made of a material containing copper, for example.
 第2配線32A~32Dの各々は、第1配線31に対して第2基板側面24寄りに配置されている。第2配線32A~32Dは、Y軸方向において互いに揃った状態でX軸方向に互いに離隔して配列されている。図示された例においては、第2配線32A~32Dは、第3基板側面25から第4基板側面26に向けて、第2配線32A,32B,32C,32Dの順に配列されている。 Each of the second wirings 32A to 32D is arranged closer to the second substrate side surface 24 with respect to the first wiring 31. The second wirings 32A to 32D are arranged to be aligned with each other in the Y-axis direction and spaced apart from each other in the X-axis direction. In the illustrated example, the second wirings 32A to 32D are arranged in the order of second wirings 32A, 32B, 32C, and 32D from the third substrate side surface 25 toward the fourth substrate side surface 26.
 図28に示すように、第6実施形態では、半導体レーザ装置10は、第2電極34(図4参照)に代えて、第2電極34A~34Dを備える。第2電極34A~34Dは、第2電極34と同様にたとえば銅を含む材料によって形成されている。 As shown in FIG. 28, in the sixth embodiment, the semiconductor laser device 10 includes second electrodes 34A to 34D instead of the second electrode 34 (see FIG. 4). Like the second electrode 34, the second electrodes 34A to 34D are made of a material containing copper, for example.
 第2電極34A~34Dの各々は、第1電極33に対して第2基板側面24寄りに配置されている。第2電極34A~34Dは、Y軸方向において互いに揃った状態でX軸方向に互いに離隔して配列されている。図示された例においては、第2電極34A~34Dは、第3基板側面25から第4基板側面26に向けて、第2電極34A,34B,34C,34Dの順に配列されている。 Each of the second electrodes 34A to 34D is arranged closer to the second substrate side surface 24 with respect to the first electrode 33. The second electrodes 34A to 34D are aligned with each other in the Y-axis direction and spaced apart from each other in the X-axis direction. In the illustrated example, the second electrodes 34A to 34D are arranged in the order of second electrodes 34A, 34B, 34C, and 34D from the third substrate side surface 25 toward the fourth substrate side surface 26.
 図27および図28に示すように、第2電極34A~34Dは、第2ビア36A~36Dによって第2配線32A~32Dと個別に電気的に接続されている。より詳細には、第2配線32Aは、第2ビア36Aを介して第2電極34Aと電気的に接続されている。第2配線32Bは、第2ビア36Bを介して第2電極34Bと電気的に接続されている。第2配線32Cは、第2ビア36Cを介して第2電極34Cと電気的に接続されている。第2配線32Dは、第2ビア36Dを介して第2電極34Dと電気的に接続されている。なお、第2ビア36A~36Dの各々の個数および配置態様は任意に変更可能である。 As shown in FIGS. 27 and 28, the second electrodes 34A to 34D are individually electrically connected to the second wirings 32A to 32D by second vias 36A to 36D. More specifically, the second wiring 32A is electrically connected to the second electrode 34A via the second via 36A. The second wiring 32B is electrically connected to the second electrode 34B via a second via 36B. The second wiring 32C is electrically connected to the second electrode 34C via a second via 36C. The second wiring 32D is electrically connected to the second electrode 34D via a second via 36D. Note that the number and arrangement of each of the second vias 36A to 36D can be changed arbitrarily.
 次に、半導体レーザ素子120の電気的な接続構造について説明する。
 図29に示すように、カソード電極128は、導電性接合材SDと接している。つまり、カソード電極128は、導電性接合材SDによって第1配線31と電気的に接続されている。このため、カソード電極128は、第1配線31および複数の第1ビア35を介して第1電極33と電気的に接続されている。
Next, the electrical connection structure of the semiconductor laser element 120 will be explained.
As shown in FIG. 29, the cathode electrode 128 is in contact with the conductive bonding material SD. That is, the cathode electrode 128 is electrically connected to the first wiring 31 by the conductive bonding material SD. Therefore, the cathode electrode 128 is electrically connected to the first electrode 33 via the first wiring 31 and the plurality of first vias 35.
 図27に示すように、半導体レーザ装置10は、アノード電極127A~127Dと第2配線32A~32Dとを個別に電気的に接続するワイヤW1~W4を備える。ワイヤW1~W4は、第1実施形態のワイヤW(図2参照)と同じ材料によって形成されている。 As shown in FIG. 27, the semiconductor laser device 10 includes wires W1 to W4 that individually electrically connect anode electrodes 127A to 127D and second wirings 32A to 32D. The wires W1 to W4 are made of the same material as the wire W of the first embodiment (see FIG. 2).
 アノード電極127Aは、ワイヤW1によって第2配線32Aと電気的に接続されている。アノード電極127Bは、ワイヤW2によって第2配線32Bと電気的に接続されている。アノード電極127Cは、ワイヤW3によって第2配線32Cと電気的に接続されている。アノード電極127Dは、ワイヤW4によって第2配線32Dと電気的に接続されている。アノード電極127A~127Dは、第2配線32A~32Dおよび複数の第2ビア36A~36Dをそれぞれ介して第2電極34A~34Dと個別に電気的に接続されている。 The anode electrode 127A is electrically connected to the second wiring 32A by a wire W1. The anode electrode 127B is electrically connected to the second wiring 32B by a wire W2. The anode electrode 127C is electrically connected to the second wiring 32C by a wire W3. The anode electrode 127D is electrically connected to the second wiring 32D by a wire W4. The anode electrodes 127A to 127D are individually electrically connected to the second electrodes 34A to 34D via second wirings 32A to 32D and a plurality of second vias 36A to 36D, respectively.
 次に、半導体レーザ素子120の複数の発光部について説明する。
 第5実施形態では、半導体レーザ素子120は、1つの発光面に対して複数の発光部が並んだ構成である。より詳細には、半導体レーザ素子120は、第1発光面LS1に対して第1~第4発光部PD1~PD4がX軸方向に並んだ構成である。半導体レーザ素子120は、第2発光面LS2に対して第1~第4発光部PD1~PD4がX軸方向に並んだ構成であるともいえる。
Next, the plurality of light emitting parts of the semiconductor laser device 120 will be explained.
In the fifth embodiment, the semiconductor laser element 120 has a configuration in which a plurality of light emitting parts are lined up on one light emitting surface. More specifically, the semiconductor laser device 120 has a configuration in which first to fourth light emitting parts PD1 to PD4 are arranged in the X-axis direction with respect to the first light emitting surface LS1. It can also be said that the semiconductor laser element 120 has a configuration in which the first to fourth light emitting parts PD1 to PD4 are arranged in the X-axis direction with respect to the second light emitting surface LS2.
 一例では、第1~第4発光部PD1~PD4は、レーザ光の出力が互いに異なるように構成されていてもよいし、レーザ光の出力が互いに同じとなるように構成されていてもよい。第1~第4発光部PD1~PD4のうち1~3つの発光部は、レーザ光の出力が他の発光部と異なるように構成されていてもよい。また、半導体レーザ素子120は、第1~第4発光部PD1~PD4のうちレーザ光を出射する発光部の数を変更することによって、半導体レーザ素子120のレーザ光の出力を調整することができる。 In one example, the first to fourth light emitting units PD1 to PD4 may be configured to have different outputs of laser light, or may be configured to have the same output of laser light. One to three of the first to fourth light emitting units PD1 to PD4 may be configured to output laser light differently from the other light emitting units. Further, the semiconductor laser device 120 can adjust the laser light output of the semiconductor laser device 120 by changing the number of light emitting sections that emit laser light among the first to fourth light emitting sections PD1 to PD4. .
 [効果]
 第6実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (6-1)半導体レーザ素子120は、複数の発光部(第1~第4発光部PD1~PD4)を有する。
[effect]
According to the semiconductor laser device 10 of the sixth embodiment, the following effects can be obtained.
(6-1) The semiconductor laser element 120 has a plurality of light emitting parts (first to fourth light emitting parts PD1 to PD4).
 この構成によれば、たとえば複数の発光部からレーザ光を出射することによって、1つの発光部からレーザ光を出射する構成と比較して、半導体レーザ素子120から出射されるレーザ光の出力を向上させることができる。また、レーザ光を出射する発光部の数を変更することによって、半導体レーザ素子120から出射されるレーザ光の出力を容易に調整することができる。 According to this configuration, for example, by emitting laser light from a plurality of light emitting parts, the output of the laser light emitted from the semiconductor laser element 120 is improved compared to a configuration in which laser light is emitted from one light emitting part. can be done. Furthermore, by changing the number of light emitting sections that emit laser light, the output of the laser light emitted from the semiconductor laser element 120 can be easily adjusted.
 <第7実施形態>
 図30~図33を参照して、第7実施形態の半導体レーザ装置10について説明する。第7実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、駆動回路素子130をさらに備える点および配線の構成が主に異なる。以下では、駆動回路素子130の構成および配線の構成について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図30においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Seventh embodiment>
A semiconductor laser device 10 according to a seventh embodiment will be described with reference to FIGS. 30 to 33. The semiconductor laser device 10 of the seventh embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in that it further includes a drive circuit element 130 and in the configuration of wiring. Below, the structure of the drive circuit element 130 and the structure of the wiring will be explained in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 30, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 図30に示すように、基板20の基板表面21には、第2配線32に代えて、駆動回路用配線140、ゲート配線141G、およびソース配線141Sが形成されている。換言すると、半導体レーザ装置10は、駆動回路用配線140、ゲート配線141G、およびソース配線141Sをさらに備える。 As shown in FIG. 30, on the substrate surface 21 of the substrate 20, instead of the second wiring 32, a drive circuit wiring 140, a gate wiring 141G, and a source wiring 141S are formed. In other words, the semiconductor laser device 10 further includes a drive circuit wiring 140, a gate wiring 141G, and a source wiring 141S.
 駆動回路用配線140は、第1配線31に対して第2基板側面24寄りに配置されている。第7実施形態では、駆動回路用配線140は、第1配線31と第2基板側面24とのY軸方向の間に配置されている。駆動回路用配線140は、平面視においてX軸方向が長手方向となり、Y軸方向が短手方向となる矩形状に形成されている。 The drive circuit wiring 140 is arranged closer to the second substrate side surface 24 with respect to the first wiring 31. In the seventh embodiment, the drive circuit wiring 140 is arranged between the first wiring 31 and the second substrate side surface 24 in the Y-axis direction. The drive circuit wiring 140 is formed in a rectangular shape, with the X-axis direction being the longitudinal direction and the Y-axis direction being the lateral direction when viewed from above.
 ゲート配線141Gおよびソース配線141Sの双方は、駆動回路用配線140に対して第2基板側面24寄りに配置されている。第7実施形態では、ゲート配線141Gおよびソース配線141Sの双方は、駆動回路用配線140と第2基板側面24とのY軸方向の間に配置されている。駆動回路用配線140は、平面視においてX軸方向が長手方向となり、Y軸方向が短手方向となる矩形状に形成されている。ゲート配線141GのX軸方向の長さおよびソース配線141SのX軸方向の長さの各々は、駆動回路用配線140のX軸方向の長さよりも短い。第7実施形態では、ゲート配線141Gは、基板表面21のX軸方向の中央に配置されている。ソース配線141Sは、X軸方向においてゲート配線141Gよりも第3基板側面25寄りに配置されている。なお、ゲート配線141Gおよびソース配線141Sの各々のX軸方向の長さおよび配置態様は任意に変更可能である。 Both the gate wiring 141G and the source wiring 141S are arranged closer to the second substrate side surface 24 with respect to the drive circuit wiring 140. In the seventh embodiment, both the gate wiring 141G and the source wiring 141S are arranged between the drive circuit wiring 140 and the second substrate side surface 24 in the Y-axis direction. The drive circuit wiring 140 is formed in a rectangular shape, with the X-axis direction being the longitudinal direction and the Y-axis direction being the lateral direction when viewed from above. The length of the gate wiring 141G in the X-axis direction and the length of the source wiring 141S in the X-axis direction are each shorter than the length of the drive circuit wiring 140 in the X-axis direction. In the seventh embodiment, the gate wiring 141G is arranged at the center of the substrate surface 21 in the X-axis direction. The source wiring 141S is arranged closer to the third substrate side surface 25 than the gate wiring 141G in the X-axis direction. Note that the length and arrangement of each of the gate wiring 141G and the source wiring 141S in the X-axis direction can be changed arbitrarily.
 第7実施形態の第1配線31は、第1実施形態とは異なり、駆動回路用配線140に合わせてX軸方向の長さが長くなっている。第7実施形態では、第1配線31のX軸方向の長さは、駆動回路用配線140のX軸方向の長さと等しい。なお、第1配線31のX軸方向の長さと駆動回路用配線140のX軸方向の長さとは互いに異なっていてもよい。 Unlike the first embodiment, the first wiring 31 of the seventh embodiment has a longer length in the X-axis direction to match the drive circuit wiring 140. In the seventh embodiment, the length of the first wiring 31 in the X-axis direction is equal to the length of the drive circuit wiring 140 in the X-axis direction. Note that the length of the first wiring 31 in the X-axis direction and the length of the drive circuit wiring 140 in the X-axis direction may be different from each other.
 図31に示すように、基板20の基板裏面22には、第2電極34(図4参照)に代えて、駆動回路用電極142、ゲート電極143G、およびソース電極143Sが形成されている。換言すると、半導体レーザ装置10は、駆動回路用電極142、ゲート電極143G、およびソース電極143Sをさらに備える。 As shown in FIG. 31, on the back surface 22 of the substrate 20, instead of the second electrode 34 (see FIG. 4), a drive circuit electrode 142, a gate electrode 143G, and a source electrode 143S are formed. In other words, the semiconductor laser device 10 further includes a drive circuit electrode 142, a gate electrode 143G, and a source electrode 143S.
 駆動回路用電極142は、第1電極33よりも第2基板側面24寄りに配置されている。ゲート電極143Gおよびソース電極143Sの双方は、駆動回路用電極142よりも第2基板側面24寄りに配置されている。つまり、平面視において、ゲート電極143Gおよびソース電極143Sの双方は、駆動回路用電極142と第2基板側面24とのY軸方向の間に配置されている。平面視において、駆動回路用電極142は、第1電極33とゲート電極143Gおよびソース電極143SとのY軸方向の間に配置されている。 The drive circuit electrode 142 is arranged closer to the second substrate side surface 24 than the first electrode 33 is. Both the gate electrode 143G and the source electrode 143S are arranged closer to the second substrate side surface 24 than the drive circuit electrode 142. That is, in plan view, both the gate electrode 143G and the source electrode 143S are arranged between the drive circuit electrode 142 and the second substrate side surface 24 in the Y-axis direction. In plan view, the drive circuit electrode 142 is arranged between the first electrode 33, the gate electrode 143G, and the source electrode 143S in the Y-axis direction.
 図31および図32に示すように、半導体レーザ装置10は、駆動回路用配線140と駆動回路用電極142とを電気的に接続する駆動回路用ビア144と、ゲート配線141Gとゲート電極143Gとを電気的に接続するゲート用ビア145Gと、ソース配線141Sとソース電極143Sとを電気的に接続するソース用ビア145Sと、をさらに備える。 As shown in FIGS. 31 and 32, the semiconductor laser device 10 includes a drive circuit via 144 that electrically connects a drive circuit wiring 140 and a drive circuit electrode 142, and a gate wiring 141G and a gate electrode 143G. It further includes a gate via 145G that electrically connects and a source via 145S that electrically connects the source wiring 141S and the source electrode 143S.
 駆動回路用ビア144は複数設けられている。各駆動回路用ビア144は、平面視において駆動回路用配線140および駆動回路用電極142の双方と重なる位置に配置されている。複数の駆動回路用ビア144は、X軸方向およびY軸方向の双方において互いに離隔して配列されている。各駆動回路用ビア144は、基板20をZ軸方向に貫通している。各駆動回路用ビア144は、駆動回路用配線140および駆動回路用電極142の双方と接している。 A plurality of drive circuit vias 144 are provided. Each drive circuit via 144 is arranged at a position overlapping both the drive circuit wiring 140 and the drive circuit electrode 142 in plan view. The plurality of drive circuit vias 144 are arranged to be spaced apart from each other in both the X-axis direction and the Y-axis direction. Each drive circuit via 144 penetrates the substrate 20 in the Z-axis direction. Each drive circuit via 144 is in contact with both the drive circuit wiring 140 and the drive circuit electrode 142.
 ゲート用ビア145Gは、平面視においてゲート配線141Gおよびゲート電極143Gの双方と重なる位置に配置されている。ゲート用ビア145Gは、基板20をZ軸方向に貫通している。ゲート用ビア145Gは、ゲート配線141Gおよびゲート電極143Gの双方と接している。 The gate via 145G is arranged at a position overlapping both the gate wiring 141G and the gate electrode 143G in plan view. The gate via 145G penetrates the substrate 20 in the Z-axis direction. The gate via 145G is in contact with both the gate wiring 141G and the gate electrode 143G.
 ソース用ビア145Sは、平面視においてソース配線141Sおよびソース電極143Sの双方と重なる位置に配置されている。ソース用ビア145Sは、基板20をZ軸方向に貫通している。ソース用ビア145Sは、ソース配線141Sおよびソース電極143Sの双方と接している。なお、駆動回路用ビア144、ゲート用ビア145G、およびソース用ビア145Sの各々の個数および配置態様は任意に変更可能である。 The source via 145S is arranged at a position overlapping both the source wiring 141S and the source electrode 143S in plan view. The source via 145S penetrates the substrate 20 in the Z-axis direction. The source via 145S is in contact with both the source wiring 141S and the source electrode 143S. Note that the number and arrangement of each of the drive circuit vias 144, gate vias 145G, and source vias 145S can be changed as desired.
 図30に示すように、駆動回路素子130は、半導体レーザ素子40を駆動させる素子である。駆動回路素子130は、スイッチング素子131およびコンデンサ132を含む。駆動回路素子130は、基板表面21に搭載されている。より詳細には、スイッチング素子131および2つのコンデンサ132の各々は、基板表面21に搭載されている。 As shown in FIG. 30, the drive circuit element 130 is an element that drives the semiconductor laser element 40. Drive circuit element 130 includes a switching element 131 and a capacitor 132. Drive circuit element 130 is mounted on substrate surface 21 . More specifically, switching element 131 and two capacitors 132 are each mounted on substrate surface 21.
 スイッチング素子131は、半導体レーザ素子40に供給される電流を制御する半導体素子である。スイッチング素子131は、たとえばトランジスタである。第7実施形態では、スイッチング素子131としてMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)が用いられている。スイッチング素子131は、ソース電極131S、ドレイン電極131D(図32参照)、およびゲート電極131Gを含む。 The switching element 131 is a semiconductor element that controls the current supplied to the semiconductor laser element 40. Switching element 131 is, for example, a transistor. In the seventh embodiment, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) is used as the switching element 131. The switching element 131 includes a source electrode 131S, a drain electrode 131D (see FIG. 32), and a gate electrode 131G.
 スイッチング素子131は、平板状に形成されている。図32に示すように、スイッチング素子131の厚さは、半導体レーザ素子40の厚さよりも厚い。平面視におけるスイッチング素子131の形状は矩形状である。第7実施形態では、平面視におけるスイッチング素子131の形状は正方形である。なお、平面視におけるスイッチング素子131の形状は任意に変更可能である。一例では、平面視におけるスイッチング素子131の形状は、X軸方向が長手方向となり、Y軸方向が短手方向となる矩形状であってもよい。平面視におけるスイッチング素子131の面積は、半導体レーザ素子40の面積よりも大きい。このように、スイッチング素子131のチップサイズは、半導体レーザ素子40のチップサイズよりも大きい。なお、スイッチング素子131のチップサイズは任意に変更可能である。一例では、スイッチング素子131の厚さは、半導体レーザ素子40の厚さ以下であってもよい。 The switching element 131 is formed into a flat plate shape. As shown in FIG. 32, the thickness of the switching element 131 is thicker than the thickness of the semiconductor laser element 40. The shape of the switching element 131 in plan view is rectangular. In the seventh embodiment, the shape of the switching element 131 in plan view is a square. Note that the shape of the switching element 131 in plan view can be arbitrarily changed. In one example, the shape of the switching element 131 in a plan view may be a rectangular shape in which the X-axis direction is the longitudinal direction and the Y-axis direction is the lateral direction. The area of the switching element 131 in plan view is larger than the area of the semiconductor laser element 40. In this way, the chip size of the switching element 131 is larger than the chip size of the semiconductor laser element 40. Note that the chip size of the switching element 131 can be changed arbitrarily. In one example, the thickness of the switching element 131 may be less than or equal to the thickness of the semiconductor laser element 40.
 スイッチング素子131は、Z軸方向において互いに反対側を向くスイッチング素子表面131Aおよびスイッチング素子裏面131Bを有する。
 スイッチング素子表面131Aは、基板表面21と同じ側を向く面である。スイッチング素子表面131Aには、ソース電極131Sおよびゲート電極131Gが形成されている。ソース電極131Sは、スイッチング素子表面131Aの大部分にわたり形成されている。図30に示すように、ゲート電極131Gは、スイッチング素子表面131AのY軸方向の両端部のうち第2基板側面24に近い方の端部かつX軸方向の中央に形成されている。
The switching element 131 has a switching element front surface 131A and a switching element back surface 131B facing oppositely to each other in the Z-axis direction.
The switching element surface 131A is a surface facing the same side as the substrate surface 21. A source electrode 131S and a gate electrode 131G are formed on the switching element surface 131A. The source electrode 131S is formed over most of the switching element surface 131A. As shown in FIG. 30, the gate electrode 131G is formed at the end closer to the second substrate side surface 24 of both ends of the switching element surface 131A in the Y-axis direction and at the center in the X-axis direction.
 図32に示すように、スイッチング素子裏面131Bは、基板裏面22と同じ側を向く面である。スイッチング素子裏面131Bは、基板表面21と対面する面であるともいえる。スイッチング素子裏面131Bには、ドレイン電極131Dが形成されている。このように、第7実施形態のスイッチング素子131には、縦型構造のMOSFETが用いられている。 As shown in FIG. 32, the switching element back surface 131B is a surface facing the same side as the substrate back surface 22. The switching element back surface 131B can also be said to be a surface facing the substrate surface 21. A drain electrode 131D is formed on the back surface 131B of the switching element. In this way, the switching element 131 of the seventh embodiment uses a vertically structured MOSFET.
 スイッチング素子裏面131Bは、導電性接合材SDによって駆動回路用配線140に接合されている。このため、ドレイン電極131Dは、導電性接合材SDを介して駆動回路用配線140と電気的に接続されている。 The back surface 131B of the switching element is bonded to the drive circuit wiring 140 using a conductive bonding material SD. Therefore, the drain electrode 131D is electrically connected to the drive circuit wiring 140 via the conductive bonding material SD.
 図30に示すように、ソース電極131Sと半導体レーザ素子40のアノード電極47とは、ワイヤWFによって接続されている。これにより、ソース電極131Sとアノード電極47とが電気的に接続されている。ゲート電極131Gとゲート配線141Gとは、ワイヤWGによって接続されている。これにより、ゲート電極131Gとゲート配線141Gとが電気的に接続されている。また、ソース電極131Sとソース配線141Sとは、ワイヤWSによって接続されている。これにより、ソース電極131Sとソース配線141Sとが電気的に接続されている。ワイヤWF,WG,WSは、たとえば第1実施形態のワイヤW(図2参照)と同じ材料によって形成されている。なお、ワイヤWF,WG,WSの本数は任意に変更可能である。 As shown in FIG. 30, the source electrode 131S and the anode electrode 47 of the semiconductor laser element 40 are connected by a wire WF. Thereby, the source electrode 131S and the anode electrode 47 are electrically connected. The gate electrode 131G and the gate wiring 141G are connected by a wire WG. Thereby, the gate electrode 131G and the gate wiring 141G are electrically connected. Further, the source electrode 131S and the source wiring 141S are connected by a wire WS. Thereby, the source electrode 131S and the source wiring 141S are electrically connected. The wires WF, WG, and WS are made of, for example, the same material as the wire W of the first embodiment (see FIG. 2). Note that the numbers of wires WF, WG, and WS can be changed arbitrarily.
 コンデンサ132は、スイッチング素子131と協働して半導体レーザ素子40に電流を供給する電子部品である。コンデンサ132は、たとえば複数(第7実施形態では2つ)設けられている。各コンデンサ132は、略直方体状に形成されている。平面視におけるコンデンサ132の形状は、Y軸方向が長手方向となり、X軸方向が短手方向となる矩形状である。 The capacitor 132 is an electronic component that cooperates with the switching element 131 to supply current to the semiconductor laser element 40. For example, a plurality of capacitors 132 (two in the seventh embodiment) are provided. Each capacitor 132 is formed into a substantially rectangular parallelepiped shape. The shape of the capacitor 132 in a plan view is a rectangular shape in which the Y-axis direction is the longitudinal direction and the X-axis direction is the lateral direction.
 コンデンサ132は、第1電極132Aおよび第2電極132Bを含む。第1電極132Aおよび第2電極132Bは、コンデンサ132の長手方向、つまりY軸方向において互いに離隔して形成されている。図示された例においては、第1電極132Aはコンデンサ132のY軸方向の両端部のうち第1基板側面23に近い方の端部に設けられ、第2電極132Bはコンデンサ132のY軸方向の両端部のうち第2基板側面24に近い方の端部に設けられている。第7実施形態では、複数のコンデンサ132の形状およびサイズは互いに同一である。また、複数のコンデンサ132の容量は、互いに等しい。 The capacitor 132 includes a first electrode 132A and a second electrode 132B. The first electrode 132A and the second electrode 132B are formed apart from each other in the longitudinal direction of the capacitor 132, that is, in the Y-axis direction. In the illustrated example, the first electrode 132A is provided at the end of the capacitor 132 in the Y-axis direction that is closer to the first substrate side surface 23, and the second electrode 132B is provided in the Y-axis direction of the capacitor 132. It is provided at the end closer to the second substrate side surface 24 of both ends. In the seventh embodiment, the shapes and sizes of the plurality of capacitors 132 are the same. Furthermore, the capacitances of the plurality of capacitors 132 are equal to each other.
 各コンデンサ132は、第1配線31と駆動回路用配線140とのY軸方向の間を跨ぐように配置されている。
 各コンデンサ132の第1電極132Aは、導電性接合材(図示略)によって第1配線31に接合されている。これにより、各コンデンサ132の第1電極132Aは、第1配線31と電気的に接続されている。半導体レーザ素子40のカソード電極48(図32参照)が第1配線31と電気的に接続されているため、第1電極132Aは第1配線31を介してカソード電極48と電気的に接続されているともいえる。第1配線31は第1電極33(図32参照)と電気的に接続されているため、各コンデンサ132の第1電極132Aおよび半導体レーザ素子40のカソード電極48の双方は、第1電極33と電気的に接続されている。
Each capacitor 132 is arranged so as to straddle the first wiring 31 and the drive circuit wiring 140 in the Y-axis direction.
The first electrode 132A of each capacitor 132 is bonded to the first wiring 31 with a conductive bonding material (not shown). Thereby, the first electrode 132A of each capacitor 132 is electrically connected to the first wiring 31. Since the cathode electrode 48 (see FIG. 32) of the semiconductor laser element 40 is electrically connected to the first wiring 31, the first electrode 132A is electrically connected to the cathode electrode 48 via the first wiring 31. It can be said that there are. Since the first wiring 31 is electrically connected to the first electrode 33 (see FIG. 32), both the first electrode 132A of each capacitor 132 and the cathode electrode 48 of the semiconductor laser element 40 are connected to the first electrode 33. electrically connected.
 各コンデンサ132の第2電極132Bは、導電性接合材(図示略)によって駆動回路用配線140に接合されている。より詳細には、これにより、各コンデンサ132の第2電極132Bは、駆動回路用配線140と電気的に接続されている。スイッチング素子131のドレイン電極131D(図32参照)が駆動回路用配線140と電気的に接続されているため、各コンデンサ132の第2電極132Bは、ドレイン電極131Dと電気的に接続されている。駆動回路用配線140は駆動回路用電極142と電気的に接続されているため、各コンデンサ132の第2電極132Bおよびドレイン電極131Dの双方は、駆動回路用電極142と電気的に接続されている。なお、コンデンサ132の実装に用いられた導電性接合材は、たとえば半導体レーザ素子40の実装に用いられた導電性接合材SDと同じ導電性接合材が用いられている。 The second electrode 132B of each capacitor 132 is bonded to the drive circuit wiring 140 with a conductive bonding material (not shown). More specifically, the second electrode 132B of each capacitor 132 is electrically connected to the drive circuit wiring 140. Since the drain electrode 131D (see FIG. 32) of the switching element 131 is electrically connected to the drive circuit wiring 140, the second electrode 132B of each capacitor 132 is electrically connected to the drain electrode 131D. Since the drive circuit wiring 140 is electrically connected to the drive circuit electrode 142, both the second electrode 132B and the drain electrode 131D of each capacitor 132 are electrically connected to the drive circuit electrode 142. . Note that the conductive bonding material used for mounting the capacitor 132 is, for example, the same conductive bonding material SD used for mounting the semiconductor laser element 40.
 複数のコンデンサ132は、X軸方向において互いに離隔して配列されている。このため、複数のコンデンサ132は、その配列方向がコンデンサ132の短手方向となるように配列されている。複数のコンデンサ132は、スイッチング素子131のX軸方向の両側に分散して配置されている。 The plurality of capacitors 132 are arranged spaced apart from each other in the X-axis direction. For this reason, the plurality of capacitors 132 are arranged so that the arrangement direction thereof is the lateral direction of the capacitors 132. The plurality of capacitors 132 are distributed and arranged on both sides of the switching element 131 in the X-axis direction.
 各コンデンサ132は、X軸方向から視て、半導体レーザ素子40とスイッチング素子131との双方と重なる位置に配置されている。より詳細には、各コンデンサ132の第1電極132Aは、X軸方向から視て、半導体レーザ素子40と重なる位置に配置されている。各コンデンサ132の第2電極132Bは、X軸方向から視て、スイッチング素子131と重なる位置に配置されている。 Each capacitor 132 is arranged at a position overlapping both the semiconductor laser element 40 and the switching element 131 when viewed from the X-axis direction. More specifically, the first electrode 132A of each capacitor 132 is arranged at a position overlapping the semiconductor laser element 40 when viewed from the X-axis direction. The second electrode 132B of each capacitor 132 is arranged at a position overlapping the switching element 131 when viewed from the X-axis direction.
 各コンデンサ132の第1電極132Aは、半導体レーザ素子40に対してスイッチング素子131寄りにずれて配置されている。図示された例においては、各コンデンサ132の第1電極132Aは、半導体レーザ素子40のY軸方向の中央よりもスイッチング素子131寄りにずれて配置されている。 The first electrode 132A of each capacitor 132 is arranged to be shifted toward the switching element 131 with respect to the semiconductor laser element 40. In the illustrated example, the first electrode 132A of each capacitor 132 is arranged to be shifted closer to the switching element 131 than the center of the semiconductor laser element 40 in the Y-axis direction.
 また、図示された例においては、複数のコンデンサ132は、平面視において、半導体レーザ素子40およびスイッチング素子131に対して対称的に配置されている。これにより、スイッチング素子131のX軸方向の一方側に配置されたコンデンサ132からスイッチング素子131を経て半導体レーザ素子40に電流が流れるループ状の第1配線経路と、スイッチング素子131のX軸方向の他方側に配置されたコンデンサ132からスイッチング素子131を経て半導体レーザ素子40に電流が流れるループ状の第2配線経路とが半導体レーザ素子40およびスイッチング素子131に対して対称的に形成されている。 Furthermore, in the illustrated example, the plurality of capacitors 132 are arranged symmetrically with respect to the semiconductor laser element 40 and the switching element 131 in plan view. This creates a loop-shaped first wiring path through which current flows from the capacitor 132 disposed on one side of the switching element 131 in the X-axis direction to the semiconductor laser element 40 via the switching element 131, and A loop-shaped second wiring path through which current flows from the capacitor 132 disposed on the other side to the semiconductor laser element 40 via the switching element 131 is formed symmetrically with respect to the semiconductor laser element 40 and the switching element 131.
 図32に示すように、第7実施形態では、封止樹脂50は、半導体レーザ素子40および第1配線31に加え、駆動回路素子130(スイッチング素子131およびコンデンサ132)、駆動回路用配線140、ゲート配線141G、ワイヤWF,WGを封止している。 As shown in FIG. 32, in the seventh embodiment, in addition to the semiconductor laser element 40 and the first wiring 31, the sealing resin 50 includes a drive circuit element 130 (switching element 131 and a capacitor 132), a drive circuit wiring 140, The gate wiring 141G and wires WF and WG are sealed.
 また、第7実施形態では、半導体レーザ装置10から側壁60(図2参照)が省略されている。図30に示すように、第7実施形態では、封止樹脂50が基板表面21の全体にわたり形成されている。このため、第1封止端面53と第1基板側面23とが面一となり、第2封止端面54と第2基板側面24と面一となり、第3封止端面55と第3基板側面25とが面一となり、第4封止端面56と第4基板側面26とが面一となる。 Furthermore, in the seventh embodiment, the side wall 60 (see FIG. 2) is omitted from the semiconductor laser device 10. As shown in FIG. 30, in the seventh embodiment, a sealing resin 50 is formed over the entire substrate surface 21. Therefore, the first sealed end surface 53 and the first substrate side surface 23 are flush with each other, the second sealed end surface 54 is flush with the second substrate side surface 24, and the third sealed end surface 55 and the third substrate side surface 25 are flush with each other. are flush with each other, and the fourth sealing end surface 56 and the fourth substrate side surface 26 are flush with each other.
 なお、封止樹脂50のサイズは任意に変更可能である。一例では、平面視において、封止樹脂50が基板20よりも一回り小さくてもよい。この場合、第1~第4封止端面53~56は、第1~第4基板側面23~26に対して内側に位置している。 Note that the size of the sealing resin 50 can be changed arbitrarily. In one example, the sealing resin 50 may be one size smaller than the substrate 20 in plan view. In this case, the first to fourth sealing end surfaces 53 to 56 are located inside the first to fourth substrate side surfaces 23 to 26.
 [半導体レーザ装置の回路構成]
 第7実施形態の半導体レーザ装置10の回路構成について、図33を用いて説明する。図33は、半導体レーザ装置10が用いられたレーザシステムLSの回路構成を示している。図33に示すように、レーザシステムLSは、半導体レーザ装置10、駆動電源DV、抵抗素子R、ダイオードD、およびドライバ回路PMを備える。駆動電源DV、抵抗素子R、ダイオードD、およびドライバ回路PMの各々は、半導体レーザ装置10の外部に設けられている。駆動電源DVはたとえば直流電源である。
[Circuit configuration of semiconductor laser device]
The circuit configuration of the semiconductor laser device 10 of the seventh embodiment will be described using FIG. 33. FIG. 33 shows a circuit configuration of a laser system LS using the semiconductor laser device 10. As shown in FIG. 33, the laser system LS includes a semiconductor laser device 10, a drive power source DV, a resistance element R, a diode D, and a driver circuit PM. Each of the drive power supply DV, the resistance element R, the diode D, and the driver circuit PM is provided outside the semiconductor laser device 10. The drive power supply DV is, for example, a DC power supply.
 スイッチング素子131のドレイン電極131Dおよびコンデンサ132の第2電極132Bは、駆動電源DVの正の電極に抵抗素子Rを介して電気的に接続されている。スイッチング素子131のソース電極131Sは、半導体レーザ素子40のアノード電極47に電気的に接続されている。またソース電極131Sは、駆動電源DVの負の電極に電気的に接続されている。半導体レーザ素子40のカソード電極48は、コンデンサ132の第1電極132Aに電気的に接続されている。これにより、コンデンサ132の第1電極132A、スイッチング素子131のドレイン電極131D、ソース電極131S、半導体レーザ素子40のアノード電極47、カソード電極48、およびコンデンサ132の第2電極132Bの順に電流が流れる電流ループが形成されている。 The drain electrode 131D of the switching element 131 and the second electrode 132B of the capacitor 132 are electrically connected to the positive electrode of the drive power supply DV via the resistance element R. The source electrode 131S of the switching element 131 is electrically connected to the anode electrode 47 of the semiconductor laser element 40. Further, the source electrode 131S is electrically connected to the negative electrode of the drive power source DV. The cathode electrode 48 of the semiconductor laser element 40 is electrically connected to the first electrode 132A of the capacitor 132. As a result, a current flows in the order of the first electrode 132A of the capacitor 132, the drain electrode 131D of the switching element 131, the source electrode 131S, the anode electrode 47 of the semiconductor laser element 40, the cathode electrode 48, and the second electrode 132B of the capacitor 132. A loop is formed.
 スイッチング素子131のゲート電極131Gは、ドライバ回路PMに電気的に接続されている。ドライバ回路PMは、たとえばパルス状の信号を生成する矩形波発振回路と、矩形波発振回路と半導体レーザ装置10との間に設けられたゲートドライバIC(Integrated Circuit)とを含む。ゲートドライバICは、矩形波発振回路からの信号に基づいてスイッチング素子131の制御信号を生成する。また、半導体レーザ素子40にはダイオードDが逆並列に接続されている。 The gate electrode 131G of the switching element 131 is electrically connected to the driver circuit PM. The driver circuit PM includes, for example, a rectangular wave oscillation circuit that generates a pulsed signal, and a gate driver IC (Integrated Circuit) provided between the rectangular wave oscillation circuit and the semiconductor laser device 10. The gate driver IC generates a control signal for the switching element 131 based on a signal from the rectangular wave oscillation circuit. Furthermore, a diode D is connected in antiparallel to the semiconductor laser element 40.
 このような構成では、半導体レーザ装置10は、次のように動作する。すなわち、ドライバ回路PMの制御信号によってスイッチング素子131がオフ状態にされると、駆動電源DVによってコンデンサ132が蓄電される。そしてドライバ回路PMの制御信号によってスイッチング素子131がオン状態にされると、コンデンサ132が放電することによって半導体レーザ素子40に電流が流れる。これにより、半導体レーザ素子40はパルスレーザ光を出射する。 In such a configuration, the semiconductor laser device 10 operates as follows. That is, when the switching element 131 is turned off by the control signal of the driver circuit PM, the capacitor 132 is charged by the drive power supply DV. When the switching element 131 is turned on by the control signal from the driver circuit PM, the capacitor 132 is discharged and current flows through the semiconductor laser element 40. Thereby, the semiconductor laser element 40 emits pulsed laser light.
 [効果]
 第7実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (7-1)半導体レーザ装置10は、基板表面21に搭載され、半導体レーザ素子40を駆動させる駆動回路素子130をさらに備える。この構成によれば、半導体レーザ素子40および駆動回路素子130の双方を基板20上に設けることによって、駆動回路素子130が半導体レーザ装置10の外部に設けられた場合と比較して、半導体レーザ素子40と駆動回路素子130との間の導電経路を短くすることができる。これにより、半導体レーザ素子40と駆動回路素子130との導電経路に基づく寄生容量を低減できる。
[effect]
According to the semiconductor laser device 10 of the seventh embodiment, the following effects can be obtained.
(7-1) The semiconductor laser device 10 further includes a drive circuit element 130 that is mounted on the substrate surface 21 and drives the semiconductor laser element 40. According to this configuration, by providing both the semiconductor laser element 40 and the drive circuit element 130 on the substrate 20, the semiconductor laser element 40 and the drive circuit element 130 are both provided on the substrate 20. The conductive path between 40 and drive circuit element 130 can be shortened. Thereby, parasitic capacitance based on the conductive path between the semiconductor laser element 40 and the drive circuit element 130 can be reduced.
 <第8実施形態>
 図34~図36を参照して、第8実施形態の半導体レーザ装置10について説明する。第8実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、半導体レーザ素子40および側壁60の構成が主に異なる。以下では、半導体レーザ素子40および側壁60の構成について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図34においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Eighth embodiment>
The semiconductor laser device 10 of the eighth embodiment will be described with reference to FIGS. 34 to 36. The semiconductor laser device 10 of the eighth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the configurations of the semiconductor laser element 40 and the sidewalls 60. Below, the configurations of the semiconductor laser element 40 and the side wall 60 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the description thereof will be omitted. Note that in FIG. 34, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 第8実施形態の半導体レーザ素子40では、たとえば第1発光面LS1から出射されるレーザ光の出力と、第2発光面LS2から出射されるレーザ光の出力とが等しくなるように調整されている。一例では、第1発光面LS1に形成された反射膜の反射率と、第2発光面LS2に形成された反射膜の反射率とが互いに等しくなるように設定されている。 In the semiconductor laser device 40 of the eighth embodiment, the output of the laser light emitted from the first light emitting surface LS1 is adjusted to be equal to the output of the laser light emitted from the second light emitting surface LS2, for example. . In one example, the reflectance of the reflective film formed on the first light emitting surface LS1 and the reflectance of the reflective film formed on the second light emitting surface LS2 are set to be equal to each other.
 なお、第1発光面LS1から出射されるレーザ光の出力と、第2発光面LS2から出射されるレーザ光の出力との関係は任意に変更可能である。一例では、第1発光面LS1から出射されるレーザ光の出力は、第2発光面LS2から出射されるレーザ光の出力よりも大きくてもよい。また、別例では、第2発光面LS2から出射されるレーザ光の出力は、第1発光面LS1から出射されるレーザ光の出力よりも大きくてもよい。 Note that the relationship between the output of the laser light emitted from the first light emitting surface LS1 and the output of the laser light emitted from the second light emitting surface LS2 can be arbitrarily changed. In one example, the output of the laser light emitted from the first light emitting surface LS1 may be greater than the output of the laser light emitted from the second light emitting surface LS2. In another example, the output of the laser light emitted from the second light emitting surface LS2 may be greater than the output of the laser light emitted from the first light emitting surface LS1.
 図34に示すように、側壁60は、第1実施形態とは異なり、第2側壁部62(図2参照)が省略されている。つまり、側壁60は、一対の第1側壁部61から構成されている。換言すると、側壁60は、封止樹脂50の第2封止端面54を露出する開口を有する。つまり、側壁60は、第1封止端面53および第2封止端面54をそれぞれ露出する開口を有する。第8実施形態では、図35に示すように、第2封止端面54は、第2基板側面24と面一である。第8実施形態では、第2封止端面54は、封止表面51よりも粗面であってよい。このため、第2封止端面54の算術平均粗さは、第1封止端面53と同様に、封止表面51の算術平均粗さよりも大きくてもよい。一例では、第2封止端面54は、ダイシング加工によって形成されたダイシング面である。この場合、第2封止端面54には、ダイシング加工による切削痕が形成される。これにより、第2発光面LS2から出射したレーザ光が第2封止端面54を通過する際に散乱するため、半導体レーザ装置10から出射されるレーザ光の指向角をより広げることができる。 As shown in FIG. 34, the side wall 60 differs from the first embodiment in that the second side wall portion 62 (see FIG. 2) is omitted. That is, the side wall 60 is composed of a pair of first side wall parts 61. In other words, the side wall 60 has an opening that exposes the second sealing end surface 54 of the sealing resin 50. That is, the side wall 60 has openings that expose the first sealed end surface 53 and the second sealed end surface 54, respectively. In the eighth embodiment, as shown in FIG. 35, the second sealed end surface 54 is flush with the second substrate side surface 24. In the eighth embodiment, the second sealing end surface 54 may be rougher than the sealing surface 51. Therefore, the arithmetic mean roughness of the second sealing end surface 54 may be larger than the arithmetic mean roughness of the sealing surface 51, similarly to the first sealing end surface 53. In one example, the second sealed end surface 54 is a dicing surface formed by dicing. In this case, cutting marks are formed on the second sealing end surface 54 by the dicing process. Thereby, since the laser light emitted from the second light emitting surface LS2 is scattered when passing through the second sealing end face 54, the directivity angle of the laser light emitted from the semiconductor laser device 10 can be further expanded.
 第1実施形態と同様に、半導体レーザ素子40の第1発光面LS1から出射された第1レーザ光は、拡散材57によって拡散(散乱)される。これにより、第1レーザ光は、基板表面21に向かうレーザ光を含む。第1延出部31Cは、基板表面21に向かうレーザ光の少なくとも一部を反射する。反射されたレーザ光は、第1封止端面53または封止表面51を通過して半導体レーザ装置10の外部に出射される。このように、半導体レーザ装置10は、半導体レーザ素子40の第1発光面LS1から出射されかつ基板表面21に向かうレーザ光の少なくとも一部を反射する第1反射部70を備えているともいえる。第8実施形態では、第1配線31の第1延出部31Cが第1反射部70を構成している。つまり、第1配線31は、第1反射部70として、第1発光面LS1から第1封止端面53に向けて延出した部分を有するともいえる。 Similarly to the first embodiment, the first laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57. Thereby, the first laser light includes laser light directed toward the substrate surface 21. The first extension portion 31C reflects at least a portion of the laser beam directed toward the substrate surface 21. The reflected laser light passes through the first sealing end face 53 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . In this way, the semiconductor laser device 10 can be said to include the first reflecting section 70 that reflects at least a portion of the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 and directed toward the substrate surface 21. In the eighth embodiment, the first extending portion 31C of the first wiring 31 constitutes the first reflecting portion 70. In other words, the first wiring 31 can be said to have a portion extending from the first light emitting surface LS1 toward the first sealed end surface 53 as the first reflecting portion 70.
 図36に示すように、半導体レーザ素子40の第2発光面LS2から出射された第2レーザ光は、拡散材57によって拡散(散乱)される。これにより、第2レーザ光は、基板表面21に向かうレーザ光を含む。第8実施形態では、第2配線32は、基板表面21に向かうレーザ光の少なくとも一部を反射する。反射されたレーザ光は、第2封止端面54または封止表面51を通過して半導体レーザ装置10の外部に出射される。このように、半導体レーザ装置10は、半導体レーザ素子40の第2発光面LS2から出射されかつ基板表面21に向かうレーザ光の少なくとも一部を反射する第2反射部150を備えているともいえる。第8実施形態では、第2配線32が第2反射部150を構成している。 As shown in FIG. 36, the second laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57. Thereby, the second laser light includes laser light directed toward the substrate surface 21. In the eighth embodiment, the second wiring 32 reflects at least a portion of the laser beam directed toward the substrate surface 21. The reflected laser light passes through the second sealing end face 54 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . In this way, the semiconductor laser device 10 can be said to include the second reflection section 150 that reflects at least a portion of the laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40 and directed toward the substrate surface 21. In the eighth embodiment, the second wiring 32 constitutes the second reflection section 150.
 なお、第2配線32のY軸方向の両端面のうち第2基板側面24に近い方の端面の位置は任意に変更可能である。一例では、当該端面は、平面視において図34に示す位置よりも第2基板側面24寄りに位置してもよいし、第2基板側面24と同じ位置に位置していてもよい。これにより、第2レーザ光のうち基板表面21に向かうレーザ光をさらに反射しやすくなる。 Note that the position of the end surface of the second wiring 32 in the Y-axis direction that is closer to the second substrate side surface 24 can be changed arbitrarily. In one example, the end surface may be located closer to the second substrate side surface 24 than the position shown in FIG. 34 in plan view, or may be located at the same position as the second substrate side surface 24. This makes it easier to reflect the laser beam directed toward the substrate surface 21 among the second laser beams.
 [効果]
 第8実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (8-1)封止樹脂50は、第1封止端面53とは反対側の第2封止端面54を含む。半導体レーザ素子40は、第2封止端面54に向けてレーザ光を出射する第2発光面LS2を含む。
[effect]
According to the semiconductor laser device 10 of the eighth embodiment, the following effects can be obtained.
(8-1) The sealing resin 50 includes a second sealing end surface 54 opposite to the first sealing end surface 53. The semiconductor laser element 40 includes a second light emitting surface LS2 that emits laser light toward the second sealed end surface 54.
 この構成によれば、半導体レーザ装置10は、+Y方向に向けて出射される広指向角の第1レーザ光と、-Y方向に向けて出射される広指向角の第2レーザ光とを出射することができる。したがって、半導体レーザ装置10から出射されるレーザ光の指向角をさらに広げることができる。 According to this configuration, the semiconductor laser device 10 emits a first laser beam with a wide directivity angle that is emitted in the +Y direction and a second laser beam with a wide directivity angle that is emitted in the -Y direction. can do. Therefore, the directivity angle of the laser light emitted from the semiconductor laser device 10 can be further expanded.
 (8-2)半導体レーザ装置10は、第2発光面LS2から出射されかつ基板表面21に向かうレーザ光の少なくとも一部を反射する第2反射部150をさらに備える。第2反射部150は、第2発光面LS2に対して第2封止端面54寄りの位置に設けられている。 (8-2) The semiconductor laser device 10 further includes a second reflection section 150 that reflects at least a portion of the laser light emitted from the second light emitting surface LS2 and directed toward the substrate surface 21. The second reflecting section 150 is provided at a position closer to the second sealing end surface 54 with respect to the second light emitting surface LS2.
 この構成によれば、第2反射部150によって第2発光面LS2から基板表面21に向かうレーザ光が反射されるため、第2発光面LS2から出射されたレーザ光は、基板表面21よりも上方に向けて第2封止端面54から出射される。したがって、たとえば半導体レーザ装置10が回路基板に実装された場合、第2発光面LS2から回路基板の表面に向けてレーザ光が出射することを抑制できる。 According to this configuration, since the laser light directed from the second light emitting surface LS2 toward the substrate surface 21 is reflected by the second reflecting section 150, the laser light emitted from the second light emitting surface LS2 is directed upward from the substrate surface 21. The light is emitted from the second sealed end surface 54 toward. Therefore, for example, when the semiconductor laser device 10 is mounted on a circuit board, laser light can be suppressed from being emitted from the second light emitting surface LS2 toward the surface of the circuit board.
 (8-3)半導体レーザ装置10は、基板20に設けられ、ワイヤWによって半導体レーザ素子40と電気的に接続された第2配線32をさらに備える。第2配線32は、半導体レーザ素子40の第2発光面LS2に対して第2封止端面54寄りの位置に配置されている。第2反射部150は、第2配線32によって構成されている。 (8-3) The semiconductor laser device 10 further includes a second wiring 32 provided on the substrate 20 and electrically connected to the semiconductor laser element 40 by a wire W. The second wiring 32 is arranged at a position closer to the second sealing end surface 54 with respect to the second light emitting surface LS2 of the semiconductor laser element 40. The second reflective section 150 is configured by the second wiring 32.
 この構成によれば、第2反射部150専用の部品を追加することなく、第2反射部150を構成することができる。したがって、半導体レーザ装置10の部品点数の増加を抑制できる。 According to this configuration, the second reflecting section 150 can be configured without adding any parts dedicated to the second reflecting section 150. Therefore, an increase in the number of parts of the semiconductor laser device 10 can be suppressed.
 <第9実施形態>
 図37~図42を参照して、第9実施形態の半導体レーザ装置10について説明する。第9実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、基板の構成が主に異なる。以下では、基板20の構成について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図37においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Ninth embodiment>
The semiconductor laser device 10 of the ninth embodiment will be described with reference to FIGS. 37 to 42. The semiconductor laser device 10 of the ninth embodiment differs from the semiconductor laser device 10 of the first embodiment mainly in the structure of the substrate. Below, the structure of the substrate 20 will be described in detail, and the same reference numerals will be given to the same components as those of the semiconductor laser device 10 of the first embodiment, and the explanation thereof will be omitted. Note that in FIG. 37, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 [半導体レーザ装置の全体構成]
 図37に示すように、半導体レーザ装置10は、基板20、第1配線31、第2配線32、第1電極33、第2電極34、第1ビア35、および第2ビア36(ともに図1参照)に代えて、基板160を備える。基板160は、半導体レーザ素子40を支持する部品として構成されている。基板160は、たとえば黒色のエポキシ樹脂によって形成された絶縁基板160Aを含む。絶縁基板160Aは、耐熱性を有するエンジニアプラスチック等の材料によって形成することができる。
[Overall configuration of semiconductor laser device]
As shown in FIG. 37, the semiconductor laser device 10 includes a substrate 20, a first wiring 31, a second wiring 32, a first electrode 33, a second electrode 34, a first via 35, and a second via 36 (both shown in FIG. (see), a substrate 160 is provided. The substrate 160 is configured as a component that supports the semiconductor laser element 40. The substrate 160 includes an insulating substrate 160A made of, for example, black epoxy resin. The insulating substrate 160A can be formed of a heat-resistant material such as engineered plastic.
 第9実施形態では、第1実施形態の第1配線31等の配線(図2参照)のような基板表面21(図2参照)に形成された構成、および第1電極33等の外部電極(図4参照)のような基板裏面22(図4参照)に形成された構成とは異なる。基板160は、上記配線および外部電極の構成に代えて、導電性材料によって形成された第1導電部180および第2導電部190を含む。第1導電部180および第2導電部190は、たとえば金属製のフレームによって形成されている。一例では、第1導電部180および第2導電部190には、銅フレームが用いられている。なお、第1導電部180および第2導電部190として構成されるフレームの表面には、めっき膜が設けられていてもよい。めっき膜としては、たとえばAgめっき、Ni/Pd/Auめっき等が挙げられる。第1導電部180および第2導電部190は、絶縁基板160Aに設けられている。このように、第9実施形態の基板160は、第1導電部180と、第2導電部190と、絶縁基板160Aと、を含む。 In the ninth embodiment, the structure formed on the substrate surface 21 (see FIG. 2), such as the wiring such as the first wiring 31 of the first embodiment (see FIG. 2), and the external electrode (such as the first electrode 33) are described. This is different from the configuration formed on the back surface 22 of the substrate (see FIG. 4) such as the one shown in FIG. The substrate 160 includes a first conductive part 180 and a second conductive part 190 formed of a conductive material in place of the above-mentioned wiring and external electrode configuration. The first conductive part 180 and the second conductive part 190 are formed of, for example, a metal frame. In one example, a copper frame is used for the first conductive part 180 and the second conductive part 190. Note that a plating film may be provided on the surface of the frame configured as the first conductive part 180 and the second conductive part 190. Examples of the plating film include Ag plating and Ni/Pd/Au plating. The first conductive part 180 and the second conductive part 190 are provided on the insulating substrate 160A. Thus, the substrate 160 of the ninth embodiment includes the first conductive part 180, the second conductive part 190, and the insulating substrate 160A.
 平面視において、基板160は、X軸方向が短手方向となり、Y軸方向が長手方向となる矩形状の外形を有する。基板160は、Z軸方向に互いに反対側を向く基板表面161および基板裏面162と、基板表面161と基板裏面162とを繋ぐ第1~第4基板側面163~166と、を有する。第1基板側面163および第2基板側面164は、基板160のY軸方向の両端面を構成している。平面視において、第1基板側面163および第2基板側面164の各々は、X軸方向に延びている。第3基板側面165および第4基板側面166は、基板160のX軸方向の両端面を構成している。平面視において、第3基板側面165および第4基板側面166の各々は、Y軸方向に延びている。 In plan view, the substrate 160 has a rectangular outer shape with the X-axis direction being the lateral direction and the Y-axis direction being the longitudinal direction. The substrate 160 has a substrate front surface 161 and a substrate back surface 162 facing oppositely to each other in the Z-axis direction, and first to fourth substrate side surfaces 163 to 166 that connect the substrate front surface 161 and the substrate back surface 162. The first substrate side surface 163 and the second substrate side surface 164 constitute both end surfaces of the substrate 160 in the Y-axis direction. In plan view, each of the first substrate side surface 163 and the second substrate side surface 164 extends in the X-axis direction. The third substrate side surface 165 and the fourth substrate side surface 166 constitute both end surfaces of the substrate 160 in the X-axis direction. In plan view, each of the third substrate side surface 165 and the fourth substrate side surface 166 extends in the Y-axis direction.
 絶縁基板160Aは、第1導電部180および第2導電部190の双方を保持している。絶縁基板160Aは、樹脂モールド成形によって第1導電部180および第2導電部190と一体形成されている。つまり、絶縁基板160Aは、第1導電部180および第2導電部190の双方を保持するモールド樹脂である。 The insulating substrate 160A holds both the first conductive part 180 and the second conductive part 190. The insulating substrate 160A is integrally formed with the first conductive part 180 and the second conductive part 190 by resin molding. That is, the insulating substrate 160A is a molded resin that holds both the first conductive part 180 and the second conductive part 190.
 絶縁基板160Aは、底壁部171および側壁部172を有する。第9実施形態では、底壁部171および側壁部172が一体に形成されている。
 底壁部171は、Z軸方向を厚さ方向とする平板状に形成されている。つまり、Z軸方向は、基板160の厚さ方向ということもできる。底壁部171は、基板表面161および基板裏面162を有する。基板表面161は底壁部171のうち+Z方向を向く面として構成されている。基板裏面162は底壁部171のうち-Z方向を向く面として構成されている。
The insulating substrate 160A has a bottom wall portion 171 and a side wall portion 172. In the ninth embodiment, the bottom wall portion 171 and the side wall portion 172 are integrally formed.
The bottom wall portion 171 is formed into a flat plate shape whose thickness direction is in the Z-axis direction. In other words, the Z-axis direction can also be said to be the thickness direction of the substrate 160. The bottom wall portion 171 has a substrate front surface 161 and a substrate back surface 162. The substrate surface 161 is configured as a surface of the bottom wall portion 171 facing in the +Z direction. The substrate back surface 162 is configured as a surface of the bottom wall portion 171 facing in the −Z direction.
 図38に示すように、底壁部171には、第1導電部180および第2導電部190が設けられている。第1導電部180および第2導電部190は、底壁部171をZ軸方向に貫通している。 As shown in FIG. 38, the bottom wall portion 171 is provided with a first conductive portion 180 and a second conductive portion 190. The first conductive part 180 and the second conductive part 190 penetrate the bottom wall part 171 in the Z-axis direction.
 側壁部172は、底壁部171上に設けられている。図37に示すように、平面視において、側壁部172は、半導体レーザ素子40を囲んでいる。側壁部172は、互いに離隔して配置された一対の第1側壁部172Aと、一対の第1側壁部172Aを繋ぐ第2側壁部172Bと、を有する。第9実施形態では、一対の第1側壁部172Aおよび第2側壁部172Bは一体に形成されている。一対の第1側壁部172Aは、X軸方向において互いに離隔して配列されている。平面視において、各第1側壁部172Aは、Y軸方向、すなわち基板160の長手方向に延びている。平面視において、第2側壁部172Bは、X軸方向、すなわち基板160の短手方向に延びている。第2側壁部172Bは、半導体レーザ素子40よりも基板160の第2基板側面164寄りに配置されている。このように、第9実施形態の絶縁基板160Aは、第1実施形態の基板20(図5参照)に相当する部分と、側壁60(図5参照)に相当する部分とが一体化された構成である。 The side wall portion 172 is provided on the bottom wall portion 171. As shown in FIG. 37, the side wall portion 172 surrounds the semiconductor laser element 40 in plan view. The side wall portion 172 includes a pair of first side wall portions 172A that are spaced apart from each other, and a second side wall portion 172B that connects the pair of first side wall portions 172A. In the ninth embodiment, the pair of first side wall portions 172A and second side wall portions 172B are integrally formed. The pair of first side wall portions 172A are spaced apart from each other in the X-axis direction. In plan view, each first side wall portion 172A extends in the Y-axis direction, that is, in the longitudinal direction of the substrate 160. In plan view, the second side wall portion 172B extends in the X-axis direction, that is, in the lateral direction of the substrate 160. The second side wall portion 172B is arranged closer to the second substrate side surface 164 of the substrate 160 than the semiconductor laser element 40 is. In this way, the insulating substrate 160A of the ninth embodiment has a structure in which a portion corresponding to the substrate 20 (see FIG. 5) of the first embodiment and a portion corresponding to the side wall 60 (see FIG. 5) are integrated. It is.
 図38に示すように、底壁部171に設けられた第1導電部180は、Z軸方向に互いに反対側を向く第1導電表面181および第1導電裏面182を有する。第1導電表面181は基板表面161と同じ側を向き、第1導電裏面182は基板裏面162と同じ側を向いている。第1導電表面181は、底壁部171から露出しており、図示された例においては基板表面161と面一となるように形成されている。第1導電裏面182は、底壁部171から露出しており、図示された例においては基板裏面162と面一となるように形成されている。ここで、第9実施形態では、第1導電表面181は「導電表面」に対応している。 As shown in FIG. 38, the first conductive part 180 provided on the bottom wall part 171 has a first conductive surface 181 and a first conductive back surface 182 facing oppositely to each other in the Z-axis direction. The first conductive surface 181 faces the same side as the substrate front surface 161 and the first conductive back surface 182 faces the same side as the substrate back surface 162. The first conductive surface 181 is exposed from the bottom wall portion 171 and is formed flush with the substrate surface 161 in the illustrated example. The first conductive back surface 182 is exposed from the bottom wall portion 171 and is formed flush with the substrate back surface 162 in the illustrated example. Here, in the ninth embodiment, the first conductive surface 181 corresponds to a "conductive surface".
 図37に示すように、第1導電部180は、第1実装部183と、第1実装部183の側縁部から延びる複数(たとえば3つ)の第1吊りリード部184と、を含む。第1実装部183の側縁部のうちX軸方向の両縁部は、平面視において基板160の側壁部172と重なる位置に設けられている。第1実装部183は、第1導電部180のうち基板表面161から露出した部分であり、第1実施形態の第1配線に相当する。このため、第1導電部180は、第1配線を含むといえる。基板裏面162から露出した第1導電裏面182は、第1実施形態の第1電極に相当する。このため、第1導電部180は、第1電極を含むといえる。 As shown in FIG. 37, the first conductive part 180 includes a first mounting part 183 and a plurality (for example, three) of first hanging lead parts 184 extending from the side edge of the first mounting part 183. Of the side edges of the first mounting portion 183, both edges in the X-axis direction are provided at positions overlapping the side wall portions 172 of the substrate 160 in plan view. The first mounting portion 183 is a portion of the first conductive portion 180 exposed from the substrate surface 161, and corresponds to the first wiring in the first embodiment. Therefore, it can be said that the first conductive section 180 includes the first wiring. The first conductive back surface 182 exposed from the substrate back surface 162 corresponds to the first electrode of the first embodiment. Therefore, it can be said that the first conductive part 180 includes the first electrode.
 半導体レーザ素子40は、第1導電部180の第1実装部183(第1導電表面181)に搭載されている。より詳細には、半導体レーザ素子40は、導電性接合材SDによって第1実装部183の第1導電表面181のうち底壁部171から露出した面に接合されている。このため、半導体レーザ素子40は、第1導電部180(第1実装部183)に実装されているともいえる。 The semiconductor laser element 40 is mounted on the first mounting section 183 (first conductive surface 181) of the first conductive section 180. More specifically, the semiconductor laser element 40 is bonded to the surface of the first conductive surface 181 of the first mounting portion 183 exposed from the bottom wall portion 171 using a conductive bonding material SD. Therefore, it can be said that the semiconductor laser element 40 is mounted on the first conductive section 180 (first mounting section 183).
 3つの第1吊りリード部184は、第1実装部183の第1基板側面163側の側縁部、第3基板側面165側の側縁部、および第4基板側面166側の側縁部から延びている。このため、3つの第1吊りリード部184は、第1基板側面163、第3基板側面165、および第4基板側面166から露出している。第1実装部183の第1基板側面163側の側縁部から延出する第1吊りリード部184は、底壁部171の基板表面161からも露出している。一方、第3基板側面165および第4基板側面166側の側縁部から延出する第1吊りリード部184は、平面視において側壁部172と重なる位置に設けられている。 The three first hanging lead parts 184 extend from the side edge of the first mounting part 183 on the first board side surface 163 side, the side edge part on the third board side surface 165 side, and the side edge on the fourth board side surface 166 side. It is extending. Therefore, the three first suspension lead parts 184 are exposed from the first substrate side surface 163, the third substrate side surface 165, and the fourth substrate side surface 166. The first suspension lead portion 184 extending from the side edge of the first mounting portion 183 on the side of the first substrate side surface 163 is also exposed from the substrate surface 161 of the bottom wall portion 171 . On the other hand, the first hanging lead portion 184 extending from the side edge portions on the side of the third substrate side surface 165 and the fourth substrate side surface 166 is provided at a position overlapping with the side wall portion 172 in plan view.
 第2導電部190は、第1導電部180よりも第2基板側面164寄りに配置されている。図38に示すように、第2導電部190は、Z軸方向に互いに反対側を向く第2導電表面191および第2導電裏面192を有する。第2導電表面191は基板表面161と同じ側を向き、第2導電裏面192は基板裏面162と同じ側を向いている。第2導電表面191は、底壁部171から露出しており、図示された例においては基板表面161と面一となるように形成されている。第2導電裏面192は、底壁部171から露出しており、図示された例においては基板裏面162と面一となるように形成されている。 The second conductive part 190 is arranged closer to the second substrate side surface 164 than the first conductive part 180. As shown in FIG. 38, the second conductive part 190 has a second conductive surface 191 and a second conductive back surface 192 facing oppositely to each other in the Z-axis direction. The second conductive surface 191 faces the same side as the substrate front surface 161 and the second conductive back surface 192 faces the same side as the substrate back surface 162. The second conductive surface 191 is exposed from the bottom wall portion 171 and is formed flush with the substrate surface 161 in the illustrated example. The second conductive back surface 192 is exposed from the bottom wall portion 171 and is formed flush with the substrate back surface 162 in the illustrated example.
 このように、基板160の基板表面161は、絶縁基板160Aの絶縁基板表面と、第1導電部180の第1導電表面181と、第2導電部190の第2導電表面191と、を含む。なお、絶縁基板表面は、絶縁基板160Aの底壁部171のうち基板表面161と同じ側を向く面である。 In this way, the substrate surface 161 of the substrate 160 includes the insulating substrate surface of the insulating substrate 160A, the first conductive surface 181 of the first conductive part 180, and the second conductive surface 191 of the second conductive part 190. Note that the insulating substrate surface is a surface of the bottom wall portion 171 of the insulating substrate 160A that faces the same side as the substrate surface 161.
 また、基板160の基板裏面162は、絶縁基板160Aの絶縁基板裏面と、第1導電部180の第1導電裏面182と、第2導電部190の第2導電裏面192と、を含む。なお、絶縁基板裏面は、絶縁基板160Aの底壁部171のうち基板裏面162と同じ側を向く面である。 Further, the substrate back surface 162 of the substrate 160 includes the insulating substrate back surface of the insulating substrate 160A, the first conductive back surface 182 of the first conductive part 180, and the second conductive back surface 192 of the second conductive part 190. Note that the insulating substrate back surface is a surface of the bottom wall portion 171 of the insulating substrate 160A that faces the same side as the substrate back surface 162.
 図37に示すように、第2導電部190は、第2実装部193と、第2実装部193の側縁部から延びる複数(たとえば3つ)の第2吊りリード部194と、を含む。第2実装部193の側縁部のうちX軸方向の両縁部は、平面視において基板160の側壁部172と重なる位置に設けられている。第2実装部193は、第2導電部190のうち基板表面161から露出した部分であり、第1実施形態の第2配線に相当する。このため、第2導電部190は、第2配線を含むといえる。基板裏面162から露出した第2導電裏面192は、第1実施形態の第2電極に相当する。このため、第2導電部190は、第2電極を含むといえる。 As shown in FIG. 37, the second conductive part 190 includes a second mounting part 193 and a plurality (for example, three) of second hanging lead parts 194 extending from the side edge of the second mounting part 193. Of the side edges of the second mounting portion 193, both edges in the X-axis direction are provided at positions overlapping with the side wall portions 172 of the substrate 160 in plan view. The second mounting portion 193 is a portion of the second conductive portion 190 exposed from the substrate surface 161, and corresponds to the second wiring in the first embodiment. Therefore, it can be said that the second conductive section 190 includes the second wiring. The second conductive back surface 192 exposed from the substrate back surface 162 corresponds to the second electrode of the first embodiment. Therefore, it can be said that the second conductive part 190 includes a second electrode.
 半導体レーザ素子40のアノード電極47は、ワイヤWによって第2実装部193に電気的に接続されている。より詳細には、アノード電極47に接続されたワイヤWは、第2実装部193の第2導電表面191のうち底壁部171から露出した面に接合されている。ワイヤWは、たとえば第1実施形態のワイヤWと同じ材料によって形成されている。 The anode electrode 47 of the semiconductor laser element 40 is electrically connected to the second mounting portion 193 by a wire W. More specifically, the wire W connected to the anode electrode 47 is joined to the surface of the second conductive surface 191 of the second mounting section 193 exposed from the bottom wall section 171. The wire W is made of the same material as the wire W of the first embodiment, for example.
 3つの第2吊りリード部194は、第2実装部193の第2基板側面164側の側縁部、第3基板側面165側の側縁部、および第4基板側面166側の側縁部から延びている。このため、3つの第2吊りリード部194は、第2基板側面164、第3基板側面165、および第4基板側面166から露出している。第2基板側面164、第3基板側面165、および第4基板側面166側の側縁部から延出する第2吊りリード部194は、平面視において側壁部172と重なる位置に設けられている。 The three second hanging lead parts 194 extend from the side edge of the second mounting part 193 on the second board side surface 164 side, the side edge part on the third board side surface 165 side, and the side edge on the fourth board side surface 166 side. It is extending. Therefore, the three second hanging lead portions 194 are exposed from the second substrate side surface 164, the third substrate side surface 165, and the fourth substrate side surface 166. The second suspension lead portion 194 extending from the side edges of the second substrate side surface 164, the third substrate side surface 165, and the fourth substrate side surface 166 is provided at a position overlapping with the side wall portion 172 in plan view.
 半導体レーザ素子40は、封止樹脂50によって封止されている。封止樹脂50は、底壁部171および側壁部172によって囲まれた空間に設けられている。このため、封止樹脂50の第2封止端面54は第2側壁部172Bに接しており、第3封止端面55および第4封止端面56の双方は一対の第1側壁部172Aに接している。一方、第1封止端面53は、側壁部172から露出している。図示された例においては、第1封止端面53は、第1基板側面163と面一となるように形成されている。また、封止樹脂50には、第1実施形態と同様に、拡散材57が混合されている。 The semiconductor laser element 40 is sealed with a sealing resin 50. The sealing resin 50 is provided in a space surrounded by the bottom wall part 171 and the side wall part 172. Therefore, the second sealing end surface 54 of the sealing resin 50 is in contact with the second side wall portion 172B, and both the third sealing end surface 55 and the fourth sealing end surface 56 are in contact with the pair of first side wall portions 172A. ing. On the other hand, the first sealed end surface 53 is exposed from the side wall portion 172. In the illustrated example, the first sealing end surface 53 is formed flush with the first substrate side surface 163. Further, the sealing resin 50 is mixed with a diffusion material 57 as in the first embodiment.
 [半導体レーザ素子の配置態様と半導体レーザ素子のレーザ光の反射]
 図37に示すように、平面視において、第1実装部183のうち底壁部171から露出した部分の面積は、半導体レーザ素子40の面積よりも大きい。より詳細には、第1実装部183のX軸方向の長さは半導体レーザ素子40のX軸方向の長さよりも長く、第1実装部183のY軸方向の長さは半導体レーザ素子40のY軸方向の長さよりも長い。
[Arrangement of semiconductor laser device and reflection of laser light from the semiconductor laser device]
As shown in FIG. 37, the area of the portion of the first mounting portion 183 exposed from the bottom wall portion 171 is larger than the area of the semiconductor laser element 40 in plan view. More specifically, the length of the first mounting portion 183 in the X-axis direction is longer than the length of the semiconductor laser device 40 in the X-axis direction, and the length of the first mounting portion 183 in the Y-axis direction is longer than the length of the semiconductor laser device 40 in the X-axis direction. It is longer than the length in the Y-axis direction.
 半導体レーザ素子40は、第1実装部183のうち第2実装部193(第2基板側面164)寄りの部分に配置されている。より詳細には、半導体レーザ素子40のY軸方向の中心は、第1実装部183のY軸方向の中心よりも第2実装部193(第2基板側面164)寄りに位置している。 The semiconductor laser element 40 is arranged in a portion of the first mounting section 183 closer to the second mounting section 193 (second substrate side surface 164). More specifically, the center of the semiconductor laser element 40 in the Y-axis direction is located closer to the second mounting portion 193 (second substrate side surface 164) than the center of the first mounting portion 183 in the Y-axis direction.
 第1実装部183は、第1実装部183のY軸方向の両端部を構成する第1端面183Aおよび第2端面183Bを含む。第1端面183Aは第1実装部183の両端部のうち第1基板側面163に近い方の端面であり、第2端面183Bは第1実装部183の両端部のうち第2基板側面164に近い方の端面である。第9実施形態では、第1端面183Aは、第1基板側面163よりも内側(第2基板側面164寄り)に配置されている。第1端面183Aは、平面視において、第1基板側面163と半導体レーザ素子40の第1素子側面43(第1発光面LS1)とのY軸方向の間の中央よりも第1基板側面163寄りに配置されている。 The first mounting section 183 includes a first end surface 183A and a second end surface 183B that constitute both ends of the first mounting section 183 in the Y-axis direction. The first end surface 183A is the end surface of the first mounting section 183 that is closer to the first board side surface 163, and the second end surface 183B is the end surface of the first mounting section 183 that is closer to the second board side surface 164. This is the end face of the In the ninth embodiment, the first end surface 183A is arranged inside the first substrate side surface 163 (closer to the second substrate side surface 164). The first end surface 183A is closer to the first substrate side surface 163 than the center between the first substrate side surface 163 and the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40 in the Y-axis direction in a plan view. It is located in
 平面視において、第1実装部183のY軸方向の長さが半導体レーザ素子40のY軸方向の長さよりも長いため、第1実装部183は、半導体レーザ素子40の第1発光面LS1と第1端面183Aとの間の部分である第1延出部183Cと、第2発光面LS2と第2端面183Bとの間の部分である第2延出部183Dと、を含む。このように、第1実装部183(第1導電表面181)は、半導体レーザ素子40の第1素子側面43(第1発光面LS1)から第1封止端面53に向けて延出した部分である第1延出部183Cを有するともいえる。第1延出部183Cは、第1端面183Aを含む。第2延出部183Dは、第2端面183Bを含む。 In plan view, the length of the first mounting portion 183 in the Y-axis direction is longer than the length of the semiconductor laser device 40 in the Y-axis direction, so the first mounting portion 183 is connected to the first light emitting surface LS1 of the semiconductor laser device 40. It includes a first extending portion 183C that is a portion between the first end surface 183A and a second extending portion 183D that is a portion between the second light emitting surface LS2 and the second end surface 183B. In this way, the first mounting portion 183 (first conductive surface 181) is a portion extending from the first device side surface 43 (first light emitting surface LS1) of the semiconductor laser device 40 toward the first sealing end surface 53. It can also be said that it has a certain first extending portion 183C. The first extending portion 183C includes a first end surface 183A. The second extending portion 183D includes a second end surface 183B.
 半導体レーザ素子40の第1素子側面43(第1発光面LS1)と第1実装部183の第1端面183AとのY軸方向の間の距離DA1は、半導体レーザ素子40の第2素子側面44と第1実装部183の第2端面183BとのY軸方向の間の距離DA2よりも大きい。ここで、距離DA1は第1延出部183CのY軸方向の長さであるともいえ、距離DA2は第2延出部183DのY軸方向の長さであるともいえる。 The distance DA1 between the first element side surface 43 (first light emitting surface LS1) of the semiconductor laser element 40 and the first end surface 183A of the first mounting section 183 in the Y-axis direction is equal to the second element side surface 44 of the semiconductor laser element 40. and the second end surface 183B of the first mounting portion 183 in the Y-axis direction. Here, the distance DA1 can be said to be the length of the first extension part 183C in the Y-axis direction, and the distance DA2 can be said to be the length of the second extension part 183D in the Y-axis direction.
 第1実施形態と同様に、半導体レーザ素子40の第1発光面LS1は、第1封止端面53と同じ側を向いている。半導体レーザ素子40の第1発光面LS1から出射されたレーザ光は、拡散材57によって拡散(散乱)される。これにより、レーザ光は、基板表面161に向かうレーザ光を含む。第1延出部183Cは、基板表面161に向かうレーザ光の少なくとも一部を反射する。反射されたレーザ光は、第1封止端面53または封止表面51を通過して半導体レーザ装置10の外部に出射される。このように、半導体レーザ装置10は、半導体レーザ素子40の第1発光面LS1から出射されかつ基板表面161に向かうレーザ光の少なくとも一部を反射する第1反射部70を備えているともいえる。第9実施形態では、第1実装部183の第1延出部183Cが第1反射部70を構成している。つまり、第1実装部183は、第1反射部70として、第1発光面LS1から第1封止端面53に向けて延出した部分を有するともいえる。 Similarly to the first embodiment, the first light emitting surface LS1 of the semiconductor laser element 40 faces the same side as the first sealing end surface 53. The laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57. Thereby, the laser light includes laser light directed toward the substrate surface 161. The first extension portion 183C reflects at least a portion of the laser beam directed toward the substrate surface 161. The reflected laser light passes through the first sealing end face 53 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . In this way, the semiconductor laser device 10 can be said to include the first reflecting section 70 that reflects at least a portion of the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 and directed toward the substrate surface 161. In the ninth embodiment, the first extending portion 183C of the first mounting portion 183 constitutes the first reflecting portion 70. In other words, it can be said that the first mounting section 183 has a portion extending from the first light emitting surface LS1 toward the first sealing end surface 53 as the first reflecting section 70.
 [半導体レーザ装置の製造方法]
 図39~図42を参照して、第9実施形態の半導体レーザ装置10の製造方法の一例について説明する。なお、図39~図42では、便宜上、4つの半導体レーザ装置10を一度に製造できる構成を示しているが、これに限られず、より多くの半導体レーザ装置10を一度に製造できるように構成してもよい。
[Method for manufacturing semiconductor laser device]
An example of a method for manufacturing the semiconductor laser device 10 of the ninth embodiment will be described with reference to FIGS. 39 to 42. Note that although FIGS. 39 to 42 show a configuration in which four semiconductor laser devices 10 can be manufactured at once for convenience, the present invention is not limited to this, and the configuration can be configured so that more semiconductor laser devices 10 can be manufactured at once. You can.
 半導体レーザ装置10の製造方法は、リードフレーム980を用意する工程と、絶縁基板960を形成する工程と、半導体レーザ素子40を搭載する工程と、ワイヤWを形成する工程と、封止樹脂950を形成する工程と、個片化する工程と、を含む。 The method for manufacturing the semiconductor laser device 10 includes a step of preparing a lead frame 980, a step of forming an insulating substrate 960, a step of mounting the semiconductor laser element 40, a step of forming the wire W, and a step of forming the sealing resin 950. It includes a step of forming and a step of singulating.
 図39に示すように、リードフレーム980を用意する工程では、複数の第1導電部180および複数の第2導電部190を含むリードフレーム980が用意される。リードフレーム980は、たとえばCuを含む材料によって形成されている。 As shown in FIG. 39, in the step of preparing a lead frame 980, a lead frame 980 including a plurality of first conductive parts 180 and a plurality of second conductive parts 190 is prepared. Lead frame 980 is made of a material containing Cu, for example.
 リードフレーム980は、複数の第1導電部180および複数の第2導電部190を含む。X軸方向において隣り合う2つの第1導電部180は、第1吊りリード部184によって互いに連結されている。X軸方向において隣り合う2つの第2導電部190は、第2吊りリード部194によって連結されている。Y軸方向において隣り合う第1導電部180と第2導電部190は、第1吊りリード部184と第2吊りリード部194とによって連結されている。なお、図示していないが、リードフレーム980は枠部を有する。この枠部によって複数の第1導電部180および複数の第2導電部190が連結されている。 The lead frame 980 includes a plurality of first conductive parts 180 and a plurality of second conductive parts 190. Two first conductive parts 180 adjacent in the X-axis direction are connected to each other by a first hanging lead part 184. Two second conductive parts 190 adjacent in the X-axis direction are connected by a second hanging lead part 194. The first conductive part 180 and the second conductive part 190 that are adjacent in the Y-axis direction are connected by a first hanging lead part 184 and a second hanging lead part 194. Although not shown, the lead frame 980 has a frame portion. The frame portion connects the plurality of first conductive parts 180 and the plurality of second conductive parts 190.
 図40に示すように、絶縁基板960を形成する工程では、樹脂成形によってリードフレーム980と一体化するように絶縁基板960が形成される。絶縁基板960は、リードフレーム980を支持している。絶縁基板960は、複数の基板160(絶縁基板160A)を含むサイズに形成されている。絶縁基板960は、たとえば黒色のエポキシ樹脂が用いられている。絶縁基板960は、複数の底壁部971および複数の側壁部972を含む。底壁部971および側壁部972の各々の個数は、絶縁基板960における基板160(絶縁基板160A)の個数に応じて設定される。絶縁基板960には、平面視で隣り合う側壁部972によって第1実装部183および第2実装部193を囲む単位側壁が形成されている。 As shown in FIG. 40, in the step of forming the insulating substrate 960, the insulating substrate 960 is formed by resin molding so as to be integrated with the lead frame 980. Insulating substrate 960 supports lead frame 980. The insulating substrate 960 is formed in a size that includes a plurality of substrates 160 (insulating substrates 160A). The insulating substrate 960 is made of, for example, black epoxy resin. Insulating substrate 960 includes a plurality of bottom wall sections 971 and a plurality of side wall sections 972. The number of each of the bottom wall part 971 and the side wall part 972 is set according to the number of substrates 160 (insulating substrates 160A) in the insulating substrate 960. In the insulating substrate 960, a unit side wall surrounding the first mounting section 183 and the second mounting section 193 is formed by side wall sections 972 that are adjacent in plan view.
 図41に示すように、半導体レーザ素子40を搭載する工程は、第9実施形態では、第1導電部180の第1実装部183に半導体レーザ素子40を実装する工程である。この工程では、半導体レーザ素子40が第1導電部180の第1実装部183にたとえばダイボンディングされる。これにより、半導体レーザ素子40のカソード電極48と第1導電部180とが電気的に接続される。 As shown in FIG. 41, in the ninth embodiment, the step of mounting the semiconductor laser device 40 is a step of mounting the semiconductor laser device 40 on the first mounting portion 183 of the first conductive portion 180. In this step, the semiconductor laser element 40 is die-bonded to the first mounting section 183 of the first conductive section 180, for example. Thereby, the cathode electrode 48 of the semiconductor laser element 40 and the first conductive part 180 are electrically connected.
 続いて、ワイヤWを形成する工程では、半導体レーザ素子40のアノード電極47と第2導電部190の第2実装部193とを電気的に接続するワイヤWが形成される。ワイヤWは、ワイヤボンディング装置によって形成されたボンディングワイヤである。ここで、第9実施形態では、ワイヤWのうち第2実装部193側をファーストボンディングとし、半導体レーザ素子40のアノード電極47側をセカンドボンディングとしている。 Subsequently, in the step of forming the wire W, the wire W that electrically connects the anode electrode 47 of the semiconductor laser element 40 and the second mounting section 193 of the second conductive section 190 is formed. The wire W is a bonding wire formed by a wire bonding device. Here, in the ninth embodiment, first bonding is performed on the second mounting portion 193 side of the wire W, and second bonding is performed on the anode electrode 47 side of the semiconductor laser element 40.
 図42に示すように、封止樹脂950を形成する工程では、絶縁基板960と複数の側壁部972によって構成された単位側壁とによって囲まれた空間に封止樹脂950が形成される。側壁部972(単位側壁)は、封止樹脂950を囲んでいるといえる。 As shown in FIG. 42, in the step of forming the sealing resin 950, the sealing resin 950 is formed in a space surrounded by an insulating substrate 960 and a unit side wall formed by a plurality of side wall parts 972. It can be said that the side wall portion 972 (unit side wall) surrounds the sealing resin 950.
 封止樹脂950は、たとえば樹脂成形によって形成される。封止樹脂950は、第1実装部183、第2実装部193、半導体レーザ素子40、およびワイヤWを封止している。封止樹脂950は、透光性の材料によって形成されている。一例では、封止樹脂950は、シリコーン樹脂、エポキシ樹脂、およびアクリル樹脂の少なくとも1つを含む材料によって形成されている。ここで、封止樹脂950は、たとえばトランスファモールドまたはコンプレッションモールドによって形成される。なお、封止樹脂950は、ポッティングによって絶縁基板960の底壁部971と側壁部972の単位側壁とによって囲まれた空間に充填されてもよい。なお、封止樹脂950は、拡散材57(図42参照)を含む。 The sealing resin 950 is formed by resin molding, for example. The sealing resin 950 seals the first mounting section 183, the second mounting section 193, the semiconductor laser element 40, and the wire W. The sealing resin 950 is made of a translucent material. In one example, the sealing resin 950 is formed of a material containing at least one of silicone resin, epoxy resin, and acrylic resin. Here, the sealing resin 950 is formed by, for example, transfer molding or compression molding. Note that the sealing resin 950 may be filled in a space surrounded by the bottom wall portion 971 of the insulating substrate 960 and the unit side walls of the side wall portions 972 by potting. Note that the sealing resin 950 includes a diffusion material 57 (see FIG. 42).
 続いて、個片化する工程では、ダイシングブレードによって、図41の切断線CLに沿って側壁部972および底壁部971の双方が切断される。これにより、基板160および封止樹脂50が形成される。半導体レーザ素子40は、レーザ光を出射する第1発光面LS1が封止樹脂50の第1封止端面53に向けてレーザ光を出射するように第1配線31に搭載されている。つまり、半導体レーザ素子40は、第1発光面LS1が第1封止端面53と同じ側を向くように第1配線31に搭載されている。以上の工程を経て、半導体レーザ装置10が製造される。 Subsequently, in the step of singulating, both the side wall portion 972 and the bottom wall portion 971 are cut along the cutting line CL in FIG. 41 by a dicing blade. Thereby, the substrate 160 and the sealing resin 50 are formed. The semiconductor laser element 40 is mounted on the first wiring 31 so that the first light emitting surface LS1 that emits laser light emits the laser light toward the first sealing end surface 53 of the sealing resin 50. That is, the semiconductor laser element 40 is mounted on the first wiring 31 so that the first light emitting surface LS1 faces the same side as the first sealed end surface 53. Through the above steps, the semiconductor laser device 10 is manufactured.
 [効果]
 第9実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (9-1)半導体レーザ装置10は、第1導電部180を備える。絶縁基板160Aは、第1導電部180を保持するモールド樹脂である。絶縁基板160Aは、第1導電部180を保持する底壁部171と、底壁部171から立ち上がり、平面視において封止樹脂50を囲む側壁部172とが一体に形成されている。
[effect]
According to the semiconductor laser device 10 of the ninth embodiment, the following effects can be obtained.
(9-1) The semiconductor laser device 10 includes a first conductive section 180. The insulating substrate 160A is a molded resin that holds the first conductive part 180. The insulating substrate 160A is integrally formed with a bottom wall portion 171 that holds the first conductive portion 180 and a side wall portion 172 that rises from the bottom wall portion 171 and surrounds the sealing resin 50 in a plan view.
 この構成によれば、底壁部171と側壁部172とが個別に形成された後に底壁部171と側壁部172とを接合する構成と比較して、絶縁基板160Aの製造工数を低減できるため、基板160を容易に製造できる。 According to this configuration, the number of man-hours for manufacturing the insulating substrate 160A can be reduced compared to a configuration in which the bottom wall portion 171 and the side wall portion 172 are formed individually and then bonded together. , the substrate 160 can be easily manufactured.
 (9-2)第1導電部180の第1導電表面181(第1実装部183)は、第1反射部70として、半導体レーザ素子40の第1発光面LS1から封止樹脂50の第1封止端面53に向けて延出する部分を有する。 (9-2) The first conductive surface 181 (first mounting portion 183) of the first conductive portion 180 serves as the first reflective portion 70, and the first conductive surface 181 (first mounting portion 183) of the first conductive portion 180 is connected to It has a portion extending toward the sealing end surface 53.
 この構成によれば、第1反射部70専用の部品を追加することなく、第1導電部180によって第1反射部70を構成することができる。したがって、半導体レーザ装置10の部品点数の増加を抑制できる。 According to this configuration, the first reflecting section 70 can be configured by the first conductive section 180 without adding any parts dedicated to the first reflecting section 70. Therefore, an increase in the number of parts of the semiconductor laser device 10 can be suppressed.
 <第10実施形態>
 図43~図45を参照して、第10実施形態の半導体レーザ装置10について説明する。第10実施形態の半導体レーザ装置10は、第1実施形態の半導体レーザ装置10と比較して、半導体レーザ素子40と第1配線31との間にサブマウント基板が介在する点が異なる。以下では、第1実施形態と異なる点について詳細に説明し、第1実施形態の半導体レーザ装置10の構成要素と共通する構成要素には同一符号を付し、その説明を省略する。なお、図43においては、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Tenth embodiment>
A semiconductor laser device 10 according to a tenth embodiment will be described with reference to FIGS. 43 to 45. The semiconductor laser device 10 of the tenth embodiment differs from the semiconductor laser device 10 of the first embodiment in that a submount substrate is interposed between the semiconductor laser element 40 and the first wiring 31. In the following, points different from the first embodiment will be described in detail, and components common to those of the semiconductor laser device 10 of the first embodiment are denoted by the same reference numerals, and their explanations will be omitted. Note that in FIG. 43, the diffusion material 57 in the sealing resin 50 is omitted for easy understanding of the drawing.
 図43に示すように、半導体レーザ素子40と第1配線31との間にサブマウント基板200が介在している。サブマウント基板200は、半導体レーザ素子40と第1配線31とを電気的に接続している。より詳細には、サブマウント基板200は、半導体レーザ素子40のカソード電極48と第1配線31とを電気的に接続している。 As shown in FIG. 43, a submount substrate 200 is interposed between the semiconductor laser element 40 and the first wiring 31. The submount substrate 200 electrically connects the semiconductor laser element 40 and the first wiring 31. More specifically, the submount substrate 200 electrically connects the cathode electrode 48 of the semiconductor laser element 40 and the first wiring 31.
 サブマウント基板200は、たとえば第1配線31よりも半導体レーザ素子40に近い熱膨張係数を有する材料によって形成されている。つまり、サブマウント基板200と半導体レーザ素子40との熱膨張係数の差は、第1配線31と半導体レーザ素子40との熱膨張係数の差よりも小さい。たとえば、半導体レーザ素子40はSi基板によって形成されているため、熱膨張係数は2.6×10-6/K程度である。第1配線31は銅を含む材料によって形成されているため、熱膨張係数は16.5×10-6/K程度である。このため、サブマウント基板200は、熱膨張係数が16.5×10-6/Kよりも小さい材料によって形成されている。一例では、サブマウント基板200は、アルミナによって形成されている。この場合、サブマウント基板200の熱膨張係数は7.2×10-6/K程度である。また、サブマウント基板200は、窒化アルミニウムによって形成されていてもよい。この場合、サブマウント基板200の熱膨張係数は4.6×10-6/K程度である。 The submount substrate 200 is made of a material having a coefficient of thermal expansion closer to that of the semiconductor laser element 40 than that of the first wiring 31, for example. That is, the difference in thermal expansion coefficient between the submount substrate 200 and the semiconductor laser element 40 is smaller than the difference in the thermal expansion coefficient between the first wiring 31 and the semiconductor laser element 40. For example, since the semiconductor laser element 40 is formed of a Si substrate, its thermal expansion coefficient is approximately 2.6×10 −6 /K. Since the first wiring 31 is formed of a material containing copper, its coefficient of thermal expansion is approximately 16.5×10 −6 /K. Therefore, the submount substrate 200 is formed of a material with a coefficient of thermal expansion smaller than 16.5×10 −6 /K. In one example, submount substrate 200 is made of alumina. In this case, the coefficient of thermal expansion of the submount substrate 200 is approximately 7.2×10 −6 /K. Furthermore, the submount substrate 200 may be made of aluminum nitride. In this case, the coefficient of thermal expansion of the submount substrate 200 is approximately 4.6×10 −6 /K.
 サブマウント基板200は、Z軸方向を厚さ方向とする平板状に形成されている。平面視におけるサブマウント基板200の形状は、Y軸方向を長手方向とし、X軸方向を短手方向とする矩形状である。第10実施形態では、平面視において、サブマウント基板200は、半導体レーザ素子40よりも一回り大きいサイズとして形成されている。 The submount substrate 200 is formed into a flat plate shape with the thickness direction in the Z-axis direction. The shape of the submount substrate 200 in plan view is a rectangular shape with the Y-axis direction as the longitudinal direction and the X-axis direction as the lateral direction. In the tenth embodiment, the submount substrate 200 is formed to be one size larger than the semiconductor laser element 40 in plan view.
 図44および図45に示すように、サブマウント基板200は、表面201および裏面202と、表面201と裏面202とを繋ぐ第1~第4側面203~206と、を有する。表面201は基板表面21と同じ側を向き、裏面202は基板裏面22と同じ側を向いている。裏面202は、第1配線31と対面している。第1~第4側面203~206は、表面201および裏面202の双方と交差する面である。第10実施形態では、第1~第4側面203~206の各々は、表面201および裏面202と直交した面である。第1側面203および第2側面204はサブマウント基板200のY軸方向の両端面を構成している。第1側面203は第1基板側面23と同じ側を向き、第2側面204は第2基板側面24と同じ側を向いている。第3側面205および第4側面206はサブマウント基板200のX軸方向の両端面を構成している。第3側面205は第3基板側面25と同じ側を向き、第4側面206は第4基板側面26と同じ側を向いている。 As shown in Figures 44 and 45, the submount substrate 200 has a front surface 201, a back surface 202, and first to fourth side surfaces 203 to 206 connecting the front surface 201 and the back surface 202. The front surface 201 faces the same side as the substrate front surface 21, and the back surface 202 faces the same side as the substrate back surface 22. The back surface 202 faces the first wiring 31. The first to fourth side surfaces 203 to 206 are surfaces that intersect with both the front surface 201 and the back surface 202. In the tenth embodiment, each of the first to fourth side surfaces 203 to 206 is a surface that is perpendicular to the front surface 201 and the back surface 202. The first side surface 203 and the second side surface 204 constitute both end surfaces of the submount substrate 200 in the Y-axis direction. The first side surface 203 faces the same side as the first substrate side surface 23, and the second side surface 204 faces the same side as the second substrate side surface 24. The third side surface 205 and the fourth side surface 206 constitute both end surfaces in the X-axis direction of the submount substrate 200. The third side surface 205 faces the same side as the third substrate side surface 25, and the fourth side surface 206 faces the same side as the fourth substrate side surface 26.
 半導体レーザ装置10は、サブマウント基板200の表面201に設けられた表面側配線207と、裏面202に設けられた裏面側配線208と、表面側配線207と裏面側配線208とを接続するビア209と、を備える。表面側配線207および裏面側配線208の各々は、たとえば銅を含む材料によって形成されている。ビア209は、たとえばCuを含む材料によって形成されている。 The semiconductor laser device 10 includes a front side wiring 207 provided on the front side 201 of the submount substrate 200, a back side wiring 208 provided on the back side 202, and a via 209 connecting the front side wiring 207 and the back side wiring 208. and. Each of the front side wiring 207 and the back side wiring 208 is formed of a material containing copper, for example. Via 209 is formed of a material containing Cu, for example.
 図44に示すように、表面側配線207は、平面視において、サブマウント基板200よりも一回り小さい矩形状に形成されている。図45に示すように、裏面側配線208は、平面視において、表面側配線207と同じサイズの矩形状に形成されている。第10実施形態では、表面側配線207は、サブマウント基板200の表面201に形成されている。図44に示すように、ビア209は、たとえば複数(第10実施形態では8つ)設けられている。ビア209は、Y軸方向において互いに離隔して一列に配列された4つのビア209の列がX軸方向に離隔して2列形成されている。 As shown in FIG. 44, the front-side wiring 207 is formed into a rectangular shape that is one size smaller than the submount substrate 200 in plan view. As shown in FIG. 45, the back side wiring 208 is formed in a rectangular shape with the same size as the front side wiring 207 in plan view. In the tenth embodiment, the front side wiring 207 is formed on the front surface 201 of the submount substrate 200. As shown in FIG. 44, a plurality of vias 209 (eight in the tenth embodiment) are provided, for example. The vias 209 are formed by two rows of four vias 209 arranged in a row spaced apart from each other in the Y-axis direction and spaced apart from each other in the X-axis direction.
 なお、表面側配線207および裏面側配線208の各々の形状およびサイズは任意に変更可能である。一例では、平面視において表面側配線207の面積と裏面側配線208の面積とが互いに異なっていてもよい。また、ビア209の個数は任意に変更可能である。 Note that the shape and size of each of the front-side wiring 207 and the back-side wiring 208 can be changed arbitrarily. In one example, the area of the front-side wiring 207 and the area of the back-side wiring 208 may be different from each other in plan view. Further, the number of vias 209 can be changed arbitrarily.
 サブマウント基板200は、導電性接合材SDによって第1配線31に接合されている。つまり、サブマウント基板200は、第1配線31に実装されている。第10実施形態では、サブマウント基板200は、Y軸方向において第1配線31の第2端面31B寄りに配置されている。換言すると、図44に示すように、サブマウント基板200と第1配線31の第1端面31AとのY軸方向の間の距離DB1は、サブマウント基板200と第1配線31の第2端面31BとのY軸方向の間の距離DB2よりも大きい。 The submount substrate 200 is bonded to the first wiring 31 using a conductive bonding material SD. That is, the submount substrate 200 is mounted on the first wiring 31. In the tenth embodiment, the submount substrate 200 is arranged closer to the second end surface 31B of the first wiring 31 in the Y-axis direction. In other words, as shown in FIG. 44, the distance DB1 between the submount board 200 and the first end surface 31A of the first wiring 31 in the Y-axis direction is equal to the distance DB1 between the submount board 200 and the second end surface 31B of the first wiring 31. The distance between DB2 and DB2 in the Y-axis direction is greater than DB2.
 図45に示すように、半導体レーザ素子40は、サブマウント基板200に実装されている。より詳細には、半導体レーザ素子40のカソード電極48は、導電性接合材SDによってサブマウント基板200の表面側配線207に接合されている。これにより、カソード電極48は、表面側配線207と電気的に接続されている。表面側配線207がビア209を介して裏面側配線208に電気的に接続されているため、カソード電極48は、裏面側配線208と電気的に接続されている。裏面側配線208は導電性接合材SDによって第1配線31と電気的に接続されているため、カソード電極48は、第1配線31と電気的に接続されている。第10実施形態では、半導体レーザ素子40は、サブマウント基板200のY軸方向の中央に配置されている。 As shown in FIG. 45, the semiconductor laser element 40 is mounted on a submount substrate 200. More specifically, the cathode electrode 48 of the semiconductor laser element 40 is bonded to the front side wiring 207 of the submount substrate 200 using a conductive bonding material SD. Thereby, the cathode electrode 48 is electrically connected to the front side wiring 207. Since the front side wiring 207 is electrically connected to the back side wiring 208 via the via 209, the cathode electrode 48 is electrically connected to the back side wiring 208. Since the back side wiring 208 is electrically connected to the first wiring 31 by the conductive bonding material SD, the cathode electrode 48 is electrically connected to the first wiring 31. In the tenth embodiment, the semiconductor laser element 40 is arranged at the center of the submount substrate 200 in the Y-axis direction.
 サブマウント基板200、半導体レーザ素子40、およびワイヤWは、封止樹脂50によって封止されている。サブマウント基板200の第1側面203は、封止樹脂50の第1封止端面53よりも内側(半導体レーザ素子40寄り)に配置されている。 The submount substrate 200, the semiconductor laser element 40, and the wire W are sealed with a sealing resin 50. The first side surface 203 of the submount substrate 200 is arranged inside the first sealing end surface 53 of the sealing resin 50 (closer to the semiconductor laser element 40).
 第10実施形態では、半導体レーザ装置10は、第1反射部70(図5参照)を備えていない。つまり、半導体レーザ素子40の第1発光面LS1から出射したレーザ光は、封止樹脂50を介して第1封止端面53および封止表面51から出射する。 In the tenth embodiment, the semiconductor laser device 10 does not include the first reflection section 70 (see FIG. 5). That is, the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is emitted from the first sealing end surface 53 and the sealing surface 51 via the sealing resin 50.
 [効果]
 第10実施形態の半導体レーザ装置10によれば、以下の効果が得られる。
 (10-1)半導体レーザ装置10は、第1配線31と半導体レーザ素子40との間に介在し、第1配線31と半導体レーザ素子40とを電気的に接続するサブマウント基板200をさらに備える。サブマウント基板200は、第1配線31よりも半導体レーザ素子40に近い熱膨張係数を有する材料によって形成されている。
[effect]
According to the semiconductor laser device 10 of the tenth embodiment, the following effects can be obtained.
(10-1) The semiconductor laser device 10 further includes a submount substrate 200 that is interposed between the first wiring 31 and the semiconductor laser element 40 and electrically connects the first wiring 31 and the semiconductor laser element 40. . The submount substrate 200 is made of a material having a coefficient of thermal expansion closer to that of the semiconductor laser element 40 than that of the first wiring 31.
 この構成によれば、第1配線31と半導体レーザ素子40との熱膨張係数の差に起因して半導体レーザ素子40に加わる力を低減できる。したがって、温度変化に起因して半導体レーザ素子40の電気的特性に影響を与えることを低減できる。 According to this configuration, the force applied to the semiconductor laser element 40 due to the difference in thermal expansion coefficient between the first wiring 31 and the semiconductor laser element 40 can be reduced. Therefore, it is possible to reduce the influence on the electrical characteristics of the semiconductor laser element 40 due to temperature changes.
 (10-2)サブマウント基板200と第1配線31の第1端面31AとのY軸方向の間の距離DB1は、サブマウント基板200と第1配線31の第2端面31BとのY軸方向の間の距離DB2よりも大きい。 (10-2) The distance DB1 between the submount board 200 and the first end surface 31A of the first wiring 31 in the Y-axis direction is the distance DB1 between the submount board 200 and the second end surface 31B of the first wiring 31 in the Y-axis direction. The distance between DB2 is greater than DB2.
 この構成によれば、半導体レーザ素子40を第1封止端面53からさらに離隔させることができる。このため、半導体レーザ素子40の第1発光面LS1から出射したレーザ光が封止樹脂50内において拡散材57によって拡散(散乱)しやすくなる。したがって、半導体レーザ装置10から出射するレーザ光の指向角をより広げることができる。 According to this configuration, the semiconductor laser element 40 can be further separated from the first sealed end surface 53. Therefore, the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40 is easily diffused (scattered) by the diffusion material 57 within the sealing resin 50. Therefore, the directivity angle of the laser light emitted from the semiconductor laser device 10 can be further expanded.
 <変更例>
 上記各実施形態は、以下のように変更して実施することができる。また、上記各実施形態および以下の各変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。なお、以下の各変更例の半導体レーザ装置10の平面構造では、図面を容易に理解するために、封止樹脂50内の拡散材57を省略している。
<Example of change>
Each of the above embodiments can be modified and implemented as follows. Moreover, each of the above embodiments and each of the following modified examples can be implemented in combination with each other within a technically consistent range. In addition, in the planar structure of the semiconductor laser device 10 of each modification example below, the diffusion material 57 in the sealing resin 50 is omitted in order to easily understand the drawings.
 [第1~第10実施形態の組み合わせ]
 ・第2および第4~第10実施形態に第3実施形態の第1側面電極37および第2側面電極38を追加してもよい。第4実施形態に第1側面電極37を追加する場合、第1側面電極37と第1端面スルーホール39Aとは互いに接続されている。第4実施形態に第2側面電極38を追加する場合、第2側面電極38と第2端面スルーホール39Bとは互いに接続されている。第7実施形態に第1側面電極37および第2側面電極38を追加する場合、第2側面電極38は、たとえば駆動回路用電極142と連続して、第3基板側面25および第4基板側面26の少なくとも一方に形成されていてもよい。また、第7実施形態においては、半導体レーザ装置10は、ゲート電極143Gと連続して第2基板側面24に形成されたゲート用側面電極をさらに備えていてもよい。
[Combination of 1st to 10th embodiments]
- The first side electrode 37 and the second side electrode 38 of the third embodiment may be added to the second and fourth to tenth embodiments. When adding the first side electrode 37 to the fourth embodiment, the first side electrode 37 and the first end surface through hole 39A are connected to each other. When adding the second side electrode 38 to the fourth embodiment, the second side electrode 38 and the second end surface through hole 39B are connected to each other. When adding the first side electrode 37 and the second side electrode 38 to the seventh embodiment, the second side electrode 38 is connected to the third substrate side surface 25 and the fourth substrate side surface 26, for example, continuously with the drive circuit electrode 142. It may be formed on at least one of the following. In the seventh embodiment, the semiconductor laser device 10 may further include a gate side electrode formed on the second substrate side surface 24 continuously with the gate electrode 143G.
 ・第2および第5~第10実施形態に第4実施形態の第1端面スルーホール39Aおよび第2端面スルーホール39Bの少なくとも一方を追加してもよい。第2実施形態に第1端面スルーホール39Aを追加する場合、第1端面スルーホール39A上にリフレクタ80が配置されてもよい。この場合、レジスト90を省略してもよい。第8実施形態に第1端面スルーホール39Aを追加する場合、第1端面スルーホール39Aは、第1基板側面23および第2基板側面24の少なくとも一方に設けられていてよい。 - At least one of the first end surface through hole 39A and the second end surface through hole 39B of the fourth embodiment may be added to the second and fifth to tenth embodiments. When adding the first end surface through hole 39A to the second embodiment, a reflector 80 may be placed on the first end surface through hole 39A. In this case, the resist 90 may be omitted. When adding the first end surface through hole 39A to the eighth embodiment, the first end surface through hole 39A may be provided on at least one of the first substrate side surface 23 and the second substrate side surface 24.
 ・第2、第5、第6、および第8~第10実施形態に第7実施形態の駆動回路素子130、駆動回路用配線140、ゲート配線141G、ソース配線141S、駆動回路用電極142、ゲート電極143G、およびソース電極143Sを追加してもよい。この場合、半導体レーザ装置10は、駆動回路用配線140と駆動回路用電極142とを電気的に接続する構成として、たとえば駆動回路用ビア144を備えていてもよい。半導体レーザ装置10は、ゲート配線141Gとゲート電極143Gとを電気的に接続する構成として、たとえばゲート用ビア145Gを備えていてもよい。半導体レーザ装置10は、ソース配線141Sとソース電極143Sとを電気的に接続する構成として、たとえばソース用ビア145Sを備えていてもよい。 - The second, fifth, sixth, and eighth to tenth embodiments include the drive circuit element 130 of the seventh embodiment, the drive circuit wiring 140, the gate wiring 141G, the source wiring 141S, the drive circuit electrode 142, and the gate An electrode 143G and a source electrode 143S may be added. In this case, the semiconductor laser device 10 may include, for example, a drive circuit via 144 as a configuration for electrically connecting the drive circuit wiring 140 and the drive circuit electrode 142. The semiconductor laser device 10 may include, for example, a gate via 145G to electrically connect the gate wiring 141G and the gate electrode 143G. The semiconductor laser device 10 may include, for example, a source via 145S to electrically connect the source wiring 141S and the source electrode 143S.
 ・第6~第9実施形態に第5実施形態のフォトダイオード110、第3配線100、および第3電極101を追加してもよい。この場合、半導体レーザ装置10は、第3配線100と第3電極101とを電気的に接続する構成として、ビア102を備えていてもよい。 - The photodiode 110, third wiring 100, and third electrode 101 of the fifth embodiment may be added to the sixth to ninth embodiments. In this case, the semiconductor laser device 10 may include a via 102 to electrically connect the third wiring 100 and the third electrode 101.
 ・第7~第10実施形態の半導体レーザ素子40に代えて、第6実施形態の半導体レーザ素子120が適用されてもよい。
 ・第9および第10実施形態に第8実施形態の側壁60の構成が適用されてもよい。つまり、第9実施形態において、側壁部172から第2側壁部172Bが省略されていてもよい。
- The semiconductor laser device 120 of the sixth embodiment may be applied instead of the semiconductor laser device 40 of the seventh to tenth embodiments.
- The configuration of the side wall 60 of the eighth embodiment may be applied to the ninth and tenth embodiments. That is, in the ninth embodiment, the second side wall portion 172B may be omitted from the side wall portion 172.
 ・第9実施形態に第10実施形態のサブマウント基板200が適用されてもよい。この場合、サブマウント基板200は、導電性接合材SDによって第1実装部183に接合されている。半導体レーザ素子40は、導電性接合材SDによってサブマウント基板200に接合されている。 - The submount substrate 200 of the tenth embodiment may be applied to the ninth embodiment. In this case, the submount substrate 200 is bonded to the first mounting portion 183 using the conductive bonding material SD. The semiconductor laser element 40 is bonded to the submount substrate 200 using a conductive bonding material SD.
 [第1反射部の変更例]
 ・第1実施形態において、第1反射部70の構成は任意に変更可能である。一例では、図46に示すように、基板表面21には、第1反射部70として反射膜210が形成されていてもよい。つまり、半導体レーザ装置10は、第1反射部70として、基板表面21上に形成された反射膜210を備えるといえる。反射膜210は、基板表面21のうち第1配線31よりも第1基板側面23寄りに配置されている。反射膜210は、第1配線31とY軸方向に離隔して配置されている。反射膜210は、第1配線31と同様に銅を含む材料で形成されてもよいし、第1配線31の材料とは異なる材料(たとえばAl)によって形成されてもよい。反射膜210は、たとえば電気的にフローティング状態であってよい。
[Example of modification of the first reflecting section]
- In the first embodiment, the configuration of the first reflecting section 70 can be changed arbitrarily. In one example, as shown in FIG. 46, a reflective film 210 may be formed on the substrate surface 21 as the first reflective section 70. In other words, it can be said that the semiconductor laser device 10 includes the reflective film 210 formed on the substrate surface 21 as the first reflective section 70 . The reflective film 210 is disposed closer to the first substrate side surface 23 than the first wiring 31 on the substrate surface 21 . The reflective film 210 is arranged apart from the first wiring 31 in the Y-axis direction. The reflective film 210 may be formed of a material containing copper like the first wiring 31, or may be formed of a material different from the material of the first wiring 31 (for example, Al). The reflective film 210 may be in an electrically floating state, for example.
 反射膜210が設けられた場合、第1配線31の第1延出部31CのY軸方向の長さは、第1実施形態の第1延出部31CのY軸方向の長さよりも短い。また、第1延出部31Cを省略してもよい。 When the reflective film 210 is provided, the length of the first extending portion 31C of the first wiring 31 in the Y-axis direction is shorter than the length of the first extending portion 31C of the first embodiment in the Y-axis direction. Further, the first extending portion 31C may be omitted.
 図示された例においては、反射膜210の厚さは、第1配線31の厚さと等しい。なお、反射膜210の厚さは任意に変更可能であり、たとえば第1配線31の厚さよりも厚くてもよい。 In the illustrated example, the thickness of the reflective film 210 is equal to the thickness of the first wiring 31. Note that the thickness of the reflective film 210 can be changed arbitrarily, and may be thicker than the thickness of the first wiring 31, for example.
 図示された例においては、反射膜210のX軸方向の長さは、第1配線31のX軸方向の長さと等しい。なお、反射膜210のX軸方向の長さは任意に変更可能である。反射膜210のX軸方向の長さは、第1配線31のX軸方向の長さよりも長くてもよい。また、反射膜210のX軸方向の長さは、第1配線31のX軸方向の長さよりも短くてもよい。反射膜210のX軸方向の長さが第1配線31のX軸方向の長さよりも短い場合、たとえば反射膜210のX軸方向の長さは、半導体レーザ素子40のX軸方向の長さ以上であるとよい。 In the illustrated example, the length of the reflective film 210 in the X-axis direction is equal to the length of the first wiring 31 in the X-axis direction. Note that the length of the reflective film 210 in the X-axis direction can be changed arbitrarily. The length of the reflective film 210 in the X-axis direction may be longer than the length of the first wiring 31 in the X-axis direction. Further, the length of the reflective film 210 in the X-axis direction may be shorter than the length of the first wiring 31 in the X-axis direction. When the length of the reflective film 210 in the X-axis direction is shorter than the length of the first wiring 31 in the X-axis direction, for example, the length of the reflective film 210 in the X-axis direction is equal to the length of the semiconductor laser element 40 in the X-axis direction. It is good if it is above.
 ・第2実施形態において、リフレクタ80の位置は任意に変更可能である。一例では、図47に示すように、リフレクタ80は、平面視において、半導体レーザ素子40の第1発光面LS1と基板20の第1基板側面23とのY軸方向の間に配置されていてもよい。リフレクタ80は、平面視において、第1発光面LS1と封止樹脂50の第1封止端面53とのY軸方向の間に配置されていてもよい。つまり、リフレクタ80は、その全体が封止樹脂50によって封止されていてもよい。 - In the second embodiment, the position of the reflector 80 can be changed arbitrarily. In one example, as shown in FIG. 47, the reflector 80 may be disposed between the first light emitting surface LS1 of the semiconductor laser element 40 and the first substrate side surface 23 of the substrate 20 in the Y-axis direction in plan view. good. The reflector 80 may be arranged between the first light emitting surface LS1 and the first sealing end surface 53 of the sealing resin 50 in the Y-axis direction in a plan view. That is, the reflector 80 may be entirely sealed with the sealing resin 50.
 また、図示していないが、リフレクタ80は、その一部が第1基板側面23からはみ出すように配置されていてもよい。また、リフレクタ80は、その一部が第1封止端面53からはみ出すように配置されていてもよい。 Although not shown, the reflector 80 may be arranged so that a portion thereof protrudes from the first substrate side surface 23. Further, the reflector 80 may be arranged so that a portion thereof protrudes from the first sealed end surface 53.
 ・リフレクタ80の高さ寸法(リフレクタ80のZ軸方向の大きさ)は、任意に変更可能である。一例では、リフレクタ80の高さ寸法は、半導体レーザ素子40の厚さ(半導体レーザ素子40のZ軸方向の大きさ)よりも小さくてもよい。 - The height dimension of the reflector 80 (the size of the reflector 80 in the Z-axis direction) can be changed arbitrarily. In one example, the height dimension of the reflector 80 may be smaller than the thickness of the semiconductor laser element 40 (the size of the semiconductor laser element 40 in the Z-axis direction).
 ・第9実施形態において、図48に示すように、基板160は、リフレクタ部173を有してもよい。この場合、リフレクタ部173は、底壁部171上に形成されている。リフレクタ部173は、底壁部171と一体に形成されていてもよい。リフレクタ部173は、底壁部171と同様にたとえば黒色のエポキシ樹脂によって形成されている。リフレクタ部173は、傾斜面173Aを有する。傾斜面173Aは、第1基板側面23に向かうにつれて上方に向けて傾斜している。傾斜面173Aには、反射膜174が形成されている。反射膜174は、たとえば金属膜によって形成されている。金属膜としては、Cu膜、Al膜等が挙げられる。なお、反射膜174は、金属膜に代えて、反射率の高いレジストが用いられてもよい。反射率の高いレジストとしては、たとえば白色のレジストが用いられてよい。 - In the ninth embodiment, as shown in FIG. 48, the substrate 160 may have a reflector section 173. In this case, the reflector section 173 is formed on the bottom wall section 171. The reflector portion 173 may be formed integrally with the bottom wall portion 171. The reflector section 173 is made of, for example, black epoxy resin, like the bottom wall section 171. The reflector portion 173 has an inclined surface 173A. The inclined surface 173A is inclined upward toward the first substrate side surface 23. A reflective film 174 is formed on the inclined surface 173A. The reflective film 174 is formed of, for example, a metal film. Examples of the metal film include a Cu film and an Al film. Note that for the reflective film 174, a resist with high reflectance may be used instead of a metal film. As the resist with high reflectance, for example, a white resist may be used.
 ・第9実施形態において、リフレクタ80が第1実装部183と一体化された構成であってもよい。つまり、半導体レーザ装置10の製造方法では、リードフレーム980を用意する工程において、リードフレーム980にはリフレクタ80が一体に形成されていてもよい。より詳細には、リフレクタ80は、各第1導電部180に一体に形成されている。 - In the ninth embodiment, the reflector 80 may be integrated with the first mounting section 183. That is, in the method for manufacturing the semiconductor laser device 10, the reflector 80 may be integrally formed with the lead frame 980 in the step of preparing the lead frame 980. More specifically, the reflector 80 is integrally formed with each first conductive part 180.
 ・第10実施形態において、図49に示すように、サブマウント基板200のY軸方向の長さを長くしてもよい。この場合、平面視において、半導体レーザ素子40は、サブマウント基板200に対して第2側面204寄りに配置されている。つまり、平面視において、半導体レーザ素子40の第1発光面LS1とサブマウント基板200の第1側面203とのY軸方向の間の距離は、半導体レーザ素子40の第2素子側面44(第2発光面LS2)とサブマウント基板200の第2側面204とのY軸方向の間の距離よりも大きい。これにより、表面側配線207は、平面視において第1発光面LS1から第1側面203に延びる第1延出部207Aを長くとることができる。図49に示す変更例においては、第1延出部207Aが第1反射部70を構成している。つまり、表面側配線207は、第1反射部70として、第1発光面LS1から第1封止端面53に向けて延出した部分(第1延出部207A)を有するといえる。ここで、表面側配線207は「接続配線」に対応している。 - In the tenth embodiment, as shown in FIG. 49, the length of the submount substrate 200 in the Y-axis direction may be increased. In this case, the semiconductor laser element 40 is arranged closer to the second side surface 204 with respect to the submount substrate 200 in plan view. That is, in plan view, the distance between the first light emitting surface LS1 of the semiconductor laser device 40 and the first side surface 203 of the submount substrate 200 in the Y-axis direction is This is larger than the distance between the light emitting surface LS2) and the second side surface 204 of the submount substrate 200 in the Y-axis direction. Thereby, the front side wiring 207 can have a long first extension portion 207A extending from the first light emitting surface LS1 to the first side surface 203 in plan view. In the modification shown in FIG. 49, the first extending portion 207A constitutes the first reflecting portion 70. As shown in FIG. In other words, it can be said that the front side wiring 207 has a portion (first extension portion 207A) extending from the first light emitting surface LS1 toward the first sealing end surface 53 as the first reflection portion 70. Here, the front side wiring 207 corresponds to the "connection wiring".
 ・第10実施形態において、半導体レーザ装置10は、第1反射部70としてリフレクタ80を備えていてもよい。リフレクタ80は、たとえばサブマウント基板200の表面201に搭載されていてもよい。また、リフレクタ80は、たとえばサブマウント基板200の表面側配線207に搭載されていてもよい。 - In the tenth embodiment, the semiconductor laser device 10 may include a reflector 80 as the first reflecting section 70. The reflector 80 may be mounted on the surface 201 of the submount substrate 200, for example. Further, the reflector 80 may be mounted, for example, on the front side wiring 207 of the submount substrate 200.
 ・第10実施形態において、半導体レーザ装置10は、第1反射部70としてサブマウント基板200の表面201に形成された反射膜を備えていてもよい。反射膜は、Cu膜、Al膜等の金属膜によって形成されている。反射膜は、たとえば表面側配線207よりも第1側面203寄りに配置されている。反射膜は、たとえば電気的にフローティング状態である。 - In the tenth embodiment, the semiconductor laser device 10 may include a reflective film formed on the surface 201 of the submount substrate 200 as the first reflective section 70. The reflective film is formed of a metal film such as a Cu film or an Al film. The reflective film is arranged closer to the first side surface 203 than the front side wiring 207, for example. The reflective film is, for example, in an electrically floating state.
 ・第1実施形態において、半導体レーザ装置10から第1反射部70を省略してもよい。より詳細には、第1配線31の第1延出部31Cが半導体レーザ素子40のレーザ光のうち基板表面21に向かうレーザ光が当たらないように形成されていてもよい。または、第1配線31から第1延出部31Cを省略してもよい。この場合、半導体レーザ素子40のレーザ光のうち基板表面21に向かうレーザ光は、基板表面21で反射せずに封止樹脂50の第1封止端面53から出射してもよい。 - In the first embodiment, the first reflecting section 70 may be omitted from the semiconductor laser device 10. More specifically, the first extension portion 31C of the first wiring 31 may be formed so that the laser light directed toward the substrate surface 21 out of the laser light from the semiconductor laser element 40 does not hit the first extension portion 31C. Alternatively, the first extending portion 31C may be omitted from the first wiring 31. In this case, of the laser light from the semiconductor laser element 40, the laser light directed toward the substrate surface 21 may be emitted from the first sealing end surface 53 of the sealing resin 50 without being reflected on the substrate surface 21.
 [第2反射部の変更例]
 ・第8実施形態において、図50に示すように、第1配線31のX軸方向の長さを長くすることによって第1配線31の第2延出部31DのX軸方向の長さを長くしてもよい。第2延出部31DのX軸方向の長さは、第1延出部31CのX軸方向の長さと等しい。つまり半導体レーザ素子40の第2発光面LS2から第1配線31の第2端面31BまでのX軸方向の距離D2は、第1発光面LS1から第1配線31の第1端面31AまでのX軸方向の距離D1と等しい。図50に示す例においては、第2延出部31Dは、第2反射部150を構成している。
[Example of modification of the second reflecting section]
- In the eighth embodiment, as shown in FIG. 50, by increasing the length of the first wiring 31 in the X-axis direction, the length of the second extension 31D of the first wiring 31 in the X-axis direction is increased. You may. The length of the second extending portion 31D in the X-axis direction is equal to the length of the first extending portion 31C in the X-axis direction. In other words, the distance D2 in the X-axis direction from the second light-emitting surface LS2 of the semiconductor laser element 40 to the second end surface 31B of the first wire 31 is the distance D2 in the X-axis direction from the first light-emitting surface LS1 to the first end surface 31A of the first wire 31. It is equal to the distance D1 in the direction. In the example shown in FIG. 50, the second extending portion 31D constitutes the second reflecting portion 150.
 図51に示すように、半導体レーザ素子40の第2発光面LS2から出射された第2レーザ光は、拡散材57によって拡散(散乱)される。これにより、第2レーザ光は、基板表面21に向かうレーザ光を含む。この変更例では、第1配線31の第2延出部31Dは、基板表面21に向かうレーザ光の少なくとも一部を反射する。反射されたレーザ光は、第2封止端面54または封止表面51を通過して半導体レーザ装置10の外部に出射される。このように、半導体レーザ装置10は、半導体レーザ素子40の第2発光面LS2から出射されかつ基板表面21に向かうレーザ光の少なくとも一部を反射する第2反射部150を備えているともいえる。図示された例では、第1配線31の第2延出部31Dが第2反射部150を構成している。つまり、第1配線31は、第2反射部150として、平面視において第2発光面LS2から第2封止端面54に向けて延出した部分を有するともいえる。 As shown in FIG. 51, the second laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40 is diffused (scattered) by the diffusing material 57. Thereby, the second laser light includes laser light directed toward the substrate surface 21. In this modification, the second extension 31D of the first wiring 31 reflects at least a portion of the laser beam directed toward the substrate surface 21. The reflected laser light passes through the second sealing end face 54 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . In this way, the semiconductor laser device 10 can be said to include the second reflection section 150 that reflects at least a portion of the laser light emitted from the second light emitting surface LS2 of the semiconductor laser element 40 and directed toward the substrate surface 21. In the illustrated example, the second extending portion 31D of the first wiring 31 constitutes the second reflecting portion 150. That is, it can be said that the first wiring 31 has a portion extending from the second light emitting surface LS2 toward the second sealing end surface 54 as the second reflecting portion 150 in plan view.
 なお、第2レーザ光のうち基板表面21に向かうレーザ光は、第2配線32でも反射する。反射されたレーザ光は、第2封止端面54または封止表面51を通過して半導体レーザ装置10の外部に出射される。このため、第2配線32も第2反射部150を構成しているといえる。 Note that the laser beam of the second laser beam that is directed toward the substrate surface 21 is also reflected by the second wiring 32 . The reflected laser light passes through the second sealing end face 54 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . Therefore, it can be said that the second wiring 32 also constitutes the second reflection section 150.
 ・第8実施形態において、図52に示すように、基板表面21のうち第1配線31と第2配線32とのY軸方向の間に反射膜220が形成されていてもよい。反射膜220は、第2反射部150を構成している。反射膜220は、第1配線31および第2配線32と同様に銅を含む材料で形成されてもよいし、第1配線31および第2配線32の材料とは異なる材料(たとえばAl)によって形成されてもよい。反射膜220は、たとえば電気的にフローティング状態であってよい。 - In the eighth embodiment, as shown in FIG. 52, a reflective film 220 may be formed on the substrate surface 21 between the first wiring 31 and the second wiring 32 in the Y-axis direction. The reflective film 220 constitutes the second reflective section 150. The reflective film 220 may be formed of a material containing copper like the first wiring 31 and the second wiring 32, or may be formed of a material different from the material of the first wiring 31 and the second wiring 32 (for example, Al). may be done. The reflective film 220 may be in an electrically floating state, for example.
 図示された例においては、平面視における反射膜220の面積は、第2配線32の面積と等しい。より詳細には、反射膜220のX軸方向の長さは、第2配線32のX軸方向の長さと等しい。反射膜220のY軸方向の長さは、第2配線32のY軸方向の長さと等しい。 In the illustrated example, the area of the reflective film 220 in plan view is equal to the area of the second wiring 32. More specifically, the length of the reflective film 220 in the X-axis direction is equal to the length of the second wiring 32 in the X-axis direction. The length of the reflective film 220 in the Y-axis direction is equal to the length of the second wiring 32 in the Y-axis direction.
 なお、反射膜220のX軸方向の長さは任意に変更可能である。一例では、反射膜220のX軸方向の長さは、第2配線32のX軸方向の長さよりも長くてもよい。反射膜220のX軸方向の長さは、第1配線31のX軸方向の長さよりも長くてもよい。また、反射膜220のX軸方向の長さは、第2配線32のX軸方向の長さよりも短くてもよい。反射膜220のX軸方向の長さは、第1配線31のX軸方向の長さよりも短くてもよい。反射膜220のX軸方向の長さは、半導体レーザ素子40のX軸方向の長さ以上であるとよい。 Note that the length of the reflective film 220 in the X-axis direction can be changed arbitrarily. In one example, the length of the reflective film 220 in the X-axis direction may be longer than the length of the second wiring 32 in the X-axis direction. The length of the reflective film 220 in the X-axis direction may be longer than the length of the first wiring 31 in the X-axis direction. Further, the length of the reflective film 220 in the X-axis direction may be shorter than the length of the second wiring 32 in the X-axis direction. The length of the reflective film 220 in the X-axis direction may be shorter than the length of the first wiring 31 in the X-axis direction. The length of the reflective film 220 in the X-axis direction is preferably equal to or longer than the length of the semiconductor laser element 40 in the X-axis direction.
 また、反射膜220のY軸方向の長さは任意に変更可能である。一例では、反射膜220のY軸方向の長さは、第2配線32のY軸方向の長さよりも長くてもよい。反射膜220のY軸方向の長さは、第2配線32のY軸方向の長さよりも短くてもよい。 Furthermore, the length of the reflective film 220 in the Y-axis direction can be changed arbitrarily. In one example, the length of the reflective film 220 in the Y-axis direction may be longer than the length of the second wiring 32 in the Y-axis direction. The length of the reflective film 220 in the Y-axis direction may be shorter than the length of the second wiring 32 in the Y-axis direction.
 ・第8実施形態において、図53に示すように、半導体レーザ素子40と第2配線32とのY軸方向の間に第2反射部150としてのリフレクタ230が配置されていてもよい。リフレクタ230は、基板表面21上に設けられている。一例では、図54に示すように、リフレクタ230は、第1配線31上に配置されている。より詳細には、リフレクタ230は、第1配線31の第2延出部31D上に配置されている。なお、リフレクタ230は、第1配線31上に配置される構成に限られず、基板表面21上に配置されていてもよい。この場合、リフレクタ230は、基板表面21のうち第1配線31と第2配線32とのY軸方向の間の部分に配置されている。リフレクタ230は、たとえばCu、Al等の金属材料によって形成されている。リフレクタ230は、たとえば接着剤によって第1配線31に接合されている。リフレクタ230は、封止樹脂50によって封止されている。 - In the eighth embodiment, as shown in FIG. 53, a reflector 230 as the second reflection section 150 may be arranged between the semiconductor laser element 40 and the second wiring 32 in the Y-axis direction. Reflector 230 is provided on substrate surface 21 . In one example, the reflector 230 is arranged on the first wiring 31, as shown in FIG. More specifically, the reflector 230 is arranged on the second extending portion 31D of the first wiring 31. Note that the reflector 230 is not limited to being placed on the first wiring 31, but may be placed on the substrate surface 21. In this case, the reflector 230 is arranged in a portion of the substrate surface 21 between the first wiring 31 and the second wiring 32 in the Y-axis direction. The reflector 230 is made of a metal material such as Cu or Al. The reflector 230 is bonded to the first wiring 31 with adhesive, for example. The reflector 230 is sealed with a sealing resin 50.
 リフレクタ230は、基板表面21(第1配線31)と対面する底面231と、底面231から上方に向けて延びる側面232と、底面231と側面232とを繋ぐ反射面233と、を有する。 The reflector 230 has a bottom surface 231 facing the substrate surface 21 (first wiring 31), a side surface 232 extending upward from the bottom surface 231, and a reflective surface 233 connecting the bottom surface 231 and the side surface 232.
 底面231は、接着剤と接する面であり、基板20の厚さ方向(Z軸方向)と直交する平坦面によって形成されている。側面232は、底面231のY軸方向の両端縁のうち第2基板側面24に近い方の端縁から上方に向けて延びている。反射面233は、底面231のY軸方向の両端縁のうち半導体レーザ素子40に近い方の端縁と、側面232の上端縁とを繋いでいる。反射面233は、基板表面21と交差する方向を向いている。反射面233は、第2基板側面24に向かうにつれて(半導体レーザ素子40から離れるにつれて)上方に向けて傾斜する傾斜面である。反射面233の傾斜角度は、封止樹脂50から出射させるレーザ光の範囲に応じて設定される。一例では、反射面233の傾斜角度は0°よりも大きく45°未満である。ここで、反射面233の傾斜角度は、底面231と反射面233とが成す鋭角である。 The bottom surface 231 is a surface in contact with the adhesive, and is formed by a flat surface perpendicular to the thickness direction (Z-axis direction) of the substrate 20. The side surface 232 extends upward from the edge of the bottom surface 231 in the Y-axis direction that is closer to the second substrate side surface 24 . The reflective surface 233 connects the edge of the bottom surface 231 in the Y-axis direction that is closer to the semiconductor laser element 40 and the upper edge of the side surface 232 . Reflective surface 233 faces in a direction intersecting substrate surface 21 . The reflective surface 233 is an inclined surface that slopes upward toward the second substrate side surface 24 (as it moves away from the semiconductor laser element 40). The angle of inclination of the reflective surface 233 is set according to the range of laser light emitted from the sealing resin 50. In one example, the inclination angle of the reflective surface 233 is greater than 0° and less than 45°. Here, the inclination angle of the reflective surface 233 is an acute angle formed by the bottom surface 231 and the reflective surface 233.
 図示された例では、側面232の高さ寸法(Z軸方向の大きさ)は、半導体レーザ素子40の厚さ寸法(Z軸方向の大きさ)と等しい。このため、Y軸方向から視て、反射面233は、第1発光面LS1の全面と重なるように形成されている。 In the illustrated example, the height dimension (size in the Z-axis direction) of the side surface 232 is equal to the thickness dimension (size in the Z-axis direction) of the semiconductor laser element 40. Therefore, when viewed from the Y-axis direction, the reflective surface 233 is formed to overlap the entire surface of the first light emitting surface LS1.
 なお、リフレクタ230の形状は任意に変更可能である。一例では、図55に示すように、リフレクタ230の高さ寸法(リフレクタ230のZ軸方向の大きさ)が半導体レーザ素子40の厚さよりも小さくてもよい。また、図55に示すように、リフレクタ230の傾斜角度は、第1反射部70としてのリフレクタ80の傾斜角度よりも小さくてもよい。つまり、リフレクタ80,230の傾斜角度は、個別に設定されていてもよい。その結果、リフレクタ80の傾斜角度とリフレクタ230の傾斜角度とが互いに異なっていてもよい。 Note that the shape of the reflector 230 can be changed arbitrarily. In one example, as shown in FIG. 55, the height dimension of the reflector 230 (the size of the reflector 230 in the Z-axis direction) may be smaller than the thickness of the semiconductor laser element 40. Further, as shown in FIG. 55, the angle of inclination of the reflector 230 may be smaller than the angle of inclination of the reflector 80 as the first reflecting section 70. That is, the inclination angles of the reflectors 80 and 230 may be set individually. As a result, the angle of inclination of reflector 80 and the angle of inclination of reflector 230 may be different from each other.
 また、リフレクタ230の配置位置は任意に変更可能である。一例では、図56に示すように、リフレクタ230は、第2配線32よりも第2基板側面24寄りに配置されていてもよい。リフレクタ230は、たとえば基板表面21上に配置されている。この場合、リフレクタ230は、たとえば接着剤によって基板表面21に接合されている。 Furthermore, the arrangement position of the reflector 230 can be changed arbitrarily. In one example, as shown in FIG. 56, the reflector 230 may be arranged closer to the second substrate side surface 24 than the second wiring 32. Reflector 230 is arranged, for example, on substrate surface 21. In this case, reflector 230 is bonded to substrate surface 21, for example by adhesive.
 また、リフレクタ230は、その側面232が第2基板側面24よりも内側(第2配線32寄り)となるように配置されていてもよい。リフレクタ230が第2配線32よりも第2基板側面24寄りに配置される場合、リフレクタ230は、第2配線32と第2基板側面24とのY軸方向の間に配置されているともいえる。 Further, the reflector 230 may be arranged such that its side surface 232 is inside the second substrate side surface 24 (closer to the second wiring 32). When the reflector 230 is arranged closer to the second substrate side surface 24 than the second wiring 32, it can be said that the reflector 230 is arranged between the second wiring 32 and the second substrate side surface 24 in the Y-axis direction.
 また、リフレクタ230は、基板表面21上に配置されることに限られず、第2配線32上に配置されていてもよい。この場合、第2配線32のY軸方向の長さを長くしたうえで、第2配線32のうちワイヤWが接合される領域よりも第2基板側面24寄りの部分にリフレクタ230が配置されていてもよい。リフレクタ230は、たとえば接着剤によって第2配線32に接合されている。 Further, the reflector 230 is not limited to being placed on the substrate surface 21, but may be placed on the second wiring 32. In this case, the length of the second wiring 32 in the Y-axis direction is increased, and the reflector 230 is arranged in a portion of the second wiring 32 closer to the second substrate side surface 24 than the area where the wire W is bonded. You can. The reflector 230 is bonded to the second wiring 32 with adhesive, for example.
 ・第10実施形態において、図57に示すように、サブマウント基板200のY軸方向の長さを長くしてもよい。この場合、平面視において、半導体レーザ素子40は、サブマウント基板200のY軸方向の中央に配置されている。つまり、平面視において、半導体レーザ素子40の第1発光面LS1とサブマウント基板200の第1側面203とのY軸方向の間の距離は、半導体レーザ素子40の第2素子側面44(第2発光面LS2)とサブマウント基板200の第2側面204とのY軸方向の間の距離と等しい。これにより、表面側配線207は、平面視において第1発光面LS1から第1側面203に延びる第1延出部207Aと、第2発光面LS2から第2側面204に延びる第2延出部207Bの双方を長くとることができる。図57に示す変更例においては、第1延出部207Aが第1反射部70を構成し、第2延出部207Bが第2反射部150を構成している。つまり、表面側配線207は、第2反射部150として、第2発光面LS2から第2封止端面54に向けて延出した部分(第2延出部207B)を有するといえる。ここで、表面側配線207は「接続配線」に対応している。 - In the tenth embodiment, as shown in FIG. 57, the length of the submount substrate 200 in the Y-axis direction may be increased. In this case, the semiconductor laser element 40 is arranged at the center of the submount substrate 200 in the Y-axis direction in plan view. That is, in plan view, the distance between the first light emitting surface LS1 of the semiconductor laser device 40 and the first side surface 203 of the submount substrate 200 in the Y-axis direction is It is equal to the distance between the light emitting surface LS2) and the second side surface 204 of the submount substrate 200 in the Y-axis direction. As a result, the front side wiring 207 has a first extending portion 207A extending from the first light emitting surface LS1 to the first side surface 203 and a second extending portion 207B extending from the second light emitting surface LS2 to the second side surface 204 in plan view. Both can be kept for a long time. In the modification shown in FIG. 57, the first extending portion 207A constitutes the first reflecting portion 70, and the second extending portion 207B constitutes the second reflecting portion 150. That is, it can be said that the front-side wiring 207 has a portion (second extending portion 207B) extending from the second light emitting surface LS2 toward the second sealing end surface 54 as the second reflecting portion 150. Here, the front side wiring 207 corresponds to the "connection wiring".
 ・第10実施形態において、半導体レーザ装置10は、第2反射部150としてリフレクタ230を備えていてもよい。リフレクタ230は、たとえばサブマウント基板200の表面201に搭載されていてもよい。また、リフレクタ230は、たとえばサブマウント基板200の表面側配線207に搭載されていてもよい。 - In the tenth embodiment, the semiconductor laser device 10 may include a reflector 230 as the second reflection section 150. The reflector 230 may be mounted on the surface 201 of the submount substrate 200, for example. Further, the reflector 230 may be mounted, for example, on the front side wiring 207 of the submount substrate 200.
 ・第10実施形態において、半導体レーザ装置10は、第2反射部150としてサブマウント基板200の表面201に形成された反射膜を備えていてもよい。反射膜は、Cu膜、Al膜等の金属膜によって形成されている。または、反射膜は、白色といった反射率の高い絶縁膜によって形成されていてもよい。反射膜は、たとえば表面側配線207よりも第2側面204寄りに配置されている。反射膜は、たとえば電気的にフローティング状態である。 - In the tenth embodiment, the semiconductor laser device 10 may include a reflective film formed on the surface 201 of the submount substrate 200 as the second reflective section 150. The reflective film is formed of a metal film such as a Cu film or an Al film. Alternatively, the reflective film may be formed of a white insulating film with high reflectance. The reflective film is arranged closer to the second side surface 204 than the front side wiring 207, for example. The reflective film is, for example, in an electrically floating state.
 [第1反射部と第2反射部との組み合わせ]
 ・第8実施形態において、半導体レーザ装置10は、第2反射部150として図54に示すリフレクタ230を備えていてもよい。この場合、リフレクタ230は、図55に示す形状であってもよい。また、リフレクタ230の配置位置は、図56に示すように、第2配線32よりも第2基板側面24寄りであってもよい。
[Combination of first reflecting section and second reflecting section]
- In the eighth embodiment, the semiconductor laser device 10 may include a reflector 230 shown in FIG. 54 as the second reflection section 150. In this case, the reflector 230 may have the shape shown in FIG. 55. Further, the reflector 230 may be arranged closer to the second substrate side surface 24 than the second wiring 32, as shown in FIG.
 ・第8実施形態において、半導体レーザ装置10は、第1反射部70としてリフレクタ80(図14参照)を備えていてもよい。この場合、リフレクタ80は、半導体レーザ素子40よりも第1基板側面23(第1封止端面53)寄りに配置されていてよい。また、リフレクタ80の配置位置は、図47に示すように、リフレクタ80は、半導体レーザ素子40と第1基板側面23(第1封止端面53)とのY軸方向の間に配置されていてもよい。 - In the eighth embodiment, the semiconductor laser device 10 may include a reflector 80 (see FIG. 14) as the first reflecting section 70. In this case, the reflector 80 may be placed closer to the first substrate side surface 23 (first sealed end surface 53) than the semiconductor laser element 40. Further, as shown in FIG. 47, the reflector 80 is arranged between the semiconductor laser element 40 and the first substrate side surface 23 (first sealing end surface 53) in the Y-axis direction. Good too.
 ・図52に示す半導体レーザ装置10が反射膜220を備える変更例において、半導体レーザ装置10は、第1反射部70としてリフレクタ80を備えていてもよい。リフレクタ80は、その側面82が第1封止端面53(第1基板側面23)と面一となるように配置されていてもよい。また、リフレクタ80は、その側面82が第1封止端面53(第1基板側面23)よりも内側(半導体レーザ素子40寄り)に配置されていてもよい。この場合、リフレクタ80は、第1封止端面53(第1基板側面23)と半導体レーザ素子40とのY軸方向の間に配置されているといえる。 - In the modified example shown in FIG. 52 in which the semiconductor laser device 10 includes a reflective film 220, the semiconductor laser device 10 may include a reflector 80 as the first reflective section 70. The reflector 80 may be arranged so that its side surface 82 is flush with the first sealed end surface 53 (first substrate side surface 23). Further, the side surface 82 of the reflector 80 may be arranged inside (closer to the semiconductor laser element 40) than the first sealed end surface 53 (first substrate side surface 23). In this case, it can be said that the reflector 80 is disposed between the first sealed end surface 53 (first substrate side surface 23) and the semiconductor laser element 40 in the Y-axis direction.
 ・図52に示す半導体レーザ装置10が反射膜220を備える変更例において、半導体レーザ装置10は、第1反射部70として反射膜210(図46参照)を備えていてもよい。 - In the modified example shown in FIG. 52 in which the semiconductor laser device 10 includes a reflective film 220, the semiconductor laser device 10 may include a reflective film 210 (see FIG. 46) as the first reflective section 70.
 このように、本開示の半導体レーザ装置10は、第1反射部70と第2反射部150との両方を備えていてもよい。第1反射部70の構成および第2反射部150の構成の各々は任意に変更可能である。また、本開示の半導体レーザ装置10は、第1反射部70を備えておらず、第2反射部150を備える構成であってもよいし、第1反射部70および第2反射部150の両方を備えていなくてもよい。 In this way, the semiconductor laser device 10 of the present disclosure may include both the first reflecting section 70 and the second reflecting section 150. Each of the configurations of the first reflecting section 70 and the second reflecting section 150 can be changed arbitrarily. Further, the semiconductor laser device 10 of the present disclosure may not include the first reflecting section 70 but may include the second reflecting section 150, or may include both the first reflecting section 70 and the second reflecting section 150. It is not necessary to have
 [半導体レーザ素子の変更例]
 ・第1~第5および第7~第10実施形態において、平面視における半導体レーザ素子40の形状は任意に変更可能である。一例では、平面視における半導体レーザ素子40の形状は正方形であってもよいし、Y軸方向が短手方向となり、X軸方向が長手方向となる矩形状であってもよい。
[Example of modification of semiconductor laser element]
- In the first to fifth and seventh to tenth embodiments, the shape of the semiconductor laser element 40 in plan view can be arbitrarily changed. In one example, the shape of the semiconductor laser element 40 in plan view may be square, or may be rectangular with the Y-axis direction being the short direction and the X-axis direction being the long direction.
 ・第1~第5および第7~第10実施形態において、半導体レーザ装置10は、複数の半導体レーザ素子40を備えていてもよい。一例では、図58に示すように、半導体レーザ装置10は、3つの半導体レーザ素子40A,40B,40Cを備える。これら半導体レーザ素子40A~40Cは、X軸方向において互いに離隔して配列されている。換言すると、半導体レーザ素子40A~40Cは、平面視において、半導体レーザ素子40A~40Cのレーザ光の出射方向に対して直交する方向に並んで配置されている。 - In the first to fifth and seventh to tenth embodiments, the semiconductor laser device 10 may include a plurality of semiconductor laser elements 40. In one example, as shown in FIG. 58, the semiconductor laser device 10 includes three semiconductor laser elements 40A, 40B, and 40C. These semiconductor laser elements 40A to 40C are arranged spaced apart from each other in the X-axis direction. In other words, the semiconductor laser elements 40A to 40C are arranged side by side in a direction perpendicular to the direction in which the laser beams of the semiconductor laser elements 40A to 40C emit when viewed in plan.
 ここで、半導体レーザ素子40A~40Cは、半導体レーザ素子40A~40Cの各々のレーザ光の波長が互いに異なるように構成されていてもよい。一例では、半導体レーザ素子40Aは赤色のレーザ光となるように構成され、半導体レーザ素子40Bは緑色のレーザ光となるように構成され、半導体レーザ素子40Cは青色のレーザ光となるように構成されている。 Here, the semiconductor laser elements 40A to 40C may be configured such that the wavelengths of the laser beams of the semiconductor laser elements 40A to 40C are different from each other. In one example, the semiconductor laser element 40A is configured to emit red laser light, the semiconductor laser element 40B is configured to emit green laser light, and the semiconductor laser element 40C is configured to emit blue laser light. ing.
 [ワイヤの変更例]
 ・第8実施形態において、ワイヤWの位置は任意に変更可能である。一例では、図59に示すように、ワイヤWは、Y軸方向から視て、半導体レーザ素子40の第2発光面LS2と重ならないように形成されていてもよい。一例では、ワイヤWのうち第2配線32との接合部分が第2発光面LS2に対してX軸方向にずれて配置されていればよい。図示された例においては、ワイヤWは、第2配線32に接続される接合部WXを含む。この接合部WXは、第2発光面LS2に沿う方向(図59ではX軸方向)において第2発光面LS2に対してずれた位置に設けられている。より詳細には、図示された例においては、接合部WXは、第2発光面LS2よりも第4基板側面26寄りの位置に配置されている。なお、ワイヤWの接合部WXがたとえば第2発光面LS2よりも第3基板側面25寄りの位置に配置されていてもよい。
[Wire change example]
- In the eighth embodiment, the position of the wire W can be changed arbitrarily. In one example, as shown in FIG. 59, the wire W may be formed so as not to overlap the second light emitting surface LS2 of the semiconductor laser element 40 when viewed from the Y-axis direction. In one example, it is sufficient that the bonding portion of the wire W with the second wiring 32 is disposed offset in the X-axis direction with respect to the second light emitting surface LS2. In the illustrated example, the wire W includes a joint WX connected to the second wiring 32. This joint portion WX is provided at a position shifted from the second light emitting surface LS2 in the direction along the second light emitting surface LS2 (the X-axis direction in FIG. 59). More specifically, in the illustrated example, the joint WX is located closer to the fourth substrate side surface 26 than the second light emitting surface LS2. Note that the bonding portion WX of the wire W may be arranged, for example, at a position closer to the third substrate side surface 25 than the second light emitting surface LS2.
 ・第1~第5および第7~第10実施形態において、ワイヤWの本数は任意に変更可能である。一例では、複数本のワイヤWによって半導体レーザ素子40のアノード電極47と第2配線32(第2実装部193)とが接続されていてもよい。 - In the first to fifth and seventh to tenth embodiments, the number of wires W can be changed arbitrarily. In one example, the anode electrode 47 of the semiconductor laser element 40 and the second wiring 32 (second mounting portion 193) may be connected by a plurality of wires W.
 ・第1~第5および第7~第10実施形態において、ワイヤWのうち半導体レーザ素子40のアノード電極47との接合部分がファーストボンディングとなり、第2配線32との接合部分がセカンドボンディングとなるように、ワイヤWが形成されていてもよい。 - In the first to fifth and seventh to tenth embodiments, the part of the wire W that is connected to the anode electrode 47 of the semiconductor laser element 40 is the first bonding, and the part that is connected to the second wiring 32 is the second bonded. The wire W may be formed as shown in FIG.
 ・第6実施形態において、ワイヤW1~W4のうち半導体レーザ素子120のアノード電極127A~127Dとの接合部分がファーストボンディングとなり、第2配線32A~32Dの接合部分がセカンドボンディングとなるように、ワイヤW1~W4が形成されていてもよい。 - In the sixth embodiment, the wires are arranged such that the bonding portions of the wires W1 to W4 with the anode electrodes 127A to 127D of the semiconductor laser element 120 are the first bonding, and the bonding portions of the second wirings 32A to 32D are the second bonding. W1 to W4 may be formed.
 [端面スルーホールの変更例]
 ・第4実施形態において、第1端面スルーホール39Aの個数および位置の各々は任意に変更可能である。一例では、図60に示すように、2つの第1端面スルーホール39Aは、第1基板側面23のうち半導体レーザ素子40のX軸方向の両側に分散して形成されている。つまり、2つの第1端面スルーホール39Aのうち1つは、Y軸方向から視て、半導体レーザ素子40よりも第3基板側面25寄りに配置されている。2つの第1端面スルーホール39Aのうち他の1つは、Y軸方向から視て、半導体レーザ素子40よりも第4基板側面26寄りに配置されている。各第1端面スルーホール39A上には対応する第1端面スルーホール39Aを上方から覆うレジスト90が設けられている。
[Example of changing end face through hole]
- In the fourth embodiment, the number and position of the first end surface through holes 39A can be changed arbitrarily. In one example, as shown in FIG. 60, the two first end surface through-holes 39A are formed dispersedly on both sides of the first substrate side surface 23 in the X-axis direction of the semiconductor laser element 40. That is, one of the two first end surface through holes 39A is arranged closer to the third substrate side surface 25 than the semiconductor laser element 40 when viewed from the Y-axis direction. The other one of the two first end surface through holes 39A is arranged closer to the fourth substrate side surface 26 than the semiconductor laser element 40 when viewed from the Y-axis direction. A resist 90 is provided on each first end surface through hole 39A to cover the corresponding first end surface through hole 39A from above.
 この構成によれば、Y軸方向から視て、半導体レーザ素子40とX軸方向に重なる位置にレジスト90が配置されず、第1配線31(第1延出部31C)が露出した状態となる。これにより、半導体レーザ素子40の第1発光面LS1から出射されたレーザ光のうち基板表面21に向かうレーザ光の少なくとも一部を第1配線31(第1延出部31C)が反射する。反射されたレーザ光は、第1封止端面53または封止表面51を通過して半導体レーザ装置10の外部に出射される。したがって、半導体レーザ装置10が出射するレーザ光の指向角を広げることができる。 According to this configuration, the resist 90 is not placed in a position overlapping with the semiconductor laser element 40 in the X-axis direction when viewed from the Y-axis direction, and the first wiring 31 (first extension portion 31C) is exposed. . As a result, the first wiring 31 (the first extension portion 31C) reflects at least a portion of the laser light directed toward the substrate surface 21 among the laser light emitted from the first light emitting surface LS1 of the semiconductor laser element 40. The reflected laser light passes through the first sealing end face 53 or the sealing surface 51 and is emitted to the outside of the semiconductor laser device 10 . Therefore, the directivity angle of the laser light emitted by the semiconductor laser device 10 can be widened.
 なお、第1端面スルーホール39Aは、第1基板側面23に限られず、第3基板側面25および第4基板側面26の少なくとも一方に形成されていてもよい。この場合、たとえば第3基板側面25に形成された第1端面スルーホール39Aは、第1配線31の第3基板側面25側の端部と接続されるように形成されている。また、たとえば第4基板側面26に形成された第1端面スルーホール39Aは、第1配線31の第4基板側面26側の端部と接続されるように形成されている。このような場合、第1配線31のX軸方向の長さを長くすることによって第3基板側面25および第4基板側面26の少なくとも一方に形成された第1端面スルーホール39Aが第1配線31に接続されやすくなる。このように、第1端面スルーホール39Aは、第1基板側面23、第3基板側面25、および第4基板側面26の少なくとも1つに形成されていればよい。第3基板側面25および第4基板側面26に第1端面スルーホール39Aが形成される場合であって、第1端面スルーホール39A上に側壁60が配置される場合、レジスト90を省略してもよい。 Note that the first end surface through hole 39A is not limited to the first substrate side surface 23, and may be formed on at least one of the third substrate side surface 25 and the fourth substrate side surface 26. In this case, for example, the first end surface through hole 39A formed in the third substrate side surface 25 is formed to be connected to the end of the first wiring 31 on the third substrate side surface 25 side. Further, for example, the first end surface through hole 39A formed in the fourth substrate side surface 26 is formed so as to be connected to the end of the first wiring 31 on the fourth substrate side surface 26 side. In such a case, by increasing the length of the first wiring 31 in the X-axis direction, the first end surface through hole 39A formed in at least one of the third substrate side surface 25 and the fourth substrate side surface 26 is connected to the first wiring 31. easier to connect to. In this way, the first end surface through hole 39A only needs to be formed in at least one of the first substrate side surface 23, the third substrate side surface 25, and the fourth substrate side surface 26. In the case where the first end surface through hole 39A is formed in the third substrate side surface 25 and the fourth substrate side surface 26, and the side wall 60 is arranged on the first end surface through hole 39A, the resist 90 may be omitted. good.
 ・第4実施形態において、第2端面スルーホール39Bの個数および位置の各々は任意に変更可能である。一例では、複数の第2端面スルーホール39Bは、第2基板側面24のうちX軸方向に離間して形成されていてもよい。 - In the fourth embodiment, the number and position of the second end surface through-holes 39B can be changed arbitrarily. In one example, the plurality of second end surface through holes 39B may be formed in the second substrate side surface 24 to be spaced apart in the X-axis direction.
 なお、第2端面スルーホール39Bは、第2基板側面24に限られず、第3基板側面25および第4基板側面26の少なくとも一方に形成されていてもよい。この場合、たとえば第3基板側面25に形成された第2端面スルーホール39Bは、第2配線32の第3基板側面25側の端部と接続されるように形成されている。また、たとえば第4基板側面26に形成された第2端面スルーホール39Bは、第2配線32の第4基板側面26側の端部と接続されるように形成されている。このような場合、第2配線32のX軸方向の長さを長くすることによって第3基板側面25および第4基板側面26の少なくとも一方に形成された第2端面スルーホール39Bが第2配線32に接続されやすくなる。このように、第2端面スルーホール39Bは、第1基板側面23、第3基板側面25、および第4基板側面26の少なくとも1つに形成されていればよい。 Note that the second end surface through hole 39B is not limited to the second substrate side surface 24, and may be formed on at least one of the third substrate side surface 25 and the fourth substrate side surface 26. In this case, for example, the second end surface through hole 39B formed in the third substrate side surface 25 is formed to be connected to the end of the second wiring 32 on the third substrate side surface 25 side. Further, for example, the second end surface through hole 39B formed in the fourth substrate side surface 26 is formed to be connected to the end of the second wiring 32 on the fourth substrate side surface 26 side. In such a case, by increasing the length of the second wiring 32 in the X-axis direction, the second end surface through hole 39B formed in at least one of the third substrate side surface 25 and the fourth substrate side surface 26 is connected to the second wiring 32. easier to connect to. In this way, the second end surface through hole 39B only needs to be formed in at least one of the first substrate side surface 23, the third substrate side surface 25, and the fourth substrate side surface 26.
 [封止樹脂の変更例]
 ・各実施形態において、封止樹脂50の形状は、直方体に限られず、任意に変更可能である。一例では、第1封止端面53が基板表面21から離れるにつれて第2基板側面24に向けて傾斜する傾斜面であってもよい。第2封止端面54が基板表面21から離れるにつれて第1基板側面23に向けて傾斜する傾斜面であってもよい。第3封止端面55が基板表面21から離れるにつれて第4基板側面26に向けて傾斜する傾斜面であってもよい。第4封止端面56が基板表面21から離れるにつれて第3基板側面25に向けて傾斜する傾斜面であってもよい。
[Example of changing sealing resin]
- In each embodiment, the shape of the sealing resin 50 is not limited to a rectangular parallelepiped, and can be arbitrarily changed. In one example, the first sealing end surface 53 may be an inclined surface that is inclined toward the second substrate side surface 24 as the distance from the substrate surface 21 increases. The second sealing end surface 54 may be an inclined surface that is inclined toward the first substrate side surface 23 as the second sealing end surface 54 moves away from the substrate surface 21 . The third sealing end surface 55 may be an inclined surface that is inclined toward the fourth substrate side surface 26 as the third sealing end surface 55 moves away from the substrate surface 21 . The fourth sealing end surface 56 may be an inclined surface that is inclined toward the third substrate side surface 25 as the fourth sealing end surface 56 moves away from the substrate surface 21 .
 また一例では、図61に示すように、封止表面51が基板表面21の中央に向かうにつれて上方に湾曲凸状となる球面として形成されていてもよい。また、封止表面51が基板表面21のY軸方向の中央に向かうにつれて上方に湾曲凸状となる湾曲面として形成されていてもよい。なお、図示していないが、封止表面51が半球状に形成されていてもよい。 In one example, as shown in FIG. 61, the sealing surface 51 may be formed as a spherical surface that curves upward toward the center of the substrate surface 21. Alternatively, the sealing surface 51 may be formed as a curved surface that becomes upwardly curved and convex toward the center of the substrate surface 21 in the Y-axis direction. Although not shown, the sealing surface 51 may be formed in a hemispherical shape.
 ・各実施形態において、第1封止端面53のY軸方向の位置は任意に変更可能である。一例では、第1封止端面53は、第1基板側面23よりも内側(半導体レーザ素子40寄り)であってもよい。 - In each embodiment, the position of the first sealed end surface 53 in the Y-axis direction can be changed arbitrarily. In one example, the first sealed end surface 53 may be located inside the first substrate side surface 23 (closer to the semiconductor laser element 40).
 ・第8実施形態において、第2封止端面54のY軸方向の位置は任意に変更可能である。一例では、第2封止端面54は、第2基板側面24よりも内側(半導体レーザ素子40寄り)であってもよい。 - In the eighth embodiment, the position of the second sealed end surface 54 in the Y-axis direction can be changed arbitrarily. In one example, the second sealed end surface 54 may be located inside the second substrate side surface 24 (closer to the semiconductor laser element 40).
 ・各実施形態において、図62に示すように、封止樹脂50は、拡散材57に加えて、蛍光体240を樹脂に混合してもよい。蛍光体240は、半導体レーザ素子40の光を吸収し、半導体レーザ素子40の光と異なる波長域の光を発光するように構成されている。一例では、半導体レーザ素子40は、青色のレーザ光を出射するように構成されてよい。蛍光体240は、青色のレーザ光を吸収して黄色の光を発光するように構成されてよい。このように青色のレーザ光と黄色の光を発光する蛍光体240とによって白色のレーザ光を半導体レーザ装置10の外部に出射することができる。なお、蛍光体240の構成は任意に変更可能であり、光を吸収して赤外の光を発光するように構成されてもよい。 - In each embodiment, as shown in FIG. 62, the sealing resin 50 may include a phosphor 240 mixed into the resin in addition to the diffusion material 57. The phosphor 240 is configured to absorb the light from the semiconductor laser element 40 and emit light in a wavelength range different from that of the light from the semiconductor laser element 40. In one example, the semiconductor laser element 40 may be configured to emit blue laser light. The phosphor 240 may be configured to absorb blue laser light and emit yellow light. In this way, white laser light can be emitted to the outside of the semiconductor laser device 10 by using the blue laser light and the phosphor 240 that emits yellow light. Note that the configuration of the phosphor 240 can be arbitrarily changed, and may be configured to absorb light and emit infrared light.
 [側壁の変更例]
 ・第1~第5および第10実施形態において、側壁60の第2側壁部62の形状は任意に変更可能である。一例では、図63に示すように、第2側壁部62の内面62Aが第2基板側面24に向かうにつれて上方(Z軸方向において基板表面21から離れる側)に傾斜する傾斜面であってもよい。この場合、内面62Aには、反射膜250が形成されていてもよい。反射膜250は、Cu膜、Al膜等の金属膜によって形成されている。
[Example of changing side wall]
- In the first to fifth and tenth embodiments, the shape of the second side wall portion 62 of the side wall 60 can be changed arbitrarily. For example, as shown in FIG. 63, the inner surface 62A of the second side wall portion 62 may be an inclined surface that slopes upward (away from the substrate surface 21 in the Z-axis direction) as it approaches the second substrate side surface 24. . In this case, a reflective film 250 may be formed on the inner surface 62A. The reflective film 250 is formed of a metal film such as a Cu film or an Al film.
 ・第1~第5および第10実施形態において、側壁60と基板20との接合構造は任意に変更可能である。一例では、側壁60と基板20との接合構造は、予め形成された側壁60を基板20の基板表面21に接着剤によって接合するように構成してもよい。また、第9実施形態においても同様に、側壁部172と底壁部171との接合構造は、側壁部172を底壁部171と別に形成したうえで、底壁部171と側壁部172とを接着剤によって接合するように構成してもよい。 - In the first to fifth and tenth embodiments, the bonding structure between the side wall 60 and the substrate 20 can be arbitrarily changed. In one example, the bonding structure between the sidewall 60 and the substrate 20 may be configured such that the sidewall 60 formed in advance is bonded to the substrate surface 21 of the substrate 20 using an adhesive. Similarly, in the ninth embodiment, the joining structure between the side wall part 172 and the bottom wall part 171 is such that the side wall part 172 is formed separately from the bottom wall part 171, and then the bottom wall part 171 and the side wall part 172 are connected. It may also be configured to be joined using an adhesive.
 ・第6および第7実施形態において、半導体レーザ装置10は、側壁60を備えていてもよい。第7実施形態の半導体レーザ装置10においては、側壁60は、平面視において、半導体レーザ素子40および駆動回路素子130の双方を囲うように形成されている。 - In the sixth and seventh embodiments, the semiconductor laser device 10 may include a side wall 60. In the semiconductor laser device 10 of the seventh embodiment, the side wall 60 is formed to surround both the semiconductor laser element 40 and the drive circuit element 130 in plan view.
 ・第1~第5および第10実施形態において、半導体レーザ装置10から側壁60を省略してもよい。この場合、一例として、図64および図65に示すように、封止樹脂50は、その第1封止端面53が基板20の第1基板側面23と面一となり、第2封止端面54が第2基板側面24と面一となり、第3封止端面55が第3基板側面25と面一となり、第4封止端面56が第4基板側面26と面一となるように形成されていてもよい。 - In the first to fifth and tenth embodiments, the side wall 60 may be omitted from the semiconductor laser device 10. In this case, as an example, as shown in FIGS. 64 and 65, the first sealing end surface 53 of the sealing resin 50 is flush with the first substrate side surface 23 of the substrate 20, and the second sealing end surface 54 is flush with the first substrate side surface 23 of the substrate 20. It is formed so that it is flush with the second substrate side surface 24, the third sealed end surface 55 is flush with the third substrate side surface 25, and the fourth sealed end surface 56 is flush with the fourth substrate side surface 26. Good too.
 図66および図67を参照して、側壁60を省略した半導体レーザ装置10の製造方法の一例について説明する。なお、図66および図67では、便宜上、4つの半導体レーザ装置10を一度に製造できる構成を示しているが、これに限られず、より多くの半導体レーザ装置10を一度に製造できるように構成してもよい。なお、図67では、図面を容易に理解するために、後述する封止樹脂850内の拡散材57を省略している。 An example of a method for manufacturing the semiconductor laser device 10 in which the sidewall 60 is omitted will be described with reference to FIGS. 66 and 67. Note that although FIGS. 66 and 67 show a configuration in which four semiconductor laser devices 10 can be manufactured at once for convenience, the present invention is not limited to this, and the configuration can be configured so that more semiconductor laser devices 10 can be manufactured at once. You can. In addition, in FIG. 67, in order to easily understand the drawing, the diffusion material 57 in the sealing resin 850, which will be described later, is omitted.
 半導体レーザ装置10の製造方法は、基板820を用意する工程と、半導体レーザ素子40を搭載する工程と、ワイヤWを形成する工程と、封止樹脂850を形成する工程と、個片化する工程と、を含む。 The method for manufacturing the semiconductor laser device 10 includes a step of preparing a substrate 820, a step of mounting the semiconductor laser element 40, a step of forming the wire W, a step of forming the sealing resin 850, and a step of singulating. and, including.
 基板820を用意する工程は、第1実施形態の基板820を用意する工程と同じである。この変更例では、側壁60が省略されているため、半導体レーザ素子40を搭載する工程は、図66に示すように、側壁860(図8参照)が基板820上に設けられていない状態で実施される。半導体レーザ素子40を搭載する工程は、半導体レーザ素子40を第1配線31に実装する工程を含む。この工程では、半導体レーザ素子40が第1配線31にダイボンディングされる。続いて、ワイヤWを形成する工程では、第1実施形態と同様にワイヤボンディング装置によってワイヤWが形成される。 The process of preparing the substrate 820 is the same as the process of preparing the substrate 820 of the first embodiment. In this modified example, since the side wall 60 is omitted, the step of mounting the semiconductor laser element 40 is performed in a state where the side wall 860 (see FIG. 8) is not provided on the substrate 820, as shown in FIG. be done. The process of mounting the semiconductor laser element 40 includes the process of mounting the semiconductor laser element 40 on the first wiring 31. In this step, the semiconductor laser element 40 is die-bonded to the first wiring 31. Subsequently, in the step of forming the wire W, the wire W is formed by a wire bonding device as in the first embodiment.
 図67に示すように、封止樹脂850を形成する工程では、まず基板820上に枠体870を設ける。枠体870は、平面視において4つの第1配線31、4つの第2配線32、および4つの半導体レーザ素子40を囲むように形成されている。続いて、たとえばポッティングによって枠体870内に透光性の樹脂材料を充填することによって封止樹脂850が形成される。樹脂材料としては、たとえばシリコーン樹脂、エポキシ樹脂、およびアクリル樹脂の少なくとも1つを含む材料によって形成されている。一例では、封止樹脂50は、シリコーン樹脂によって形成されている。封止樹脂850は、拡散材57(図65参照)を含む。 As shown in FIG. 67, in the step of forming the sealing resin 850, a frame 870 is first provided on the substrate 820. The frame 870 is formed to surround the four first wirings 31, the four second wirings 32, and the four semiconductor laser elements 40 in a plan view. Subsequently, the sealing resin 850 is formed by filling the frame 870 with a translucent resin material by, for example, potting. The resin material is made of, for example, a material containing at least one of silicone resin, epoxy resin, and acrylic resin. In one example, the sealing resin 50 is made of silicone resin. The sealing resin 850 includes the diffusion material 57 (see FIG. 65).
 なお、封止樹脂850の形成方法は、これに限られず、樹脂成形によって基板820上に封止樹脂850が形成されてもよい。樹脂成形は、たとえばトランスファモールドまたはコンプレッションモールドが挙げられる。封止樹脂850の形成後、枠体870が除去される。 The method of forming the sealing resin 850 is not limited to this, and the sealing resin 850 may be formed on the substrate 820 by resin molding. Examples of resin molding include transfer molding and compression molding. After the sealing resin 850 is formed, the frame 870 is removed.
 個片化する工程では、ダイシングブレードによって、図67の切断線CLに沿って、封止樹脂850および基板820の双方を切断する。これにより、封止樹脂50および基板20が形成される。以上の工程を経て、半導体レーザ装置10が製造される。 In the step of singulating, both the sealing resin 850 and the substrate 820 are cut along the cutting line CL in FIG. 67 using a dicing blade. Thereby, the sealing resin 50 and the substrate 20 are formed. Through the above steps, the semiconductor laser device 10 is manufactured.
 [サブマウント基板に関する変更例]
 ・第10実施形態において、サブマウント基板200の材料は任意に変更可能である。一例では、サブマウント基板200は、Si基板によって形成されていてもよい。また一例では、サブマウント基板200は、基板20と同様にガラスエポキシ樹脂によって形成されていてもよい。
[Example of changes related to submount board]
- In the tenth embodiment, the material of the submount substrate 200 can be changed arbitrarily. In one example, the submount substrate 200 may be formed of a Si substrate. Further, in one example, the submount substrate 200 may be made of glass epoxy resin like the substrate 20.
 また、サブマウント基板200は、アルミナ等の絶縁材料に代えて、導電性材料によって形成されていてもよい。一例では、サブマウント基板200は、Cuを含む材料によって形成されていてもよい。一例では、サブマウント基板200は、導電性のSiを含む材料によって形成されていてもよい。このように、サブマウント基板200が導電性材料によって形成されている場合、サブマウント基板200からビア209を省略してもよい。 Furthermore, the submount substrate 200 may be made of a conductive material instead of an insulating material such as alumina. In one example, the submount substrate 200 may be made of a material containing Cu. In one example, the submount substrate 200 may be formed of a material containing conductive Si. In this way, when the submount substrate 200 is formed of a conductive material, the vias 209 may be omitted from the submount substrate 200.
 ・第10実施形態において、半導体レーザ装置10は、表面側配線207、裏面側配線208、およびビア209に代えて、サブマウント基板200をその厚さ方向(Z軸方向)に貫通するように設けられた導電部を備えていてもよい。導電部のうちサブマウント基板200の表面201から露出する面には、導電性接合材SDによって半導体レーザ素子40が実装されている。導電部のうちサブマウント基板200の裏面202から露出する面は、導電性接合材SDによって第1配線31に接合されている。 - In the tenth embodiment, the semiconductor laser device 10 is provided with a submount substrate 200 that is provided to penetrate the submount substrate 200 in the thickness direction (Z-axis direction) instead of the front side wiring 207, the back side wiring 208, and the via 209. The conductive portion may be provided with a conductive portion. A semiconductor laser element 40 is mounted on a surface of the conductive portion exposed from the surface 201 of the submount substrate 200 using a conductive bonding material SD. A surface of the conductive portion exposed from the back surface 202 of the submount substrate 200 is bonded to the first wiring 31 using a conductive bonding material SD.
 ・第10実施形態において、半導体レーザ素子40と第1配線31との電気的な接続構造は任意に変更可能である。一例では、サブマウント基板200が半導体レーザ素子40と第1配線31とを電気的に接続しない構成であってもよい。この場合、サブマウント基板200から裏面側配線208およびビア209が省略されていてよい。たとえば、半導体レーザ装置10は、表面側配線207と第1配線31とを接続するワイヤを備える。このように、表面側配線207およびワイヤによって、半導体レーザ素子40と第1配線31とが電気的に接続されている。 - In the tenth embodiment, the electrical connection structure between the semiconductor laser element 40 and the first wiring 31 can be changed arbitrarily. In one example, the submount substrate 200 may have a configuration in which the semiconductor laser element 40 and the first wiring 31 are not electrically connected. In this case, the backside wiring 208 and the vias 209 may be omitted from the submount substrate 200. For example, the semiconductor laser device 10 includes a wire that connects the front side wiring 207 and the first wiring 31. In this way, the semiconductor laser element 40 and the first wiring 31 are electrically connected by the front side wiring 207 and the wire.
 [保護素子に関する変更例]
 ・各実施形態において、半導体レーザ装置10は、半導体レーザ素子40を保護する保護素子260をさらに備えていてもよい。図68および図69は、保護素子260を備える半導体レーザ装置10の構成の一例を示している。なお、図69は、便宜上、ワイヤWA,WBを省略して示している。
[Example of changes regarding protection elements]
- In each embodiment, the semiconductor laser device 10 may further include a protection element 260 that protects the semiconductor laser element 40. 68 and 69 show an example of the configuration of a semiconductor laser device 10 including a protection element 260. Note that in FIG. 69, the wires WA and WB are omitted for convenience.
 図68および図69に示すように、半導体レーザ装置10は、基板20の基板表面21に設けられた第4配線270と、基板20の基板裏面22に設けられた第4電極271と、第4配線270と第4電極271とを電気的に接続するビア272と、をさらに備える。図示された例においては、第4配線270は基板表面21に形成されており、第4電極271は基板裏面22に形成されている。 As shown in FIGS. 68 and 69, the semiconductor laser device 10 includes a fourth wiring 270 provided on the front surface 21 of the substrate 20, a fourth electrode 271 provided on the back surface 22 of the substrate 20, and a fourth It further includes a via 272 that electrically connects the wiring 270 and the fourth electrode 271. In the illustrated example, the fourth wiring 270 is formed on the front surface 21 of the substrate, and the fourth electrode 271 is formed on the back surface 22 of the substrate.
 第4配線270は、第1配線31に対して第2基板側面24寄りに配置されている。第4配線270は、第2配線32に対してY軸方向に揃った位置に配置されている。第4配線270は、第2配線32に対して第3基板側面25寄りに配置されている。このように、図示された例においては、第4配線270の配置スペースを形成するため、第2配線32のX軸方向の長さが第1実施形態よりも短くなっている。 The fourth wiring 270 is arranged closer to the second substrate side surface 24 with respect to the first wiring 31. The fourth wiring 270 is arranged at a position aligned with the second wiring 32 in the Y-axis direction. The fourth wiring 270 is arranged closer to the third substrate side surface 25 with respect to the second wiring 32. As described above, in the illustrated example, the length of the second wiring 32 in the X-axis direction is shorter than in the first embodiment in order to form a space for arranging the fourth wiring 270.
 第4電極271は、第1電極33に対して第2基板側面24寄りに配置されている。第4電極271は、平面視において第4配線270と重なる位置に配置されている。このように、図示された例においては、第4電極271の配置スペースを形成するため、第2電極34(図示略)のX軸方向の長さが第1実施形態よりも短くなっている。 The fourth electrode 271 is arranged closer to the second substrate side surface 24 with respect to the first electrode 33. The fourth electrode 271 is arranged at a position overlapping the fourth wiring 270 in plan view. Thus, in the illustrated example, the length of the second electrode 34 (not shown) in the X-axis direction is shorter than that of the first embodiment in order to form a space for arranging the fourth electrode 271.
 ビア272は、基板20をその厚さ方向(Z軸方向)に貫通するように設けられている。ビア272は、第4配線270および第4電極271の双方と接続されている。このため、第4配線270および第4電極271は、ビア272によって電気的に接続されている。 The via 272 is provided to penetrate the substrate 20 in its thickness direction (Z-axis direction). The via 272 is connected to both the fourth wiring 270 and the fourth electrode 271. Therefore, the fourth wiring 270 and the fourth electrode 271 are electrically connected through the via 272.
 保護素子260は、第4配線270に搭載されている。より詳細には、保護素子260は、導電性接合材SDによって第4配線270に接合されている。つまり、保護素子260は、第4配線270に実装されている。第4配線270および保護素子260の双方は、封止樹脂50によって封止されている。 The protection element 260 is mounted on the fourth wiring 270. More specifically, the protection element 260 is bonded to the fourth wiring 270 using a conductive bonding material SD. That is, the protection element 260 is mounted on the fourth wiring 270. Both the fourth wiring 270 and the protection element 260 are sealed with the sealing resin 50.
 図68に示すように、保護素子260は、平面視において、半導体レーザ素子40に対して第2基板側面24寄りに配置されている。保護素子260は、基板表面21のうち半導体レーザ素子40と第2封止端面54との間に設けられている。保護素子260は、Y軸方向から視て、半導体レーザ素子40と重なる位置に配置されている。なお、保護素子260の配置位置は任意に変更可能である。 As shown in FIG. 68, the protection element 260 is arranged closer to the second substrate side surface 24 with respect to the semiconductor laser element 40 in plan view. Protective element 260 is provided between semiconductor laser element 40 and second sealing end surface 54 on substrate surface 21 . The protection element 260 is arranged at a position overlapping the semiconductor laser element 40 when viewed from the Y-axis direction. Note that the arrangement position of the protection element 260 can be changed arbitrarily.
 保護素子260は、たとえばダイオードが用いられている。図69に示すように、保護素子260は、その表面に形成されたアノード電極261と、その裏面に形成されたカソード電極262とを有する。保護素子260の表面は基板表面21と同じ側を向き、保護素子260の裏面は基板表面21と対面している。 For example, a diode is used as the protection element 260. As shown in FIG. 69, the protection element 260 has an anode electrode 261 formed on its front surface and a cathode electrode 262 formed on its back surface. The front surface of the protection element 260 faces the same side as the substrate surface 21, and the back surface of the protection element 260 faces the substrate surface 21.
 カソード電極262は、導電性接合材SDに接している。このため、カソード電極262は、導電性接合材SDによって第4配線270と電気的に接続されている。第4配線270は第4電極271と電気的に接続されているため、カソード電極262は、第4電極271と電気的に接続されているといえる。 The cathode electrode 262 is in contact with the conductive bonding material SD. Therefore, the cathode electrode 262 is electrically connected to the fourth wiring 270 by the conductive bonding material SD. Since the fourth wiring 270 is electrically connected to the fourth electrode 271, it can be said that the cathode electrode 262 is electrically connected to the fourth electrode 271.
 図68に示すように、半導体レーザ装置10は、半導体レーザ素子40と第4配線270とを接続するワイヤWAと、保護素子260と第1配線31とを接続するワイヤWBと、を備える。ワイヤWA,WBの各々は、封止樹脂50によって封止されている。ワイヤWA,WBの各々は、たとえばワイヤWと同じ材料によって形成されている。 As shown in FIG. 68, the semiconductor laser device 10 includes a wire WA that connects the semiconductor laser element 40 and the fourth wiring 270, and a wire WB that connects the protection element 260 and the first wiring 31. Each of the wires WA and WB is sealed with a sealing resin 50. Each of the wires WA and WB is made of the same material as the wire W, for example.
 ワイヤWAは、半導体レーザ素子40のアノード電極47に接続されている。これにより、半導体レーザ素子40のアノード電極47は、ワイヤWAによって第4配線270と電気的に接続されている。第4配線270は保護素子260のカソード電極262と電気的に接続されているため、半導体レーザ素子40のアノード電極47は、保護素子260のカソード電極262と電気的に接続されているといえる。 The wire WA is connected to the anode electrode 47 of the semiconductor laser element 40. Thereby, the anode electrode 47 of the semiconductor laser element 40 is electrically connected to the fourth wiring 270 by the wire WA. Since the fourth wiring 270 is electrically connected to the cathode electrode 262 of the protection element 260, it can be said that the anode electrode 47 of the semiconductor laser element 40 is electrically connected to the cathode electrode 262 of the protection element 260.
 ワイヤWBは、保護素子260のアノード電極261に接続されている。これにより、保護素子260のアノード電極261は、ワイヤWBによって第1配線31と電気的に接続されている。第1配線31は半導体レーザ素子40のカソード電極48(図69参照)と電気的に接続されているため、保護素子260のアノード電極261は、半導体レーザ素子40のカソード電極48と電気的に接続されているといえる。このように、保護素子260は、半導体レーザ素子40と逆並列に接続されている。 The wire WB is connected to the anode electrode 261 of the protection element 260. Thereby, the anode electrode 261 of the protection element 260 is electrically connected to the first wiring 31 by the wire WB. Since the first wiring 31 is electrically connected to the cathode electrode 48 of the semiconductor laser element 40 (see FIG. 69), the anode electrode 261 of the protection element 260 is electrically connected to the cathode electrode 48 of the semiconductor laser element 40. It can be said that this has been done. In this way, the protection element 260 is connected in antiparallel to the semiconductor laser element 40.
 [レーザビアに関する変更例]
 ・第1~第8および第10実施形態において、図70に示すように、基板20の第1基板側面23には、レーザビア280が形成されていてもよい。レーザビア280は、第1基板側面23から第2基板側面24に向けて湾曲状に凹むとともに基板20をその厚さ方向(Z軸方向)に貫通する凹部と、凹部に埋め込まれた導電体と、によって構成されている。導電体としては、たとえばCuが用いられている。レーザビア280は、複数(図示された例においては6つ)設けられている。複数のレーザビア280は、X軸方向において互いに離隔して配列されている。各レーザビア280は、第1配線31と第1電極33(図5参照)とを繋いでいる。
[Example of changes related to laser via]
- In the first to eighth and tenth embodiments, as shown in FIG. 70, a laser via 280 may be formed on the first substrate side surface 23 of the substrate 20. The laser via 280 includes a recess that is curved from the first substrate side surface 23 toward the second substrate side surface 24 and that penetrates the substrate 20 in the thickness direction (Z-axis direction), and a conductor embedded in the recess. It is made up of. For example, Cu is used as the conductor. A plurality of laser vias 280 (six in the illustrated example) are provided. The plurality of laser vias 280 are spaced apart from each other in the X-axis direction. Each laser via 280 connects the first wiring 31 and the first electrode 33 (see FIG. 5).
 本開示で使用される「~上に」という用語は、文脈によって明らかにそうでないことが示されない限り、「~上に」と「~の上方に」の意味を含む。したがって、「AがB上に形成される」という表現は、上記各実施形態ではAがBに接触してB上に直接配置され得るが、変更例として、AがBに接触することなくBの上方に配置され得ることが意図される。すなわち、「~上に」という用語は、AとBとの間に他の部材が形成される構造を排除しない。 As used in this disclosure, the term "on" includes the meanings of "on" and "over" unless the context clearly dictates otherwise. Therefore, the expression "A is formed on B" means that in each of the above embodiments, A can be placed directly on B by contacting B, but as a modification, A can be placed directly on B without contacting B. It is contemplated that it may be placed above the. That is, the term "on" does not exclude structures in which other members are formed between A and B.
 本開示で使用されるZ軸方向は必ずしも鉛直方向である必要はなく、鉛直方向に完全に一致している必要もない。したがって、本開示による種々の構造は、本明細書で説明されるZ軸方向の「上」および「下」が鉛直方向の「上」および「下」であることに限定されない。例えば、X軸方向が鉛直方向であってもよく、またはY軸方向が鉛直方向であってもよい。 The Z-axis direction used in the present disclosure does not necessarily need to be a vertical direction, nor does it need to completely coincide with the vertical direction. Therefore, various structures according to the present disclosure are not limited to the "upper" and "lower" in the Z-axis direction described herein being "upper" and "lower" in the vertical direction. For example, the X-axis direction may be a vertical direction, or the Y-axis direction may be a vertical direction.
 <付記>
 上記各実施形態および各変更例から把握できる技術的思想を以下に記載する。なお、限定する意図ではなく理解の補助のために、付記に記載した構成について実施形態中の対応する符号を括弧書きで示す。符号は、理解の補助のために例として示すものであり、各符号に記載された構成要素は、符号で示される構成要素に限定されるべきではない。
<Additional notes>
The technical ideas that can be grasped from each of the above embodiments and modifications are described below. It should be noted that, for the purpose of assisting understanding rather than with the intention of limiting, the corresponding reference numerals in the embodiments for the configurations described in the supplementary notes are shown in parentheses. The symbols are shown as examples to aid understanding, and the components described with each symbol should not be limited to the components indicated by the symbols.
 [付記A1]
 基板表面(21)を有する基板(20)と、
 前記基板表面(21)上に設けられた半導体レーザ素子(40)と、
 前記基板表面(21)と同じ側を向く封止表面(51)と、前記封止表面(51)と交差する第1封止端面(53)と、を有し、前記半導体レーザ素子(40)を封止する透光性の封止樹脂(50)と、を備え、
 前記封止樹脂(50)は、光を拡散させる拡散材(57)を含み、
 前記半導体レーザ素子(40)は、前記第1封止端面(53)に向けてレーザ光を出射する第1発光面(LS1)を含む
 半導体レーザ装置(10)。
[Appendix A1]
a substrate (20) having a substrate surface (21);
a semiconductor laser element (40) provided on the substrate surface (21);
The semiconductor laser element (40) has a sealing surface (51) facing the same side as the substrate surface (21), and a first sealing end surface (53) intersecting the sealing surface (51). a translucent sealing resin (50) for sealing;
The sealing resin (50) includes a diffusion material (57) that diffuses light,
The semiconductor laser device (10) includes a first light emitting surface (LS1) that emits laser light toward the first sealed end surface (53).
 [付記A2]
 前記基板表面(21)に設けられた第1配線(31)を備え、
 前記半導体レーザ素子(40)は、前記第1配線(31)に搭載され、当該第1配線(31)を介して前記基板表面(21)上に設けられており、
 前記第1発光面(LS1)に対して前記第1封止端面(53)寄りの位置に設けられ、前記第1発光面(LS1)から出射されたレーザ光の一部を反射する第1反射部(70)をさらに備える
 付記A1に記載の半導体レーザ装置。
[Appendix A2]
comprising a first wiring (31) provided on the substrate surface (21),
The semiconductor laser element (40) is mounted on the first wiring (31) and provided on the substrate surface (21) via the first wiring (31),
A first reflector that is provided at a position closer to the first sealing end surface (53) with respect to the first light emitting surface (LS1) and reflects a part of the laser light emitted from the first light emitting surface (LS1). The semiconductor laser device according to Appendix A1, further comprising a section (70).
 [付記A3]
 前記第1配線(31)は、前記第1反射部(70)として、平面視において前記第1発光面(LS1)から前記第1封止端面(53)に向けて延出した部分(31C)を有する
 付記A2に記載の半導体レーザ装置。
[Appendix A3]
The first wiring (31) has a portion (31C) extending from the first light emitting surface (LS1) toward the first sealing end surface (53) in plan view as the first reflecting portion (70). The semiconductor laser device according to appendix A2.
 [付記A4]
 前記第1反射部(70)として、前記基板表面(21)上に前記第1配線(31)とは別に形成された反射膜(210)を備える
 付記A2に記載の半導体レーザ装置。
[Appendix A4]
The semiconductor laser device according to appendix A2, wherein the first reflective portion (70) includes a reflective film (210) formed on the substrate surface (21) separately from the first wiring (31).
 [付記A5]
 前記第1反射部(70)として、前記基板表面(21)上に設けられ、前記基板表面(21)と交差する方向を向く反射面(83)を含むリフレクタ(80)を備える
 付記A2に記載の半導体レーザ装置。
[Appendix A5]
The first reflecting section (70) includes a reflector (80) provided on the substrate surface (21) and including a reflecting surface (83) facing in a direction intersecting the substrate surface (21). semiconductor laser equipment.
 [付記A6]
 前記基板表面(21)に設けられた第1配線(31)と、
 前記第1配線(31)上に搭載されたサブマウント基板(200)と、をさらに備え、
 前記半導体レーザ素子(40)は、前記サブマウント基板(200)に搭載され、
 前記第1配線(31)と前記半導体レーザ素子(40)とは、互いに電気的に接続されている
 付記A1に記載の半導体レーザ装置。
[Appendix A6]
a first wiring (31) provided on the substrate surface (21);
further comprising a submount board (200) mounted on the first wiring (31),
The semiconductor laser element (40) is mounted on the submount substrate (200),
The semiconductor laser device according to appendix A1, wherein the first wiring (31) and the semiconductor laser element (40) are electrically connected to each other.
 [付記A7]
 前記サブマウント基板(200)のうち前記半導体レーザ素子(40)と対面する側の表面(201)に設けられた接続配線(207)と、
 前記第1発光面(LS1)に対して前記第1封止端面(53)寄りの位置に設けられ、前記第1発光面(LS1)から出射されたレーザ光の一部を反射する第1反射部(70)と、をさらに備え、
 前記接続配線(207)は、前記第1反射部(70)として、前記第1発光面(LS1)から前記第1封止端面(53)に向けて延出した部分(207A)を有する
 付記A6に記載の半導体レーザ装置。
[Appendix A7]
A connection wiring (207) provided on the surface (201) of the submount substrate (200) on the side facing the semiconductor laser element (40);
A first reflector that is provided at a position closer to the first sealing end surface (53) with respect to the first light emitting surface (LS1) and reflects a part of the laser light emitted from the first light emitting surface (LS1). further comprising a part (70);
The connection wiring (207) has a portion (207A) extending from the first light emitting surface (LS1) toward the first sealing end surface (53) as the first reflective portion (70). Appendix A6 The semiconductor laser device described in .
 [付記A8]
 前記基板(160)は、導電性材料によって構成された導電部(180)を含み、
 前記基板表面(161)は、前記導電部(180)の表面によって構成された導電表面(181)を含み、
 前記半導体レーザ素子(40)は、前記導電表面(181)に搭載されており、
 前記第1発光面(LS1)に対して前記第1封止端面(53)寄りの位置に設けられ、前記第1発光面(LS1)から出射されたレーザ光の一部を反射する第1反射部(70)をさらに備える
 付記A1に記載の半導体レーザ装置。
[Appendix A8]
The substrate (160) includes a conductive part (180) made of a conductive material,
The substrate surface (161) includes a conductive surface (181) configured by the surface of the conductive part (180),
The semiconductor laser element (40) is mounted on the conductive surface (181),
A first reflector that is provided at a position closer to the first sealing end surface (53) with respect to the first light emitting surface (LS1) and reflects a part of the laser light emitted from the first light emitting surface (LS1). The semiconductor laser device according to Appendix A1, further comprising a section (70).
 [付記A9]
 前記導電表面(181)は、前記第1反射部(70)として、平面視において前記第1発光面(LS1)から前記第1封止端面(53)に向けて延出した部分を有する
 付記A8に記載の半導体レーザ装置。
[Appendix A9]
The conductive surface (181) has a portion extending from the first light emitting surface (LS1) toward the first sealing end surface (53) in plan view as the first reflecting portion (70). Appendix A8 The semiconductor laser device described in .
 [付記A10]
 前記封止樹脂(50)を囲むものであって、前記第1封止端面(53)を露出する開口を有する側壁(60)をさらに備える
 付記A1~A9のいずれか1つに記載の半導体レーザ装置。
[Appendix A10]
The semiconductor laser according to any one of appendices A1 to A9, further comprising a side wall (60) that surrounds the sealing resin (50) and has an opening that exposes the first sealing end surface (53). Device.
 [付記A11]
 前記封止樹脂(50)は、前記第1封止端面(53)とは反対側の第2封止端面(54)を含み、
 前記半導体レーザ素子(40)は、前記第2封止端面(54)に向けてレーザ光を出射する第2発光面(LS2)を含む
 付記A1~A10のいずれか1つに記載の半導体レーザ装置。
[Appendix A11]
The sealing resin (50) includes a second sealing end surface (54) opposite to the first sealing end surface (53),
The semiconductor laser device according to any one of appendices A1 to A10, wherein the semiconductor laser element (40) includes a second light emitting surface (LS2) that emits laser light toward the second sealed end surface (54). .
 [付記A12]
 前記第2発光面(LS2)に対して前記第2封止端面(54)寄りの位置に設けられ、前記第2発光面(LS2)から出射されたレーザ光の一部を反射する第2反射部(150)をさらに備える
 付記A11に記載の半導体レーザ装置。
[Appendix A12]
a second reflection that is provided at a position closer to the second sealing end surface (54) with respect to the second light emitting surface (LS2) and reflects a part of the laser light emitted from the second light emitting surface (LS2); The semiconductor laser device according to Appendix A11, further comprising a section (150).
 [付記A13]
 前記基板表面(21)に設けられ、ワイヤ(W)によって前記半導体レーザ素子(40)と電気的に接続された第2配線(32)をさらに備え、
 前記第2配線(32)は、前記第2発光面(LS2)に対して前記第2封止端面(54)寄りの位置に配置されており、
 前記第2反射部(150)は、前記第2配線(32)によって構成されている
 付記A12に記載の半導体レーザ装置。
[Appendix A13]
further comprising a second wiring (32) provided on the substrate surface (21) and electrically connected to the semiconductor laser element (40) by a wire (W),
The second wiring (32) is arranged at a position closer to the second sealing end surface (54) with respect to the second light emitting surface (LS2),
The semiconductor laser device according to appendix A12, wherein the second reflection section (150) is configured by the second wiring (32).
 [付記A14]
 前記基板表面(21)に設けられた第1配線(31)を備え、
 前記半導体レーザ素子(40)は、前記第1配線(31)に搭載され、当該第1配線(31)を介して前記基板表面(21)上に設けられており、
 前記第1配線(31)は、前記第2反射部(150)として、平面視において前記第2発光面(LS2)から前記第2封止端面(54)に向けて延出した部分(31D)を有する
 付記A12に記載の半導体レーザ装置。
[Appendix A14]
A first wiring (31) is provided on the substrate surface (21),
The semiconductor laser element (40) is mounted on the first wiring (31) and is provided on the substrate surface (21) via the first wiring (31);
The semiconductor laser device according to Appendix A12, wherein the first wiring (31) has, as the second reflecting portion (150), a portion (31D) extending from the second light-emitting surface (LS2) toward the second sealing end surface (54) in a planar view.
 [付記A15]
 前記第2反射部(150)として、前記基板表面(21)上に設けられ、前記基板表面(21)と交差する方向を向く反射面(233)を含むリフレクタ(230)を備える
 付記A12に記載の半導体レーザ装置。
[Appendix A15]
The second reflecting portion (150) includes a reflector (230) provided on the substrate surface (21) and including a reflecting surface (233) facing in a direction intersecting the substrate surface (21). semiconductor laser equipment.
 [付記A16]
 前記基板表面(21)に設けられた第1配線(31)と、
 前記第1配線(31)上に搭載されたサブマウント基板(200)と、
 前記サブマウント基板(200)のうち前記半導体レーザ素子(40)と対面する側の表面(201)に設けられた接続配線(207)と、
 前記第2発光面(LS2)に対して前記第2封止端面(54)寄りの位置に設けられ、前記第2発光面(LS2)から出射されたレーザ光の一部を反射する第2反射部(150)と、をさらに備え、
 前記半導体レーザ素子(40)は、前記サブマウント基板(200)に搭載され、
 前記サブマウント基板(200)は、前記第1配線(31)と前記半導体レーザ素子(40)とを電気的に接続しており、
 前記接続配線(207)は、前記第2反射部(150)として、前記第2発光面(LS2)から前記第2封止端面(54)に向けて延出した部分(207B)を有する
 付記A11に記載の半導体レーザ装置。
[Appendix A16]
a first wiring (31) provided on the substrate surface (21);
a submount board (200) mounted on the first wiring (31);
A connection wiring (207) provided on the surface (201) of the submount substrate (200) on the side facing the semiconductor laser element (40);
a second reflection that is provided at a position closer to the second sealing end surface (54) with respect to the second light emitting surface (LS2) and reflects a part of the laser light emitted from the second light emitting surface (LS2); further comprising: (150);
The semiconductor laser element (40) is mounted on the submount substrate (200),
The submount substrate (200) electrically connects the first wiring (31) and the semiconductor laser element (40),
The connection wiring (207) has a portion (207B) extending from the second light emitting surface (LS2) toward the second sealing end surface (54) as the second reflective portion (150). Appendix A11 The semiconductor laser device described in .
 [付記A17]
 前記基板表面(21)のうち前記半導体レーザ素子(40)と前記第2封止端面(LS2)との間に設けられ、前記第2発光面(LS2)から出射されるレーザ光を受光するフォトダイオード(110)をさらに備える
 付記A11~A16のいずれか1つに記載の半導体レーザ装置。
[Appendix A17]
A photoreceptor is provided on the substrate surface (21) between the semiconductor laser element (40) and the second sealing end surface (LS2) and receives the laser light emitted from the second light emitting surface (LS2). The semiconductor laser device according to any one of appendices A11 to A16, further comprising a diode (110).
 [付記A18]
 前記基板表面(21)に搭載され、前記半導体レーザ素子(40)を駆動させる駆動回路素子(130)をさらに備える
 付記A1~A10のいずれか1つに記載の半導体レーザ装置。
[Appendix A18]
The semiconductor laser device according to any one of Appendices A1 to A10, further comprising a drive circuit element (130) mounted on the substrate surface (21) and driving the semiconductor laser element (40).
 [付記A19]
 前記半導体レーザ素子(120)は、1つの発光面に対して複数の発光部(PD1~PD4)が並んだ構成である
 付記A1~A18のいずれか1つに記載の半導体レーザ装置。
[Appendix A19]
The semiconductor laser device according to any one of appendices A1 to A18, wherein the semiconductor laser element (120) has a configuration in which a plurality of light emitting parts (PD1 to PD4) are lined up on one light emitting surface.
 [付記A20]
 前記封止樹脂(50)は、蛍光体(240)をさらに含み、
 前記蛍光体(240)は、前記半導体レーザ素子(40)の光を吸収して赤外の光を発光するように構成されている
 付記A1~A19のいずれか1つに記載の半導体レーザ装置。
[Appendix A20]
The sealing resin (50) further includes a phosphor (240),
The semiconductor laser device according to any one of appendices A1 to A19, wherein the phosphor (240) is configured to absorb light from the semiconductor laser element (40) and emit infrared light.
 [付記A21]
 前記半導体レーザ素子(40)を保護する保護素子(250)をさらに備える
 付記A1~A20のいずれか1つに記載の半導体レーザ装置。
[Appendix A21]
The semiconductor laser device according to any one of appendices A1 to A20, further comprising a protection element (250) that protects the semiconductor laser element (40).
 [付記A22]
 前記第1封止端面(53)は、前記封止表面(51)よりも粗面である
 付記A1~A20のいずれか1つに記載の半導体レーザ装置。
[Appendix A22]
The semiconductor laser device according to any one of Appendices A1 to A20, wherein the first sealing end surface (53) is rougher than the sealing surface (51).
 [付記A23]
 前記封止樹脂(50)は、蛍光体(240)をさらに含む
 付記A1~A22のいずれか1つに記載の半導体レーザ装置。
[Appendix A23]
The semiconductor laser device according to any one of appendices A1 to A22, wherein the sealing resin (50) further includes a phosphor (240).
 [付記A24]
 前記封止樹脂(50)は、シリコーン樹脂、エポキシ樹脂、およびアクリル樹脂の少なくとも1つを含む材料によって形成されている
 付記A1~A23のいずれか1つに記載の半導体レーザ装置。
[Appendix A24]
The semiconductor laser device according to any one of appendices A1 to A23, wherein the sealing resin (50) is formed of a material containing at least one of silicone resin, epoxy resin, and acrylic resin.
 [付記A25]
 前記基板(20)は、前記基板表面(21)とは反対側の基板裏面(22)を含み、
 前記基板表面(21)に設けられ、ワイヤ(W)によって前記半導体レーザ素子(40)と電気的に接続された第2配線(32)と、
 前記基板裏面(22)に設けられた第1電極(33)と、
 前記基板裏面(22)に設けられた第2電極(34)と、
 前記基板(20)を貫通して前記第1配線(31)と前記第1電極(33)とを接続した第1ビア(35)と、
 前記基板(20)を貫通して前記第2配線(32)と前記第2電極(34)とを接続した第2ビア(36)と、をさらに備える
 付記A2~A7のいずれか1つに記載の半導体レーザ装置。
[Appendix A25]
The substrate (20) includes a substrate back surface (22) opposite to the substrate surface (21),
a second wiring (32) provided on the substrate surface (21) and electrically connected to the semiconductor laser element (40) by a wire (W);
a first electrode (33) provided on the back surface (22) of the substrate;
a second electrode (34) provided on the back surface (22) of the substrate;
a first via (35) that penetrates the substrate (20) and connects the first wiring (31) and the first electrode (33);
A second via (36) that penetrates the substrate (20) and connects the second wiring (32) and the second electrode (34) is described in any one of Appendices A2 to A7. semiconductor laser equipment.
 [付記A26]
 前記基板(20)は、前記基板表面(21)と前記基板裏面(22)とを繋ぐ第1基板側面(23)および第2基板側面(24)を含み、
 前記第1基板側面(23)は、前記第1発光面(LS1)と同じ側を向き、
 前記第2基板側面(24)は、前記第1基板側面(23)とは反対側を向いており、
 前記第1基板側面(23)には、前記第1電極(33)から連続して形成された第1側面電極(37)が形成され、
 前記第2基板側面(24)には、前記第2電極(34)から連続して形成された第2側面電極(38)が形成されている
 付記A25に記載の半導体レーザ装置。
[Appendix A26]
The substrate (20) includes a first substrate side surface (23) and a second substrate side surface (24) that connect the substrate front surface (21) and the substrate back surface (22),
The first substrate side surface (23) faces the same side as the first light emitting surface (LS1),
The second substrate side surface (24) faces opposite to the first substrate side surface (23),
A first side electrode (37) formed continuously from the first electrode (33) is formed on the first substrate side surface (23),
The semiconductor laser device according to appendix A25, wherein a second side surface electrode (38) is formed continuously from the second electrode (34) on the second substrate side surface (24).
 [付記A27]
 前記第1側面電極(37)は、前記第1電極(33)と前記第1配線(31)とを繋いでおり、
 前記第2側面電極(38)は、前記第2電極(34)と前記第2配線(32)とを繋いでいる
 付記A26に記載の半導体レーザ装置。
[Appendix A27]
The first side electrode (37) connects the first electrode (33) and the first wiring (31),
The semiconductor laser device according to appendix A26, wherein the second side electrode (38) connects the second electrode (34) and the second wiring (32).
 [付記A28]
 前記基板表面(21)に設けられ、ワイヤ(W)によって前記半導体レーザ素子(40)と電気的に接続された第2配線(32)と、
 前記第1配線(31)は、前記半導体レーザ素子(40)のカソード電極(48)が電気的に接続されており、
 前記第2配線(32)は、前記半導体レーザ素子(40)のアノード電極(47)が電気的に接続されている
 付記A2~A7のいずれか1つに記載の半導体レーザ装置。
[Appendix A28]
a second wiring (32) provided on the substrate surface (21) and electrically connected to the semiconductor laser element (40) by a wire (W);
The first wiring (31) is electrically connected to the cathode electrode (48) of the semiconductor laser element (40),
The semiconductor laser device according to any one of appendices A2 to A7, wherein the second wiring (32) is electrically connected to the anode electrode (47) of the semiconductor laser element (40).
 [付記A29]
 前記基板(20)は、前記基板表面(21)とは反対側の基板裏面(22)と、前記基板表面(21)と前記基板裏面(22)とを繋ぎ、前記第1発光面(LS1)と同じ側を向く第1基板側面(23)と、前記第1基板側面(23)とは反対側の第2基板側面(24)と、を含み、
 前記第1基板側面(23)から前記第2基板側面(24)に向けて凹むとともに前記基板(20)をその厚さ方向(Z軸方向)に貫通するように設けられた端面スルーホール(39)をさらに備える
 付記A1~A28のいずれか1つに記載の半導体レーザ装置。
[Appendix A29]
The substrate (20) connects the back surface (22) of the substrate opposite to the front surface (21) of the substrate, the front surface (21) of the substrate, and the back surface (22) of the substrate, and the first light emitting surface (LS1). a first substrate side surface (23) facing the same side as the first substrate side surface (23), and a second substrate side surface (24) opposite to the first substrate side surface (23),
An end surface through hole (39) is recessed from the first substrate side surface (23) toward the second substrate side surface (24) and is provided so as to penetrate the substrate (20) in the thickness direction (Z-axis direction). ) The semiconductor laser device according to any one of Appendices A1 to A28.
 [付記A30]
 前記基板表面(21)側から前記端面スルーホール(39)を覆うレジスト(90)をさらに備える
 付記A29に記載の半導体レーザ装置。
[Appendix A30]
The semiconductor laser device according to appendix A29, further comprising a resist (90) that covers the end surface through hole (39) from the substrate surface (21) side.
 [付記A31]
 前記レジスト(90)は、前記基板(20)よりも反射率の高い材料によって構成されている
 付記A30に記載の半導体レーザ装置。
[Appendix A31]
The semiconductor laser device according to appendix A30, wherein the resist (90) is made of a material with higher reflectance than the substrate (20).
 [付記A32]
 前記端面スルーホール(39)は、平面視で前記第1封止端面(53)に沿う方向(X軸方向)において、前記第1発光面(LS1)に対してずれた位置に設けられている
 付記A29またはA30に記載の半導体レーザ装置。
[Appendix A32]
The end surface through hole (39) is provided at a position shifted from the first light emitting surface (LS1) in the direction (X-axis direction) along the first sealed end surface (53) in plan view. The semiconductor laser device according to appendix A29 or A30.
 [付記A33]
 前記端面スルーホール(39)は、複数設けられている
 付記A29~A31のうちいずれか1つに記載の半導体レーザ装置。
[Appendix A33]
The semiconductor laser device according to any one of Appendices A29 to A31, wherein a plurality of end face through holes (39) are provided.
 [付記A34]
 前記封止樹脂(50)は、前記第1封止端面(53)とは反対側の第2封止端面(54)を含み、
 前記半導体レーザ素子(40)は、前記第2封止端面(54)に向けてレーザ光を出射する第2発光面(LS2)を含み、
 前記半導体レーザ素子(40)と前記第2配線(32)とを電気的に接続するワイヤ(W)をさらに備え、
 前記ワイヤ(W)は、前記第2配線(32)に接合される接合部を含み、
 前記接合部は、前記基板(20)の厚さ方向(Z軸方向)と直交する方向のうち前記第2発光面(LS2)に沿う方向(X軸方向)において、前記第2発光面(LS2)に対してずれた位置に設けられている
 付記A25~A27のいずれか1つに記載の半導体レーザ装置。
[Appendix A34]
The sealing resin (50) includes a second sealing end surface (54) opposite to the first sealing end surface (53),
The semiconductor laser element (40) includes a second light emitting surface (LS2) that emits laser light toward the second sealed end surface (54),
Further comprising a wire (W) electrically connecting the semiconductor laser element (40) and the second wiring (32),
The wire (W) includes a joint part joined to the second wiring (32),
The bonding portion is arranged to connect the second light emitting surface (LS2) in a direction along the second light emitting surface (LS2) (X-axis direction) in a direction perpendicular to the thickness direction (Z-axis direction) of the substrate (20). ), the semiconductor laser device according to any one of appendices A25 to A27.
 [付記A35]
 前記半導体レーザ素子(40)と前記第2配線(32)とを電気的に接続するワイヤ(W)をさらに備え、
 前記ワイヤ(W)は、ボンディングワイヤであり、
 前記ワイヤ(W)のうち前記第2配線(32)との接合部はファーストボンディングとなり、
 前記ワイヤ(W)のうち前記半導体レーザ素子(40)との接合部がセカンドボンディングとなる
 付記A25~A27のいずれか1つに記載の半導体レーザ装置。
[Appendix A35]
Further comprising a wire (W) electrically connecting the semiconductor laser element (40) and the second wiring (32),
The wire (W) is a bonding wire,
The bonding portion of the wire (W) with the second wiring (32) is first bonded,
The semiconductor laser device according to any one of appendices A25 to A27, wherein a bonding portion of the wire (W) with the semiconductor laser element (40) is a second bonding.
 [付記A36]
 前記基板(160)は、
 導電材料によって形成された第1導電部(180)と、
 前記第1導電部(180)を保持するモールド樹脂である絶縁基板(160A)と、を含む
 付記A1に記載の半導体レーザ装置。
[Appendix A36]
The substrate (160) includes:
a first conductive part (180) formed of a conductive material;
The semiconductor laser device according to Appendix A1, further comprising: an insulating substrate (160A) that is a molded resin that holds the first conductive part (180).
 [付記A37]
 前記絶縁基板(160A)は、前記第1導電部(180)を保持する底壁部(171)と、前記底壁部(171)から立ち上がり、平面視において前記封止樹脂(50)を囲む側壁部(172)と、が一体に形成されている
 付記A36に記載の半導体レーザ装置。
[Appendix A37]
The insulating substrate (160A) includes a bottom wall portion (171) that holds the first conductive portion (180), and a side wall that rises from the bottom wall portion (171) and surrounds the sealing resin (50) in plan view. The semiconductor laser device according to appendix A36, wherein the portion (172) and the portion (172) are integrally formed.
 [付記A38]
 前記基板(20)は、セラミックを含む材料によって形成されている
 付記A1~A35のいずれか1つに記載の半導体レーザ装置。
[Appendix A38]
The semiconductor laser device according to any one of appendices A1 to A35, wherein the substrate (20) is formed of a material containing ceramic.
 [付記A39]
 前記基板(20)は、ガラスエポキシ樹脂によって形成されている
 付記A1~A35のいずれか1つに記載の半導体レーザ装置。
[Appendix A39]
The semiconductor laser device according to any one of appendices A1 to A35, wherein the substrate (20) is formed of a glass epoxy resin.
 [付記A40]
 前記サブマウント基板(200)は、前記第1配線(31)よりも前記半導体レーザ素子(40)に近い熱膨張係数を有する材料によって形成されている
 付記A6に記載の半導体レーザ装置。
[Appendix A40]
The semiconductor laser device according to appendix A6, wherein the submount substrate (200) is formed of a material having a coefficient of thermal expansion closer to that of the semiconductor laser element (40) than that of the first wiring (31).
 [付記A41]
 前記封止樹脂(50)を囲むものであって、前記第1封止端面(53)および前記第2封止端面(54)をそれぞれ露出する開口を有する側壁(60)をさらに備える
 付記A11~A15のいずれか1つに記載の半導体レーザ装置。
[Appendix A41]
Further comprising a side wall (60) that surrounds the sealing resin (50) and has an opening that exposes the first sealing end surface (53) and the second sealing end surface (54), respectively. The semiconductor laser device according to any one of A15.
 [付記A42]
 前記半導体レーザ素子(40P,40Q,40R)は、複数設けられている
 付記A1~A41のいずれか1つに記載の半導体レーザ装置。
[Appendix A42]
The semiconductor laser device according to any one of appendices A1 to A41, wherein a plurality of the semiconductor laser elements (40P, 40Q, 40R) are provided.
 [付記B1]
 基板表面(821)に第1配線(31)が設けられた基板(820)を用意する工程と、
 前記第1配線(31)に半導体レーザ素子(40)を搭載する工程と、
 前記半導体レーザ素子(40)を封止する透光性の封止樹脂(850)を形成する工程と、を含み、
 前記封止樹脂(850)は、前記基板表面(821)と同じ側を向く封止表面(51)と、前記封止表面(51)と交差する第1封止端面(53)と、光を拡散させる拡散材(57)と、を有し、
 前記半導体レーザ素子(40)は、レーザ光を出射する第1発光面(LS1)を含み、
 前記第1発光面(LS1)が前記第1封止端面(53)に向けてレーザ光を出射するように前記第1配線(31)に前記半導体レーザ素子(40)が搭載される
 半導体レーザ装置(10)の製造方法。
[Appendix B1]
a step of preparing a substrate (820) with a first wiring (31) provided on the substrate surface (821);
a step of mounting a semiconductor laser element (40) on the first wiring (31);
forming a translucent sealing resin (850) for sealing the semiconductor laser element (40),
The sealing resin (850) has a sealing surface (51) facing the same side as the substrate surface (821), a first sealing end surface (53) that intersects the sealing surface (51), and a first sealing end surface (53) that allows light to pass through. It has a diffusing material (57) for diffusing,
The semiconductor laser element (40) includes a first light emitting surface (LS1) that emits laser light,
A semiconductor laser device in which the semiconductor laser element (40) is mounted on the first wiring (31) so that the first light emitting surface (LS1) emits laser light toward the first sealing end surface (53). (10) Manufacturing method.
 [付記B2]
 樹脂成形によって前記基板(820)上に側壁(860)を形成する工程をさらに含み、
 前記側壁(860)は、平面視で前記封止樹脂(850)を囲んでいる
 付記B1に記載の半導体レーザ装置の製造方法。
[Appendix B2]
further comprising forming a side wall (860) on the substrate (820) by resin molding,
The method for manufacturing a semiconductor laser device according to Appendix B1, wherein the side wall (860) surrounds the sealing resin (850) in plan view.
 [付記B3]
 前記封止樹脂(850)は、ポッティングまたは樹脂成形によって前記側壁(860)と前記基板(820)とによって囲まれた空間に充填される
 付記B2に記載の半導体レーザ装置の製造方法。
[Appendix B3]
The method for manufacturing a semiconductor laser device according to appendix B2, wherein the sealing resin (850) is filled into a space surrounded by the side wall (860) and the substrate (820) by potting or resin molding.
 [付記B4]
 第1実装部(183)を含むリードフレーム(980)を用意する工程と、
 樹脂成形によって前記リードフレーム(980)を支持する絶縁基板(960)を形成する工程と、
 前記第1実装部(183)に半導体レーザ素子(40)を搭載する工程と、
 前記半導体レーザ素子(40)を封止する透光性の封止樹脂(950)を形成する工程と、を含み、
 前記封止樹脂(950)は、前記基板表面(21)と同じ側を向く封止表面(51)と、前記封止表面(51)と交差する第1封止端面(53)と、光を拡散させる拡散材(57)と、を有し、
 前記半導体レーザ素子(40)は、レーザ光を出射する第1発光面(LS1)を含み、
 前記第1発光面(LS1)が前記第1封止端面(53)に向けてレーザ光を出射するように前記第1実装部(183)に前記半導体レーザ素子(40)が搭載される
 半導体レーザ装置の製造方法。
[Appendix B4]
preparing a lead frame (980) including a first mounting portion (183);
forming an insulating substrate (960) that supports the lead frame (980) by resin molding;
a step of mounting a semiconductor laser element (40) on the first mounting section (183);
forming a translucent sealing resin (950) for sealing the semiconductor laser element (40),
The sealing resin (950) has a sealing surface (51) facing the same side as the substrate surface (21), a first sealing end surface (53) that intersects the sealing surface (51), and a first sealing end surface (53) that allows light to pass through. It has a diffusing material (57) for diffusing,
The semiconductor laser element (40) includes a first light emitting surface (LS1) that emits laser light,
The semiconductor laser element (40) is mounted on the first mounting portion (183) so that the first light emitting surface (LS1) emits laser light toward the first sealing end surface (53). Method of manufacturing the device.
 [付記B5]
 前記絶縁基板(960)を形成する工程においては、樹脂成形によって前記リードフレーム(980)を支持する底壁部(971)と、平面視において前記封止樹脂(850)を囲む側壁部(972)と、が一体に形成される
 付記B4に記載の半導体レーザ装置の製造方法。
[Appendix B5]
In the step of forming the insulating substrate (960), a bottom wall part (971) supporting the lead frame (980) by resin molding, and a side wall part (972) surrounding the sealing resin (850) in plan view. and are integrally formed. The method for manufacturing a semiconductor laser device according to appendix B4.
 以上の説明は単に例示である。本開示の技術を説明する目的のために列挙された構成要素および方法(製造プロセス)以外に、より多くの考えられる組み合わせおよび置換が可能であることを当業者は認識し得る。本開示は、特許請求の範囲を含む本開示の範囲内に含まれるすべての代替、変形、および変更を包含することが意図される。 The above description is merely an example. Those skilled in the art will recognize that many more possible combinations and permutations are possible beyond those listed for the purpose of describing the techniques of the present disclosure. This disclosure is intended to cover all alternatives, variations, and modifications falling within the scope of this disclosure, including the claims.
 10…半導体レーザ装置
 20…基板
 21…基板表面
 22…基板裏面
 23~26…第1~第4基板側面
 31…第1配線
 31A…第1端面
 31B…第2端面
 31C…第1延出部
 31D…第2延出部
 31E…第3延出部
 31F…第4延出部
 32…第2配線
 33…第1電極
 34…第2電極
 35…第1ビア
 36…第2ビア
 37…第1側面電極
 38…第2側面電極
 39A…第1端面スルーホール
 39B…第2端面スルーホール
 40,40A,40B,40C…半導体レーザ素子
 41…素子表面
 42…素子裏面
 43~46…第1~第4素子側面
 47…アノード電極
 48…カソード電極
 50…封止樹脂
 51…封止表面
 53~56…第1~第4封止端面
 57…拡散材
 60…側壁
 61…第1側壁部
 62…第2側壁部
 62A…内面
 70…第1反射部
 80…リフレクタ
 81…底面
 82…側面
 83…反射面
 90…レジスト
 100…第3配線
 101…第3電極
 102…ビア
 110…フォトダイオード
 111…アノード電極
 112…カソード電極
 120…半導体レーザ素子
 121…素子表面
 122…素子裏面
 123~126…第1~第4素子側面
 127A~127D…アノード電極
 128…カソード電極
 32A~32D…第2配線
 34A~34D…第2電極
 130…駆動回路素子
 131…スイッチング素子
 131A…スイッチング素子表面
 131B…スイッチング素子裏面
 131S…ソース電極
 131D…ドレイン電極
 131G…ゲート電極
 132…コンデンサ
 132A…第1電極
 132B…第2電極
 140…駆動回路用配線
 141G…ゲート配線
 141S…ソース配線
 142…駆動回路用電極
 143G…ゲート電極
 143S…ソース電極
 144…駆動回路用ビア
 145G…ゲート用ビア
 145S…ソース用ビア
 150…第2反射部
 160…基板
 160A…絶縁基板
 161…基板表面
 162…基板裏面
 163~166…第1~第4基板側面
 171…底壁部
 172…側壁部
 180…第1導電部
 181…第1導電表面
 182…第1導電裏面
 183…第1実装部
 183A…第1端面
 183B…第2端面
 183C…第1延出部
 184…第1吊りリード部
 190…第2導電部
 191…第2導電表面
 192…第2導電裏面
 193…第2実装部
 194…第2吊りリード部
 210…反射膜
 173…リフレクタ部
 173A…傾斜面
 174…反射膜
 200…サブマウント基板
 201…表面
 202…裏面
 203~206…第1~第4側面
 207…表面側配線
 207A…第1延出部
 207B…第2延出部
 208…裏面側配線
 209…ビア
 220…反射膜
 230…リフレクタ
 231…底面
 232…側面
 233…反射面
 240…蛍光体
 250…反射膜
 260…保護素子
 261…アノード電極
 262…カソード電極
 270…第4配線
 271…第4電極
 272…ビア
 280…レーザビア
 820…基板
 821…基板表面
 822…基板裏面
 850…封止樹脂
 860…側壁
 870…枠体
 950…封止樹脂
 960…絶縁基板
 971…底壁部
 972…側壁部
 980…リードフレーム
 SD…導電性接合材
 LS1…第1発光面
 LS2…第2発光面
 PD1~PD4…第1~第4発光部
 W,W1~W4,WA,WB,WD,WF,WS,WG…ワイヤ
 WX…接合部
 SP…はんだペースト
 SPA…フィレット
 PCB…回路基板
 D1,D2,DA1,DA2,DB1,DB2…距離
10... Semiconductor laser device 20... Substrate 21... Substrate surface 22... Substrate back surface 23-26... First to fourth substrate side surfaces 31... First wiring 31A... First end surface 31B... Second end surface 31C... First extension part 31D ...Second extension part 31E...Third extension part 31F...Fourth extension part 32...Second wiring 33...First electrode 34...Second electrode 35...First via 36...Second via 37...First side surface Electrode 38... Second side electrode 39A... First end surface through hole 39B... Second end surface through hole 40, 40A, 40B, 40C... Semiconductor laser element 41... Element surface 42... Element back surface 43-46... First to fourth elements Side surface 47... Anode electrode 48... Cathode electrode 50... Sealing resin 51... Sealing surface 53-56... First to fourth sealing end surfaces 57... Diffusion material 60... Side wall 61... First side wall portion 62... Second side wall portion 62A...Inner surface 70...First reflective part 80...Reflector 81...Bottom surface 82...Side surface 83...Reflective surface 90...Resist 100...Third wiring 101...Third electrode 102...Via 110...Photodiode 111...Anode electrode 112...Cathode electrode 120... Semiconductor laser element 121... Element surface 122... Element back surface 123-126... First to fourth element side surfaces 127A-127D... Anode electrode 128... Cathode electrode 32A-32D... Second wiring 34A-34D... Second electrode 130... Drive circuit element 131... Switching element 131A... Switching element surface 131B... Switching element back surface 131S... Source electrode 131D... Drain electrode 131G... Gate electrode 132... Capacitor 132... First electrode 132B... Second electrode 140... Drive circuit wiring 141G... Gate wiring 141S... Source wiring 142... Drive circuit electrode 143G... Gate electrode 143S... Source electrode 144... Drive circuit via 145G... Gate via 145S... Source via 150... Second reflective section 160... Substrate 160A... Insulating substrate 161 ...Substrate surface 162...Board back surface 163-166...First to fourth board side surfaces 171...Bottom wall portion 172...Side wall portion 180...First conductive portion 181...First conductive surface 182...First conductive back surface 183...First mounting Part 183A...First end face 183B...Second end face 183C...First extension part 184...First hanging lead part 190...Second conductive part 191...Second conductive surface 192...Second conductive back surface 193...Second mounting part 194 ...Second hanging lead part 210...Reflection film 173...Reflector part 173A...Slanted surface 174...Reflection film 200...Submount board 201...Front surface 202...Back surface 203-206...First to fourth side surfaces 207...Front side wiring 207A... First extension part 207B... Second extension part 208... Back side wiring 209... Via 220... Reflection film 230... Reflector 231... Bottom surface 232... Side surface 233... Reflection surface 240... Phosphor 250... Reflection film 260... Protection element 261 ... Anode electrode 262 ... Cathode electrode 270 ... Fourth wiring 271 ... Fourth electrode 272 ... Via 280 ... Laser via 820 ... Substrate 821 ... Substrate surface 822 ... Substrate back surface 850 ... Sealing resin 860 ... Side wall 870 ... Frame body 950 ... Sealing Resin 960... Insulating substrate 971... Bottom wall part 972... Side wall part 980... Lead frame SD... Conductive bonding material LS1... First light emitting surface LS2... Second light emitting surface PD1 to PD4... First to fourth light emitting parts W, W1 ~W4, WA, WB, WD, WF, WS, WG...Wire WX...Joint SP...Solder paste SPA...Fillet PCB...Circuit board D1, D2, DA1, DA2, DB1, DB2...Distance

Claims (20)

  1.  基板表面を有する基板と、
     前記基板表面上に設けられた半導体レーザ素子と、
     前記基板表面と同じ側を向く封止表面と、前記封止表面と交差する第1封止端面と、を有し、前記半導体レーザ素子を封止する透光性の封止樹脂と、
    を備え、
     前記封止樹脂は、光を拡散させる拡散材を含み、
     前記半導体レーザ素子は、前記第1封止端面に向けてレーザ光を出射する第1発光面を含む
     半導体レーザ装置。
    a substrate having a substrate surface;
    a semiconductor laser element provided on the surface of the substrate;
    a translucent sealing resin that seals the semiconductor laser element and has a sealing surface facing the same side as the substrate surface and a first sealing end face that intersects the sealing surface;
    Equipped with
    The sealing resin includes a diffusion material that diffuses light,
    The semiconductor laser device includes a first light emitting surface that emits laser light toward the first sealed end surface.
  2.  前記基板表面に設けられた第1配線を備え、
     前記半導体レーザ素子は、前記第1配線に搭載され、当該第1配線を介して前記基板表面上に設けられており、
     前記第1発光面に対して前記第1封止端面寄りの位置に設けられ、前記第1発光面から出射されたレーザ光の一部を反射する第1反射部をさらに備える
     請求項1に記載の半導体レーザ装置。
    comprising a first wiring provided on the surface of the substrate,
    The semiconductor laser element is mounted on the first wiring and provided on the surface of the substrate via the first wiring,
    According to claim 1, further comprising a first reflecting section that is provided at a position closer to the first sealing end surface with respect to the first light emitting surface and reflects a part of the laser light emitted from the first light emitting surface. semiconductor laser equipment.
  3.  前記第1配線は、前記第1反射部として、平面視において前記第1発光面から前記第1封止端面に向けて延出した部分を有する
     請求項2に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 2, wherein the first wiring has a portion extending from the first light emitting surface toward the first sealed end surface in plan view as the first reflecting portion.
  4.  前記第1反射部として、前記基板表面上に前記第1配線とは別に形成された反射膜を備える
     請求項2に記載の半導体レーザ装置。
    3. The semiconductor laser device according to claim 2, wherein the first reflecting portion includes a reflecting film formed on the surface of the substrate separately from the first wiring.
  5.  前記第1反射部として、前記基板表面上に設けられ、前記基板表面と交差する方向を向く反射面を含むリフレクタを備える
     請求項2に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 2, wherein the first reflecting section includes a reflector provided on the substrate surface and including a reflecting surface facing in a direction intersecting the substrate surface.
  6.  前記基板表面に設けられた第1配線と、
     前記第1配線上に搭載されたサブマウント基板と、
    をさらに備え、
     前記半導体レーザ素子は、前記サブマウント基板に搭載され、
     前記第1配線と前記半導体レーザ素子とは、互いに電気的に接続されている
     請求項1に記載の半導体レーザ装置。
    a first wiring provided on the surface of the substrate;
    a submount board mounted on the first wiring;
    Furthermore,
    The semiconductor laser element is mounted on the submount substrate,
    The semiconductor laser device according to claim 1, wherein the first wiring and the semiconductor laser element are electrically connected to each other.
  7.  前記サブマウント基板のうち前記半導体レーザ素子と対面する側の表面に設けられた接続配線と、
     前記第1発光面に対して前記第1封止端面寄りの位置に設けられ、前記第1発光面から出射されたレーザ光の一部を反射する第1反射部と、
    をさらに備え、
     前記接続配線は、前記第1反射部として、前記第1発光面から前記第1封止端面に向けて延出した部分を有する
     請求項6に記載の半導体レーザ装置。
    Connection wiring provided on the surface of the submount substrate facing the semiconductor laser element;
    a first reflecting section that is provided at a position closer to the first sealing end surface with respect to the first light emitting surface and reflects a portion of the laser light emitted from the first light emitting surface;
    Furthermore,
    The semiconductor laser device according to claim 6, wherein the connection wiring has a portion extending from the first light emitting surface toward the first sealed end surface as the first reflecting portion.
  8.  前記基板は、導電性材料によって構成された導電部を含み、
     前記基板表面は、前記導電部の表面によって構成された導電表面を含み、
     前記半導体レーザ素子は、前記導電表面に搭載されており、
     前記第1発光面に対して前記第1封止端面寄りの位置に設けられ、前記第1発光面から出射されたレーザ光の一部を反射する第1反射部をさらに備える
     請求項1に記載の半導体レーザ装置。
    The substrate includes a conductive part made of a conductive material,
    The substrate surface includes a conductive surface constituted by the surface of the conductive part,
    The semiconductor laser element is mounted on the conductive surface,
    According to claim 1, further comprising a first reflecting section that is provided at a position closer to the first sealing end surface with respect to the first light emitting surface and reflects a part of the laser light emitted from the first light emitting surface. semiconductor laser equipment.
  9.  前記導電表面は、前記第1反射部として、平面視において前記第1発光面から前記第1封止端面に向けて延出した部分を有する
     請求項8に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 8, wherein the conductive surface has a portion extending from the first light emitting surface toward the first sealed end surface in plan view as the first reflecting portion.
  10.  前記封止樹脂を囲むものであって、前記第1封止端面を露出する開口を有する側壁をさらに備える
     請求項1~請求項9のいずれか一項に記載の半導体レーザ装置。
    The semiconductor laser device according to any one of claims 1 to 9, further comprising a side wall surrounding the sealing resin and having an opening that exposes the first sealing end surface.
  11.  前記封止樹脂は、前記第1封止端面とは反対側の第2封止端面を含み、
     前記半導体レーザ素子は、前記第2封止端面に向けてレーザ光を出射する第2発光面を含む
     請求項1~請求項10のいずれか一項に記載の半導体レーザ装置。
    The sealing resin includes a second sealing end surface opposite to the first sealing end surface,
    The semiconductor laser device according to any one of claims 1 to 10, wherein the semiconductor laser element includes a second light emitting surface that emits laser light toward the second sealed end surface.
  12.  前記第2発光面に対して前記第2封止端面寄りの位置に設けられ、前記第2発光面から出射されたレーザ光の一部を反射する第2反射部をさらに備える
     請求項11に記載の半導体レーザ装置。
    12. The laser beam according to claim 11, further comprising a second reflecting section that is provided at a position closer to the second sealing end surface with respect to the second light emitting surface and reflects a part of the laser light emitted from the second light emitting surface. semiconductor laser equipment.
  13.  前記基板表面に設けられ、ワイヤによって前記半導体レーザ素子と電気的に接続された第2配線をさらに備え、
     前記第2配線は、前記第2発光面に対して前記第2封止端面寄りの位置に配置されており、
     前記第2反射部は、前記第2配線によって構成されている
     請求項12に記載の半導体レーザ装置。
    further comprising a second wiring provided on the surface of the substrate and electrically connected to the semiconductor laser element by a wire,
    The second wiring is arranged at a position closer to the second sealing end surface with respect to the second light emitting surface,
    The semiconductor laser device according to claim 12, wherein the second reflection section is configured by the second wiring.
  14.  前記基板表面に設けられた第1配線を備え、
     前記半導体レーザ素子は、前記第1配線に搭載され、当該第1配線を介して前記基板表面上に設けられており、
     前記第1配線は、前記第2反射部として、平面視において前記第2発光面から前記第2封止端面に向けて延出した部分を有する
     請求項12に記載の半導体レーザ装置。
    comprising a first wiring provided on the surface of the substrate,
    The semiconductor laser element is mounted on the first wiring and provided on the surface of the substrate via the first wiring,
    The semiconductor laser device according to claim 12, wherein the first wiring has a portion extending from the second light emitting surface toward the second sealed end surface in plan view as the second reflecting portion.
  15.  前記第2反射部として、前記基板表面上に設けられ、前記基板表面と交差する方向を向く反射面を含むリフレクタを備える
     請求項12に記載の半導体レーザ装置。
    The semiconductor laser device according to claim 12 , comprising, as the second reflecting portion, a reflector provided on the substrate surface and including a reflecting surface facing in a direction intersecting with the substrate surface.
  16.  前記基板表面に設けられた第1配線と、
     前記第1配線上に搭載されたサブマウント基板と、
     前記サブマウント基板のうち前記半導体レーザ素子と対面する側の表面に設けられた接続配線と、
     前記第2発光面に対して前記第2封止端面寄りの位置に設けられ、前記第2発光面から出射されたレーザ光の一部を反射する第2反射部と、
    をさらに備え、
     前記半導体レーザ素子は、前記サブマウント基板に搭載され、
     前記サブマウント基板は、前記第1配線と前記半導体レーザ素子とを電気的に接続しており、
     前記接続配線は、前記第2反射部として、前記第2発光面から前記第2封止端面に向けて延出した部分を有する
     請求項11に記載の半導体レーザ装置。
    a first wiring provided on the surface of the substrate;
    a submount board mounted on the first wiring;
    Connection wiring provided on the surface of the submount substrate facing the semiconductor laser element;
    a second reflecting section that is provided at a position closer to the second sealing end surface with respect to the second light emitting surface and reflects a portion of the laser light emitted from the second light emitting surface;
    Furthermore,
    The semiconductor laser element is mounted on the submount substrate,
    The submount substrate electrically connects the first wiring and the semiconductor laser element,
    The semiconductor laser device according to claim 11, wherein the connection wiring has a portion extending from the second light emitting surface toward the second sealing end surface as the second reflection portion.
  17.  前記基板表面のうち前記半導体レーザ素子と前記第2封止端面との間に設けられ、前記第2発光面から出射されるレーザ光を受光するフォトダイオードをさらに備える
     請求項11~請求項16のいずれか一項に記載の半導体レーザ装置。
    Claims 11 to 16 further comprising a photodiode provided between the semiconductor laser element and the second sealing end surface on the surface of the substrate and receiving laser light emitted from the second light emitting surface. The semiconductor laser device according to any one of the items.
  18.  前記基板表面に搭載され、前記半導体レーザ素子を駆動させる駆動回路素子をさらに備える
     請求項1~請求項10のいずれか一項に記載の半導体レーザ装置。
    The semiconductor laser device according to any one of claims 1 to 10, further comprising a drive circuit element mounted on the surface of the substrate and driving the semiconductor laser element.
  19.  前記半導体レーザ素子は、1つの発光面に対して複数の発光部が並んだ構成である
     請求項1~請求項18のいずれか一項に記載の半導体レーザ装置。
    The semiconductor laser device according to any one of claims 1 to 18, wherein the semiconductor laser element has a configuration in which a plurality of light emitting parts are lined up on one light emitting surface.
  20.  前記封止樹脂は、蛍光体をさらに含み、
     前記蛍光体は、前記半導体レーザ素子の光を吸収して赤外の光を発光するように構成されている
     請求項1~請求項19のいずれか一項に記載の半導体レーザ装置。
    The sealing resin further includes a phosphor,
    20. The semiconductor laser device according to claim 1, wherein the phosphor is configured to absorb light from the semiconductor laser element and emit infrared light.
PCT/JP2023/032956 2022-09-12 2023-09-11 Semiconductor laser device WO2024058087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144644 2022-09-12
JP2022144644 2022-09-12

Publications (1)

Publication Number Publication Date
WO2024058087A1 true WO2024058087A1 (en) 2024-03-21

Family

ID=90274938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032956 WO2024058087A1 (en) 2022-09-12 2023-09-11 Semiconductor laser device

Country Status (1)

Country Link
WO (1) WO2024058087A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311364A (en) * 2004-04-17 2005-11-04 Lg Electronics Inc Light-emitting device, method for manufacturing the same, and luminescence system using the same
JP2010002522A (en) * 2008-06-18 2010-01-07 Fuji Xerox Co Ltd Optical module
JP2013089791A (en) * 2011-10-19 2013-05-13 Rohm Co Ltd Multi-beam semiconductor laser device
JP2013258434A (en) * 2013-10-01 2013-12-26 Japan Oclaro Inc Multi-beam semiconductor laser device
JP2019165127A (en) * 2018-03-20 2019-09-26 住友電気工業株式会社 Filter and optical module
WO2019240150A1 (en) * 2018-06-12 2019-12-19 国立研究開発法人産業技術総合研究所 Light-emitting device
JP2021150577A (en) * 2020-03-23 2021-09-27 株式会社ジャパンディスプレイ Electrode substrate and light-emitting device
JP2022013030A (en) * 2020-07-03 2022-01-18 日本電気株式会社 Optical module mounting board, optical module, manufacturing method of optical module mounting board, and manufacturing method of optical module
JP2022052552A (en) * 2020-09-23 2022-04-04 日亜化学工業株式会社 Method for manufacturing molded body, molded body, and light-emitting device
JP2022101471A (en) * 2020-12-24 2022-07-06 日亜化学工業株式会社 Light-emitting device
JP2022109722A (en) * 2021-01-15 2022-07-28 ローム株式会社 Semiconductor laser device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311364A (en) * 2004-04-17 2005-11-04 Lg Electronics Inc Light-emitting device, method for manufacturing the same, and luminescence system using the same
JP2010002522A (en) * 2008-06-18 2010-01-07 Fuji Xerox Co Ltd Optical module
JP2013089791A (en) * 2011-10-19 2013-05-13 Rohm Co Ltd Multi-beam semiconductor laser device
JP2013258434A (en) * 2013-10-01 2013-12-26 Japan Oclaro Inc Multi-beam semiconductor laser device
JP2019165127A (en) * 2018-03-20 2019-09-26 住友電気工業株式会社 Filter and optical module
WO2019240150A1 (en) * 2018-06-12 2019-12-19 国立研究開発法人産業技術総合研究所 Light-emitting device
JP2021150577A (en) * 2020-03-23 2021-09-27 株式会社ジャパンディスプレイ Electrode substrate and light-emitting device
JP2022013030A (en) * 2020-07-03 2022-01-18 日本電気株式会社 Optical module mounting board, optical module, manufacturing method of optical module mounting board, and manufacturing method of optical module
JP2022052552A (en) * 2020-09-23 2022-04-04 日亜化学工業株式会社 Method for manufacturing molded body, molded body, and light-emitting device
JP2022101471A (en) * 2020-12-24 2022-07-06 日亜化学工業株式会社 Light-emitting device
JP2022109722A (en) * 2021-01-15 2022-07-28 ローム株式会社 Semiconductor laser device

Similar Documents

Publication Publication Date Title
US10490535B2 (en) Light-emitting apparatus
US6835960B2 (en) Light emitting diode package structure
EP2372801B1 (en) Submounts for semiconductor light emitting device packages and semiconductor light emitting device packages include the same
US7111964B2 (en) LED package
EP2327582B1 (en) LED package, LED package module having the same, and head lamp module having the same and control method thereof
US7956378B2 (en) Light emitting diode package and method of manufacturing the same
KR101241650B1 (en) Package of light emitting diode
JP5698496B2 (en) Light emitting chip, LED package, backlight for liquid crystal display, liquid crystal display and illumination
US8158996B2 (en) Semiconductor light emitting device package
US8017964B2 (en) Light emitting device
US20050199884A1 (en) High power LED package
EP2246913B1 (en) Light emitting diode package and lighting system including the same
US20080179617A1 (en) Semiconductor light-emitting device
EP3579361B1 (en) Light emitting device
KR20190054605A (en) Lighting module and lighting apparatus
KR20050117414A (en) High power led package
WO2006064996A1 (en) Package for light emitting device and method for packaging the same
EP2876355B1 (en) LED base module and LED lighting device
US20110198628A1 (en) Multi-chip led package
EP2597678A2 (en) Package for mounting electronic components, electronic apparatus, and method for manufacturing the package
JP2009289930A (en) Semiconductor device
JP2007116095A (en) Light-emitting apparatus
WO2024058087A1 (en) Semiconductor laser device
WO2024058088A1 (en) Semiconductor light emitting device
KR20080087405A (en) Light emitting diode package and method for fabricating the same diode