WO2024057991A1 - Method for producing sulfur-containing material - Google Patents

Method for producing sulfur-containing material Download PDF

Info

Publication number
WO2024057991A1
WO2024057991A1 PCT/JP2023/032273 JP2023032273W WO2024057991A1 WO 2024057991 A1 WO2024057991 A1 WO 2024057991A1 JP 2023032273 W JP2023032273 W JP 2023032273W WO 2024057991 A1 WO2024057991 A1 WO 2024057991A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
mass
containing material
compound
parts
Prior art date
Application number
PCT/JP2023/032273
Other languages
French (fr)
Japanese (ja)
Inventor
健二 撹上
亨 矢野
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Publication of WO2024057991A1 publication Critical patent/WO2024057991A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds

Definitions

  • the present disclosure relates to a method for manufacturing a sulfur-containing material.
  • Batteries are used for various purposes.
  • the characteristics of a battery depend on its constituent members such as electrodes, separators, electrolytes, etc., and research and development of each constituent member is actively conducted.
  • electrode active materials are important as well as binders, current collectors, etc., and research and development of electrode active materials is actively conducted.
  • electrode active materials for example, sulfur-containing materials and methods for producing the same are known (see, for example, Patent Documents 1 to 3).
  • Patent Document 1 etc. are required to be able to form batteries with a large discharge capacity, but the sulfur-containing materials obtained by conventional manufacturing methods have the problem of insufficient discharge capacity. there were.
  • the present disclosure has been made to solve the above problems, and aims to provide a method for producing a sulfur-containing material that can form a battery with a large discharge capacity.
  • the present disclosure is, as a first aspect, a method for producing a sulfur-containing material, which includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound.
  • the first aspect of the present disclosure it is possible to provide a method for producing a sulfur-containing material that can easily produce a sulfur-containing material that can form a battery with a large discharge capacity.
  • the raw material composition preferably contains the sulfur component in an amount of 5 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of the sulfur-modified compound.
  • the sulfur-containing material has a maximum peak intensity (A ) and the maximum peak intensity (B) at a diffraction angle (2 ⁇ ) of 24.8° to 25.2° (A/B) is 1.5 or less (A/B ⁇ 1.5) It is preferable.
  • the mechanochemical treatment is preferably a dry pulverization treatment.
  • the present disclosure provides, as a second aspect, a heat treatment process in which a mixture containing elemental sulfur and an organic compound is heat-treated to form a heat-treated product, and a mechanochemical process in which the heat-treated product obtained in the heat treatment process is mechanochemically treated.
  • a method for producing a sulfur-containing material includes a treatment step.
  • the heat treatment in the heat treatment step is preferably a treatment in which the mixture is heated at 250° C. or higher and 500° C. or lower in a non-oxidizing atmosphere.
  • the heat treatment is a treatment of heating while discharging sulfur vapor.
  • the sulfur-containing material has a maximum peak intensity (A ) and the maximum peak intensity (B) at a diffraction angle (2 ⁇ ) of 24.8° to 25.2° (A/B) is 1.5 or less (A/B ⁇ 1.5) It is preferable.
  • the method for producing a sulfur-containing material of the present disclosure has at least a mechanochemical treatment step, and a first aspect includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound;
  • a second aspect comprising: a heat treatment step of heating a mixture containing elemental sulfur and an organic compound to form a heat-treated product; and a mechanochemical treatment step of mechanochemically treating the heat-treated product obtained in the heat treatment step; It can be divided into two parts.
  • a sulfur-containing material that can form a battery with a large discharge capacity can be manufactured.
  • sulfur-containing material capable of forming a battery with such a large discharge capacity can be produced by the method for producing a sulfur-containing material of the present disclosure. That is, by mechanochemically treating the above-mentioned raw material composition or heat-treated product, sulfur atoms and components derived from the sulfur-modified compound in the raw material composition or the organic compound in the heat-treated product (hereinafter referred to as "sulfur-modified compound") are removed.
  • the interaction between sulfur atoms derived from the sulfur component or elemental sulfur and atoms of the sulfur-modified compound in the raw material composition or atoms derived from the organic compound in the heat-treated product is stably established.
  • sulfur atoms derived from the sulfur component are incorporated into the sulfur-modified compound and become atoms constituting the sulfur-modified compound, or sulfur atoms derived from the sulfur component are incorporated into the sulfur-modified compound. It is presumed that it is stably attached to the surface.
  • the product after the mechanochemical treatment process has a high sulfur content, but the sulfur atoms form stable interactions with sulfur-modified compounds, etc. This allows sulfur-containing materials to form batteries with high discharge capacity.
  • the "sulfur-containing material” is one obtained by performing a mechanochemical treatment step on the above-mentioned raw material composition or heat-treated material.
  • the sulfur-containing material may include, for example, sulfur-modified compounds, elemental sulfur, and impurities.
  • the method for producing a sulfur-containing material of the present disclosure will be explained separately for each aspect.
  • the method for producing a sulfur-containing material according to the first aspect of the present disclosure includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound.
  • mechanochemical treatment is performed on the raw material composition containing a sulfur component and a sulfur-modified compound.
  • the raw material composition used in the first embodiment contains a sulfur component and a sulfur-modified compound. Each component contained in such a raw material composition will be explained below.
  • the sulfur component used in the raw material composition used in the present disclosure is an inorganic sulfur compound containing a sulfur atom, which is blended as a separate component from the sulfur-modified compound.
  • Such a sulfur component is blended as a component of the raw material composition, and by mechanochemical treatment with a sulfur-modified compound, it is possible to form a sulfur-containing material that can form a battery with a large discharge capacity, which is an effect of the present disclosure. It is fine as long as it is something.
  • the inorganic sulfur compound include compounds of sulfur and metal, elemental sulfur, and rubbery sulfur.
  • Examples of the above-mentioned sulfur and metal compounds include compounds in which sulfur and metal are bonded, such as Li 2 S, TiS 2 , TiS 3 , TiS 4 , NiS, NiS 2 , CuS, FeS 2 , MoS 3 etc.
  • Examples of the above-mentioned elemental sulfur include those having a structure in which eight sulfur atoms are bonded in a ring (S 8 structure), such as crystalline sulfur such as ⁇ -sulfur, ⁇ -sulfur, and ⁇ -sulfur.
  • Examples of the rubbery sulfur include those in which countless sulfur atoms are bonded in a linear chain, and when the rubbery sulfur is pulled, it exhibits rubber-like elasticity.
  • one type of inorganic sulfur compound may be used alone, or two or more types may be used in combination in any ratio.
  • the inorganic sulfur compound is preferably elemental sulfur from the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity.
  • the average particle diameter of the sulfur component is not particularly limited, but from the viewpoint of facilitating the reaction with the sulfur-modified compound, it is preferably in the range of 0.1 ⁇ m or more and 500 ⁇ m or less, and 1 ⁇ m or more and 400 ⁇ m or less. The following range is more preferable, and the range of 10 ⁇ m or more and 300 ⁇ m or less is most preferable.
  • the "average particle diameter" refers to the 50% particle diameter measured by laser diffraction light scattering method.
  • the particle size is a volume-based diameter, and the secondary particle size of the object to be measured is measured.
  • it can be measured by dispersing the object to be measured in a dispersion medium of water.
  • the content of the sulfur component in the raw material composition is 5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the sulfur-modified compound. It is preferably 10 parts by mass or more and 90 parts by mass or less, and most preferably 25 parts by mass or more and 75 parts by mass or less.
  • a sulfur-modified compound is an organic compound that contains a sulfur atom in its structure.
  • it can be an organic compound in which a sulfur atom and an atom other than sulfur form a covalent bond. can. Therefore, for example, in a mixture of an organic compound and elemental sulfur described below, if the organic compound is an organic compound that does not contain a sulfur atom in its structure, the mixture of the organic compound and elemental sulfur does not fall under the category of a sulfur-modified compound.
  • the sulfur atom contained in the sulfur-modified compound may be in a state in which a plurality of sulfur atoms, such as disulfide and trisulfide, are continuously bonded.
  • Atoms other than sulfur contained in the sulfur-modified compound are atoms derived from organic compounds, such as carbon atoms, oxygen atoms, hydrogen atoms, nitrogen atoms, boron atoms, and phosphorus atoms.
  • the sulfur-modified compound described above can be produced by heat-treating a mixture containing elemental sulfur and an organic compound.
  • organic compounds examples include acrylic compounds, polyether compounds, pitches, polynuclear aromatic ring compounds, aliphatic hydrocarbon oxides, aliphatic polymer compounds, polymer compounds having a thiophene structure, halogenated unsaturated hydrocarbons, etc. It will be done.
  • the organic compounds include acrylic compounds, polyether compounds, pitches, polynuclear aromatic ring compounds, aliphatic hydrocarbon oxides, etc. , an aliphatic polymer compound, or a polymer compound having a thiophene structure, more preferably an acrylic compound or a polyether compound, and most preferably an acrylic compound.
  • examples of the acrylic compound include polyacrylonitrile compounds and other acrylic compounds.
  • sulfur-modified compounds examples include sulfur-modified acrylic compounds, sulfur-modified polyether compounds, sulfur-modified pitch compounds, sulfur-modified polynuclear aromatic ring compounds, sulfur-modified aliphatic hydrocarbon oxides, polythienoacene compounds, polysulfide carbon, etc. Can be mentioned.
  • the sulfur-modified compound is preferably either a sulfur-modified acrylic compound or a sulfur-modified polyether compound; More preferably, it is an acrylic compound.
  • the total sulfur content in the sulfur-modified compound is not particularly limited, but from the viewpoint of further increasing the discharge capacity, it is preferably 30% by mass or more and 80% by mass or less, and 40% by mass or more and 75% by mass. It is more preferably the following, and most preferably 45% by mass or more and 70% by mass or less.
  • the total sulfur content in the sulfur-modified compound can be calculated from the analysis results using a CHNS analyzer capable of analyzing sulfur and oxygen.
  • the content of the sulfur-modified compound is not particularly limited, but from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the content of the sulfur-modified compound is 50 parts by mass or more and 95 parts by mass based on 100 parts by mass of the raw material composition. It is preferably 53 parts by mass or more and 90 parts by mass or less, and most preferably 55 parts by mass or more and 80 parts by mass or less.
  • the content of the sulfur-modified compound can be measured by a known method.
  • the sulfur-modified compound is a sulfur-modified polyacrylonitrile compound
  • the content of the sulfur-modified compound can be measured by thermogravimetrically analyzing the raw material composition.
  • thermogravimetric analysis the heating start temperature is 100°C or lower and the heating rate is a constant rate of 10°C/min, and the thermogravimetric loss retention rate is measured until reaching 350°C, and the remaining substances are measured.
  • the content of the sulfur-modified compound in the raw material composition can be measured by checking the content ratio (mass%) of .
  • sulfur-modified acrylic compound used in the sulfur-containing material of the present disclosure for example, a compound in which sulfur and an atom in the acrylic compound are covalently bonded can be used.
  • An example of a method for producing such a sulfur-modified acrylic compound is a method of heating elemental sulfur and an acrylic compound.
  • the sulfur-modified acrylic compound examples include sulfur-modified polyacrylonitrile compounds and other sulfur-modified acrylic compounds.
  • the sulfur-modified acrylic compound is preferably a sulfur-modified polyacrylonitrile compound from the viewpoint of forming a battery with a large discharge capacity.
  • the total sulfur content in the sulfur-modified acrylic compound is not particularly limited, but from the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity, it should be 30% by mass or more and 80% by mass or less.
  • the content is preferably 40% by mass or more and 75% by mass or less, and most preferably 45% by mass or more and 70% by mass or less.
  • the total sulfur content in the sulfur-modified acrylic compound can be calculated from the analysis results using a CHNS analyzer capable of analyzing sulfur and oxygen.
  • the sulfur-modified polyacrylonitrile compound for example, a compound in which the sulfur atom of the sulfur component and the atom in the polyacrylonitrile compound are covalently bonded can be used.
  • a method for producing such a sulfur-modified polyacrylonitrile compound includes a method of heating elemental sulfur and a polyacrylonitrile compound.
  • the sulfur-modified polyacrylonitrile compound in the present disclosure may include one obtained by heating particles in which hydrocarbons are included in the outer shell made of a polyacrylonitrile compound and elemental sulfur. The included hydrocarbons can be saturated or unsaturated aliphatic hydrocarbons having 3 or more and 8 or less carbon atoms.
  • the polyacrylonitrile compound may contain at least one of acrylonitrile and methacrylonitrile as a constituent unit. From the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity, the polyacrylonitrile compound preferably contains at least a structural unit derived from acrylonitrile.
  • the content of structural units derived from acrylonitrile and methacrylonitrile should be 10 parts by mass or more in 100 parts by mass of the polyacrylonitrile compound. is preferable, and more preferably 30 parts by mass or more.
  • the content of the structural unit derived from acrylonitrile is set to 100 In parts by mass, it is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, even more preferably 50 parts by mass or more, even more preferably 80 parts by mass or more, It is even more preferably 85 parts by mass or more, even more preferably 90 parts by mass or more, even more preferably 95 parts by mass or more, and 100 parts by mass, that is, the polyacrylonitrile compound is Most preferably, it consists only of structural units derived from acrylonitrile.
  • the content of the structural units derived from methacrylonitrile is In 100 parts by mass of the acrylonitrile compound, it is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, even more preferably 30 parts by mass or more and 95 parts by mass or less, 30 parts by mass or more.
  • the content is even more preferably 90 parts by mass or less, even more preferably 30 parts by mass or more and 85 parts by mass or less, and most preferably 30 parts by mass or more and 80 parts by mass or less.
  • the polyacrylonitrile compound may contain structural units derived from other monomers other than acrylonitrile and methacrylonitrile.
  • Other monomers include, for example, (meth)acrylate, (meth)acrylic acid ester, (meth)acrylamide, ethylene glycol (meth)acrylate, 1,6-hexanediol (meth)acrylate, neopentyl glycol di(meth) Examples include acrylic monomers such as acrylate and glycerin di(meth)acrylate; and conjugated dienes such as butadiene and isoprene. These other monomers can be used in combination of two or more types.
  • “(meth)acrylate” represents either "acrylate” or "methacrylate.”
  • (Meth)acrylic” represents either "acrylic” or "methacrylic”.
  • sulfur-modified acrylic compound for example, a compound in which sulfur and an atom in the other acrylic compound are covalently bonded can be used.
  • methods for producing such other sulfur-modified acrylic compounds include a method of heating elemental sulfur and other acrylic compounds.
  • the other acrylic compounds mentioned above contain acrylic monomers other than acrylonitrile and methacrylonitrile as constituent units.
  • the acrylic monomer may be the same as the acrylic monomer described as the other monomer.
  • the other sulfur-modified acrylic compounds described above can contain the conjugated diene described above as a structural unit.
  • the sulfur-modified polyether compound for example, a compound in which sulfur and an atom in the polyether compound are covalently bonded can be used.
  • a sulfur-modified polyether compound can be produced, for example, by heating a mixture of elemental sulfur and a polyether compound as an organic compound.
  • polyether compounds include polyethylene glycol, polypropylene glycol, ethylene oxide/propylene oxide copolymer, polytetramethylene glycol, and the like.
  • the polyether compound may have an alkyl ether group, an alkylphenyl ether group, or an acyl group at the end, or may be an ethylene oxide adduct of a polyol such as glycerin or sorbitol.
  • the weight average molecular weight of the polyether compound is not particularly limited, but from the viewpoint of ease of handling, it is preferably 100 or more and 20,000 or less, more preferably 150 or more and 10,000 or less. , most preferably 200 or more and 8,000 or less.
  • the weight average molecular weight is a polystyrene equivalent value calculated using gel permeation chromatography (GPC).
  • the sulfur-modified pitch compound for example, a compound in which sulfur and an atom in pitches are covalently bonded can be used.
  • a sulfur-modified pitch compound can be produced, for example, by heating a mixture of elemental sulfur and pitch as an organic compound.
  • pitches include petroleum pitch, coal pitch, mesophase pitch, asphalt, coal tar, coal tar pitch, organic synthetic pitch obtained by polycondensation of fused polycyclic aromatic hydrocarbon compounds, and fused polycyclic aromatic compounds containing heteroatoms.
  • Examples include organic synthetic pitch obtained by polycondensation of group hydrocarbon compounds.
  • Pitches are mixtures of various compounds and may include fused polycyclic aromatics.
  • the condensed polycyclic aromatic group contained in the pitches may be a single type or a plurality of types. This condensed polycyclic aromatic may contain a nitrogen atom or a sulfur atom in addition to carbon and hydrogen in the ring.
  • sulfur-modified polynuclear aromatic ring compound for example, a compound in which sulfur and an atom in the polynuclear aromatic ring compound are covalently bonded can be used.
  • a sulfur-modified polynuclear aromatic ring compound can be produced, for example, by heating a mixture of elemental sulfur and a polynuclear aromatic ring compound as an organic compound.
  • polynuclear aromatic ring compounds examples include benzene aromatic ring compounds such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, and coronene, and some of the benzene aromatic ring compounds have five-membered rings. and heteroaromatic compounds containing heteroatoms in which some of these carbon atoms are replaced with sulfur, oxygen, nitrogen, etc.
  • these polynuclear aromatic ring compounds include a chain or branched alkyl group having 1 to 12 carbon atoms, an alkoxyl group, a hydroxyl group, a carboxyl group, an amino group, an aminocarbonyl group, an aminothio group, a mercaptothiocarbonylamino group, It may have a substituent such as a carboxyalkylcarbonyl group.
  • sulfur-modified aliphatic hydrocarbon oxide for example, a compound in which sulfur and an atom in the aliphatic hydrocarbon oxide are covalently bonded can be used.
  • Sulfur-modified aliphatic hydrocarbon oxides can be produced by heating a mixture of elemental sulfur and an aliphatic hydrocarbon oxide as an organic compound.
  • aliphatic hydrocarbon oxides include aliphatic alcohols, aliphatic aldehydes, aliphatic ketones, aliphatic epoxides, aliphatic hydrocarbon oxides such as fatty acids, and the like.
  • the above polythienoacene compound can be a compound having a sulfur-containing polythienoacene structure represented by the following general formula (1).
  • the above polythienoacene compound can be produced by heating a mixture of an aliphatic polymer compound having a linear structure such as polyethylene, a polymer compound having a thiophene structure such as polythiophene, and elemental sulfur.
  • the polysulfide carbon can be a compound represented by the general formula (CS x ) n (x represents 0.5 to 2, and n is a number of 4 or more).
  • the polysulfide carbon can be produced by reacting a complex of an alkali metal sulfide such as sodium sulfide and elemental sulfur with a halogenated unsaturated hydrocarbon such as hexachlorobutadiene as an organic compound.
  • the raw material composition may contain other components as necessary.
  • the total content of the sulfur component and the sulfur-modified compound is preferably 50 parts by mass or more in 100 parts by mass of the raw material composition. , more preferably 60 parts by mass or more, even more preferably 70 parts by mass or more, even more preferably 80 parts by mass or more, even more preferably 90 parts by mass or more, and even more preferably 95 parts by mass.
  • the amount is even more preferably 99 parts or more, even more preferably 100 parts by weight, that is, the raw material composition does not contain any components other than the sulfur component and the sulfur-modified compound. Most preferred.
  • the total content of sulfur atoms in the raw material composition is: It is preferably 50% by mass or more and 90% by mass or less, more preferably 51% by mass or more and 85% by mass or less, even more preferably 52% by mass or more and 80% by mass or less, and 55% by mass or more and 75% by mass or less. It is even more preferably at most 56% by mass and at most 70% by mass.
  • the total content of sulfur atoms in the raw material composition means the content of sulfur atoms per total mass of the raw material composition.
  • the content of sulfur atoms in the sulfur component and the content of sulfur atoms in the sulfur-modified compound per total mass of the raw material composition are It can be the total content.
  • Mechanochemical treatment performed on the raw material composition described above can impart mechanical energy to the raw material composition containing a sulfur component and a sulfur-modified compound, thereby increasing the discharge capacity, which is an effect of the present disclosure. Any material that can form a sulfur-containing material that can form a large battery may be used.
  • the above-mentioned mechanical energy is, for example, energy generated in a pulverization process of a solid substance, and includes, for example, impact, compression, shear, shear stress, frictional force, centrifugal force, and the like.
  • Such mechanochemical treatment includes pulverization treatment, but dry pulverization treatment is preferred from the viewpoint of promoting interaction between sulfur atoms in the sulfur component and atoms in the sulfur-modified compound. It is preferable that there be.
  • dry pulverization treatment By using the above-mentioned dry grinding process, mechanical energies such as impact, compression, shear stress, shear stress, frictional force, and centrifugal force can be applied in a complex manner, and the sulfur content can form batteries with large discharge capacity. This is because the materials are easy to obtain.
  • the above-mentioned pulverization treatment uses mechanical energy such as impact, compression, shear, shear stress, frictional force, centrifugal force, etc.
  • a pulverization treatment that can be applied to the raw material composition is more preferable, and a pulverization treatment that can apply impact, compression, and shear is even more preferable, and pulverization treatment that can apply impact, compression, shear, and centrifugal force is even more preferable.
  • it is a grinding process that can be carried out.
  • the crushing equipment used in the above-mentioned crushing process examples include ball mills, bead mills, vibration mills, medium stirring mills, roller mills, planetary mills, disc mills, roll crushers, gliding rolls, jet mills, cyclone mills, mortars, and the like. Examples include crushing equipment.
  • the grinding device is preferably any one of a ball mill, a bead mill, a roller mill, a disk mill, a media stirring mill, and a planetary mill. This is because it is possible to efficiently apply impact, compression, and shear to the raw material composition, and it is easy to form a sulfur-containing material that can form a battery with a large discharge capacity.
  • the grinding device is a media stirring mill or a planetary mill. This is because it is easy to form a sulfur-containing material that can apply impact, compression, shear, and centrifugal force to the raw material composition and form a battery with a large discharge capacity.
  • the grinding device is a planetary mill. This is because it is easy to form a sulfur-containing material that can apply a large centrifugal force to the raw material composition and form a battery with a large discharge capacity in a short time.
  • the above mechanochemical treatment may be performed in a vacuum atmosphere, an oxidizing atmosphere, or a non-oxidizing atmosphere, but it is said that it can suppress oxidation reactions caused by contact between the produced sulfur-containing material and moisture, oxygen, etc. From this point of view, it is preferable to carry out under a non-oxidizing atmosphere.
  • Examples of the vacuum atmosphere include an atmosphere in which water, carbon dioxide, and the like are forcibly removed by maintaining the pressure at 100 Pa or less using a vacuum pump or the like.
  • the above-mentioned oxidizing atmosphere includes an atmosphere containing an oxidizing gas such as oxygen, ozone, nitrogen dioxide, etc.
  • the above-mentioned non-oxidizing atmosphere can be, for example, an atmosphere in which the oxygen concentration is less than 5% by volume, but from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the oxygen concentration is 2% by volume.
  • the oxygen concentration is preferably less than 1 volume%, more preferably the oxygen concentration is 1 volume% or less, even more preferably the oxygen concentration is 0.1 volume% or less, and the oxygen concentration is 0.05 volume% or less. is even more preferred, and most preferably an atmosphere substantially free of oxygen.
  • the non-oxidizing atmosphere examples include an inert gas atmosphere such as nitrogen, helium, and argon, a sulfur gas atmosphere, and a hydrogen sulfide gas atmosphere. From the viewpoint of the working environment, the non-oxidizing atmosphere is preferably an inert gas atmosphere such as nitrogen or argon.
  • conditions such as rotation speed, treatment time, temperature, pressure, and gravitational acceleration applied to the mixture may be adjusted as appropriate depending on the composition of the raw material composition and the amount of treatment. Can be set.
  • the conditions for mechanochemical treatment are such that the rate of decrease in sulfur content in the raw material composition before and after the mechanochemical treatment step is It is preferably 30% by mass or less, more preferably 25% by mass or less, and most preferably 20% by mass or less.
  • the mechanochemical treatment conditions are such that the raw material composition after the mechanochemical treatment step is A/B of the raw material composition before the mechanochemical treatment step.
  • the A/B ((A/B of the raw material composition after the mechanochemical treatment process)/(A/B of the raw material composition before the mechanochemical treatment process)) of the product shall be 2/3 or less. is preferable, more preferably 1/2 or less, and most preferably 2/5 or less.
  • the A/B ratio of the raw material composition becomes smaller, so that the mechanochemical treatment progresses effectively and the resulting sulfur-containing material can easily form a battery with a large discharge capacity.
  • the peak intensity is considered to be a diffraction peak derived from the sulfur component. It is estimated that the strength of (A) decreases.
  • A/B of the raw material composition is powder X-ray diffraction using Cu-K ⁇ rays, and in a diffraction chart of the raw material composition measured under the measurement conditions described below, the diffraction angle (2 ⁇ ) is 23.
  • a powder X-ray diffraction device can be used as the device used for measurement, for example, a powder X-ray diffraction device Ultima IV manufactured by Rigaku Co., Ltd. can be used. can.
  • the measurement conditions were: Cu-K ⁇ ray, tube voltage: 40 kV, tube current: 40 mA, scan speed: 0.5°/min, step width: 0.02°, number of integrations: 1 time, diffraction angle (2 ⁇ ): 10 The angle can be between 40° and 40°.
  • a diffraction peak derived from a sulfur component having a crystal structure such as elemental sulfur can be observed at around 23.0° to 23.4°
  • a diffraction peak derived from a sulfur component having a crystal structure such as elemental sulfur can be observed at around 23.0° to 23.4°
  • a diffraction peak derived from a typical broad halo pattern derived from, for example, an amorphous sulfur-modified compound can be observed.
  • the conditions of the mechanochemical treatment are such that the sulfur component contained in the sulfur-containing material obtained after the mechanochemical treatment step, that is, as a component of the raw material composition.
  • the content of the sulfur component that does not react with the sulfur-modified compound and remains is preferably 20% by mass or less, more preferably 10% by mass or less, It is even more preferable that the amount is 5% by mass or less, even more preferably it is 1% by mass or less, and it is 0% by mass, that is, it does not react with the sulfur-modified compound and remains. Most preferably, it does not contain any sulfur components.
  • the method for producing a sulfur-containing material according to the first aspect includes a mechanochemical treatment step, but may include other steps, such as a mixing step and a desulfurization step, as necessary. .
  • the above mixing step is a step of mixing the sulfur component and the sulfur-modified compound, and is preferably carried out before the mechanochemical treatment step.
  • the method of mixing the sulfur component and the sulfur-modified compound is not particularly limited, and for example, mixing using a crushing device capable of performing the dry treatment described in the section "(2) Mechanochemical treatment step". Examples include a method of mixing using a known dry blending device such as a blender, a rocking mill, or a Henschel mixer.
  • the present disclosure may include a desulfurization process for removing unreacted sulfur components after the mechanochemical treatment process.
  • the desulfurization step include a heat desulfurization method, a solvent desulfurization method, and the like.
  • the thermal desulfurization method described above includes, for example, heating the sulfur component in the sulfur-containing material to gas (e.g., sulfur gas, hydrogen sulfide, etc.) by heating at a temperature of about 100°C to 600°C in a non-oxidizing atmosphere. For example, there are methods to remove it.
  • the processing time can be appropriately set depending on the processing temperature and the like.
  • Examples of the solvent desulfurization method include a method in which a sulfur component in a sulfur-containing material is absorbed by a solvent and the solvent that has absorbed the sulfur component is removed.
  • Examples of the above-mentioned solvent include aqueous alkaline solution, acetone, toluene, xylene, carbon disulfide, pinacolin, methyl oxide, acetophenone, benzophenone, acetylacetone, 2-butanone, methanol, ethanol, propanol, butanol, acetonitrile, propionitrile, Butyronitrile, nitromethane, nitroethane, nitropropane, nitrobenzene, dimethyl sulfoxide, N,N'-dimethylformamide, N,N'-dimethylacetamide, pyridine, N-methylpyrrolidinone, trimethyl phosphate, triethyl phosphate, hexamethyl phosphate, phosphorane etc.
  • the desulfurization step is preferably a thermal desulfurization method from the viewpoint of easily obtaining a sulfur-containing material that can form a battery with a large discharge capacity.
  • the sulfur-containing material obtained in the first embodiment is used from the viewpoint that the proportion of unreacted sulfur components derived from the raw material composition is small and it is easy to form a battery with a large discharge capacity.
  • the peak intensity ratio (A/B) of the sulfur-containing material is preferably 1.5 or less (A/B ⁇ 1.5), and preferably 1.2 or less (A/B ⁇ 1.2). It is more preferably 1.0 or less (A/B ⁇ 1.0), even more preferably 0.8 or less (A/B ⁇ 0.8).
  • the peak intensity ratio (A/B) it is sufficient to adjust the conditions of each step of the method for producing a sulfur-containing material, for example, adjusting the conditions of mechanochemical treatment in the mechanochemical treatment step. or adjusting the content of the sulfur component in the raw material composition to be subjected to mechanochemical treatment. Specifically, the peak intensity ratio (A /B) can be reduced.
  • the total content of sulfur atoms in the sulfur-containing material is preferably 50% by mass or more and 90% by mass or less, and 51% by mass or more and 85% by mass. % or less, even more preferably 52% by mass or more and 80% by mass or less, even more preferably 55% by mass or more and 75% by mass or less, and 56% by mass or more and 70% by mass or less Most preferably.
  • the total content of sulfur atoms in the sulfur-containing material means the content of sulfur atoms per total mass of the sulfur-containing material.
  • the content is the sum of the content of sulfur atoms in the sulfur component that has not reacted with the sulfur-modified compound and the content of sulfur atoms in the sulfur-modified compound, per total mass of the sulfur-containing material. be able to.
  • the content of sulfur atoms in the sulfur-containing material can be calculated from the analysis results using CHNS analysis (vario MICRO cube manufactured by Elementor) that can analyze sulfur and oxygen.
  • the content of the sulfur-modified compound is preferably 60 parts by mass or more in 100 parts by mass of the sulfur-containing material, It is more preferably 65 parts by mass or more, even more preferably 70 parts by mass or more, even more preferably 80 parts by mass or more, even more preferably 90 parts by mass or more, and even more preferably 95 parts by mass. It is even more preferable that the amount is 99 parts by mass or more, and most preferably 99 parts by mass or more.
  • the use of the obtained sulfur-containing material is not particularly limited, but it can be used for an electrode layer of an electrode in a battery, and is particularly useful as an active material for an electrode layer. By using it in an electrode layer of an electrode in a battery, the discharge capacity of the battery can be increased.
  • the battery may be either a primary battery or a secondary battery, but a secondary battery is preferred.
  • the sulfur-containing material is an active material of an electrode layer in a battery
  • the sulfur-containing material is an active material included in an electrode layer used in a secondary battery, and a positive electrode active material used in a secondary battery. More preferably, it is an active material contained in the layer, that is, a positive electrode active material.
  • the structure of the battery is not particularly limited, and any known structure can be adopted as appropriate.
  • a method for producing a sulfur-containing material according to a second aspect of the present disclosure includes a heat treatment step of heat-treating a mixture containing elemental sulfur and an organic compound to form a heat-treated product; The method includes a mechanochemical treatment step of mechanochemically treating the treated material.
  • Heat Treatment Step In the heat treatment step in the second embodiment, a mixture containing elemental sulfur and an organic compound is heat-treated to form a heat-treated product.
  • the mixture used in the second embodiment contains elemental sulfur and an organic compound. Elemental sulfur can be the same as the elemental sulfur described in "(1-1) Sulfur component" of "1. Raw material composition" of "A-1. First aspect”, so here The explanation will be omitted.
  • the organic compound is an organic compound that is a raw material for a sulfur-modified compound, and the same organic compound as described in the section "(1-2) Sulfur-modified compound” of "A-1. First aspect” should be used. can be done, so the explanation here will be omitted.
  • the organic compounds used in the second embodiment include acrylic compounds, polyether compounds, pitches, polynuclear aromatic ring compounds, and aliphatic hydrocarbons. It is preferably any of an oxide, an aliphatic polymer compound, and a polymer compound having a thiophene structure, more preferably an acrylic compound or a polyether compound, and most preferably an acrylic compound.
  • the acrylic compound include polyacrylonitrile compounds and other acrylic compounds.
  • the content of elemental sulfur in the mixture is 100 parts by mass or more and 1,500 parts by mass based on 100 parts by mass of the organic compound. It is preferably at most 120 parts by mass and at most 1,000 parts by mass.
  • the method for mixing elemental sulfur and the organic compound is the same as the method for mixing the sulfur component and the sulfur-modified compound described in "3. Other steps" of "A-1. First embodiment". Therefore, the explanation here will be omitted.
  • the temperature at which the mixture containing elemental sulfur and an organic compound is heat-treated is 250°C or more and 500°C or less.
  • the temperature is preferably 260°C or more and 450°C or less.
  • the heat treatment is carried out in a vacuum atmosphere or in a non-vacuum atmosphere from the viewpoint of suppressing the oxidation reaction caused by contact between the formed heat-treated product and moisture, oxygen, etc., and making it easier to obtain a sulfur-containing material that can form a battery with a large discharge capacity.
  • the treatment is preferably performed by heating in an oxidizing atmosphere, and more preferably the treatment is performed by heating in a non-oxidizing atmosphere.
  • the above heat treatment is preferably performed at a temperature of 250°C or more and 500°C or less and under a non-oxidizing atmosphere or a vacuum atmosphere. It is more preferable to carry out the process at a temperature of 250°C to 500°C and under a non-oxidizing atmosphere, and most preferably to carry out at a temperature of 260°C to 450°C and a non-oxidizing atmosphere.
  • the vacuum atmosphere and non-oxidizing atmosphere mentioned above the same ones as described in "2. Mechanochemical treatment" of "A-1. First aspect" can be adopted, so the explanation here will be omitted. .
  • elemental sulfur may be heated to become sulfur vapor, and the sulfur vapor may react with the organic compound to form a heat-treated product (sulfur-modified compound). Since sulfur vapor has a high vapor pressure, the pressure within the system may increase during heat treatment. From the viewpoint of suppressing this pressure increase, the heat treatment may be a treatment of heating while discharging sulfur vapor to the outside of the system. As a method of heating while discharging sulfur vapor out of the system, there is a method of reducing the pressure inside the system and discharging sulfur vapor, and a method described in "2. Mechanochemical treatment" of "A-1. First embodiment".
  • Examples include a method of introducing an inert gas into the system to create a non-oxidizing atmosphere and exhausting sulfur vapor.
  • hydrogen sulfide may be generated by the reaction between sulfur vapor and organic compounds, and from the viewpoint of protecting the working environment, hydrogen sulfide may be discharged together with the sulfur vapor.
  • Examples of devices that can perform heating treatment while discharging sulfur vapor to the outside of the system include devices described in JP 2014-22123 A, JP 2013-201100 A, and International Publication No. 2021/060044. It will be done.
  • a method of heat-treating elemental sulfur and organic compounds while mixing them is to provide a stirring blade such as a battler in a heating container and rotate it to heat-treat elemental sulfur and organic compounds while mixing them. Examples include a method of heating the elemental sulfur and the organic compound while mixing them by their own weight by rotating the heating container itself.
  • a heating container with a structure of a cylinder or a combination of cylinders, from the viewpoint of facilitating mixing of elemental sulfur and organic compound. .
  • the sulfur content in the heat-treated material obtained in the heat treatment step is preferably 30% by mass or more and 80% by mass or less. , more preferably 33% by mass or more and 70% by mass or less, and most preferably 35% by mass or more and 60% by mass or less.
  • Mechanochemical treatment step In the mechanochemical treatment step in the second embodiment, a mechanochemical treatment is performed on the heat-treated product obtained in the heat treatment step.
  • the raw material composition may be replaced with the above-mentioned heat-treated product in the section "2.
  • the method for producing a sulfur-containing material according to the second aspect includes a heat treatment step and a mechanochemical treatment step, but may include other steps as necessary.
  • Other processes include a mixing process, a recovery process, a sulfur content adjustment process, a desulfurization process, and the like.
  • the above mixing step is a step of mixing elemental sulfur and an organic compound, and is preferably carried out before the heat treatment step.
  • the sulfur component is replaced with elemental sulfur
  • the sulfur-modified compound is replaced with the above organic compound in the section "(3-1) Mixing step" of "3.
  • Other steps in "A-1. First aspect". Since the content can be replaced with , the explanation here will be omitted.
  • the recovery step is a step in which the sulfur vapor and hydrogen sulfide discharged outside the system in the heat treatment step are recovered and returned to the mixture in the heat treatment step. Since the method for producing a sulfur-containing material according to the second aspect includes a recovery step, it is possible to save energy and improve the working environment. Examples of methods for recovering sulfur vapor and hydrogen sulfide include a method of returning the liquefied sulfur to the heating container by condensing or cooling the sulfur vapor and hydrogen sulfide discharged outside the system.
  • sulfur vapor and hydrogen sulfide are removed at a temperature slightly higher than the melting point of sulfur, for example, in the range of 120°C or higher and 150°C or lower. It is preferable to perform agglomeration or cooling.
  • the sulfur content adjustment step is performed between the heat treatment step and the mechanochemical treatment step, and is a step for adjusting the sulfur content. Since the method for producing a sulfur-containing material according to the second aspect includes the sulfur content adjustment step, it becomes easy to produce a sulfur-containing material having a desired sulfur content.
  • the sulfur content may be adjusted by decreasing or increasing the content of elemental sulfur in the heat-treated product. Examples of methods for reducing the content of elemental sulfur in the heat-treated product include a method of heat-treating the heat-treated product, a method of subjecting the heat-treated product to vacuum treatment, and a method of using both heat treatment and vacuum treatment. . Examples of methods for increasing the content of elemental sulfur in the heat-treated product include a method of adding elemental sulfur to the heat-treated product obtained in the heat treatment step.
  • the temperature of the heat treatment is preferably in the range of 200°C or more and 600°C or less, from the viewpoint of efficiently reducing elemental sulfur. , more preferably in the range of 230°C or more and 550°C or less, and most preferably in the range of 250°C or more and 500°C or less.
  • the degree of pressure reduction is more preferably 100 hPa or less, and preferably 50 hPa or less, from the viewpoint of efficiently reducing elemental sulfur. It is even more preferable, and most preferably 25 hPa or less.
  • the time required to reduce the content of elemental sulfur can be appropriately set depending on the processing conditions of heating and pressure reduction. From the viewpoint of efficiently reducing elemental sulfur, when the heating temperature is 260°C, it is preferable to perform the treatment at a reduced pressure of 20 hPa for 2 hours or more, and when the heating temperature is 300°C, the treatment is preferably performed at a reduced pressure of 20 hPa for 1 hour. It is preferable to carry out the above treatment, and when the heating temperature is 350° C., it is preferable to carry out the treatment at a reduced pressure of 20 hPa for 0.5 hours or more and 15 hours or less.
  • Sulfur-containing material manufactured according to the second embodiment can have the same contents as in the section "4. Sulfur-containing material" of "A-1. First embodiment", so the explanation here will be given. is omitted.
  • a method for producing a sulfur-containing material which includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound.
  • a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound [2] The method for producing a sulfur-containing material according to [1], wherein the raw material composition contains 5 parts by mass or more and 100 parts by mass or less of the sulfur component based on 100 parts by mass of the sulfur-modified compound.
  • the sulfur-containing material has the maximum peak intensity (A) at a diffraction angle (2 ⁇ ) of 23.0° to 23.4 in powder X-ray diffraction using Cu-K ⁇ rays, and the diffraction angle (2 ⁇ ) to the maximum peak intensity (B) at 24.8° to 25.2° (A/B) is 1.5 or less (A/B ⁇ 1.5) [1] or [2].
  • Method of manufacturing the described sulfur-containing material [4] The method for producing a sulfur-containing material according to any one of [1] to [3], wherein the mechanochemical treatment is a dry pulverization treatment.
  • a heat treatment step of heat treating a mixture containing elemental sulfur and an organic compound to form a heat treated product A method for producing a sulfur-containing material, comprising a mechanochemical treatment step of mechanochemically treating a heat treated material obtained in the heat treatment step.
  • the sulfur-containing material has the maximum peak intensity (A) at a diffraction angle (2 ⁇ ) of 23.0° to 23.4°, and the diffraction angle (2 ⁇ ) ) to the maximum peak intensity (B) at 24.8° to 25.2° (A/B) is 1.5 or less (A/B ⁇ 1.5) [5] to [7] A method for producing a sulfur-containing material according to any one of the above.
  • the obtained intermediate product was placed in a glass tube oven at 260° C., the pressure was reduced to 20 hPa, and the mixture was heated for 180 minutes to remove elemental sulfur to obtain sulfur-modified compound A.
  • the total sulfur content in sulfur-modified compound A was 49% by mass.
  • the lower part of the glass tube was inserted into a crucible-type electric furnace, and heated at 400°C for 1 hour while introducing nitrogen from the gas introduction tube to remove generated hydrogen sulfide.
  • An intermediate product was obtained. Note that the sulfur vapor was condensed at the top or lid of the glass tube and refluxed.
  • the obtained intermediate product was placed in a glass tube oven at 260° C., the pressure was reduced to 20 hPa, and the mixture was heated for 90 minutes to remove elemental sulfur to obtain sulfur-modified compound B.
  • the total sulfur content in sulfur-modified compound B was 60% by mass.
  • Example 1 Production of sulfur-containing material A
  • Raw material composition containing 100 parts by mass of the sulfur-modified compound A produced in Comparative Example 1 and 30 parts by mass of sulfur powder as a sulfur component (manufactured by Sigma-Aldrich, average particle size 200 ⁇ m, alpha sulfur)
  • the material was subjected to mechanochemical treatment using a planetary ball mill (manufactured by Fritsch, P-7 Classic Line) under conditions of an argon atmosphere, a rotation speed of 1,600 rpm, and a treatment time of 300 minutes to obtain sulfur-containing material A.
  • Ta The total content of sulfur atoms in sulfur-containing material A was 60% by mass.
  • Example 2 Production of sulfur-containing material B 10 parts by mass of polyacrylonitrile powder (manufactured by Sigma-Aldrich, average particle size 200 ⁇ m) as an organic compound and sulfur powder as elemental sulfur (manufactured by Sigma-Aldrich, average particle size 200 ⁇ m, ⁇ -sulfur) ) 30 parts by mass were mixed in a mortar and 20 g of the mixture was placed in a bottomed cylindrical glass tube with an outer diameter of 45 mm and a length of 120 mm, and then silicone having a gas inlet tube and a gas outlet tube at the opening of the glass tube. Attached the stopper.
  • the lower part of the glass tube was inserted into a crucible-type electric furnace, and heated at 400°C for 1 hour while introducing nitrogen from the gas introduction tube to remove generated hydrogen sulfide.
  • An intermediate product was obtained. Note that the sulfur vapor was condensed at the top or lid of the glass tube and refluxed.
  • the obtained intermediate product was placed in a glass tube oven at 260° C. and heated for 90 minutes to remove elemental sulfur to obtain a heat-treated product.
  • the sulfur content in the heat-treated product was 60% by mass.
  • Example 3 Production of sulfur-containing material C
  • Raw material composition containing 100 parts by mass of the sulfur-modified compound A produced in Comparative Example 1 and 70 parts by mass of sulfur powder as a sulfur component (manufactured by Sigma-Aldrich, average particle size 200 ⁇ m, ⁇ sulfur)
  • the material was subjected to mechanochemical treatment using a planetary ball mill (manufactured by Fritsch, P-7 Classic Line) under conditions of an argon atmosphere, a rotation speed of 1,600 rpm, and a treatment time of 300 minutes to obtain a sulfur-containing material C. Ta.
  • the total content of sulfur atoms in sulfur-containing material C was 70% by mass.
  • a positive electrode active material 90.0 parts by mass of one selected from sulfur-modified compounds A, B, sulfur-containing materials A to C, and sulfur-containing material a, and acetylene black as a conductive additive.
  • sulfur-modified compounds A, B, sulfur-containing materials A to C, and sulfur-containing material a 90.0 parts by mass of one selected from sulfur-modified compounds A, B, sulfur-containing materials A to C, and sulfur-containing material a, and acetylene black as a conductive additive.
  • styrene-butadiene rubber as a binder
  • sodium carboxymethyl cellulose manufactured by Daicel Finechem
  • the obtained slurry composition was applied onto a carbon coated aluminum foil (thickness 20 ⁇ m) as a current collector by a doctor blade method, dried at 90° C. for 1 hour, and then cut into a predetermined size. Further, vacuum drying was performed at 130° C. for 2 hours to prepare disk-shaped positive electrodes.

Abstract

Provided is a method for producing a sulfur-containing material, the method having a mechanochemical treatment step for subjecting a starting composition comprising a sulfur component and a sulfur-modified compound to a mechanochemical treatment.

Description

硫黄含有材料の製造方法Method for manufacturing sulfur-containing materials
 本開示は、硫黄含有材料の製造方法に関する。 The present disclosure relates to a method for manufacturing a sulfur-containing material.
 電池は様々な用途に使用される。電池の特性は、その構成部材である電極、セパレータ、電解質等に依存し、各構成部材の研究開発が盛んに行われている。電極においては、結着剤、集電材等と共に、電極活物質が重要であり、電極活物質の研究開発が盛んに行われている。電極活物質としては、例えば、硫黄含有材料及びその製造方法が知られている(例えば、特許文献1~3を参照)。 Batteries are used for various purposes. The characteristics of a battery depend on its constituent members such as electrodes, separators, electrolytes, etc., and research and development of each constituent member is actively conducted. In electrodes, electrode active materials are important as well as binders, current collectors, etc., and research and development of electrode active materials is actively conducted. As electrode active materials, for example, sulfur-containing materials and methods for producing the same are known (see, for example, Patent Documents 1 to 3).
米国特許第9,620,772号明細書US Patent No. 9,620,772 国際公開第2019/176618号International Publication No. 2019/176618 米国特許出願公開第2014/0134485号明細書US Patent Application Publication No. 2014/0134485
  特許文献1等で用いられる硫黄含有材料には、放電容量が大きい電池を形成できることが求められているが、従来の製造方法で得られた硫黄含有材料は放電容量が不十分であるという課題があった。 The sulfur-containing materials used in Patent Document 1 etc. are required to be able to form batteries with a large discharge capacity, but the sulfur-containing materials obtained by conventional manufacturing methods have the problem of insufficient discharge capacity. there were.
  本開示は、上記課題を解決するためになされたものであり、放電容量が大きい電池を形成可能な硫黄含有材料の製造方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a method for producing a sulfur-containing material that can form a battery with a large discharge capacity.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、硫黄を含む特定の材料をメカノケミカル法で処理する工程を有する硫黄含有材料の製造方法が、上記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies aimed at solving the above problems, the present inventors discovered that a method for producing sulfur-containing materials, which includes a process of treating a specific sulfur-containing material using a mechanochemical method, can solve the above problems. The invention was completed.
 すなわち、本開示は、第1態様として、硫黄成分及び硫黄変性化合物を含む原料組成物をメカノケミカル処理するメカノケミカル処理工程を有する硫黄含有材料の製造方法である。 That is, the present disclosure is, as a first aspect, a method for producing a sulfur-containing material, which includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound.
 本開示の第1態様によれば、放電容量が大きい電池を形成可能な硫黄含有材料を容易に製造できる硫黄含有材料の製造方法を提供することができる。 According to the first aspect of the present disclosure, it is possible to provide a method for producing a sulfur-containing material that can easily produce a sulfur-containing material that can form a battery with a large discharge capacity.
 本開示の第1態様においては、上記原料組成物において、上記硫黄成分が、上記硫黄変性化合物100質量部に対して、5質量部以上100質量部以下含まれることが好ましい。 In the first aspect of the present disclosure, the raw material composition preferably contains the sulfur component in an amount of 5 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of the sulfur-modified compound.
 本開示の第1態様においては、上記硫黄含有材料が、Cu-Kα線を用いた粉末X線回折において、回折角度(2θ)が23.0°~23.4°における最大のピーク強度(A)と、回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)との比(A/B)が1.5以下(A/B≦1.5)であることが好ましい。 In the first aspect of the present disclosure, the sulfur-containing material has a maximum peak intensity (A ) and the maximum peak intensity (B) at a diffraction angle (2θ) of 24.8° to 25.2° (A/B) is 1.5 or less (A/B≦1.5) It is preferable.
 本開示の第1態様においては、上記メカノケミカル処理が、乾式の粉砕処理であることが好ましい。 In the first aspect of the present disclosure, the mechanochemical treatment is preferably a dry pulverization treatment.
 本開示は、第2態様として、単体硫黄及び有機化合物を含む混合物を加熱処理して加熱処理物を形成する加熱処理工程と、加熱処理工程で得られた加熱処理物をメカノケミカル処理するメカノケミカル処理工程とを有する硫黄含有材料の製造方法である。 The present disclosure provides, as a second aspect, a heat treatment process in which a mixture containing elemental sulfur and an organic compound is heat-treated to form a heat-treated product, and a mechanochemical process in which the heat-treated product obtained in the heat treatment process is mechanochemically treated. A method for producing a sulfur-containing material includes a treatment step.
 本開示の第2態様によれば、放電容量が大きい電池を形成可能な硫黄含有材料を容易に製造できる硫黄含有材料の製造方法を提供することができる。 According to the second aspect of the present disclosure, it is possible to provide a method for producing a sulfur-containing material that can easily produce a sulfur-containing material that can form a battery with a large discharge capacity.
 本開示の第2態様においては、上記加熱処理工程における加熱処理が、非酸化性雰囲気下、250℃以上500℃以下で上記混合物を加熱する処理であることが好ましい。 In the second aspect of the present disclosure, the heat treatment in the heat treatment step is preferably a treatment in which the mixture is heated at 250° C. or higher and 500° C. or lower in a non-oxidizing atmosphere.
 本開示の第2態様においては、上記加熱処理が、硫黄蒸気を排出しながら加熱する処理であることが好ましい。 In the second aspect of the present disclosure, it is preferable that the heat treatment is a treatment of heating while discharging sulfur vapor.
 本開示の第2態様においては、上記硫黄含有材料が、Cu-Kα線を用いた粉末X線回折において、回折角度(2θ)が23.0°~23.4°における最大のピーク強度(A)と、回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)との比(A/B)が1.5以下(A/B≦1.5)であることが好ましい。 In the second aspect of the present disclosure, the sulfur-containing material has a maximum peak intensity (A ) and the maximum peak intensity (B) at a diffraction angle (2θ) of 24.8° to 25.2° (A/B) is 1.5 or less (A/B≦1.5) It is preferable.
 本開示によれば、放電容量が大きい電池を形成可能な硫黄含有材料を容易に製造できる硫黄含有材料の製造方法を提供することができる。 According to the present disclosure, it is possible to provide a method for producing a sulfur-containing material that can easily produce a sulfur-containing material that can form a battery with a large discharge capacity.
A.硫黄含有材料の製造方法
 本開示の硫黄含有材料の製造方法について詳細に説明する。
A. Method for Manufacturing Sulfur-Containing Material The method for manufacturing the sulfur-containing material of the present disclosure will be described in detail.
 本開示の硫黄含有材料の製造方法は、少なくともメカノケミカル処理工程を有するものであって、硫黄成分及び硫黄変性化合物を含む原料組成物をメカノケミカル処理するメカノケミカル処理工程を有する第1態様、並びに単体硫黄及び有機化合物を含む混合物を加熱処理して加熱処理物を形成する加熱処理工程と、加熱処理工程で得られた加熱処理物をメカノケミカル処理するメカノケミカル処理工程とを有する第2態様、の2つに分けることができる。 The method for producing a sulfur-containing material of the present disclosure has at least a mechanochemical treatment step, and a first aspect includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound; A second aspect comprising: a heat treatment step of heating a mixture containing elemental sulfur and an organic compound to form a heat-treated product; and a mechanochemical treatment step of mechanochemically treating the heat-treated product obtained in the heat treatment step; It can be divided into two parts.
 本開示によれば、放電容量が大きい電池を形成可能な硫黄含有材料を製造することができる。 According to the present disclosure, a sulfur-containing material that can form a battery with a large discharge capacity can be manufactured.
 本開示の硫黄含有材料の製造方法により、このような放電容量が大きい電池を形成可能な硫黄含有材料を製造することができる理由については、明確ではないが、以下のように推察される。
 すなわち、上述の原料組成物又は加熱処理物をメカノケミカル処理することにより、硫黄原子と、原料組成物中の硫黄変性化合物又は加熱処理物中の有機化合物に由来する成分(以下、「硫黄変性化合物等」と記載する場合がある。)との間で安定的な相互作用が形成された生成物を得ることができる。より具体的には、硫黄成分若しくは単体硫黄に由来する硫黄原子と、原料組成物中の硫黄変性化合物の原子若しくは加熱処理物中の有機化合物に由来する原子との間に相互作用を安定的に発生させることができ、例えば、硫黄成分に由来する硫黄原子が硫黄変性化合物内に取り込まれ、硫黄変性化合物等を構成する原子となる、又は、硫黄成分に由来する硫黄原子が、硫黄変性化合物の表面に安定的に付着したものとなると推測される。その結果、メカノケミカル処理工程後の生成物は、高硫黄含有量でありながら、硫黄原子が、硫黄変性化合物等との間で安定的な相互作用を形成しているものとなり、このような生成物を含むものとすることができることで、硫黄含有材料は、放電容量が大きい電池を形成可能なものとなるのである。
The reason why a sulfur-containing material capable of forming a battery with such a large discharge capacity can be produced by the method for producing a sulfur-containing material of the present disclosure is not clear, but it is presumed as follows.
That is, by mechanochemically treating the above-mentioned raw material composition or heat-treated product, sulfur atoms and components derived from the sulfur-modified compound in the raw material composition or the organic compound in the heat-treated product (hereinafter referred to as "sulfur-modified compound") are removed. It is possible to obtain a product in which a stable interaction is formed between More specifically, the interaction between sulfur atoms derived from the sulfur component or elemental sulfur and atoms of the sulfur-modified compound in the raw material composition or atoms derived from the organic compound in the heat-treated product is stably established. For example, sulfur atoms derived from the sulfur component are incorporated into the sulfur-modified compound and become atoms constituting the sulfur-modified compound, or sulfur atoms derived from the sulfur component are incorporated into the sulfur-modified compound. It is presumed that it is stably attached to the surface. As a result, the product after the mechanochemical treatment process has a high sulfur content, but the sulfur atoms form stable interactions with sulfur-modified compounds, etc. This allows sulfur-containing materials to form batteries with high discharge capacity.
 本開示において、「硫黄含有材料」とは、上述の原料組成物又は加熱処理物に対してメカノケミカル処理工程を実施することにより得られるものである。硫黄含有材料は、例えば、硫黄変性化合物、単体硫黄及び不純物を含むものであってもよい。
 以下、本開示の硫黄含有材料の製造方法について、それぞれの態様に分けて説明する。
In the present disclosure, the "sulfur-containing material" is one obtained by performing a mechanochemical treatment step on the above-mentioned raw material composition or heat-treated material. The sulfur-containing material may include, for example, sulfur-modified compounds, elemental sulfur, and impurities.
Hereinafter, the method for producing a sulfur-containing material of the present disclosure will be explained separately for each aspect.
A-1.第1態様
 本開示の第1態様による硫黄含有材料の製造方法は、硫黄成分及び硫黄変性化合物を含む原料組成物をメカノケミカル処理するメカノケミカル処理工程を有するものである。
A-1. First Aspect The method for producing a sulfur-containing material according to the first aspect of the present disclosure includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound.
 第1態様におけるメカノケミカル処理工程では、硫黄成分及び硫黄変性化合物を含む原料組成物に対してメカノケミカル処理を行う。 In the mechanochemical treatment step in the first embodiment, mechanochemical treatment is performed on the raw material composition containing a sulfur component and a sulfur-modified compound.
1.原料組成物
 第1態様に用いられる原料組成物は、硫黄成分及び硫黄変性化合物を含むものである。
 以下、このような原料組成物に含まれる各成分について説明する。
1. Raw Material Composition The raw material composition used in the first embodiment contains a sulfur component and a sulfur-modified compound.
Each component contained in such a raw material composition will be explained below.
(1-1)硫黄成分
 本開示に用いられる原料組成物に用いられる硫黄成分は、硫黄変性化合物とは別成分として配合される、硫黄原子を含む無機硫黄化合物である。
 このような硫黄成分としては、原料組成物の成分として配合され、硫黄変性化合物と共にメカノケミカル処理することで、本開示の効果である放電容量の大きい電池を形成可能な硫黄含有材料を形成可能なものであればよい。
 上記無機硫黄化合物としては、例えば、硫黄と金属との化合物、単体硫黄、ゴム状硫黄等が挙げられる。
 上記硫黄と金属との化合物としては、硫黄と金属が結合しているものが挙げられ、例えば、Li2S、TiS2、TiS3、TiS4、NiS、NiS2、CuS、FeS2、MoS3等が挙げられる。
 上記単体硫黄としては、硫黄原子が8個環状に結合した構造(S8構造)を有するものが挙げられ、例えば、α硫黄、β硫黄、γ硫黄等の結晶硫黄が挙げられる。
 上記ゴム状硫黄としては、硫黄原子が無数に直鎖状に結合したものが挙げられ、ゴム状硫黄を引っ張るとゴムのような弾性を示す性質を有する。
 本開示において、無機硫黄化合物は、1種単独で用いてもよいし、2種以上を任意の比率で組み合わせて用いてもよい。
 本開示においては、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、無機硫黄化合物は、単体硫黄であることが好ましい。
(1-1) Sulfur component The sulfur component used in the raw material composition used in the present disclosure is an inorganic sulfur compound containing a sulfur atom, which is blended as a separate component from the sulfur-modified compound.
Such a sulfur component is blended as a component of the raw material composition, and by mechanochemical treatment with a sulfur-modified compound, it is possible to form a sulfur-containing material that can form a battery with a large discharge capacity, which is an effect of the present disclosure. It is fine as long as it is something.
Examples of the inorganic sulfur compound include compounds of sulfur and metal, elemental sulfur, and rubbery sulfur.
Examples of the above-mentioned sulfur and metal compounds include compounds in which sulfur and metal are bonded, such as Li 2 S, TiS 2 , TiS 3 , TiS 4 , NiS, NiS 2 , CuS, FeS 2 , MoS 3 etc.
Examples of the above-mentioned elemental sulfur include those having a structure in which eight sulfur atoms are bonded in a ring (S 8 structure), such as crystalline sulfur such as α-sulfur, β-sulfur, and γ-sulfur.
Examples of the rubbery sulfur include those in which countless sulfur atoms are bonded in a linear chain, and when the rubbery sulfur is pulled, it exhibits rubber-like elasticity.
In the present disclosure, one type of inorganic sulfur compound may be used alone, or two or more types may be used in combination in any ratio.
In the present disclosure, the inorganic sulfur compound is preferably elemental sulfur from the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity.
 上記硫黄成分の平均粒子径は、特に限定されるものではないが、硫黄変性化合物との反応が進行し易くなるという観点から、0.1μm以上500μm以下の範囲であることが好ましく、1μm以上400μm以下の範囲であることがより好ましく、10μm以上300μm以下の範囲であることが最も好ましい。 The average particle diameter of the sulfur component is not particularly limited, but from the viewpoint of facilitating the reaction with the sulfur-modified compound, it is preferably in the range of 0.1 μm or more and 500 μm or less, and 1 μm or more and 400 μm or less. The following range is more preferable, and the range of 10 μm or more and 300 μm or less is most preferable.
 本開示において、「平均粒子径」とは、レーザー回折光散乱法により測定された50%粒子径を表す。レーザー回折光散乱法では粒子径は体積基準の直径であり、測定対象物の二次粒子径が測定される。レーザー回折光散乱法で平均粒子径を測定する場合、測定対象物を水の分散媒に分散させることで測定することができる。 In the present disclosure, the "average particle diameter" refers to the 50% particle diameter measured by laser diffraction light scattering method. In the laser diffraction light scattering method, the particle size is a volume-based diameter, and the secondary particle size of the object to be measured is measured. When measuring the average particle diameter using a laser diffraction light scattering method, it can be measured by dispersing the object to be measured in a dispersion medium of water.
 得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、原料組成物において、硫黄成分の含有量は、硫黄変性化合物100質量部に対して、5質量部以上100質量部以下であることが好ましく、10質量部以上90質量部以下であることがより好ましく、25質量部以上75質量部以下であることが最も好ましい。 From the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the content of the sulfur component in the raw material composition is 5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the sulfur-modified compound. It is preferably 10 parts by mass or more and 90 parts by mass or less, and most preferably 25 parts by mass or more and 75 parts by mass or less.
(1-2)硫黄変性化合物
 硫黄変性化合物は、硫黄原子を構造中に含む有機化合物であり、例えば、硫黄原子と硫黄以外の原子とが共有結合等を形成している有機化合物とすることができる。したがって、例えば、後述する有機化合物と単体硫黄との混合物において、有機化合物が硫黄原子を構造中に含まない有機化合物である場合、有機化合物と単体硫黄との混合物は、硫黄変性化合物に該当しない。
 上記硫黄変性化合物に含まれる硫黄原子は、ジスルフィド、トリスルフィド等複数の硫黄原子が連続して結合している状態であってもよい。
 上記硫黄変性化合物に含まれる硫黄以外の原子としては、有機化合物由来の原子であり、例えば、炭素原子、酸素原子、水素原子、窒素原子、ホウ素原子、燐原子等が挙げられる。
 上記硫黄変性化合物は、単体硫黄と有機化合物とを含む混合物を加熱処理することで製造することができる。
(1-2) Sulfur-modified compound A sulfur-modified compound is an organic compound that contains a sulfur atom in its structure. For example, it can be an organic compound in which a sulfur atom and an atom other than sulfur form a covalent bond. can. Therefore, for example, in a mixture of an organic compound and elemental sulfur described below, if the organic compound is an organic compound that does not contain a sulfur atom in its structure, the mixture of the organic compound and elemental sulfur does not fall under the category of a sulfur-modified compound.
The sulfur atom contained in the sulfur-modified compound may be in a state in which a plurality of sulfur atoms, such as disulfide and trisulfide, are continuously bonded.
Atoms other than sulfur contained in the sulfur-modified compound are atoms derived from organic compounds, such as carbon atoms, oxygen atoms, hydrogen atoms, nitrogen atoms, boron atoms, and phosphorus atoms.
The sulfur-modified compound described above can be produced by heat-treating a mixture containing elemental sulfur and an organic compound.
 上記有機化合物としては、アクリル系化合物、ポリエーテル化合物、ピッチ類、多核芳香環化合物、脂肪族炭化水素酸化物、脂肪族ポリマー化合物、チオフェン構造を有するポリマー化合物、ハロゲン化不飽和炭化水素等が挙げられる。
 本開示においては、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、上記有機化合物は、アクリル系化合物、ポリエーテル化合物、ピッチ類、多核芳香環化合物、脂肪族炭化水素酸化物、脂肪族ポリマー化合物及びチオフェン構造を有するポリマー化合物の何れかであることが好ましく、アクリル系化合物及びポリエーテル化合物の何れかであることがより好ましく、アクリル系化合物であることが最も好ましい。
Examples of the above organic compounds include acrylic compounds, polyether compounds, pitches, polynuclear aromatic ring compounds, aliphatic hydrocarbon oxides, aliphatic polymer compounds, polymer compounds having a thiophene structure, halogenated unsaturated hydrocarbons, etc. It will be done.
In the present disclosure, from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the organic compounds include acrylic compounds, polyether compounds, pitches, polynuclear aromatic ring compounds, aliphatic hydrocarbon oxides, etc. , an aliphatic polymer compound, or a polymer compound having a thiophene structure, more preferably an acrylic compound or a polyether compound, and most preferably an acrylic compound.
 本開示において、アクリル系化合物としては、例えば、ポリアクリロニトリル系化合物及びその他のアクリル系化合物が挙げられる。 In the present disclosure, examples of the acrylic compound include polyacrylonitrile compounds and other acrylic compounds.
 上記硫黄変性化合物の例としては、硫黄変性アクリル系化合物、硫黄変性ポリエーテル化合物、硫黄変性ピッチ化合物、硫黄変性多核芳香環化合物、硫黄変性脂肪族炭化水素酸化物、ポリチエノアセン化合物、ポリ硫化カーボン等が挙げられる。 Examples of the above sulfur-modified compounds include sulfur-modified acrylic compounds, sulfur-modified polyether compounds, sulfur-modified pitch compounds, sulfur-modified polynuclear aromatic ring compounds, sulfur-modified aliphatic hydrocarbon oxides, polythienoacene compounds, polysulfide carbon, etc. Can be mentioned.
 本開示においては、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、硫黄変性化合物は、硫黄変性アクリル系化合物及び硫黄変性ポリエーテル化合物の何れかであることが好ましく、硫黄変性アクリル系化合物であることがより好ましい。 In the present disclosure, from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the sulfur-modified compound is preferably either a sulfur-modified acrylic compound or a sulfur-modified polyether compound; More preferably, it is an acrylic compound.
 硫黄変性化合物中の硫黄全含量は、特に限定されるものではないが、放電容量がより増大するという観点から、30質量%以上80質量%以下であることが好ましく、40質量%以上75質量%以下であることがより好ましく、45質量%以上70質量%以下であることが最も好ましい。
 ここで、硫黄変性化合物中の硫黄全含量は、硫黄及び酸素を分析可能なCHNS分析装置を用いた分析結果から算出できる。
The total sulfur content in the sulfur-modified compound is not particularly limited, but from the viewpoint of further increasing the discharge capacity, it is preferably 30% by mass or more and 80% by mass or less, and 40% by mass or more and 75% by mass. It is more preferably the following, and most preferably 45% by mass or more and 70% by mass or less.
Here, the total sulfur content in the sulfur-modified compound can be calculated from the analysis results using a CHNS analyzer capable of analyzing sulfur and oxygen.
 硫黄変性化合物の含有量は、特に限定されるものではないが、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、原料組成物100質量部に対し、50質量部以上95質量部以下であることが好ましく、53質量部以上90質量部以下であることがより好ましく、55質量部以上80質量部以下であることが最も好ましい。 The content of the sulfur-modified compound is not particularly limited, but from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the content of the sulfur-modified compound is 50 parts by mass or more and 95 parts by mass based on 100 parts by mass of the raw material composition. It is preferably 53 parts by mass or more and 90 parts by mass or less, and most preferably 55 parts by mass or more and 80 parts by mass or less.
 本開示において、硫黄変性化合物の含有量は、公知の方法で測定することができる。例えば、硫黄変性化合物が硫黄変性ポリアクリロニトリル化合物の場合、原料組成物を熱重量分析することにより硫黄変性化合物の含有量を測定することができる。熱重量分析法では、加熱開始温度を100℃以下とし、昇温速度を10℃/分の一定速度とする条件にて、350℃到達時までの熱重量減少維持率を測定し、残存した物質の含有割合(質量%)を確認することで、原料組成物における硫黄変性化合物の含有量を測定することができる。 In the present disclosure, the content of the sulfur-modified compound can be measured by a known method. For example, when the sulfur-modified compound is a sulfur-modified polyacrylonitrile compound, the content of the sulfur-modified compound can be measured by thermogravimetrically analyzing the raw material composition. In thermogravimetric analysis, the heating start temperature is 100°C or lower and the heating rate is a constant rate of 10°C/min, and the thermogravimetric loss retention rate is measured until reaching 350°C, and the remaining substances are measured. The content of the sulfur-modified compound in the raw material composition can be measured by checking the content ratio (mass%) of .
 本開示の硫黄含有材料に用いられる硫黄変性アクリル系化合物としては、例えば、硫黄とアクリル系化合物中の原子とが共有結合した化合物を用いることができる。このような硫黄変性アクリル系化合物の製造方法としては、例えば、単体硫黄とアクリル系化合物とを加熱する方法が挙げられる。 As the sulfur-modified acrylic compound used in the sulfur-containing material of the present disclosure, for example, a compound in which sulfur and an atom in the acrylic compound are covalently bonded can be used. An example of a method for producing such a sulfur-modified acrylic compound is a method of heating elemental sulfur and an acrylic compound.
 上記硫黄変性アクリル系化合物としては、例えば、硫黄変性ポリアクリロニトリル系化合物、その他の硫黄変性アクリル系化合物が挙げられる。
 本開示においては、放電容量が大きな電池を形成できるという観点から、硫黄変性アクリル系化合物は、硫黄変性ポリアクリロニトリル系化合物であることが好ましい。
Examples of the sulfur-modified acrylic compound include sulfur-modified polyacrylonitrile compounds and other sulfur-modified acrylic compounds.
In the present disclosure, the sulfur-modified acrylic compound is preferably a sulfur-modified polyacrylonitrile compound from the viewpoint of forming a battery with a large discharge capacity.
 硫黄変性アクリル系化合物中の硫黄全含量は、特に限定されるものではないが、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、30質量%以上80質量%以下であることが好ましく、40質量%以上75質量%以下であることがより好ましく、45質量%以上70質量%以下であることが最も好ましい。
 ここで、硫黄変性アクリル系化合物中の硫黄全含量は、硫黄及び酸素を分析可能なCHNS分析装置を用いた分析結果から算出できる。
The total sulfur content in the sulfur-modified acrylic compound is not particularly limited, but from the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity, it should be 30% by mass or more and 80% by mass or less. The content is preferably 40% by mass or more and 75% by mass or less, and most preferably 45% by mass or more and 70% by mass or less.
Here, the total sulfur content in the sulfur-modified acrylic compound can be calculated from the analysis results using a CHNS analyzer capable of analyzing sulfur and oxygen.
 上記硫黄変性ポリアクリロニトリル化合物は、例えば、硫黄成分の硫黄原子とポリアクリロニトリル系化合物中の原子とが共有結合した化合物を用いることができる。このような硫黄変性ポリアクリロニトリル化合物の製造方法としては、単体硫黄とポリアクリロニトリル系化合物とを加熱する方法が挙げられる。また、本開示における硫黄変性ポリアクリロニトリル化合物は、ポリアクリロニトリル系化合物からなる外殻に炭化水素を包含させた粒子と単体硫黄とを加熱する方法で得られたものを含んでいてもよい。包含する炭化水素とは、炭素原子数3以上8以下の飽和若しくは不飽和の脂肪族炭化水素とすることができる。 As the sulfur-modified polyacrylonitrile compound, for example, a compound in which the sulfur atom of the sulfur component and the atom in the polyacrylonitrile compound are covalently bonded can be used. A method for producing such a sulfur-modified polyacrylonitrile compound includes a method of heating elemental sulfur and a polyacrylonitrile compound. Further, the sulfur-modified polyacrylonitrile compound in the present disclosure may include one obtained by heating particles in which hydrocarbons are included in the outer shell made of a polyacrylonitrile compound and elemental sulfur. The included hydrocarbons can be saturated or unsaturated aliphatic hydrocarbons having 3 or more and 8 or less carbon atoms.
 本開示において、ポリアクリロニトリル系化合物は、アクリロニトリル及びメタクリロニトリルの少なくとも一方を構成単位として含むものであればよい。得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、ポリアクリロニトリル系化合物は、少なくともアクリロニトリルに由来する構成単位を含むことが好ましい。 In the present disclosure, the polyacrylonitrile compound may contain at least one of acrylonitrile and methacrylonitrile as a constituent unit. From the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity, the polyacrylonitrile compound preferably contains at least a structural unit derived from acrylonitrile.
 得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、アクリロニトリル及びメタクリロニトリルに由来する構成単位の含有量は、ポリアクリロニトリル系化合物100質量部中に、10質量部以上であることが好ましく、30質量部以上であることがより好ましい。 From the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity, the content of structural units derived from acrylonitrile and methacrylonitrile should be 10 parts by mass or more in 100 parts by mass of the polyacrylonitrile compound. is preferable, and more preferably 30 parts by mass or more.
 ポリアクリロニトリル系化合物が、アクリロニトリルに由来する構成単位を含む場合、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、アクリロニトリルに由来する構成単位の含有量は、ポリアクリロニトリル系化合物100質量部中に、10質量部以上であることが好ましく、30質量部以上であることがより好ましく、50質量部以上であることがさらにより好ましく、80質量部以上であることがさらにより好ましく、85質量部以上であることがさらにより好ましく、90質量部以上であることがさらにより好ましく、95質量部以上であることがさらにより好ましく、100質量部であること、すなわち、ポリアクリロニトリル系化合物がアクリロニトリルに由来する構成単位のみからなることが最も好ましい。 When the polyacrylonitrile-based compound contains a structural unit derived from acrylonitrile, the content of the structural unit derived from acrylonitrile is set to 100 In parts by mass, it is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, even more preferably 50 parts by mass or more, even more preferably 80 parts by mass or more, It is even more preferably 85 parts by mass or more, even more preferably 90 parts by mass or more, even more preferably 95 parts by mass or more, and 100 parts by mass, that is, the polyacrylonitrile compound is Most preferably, it consists only of structural units derived from acrylonitrile.
 ポリアクリロニトリル系化合物が、メタクリロニトリルに由来する構成単位を含む場合、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、メタクリロニトリルに由来する構成単位の含有量は、ポリアクリロニトリル系化合物100質量部中に、10質量部以上であることが好ましく、30質量部以上であることがより好ましく、30質量部以上95質量部以下であることがさらにより好ましく、30質量部以上90質量部以下であることがさらにより好ましく、30質量部以上85質量部以下であることがさらにより好ましく、30質量部以上80質量部以下であることが最も好ましい。 When the polyacrylonitrile-based compound contains structural units derived from methacrylonitrile, the content of the structural units derived from methacrylonitrile is In 100 parts by mass of the acrylonitrile compound, it is preferably 10 parts by mass or more, more preferably 30 parts by mass or more, even more preferably 30 parts by mass or more and 95 parts by mass or less, 30 parts by mass or more. The content is even more preferably 90 parts by mass or less, even more preferably 30 parts by mass or more and 85 parts by mass or less, and most preferably 30 parts by mass or more and 80 parts by mass or less.
 上記ポリアクリロニトリル系化合物は、アクリロニトリル及びメタクリロニトリルを除くその他のモノマーに由来する構成単位を含んでいてもよい。その他のモノマーとしては、例えば、(メタ)アクリレート、(メタ)アクリル酸エステル、(メタ)アクリルアミド、エチレングリコール(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート等のアクリル系モノマー;ブタジエン、イソプレン等の共役ジエン等が挙げられる。これらのその他のモノマーは、2種以上を組み合わせて用いることができる。
 ここで、「(メタ)アクリレート」は、「アクリレート」及び「メタクリレート」の何れかを表す。「(メタ)アクリル」は、「アクリル」及び「メタクリル」の何れかを表す。
The polyacrylonitrile compound may contain structural units derived from other monomers other than acrylonitrile and methacrylonitrile. Other monomers include, for example, (meth)acrylate, (meth)acrylic acid ester, (meth)acrylamide, ethylene glycol (meth)acrylate, 1,6-hexanediol (meth)acrylate, neopentyl glycol di(meth) Examples include acrylic monomers such as acrylate and glycerin di(meth)acrylate; and conjugated dienes such as butadiene and isoprene. These other monomers can be used in combination of two or more types.
Here, "(meth)acrylate" represents either "acrylate" or "methacrylate.""(Meth)acrylic" represents either "acrylic" or "methacrylic".
 上記その他の硫黄変性アクリル系化合物は、例えば、硫黄とその他のアクリル系化合物中の原子とが共有結合した化合物を用いることができる。このようなその他の硫黄変性アクリル系化合物の製造方法としては、単体硫黄とその他のアクリル系化合物とを加熱する方法が挙げられる。 As the above other sulfur-modified acrylic compound, for example, a compound in which sulfur and an atom in the other acrylic compound are covalently bonded can be used. Examples of methods for producing such other sulfur-modified acrylic compounds include a method of heating elemental sulfur and other acrylic compounds.
 上記その他のアクリル系化合物は、アクリロニトリル及びメタクリロニトリルを除くアクリル系モノマーを構成単位として含むものである。上記アクリル系モノマーとしては、上記その他のモノマーとして記載したアクリル系モノマーと同様とすることができる。また、上記その他の硫黄変性アクリル系化合物は、上記共役ジエンを構成単位として含むことができる。 The other acrylic compounds mentioned above contain acrylic monomers other than acrylonitrile and methacrylonitrile as constituent units. The acrylic monomer may be the same as the acrylic monomer described as the other monomer. Further, the other sulfur-modified acrylic compounds described above can contain the conjugated diene described above as a structural unit.
 上記硫黄変性ポリエーテル化合物は、例えば、硫黄とポリエーテル化合物中の原子とが共有結合した化合物を用いることができる。硫黄変性ポリエーテル化合物は、例えば、単体硫黄と、有機化合物としてのポリエーテル化合物との混合物を加熱することで製造することができる。ポリエーテル化合物の例としては、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキシド/プロピレンオキシドコポリマー、ポリテトラメチレングリコール等が挙げられる。ポリエーテル化合物は、末端がアルキルエーテル基、アルキルフェニルエーテル基又はアシル基であってもよく、グリセリン、ソルビトール等のポリオールのエチレンオキシド付加物であってもよい。 As the sulfur-modified polyether compound, for example, a compound in which sulfur and an atom in the polyether compound are covalently bonded can be used. A sulfur-modified polyether compound can be produced, for example, by heating a mixture of elemental sulfur and a polyether compound as an organic compound. Examples of polyether compounds include polyethylene glycol, polypropylene glycol, ethylene oxide/propylene oxide copolymer, polytetramethylene glycol, and the like. The polyether compound may have an alkyl ether group, an alkylphenyl ether group, or an acyl group at the end, or may be an ethylene oxide adduct of a polyol such as glycerin or sorbitol.
 上記ポリエーテル化合物の重量平均分子量は、特に限定されるものではないが、取り扱い易さの観点から、100以上20,000以下であることが好ましく、150以上10,000以下であることがより好ましく、200以上8,000以下であることが最も好ましい。
 ここで、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)を用いて算出したポリスチレン換算の値である。
The weight average molecular weight of the polyether compound is not particularly limited, but from the viewpoint of ease of handling, it is preferably 100 or more and 20,000 or less, more preferably 150 or more and 10,000 or less. , most preferably 200 or more and 8,000 or less.
Here, the weight average molecular weight is a polystyrene equivalent value calculated using gel permeation chromatography (GPC).
 上記硫黄変性ピッチ化合物は、例えば、硫黄とピッチ類中の原子とが共有結合した化合物を用いることができる。硫黄変性ピッチ化合物は、例えば、単体硫黄と、有機化合物としてのピッチ類との混合物を加熱することで製造することができる。ピッチ類の例としては、石油ピッチ、石炭ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられる。ピッチ類は様々な化合物の混合物であり、縮合多環芳香族を含むものであってもよい。ピッチ類に含まれる縮合多環芳香族は、単一種であってもよいし、複数種であってもよい。この縮合多環芳香族は、環の中に、炭素及び水素以外に、窒素原子や硫黄原子を含んでいてもよい。 As the sulfur-modified pitch compound, for example, a compound in which sulfur and an atom in pitches are covalently bonded can be used. A sulfur-modified pitch compound can be produced, for example, by heating a mixture of elemental sulfur and pitch as an organic compound. Examples of pitches include petroleum pitch, coal pitch, mesophase pitch, asphalt, coal tar, coal tar pitch, organic synthetic pitch obtained by polycondensation of fused polycyclic aromatic hydrocarbon compounds, and fused polycyclic aromatic compounds containing heteroatoms. Examples include organic synthetic pitch obtained by polycondensation of group hydrocarbon compounds. Pitches are mixtures of various compounds and may include fused polycyclic aromatics. The condensed polycyclic aromatic group contained in the pitches may be a single type or a plurality of types. This condensed polycyclic aromatic may contain a nitrogen atom or a sulfur atom in addition to carbon and hydrogen in the ring.
 上記硫黄変性多核芳香環化合物は、例えば、硫黄と多核芳香環化合物中の原子とが共有結合した化合物を用いることができる。硫黄変性多核芳香環化合物は、例えば、単体硫黄と、有機化合物としての多核芳香環化合物との混合物を加熱することで製造することができる。多核芳香環化合物の例としては、ナフタレン、アントラセン、テトラセン、ペンタセン、フェナントレン、クリセン、ピセン、ピレン、ベンゾピレン、ペリレン、コロネン等のベンゼン系芳香環化合物、ベンゼン系芳香環化合物の一部が5員環となった芳香族環化合物、又はこれらの炭素原子の一部が硫黄、酸素、窒素等に置き換わったヘテロ原子含有複素芳香環化合物が挙げられる。更に、これらの多核芳香環化合物は、炭素原子数1以上12以下の鎖状若しくは分岐状アルキル基、アルコキシル基、水酸基、カルボキシル基、アミノ基、アミノカルボニル基、アミノチオ基、メルカプトチオカルボニルアミノ基、カルボキシアルキルカルボニル基等の置換基を有してもよい。 As the sulfur-modified polynuclear aromatic ring compound, for example, a compound in which sulfur and an atom in the polynuclear aromatic ring compound are covalently bonded can be used. A sulfur-modified polynuclear aromatic ring compound can be produced, for example, by heating a mixture of elemental sulfur and a polynuclear aromatic ring compound as an organic compound. Examples of polynuclear aromatic ring compounds include benzene aromatic ring compounds such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, and coronene, and some of the benzene aromatic ring compounds have five-membered rings. and heteroaromatic compounds containing heteroatoms in which some of these carbon atoms are replaced with sulfur, oxygen, nitrogen, etc. Furthermore, these polynuclear aromatic ring compounds include a chain or branched alkyl group having 1 to 12 carbon atoms, an alkoxyl group, a hydroxyl group, a carboxyl group, an amino group, an aminocarbonyl group, an aminothio group, a mercaptothiocarbonylamino group, It may have a substituent such as a carboxyalkylcarbonyl group.
 上記硫黄変性脂肪族炭化水素酸化物は、例えば、硫黄と脂肪族炭化水素酸化物中の原子とが共有結合した化合物を用いることができる。硫黄変性脂肪族炭化水素酸化物は、単体硫黄と、有機化合物としての脂肪族炭化水素酸化物との混合物を加熱することで製造することができる。脂肪族炭化水素酸化物の例としては、脂肪族アルコール、脂肪族アルデヒド、脂肪族ケトン、脂肪族エポキシド、脂肪酸等の脂肪族炭化水素酸化物等が挙げられる。 As the sulfur-modified aliphatic hydrocarbon oxide, for example, a compound in which sulfur and an atom in the aliphatic hydrocarbon oxide are covalently bonded can be used. Sulfur-modified aliphatic hydrocarbon oxides can be produced by heating a mixture of elemental sulfur and an aliphatic hydrocarbon oxide as an organic compound. Examples of aliphatic hydrocarbon oxides include aliphatic alcohols, aliphatic aldehydes, aliphatic ketones, aliphatic epoxides, aliphatic hydrocarbon oxides such as fatty acids, and the like.
 上記ポリチエノアセン化合物は、下記一般式(1)で表される、硫黄を含むポリチエノアセン構造を有する化合物とすることができる。 The above polythienoacene compound can be a compound having a sulfur-containing polythienoacene structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記ポリチエノアセン化合物は、ポリエチレン等の直鎖構造を有する脂肪族のポリマー化合物や、ポリチオフェン等のチオフェン構造を有するポリマー化合物と、単体硫黄との混合物を加熱することで製造することができる。 The above polythienoacene compound can be produced by heating a mixture of an aliphatic polymer compound having a linear structure such as polyethylene, a polymer compound having a thiophene structure such as polythiophene, and elemental sulfur.
 上記ポリ硫化カーボンは、一般式(CSxn(xは0.5~2を表し、nは4以上の数である)で表される化合物とすることができる。
 上記ポリ硫化カーボンは、硫化ナトリウム等のアルカリ金属硫化物と単体硫黄との複合体に、有機化合物としてのヘキサクロロブタジエン等のハロゲン化不飽和炭化水素を反応させることで製造することができる。
The polysulfide carbon can be a compound represented by the general formula (CS x ) n (x represents 0.5 to 2, and n is a number of 4 or more).
The polysulfide carbon can be produced by reacting a complex of an alkali metal sulfide such as sodium sulfide and elemental sulfur with a halogenated unsaturated hydrocarbon such as hexachlorobutadiene as an organic compound.
(1-3)その他の成分
 上記原料組成物は、必要に応じてその他の成分を含んでもよい。得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、硫黄成分と硫黄変性化合物との合計の含有量は、原料組成物100質量部中に、50質量部以上であることが好ましく、60質量部以上であることがより好ましく、70質量部以上であることがさらにより好ましく、80質量部以上であることがさらにより好ましく、90質量部以上であることがさらにより好ましく、95質量部以上であることがさらにより好ましく、99質量部以上であることがさらにより好ましく、100質量部であること、すなわち、原料組成物は、硫黄成分及び硫黄変性化合物以外の成分を含まないことが最も好ましい。
(1-3) Other components The raw material composition may contain other components as necessary. From the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the total content of the sulfur component and the sulfur-modified compound is preferably 50 parts by mass or more in 100 parts by mass of the raw material composition. , more preferably 60 parts by mass or more, even more preferably 70 parts by mass or more, even more preferably 80 parts by mass or more, even more preferably 90 parts by mass or more, and even more preferably 95 parts by mass. The amount is even more preferably 99 parts or more, even more preferably 100 parts by weight, that is, the raw material composition does not contain any components other than the sulfur component and the sulfur-modified compound. Most preferred.
(1-4)原料組成物中の硫黄原子の全含量
 本開示においては、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、原料組成物中の硫黄原子の全含量は、50質量%以上90質量%以下であることが好ましく、51質量%以上85質量%以下であることがより好ましく、52質量%以上80質量%以下であることがさらにより好ましく、55質量%以上75質量%以下であることがさらにより好ましく、56質量%以上70質量%以下であることが最も好ましい。
 ここで、原料組成物中の硫黄原子の全含量とは、原料組成物の全質量当たりの硫黄原子の含有量を意味する。例えば、原料組成物が、硫黄成分及び硫黄変性化合物のみを含むものである場合には、原料組成物の全質量当たりの硫黄成分中の硫黄原子の含有量及び硫黄変性化合物中の硫黄原子の含有量の合計の含有量とすることができる。
(1-4) Total content of sulfur atoms in the raw material composition In the present disclosure, from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the total content of sulfur atoms in the raw material composition is: It is preferably 50% by mass or more and 90% by mass or less, more preferably 51% by mass or more and 85% by mass or less, even more preferably 52% by mass or more and 80% by mass or less, and 55% by mass or more and 75% by mass or less. It is even more preferably at most 56% by mass and at most 70% by mass.
Here, the total content of sulfur atoms in the raw material composition means the content of sulfur atoms per total mass of the raw material composition. For example, when the raw material composition contains only a sulfur component and a sulfur-modified compound, the content of sulfur atoms in the sulfur component and the content of sulfur atoms in the sulfur-modified compound per total mass of the raw material composition are It can be the total content.
2.メカノケミカル処理
 上記原料組成物に対して行うメカノケミカル処理は、硫黄成分及び硫黄変性化合物を含む原料組成物に対して、力学的エネルギーを付与することができ、本開示の効果である放電容量の大きい電池を形成可能な硫黄含有材料を形成可能なものであればよい。
2. Mechanochemical treatment The mechanochemical treatment performed on the raw material composition described above can impart mechanical energy to the raw material composition containing a sulfur component and a sulfur-modified compound, thereby increasing the discharge capacity, which is an effect of the present disclosure. Any material that can form a sulfur-containing material that can form a large battery may be used.
 硫黄成分中の硫黄原子と硫黄変性化合物中の原子との相互作用の形成を促進させるメカニズムは特定されていないが、硫黄成分及び硫黄変性化合物を含む原料組成物に対して、力学的エネルギーを加えることで、硫黄成分及び硫黄変性化合物の少なくとも一種以上について熱力学的、結晶学的、化学的性質等に変化が生じ、結果として、硫黄成分、硫黄変性化合物又はその両方の表面が改質されて硫黄成分中の硫黄原子と硫黄変性化合物中の原子との相互作用を形成することが促進されると推定される。
 上記力学的エネルギーとしては、例えば、固体物質での粉砕処理で生じるエネルギーであり、例えば、衝撃、圧縮、せん断、ずり応力、摩擦力、遠心力等が挙げられる。
Although the mechanism that promotes the formation of interactions between the sulfur atoms in the sulfur component and the atoms in the sulfur-modified compound has not been identified, mechanical energy is applied to the feed composition containing the sulfur component and the sulfur-modified compound. As a result, changes occur in the thermodynamic, crystallographic, chemical properties, etc. of at least one of the sulfur components and sulfur-modified compounds, and as a result, the surfaces of the sulfur components, the sulfur-modified compounds, or both are modified. It is presumed that interaction between the sulfur atoms in the sulfur component and the atoms in the sulfur-modified compound is promoted.
The above-mentioned mechanical energy is, for example, energy generated in a pulverization process of a solid substance, and includes, for example, impact, compression, shear, shear stress, frictional force, centrifugal force, and the like.
 このようなメカノケミカル処理としては、粉砕処理が挙げられるが、硫黄成分中の硫黄原子と硫黄変性化合物中の原子との相互作用を形成することが促進されるという観点から、乾式の粉砕処理であることが好ましい。上記乾式の粉砕処理であることで、衝撃、圧縮、せん断、ずり応力、摩擦力、遠心力等の力学的エネルギーを複合的に付与することができ、放電容量の大きい電池を形成可能な硫黄含有材料が得られやすいからである。 Such mechanochemical treatment includes pulverization treatment, but dry pulverization treatment is preferred from the viewpoint of promoting interaction between sulfur atoms in the sulfur component and atoms in the sulfur-modified compound. It is preferable that there be. By using the above-mentioned dry grinding process, mechanical energies such as impact, compression, shear stress, shear stress, frictional force, and centrifugal force can be applied in a complex manner, and the sulfur content can form batteries with large discharge capacity. This is because the materials are easy to obtain.
 放電容量の大きい電池を形成可能な硫黄含有材料が得られやすいという観点から、上記粉砕処理としては、衝撃、圧縮、せん断、ずり応力、摩擦力、遠心力等の何れかの力学的エネルギーを、上記原料組成物に付与することができる粉砕処理であることがより好ましく、衝撃、圧縮及びせん断を付与することができる粉砕処理であることがさらにより好ましく、衝撃、圧縮、せん断及び遠心力を付与することができる粉砕処理であることが最も好ましい。 From the viewpoint that it is easy to obtain a sulfur-containing material that can form a battery with a large discharge capacity, the above-mentioned pulverization treatment uses mechanical energy such as impact, compression, shear, shear stress, frictional force, centrifugal force, etc. A pulverization treatment that can be applied to the raw material composition is more preferable, and a pulverization treatment that can apply impact, compression, and shear is even more preferable, and pulverization treatment that can apply impact, compression, shear, and centrifugal force is even more preferable. Most preferably, it is a grinding process that can be carried out.
 上記粉砕処理に用いられる粉砕機器としては、例えば、ボールミル、ビーズミル、振動ミル、媒体撹拌ミル、ローラーミル、遊星ミル、ディスクミル、ロールクラッシャー、グライディングロール、ジェットミル、サイクロンミル、乳鉢等、公知の粉砕機器が挙げられる。
 本開示においては、上記粉砕機器は、ボールミル、ビーズミル、ローラーミル、ディスクミル、媒体撹拌ミル及び遊星ミルの何れかであることが好ましい。上記原料組成物に対して、衝撃、圧縮及びせん断を効率的に付与することができ、放電容量の大きい電池を形成可能な硫黄含有材料の形成が容易であるからである。
 本開示においては、上記粉砕機器が、媒体撹拌ミル、遊星ミルであることがより好ましい。上記原料組成物に対して、衝撃、圧縮、せん断及び遠心力を付与することができ、放電容量の大きい電池を形成可能な硫黄含有材料の形成が容易であるからである。
 本開示においては、特に、上記粉砕機器が、遊星ミルであることが最も好ましい。上記原料組成物に対して、大きな遠心力を付与することができ、短時間で、放電容量の大きい電池を形成可能な硫黄含有材料の形成が容易であるからである。
Examples of the crushing equipment used in the above-mentioned crushing process include ball mills, bead mills, vibration mills, medium stirring mills, roller mills, planetary mills, disc mills, roll crushers, gliding rolls, jet mills, cyclone mills, mortars, and the like. Examples include crushing equipment.
In the present disclosure, the grinding device is preferably any one of a ball mill, a bead mill, a roller mill, a disk mill, a media stirring mill, and a planetary mill. This is because it is possible to efficiently apply impact, compression, and shear to the raw material composition, and it is easy to form a sulfur-containing material that can form a battery with a large discharge capacity.
In the present disclosure, it is more preferable that the grinding device is a media stirring mill or a planetary mill. This is because it is easy to form a sulfur-containing material that can apply impact, compression, shear, and centrifugal force to the raw material composition and form a battery with a large discharge capacity.
In the present disclosure, it is particularly preferred that the grinding device is a planetary mill. This is because it is easy to form a sulfur-containing material that can apply a large centrifugal force to the raw material composition and form a battery with a large discharge capacity in a short time.
 上記メカノケミカル処理は、真空雰囲気下、酸化性雰囲気下及び非酸化性雰囲気下の何れで行ってもよいが、製造した硫黄含有材料と、水分や酸素等との接触による酸化反応を抑制できるという観点から、非酸化性雰囲気下で行うことが好ましい。 The above mechanochemical treatment may be performed in a vacuum atmosphere, an oxidizing atmosphere, or a non-oxidizing atmosphere, but it is said that it can suppress oxidation reactions caused by contact between the produced sulfur-containing material and moisture, oxygen, etc. From this point of view, it is preferable to carry out under a non-oxidizing atmosphere.
 上記真空雰囲気としては、例えば、真空ポンプ等を用いて、100Pa以下に保持することで、水分や炭酸ガス等を強制的に排除した雰囲気等が挙げられる。 Examples of the vacuum atmosphere include an atmosphere in which water, carbon dioxide, and the like are forcibly removed by maintaining the pressure at 100 Pa or less using a vacuum pump or the like.
 上記酸化性雰囲気としては、酸化性の気体、例えば、酸素、オゾン、二酸化窒素等を含む雰囲気が挙げられる。 The above-mentioned oxidizing atmosphere includes an atmosphere containing an oxidizing gas such as oxygen, ozone, nitrogen dioxide, etc.
 上記非酸化性雰囲気としては、例えば、酸素濃度が5体積%未満の雰囲気とすることができるが、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、酸素濃度が2体積%未満であることが好ましく、酸素濃度が1体積%以下であることがより好ましく、酸素濃度が0.1体積%以下であることがさらにより好ましく、酸素濃度が0.05体積%以下であることがさらにより好ましく、酸素を実質的に含有しない雰囲気であることが最も好ましい。 The above-mentioned non-oxidizing atmosphere can be, for example, an atmosphere in which the oxygen concentration is less than 5% by volume, but from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the oxygen concentration is 2% by volume. The oxygen concentration is preferably less than 1 volume%, more preferably the oxygen concentration is 1 volume% or less, even more preferably the oxygen concentration is 0.1 volume% or less, and the oxygen concentration is 0.05 volume% or less. is even more preferred, and most preferably an atmosphere substantially free of oxygen.
 上記非酸化性雰囲気の具体例としては、例えば、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気、硫化水素ガス雰囲気等が挙げられる。作業環境の観点から、上記非酸化性雰囲気は、窒素又はアルゴン等の不活性ガス雰囲気であることが好ましい。 Specific examples of the non-oxidizing atmosphere include an inert gas atmosphere such as nitrogen, helium, and argon, a sulfur gas atmosphere, and a hydrogen sulfide gas atmosphere. From the viewpoint of the working environment, the non-oxidizing atmosphere is preferably an inert gas atmosphere such as nitrogen or argon.
 硫黄成分及び硫黄変性化合物を含む原料組成物をメカノケミカル処理するときの、回転速度、処理時間、温度、圧力、混合物に加えられる重力加速度等の条件は、原料組成物の組成や処理量によって適宜設定することができる。 When mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound, conditions such as rotation speed, treatment time, temperature, pressure, and gravitational acceleration applied to the mixture may be adjusted as appropriate depending on the composition of the raw material composition and the amount of treatment. Can be set.
 硫黄成分と硫黄変性化合物との相互作用を形成させることが効率的に行われるという観点から、メカノケミカル処理の条件は、メカノケミカル処理工程前後の原料組成物中の硫黄含有量の減少率が、30質量%以下となるものであることが好ましく、25質量%以下となるものであることがより好ましく、20質量%以下となるものであることが最も好ましい。 From the viewpoint of efficiently forming an interaction between the sulfur component and the sulfur-modified compound, the conditions for mechanochemical treatment are such that the rate of decrease in sulfur content in the raw material composition before and after the mechanochemical treatment step is It is preferably 30% by mass or less, more preferably 25% by mass or less, and most preferably 20% by mass or less.
 得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、メカノケミカル処理の条件は、メカノケミカル処理工程前の原料組成物のA/Bに対して、メカノケミカル処理工程後の原料組成物のA/B((メカノケミカル処理工程後の原料組成物のA/B)/(メカノケミカル処理工程前の原料組成物のA/B))が、2/3以下となるものであることが好ましく、1/2以下となるものであることがより好ましく、2/5以下となるものであることが最も好ましい。
 メカノケミカル処理工程後に、原料組成物のA/Bの比率が小さくなることで、メカノケミカル処理が効果的に進行し、得られる硫黄含有材料が放電容量の大きな電池を形成容易なものとすることができるからである。
 なお、原料組成物に含まれる硫黄成分中の硫黄原子と硫黄変性化合物中の硫黄以外の原子との相互作用によって、硫黄成分が消費された結果、硫黄成分に由来する回折ピークと考えられるピーク強度(A)の強度が低下すると推定される。
From the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity, the mechanochemical treatment conditions are such that the raw material composition after the mechanochemical treatment step is A/B of the raw material composition before the mechanochemical treatment step. The A/B ((A/B of the raw material composition after the mechanochemical treatment process)/(A/B of the raw material composition before the mechanochemical treatment process)) of the product shall be 2/3 or less. is preferable, more preferably 1/2 or less, and most preferably 2/5 or less.
After the mechanochemical treatment step, the A/B ratio of the raw material composition becomes smaller, so that the mechanochemical treatment progresses effectively and the resulting sulfur-containing material can easily form a battery with a large discharge capacity. This is because it can be done.
In addition, as a result of the sulfur component being consumed due to the interaction between the sulfur atoms in the sulfur component contained in the raw material composition and atoms other than sulfur in the sulfur-modified compound, the peak intensity is considered to be a diffraction peak derived from the sulfur component. It is estimated that the strength of (A) decreases.
 ここで、上記原料組成物のA/Bとは、Cu-Kα線を用いた粉末X線回折で、後述する測定条件で測定した原料組成物の回折チャートにおいて、回折角度(2θ)が23.0°~23.4°における最大のピーク強度(A)と、回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)との比(A/B)を表す。 Here, A/B of the raw material composition is powder X-ray diffraction using Cu-Kα rays, and in a diffraction chart of the raw material composition measured under the measurement conditions described below, the diffraction angle (2θ) is 23. Represents the ratio (A/B) between the maximum peak intensity (A) at 0° to 23.4° and the maximum peak intensity (B) at a diffraction angle (2θ) of 24.8° to 25.2°. .
 Cu-Kα線を用いた粉末X線回折の測定条件としては、測定に用いる装置として、粉末X線回折装置を用いることができ、例えば、リガク社製粉末X線回折装置UltimaIV等を用いることができる。測定条件は、Cu-Kα線、管電圧:40kV、管電流:40mA、スキャン速度:0.5°/分、ステップ幅:0.02°、積算回数:1回、回折角度(2θ):10°~40°とすることができる。
 なお、上記の測定条件では、23.0°~23.4°付近で、例えば、単体硫黄等の結晶構造を有する硫黄成分に由来する回折ピークを観察することができ、24.8°~25.2°付近で、例えばアモルファスな硫黄変性化合物に由来する典型的なブロードなハローパターンに由来する回折ピークを観察することができる。
As the measurement conditions for powder X-ray diffraction using Cu-Kα rays, a powder X-ray diffraction device can be used as the device used for measurement, for example, a powder X-ray diffraction device Ultima IV manufactured by Rigaku Co., Ltd. can be used. can. The measurement conditions were: Cu-Kα ray, tube voltage: 40 kV, tube current: 40 mA, scan speed: 0.5°/min, step width: 0.02°, number of integrations: 1 time, diffraction angle (2θ): 10 The angle can be between 40° and 40°.
In addition, under the above measurement conditions, a diffraction peak derived from a sulfur component having a crystal structure such as elemental sulfur can be observed at around 23.0° to 23.4°, and a diffraction peak derived from a sulfur component having a crystal structure such as elemental sulfur can be observed at around 23.0° to 23.4°. At around .2°, a diffraction peak derived from a typical broad halo pattern derived from, for example, an amorphous sulfur-modified compound can be observed.
 本開示において、「回折角度(2θ)が23.0°~23.4°における最大のピーク強度(A)」とは、23.0°~23.4°の範囲にて測定される回折強度(cps)の最大値I(A-max)と20.0°~40.0°の範囲にて測定される回折強度(cps)の最小値I(min)との差を表す。つまり、(A)=I(A-max)-I(min)である。
 また、「回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)」とは、24.8°~25.2°の範囲にて測定される回折強度(cps)の最大値I(B-max)と20.0°~40.0°の範囲にて測定される回折強度(cps)の最小値I(min)との差を表す。つまり、(B)=I(B-max)-I(min)である。
In the present disclosure, "the maximum peak intensity (A) at a diffraction angle (2θ) of 23.0° to 23.4°" refers to the diffraction intensity measured in the range of 23.0° to 23.4°. It represents the difference between the maximum value I (A-max) of (cps) and the minimum value I (min) of diffraction intensity (cps) measured in the range of 20.0° to 40.0°. That is, (A)=I(A-max)-I(min).
Furthermore, "the maximum peak intensity (B) at a diffraction angle (2θ) of 24.8° to 25.2°" refers to the diffraction intensity (cps) measured in the range of 24.8° to 25.2°. ) and the minimum value I (min) of the diffraction intensity (cps) measured in the range of 20.0° to 40.0°. That is, (B)=I(B-max)-I(min).
 得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、メカノケミカル処理の条件は、メカノケミカル処理工程後に得られる硫黄含有材料中に含まれる硫黄成分、すなわち、原料組成物の成分として添加した硫黄成分のうち、硫黄変性化合物と反応せず残存する硫黄成分の含有量が、20質量%以下となるものであることが好ましく、10質量%以下となるものであることがより好ましく、5質量%以下となるものであることがさらにより好ましく、1質量%以下となるものであることがさらにより好ましく、0質量%となるものであること、すなわち、硫黄変性化合物と反応せず残存する硫黄成分を含まないことが最も好ましい。 From the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the conditions of the mechanochemical treatment are such that the sulfur component contained in the sulfur-containing material obtained after the mechanochemical treatment step, that is, as a component of the raw material composition. Among the added sulfur components, the content of the sulfur component that does not react with the sulfur-modified compound and remains is preferably 20% by mass or less, more preferably 10% by mass or less, It is even more preferable that the amount is 5% by mass or less, even more preferably it is 1% by mass or less, and it is 0% by mass, that is, it does not react with the sulfur-modified compound and remains. Most preferably, it does not contain any sulfur components.
3.その他の工程
 第1態様による硫黄含有材料の製造方法は、メカノケミカル処理工程を有するものであるが、必要に応じてその他の工程、例えば、混合工程、脱硫工程等を有するものであってもよい。
3. Other steps The method for producing a sulfur-containing material according to the first aspect includes a mechanochemical treatment step, but may include other steps, such as a mixing step and a desulfurization step, as necessary. .
(3-1)混合工程
 上記混合工程は、硫黄成分と硫黄変性化合物とを混合する工程であり、メカノケミカル処理工程前に実施することが好ましい。硫黄成分と硫黄変性化合物とが均一に分散されることで、放電容量の大きな電池を形成できる硫黄含有材料が得られ易くなる。
 硫黄成分と硫黄変性化合物とを混合する方法は、特に限定されるものではなく、例えば、「(2)メカノケミカル処理工程」の項に記載の乾式処理を実施可能な粉砕機器を用いて混合する方法、ブレンダー、ロッキングミル、ヘンシェルミキサー等の公知のドライブレンド機器を用いて混合する方法等が挙げられる。
(3-1) Mixing Step The above mixing step is a step of mixing the sulfur component and the sulfur-modified compound, and is preferably carried out before the mechanochemical treatment step. By uniformly dispersing the sulfur component and the sulfur-modified compound, it becomes easier to obtain a sulfur-containing material that can form a battery with a large discharge capacity.
The method of mixing the sulfur component and the sulfur-modified compound is not particularly limited, and for example, mixing using a crushing device capable of performing the dry treatment described in the section "(2) Mechanochemical treatment step". Examples include a method of mixing using a known dry blending device such as a blender, a rocking mill, or a Henschel mixer.
(3-2)脱硫工程
 本開示においては、メカノケミカル処理工程後に未反応の硫黄成分を除去する脱硫工程を有するものであってもよい。上記脱硫工程としては、例えば、加熱脱硫法、溶剤脱硫法等が挙げられる。
 上記加熱脱硫法としては、例えば、非酸化性雰囲気下、100℃以上600℃以下程度の温度で加熱して、硫黄含有材料中の硫黄成分をガス化(例えば、硫黄ガスや硫化水素等)して取り除く方法等が挙げられる。処理時間は、処理温度等に応じて適宜設定することができる。
 上記溶剤脱硫法としては、例えば、溶剤に硫黄含有材料中の硫黄成分を吸収させて、硫黄成分を吸収した溶剤を除去する方法等が挙げられる。
 上記溶剤としては、例えば、アルカリ水溶液、アセトン、トルエン、キシレン、二硫化炭素、ピナコリン、メチシルオキシド、アセトフェノン、ベンゾフェノン、アセチルアセトン、2-ブタノン、メタノール、エタノール、プロパノール、ブタノール、アセトニトリル、プロピオニトリル、ブチロニトリル、ニトロメタン、ニトロエタン、ニトロプロパン、ニトロベンゼン、ジメチルスルホキシド、N,N’-ジメチルホルムアミド、N,N’-ジメチルアセトアミド、ピリジン、N-メチルピロリジノン、トリメチル燐酸エステル、トリエチル燐酸エステル、ヘキサメチル燐酸アミド、ホスホラン等が挙げられる。本工程においては、一種の溶剤を用いてもよいし、複数の溶剤を混合して用いてもよい。
 溶剤に硫黄成分を吸収させる処理時間は、溶剤の種類に応じて適宜設定することができる。
 本開示においては、放電容量の大きな電池を形成可能な硫黄含有材料が得られやすいという観点から、上記脱硫工程は、加熱脱硫法であることが好ましい。
(3-2) Desulfurization process The present disclosure may include a desulfurization process for removing unreacted sulfur components after the mechanochemical treatment process. Examples of the desulfurization step include a heat desulfurization method, a solvent desulfurization method, and the like.
The thermal desulfurization method described above includes, for example, heating the sulfur component in the sulfur-containing material to gas (e.g., sulfur gas, hydrogen sulfide, etc.) by heating at a temperature of about 100°C to 600°C in a non-oxidizing atmosphere. For example, there are methods to remove it. The processing time can be appropriately set depending on the processing temperature and the like.
Examples of the solvent desulfurization method include a method in which a sulfur component in a sulfur-containing material is absorbed by a solvent and the solvent that has absorbed the sulfur component is removed.
Examples of the above-mentioned solvent include aqueous alkaline solution, acetone, toluene, xylene, carbon disulfide, pinacolin, methyl oxide, acetophenone, benzophenone, acetylacetone, 2-butanone, methanol, ethanol, propanol, butanol, acetonitrile, propionitrile, Butyronitrile, nitromethane, nitroethane, nitropropane, nitrobenzene, dimethyl sulfoxide, N,N'-dimethylformamide, N,N'-dimethylacetamide, pyridine, N-methylpyrrolidinone, trimethyl phosphate, triethyl phosphate, hexamethyl phosphate, phosphorane etc. In this step, one type of solvent may be used, or a plurality of solvents may be mixed and used.
The treatment time for absorbing the sulfur component into the solvent can be appropriately set depending on the type of solvent.
In the present disclosure, the desulfurization step is preferably a thermal desulfurization method from the viewpoint of easily obtaining a sulfur-containing material that can form a battery with a large discharge capacity.
4.硫黄含有材料
 本開示においては、原料組成物に由来する未反応の硫黄成分の割合が少なく、放電容量の大きな電池を形成することが容易となるという観点から、第1態様で得られる硫黄含有材料は、硫黄含有材料のピーク強度比(A/B)が、1.5以下(A/B≦1.5)であることが好ましく、1.2以下(A/B≦1.2)であることがより好ましく、1.0以下(A/B≦1.0)であることがさらにより好ましく、0.8以下(A/B≦0.8)であることが最も好ましい。
4. Sulfur-containing material In the present disclosure, the sulfur-containing material obtained in the first embodiment is used from the viewpoint that the proportion of unreacted sulfur components derived from the raw material composition is small and it is easy to form a battery with a large discharge capacity. The peak intensity ratio (A/B) of the sulfur-containing material is preferably 1.5 or less (A/B≦1.5), and preferably 1.2 or less (A/B≦1.2). It is more preferably 1.0 or less (A/B≦1.0), even more preferably 0.8 or less (A/B≦0.8).
 本開示については、ピーク強度比(A/B)の調整方法としては、硫黄含有材料の製造方法の各工程の条件を調整すればよく、例えば、メカノケミカル処理工程におけるメカノケミカル処理の条件を調整したり、メカノケミカル処理の対象となる原料組成物中の硫黄成分の含有量を調整する方法等を挙げることができる。具体的には、メカノケミカル処理における処理時間を増やす、自転回転数を上げる等単位時間あたりに原料組成物に付与する力学的エネルギーを増加する若しくはその両方を実施することで、ピーク強度比(A/B)を低下させることができる。 Regarding the present disclosure, as a method for adjusting the peak intensity ratio (A/B), it is sufficient to adjust the conditions of each step of the method for producing a sulfur-containing material, for example, adjusting the conditions of mechanochemical treatment in the mechanochemical treatment step. or adjusting the content of the sulfur component in the raw material composition to be subjected to mechanochemical treatment. Specifically, the peak intensity ratio (A /B) can be reduced.
 得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、硫黄含有材料中の硫黄原子の全含量は、50質量%以上90質量%以下であることが好ましく、51質量%以上85質量%以下であることがより好ましく、52質量%以上80質量%以下であることがさらにより好ましく、55質量%以上75質量%以下であることがさらにより好ましく、56質量%以上70質量%以下であることが最も好ましい。
 ここで、硫黄含有材料中の硫黄原子の全含量とは、硫黄含有材料の全質量当たりの硫黄原子の含有量を意味する。具体的には、硫黄含有材料の全質量当たりの、硫黄変性化合物と未反応の硫黄成分中の硫黄原子の含有量と、硫黄変性化合物中の硫黄原子の含有量との合計の含有量とすることができる。
 硫黄含有材料中の硫黄原子の含有量は、硫黄及び酸素を分析可能なCHNS分析(エレメンター社製vario MICRO cube)を用いた分析結果から算出することができる。
From the viewpoint that the resulting sulfur-containing material can form a battery with a large discharge capacity, the total content of sulfur atoms in the sulfur-containing material is preferably 50% by mass or more and 90% by mass or less, and 51% by mass or more and 85% by mass. % or less, even more preferably 52% by mass or more and 80% by mass or less, even more preferably 55% by mass or more and 75% by mass or less, and 56% by mass or more and 70% by mass or less Most preferably.
Here, the total content of sulfur atoms in the sulfur-containing material means the content of sulfur atoms per total mass of the sulfur-containing material. Specifically, the content is the sum of the content of sulfur atoms in the sulfur component that has not reacted with the sulfur-modified compound and the content of sulfur atoms in the sulfur-modified compound, per total mass of the sulfur-containing material. be able to.
The content of sulfur atoms in the sulfur-containing material can be calculated from the analysis results using CHNS analysis (vario MICRO cube manufactured by Elementor) that can analyze sulfur and oxygen.
 本開示においては、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、硫黄変性化合物の含有量は、硫黄含有材料100質量部中に、60質量部以上であることが好ましく、65質量部以上であることがより好ましく、70質量部以上であることがさらにより好ましく、80質量部以上であることがさらにより好ましく、90質量部以上であることがさらにより好ましく、95質量部以上であることがさらにより好ましく、99質量部以上であることが最も好ましい。 In the present disclosure, from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the content of the sulfur-modified compound is preferably 60 parts by mass or more in 100 parts by mass of the sulfur-containing material, It is more preferably 65 parts by mass or more, even more preferably 70 parts by mass or more, even more preferably 80 parts by mass or more, even more preferably 90 parts by mass or more, and even more preferably 95 parts by mass. It is even more preferable that the amount is 99 parts by mass or more, and most preferably 99 parts by mass or more.
 得られる硫黄含有材料の用途は、特に限定されるものではないが、電池における電極の電極層に用いることができ、特に電極層の活物質として有用である。電池における電極の電極層に用いることで、電池の放電容量を増大させることができる。電池としては、一次電池及び二次電池のいずれであってもよいが、二次電池であることが好ましい。 The use of the obtained sulfur-containing material is not particularly limited, but it can be used for an electrode layer of an electrode in a battery, and is particularly useful as an active material for an electrode layer. By using it in an electrode layer of an electrode in a battery, the discharge capacity of the battery can be increased. The battery may be either a primary battery or a secondary battery, but a secondary battery is preferred.
 上記硫黄含有材料が電池における電極層の活物質である場合、上記硫黄含有材料が、二次電池に用いられる電極層に含まれる活物質であることが好ましく、二次電池に用いられる正極活物質層に含まれる活物質、すなわち、正極活物質であることがより好ましい。 When the sulfur-containing material is an active material of an electrode layer in a battery, it is preferable that the sulfur-containing material is an active material included in an electrode layer used in a secondary battery, and a positive electrode active material used in a secondary battery. More preferably, it is an active material contained in the layer, that is, a positive electrode active material.
 電池の構成としては、特に限定されるものではなく、公知の構成を適宜採用することができる。 The structure of the battery is not particularly limited, and any known structure can be adopted as appropriate.
A-2.第2態様
 本開示の第2態様による硫黄含有材料の製造方法は、単体硫黄及び有機化合物を含む混合物を加熱処理して加熱処理物を形成する加熱処理工程と、加熱処理工程で得られた加熱処理物をメカノケミカル処理するメカノケミカル処理工程とを有するものである。
A-2. Second Aspect A method for producing a sulfur-containing material according to a second aspect of the present disclosure includes a heat treatment step of heat-treating a mixture containing elemental sulfur and an organic compound to form a heat-treated product; The method includes a mechanochemical treatment step of mechanochemically treating the treated material.
1.加熱処理工程
 第2態様における加熱処理工程では、単体硫黄及び有機化合物を含む混合物を加熱処理して加熱処理物を形成する。
1. Heat Treatment Step In the heat treatment step in the second embodiment, a mixture containing elemental sulfur and an organic compound is heat-treated to form a heat-treated product.
(1-1)混合物
 第2態様に用いられる混合物は、単体硫黄及び有機化合物を含むものである。
 単体硫黄は、「A-1.第1態様」の「1.原料組成物」の「(1-1)硫黄成分」の項に記載の単体硫黄と同様のものを用いることができるので、ここでの説明は省略する。
 有機化合物は、硫黄変性化合物の原料となる有機化合物であり、「A-1.第1態様」の「(1-2)硫黄変性化合物」の項に記載の有機化合物と同様のものを用いることができるので、ここでの説明は省略する。放電容量の大きな電池を形成できる硫黄含有材料が得られ易くなるという観点から、第2態様に用いられる有機化合物は、アクリル系化合物、ポリエーテル化合物、ピッチ類、多核芳香環化合物、脂肪族炭化水素酸化物、脂肪族ポリマー化合物及びチオフェン構造を有するポリマー化合物の何れかであることが好ましく、アクリル系化合物及びポリエーテル化合物の何れかであることがより好ましく、アクリル系化合物であることが最も好ましい。アクリル系化合物としては、例えば、ポリアクリロニトリル系化合物及びその他のアクリル系化合物が挙げられる。
(1-1) Mixture The mixture used in the second embodiment contains elemental sulfur and an organic compound.
Elemental sulfur can be the same as the elemental sulfur described in "(1-1) Sulfur component" of "1. Raw material composition" of "A-1. First aspect", so here The explanation will be omitted.
The organic compound is an organic compound that is a raw material for a sulfur-modified compound, and the same organic compound as described in the section "(1-2) Sulfur-modified compound" of "A-1. First aspect" should be used. can be done, so the explanation here will be omitted. From the viewpoint of making it easier to obtain a sulfur-containing material that can form a battery with a large discharge capacity, the organic compounds used in the second embodiment include acrylic compounds, polyether compounds, pitches, polynuclear aromatic ring compounds, and aliphatic hydrocarbons. It is preferably any of an oxide, an aliphatic polymer compound, and a polymer compound having a thiophene structure, more preferably an acrylic compound or a polyether compound, and most preferably an acrylic compound. Examples of the acrylic compound include polyacrylonitrile compounds and other acrylic compounds.
 本開示においては、放電容量の大きな電池を形成できる硫黄含有材料が得られ易くなるという観点から、混合物における単体硫黄の含有量は、有機化合物100質量部に対して、100質量部以上1,500質量部以下であることが好ましく、120質量部以上1,000質量部以下であることがより好ましい。 In the present disclosure, from the viewpoint of making it easier to obtain a sulfur-containing material that can form a battery with a large discharge capacity, the content of elemental sulfur in the mixture is 100 parts by mass or more and 1,500 parts by mass based on 100 parts by mass of the organic compound. It is preferably at most 120 parts by mass and at most 1,000 parts by mass.
 単体硫黄と有機化合物との混合方法は、「A-1.第1態様」の「3.その他の工程」の項に記載の硫黄成分と硫黄変性化合物とを混合する方法と同様の方法を採用することができるので、ここでの説明は省略する。 The method for mixing elemental sulfur and the organic compound is the same as the method for mixing the sulfur component and the sulfur-modified compound described in "3. Other steps" of "A-1. First embodiment". Therefore, the explanation here will be omitted.
(1-2)加熱処理
 放電容量の大きな電池を形成できる硫黄含有材料が得られ易くなるという観点から、単体硫黄及び有機化合物を含む混合物を加熱処理する温度は、250℃以上500℃以下であることが好ましく、260℃以上450℃以下であることがより好ましい。
 加熱処理は、形成した加熱処理物と、水分や酸素等との接触による酸化反応を抑制でき、放電容量の大きな電池を形成できる硫黄含有材料が得られ易くなるという観点から、真空雰囲気下又は非酸化性雰囲気下で加熱する処理であることが好ましく、非酸化性雰囲気下で加熱する処理であることがより好ましい。
 本工程においては、得られる硫黄含有材料が放電容量の大きな電池を形成できるという観点から、上記加熱処理が、250℃以上500℃以下且つ非酸化性雰囲気下若しくは真空雰囲気下で行われることが好ましく、250℃以上500℃以下且つ非酸化性雰囲気下で行われることがより好ましく、260℃以上450℃以下且つ非酸化性雰囲気下で行われることが最も好ましい。
 上記真空雰囲気及び非酸化性雰囲気は、「A-1.第1態様」の「2.メカノケミカル処理」の項に記載の同様のものを採用することができるので、ここでの説明は省略する。
(1-2) Heat treatment From the viewpoint of making it easier to obtain a sulfur-containing material that can form a battery with a large discharge capacity, the temperature at which the mixture containing elemental sulfur and an organic compound is heat-treated is 250°C or more and 500°C or less. The temperature is preferably 260°C or more and 450°C or less.
The heat treatment is carried out in a vacuum atmosphere or in a non-vacuum atmosphere from the viewpoint of suppressing the oxidation reaction caused by contact between the formed heat-treated product and moisture, oxygen, etc., and making it easier to obtain a sulfur-containing material that can form a battery with a large discharge capacity. The treatment is preferably performed by heating in an oxidizing atmosphere, and more preferably the treatment is performed by heating in a non-oxidizing atmosphere.
In this step, from the viewpoint that the obtained sulfur-containing material can form a battery with a large discharge capacity, the above heat treatment is preferably performed at a temperature of 250°C or more and 500°C or less and under a non-oxidizing atmosphere or a vacuum atmosphere. It is more preferable to carry out the process at a temperature of 250°C to 500°C and under a non-oxidizing atmosphere, and most preferably to carry out at a temperature of 260°C to 450°C and a non-oxidizing atmosphere.
As the vacuum atmosphere and non-oxidizing atmosphere mentioned above, the same ones as described in "2. Mechanochemical treatment" of "A-1. First aspect" can be adopted, so the explanation here will be omitted. .
 本工程では、単体硫黄が加熱されて硫黄蒸気になることで、硫黄蒸気と有機化合物とが反応して加熱処理物(硫黄変性化合物)が形成されてもよい。硫黄蒸気は蒸気圧が高いため、加熱処理時に系内の圧力が上昇する場合がある。この圧力上昇を抑制するという観点から、加熱処理は、硫黄蒸気を系外へ排出しながら加熱する処理であってもよい。硫黄蒸気を系外へ排出しながら加熱する方法としては、系内を減圧して硫黄蒸気を排出する方法、「A-1.第1態様」の「2.メカノケミカル処理」の項に記載の非酸化性雰囲気下にするための不活性ガスを系内に導入して硫黄蒸気を排出する方法等が挙げられる。なお、硫黄蒸気と有機化合物との反応によって硫化水素が生成する場合があり、作業環境を保護する観点から、硫黄蒸気と共に硫化水素を排出してもよい。 In this step, elemental sulfur may be heated to become sulfur vapor, and the sulfur vapor may react with the organic compound to form a heat-treated product (sulfur-modified compound). Since sulfur vapor has a high vapor pressure, the pressure within the system may increase during heat treatment. From the viewpoint of suppressing this pressure increase, the heat treatment may be a treatment of heating while discharging sulfur vapor to the outside of the system. As a method of heating while discharging sulfur vapor out of the system, there is a method of reducing the pressure inside the system and discharging sulfur vapor, and a method described in "2. Mechanochemical treatment" of "A-1. First embodiment". Examples include a method of introducing an inert gas into the system to create a non-oxidizing atmosphere and exhausting sulfur vapor. Note that hydrogen sulfide may be generated by the reaction between sulfur vapor and organic compounds, and from the viewpoint of protecting the working environment, hydrogen sulfide may be discharged together with the sulfur vapor.
 硫黄蒸気を系外へ排出しながら加熱する処理ができる装置としては、例えば、特開2014-22123号公報、特開2013-201100号公報及び国際公開第2021/060044号に記載の装置等が挙げられる。 Examples of devices that can perform heating treatment while discharging sulfur vapor to the outside of the system include devices described in JP 2014-22123 A, JP 2013-201100 A, and International Publication No. 2021/060044. It will be done.
 本工程は、均一な組成の加熱処理物が得られ易くなるという観点から、単体硫黄と有機化合物とを混合しながら加熱処理を行うことが好ましい。単体硫黄と有機化合物とを混合しながら加熱処理する方法としては、加熱容器内に、バトル等の撹拌羽根を設けてこれを回転させることで単体硫黄と有機化合物とを混合しながら加熱処理する方法、加熱容器自体を回転させることで単体硫黄及び有機化合物の自重により混合しながら加熱処理する方法等が挙げられる。加熱容器を回転させる方法により単体硫黄と有機化合物とを混合する場合、単体硫黄と有機化合物との混合が容易になるという観点から、円柱又は円柱形を組み合わせた構造の加熱容器を用いることが好ましい。 In this step, it is preferable to perform the heat treatment while mixing the elemental sulfur and the organic compound from the viewpoint of easily obtaining a heat-treated product with a uniform composition. A method of heat-treating elemental sulfur and organic compounds while mixing them is to provide a stirring blade such as a battler in a heating container and rotate it to heat-treat elemental sulfur and organic compounds while mixing them. Examples include a method of heating the elemental sulfur and the organic compound while mixing them by their own weight by rotating the heating container itself. When mixing elemental sulfur and an organic compound by rotating a heating container, it is preferable to use a heating container with a structure of a cylinder or a combination of cylinders, from the viewpoint of facilitating mixing of elemental sulfur and organic compound. .
 放電容量の大きな電池を形成できる硫黄含有材料が得られ易くなるという観点から、加熱処理工程で得られる加熱処理物中の硫黄の含有量は、30質量%以上80質量%以下であることが好ましく、33質量%以上70質量%以下であることがより好ましく、35質量%以上60質量%以下であることが最も好ましい。 From the viewpoint of making it easier to obtain a sulfur-containing material that can form a battery with a large discharge capacity, the sulfur content in the heat-treated material obtained in the heat treatment step is preferably 30% by mass or more and 80% by mass or less. , more preferably 33% by mass or more and 70% by mass or less, and most preferably 35% by mass or more and 60% by mass or less.
2.メカノケミカル処理工程
 第2態様におけるメカノケミカル処理工程では、上記加熱処理工程で得られた加熱処理物に対してメカノケミカル処理を行う。
 第2態様におけるメカノケミカル処理の方法については、「A-1.第1態様」の「2.メカノケミカル処理工程」の項において、原料組成物を上記加熱処理物に置き換えた内容とすることができるので、ここでの説明は省略する。
2. Mechanochemical treatment step In the mechanochemical treatment step in the second embodiment, a mechanochemical treatment is performed on the heat-treated product obtained in the heat treatment step.
Regarding the mechanochemical treatment method in the second embodiment, the raw material composition may be replaced with the above-mentioned heat-treated product in the section "2. Mechanochemical treatment step" of "A-1. First embodiment". Since it can be done, the explanation here will be omitted.
3.その他の工程
 第2態様による硫黄含有材料の製造方法は、加熱処理工程及びメカノケミカル処理工程を有するものであるが、必要に応じてその他の工程を有するものであってもよい。
 その他の工程としては、混合工程、回収工程、硫黄含有量調整工程、脱硫工程等が挙げられる。
3. Other Steps The method for producing a sulfur-containing material according to the second aspect includes a heat treatment step and a mechanochemical treatment step, but may include other steps as necessary.
Other processes include a mixing process, a recovery process, a sulfur content adjustment process, a desulfurization process, and the like.
(3-1)混合工程
 上記混合工程は、単体硫黄及び有機化合物を混合する工程であり、加熱処理工程前に実施することが好ましい。混合工程は、「A-1.第1態様」の「3.その他の工程」の「(3-1)混合工程」の項において、硫黄成分を単体硫黄に置き換え、硫黄変性化合物を上記有機化合物に置き換えた内容とすることができるので、ここでの説明は省略する。
(3-1) Mixing Step The above mixing step is a step of mixing elemental sulfur and an organic compound, and is preferably carried out before the heat treatment step. In the mixing step, the sulfur component is replaced with elemental sulfur, and the sulfur-modified compound is replaced with the above organic compound in the section "(3-1) Mixing step" of "3. Other steps" in "A-1. First aspect". Since the content can be replaced with , the explanation here will be omitted.
(3-2)回収工程
 上記回収工程は、上記加熱処理工程において系外に排出された硫黄蒸気及び硫化水素を回収し、加熱処理工程における混合物に戻す工程である。第2態様による硫黄含有材料の製造方法が、回収工程を有することで、省エネルギー化及び作業環境の改善を図ることができる。
 硫黄蒸気及び硫化水素を回収する方法としては、系外に排出された硫黄蒸気及び硫化水素を凝集又は冷却することで、液化した硫黄を加熱容器に戻す方法等が挙げられる。系外に排出された硫黄蒸気及び硫化水素を回収する管が閉塞するのを防ぐという観点から、硫黄の融点よりもやや高い温度、例えば、120℃以上150℃以下の範囲で硫黄蒸気及び硫化水素の凝集又は冷却を行うことが好ましい。
(3-2) Recovery Step The recovery step is a step in which the sulfur vapor and hydrogen sulfide discharged outside the system in the heat treatment step are recovered and returned to the mixture in the heat treatment step. Since the method for producing a sulfur-containing material according to the second aspect includes a recovery step, it is possible to save energy and improve the working environment.
Examples of methods for recovering sulfur vapor and hydrogen sulfide include a method of returning the liquefied sulfur to the heating container by condensing or cooling the sulfur vapor and hydrogen sulfide discharged outside the system. From the perspective of preventing clogging of the pipes for recovering sulfur vapor and hydrogen sulfide discharged outside the system, sulfur vapor and hydrogen sulfide are removed at a temperature slightly higher than the melting point of sulfur, for example, in the range of 120°C or higher and 150°C or lower. It is preferable to perform agglomeration or cooling.
(3-3)硫黄含有量調整工程
 上記硫黄含有量調整工程は、上記加熱処理工程と上記メカノケミカル処理工程との間に行われ、硫黄含有量を調整する工程である。第2態様による硫黄含有材料の製造方法が、硫黄含有量調整工程を有することで、所望の硫黄含有量を有する硫黄含有材料の製造が容易になる。
 硫黄含有量の調整は、加熱処理物における単体硫黄の含有量を減少させるものであってもよく、増加させるものであってもよい。加熱処理物における単体硫黄の含有量を減少させる方法としては、例えば、加熱処理物を加熱処理する方法、加熱処理物を減圧処理する方法、加熱処理と減圧処理とを併用する方法等が挙げられる。加熱処理物における単体硫黄の含有量を増加させる方法としては、例えば、加熱処理工程で得られた加熱処理物に単体硫黄を添加する方法等が挙げられる。
(3-3) Sulfur content adjustment step The sulfur content adjustment step is performed between the heat treatment step and the mechanochemical treatment step, and is a step for adjusting the sulfur content. Since the method for producing a sulfur-containing material according to the second aspect includes the sulfur content adjustment step, it becomes easy to produce a sulfur-containing material having a desired sulfur content.
The sulfur content may be adjusted by decreasing or increasing the content of elemental sulfur in the heat-treated product. Examples of methods for reducing the content of elemental sulfur in the heat-treated product include a method of heat-treating the heat-treated product, a method of subjecting the heat-treated product to vacuum treatment, and a method of using both heat treatment and vacuum treatment. . Examples of methods for increasing the content of elemental sulfur in the heat-treated product include a method of adding elemental sulfur to the heat-treated product obtained in the heat treatment step.
 上記単体硫黄の含有量を減少させるために加熱処理物を加熱処理する場合、単体硫黄を効率的に減少させる観点から、加熱処理する温度は、200℃以上600℃以下の範囲であることが好ましく、230℃以上550℃以下の範囲であることがより好ましく、250℃以上500℃以下の範囲であることが最も好ましい。 When heat-treating the heat-treated product to reduce the content of elemental sulfur, the temperature of the heat treatment is preferably in the range of 200°C or more and 600°C or less, from the viewpoint of efficiently reducing elemental sulfur. , more preferably in the range of 230°C or more and 550°C or less, and most preferably in the range of 250°C or more and 500°C or less.
 上記単体硫黄の含有量を減少させるために加熱処理物を減圧処理する場合、単体硫黄を効率的に減少させる観点から、減圧度は、100hPa以下とすることがより好ましく、50hPa以下とすることがさらにより好ましく、25hPa以下とすることが最も好ましい。 When the heat-treated product is subjected to vacuum treatment in order to reduce the content of elemental sulfur, the degree of pressure reduction is more preferably 100 hPa or less, and preferably 50 hPa or less, from the viewpoint of efficiently reducing elemental sulfur. It is even more preferable, and most preferably 25 hPa or less.
 上記単体硫黄の含有量を減少させるのに要する時間は、加熱及び減圧の処理条件によって適宜設定することができる。単体硫黄を効率的に減少させる観点から、加熱温度が260℃である場合、20hPaの減圧度で2時間以上処理することが好ましく、加熱温度が300℃である場合、20hPaの減圧度で1時間以上処理することが好ましく、加熱温度が350℃である場合、20hPaの減圧度で0.5時間以上15時間以下処理することが好ましい。 The time required to reduce the content of elemental sulfur can be appropriately set depending on the processing conditions of heating and pressure reduction. From the viewpoint of efficiently reducing elemental sulfur, when the heating temperature is 260°C, it is preferable to perform the treatment at a reduced pressure of 20 hPa for 2 hours or more, and when the heating temperature is 300°C, the treatment is preferably performed at a reduced pressure of 20 hPa for 1 hour. It is preferable to carry out the above treatment, and when the heating temperature is 350° C., it is preferable to carry out the treatment at a reduced pressure of 20 hPa for 0.5 hours or more and 15 hours or less.
(3-4)脱硫工程
 上記脱硫工程は、「A-1.第1態様」の「3.その他の工程」の「(3-2)脱硫工程」の項において、硫黄成分を単体硫黄に置き換え、硫黄変性化合物を有機化合物に置き換えた内容とすることができるので、ここでの説明は省略する。
(3-4) Desulfurization process The above desulfurization process replaces the sulfur component with elemental sulfur in the "(3-2) Desulfurization process" section of "3. Other processes" of "A-1. First aspect". , the sulfur-modified compound can be replaced with an organic compound, so the explanation here will be omitted.
4.硫黄含有材料
 第2の態様によって製造される硫黄含有材料は、「A-1.第1態様」の「4.硫黄含有材料」の項と同様の内容とすることができるので、ここでの説明は省略する。
4. Sulfur-containing material The sulfur-containing material manufactured according to the second embodiment can have the same contents as in the section "4. Sulfur-containing material" of "A-1. First embodiment", so the explanation here will be given. is omitted.
B.その他
 本開示においては、以下の態様が挙げられる。
 [1]硫黄成分及び硫黄変性化合物を含む原料組成物をメカノケミカル処理するメカノケミカル処理工程を有する硫黄含有材料の製造方法。
 [2]原料組成物において、硫黄成分が、硫黄変性化合物100質量部に対して、5質量部以上100質量部以下含まれる[1]に記載の硫黄含有材料の製造方法。
 [3]硫黄含有材料が、Cu-Kα線を用いた粉末X線回折において、回折角度(2θ)が23.0°~23.4における最大のピーク強度(A)と、回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)との比(A/B)が1.5以下(A/B≦1.5)である[1]又は[2]に記載の硫黄含有材料の製造方法。
 [4]メカノケミカル処理が、乾式の粉砕処理である[1]~[3]の何れかに記載の硫黄含有材料の製造方法。
 [5]単体硫黄及び有機化合物を含む混合物を加熱処理して加熱処理物を形成する加熱処理工程と、
 加熱処理工程で得られた加熱処理物をメカノケミカル処理するメカノケミカル処理工程とを有する硫黄含有材料の製造方法。
 [6]加熱処理工程における加熱処理が、非酸化性雰囲気下、250℃以上500℃以下で混合物を加熱する処理である[5]に記載の硫黄含有材料の製造方法。
 [7]加熱処理が、硫黄蒸気を排出しながら加熱する処理である[5]又は[6]に記載の硫黄含有材料の製造方法。
 [8]硫黄含有材料が、Cu-Kα線を用いた粉末X線回折において、回折角度(2θ)が23.0°~23.4°における最大のピーク強度(A)と、回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)との比(A/B)が1.5以下(A/B≦1.5)である[5]~[7]の何れかに記載の硫黄含有材料の製造方法。
B. Others The present disclosure includes the following aspects.
[1] A method for producing a sulfur-containing material, which includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound.
[2] The method for producing a sulfur-containing material according to [1], wherein the raw material composition contains 5 parts by mass or more and 100 parts by mass or less of the sulfur component based on 100 parts by mass of the sulfur-modified compound.
[3] The sulfur-containing material has the maximum peak intensity (A) at a diffraction angle (2θ) of 23.0° to 23.4 in powder X-ray diffraction using Cu-Kα rays, and the diffraction angle (2θ) to the maximum peak intensity (B) at 24.8° to 25.2° (A/B) is 1.5 or less (A/B≦1.5) [1] or [2]. Method of manufacturing the described sulfur-containing material.
[4] The method for producing a sulfur-containing material according to any one of [1] to [3], wherein the mechanochemical treatment is a dry pulverization treatment.
[5] A heat treatment step of heat treating a mixture containing elemental sulfur and an organic compound to form a heat treated product;
A method for producing a sulfur-containing material, comprising a mechanochemical treatment step of mechanochemically treating a heat treated material obtained in the heat treatment step.
[6] The method for producing a sulfur-containing material according to [5], wherein the heat treatment in the heat treatment step is a treatment in which the mixture is heated at 250°C or more and 500°C or less in a non-oxidizing atmosphere.
[7] The method for producing a sulfur-containing material according to [5] or [6], wherein the heat treatment is a treatment of heating while discharging sulfur vapor.
[8] In powder X-ray diffraction using Cu-Kα rays, the sulfur-containing material has the maximum peak intensity (A) at a diffraction angle (2θ) of 23.0° to 23.4°, and the diffraction angle (2θ) ) to the maximum peak intensity (B) at 24.8° to 25.2° (A/B) is 1.5 or less (A/B≦1.5) [5] to [7] A method for producing a sulfur-containing material according to any one of the above.
 本開示は、上記した実施形態に限定されるものではない。上記した実施形態は、例示であって、特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し且つ同様な作用効果を奏するものはすべて本開示の技術的範囲に包含される。 The present disclosure is not limited to the embodiments described above. The above-described embodiments are illustrative, and all embodiments that have substantially the same configuration as the technical idea described in the claims and have similar effects are included within the technical scope of the present disclosure. be done.
 以下、実施例及び比較例により本開示を更に詳細に説明する。ただし、以下の実施例等により本開示は何ら制限されるものではない。 Hereinafter, the present disclosure will be explained in more detail with reference to Examples and Comparative Examples. However, the present disclosure is not limited in any way by the following examples and the like.
〔比較例1〕硫黄変性化合物Aの製造
 特開2013-054957号公報の製造例に準じた方法で硫黄変性ポリアクリロニトリルを製造した。即ち、有機化合物としてのポリアクリロニトリル粉末(シグマアルドリッチ製、平均粒子径200μm)10質量部及び単体硫黄としての硫黄粉末(シグマアルドリッチ製、平均粒子径200μm、α硫黄)30質量部を、乳鉢を用いて混合した混合物20gを外径45mm、長さ120mmの有底円筒状ガラス管に収容したのち、ガラス管の開口部にガス導入管及びガス排出管を有するシリコーン栓を取り付けた。ガラス管内部の空気を窒素で置換した後、ガラス管の下部をルツボ型電気炉に挿入し、ガス導入管から窒素を導入して発生する硫化水素を除去しながら400℃で1時間加熱し、中間生成物を得た。なお、硫黄蒸気はガラス管の上部又は蓋部で凝結して還流させた。得られた中間生成物を260℃のガラスチューブオーブンに入れ、20hPaに減圧し、180分間加熱して単体硫黄を除去し、硫黄変性化合物Aを得た。硫黄変性化合物A中の硫黄全含量は、49質量%であった。
[Comparative Example 1] Production of sulfur-modified compound A Sulfur-modified polyacrylonitrile was produced in accordance with the production example of JP-A-2013-054957. That is, 10 parts by mass of polyacrylonitrile powder (manufactured by Sigma-Aldrich, average particle diameter 200 μm) as an organic compound and 30 parts by mass of sulfur powder (manufactured by Sigma-Aldrich, average particle diameter 200 μm, α-sulfur) as elemental sulfur were mixed in a mortar. After 20 g of the mixed mixture was placed in a bottomed cylindrical glass tube with an outer diameter of 45 mm and a length of 120 mm, a silicone stopper having a gas inlet tube and a gas outlet tube was attached to the opening of the glass tube. After replacing the air inside the glass tube with nitrogen, the lower part of the glass tube was inserted into a crucible-type electric furnace, and heated at 400°C for 1 hour while introducing nitrogen from the gas introduction tube to remove generated hydrogen sulfide. An intermediate product was obtained. Note that the sulfur vapor was condensed at the top or lid of the glass tube and refluxed. The obtained intermediate product was placed in a glass tube oven at 260° C., the pressure was reduced to 20 hPa, and the mixture was heated for 180 minutes to remove elemental sulfur to obtain sulfur-modified compound A. The total sulfur content in sulfur-modified compound A was 49% by mass.
〔比較例2〕硫黄変性化合物Bの製造
 有機化合物としてのポリアクリロニトリル粉末(シグマアルドリッチ製、平均粒子径200μm)10質量部及び単体硫黄としての硫黄粉末(シグマアルドリッチ製、平均粒子径200μm、α硫黄)130質量部を、乳鉢を用いて混合した混合物20gを外径45mm、長さ120mmの有底円筒状ガラス管に収容したのち、ガラス管の開口部にガス導入管及びガス排出管を有するシリコーン栓を取り付けた。ガラス管内部の空気を窒素で置換した後、ガラス管の下部をルツボ型電気炉に挿入し、ガス導入管から窒素を導入して発生する硫化水素を除去しながら400℃で1時間加熱し、中間生成物を得た。なお、硫黄蒸気はガラス管の上部又は蓋部で凝結して還流させた。得られた中間生成物を260℃のガラスチューブオーブンに入れ、20hPaに減圧し、90分間加熱して単体硫黄を除去し、硫黄変性化合物Bを得た。硫黄変性化合物B中の硫黄全含量は、60質量%であった。
[Comparative Example 2] Production of sulfur-modified compound B 10 parts by mass of polyacrylonitrile powder (manufactured by Sigma-Aldrich, average particle size 200 μm) as an organic compound and sulfur powder as elemental sulfur (manufactured by Sigma-Aldrich, average particle size 200 μm, α-sulfur) ) 130 parts by mass were mixed in a mortar and 20 g of the mixture was placed in a bottomed cylindrical glass tube with an outer diameter of 45 mm and a length of 120 mm, and then silicone having a gas introduction pipe and a gas discharge pipe at the opening of the glass tube was prepared. Attached the stopper. After replacing the air inside the glass tube with nitrogen, the lower part of the glass tube was inserted into a crucible-type electric furnace, and heated at 400°C for 1 hour while introducing nitrogen from the gas introduction tube to remove generated hydrogen sulfide. An intermediate product was obtained. Note that the sulfur vapor was condensed at the top or lid of the glass tube and refluxed. The obtained intermediate product was placed in a glass tube oven at 260° C., the pressure was reduced to 20 hPa, and the mixture was heated for 90 minutes to remove elemental sulfur to obtain sulfur-modified compound B. The total sulfur content in sulfur-modified compound B was 60% by mass.
〔実施例1〕硫黄含有材料Aの製造
 比較例1で製造した硫黄変性化合物A100質量部及び硫黄成分としての硫黄粉末(シグマアルドリッチ製、平均粒子径200μm、α硫黄)30質量部を含む原料組成物を、アルゴン雰囲気下、自転回転数1,600rpm、処理時間300分間の条件で、遊星型ボールミル(フリッチュ社製、P-7クラシックライン)を用いてメカノケミカル処理し、硫黄含有材料Aを得た。硫黄含有材料A中の硫黄原子の全含量は、60質量%であった。
[Example 1] Production of sulfur-containing material A Raw material composition containing 100 parts by mass of the sulfur-modified compound A produced in Comparative Example 1 and 30 parts by mass of sulfur powder as a sulfur component (manufactured by Sigma-Aldrich, average particle size 200 μm, alpha sulfur) The material was subjected to mechanochemical treatment using a planetary ball mill (manufactured by Fritsch, P-7 Classic Line) under conditions of an argon atmosphere, a rotation speed of 1,600 rpm, and a treatment time of 300 minutes to obtain sulfur-containing material A. Ta. The total content of sulfur atoms in sulfur-containing material A was 60% by mass.
〔実施例2〕硫黄含有材料Bの製造
 有機化合物としてのポリアクリロニトリル粉末(シグマアルドリッチ製、平均粒子径200μm)10質量部及び単体硫黄としての硫黄粉末(シグマアルドリッチ製、平均粒子径200μm、α硫黄)30質量部を、乳鉢を用いて混合した混合物20gを外径45mm、長さ120mmの有底円筒状ガラス管に収容したのち、ガラス管の開口部にガス導入管及びガス排出管を有するシリコーン栓を取り付けた。ガラス管内部の空気を窒素で置換した後、ガラス管の下部をルツボ型電気炉に挿入し、ガス導入管から窒素を導入して発生する硫化水素を除去しながら400℃で1時間加熱し、中間生成物を得た。なお、硫黄蒸気はガラス管の上部又は蓋部で凝結して還流させた。得られた中間生成物を260℃のガラスチューブオーブンに入れ、90分間加熱して単体硫黄を除去し、加熱処理物を得た。加熱処理物中の硫黄の含有量は、60質量%であった。
 その後、上記加熱処理物の全量を、アルゴン雰囲気下、自転回転数1,600rpm、処理時間300分間の条件で、遊星型ボールミル(フリッチュ社製、P-7クラシックライン)を用いてメカノケミカル処理し、硫黄含有材料Bを得た。硫黄含有材料B中の硫黄原子の全含量は、60質量%であった。
[Example 2] Production of sulfur-containing material B 10 parts by mass of polyacrylonitrile powder (manufactured by Sigma-Aldrich, average particle size 200 μm) as an organic compound and sulfur powder as elemental sulfur (manufactured by Sigma-Aldrich, average particle size 200 μm, α-sulfur) ) 30 parts by mass were mixed in a mortar and 20 g of the mixture was placed in a bottomed cylindrical glass tube with an outer diameter of 45 mm and a length of 120 mm, and then silicone having a gas inlet tube and a gas outlet tube at the opening of the glass tube. Attached the stopper. After replacing the air inside the glass tube with nitrogen, the lower part of the glass tube was inserted into a crucible-type electric furnace, and heated at 400°C for 1 hour while introducing nitrogen from the gas introduction tube to remove generated hydrogen sulfide. An intermediate product was obtained. Note that the sulfur vapor was condensed at the top or lid of the glass tube and refluxed. The obtained intermediate product was placed in a glass tube oven at 260° C. and heated for 90 minutes to remove elemental sulfur to obtain a heat-treated product. The sulfur content in the heat-treated product was 60% by mass.
Thereafter, the entire amount of the heat-treated product was subjected to mechanochemical treatment using a planetary ball mill (manufactured by Fritsch, P-7 Classic Line) under the conditions of an argon atmosphere, a rotation speed of 1,600 rpm, and a treatment time of 300 minutes. , sulfur-containing material B was obtained. The total content of sulfur atoms in sulfur-containing material B was 60% by mass.
〔実施例3〕硫黄含有材料Cの製造
 比較例1で製造した硫黄変性化合物A100質量部及び硫黄成分としての硫黄粉末(シグマアルドリッチ製、平均粒子径200μm、α硫黄)70質量部を含む原料組成物を、アルゴン雰囲気下、自転回転数1,600rpm、処理時間300分間の条件で、遊星型ボールミル(フリッチュ社製、P-7クラシックライン)を用いてメカノケミカル処理し、硫黄含有材料Cを得た。硫黄含有材料C中の硫黄原子の全含量は、70質量%であった。
[Example 3] Production of sulfur-containing material C Raw material composition containing 100 parts by mass of the sulfur-modified compound A produced in Comparative Example 1 and 70 parts by mass of sulfur powder as a sulfur component (manufactured by Sigma-Aldrich, average particle size 200 μm, α sulfur) The material was subjected to mechanochemical treatment using a planetary ball mill (manufactured by Fritsch, P-7 Classic Line) under conditions of an argon atmosphere, a rotation speed of 1,600 rpm, and a treatment time of 300 minutes to obtain a sulfur-containing material C. Ta. The total content of sulfur atoms in sulfur-containing material C was 70% by mass.
〔比較例3〕硫黄含有材料aの製造
 単体硫黄としての硫黄粉末(シグマアルドリッチ製、平均粒子径200μm、α硫黄)7.5質量部及び有機化合物としてのカーボンブラック3質量部を混合し、アルゴン雰囲気下、155℃で加熱処理して、硫黄含有量が71質量%の硫黄/カーボンブラック複合体を調製した。なお、得られた硫黄/カーボンブラック複合体は、後述するX線回折分析の結果、A/Bの比率が1.5以下であることを確認した。
 比較例1で製造した硫黄変性化合物A100質量部を、アルゴン雰囲気下、自転回転数1,600rpm、処理時間300分間の条件で、遊星型ボールミル(フリッチュ社製、P-7クラシックライン)を用いて処理した。処理後、先に調製した硫黄/カーボンブラック複合体100質量部を加え、ハンドブレンドで5分間混合することで硫黄含有材料aを得た。硫黄含有材料a中の硫黄原子の全含量は、60質量%であった。
[Comparative Example 3] Production of sulfur-containing material a 7.5 parts by mass of sulfur powder (manufactured by Sigma-Aldrich, average particle size 200 μm, α sulfur) as elemental sulfur and 3 parts by mass of carbon black as an organic compound were mixed, and argon was added. A sulfur/carbon black composite having a sulfur content of 71% by mass was prepared by heat treatment at 155° C. in an atmosphere. In addition, as a result of the X-ray diffraction analysis described below, it was confirmed that the obtained sulfur/carbon black composite had an A/B ratio of 1.5 or less.
100 parts by mass of the sulfur-modified compound A produced in Comparative Example 1 was processed using a planetary ball mill (manufactured by Fritsch, P-7 Classic Line) under conditions of an argon atmosphere, a rotation speed of 1,600 rpm, and a processing time of 300 minutes. Processed. After the treatment, 100 parts by mass of the previously prepared sulfur/carbon black composite was added and mixed by hand blending for 5 minutes to obtain sulfur-containing material a. The total content of sulfur atoms in sulfur-containing material a was 60% by mass.
(1)硫黄の全含量(質量%)
 実施例1~3及び比較例1~3で製造した、硫黄変性化合物A及びB中の硫黄全含量、並びに硫黄含有材料A~C及び硫黄含有材料a中の硫黄原子の全含量(質量%)について、硫黄及び酸素を分析可能なCHNS分析装置(Elementar Analysensysteme GmbH製 型式:varioMICROcube)を用いた分析結果から算出した。なお、燃焼管温度は1150℃、還元管温度は850℃とし、サンプル容器は錫ボートを使用した。結果を表1及び表2に示す。
(1) Total sulfur content (mass%)
Total sulfur content in sulfur-modified compounds A and B, and total content of sulfur atoms in sulfur-containing materials A to C and sulfur-containing material a (mass%) produced in Examples 1 to 3 and Comparative Examples 1 to 3 It was calculated from the analysis results using a CHNS analyzer (manufactured by Elementar Analysensystem GmbH, model: varioMICROcube) that can analyze sulfur and oxygen. The temperature of the combustion tube was 1150°C, the temperature of the reduction tube was 850°C, and a tin boat was used as the sample container. The results are shown in Tables 1 and 2.
(2)X線回折
 実施例1~3及び比較例1~3で製造した、硫黄変性化合物A及びB、並びに硫黄含有材料A~C及び硫黄含有材料aについて、X線回折分析を行った。
 装置として、粉末X線回折装置((株)リガク製RINT Ultima+)を用い、下記の測定条件で得られた回折パターンにおいて、回折角度(2θ)が23.0°~23.4°における最大のピーク強度(A)と、回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)との比(A/B)を求めた。結果を表1及び表2に示す。
(2) X-ray diffraction X-ray diffraction analysis was performed on the sulfur-modified compounds A and B, the sulfur-containing materials A to C, and the sulfur-containing material a produced in Examples 1 to 3 and Comparative Examples 1 to 3.
Using a powder X-ray diffraction device (RINT Ultima+ manufactured by Rigaku Co., Ltd.) as the device, in the diffraction pattern obtained under the following measurement conditions, the maximum diffraction angle (2θ) was between 23.0° and 23.4°. The ratio (A/B) between the peak intensity (A) and the maximum peak intensity (B) at a diffraction angle (2θ) of 24.8° to 25.2° was determined. The results are shown in Tables 1 and 2.
<X線回折測定条件>
 X線:Cu-Kα線
 管電圧:40kV
 管電流:40mA
 ステップ幅:0.02°
 積算回数:1回
 スキャン速度:0.5°/分
 走査モード:連続
 走査範囲:10°~40°
 走査軸:2θ/θ
<X-ray diffraction measurement conditions>
X-ray: Cu-Kα ray Tube voltage: 40kV
Tube current: 40mA
Step width: 0.02°
Integration count: 1 time Scan speed: 0.5°/min Scanning mode: Continuous Scanning range: 10° to 40°
Scanning axis: 2θ/θ
(3)電池評価
 実施例1~3及び比較例1~3で製造した、硫黄変性化合物A及びB、並びに硫黄含有材料A~C及び硫黄含有材料aを用いて、電池評価を行った。
(3) Battery evaluation Battery evaluation was performed using sulfur-modified compounds A and B, sulfur-containing materials A to C, and sulfur-containing material a produced in Examples 1 to 3 and Comparative Examples 1 to 3.
(3-1)正極の調製
 正極活物質として、硫黄変性化合物A、B、硫黄含有材料A~C及び硫黄含有材料aから選択される一種を90.0質量部、導電助剤としてのアセチレンブラック(デンカ(株)製)5.0質量部、結着剤としてのスチレン-ブタジエンゴム(水分散液、日本ゼオン(株)製)3.0質量部及びカルボキシメチルセルロースナトリウム(ダイセルファインケム製)2.0質量部、並びに溶剤としての水120質量部を、自転・公転ミキサーを用いて混合し、スラリー組成物を調製した。
 得られたスラリー組成物を、ドクターブレード法により、集電体としてのカーボンコートアルミニウム箔(厚さ20μm)上に塗布し、90℃で1時間乾燥させた後、所定の大きさに切断し、さらに130℃で2時間真空乾燥して、円盤状の正極をそれぞれ調製した。
(3-1) Preparation of positive electrode As a positive electrode active material, 90.0 parts by mass of one selected from sulfur-modified compounds A, B, sulfur-containing materials A to C, and sulfur-containing material a, and acetylene black as a conductive additive. (manufactured by Denka Co., Ltd.) 5.0 parts by mass, styrene-butadiene rubber as a binder (aqueous dispersion, manufactured by Nippon Zeon Co., Ltd.) 3.0 parts by mass, and sodium carboxymethyl cellulose (manufactured by Daicel Finechem)2. 0 parts by mass and 120 parts by mass of water as a solvent were mixed using a rotation/revolution mixer to prepare a slurry composition.
The obtained slurry composition was applied onto a carbon coated aluminum foil (thickness 20 μm) as a current collector by a doctor blade method, dried at 90° C. for 1 hour, and then cut into a predetermined size. Further, vacuum drying was performed at 130° C. for 2 hours to prepare disk-shaped positive electrodes.
(3-2)負極の調製
 厚さ500μmのリチウム金属を所定の大きさに切断して、円盤状の負極を調製した。
(3-2) Preparation of negative electrode A disk-shaped negative electrode was prepared by cutting 500 μm thick lithium metal into a predetermined size.
(3-3)電解質の調製
 フルオロエチレンカーボネート50体積%及びジエチルカーボネート50体積%からなる混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解し、電解質を調製した。
(3-3) Preparation of electrolyte LiPF 6 was dissolved at a concentration of 1.0 mol/L in a mixed solvent consisting of 50% by volume of fluoroethylene carbonate and 50% by volume of diethyl carbonate to prepare an electrolyte.
(3-4)電池の作製
 セパレータとしてのガラスフィルターを、上記の正極及び負極で挟んでケース内に保持した。次に、先に調製した電解質をケース内に注入し、ケースを密閉・封止して、二次電池(φ20mm、厚み3.2mmのコイン型)をそれぞれ作製した。
(3-4) Production of battery A glass filter as a separator was sandwiched between the above-described positive and negative electrodes and held in a case. Next, the previously prepared electrolyte was injected into the case, and the case was sealed and sealed to produce a secondary battery (coin-shaped with a diameter of 20 mm and a thickness of 3.2 mm).
(3-5)評価方法
 作製した二次電池を、25℃の恒温槽に入れ、充電終止電圧を3.0V、放電終止電圧を1.0Vとし、充電レート0.1C、放電レート0.1Cの充放電を10サイクル行い、10サイクル目の放電容量(mAh/g)を測定した。なお、本開示において、放電容量(mAh/g)における「g」は電極層における正極活物質の質量を示す。結果を表1及び表2に示す。
(3-5) Evaluation method The prepared secondary battery was placed in a constant temperature bath at 25°C, the end-of-charge voltage was 3.0V, the end-of-discharge voltage was 1.0V, the charge rate was 0.1C, and the discharge rate was 0.1C. The battery was charged and discharged for 10 cycles, and the discharge capacity (mAh/g) at the 10th cycle was measured. Note that in the present disclosure, "g" in discharge capacity (mAh/g) indicates the mass of the positive electrode active material in the electrode layer. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1及び表2より、実施例の硫黄含有材料の製造方法で得られた硫黄含有材料を用いた電池は、放電容量が大きいことが分かった。 From Tables 1 and 2, it was found that the battery using the sulfur-containing material obtained by the method for producing a sulfur-containing material of the example had a large discharge capacity.

Claims (8)

  1.  硫黄成分及び硫黄変性化合物を含む原料組成物をメカノケミカル処理するメカノケミカル処理工程を有する硫黄含有材料の製造方法。 A method for producing a sulfur-containing material, which includes a mechanochemical treatment step of mechanochemically treating a raw material composition containing a sulfur component and a sulfur-modified compound.
  2.  前記原料組成物において、前記硫黄成分が、前記硫黄変性化合物100質量部に対して、5質量部以上100質量部以下含まれる請求項1に記載の硫黄含有材料の製造方法。 The method for producing a sulfur-containing material according to claim 1, wherein in the raw material composition, the sulfur component is contained in a range of 5 parts by mass to 100 parts by mass, based on 100 parts by mass of the sulfur-modified compound.
  3.  前記硫黄含有材料が、Cu-Kα線を用いた粉末X線回折において、回折角度(2θ)が23.0°~23.4における最大のピーク強度(A)と、回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)との比(A/B)が1.5以下(A/B≦1.5)である請求項1に記載の硫黄含有材料の製造方法。 In powder X-ray diffraction using Cu-Kα rays, the sulfur-containing material has a maximum peak intensity (A) at a diffraction angle (2θ) of 23.0° to 23.4° and a diffraction angle (2θ) of 24°. The sulfur-containing material according to claim 1, wherein the ratio (A/B) to the maximum peak intensity (B) at 8° to 25.2° is 1.5 or less (A/B≦1.5). Production method.
  4.  前記メカノケミカル処理が、乾式の粉砕処理である請求項1に記載の硫黄含有材料の製造方法。 The method for producing a sulfur-containing material according to claim 1, wherein the mechanochemical treatment is a dry pulverization treatment.
  5.  単体硫黄及び有機化合物を含む混合物を加熱処理して加熱処理物を形成する加熱処理工程と、
     加熱処理工程で得られた加熱処理物をメカノケミカル処理するメカノケミカル処理工程とを有する硫黄含有材料の製造方法。
    a heat treatment step of heat treating a mixture containing elemental sulfur and an organic compound to form a heat treated product;
    A method for producing a sulfur-containing material, comprising a mechanochemical treatment step of mechanochemically treating a heat treated material obtained in the heat treatment step.
  6.  前記加熱処理工程における加熱処理が、非酸化性雰囲気下、250℃以上500℃以下で前記混合物を加熱する処理である請求項5に記載の硫黄含有材料の製造方法。 The method for producing a sulfur-containing material according to claim 5, wherein the heat treatment in the heat treatment step is a treatment of heating the mixture at a temperature of 250°C or more and 500°C or less in a non-oxidizing atmosphere.
  7.  前記加熱処理が、硫黄蒸気を排出しながら加熱する処理である請求項5又は請求項6に記載の硫黄含有材料の製造方法。 The method for producing a sulfur-containing material according to claim 5 or 6, wherein the heat treatment is a treatment of heating while discharging sulfur vapor.
  8.  前記硫黄含有材料が、Cu-Kα線を用いた粉末X線回折において、回折角度(2θ)が23.0°~23.4°における最大のピーク強度(A)と、回折角度(2θ)が24.8°~25.2°における最大のピーク強度(B)との比(A/B)が1.5以下(A/B≦1.5)である請求項5に記載の硫黄含有材料の製造方法。 In powder X-ray diffraction using Cu-Kα rays, the sulfur-containing material has a maximum peak intensity (A) at a diffraction angle (2θ) of 23.0° to 23.4°, and a diffraction angle (2θ) of The sulfur-containing material according to claim 5, wherein the ratio (A/B) to the maximum peak intensity (B) at 24.8° to 25.2° is 1.5 or less (A/B≦1.5). manufacturing method.
PCT/JP2023/032273 2022-09-15 2023-09-04 Method for producing sulfur-containing material WO2024057991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022146837 2022-09-15
JP2022-146837 2022-09-15

Publications (1)

Publication Number Publication Date
WO2024057991A1 true WO2024057991A1 (en) 2024-03-21

Family

ID=90274808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032273 WO2024057991A1 (en) 2022-09-15 2023-09-04 Method for producing sulfur-containing material

Country Status (1)

Country Link
WO (1) WO2024057991A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100475A (en) * 2008-10-23 2010-05-06 Nippon Chem Ind Co Ltd Method for producing lithium iron sulfide and method for producing lithium transition metal sulfide
WO2013001693A1 (en) * 2011-06-28 2013-01-03 株式会社豊田自動織機 Sulfur-containing positive electrode active material and method for producing same, and positive electrode for lithium ion secondary battery
JP2017142950A (en) * 2016-02-09 2017-08-17 古河機械金属株式会社 Method of manufacturing positive electrode active material, method of manufacturing positive electrode material, method of manufacturing positive electrode, and method of manufacturing lithium ion battery
WO2022004696A1 (en) * 2020-06-29 2022-01-06 株式会社Adeka Sulfur-modified polyacrylonitrile, electrode active material containing same, secondary battery electrode containing said electrode active material, manufacturing method for said electrode, and nonaqueous electrolyte secondary battery using said electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100475A (en) * 2008-10-23 2010-05-06 Nippon Chem Ind Co Ltd Method for producing lithium iron sulfide and method for producing lithium transition metal sulfide
WO2013001693A1 (en) * 2011-06-28 2013-01-03 株式会社豊田自動織機 Sulfur-containing positive electrode active material and method for producing same, and positive electrode for lithium ion secondary battery
JP2017142950A (en) * 2016-02-09 2017-08-17 古河機械金属株式会社 Method of manufacturing positive electrode active material, method of manufacturing positive electrode material, method of manufacturing positive electrode, and method of manufacturing lithium ion battery
WO2022004696A1 (en) * 2020-06-29 2022-01-06 株式会社Adeka Sulfur-modified polyacrylonitrile, electrode active material containing same, secondary battery electrode containing said electrode active material, manufacturing method for said electrode, and nonaqueous electrolyte secondary battery using said electrode

Similar Documents

Publication Publication Date Title
JP5851707B2 (en) Lithium iron phosphate positive electrode material and method for producing the same
JP2019534839A (en) Graphite and Group IVA composite particles and production method
EP3670475A1 (en) Method for producing negative electrode active material for lithium secondary battery, and lithium secondary battery including same
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7447865B2 (en) Silicon nanoparticles and active materials for non-aqueous secondary battery negative electrodes and secondary batteries using the same
JP2004063433A (en) Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
WO2014038492A1 (en) Carbonaceous material for negative electrode of nonaqueous-electrolyte secondary battery, process for producing same, and negative electrode and nonaqueous-electrolyte secondary battery obtained using said carbonaceous material
JPH11354122A (en) Lithium secondary battery negative electrode active material and lithium secondary battery
WO2013111595A1 (en) Method for producing hardly-graphitizable carbon material, hardly-graphitizable carbon material, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
KR20150078059A (en) Anode material for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery comprising the same
WO2012098597A1 (en) Sulfur-based positive electrode active material, method of producing the same, and positive electrode for lithium ion secondary battery
EP4102597A1 (en) Secondary-battery negative-electrode active material, negative electrode, and secondary battery
WO2011152426A1 (en) Coking coal compound for anode material of lithium ion secondary battery
JP6463875B2 (en) Carbonaceous material for negative electrode active material of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing carbonaceous material
JP3406583B2 (en) Graphite-carbon composite material for negative electrode of lithium secondary battery, method for producing the same, and lithium secondary battery
WO2024057991A1 (en) Method for producing sulfur-containing material
JP6760597B2 (en) Electrode slurry and method for manufacturing electrodes using it
WO2022009572A1 (en) Active material for battery, composite active material for battery, and secondary battery
JP2012138350A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4195179B2 (en) Method for producing negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
KR100817009B1 (en) Anode active material for lithium secondary battery
CN113889605B (en) Hard carbon-dopant coated anthracite composite anode material, preparation method thereof and lithium ion battery
JP7088438B1 (en) Negative electrode active material, manufacturing method of negative electrode active material and non-aqueous electrolyte secondary battery
KR102171793B1 (en) Method of preparing anode materials for secondary battery and the anode materials for secondary battery thereby
JP2012174369A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery