WO2024057921A1 - Refrigerant unit - Google Patents

Refrigerant unit Download PDF

Info

Publication number
WO2024057921A1
WO2024057921A1 PCT/JP2023/031297 JP2023031297W WO2024057921A1 WO 2024057921 A1 WO2024057921 A1 WO 2024057921A1 JP 2023031297 W JP2023031297 W JP 2023031297W WO 2024057921 A1 WO2024057921 A1 WO 2024057921A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
flow path
heater
cooler
Prior art date
Application number
PCT/JP2023/031297
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 古嶋
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Publication of WO2024057921A1 publication Critical patent/WO2024057921A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Definitions

  • the present invention relates to a refrigerant unit that exchanges heat between a refrigerant and another heat medium.
  • a refrigerant circuit in which a compressor, a condenser, an evaporator, an expansion mechanism, and the like are connected through refrigerant piping.
  • a refrigerant circuit is applied, for example, to a vehicle air conditioner, and each device constituting the refrigerant circuit is arranged at a predetermined position in the vehicle (Patent Document 1).
  • Patent Document 1 the refrigerant suction port and the refrigerant discharge port in the compressor are connection parts between the compressor and refrigerant piping, and are easily affected by vibrations of the compressor. Therefore, the vibrations of the compressor are absorbed by connecting the refrigerant inlet and outlet of the compressor to the refrigerant piping through a rubber refrigerant hose.
  • the present invention has been made in view of these circumstances, and an object of the present invention is to ensure resistance to vibrations of a compressor, etc., and to reduce heat loss and refrigerant pressure loss in refrigerant piping.
  • a refrigerant unit includes a refrigerant circuit including a compressor, a heater, a pressure reduction device, a cooler, and a gas-liquid separator, and a support plate that supports the refrigerant circuit, and includes at least the refrigerant circuit.
  • a compressor, the heater, the cooler, and the gas-liquid separator are each fixed to the support plate.
  • FIG. 1 is a perspective view of a refrigerant unit according to an embodiment of the present invention.
  • 1 is a perspective view of a refrigerant unit according to an embodiment of the present invention.
  • 1 is a perspective view of a refrigerant unit according to an embodiment of the present invention.
  • 1 is a perspective view of a refrigerant unit according to an embodiment of the present invention.
  • 1 is a perspective view of a flow path module applied to a refrigerant unit according to an embodiment of the present invention.
  • 1 is a perspective view of a flow path module applied to a refrigerant unit according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a support plate applied to a refrigerant unit according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a support plate applied to a refrigerant unit according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a support plate applied to a refrigerant unit according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a support plate applied to a refrigerant unit according to an embodiment of the present invention.
  • FIG. 1 to 4 are perspective views of a refrigerant unit 10 according to the present embodiment.
  • the refrigerant unit 10 according to the present embodiment is mounted, for example, in a vehicle equipped with a running battery, and is used in an air conditioner or a thermal management system that performs air conditioning in a vehicle interior, temperature adjustment of vehicle-mounted equipment, and the like.
  • the refrigerant unit 10 includes a compressor 20, an accumulator 22, a cooler (evaporator) 30, a heater (condenser) 40, a flow path module 50, and an expansion valve (pressure reducing device). ) 71 and 72 are connected by refrigerant pipes 81 to 86, and a support plate 12 that supports them.
  • the cooler 30 and the heater 40 are refrigerant-heat medium heat exchangers that exchange heat between a refrigerant and a heat medium (for example, water), and the heat of the refrigerant is transferred to a heat medium circuit (not shown).
  • a heat medium for example, water
  • the heat medium circulating in the heat medium circuit flows into the cooler 30 from the heat medium pipe 93, exchanges heat with the refrigerant in the cooler 30, and flows out into the heat medium pipe 94.
  • the heat medium circulating in the heat medium circuit flows into the heater 40 from the heat medium pipe 91 , exchanges heat with the refrigerant in the heater 40 , and flows out into the heat medium pipe 92 .
  • FIG. 1 is a perspective view seen from the compressor 20 and heater 40 sides
  • FIG. 2 is a perspective view seen from the heater 40 and cooler 30 sides
  • FIG. 3 is a perspective view seen from the cooler 30 and accumulator 22 sides
  • FIG. 4 is a perspective view seen from the accumulator 22 and compressor 20 side.
  • a compressor 20 an accumulator 22, a cooler 30, a heater 40, and a flow path module 50, which constitute a refrigerant circuit
  • a flow path module 50 which constitute a refrigerant circuit
  • the compressor 20 is arranged at one end of the support plate 12, the cooler 30 and the heater 40 are arranged at the other end, and the flow is disposed between the compressor 20, the cooler 30, and the heater 40.
  • a path module 50 and an accumulator 22 are arranged.
  • the compressor 20 is arranged on one side of the support plate 12 with the flow path module 50 in between, and the cooler 30 and the heater 40 are arranged on the other side. Further, in the flow path module 50, expansion valves 71 and 72 are arranged on the upper surface on one end side, and an accumulator 22 is provided on the side surface on the other end side.
  • each device configuring the refrigerant circuit is connected as follows.
  • a refrigerant suction port of the compressor 20 is connected to the accumulator 22 via a flow path module 50 by a refrigerant pipe 85.
  • the refrigerant pipe 85 has a bent portion 85A that is bent closer to the compressor 20 than the accumulator 22 and the flow path module 50 (connected device).
  • the refrigerant discharge port of the compressor 20 is connected to the refrigerant inlet of the heater 40 by a refrigerant pipe 81, and is also connected to the flow path module 50 by a refrigerant pipe 86 branched from the refrigerant pipe 81.
  • the refrigerant outlet of the heater 40 is connected to the flow path module 50 by a refrigerant pipe 82.
  • a refrigerant inlet of the cooler 30 is connected to the flow path module 50 by a refrigerant pipe 83, and a refrigerant outlet of the cooler 30 is connected to the accumulator 22 via the flow path module 50 by a refrigerant pipe 84.
  • All of the refrigerant pipes 81 to 86 are arranged at a position lower than the highest position of each device constituting the refrigerant circuit.
  • this embodiment as shown in FIG. 1 to FIG. is arranged at a position lower than the highest position of the expansion valves 71 and 72.
  • the refrigerant unit 10 is attached to an object such as a vehicle body by fastening a fastening hole 106 (described later) provided in the base plate 15 of the support plate 12 to the vehicle body with a fastener 62 via a rubber bush 61.
  • FIG. 5 and 6 show perspective views of the flow path module 50.
  • 5 is a perspective view of the flow path module 50 as seen from the side adjacent to the compressor 20
  • FIG. 6 is a perspective view of the flow path module 50 as seen from the side adjacent to the cooler 30 and the heater 40. be.
  • the flow path module 50 has a manifold structure in which a plurality of refrigerant flow paths are integrally formed inside a metal body, and constitutes at least a part of the flow path through which the refrigerant circulates in the refrigerant circuit. Further, the flow path module 50 is provided with connecting portions 50A and 50B for connecting expansion valves 71 and 72 on the upper surface of one end, and the accumulator 22 is integrally attached to the side surface of the other end. By providing the connection parts 50A and 50B in the flow path module 50 and connecting the expansion valves 71 and 72, the expansion valves 71 and 72 can be easily attached and detached, and maintainability is improved.
  • the refrigerant flow path of the flow path module 50 includes a high-pressure flow path through which a high-pressure refrigerant flows and a low-pressure flow path through which a low-pressure refrigerant flows. That is, in one metal body, a high-pressure flow path that becomes high temperature due to the circulation of the refrigerant and a low-temperature flow path that becomes low temperature coexist.
  • the high pressure flow paths are concentrated in the high pressure side region 51 in order to avoid randomly mixing the high pressure flow paths that become high temperature due to the circulation of the refrigerant and the low pressure flow paths that become low temperature.
  • the low-pressure flow passages are arranged so as to be concentrated in a low-pressure side region 52, and further partitioned into a high-pressure side region 51 and a low-pressure side region 52.
  • a high pressure side region 51 that becomes high temperature due to the circulation of refrigerant and a low pressure side region 52 that becomes low temperature, and the high pressure side region 51 and the low pressure side region 52 are separated.
  • a slit 55 is provided between the high pressure side region 51 and the low pressure side region 52.
  • the channel module 50 has a high-pressure side region 51 provided with a high-pressure channel and a low-pressure side region 52 provided with a low-pressure channel, and the high-pressure side region 51 and the low-pressure side region 52 are connected to each other by the slit 55. separated by.
  • the slit 55 is provided between the high pressure side region 51 and the low pressure side region 52, and plays the role of suppressing heat transfer between the high pressure side region 51 and the low pressure side region 52. That is, in the flow path module 50 which is a metal body, an air groove is formed by the slit 55 between the high pressure side region 51 and the low pressure side region 52, so that the air groove between the high pressure side region 51 and the low pressure side region 52 is Heat transfer is suppressed.
  • FIGS. 7 to 10 are perspective views showing the entire support plate 12.
  • the support plate 12 includes a base plate 15 provided approximately parallel to the installation surface of the refrigerant unit 10, and a heat exchanger support plate 16 provided perpendicular to the base plate 15. are doing.
  • the base plate 15 is provided in a region 15A in which the compressor 20 is placed, a region 15B in which the accumulator 22 and the flow path module 50 are placed, and between the region 15A and the region 15B and between the region 15A and the region 15D. It has a stepped portion 15C and a region 15D located on the opposite side of the region 15B with the region 15A in between.
  • the region 15B and the region 15D are located at substantially the same height in the vertical direction, and the region 15A is formed to be located below the region 15B and the region 15D in the vertical direction due to the stepped portion 15C. Further, the height of the stepped portion 15C corresponds to the height of the leg portion 21 of the compressor and the rubber bush 61, which will be described later.
  • the leg portion 21 of the compressor 20 is placed in the area 15A.
  • the region 15B is provided with a fastening hole 104 for attaching the accumulator 22, a fastening hole 105 for attaching the flow path module, and a fastening hole 106 for attaching the refrigerant unit 10 to an object.
  • a fastening hole 101 for fastening the leg portion 21 of the compressor 20 is provided in the stepped portion 15C.
  • a fastening hole 106 for fastening the refrigerant unit 10 to an object to be mounted is provided in the region 15D.
  • the leg portions 21 of the compressor 20 placed in the area 15A are fastened by fasteners (not shown), and the compressor 20 is fixed to the base plate 15.
  • the accumulator 22 placed in the region 15B and the flow path module 50 are fastened to the base plate 15 by a fastener (not shown). In this way, the compressor 20, the accumulator 22, and the flow path module 50 are placed on the base plate 15, and each is fastened and fixed to the base plate 15.
  • the refrigerant unit 10 is attached to an object such as a vehicle body by fastening the fastening hole 106 provided in the base plate 15 to the vehicle body via the rubber bush 61 with the fastener 62 (see FIGS. 1 to 4). ).
  • the heat exchanger support plate 16 engages with the side of the base plate 15 such that the side thereof is perpendicular to the side of the base plate 15.
  • the heat exchanger support plate 16 is provided with fastening holes 102 and 103 for attaching the cooler 30 and the heater 40. ), and the heater 40 is fastened to the other side using a fastener (not shown). Thereby, the cooler 30 and the heater 40 are fixed and supported by the heat exchanger support plate 16.
  • heat exchanger support plate 16 is inserted into the slit 55 of the flow path module 50. This facilitates positioning of the flow path module 50, cooler 30, and heater 40 in the refrigerant unit 10, and improves the ease of assembling the refrigerant unit 10.
  • the refrigerant circulates as follows. That is, the refrigerant is compressed by the compressor 20 and discharged as a high-pressure gas refrigerant.
  • the high-pressure gas refrigerant compressed in the compressor 20 flows through the refrigerant pipe 81 and into the heater 40.
  • the expansion valve 71 is open, the high-pressure gas compressed by the compressor 20 is branched from the refrigerant pipe 81 to the refrigerant pipe 86 according to the opening degree of the expansion valve 71. At least a portion of the refrigerant branched into the refrigerant pipe 86 passes through the high-pressure flow path of the flow path module 50, flows into the expansion valve 71, is depressurized and expanded in the expansion valve 71, and then flows into the accumulator 22, where the refrigerant is It is sucked into the compressor 20 again through the pipe 85.
  • the refrigerant that has flowed into the heater 40 from the refrigerant pipe 81 radiates heat by exchanging heat with another heat medium in the heater 40 , and then flows out of the heater 40 and passes through the refrigerant pipe 82 to the channel module 50 . flows into.
  • the refrigerant flowing into the flow path module 50 passes through the high pressure flow path provided in the high pressure side region 51 of the flow path module 50, flows into the expansion valve 72, is depressurized by the expansion valve 72, expands, and becomes a low pressure refrigerant. Become.
  • the refrigerant that has become low pressure in the expansion valve 72 passes through the low pressure flow path provided in the low pressure side area of the flow path module 50, flows out from the flow path module 50, passes through the refrigerant piping 83, and enters the cooler 30. Inflow.
  • the low-pressure refrigerant that has flowed into the cooler 30 absorbs heat by exchanging heat with another heat medium in the cooler 30, then flows out of the cooler 30, passes through the low-pressure flow path of the flow path module 50, and enters the refrigerant piping 84.
  • the refrigerant flows through the flow path module 50 into the accumulator 22, and returns from the accumulator 22 to the compressor 20 via the refrigerant pipe 85.
  • the refrigerant that has flowed into the compressor 20 is compressed again and the above circulation is repeated.
  • the high-pressure refrigerant passes through the high-pressure channel and the temperature of the high-pressure side region 51 increases.
  • the low-pressure refrigerant whose pressure has been reduced by passing through the expansion valve 72 passes through the low-pressure flow path, and the temperature of the low-pressure side region 52 decreases.
  • heat transfer occurs from the high pressure side region 51 to the low pressure side region 52, but since the slit 55 is provided and the air groove is formed, the high pressure side region 51 and the low pressure side region 52 are connected as metal bodies. They are not continuous, and heat conduction from the high-pressure side region 51 to the low-pressure side region 52 is inhibited.
  • a heat insulating material is inserted into the slit 55, and the gap between the high pressure side region 51 and the low pressure side region 52 is heat transfer can be further suppressed.
  • the compressor 20, accumulator 22, cooler 30, heater 40, and flow path module 50 that constitute the refrigerant circuit are fixed to the support plate 12, thereby forming a unit. has been done. Therefore, the distances between the respective devices provided in the refrigerant unit 10 are close to each other, and the lengths of the refrigerant pipes 81 to 86 can be kept to a minimum, thereby reducing heat loss and refrigerant pressure loss in the refrigerant pipes 81 to 86. can be reduced.
  • the entire refrigerant unit 10 vibrates due to vibrations caused by the operation of the compressor 20 and the running of the vehicle, so the displacement difference between the devices provided in the refrigerant unit 10 is small, and the vibration resistance of the refrigerant unit 10 is improved.
  • the refrigerant pipes 81 to 86 are arranged at a lower position than the highest position of the expansion valves 71 and 72, even if the refrigerant unit 10 vibrates, the connections between the refrigerant pipes 81 to 86 and the refrigerant pipes 81 to 86 will be Damage can be prevented. Note that with the refrigerant unit 10 configured as described above, there is no need to use a refrigerant hose between the refrigerant pipe 85 and the compressor 20, and consideration is given to the intrusion of moisture into the interior due to deterioration of the refrigerant hose. Therefore, there is no need to install a desiccant inside the accumulator 22 or the like.
  • bent portion 85A By providing at least the bent portion 85A in the refrigerant pipe 85 connected to the refrigerant suction port of the compressor, installation errors or assembly errors during assembly of the refrigerant unit 10 can be absorbed. Note that since the bent portion 85A is provided closer to the compressor 20 than the connected devices (accumulator 22 and flow path module 50 in this embodiment), installation errors or assembly errors based on the compressor 20 may be avoided. Errors can be better absorbed.

Abstract

[Problem] To ensure vibration tolerance of a compressor etc. as well as to reduce heat loss and refrigerant pressure loss in a refrigerant pipe. [Solution] Provided is a refrigerant unit 10 which comprises: a refrigerant circuit that includes a compressor 20, a heater 40, pressure-reducing devices 71, 72, a cooler 30, and a gas-liquid separator 22; and a support plate 12 that supports the refrigerant circuit, wherein at least the compressor, the heater, the cooler, and the gas-liquid separator are each fixed to the support plate.

Description

冷媒ユニットrefrigerant unit
 本発明は、冷媒と他の熱媒体との熱交換を行う冷媒ユニットに関するものである。 The present invention relates to a refrigerant unit that exchanges heat between a refrigerant and another heat medium.
 従来、圧縮機、凝縮器、蒸発器、膨張機構などを冷媒配管で接続した冷媒回路が知られている。このような冷媒回路は、例えば、車両用空調装置に適用され、冷媒回路を構成する各機器が車両の所定の位置に配置される(特許文献1)。
 ところで、冷媒回路において、特に、圧縮機における冷媒の吸入口及び吐出口は、圧縮機と冷媒配管との接続部であり、圧縮機の振動の影響を受けやすい。このため、圧縮機における冷媒の吸入口及び吐出口と冷媒配管とをゴム製の冷媒ホースによって接続することで、圧縮機の振動を吸収している。
Conventionally, a refrigerant circuit is known in which a compressor, a condenser, an evaporator, an expansion mechanism, and the like are connected through refrigerant piping. Such a refrigerant circuit is applied, for example, to a vehicle air conditioner, and each device constituting the refrigerant circuit is arranged at a predetermined position in the vehicle (Patent Document 1).
By the way, in the refrigerant circuit, in particular, the refrigerant suction port and the refrigerant discharge port in the compressor are connection parts between the compressor and refrigerant piping, and are easily affected by vibrations of the compressor. Therefore, the vibrations of the compressor are absorbed by connecting the refrigerant inlet and outlet of the compressor to the refrigerant piping through a rubber refrigerant hose.
国際公開第2022/009713号International Publication No. 2022/009713
 しかしながら、ゴム製の冷媒ホースを長期間使用していると、経年劣化等に起因して冷媒ホースから内部に水分が侵入してしまう。このため、アキュムレータまたはレシーバの内部に乾燥剤を設置する必要があった。
 また、冷媒回路を構成する各機器間の距離に応じて、各機器を接続する冷媒配管の表面における熱ロスと冷媒圧力損失が増加することがある。特に、外気と冷媒との熱交換を行う熱交換器を備えている場合には、冷媒配管の長さが長くなり、熱ロスと冷媒圧力損失の増加が問題となる。
However, when a rubber refrigerant hose is used for a long period of time, moisture enters the inside from the refrigerant hose due to deterioration over time. For this reason, it was necessary to install a desiccant inside the accumulator or receiver.
Furthermore, heat loss and refrigerant pressure loss on the surface of refrigerant piping connecting each device may increase depending on the distance between each device constituting the refrigerant circuit. In particular, when a heat exchanger for exchanging heat between the outside air and the refrigerant is provided, the length of the refrigerant piping becomes long, and an increase in heat loss and refrigerant pressure loss becomes a problem.
 本発明は、このような事情に鑑みてなされたものであり、圧縮機等の振動に対する耐性を確保すると共に、冷媒配管における熱ロス及び冷媒圧力損失を低減させること、を課題としている。 The present invention has been made in view of these circumstances, and an object of the present invention is to ensure resistance to vibrations of a compressor, etc., and to reduce heat loss and refrigerant pressure loss in refrigerant piping.
 本発明の一態様に係る冷媒ユニットは、圧縮機、加熱器、減圧装置、冷却器、及び、気液分離器を含む冷媒回路と、前記冷媒回路を支持する支持プレートと、を備え、少なくとも前記圧縮機、前記加熱器、前記冷却器、及び、前記気液分離器が、それぞれ前記支持プレートに固定されている。 A refrigerant unit according to one aspect of the present invention includes a refrigerant circuit including a compressor, a heater, a pressure reduction device, a cooler, and a gas-liquid separator, and a support plate that supports the refrigerant circuit, and includes at least the refrigerant circuit. A compressor, the heater, the cooler, and the gas-liquid separator are each fixed to the support plate.
 本発明によれば、圧縮機等の振動に対する耐性を確保すると共に、冷媒配管における熱ロス及び冷媒圧力損失を低減させることができる。 According to the present invention, it is possible to ensure resistance to vibrations of a compressor, etc., and to reduce heat loss and refrigerant pressure loss in refrigerant piping.
本発明の実施形態に係る冷媒ユニットの斜視図である。1 is a perspective view of a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットの斜視図である。1 is a perspective view of a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットの斜視図である。1 is a perspective view of a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットの斜視図である。1 is a perspective view of a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットに適用される流路モジュールの斜視図である。1 is a perspective view of a flow path module applied to a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットに適用される流路モジュールの斜視図である。1 is a perspective view of a flow path module applied to a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットに適用される支持プレートの斜視図である。FIG. 2 is a perspective view of a support plate applied to a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットに適用される支持プレートの斜視図である。FIG. 2 is a perspective view of a support plate applied to a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットに適用される支持プレートの斜視図である。FIG. 2 is a perspective view of a support plate applied to a refrigerant unit according to an embodiment of the present invention. 本発明の実施形態に係る冷媒ユニットに適用される支持プレートの斜視図である。FIG. 2 is a perspective view of a support plate applied to a refrigerant unit according to an embodiment of the present invention.
 以下、本発明を実施するための形態について、図面を参照しつつ詳細に説明する。以下の説明において、同一の符号は同一の機能の部位を示しており、各図における重複説明は適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the following description, the same reference numerals indicate parts with the same function, and redundant explanations in each figure will be omitted as appropriate.
 図1から図4は、本実施形態に係る冷媒ユニット10の斜視図である。本実施形態に係る冷媒ユニット10は、例えば、走行用バッテリを備えた車両に搭載され、車室内の空調や車載機器の温度調整などを行う空調装置や熱管理システムに用いられる。 1 to 4 are perspective views of a refrigerant unit 10 according to the present embodiment. The refrigerant unit 10 according to the present embodiment is mounted, for example, in a vehicle equipped with a running battery, and is used in an air conditioner or a thermal management system that performs air conditioning in a vehicle interior, temperature adjustment of vehicle-mounted equipment, and the like.
 図1から図4に示すように、冷媒ユニット10は、圧縮機20、アキュムレータ22、冷却器(蒸発器)30、加熱器(凝縮器)40、流路モジュール50、及び、膨張弁(減圧装置)71,72を冷媒配管81~86によって接続した冷媒回路と、これらを支持する支持プレート12とを備えている。 As shown in FIGS. 1 to 4, the refrigerant unit 10 includes a compressor 20, an accumulator 22, a cooler (evaporator) 30, a heater (condenser) 40, a flow path module 50, and an expansion valve (pressure reducing device). ) 71 and 72 are connected by refrigerant pipes 81 to 86, and a support plate 12 that supports them.
 ここで、冷却器30と加熱器40は、冷媒と熱媒体(例えば、水)との熱交換を行う冷媒-熱媒体熱交換器であり、冷媒の熱を、熱媒体回路(図示せず)を介して温調対象に供給することで車室内の空調や車載機器の温調などを行っている。図1から図4の例では、冷却器30には、熱媒体回路を循環する熱媒体が、熱媒体配管93から流入し冷却器30において冷媒と熱交換して熱媒体配管94に流出する。同様に、加熱器40には、熱媒体回路を循環する熱媒体が、熱媒体配管91から流入し加熱器40において冷媒と熱交換して熱媒体配管92に流出する。 Here, the cooler 30 and the heater 40 are refrigerant-heat medium heat exchangers that exchange heat between a refrigerant and a heat medium (for example, water), and the heat of the refrigerant is transferred to a heat medium circuit (not shown). By supplying the temperature to temperature-controlled objects through the air conditioner, air conditioning inside the vehicle and temperature control of in-vehicle equipment are performed. In the example shown in FIGS. 1 to 4, the heat medium circulating in the heat medium circuit flows into the cooler 30 from the heat medium pipe 93, exchanges heat with the refrigerant in the cooler 30, and flows out into the heat medium pipe 94. Similarly, the heat medium circulating in the heat medium circuit flows into the heater 40 from the heat medium pipe 91 , exchanges heat with the refrigerant in the heater 40 , and flows out into the heat medium pipe 92 .
 図1は、圧縮機20及び加熱器40側から見た斜視図、図2は、加熱器40及び冷却器30側から見た斜視図、図3は、冷却器30及びアキュムレータ22側から見た斜視図、図4は、アキュムレータ22及び圧縮機20側から見た斜視図である。
 図1から図4に示すように、冷媒ユニット10では、冷媒回路を構成する圧縮機20、アキュムレータ22、冷却器30、加熱器40、及び、流路モジュール50がそれぞれ支持プレート12に固定されることでユニット化されている。なお、後述するように、膨張弁71,72は流路モジュール50に固定されることにより、支持プレート12に間接的に固定される。
1 is a perspective view seen from the compressor 20 and heater 40 sides, FIG. 2 is a perspective view seen from the heater 40 and cooler 30 sides, and FIG. 3 is a perspective view seen from the cooler 30 and accumulator 22 sides. A perspective view, FIG. 4 is a perspective view seen from the accumulator 22 and compressor 20 side.
As shown in FIGS. 1 to 4, in the refrigerant unit 10, a compressor 20, an accumulator 22, a cooler 30, a heater 40, and a flow path module 50, which constitute a refrigerant circuit, are each fixed to a support plate 12. This makes it a unit. Note that, as described later, the expansion valves 71 and 72 are indirectly fixed to the support plate 12 by being fixed to the flow path module 50.
 具体的には、冷媒ユニット10において、支持プレート12の一端に圧縮機20、他端に冷却器30及び加熱器40が配置され、圧縮機20と冷却器30及び加熱器40との間に流路モジュール50及びアキュムレータ22が配置されている。 Specifically, in the refrigerant unit 10, the compressor 20 is arranged at one end of the support plate 12, the cooler 30 and the heater 40 are arranged at the other end, and the flow is disposed between the compressor 20, the cooler 30, and the heater 40. A path module 50 and an accumulator 22 are arranged.
 すなわち、図1から図4に示す冷媒ユニット10は、支持プレート12において、流路モジュール50を挟んで一方側に圧縮機20、他方側に冷却器30及び加熱器40が配置されている。また、流路モジュール50には、一端側の上面に膨張弁71,72が配置され、他端側の側面にはアキュムレータ22が設けられている。 That is, in the refrigerant unit 10 shown in FIGS. 1 to 4, the compressor 20 is arranged on one side of the support plate 12 with the flow path module 50 in between, and the cooler 30 and the heater 40 are arranged on the other side. Further, in the flow path module 50, expansion valves 71 and 72 are arranged on the upper surface on one end side, and an accumulator 22 is provided on the side surface on the other end side.
 冷媒ユニット10において、冷媒回路を構成する各機器は、次のように接続されている。圧縮機20の冷媒吸入口は、冷媒配管85によって流路モジュール50を介してアキュムレータ22と接続されている。冷媒配管85は、アキュムレータ22及び流路モジュール50(被接続機器)よりも圧縮機20側において屈曲する屈曲部85Aを有している。圧縮機20の冷媒吐出口は、冷媒配管81によって加熱器40の冷媒入口に接続されると共に、冷媒配管81から分岐した冷媒配管86によって流路モジュール50に接続されている。 In the refrigerant unit 10, each device configuring the refrigerant circuit is connected as follows. A refrigerant suction port of the compressor 20 is connected to the accumulator 22 via a flow path module 50 by a refrigerant pipe 85. The refrigerant pipe 85 has a bent portion 85A that is bent closer to the compressor 20 than the accumulator 22 and the flow path module 50 (connected device). The refrigerant discharge port of the compressor 20 is connected to the refrigerant inlet of the heater 40 by a refrigerant pipe 81, and is also connected to the flow path module 50 by a refrigerant pipe 86 branched from the refrigerant pipe 81.
 また、加熱器40の冷媒出口は、冷媒配管82によって流路モジュール50に接続されている。冷却器30の冷媒入口は、冷媒配管83によって流路モジュール50に接続され、冷却器30の冷媒出口は、冷媒配管84によって流路モジュール50を介してアキュムレータ22に接続されている。 Furthermore, the refrigerant outlet of the heater 40 is connected to the flow path module 50 by a refrigerant pipe 82. A refrigerant inlet of the cooler 30 is connected to the flow path module 50 by a refrigerant pipe 83, and a refrigerant outlet of the cooler 30 is connected to the accumulator 22 via the flow path module 50 by a refrigerant pipe 84.
 冷媒配管81~86は、いずれも冷媒回路を構成する各機器の最も高い位置よりも低い位置に配置されている。本実施形態においては、図1から図4に示すように、本実施形態においては、冷媒ユニット10を構成する各機器のうち膨張弁71,72が最も高い位置に配置され、冷媒配管81~86は、膨張弁71,72の最も高い位置よりも低い位置に配置されている。 All of the refrigerant pipes 81 to 86 are arranged at a position lower than the highest position of each device constituting the refrigerant circuit. In this embodiment, as shown in FIG. 1 to FIG. is arranged at a position lower than the highest position of the expansion valves 71 and 72.
 冷媒ユニット10は、支持プレート12のベースプレート15に設けられる締結孔106(後述)を、ゴムブッシュ61を介して締結具62によって車体に締結することで、車体等の取付対象に取り付けられる。 The refrigerant unit 10 is attached to an object such as a vehicle body by fastening a fastening hole 106 (described later) provided in the base plate 15 of the support plate 12 to the vehicle body with a fastener 62 via a rubber bush 61.
 図5及び図6に、流路モジュール50の斜視図を示す。図5は、流路モジュール50の圧縮機20に隣接する面から見た斜視図であり、図6は、流路モジュール50の冷却器30及び加熱器40に隣接する面から見た斜視図である。 5 and 6 show perspective views of the flow path module 50. 5 is a perspective view of the flow path module 50 as seen from the side adjacent to the compressor 20, and FIG. 6 is a perspective view of the flow path module 50 as seen from the side adjacent to the cooler 30 and the heater 40. be.
 流路モジュール50は、金属体の内部に複数の冷媒流路が一体的に形成されたマニホールド構造をなし、冷媒回路において冷媒が循環する流路の少なくとも一部を構成している。また、流路モジュール50には、一端側の上面に膨張弁71,72を接続する接続部50A,50Bが設けられ、他端側の側面にはアキュムレータ22が一体的に取り付けられている。流路モジュール50に接続部50A,50Bを設けて膨張弁71,72を接続することにより、膨張弁71,72の着脱が容易となり、メンテナンス性が向上する。 The flow path module 50 has a manifold structure in which a plurality of refrigerant flow paths are integrally formed inside a metal body, and constitutes at least a part of the flow path through which the refrigerant circulates in the refrigerant circuit. Further, the flow path module 50 is provided with connecting portions 50A and 50B for connecting expansion valves 71 and 72 on the upper surface of one end, and the accumulator 22 is integrally attached to the side surface of the other end. By providing the connection parts 50A and 50B in the flow path module 50 and connecting the expansion valves 71 and 72, the expansion valves 71 and 72 can be easily attached and detached, and maintainability is improved.
 流路モジュール50の冷媒流路には、高圧冷媒が流通する高圧流路と低圧冷媒が流通する低圧流路とが含まれている。つまり、1つの金属体において、冷媒が循環することにより高温となる高圧流路と、低温となる低温流路とが併存している。 The refrigerant flow path of the flow path module 50 includes a high-pressure flow path through which a high-pressure refrigerant flows and a low-pressure flow path through which a low-pressure refrigerant flows. That is, in one metal body, a high-pressure flow path that becomes high temperature due to the circulation of the refrigerant and a low-temperature flow path that becomes low temperature coexist.
 そこで、冷媒が循環することにより高温となる高圧流路と、低温となる低圧流路とを無作為に混在させないように、流路モジュール50において、高圧流路は高圧側領域51に集約させるように配置し、低圧流路は低圧側領域52に集約させるように配置し、さらに高圧側領域51と低圧側領域52とを区画している。 Therefore, in the flow path module 50, the high pressure flow paths are concentrated in the high pressure side region 51 in order to avoid randomly mixing the high pressure flow paths that become high temperature due to the circulation of the refrigerant and the low pressure flow paths that become low temperature. The low-pressure flow passages are arranged so as to be concentrated in a low-pressure side region 52, and further partitioned into a high-pressure side region 51 and a low-pressure side region 52.
 つまり、1つの金属体において、冷媒の循環により高温となる高圧側領域51と、低温となる低圧側領域52との2つの領域を設け、高圧側領域51と低圧側領域52とを区切るように、高圧側領域51と低圧側領域52との間にスリット55を設けている。 That is, in one metal body, two regions are provided, a high pressure side region 51 that becomes high temperature due to the circulation of refrigerant, and a low pressure side region 52 that becomes low temperature, and the high pressure side region 51 and the low pressure side region 52 are separated. , a slit 55 is provided between the high pressure side region 51 and the low pressure side region 52.
 すなわち、流路モジュール50は、高圧流路が設けられた高圧側領域51と、低圧流路が設けられた低圧側領域52とを有し、高圧側領域51と低圧側領域52とがスリット55によって区切られている。 That is, the channel module 50 has a high-pressure side region 51 provided with a high-pressure channel and a low-pressure side region 52 provided with a low-pressure channel, and the high-pressure side region 51 and the low-pressure side region 52 are connected to each other by the slit 55. separated by.
 スリット55は、高圧側領域51と低圧側領域52との間に設けられ、高圧側領域51と低圧側領域52との間の熱移動を抑制する役割を担っている。すなわち、金属体である流路モジュール50において、高圧側領域51と低圧側領域52との間にスリット55によって空気溝が形成されることで、高圧側領域51と低圧側領域52との間の熱移動が抑制される。 The slit 55 is provided between the high pressure side region 51 and the low pressure side region 52, and plays the role of suppressing heat transfer between the high pressure side region 51 and the low pressure side region 52. That is, in the flow path module 50 which is a metal body, an air groove is formed by the slit 55 between the high pressure side region 51 and the low pressure side region 52, so that the air groove between the high pressure side region 51 and the low pressure side region 52 is Heat transfer is suppressed.
 図7から図10に、支持プレート12の全体を示す斜視図を示す。図7から図10に示すように、支持プレート12は、冷媒ユニット10の被設置面と略平行に設けられるベースプレート15と、ベースプレート15に対して垂直に設けられる熱交換器支持プレート16とを有している。 7 to 10 are perspective views showing the entire support plate 12. As shown in FIGS. 7 to 10, the support plate 12 includes a base plate 15 provided approximately parallel to the installation surface of the refrigerant unit 10, and a heat exchanger support plate 16 provided perpendicular to the base plate 15. are doing.
 ベースプレート15は、圧縮機20を載置する領域15Aと、アキュムレータ22及び流路モジュール50を載置する領域15Bと、領域15Aと領域15Bとの間及び領域15Aと領域15Dとの間に設けられる段差部15Cと、領域15Aを挟んで領域15Bの反対側に位置する領域15Dと、を有している。 The base plate 15 is provided in a region 15A in which the compressor 20 is placed, a region 15B in which the accumulator 22 and the flow path module 50 are placed, and between the region 15A and the region 15B and between the region 15A and the region 15D. It has a stepped portion 15C and a region 15D located on the opposite side of the region 15B with the region 15A in between.
 ベースプレート15において、領域15Bと領域15Dとは鉛直方向において略同じ高さに位置し、領域15Aは段差部15Cによって領域15B及び領域15Dよりも鉛直方向の下方に位置するように形成されている。また、段差部15Cの高さは、圧縮機の脚部21及び後述するゴムブッシュ61の高さに対応している。 In the base plate 15, the region 15B and the region 15D are located at substantially the same height in the vertical direction, and the region 15A is formed to be located below the region 15B and the region 15D in the vertical direction due to the stepped portion 15C. Further, the height of the stepped portion 15C corresponds to the height of the leg portion 21 of the compressor and the rubber bush 61, which will be described later.
 領域15Aには、圧縮機20の脚部21が載置される。領域15Bには、アキュムレータ22を取り付けるための締結孔104と、流路モジュールを取り付けるための締結孔105と、冷媒ユニット10を取付対象に取り付けるための締結孔106が設けられている。段差部15Cには、圧縮機20の脚部21を締結するための締結孔101が設けられている。領域15Dには、冷媒ユニット10を取付対象に締結するための締結孔106が設けられている。 The leg portion 21 of the compressor 20 is placed in the area 15A. The region 15B is provided with a fastening hole 104 for attaching the accumulator 22, a fastening hole 105 for attaching the flow path module, and a fastening hole 106 for attaching the refrigerant unit 10 to an object. A fastening hole 101 for fastening the leg portion 21 of the compressor 20 is provided in the stepped portion 15C. A fastening hole 106 for fastening the refrigerant unit 10 to an object to be mounted is provided in the region 15D.
 これにより、領域15Aに載置された圧縮機20の脚部21が締結具(不図示)によって締結され、圧縮機20がベースプレート15に固定される。また、領域15Bに載置されたアキュムレータ22と流路モジュール50が締結具(不図示)によって締結されてベースプレート15に固定される。このように、圧縮機20、アキュムレータ22、及び、流路モジュール50がベースプレート15に載置され、それぞれがベースプレート15に締結されて固定されている。 As a result, the leg portions 21 of the compressor 20 placed in the area 15A are fastened by fasteners (not shown), and the compressor 20 is fixed to the base plate 15. Further, the accumulator 22 placed in the region 15B and the flow path module 50 are fastened to the base plate 15 by a fastener (not shown). In this way, the compressor 20, the accumulator 22, and the flow path module 50 are placed on the base plate 15, and each is fastened and fixed to the base plate 15.
 さらに、ベースプレート15に設けられた締結孔106を、ゴムブッシュ61を介して締結具62によって車体に締結されることで、冷媒ユニット10が車体等の取付対象に取り付けられる(図1から図4参照)。 Furthermore, the refrigerant unit 10 is attached to an object such as a vehicle body by fastening the fastening hole 106 provided in the base plate 15 to the vehicle body via the rubber bush 61 with the fastener 62 (see FIGS. 1 to 4). ).
 熱交換器支持プレート16は、その側部がベースプレート15の側部に対して垂直となるようにベースプレート15の側部に係合している。 The heat exchanger support plate 16 engages with the side of the base plate 15 such that the side thereof is perpendicular to the side of the base plate 15.
 熱交換器支持プレート16には、冷却器30及び加熱器40を取り付けるための締結孔102,103が設けられ、熱交換器支持プレート16の一方側の面に冷却器30が締結具(不図示)により締結され、他方側の面に加熱器40が締結具(不図示)により締結される。これにより、冷却器30及び加熱器40が熱交換器支持プレート16に固定されて支持される。 The heat exchanger support plate 16 is provided with fastening holes 102 and 103 for attaching the cooler 30 and the heater 40. ), and the heater 40 is fastened to the other side using a fastener (not shown). Thereby, the cooler 30 and the heater 40 are fixed and supported by the heat exchanger support plate 16.
 また、熱交換器支持プレート16の一部は、流路モジュール50のスリット55に挿入されている。これにより、流路モジュール50、冷却器30及び加熱器40の冷媒ユニット10における位置決めが容易となり、冷媒ユニット10の組立性が向上する。 Further, a portion of the heat exchanger support plate 16 is inserted into the slit 55 of the flow path module 50. This facilitates positioning of the flow path module 50, cooler 30, and heater 40 in the refrigerant unit 10, and improves the ease of assembling the refrigerant unit 10.
 このような冷媒ユニット10において、冷媒は以下のように循環する。
 すなわち、冷媒は、圧縮機20によって圧縮されて高圧のガス冷媒となって吐出される。圧縮機20において圧縮された高圧のガス冷媒は、冷媒配管81を流通して加熱器40に流入する。
In the refrigerant unit 10, the refrigerant circulates as follows.
That is, the refrigerant is compressed by the compressor 20 and discharged as a high-pressure gas refrigerant. The high-pressure gas refrigerant compressed in the compressor 20 flows through the refrigerant pipe 81 and into the heater 40.
 このとき、膨張弁71が開放されている場合には、圧縮機20において圧縮された高圧のガスが、膨張弁71の開度に応じて冷媒配管81から冷媒配管86に分流される。冷媒配管86に分流された少なくとも一部の冷媒は、流路モジュール50の高圧流路を通過して膨張弁71に流入し、膨張弁71において減圧されて膨張した後にアキュムレータ22に流入し、冷媒配管85を介して再び圧縮機20に吸い込まれる。 At this time, if the expansion valve 71 is open, the high-pressure gas compressed by the compressor 20 is branched from the refrigerant pipe 81 to the refrigerant pipe 86 according to the opening degree of the expansion valve 71. At least a portion of the refrigerant branched into the refrigerant pipe 86 passes through the high-pressure flow path of the flow path module 50, flows into the expansion valve 71, is depressurized and expanded in the expansion valve 71, and then flows into the accumulator 22, where the refrigerant is It is sucked into the compressor 20 again through the pipe 85.
 一方、冷媒配管81から加熱器40に流入した冷媒は、加熱器40において他の熱媒体と熱交換することにより放熱した後に、加熱器40を流出して冷媒配管82を介して流路モジュール50に流入する。 On the other hand, the refrigerant that has flowed into the heater 40 from the refrigerant pipe 81 radiates heat by exchanging heat with another heat medium in the heater 40 , and then flows out of the heater 40 and passes through the refrigerant pipe 82 to the channel module 50 . flows into.
 流路モジュール50に流入した冷媒は、流路モジュール50の高圧側領域51に設けられた高圧流路を通過して膨張弁72に流入し、膨張弁72によって減圧されて膨張し、低圧冷媒となる。膨張弁72において低圧になった冷媒は、流路モジュール50の低圧側領域に設けられた低圧流路を通過した後に、流路モジュール50から流出し、冷媒配管83を通過して冷却器30に流入する。 The refrigerant flowing into the flow path module 50 passes through the high pressure flow path provided in the high pressure side region 51 of the flow path module 50, flows into the expansion valve 72, is depressurized by the expansion valve 72, expands, and becomes a low pressure refrigerant. Become. The refrigerant that has become low pressure in the expansion valve 72 passes through the low pressure flow path provided in the low pressure side area of the flow path module 50, flows out from the flow path module 50, passes through the refrigerant piping 83, and enters the cooler 30. Inflow.
 冷却器30に流入した低圧冷媒は、冷却器30において他の熱媒体と熱交換することにより吸熱した後に、冷却器30を流出し、流路モジュール50の低圧流路を通過して冷媒配管84を流れて流路モジュール50を介してアキュムレータ22に流入し、アキュムレータ22から冷媒配管85を介して圧縮機20へ戻る。圧縮機20に流入した冷媒は、再び圧縮され、上記循環を繰り返す。 The low-pressure refrigerant that has flowed into the cooler 30 absorbs heat by exchanging heat with another heat medium in the cooler 30, then flows out of the cooler 30, passes through the low-pressure flow path of the flow path module 50, and enters the refrigerant piping 84. The refrigerant flows through the flow path module 50 into the accumulator 22, and returns from the accumulator 22 to the compressor 20 via the refrigerant pipe 85. The refrigerant that has flowed into the compressor 20 is compressed again and the above circulation is repeated.
 上述のように冷媒が循環する過程において、凝縮器40を流出して流路モジュール50に冷媒が流入すると、高圧流路を高圧冷媒が通過して高圧側領域51の温度が上昇する。一方、膨張弁72を通過して減圧された低圧冷媒が低圧流路を通過して低圧側領域52の温度が下降する。このとき、高圧側領域51から低圧側領域52への熱移動が生じるが、スリット55が設けられて空気溝が形成されていることから、高圧側領域51と低圧側領域52とが金属体として連続しておらず、高圧側領域51から低圧側領域52への熱伝導が阻害される。 In the process of refrigerant circulation as described above, when the refrigerant flows out of the condenser 40 and flows into the channel module 50, the high-pressure refrigerant passes through the high-pressure channel and the temperature of the high-pressure side region 51 increases. On the other hand, the low-pressure refrigerant whose pressure has been reduced by passing through the expansion valve 72 passes through the low-pressure flow path, and the temperature of the low-pressure side region 52 decreases. At this time, heat transfer occurs from the high pressure side region 51 to the low pressure side region 52, but since the slit 55 is provided and the air groove is formed, the high pressure side region 51 and the low pressure side region 52 are connected as metal bodies. They are not continuous, and heat conduction from the high-pressure side region 51 to the low-pressure side region 52 is inhibited.
 なお、支持プレート12全体、又は、少なくとも熱交換器支持プレート16を断熱性材料によって構成することで、スリット55に断熱材が挿入されることとなり、高圧側領域51と低圧側領域52との間の熱移動をさらに抑制させることができる。 Note that by configuring the entire support plate 12 or at least the heat exchanger support plate 16 with a heat insulating material, a heat insulating material is inserted into the slit 55, and the gap between the high pressure side region 51 and the low pressure side region 52 is heat transfer can be further suppressed.
 以上述べた如く本実施形態によれば、冷媒回路を構成する圧縮機20、アキュムレータ22、冷却器30、加熱器40、及び、流路モジュール50がそれぞれ支持プレート12に固定されることでユニット化されている。このため、冷媒ユニット10に備えられた各機器の距離が互いに近接し、冷媒配管81~86の長さを最小限に留めることができるので、冷媒配管81~86における熱ロスや、冷媒圧力損失を低減させることができる。 As described above, according to the present embodiment, the compressor 20, accumulator 22, cooler 30, heater 40, and flow path module 50 that constitute the refrigerant circuit are fixed to the support plate 12, thereby forming a unit. has been done. Therefore, the distances between the respective devices provided in the refrigerant unit 10 are close to each other, and the lengths of the refrigerant pipes 81 to 86 can be kept to a minimum, thereby reducing heat loss and refrigerant pressure loss in the refrigerant pipes 81 to 86. can be reduced.
 冷媒ユニット10を車体等に取り付けた場合に、圧縮機20の動作や車両の走行に起因して生じる振動によって、冷媒ユニット10全体が振動するため、冷媒ユニット10に備えられた機器間の変位差が小さく、冷媒ユニット10の耐振性が向上する。 When the refrigerant unit 10 is attached to a vehicle body or the like, the entire refrigerant unit 10 vibrates due to vibrations caused by the operation of the compressor 20 and the running of the vehicle, so the displacement difference between the devices provided in the refrigerant unit 10 is small, and the vibration resistance of the refrigerant unit 10 is improved.
 冷媒配管81~86を膨張弁71,72の最も高い位置よりも低い位置に配置しているため、冷媒ユニット10が振動した場合でも、冷媒配管81~86及び冷媒配管81~86の接続部の破損を防止することができる。なお、冷媒ユニット10が上述のように構成されていることで、冷媒配管85と圧縮機20との間に冷媒ホースを用いる必要がなく、冷媒ホースの劣化に伴う内部への水分の侵入を考慮する必要がないため、アキュムレータ22等内部に乾燥剤を設置する必要がない。 Since the refrigerant pipes 81 to 86 are arranged at a lower position than the highest position of the expansion valves 71 and 72, even if the refrigerant unit 10 vibrates, the connections between the refrigerant pipes 81 to 86 and the refrigerant pipes 81 to 86 will be Damage can be prevented. Note that with the refrigerant unit 10 configured as described above, there is no need to use a refrigerant hose between the refrigerant pipe 85 and the compressor 20, and consideration is given to the intrusion of moisture into the interior due to deterioration of the refrigerant hose. Therefore, there is no need to install a desiccant inside the accumulator 22 or the like.
 圧縮機の冷媒吸入口に接続された冷媒配管85に少なくとも屈曲部85Aが設けられていることで、冷媒ユニット10の組立時における設置誤差ないしは組立誤差を吸収することができる。なお、屈曲部85Aが被接続機器(本実施形態では、アキュムレータ22や流路モジュール50)よりも圧縮機20により近い位置に設けられていることで、圧縮機20を基準とする設置誤差ないしは組立誤差をより吸収することができる。 By providing at least the bent portion 85A in the refrigerant pipe 85 connected to the refrigerant suction port of the compressor, installation errors or assembly errors during assembly of the refrigerant unit 10 can be absorbed. Note that since the bent portion 85A is provided closer to the compressor 20 than the connected devices (accumulator 22 and flow path module 50 in this embodiment), installation errors or assembly errors based on the compressor 20 may be avoided. Errors can be better absorbed.
 このように本実施形態によれば、圧縮機等の振動に対する耐性を確保すると共に、冷媒配管における熱ロス及び冷媒圧力損失を低減させることができる。 As described above, according to the present embodiment, resistance to vibrations of the compressor, etc. can be ensured, and heat loss and refrigerant pressure loss in the refrigerant piping can be reduced.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成は上述した実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to the above-described embodiments, and changes in design, etc., may be made without departing from the gist of the present invention. Even if there is, it is included in the present invention.
 10:冷媒ユニット、12:支持プレート、15:ベースプレート
 15A、15B,15D:領域、15C:段差部、16:熱交換器支持プレート
 20:圧縮機、21:脚部、22:アキュムレータ、30:冷却器、40:加熱器
 50:流路モジュール、50A,50B:接続部
 51:高圧側領域、52:低圧側領域、55:スリット
 61:ゴムブッシュ、62:締結具
 71,72:膨張弁、81~86:冷媒配管、85A:屈曲部
 91~94:熱媒体配管、101~106:締結孔
10: Refrigerant unit, 12: Support plate, 15: Base plate 15A, 15B, 15D: Area, 15C: Step portion, 16: Heat exchanger support plate 20: Compressor, 21: Legs, 22: Accumulator, 30: Cooling 40: Heater 50: Flow path module, 50A, 50B: Connection section 51: High pressure side area, 52: Low pressure side area, 55: Slit 61: Rubber bush, 62: Fastener 71, 72: Expansion valve, 81 ~86: Refrigerant piping, 85A: Bent part 91~94: Heat medium piping, 101~106: Fastening hole

Claims (5)

  1.  圧縮機、加熱器、減圧装置、冷却器、及び、気液分離器が、冷媒配管によって接続されている冷媒回路と、
     前記冷媒回路を支持する支持プレートと、を備え、
     少なくとも前記圧縮機、前記加熱器、前記冷却器、及び、前記気液分離器が、それぞれ前記支持プレートに固定されている、冷媒ユニット。
    A refrigerant circuit in which a compressor, a heater, a pressure reduction device, a cooler, and a gas-liquid separator are connected by refrigerant piping;
    A support plate that supports the refrigerant circuit,
    A refrigerant unit, wherein at least the compressor, the heater, the cooler, and the gas-liquid separator are each fixed to the support plate.
  2.  前記圧縮機の冷媒吸入口に接続された前記冷媒配管は、少なくとも1つの屈曲部を有している、請求項1記載の冷媒ユニット。 The refrigerant unit according to claim 1, wherein the refrigerant pipe connected to the refrigerant suction port of the compressor has at least one bent part.
  3.  前記冷媒配管は、前記冷媒配管によって前記圧縮機の冷媒吸入口と接続された被接続機器よりも前記圧縮機側に少なくとも1つの屈曲部を有している、請求項2記載の冷媒ユニット。 The refrigerant unit according to claim 2, wherein the refrigerant piping has at least one bent portion on the compressor side relative to a connected device connected to the refrigerant suction port of the compressor by the refrigerant piping.
  4.  前記冷媒回路は、前記冷媒回路を循環する冷媒を流通させる冷媒流路の少なくとも一部が一体的に形成され、前記支持プレートに固定される流路モジュールを含み、
     前記流路モジュールに、前記減圧装置の接続部が形成されている、請求項1記載の冷媒ユニット。
    The refrigerant circuit includes a flow path module in which at least a portion of a refrigerant flow path through which the refrigerant circulating in the refrigerant circuit flows is integrally formed and fixed to the support plate,
    The refrigerant unit according to claim 1, wherein the flow path module is formed with a connection portion for the pressure reducing device.
  5.  前記圧縮機、前記加熱器、前記減圧装置、前記冷却器、前記気液分離器、及び、前記流路モジュールを接続する冷媒配管は、
     前記減圧装置の最も高い位置と同程度又はそれより低い位置に配置されている、請求項4記載の冷媒ユニット。
    The refrigerant piping connecting the compressor, the heater, the pressure reducing device, the cooler, the gas-liquid separator, and the flow path module,
    The refrigerant unit according to claim 4, wherein the refrigerant unit is arranged at a position equivalent to or lower than the highest position of the pressure reducing device.
PCT/JP2023/031297 2022-09-16 2023-08-29 Refrigerant unit WO2024057921A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-147635 2022-09-16
JP2022147635A JP2024042791A (en) 2022-09-16 2022-09-16 refrigerant unit

Publications (1)

Publication Number Publication Date
WO2024057921A1 true WO2024057921A1 (en) 2024-03-21

Family

ID=90275084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031297 WO2024057921A1 (en) 2022-09-16 2023-08-29 Refrigerant unit

Country Status (2)

Country Link
JP (1) JP2024042791A (en)
WO (1) WO2024057921A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303746A (en) * 2006-05-11 2007-11-22 Denso Corp Refrigerating cycle and part assembly for refrigerating cycle
US20120210746A1 (en) * 2011-02-17 2012-08-23 Delphi Technologies, Inc. Plate-type heat pump air conditioner heat exchanger for a unitary heat pump air conditioner
JP2014098509A (en) * 2012-11-14 2014-05-29 Hitachi Appliances Inc Air conditioner
US20200086711A1 (en) * 2018-09-17 2020-03-19 Hyundai Motor Company Centralized energy module for vehicle
CN114670602A (en) * 2022-04-25 2022-06-28 苏州市振业实业有限公司 Automobile heat management system device and electric automobile
KR20220162479A (en) * 2021-06-01 2022-12-08 한온시스템 주식회사 Integrated cooling module
JP2022190675A (en) * 2021-06-14 2022-12-26 株式会社デンソー heat pump module
WO2023026869A1 (en) * 2021-08-26 2023-03-02 株式会社デンソー Compressor module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007303746A (en) * 2006-05-11 2007-11-22 Denso Corp Refrigerating cycle and part assembly for refrigerating cycle
US20120210746A1 (en) * 2011-02-17 2012-08-23 Delphi Technologies, Inc. Plate-type heat pump air conditioner heat exchanger for a unitary heat pump air conditioner
JP2014098509A (en) * 2012-11-14 2014-05-29 Hitachi Appliances Inc Air conditioner
US20200086711A1 (en) * 2018-09-17 2020-03-19 Hyundai Motor Company Centralized energy module for vehicle
KR20220162479A (en) * 2021-06-01 2022-12-08 한온시스템 주식회사 Integrated cooling module
JP2022190675A (en) * 2021-06-14 2022-12-26 株式会社デンソー heat pump module
WO2023026869A1 (en) * 2021-08-26 2023-03-02 株式会社デンソー Compressor module
CN114670602A (en) * 2022-04-25 2022-06-28 苏州市振业实业有限公司 Automobile heat management system device and electric automobile

Also Published As

Publication number Publication date
JP2024042791A (en) 2024-03-29

Similar Documents

Publication Publication Date Title
US20100243200A1 (en) Suction line heat exchanger module and method of operating the same
JP2014076791A (en) Heat exchanger for vehicle
KR102527913B1 (en) Heat exchanger fix structure of an air conditioning unit
US20080202157A1 (en) Internal heat exchanger for automotive air conditioner
US20050006070A1 (en) Heat exchanger
JP2505009Y2 (en) Vehicle cooling system
WO2024057921A1 (en) Refrigerant unit
JP4265677B2 (en) Ejector type refrigeration cycle unit
WO2023220467A1 (en) Integrated refrigerant control modules
JP3432108B2 (en) Electric vehicle air conditioner
US20230016310A1 (en) Attachment structure for expansion valves
JP2001277842A (en) Air conditioner for automobile
JP3214318B2 (en) Outdoor heat exchanger for heat pump refrigeration cycle
US11231233B2 (en) Double-pipe heat exchanger including integrated connector
KR102371560B1 (en) Plate type heat exchanger
WO2024042983A1 (en) Refrigerant circuit unit
AU2021321659A1 (en) Heat exchanger
JP3348665B2 (en) Expansion valve cover mounting structure
WO2024070423A1 (en) Refrigerant unit
JP2000039290A (en) Heat exchanger
WO2024070424A1 (en) Refrigerant unit
WO2024070425A1 (en) Refrigerant unit
CN220250164U (en) Fresh air conditioner
JP3316365B2 (en) Receiver integrated heat exchanger
JP2024047053A (en) Refrigerant Unit