WO2024057913A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2024057913A1
WO2024057913A1 PCT/JP2023/031172 JP2023031172W WO2024057913A1 WO 2024057913 A1 WO2024057913 A1 WO 2024057913A1 JP 2023031172 W JP2023031172 W JP 2023031172W WO 2024057913 A1 WO2024057913 A1 WO 2024057913A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
modulation
phase
voltage vector
region
Prior art date
Application number
PCT/JP2023/031172
Other languages
French (fr)
Japanese (ja)
Inventor
雄志 荒木
辰樹 柏原
孝次 小林
潔 大石
勇希 横倉
勇斗 小林
Original Assignee
サンデン株式会社
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社, 国立大学法人長岡技術科学大学 filed Critical サンデン株式会社
Publication of WO2024057913A1 publication Critical patent/WO2024057913A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device that converts DC voltage to AC voltage.
  • PWM pulse width modulation
  • the former method includes pulse width modulation that outputs only odd voltage vectors or only even voltage vectors. According to this method, it is possible to completely suppress fluctuations in common mode voltage within a carrier period. There is also pulse width modulation that switches between outputting only odd-numbered voltage vectors and outputting only even-numbered voltage vectors depending on the electrical angle phase. Also by this method, fluctuations in the common mode voltage can be largely suppressed (see, for example, Patent Document 1).
  • the latter method includes pulse width modulation in which the timing of the rise and fall of the phase voltage of a specific phase is matched with the fall and rise of the phase voltage of other phases in a PWM pattern (for example, see Patent Document 2). Furthermore, fluctuations in the common mode voltage can also be suppressed by pulse width modulation of two-phase modulation in which switching of one phase is fixed and switching of the other two phases is fixed (see, for example, Patent Document 3).
  • Patent No. 5397448 WO2019/180763 Patent No. 5298003
  • Patent Document 1 is the most effective method for suppressing common mode voltage fluctuations, it has limitations on the voltage vectors used, so it is limited to the linear output region (where the voltage vector can rotate once with a constant radius).
  • the disadvantage is that the maximum value of amplitude) is limited, and the modulation rate that can be output is limited. Therefore, it is difficult to apply this method when driving a compressor motor, or when the rotational speed and modulation rate are high, it is necessary to switch the modulation method as in Patent Document 3.
  • the modulation method is switched, there is a problem in that the common mode voltage fluctuates at the time of switching, and the effect of suppressing common mode voltage fluctuation is degraded in a modulation method having a wider linear output region.
  • Patent Document 2 Patent Document 3
  • Patent Document 3 Patent Document 3
  • Patent Document 3 two-phase modulation and three-phase modulation are switched depending on the operating region, and it is possible to switch between the former method and the latter method described above in the same way, but switching of the pulse width modulation method A shock problem arises.
  • the present invention has been made in order to solve such conventional technical problems, and provides a power conversion device that enables high modulation rate operation in pulse width modulation, which has a high noise suppression effect but has a limited modulation rate.
  • the purpose is to provide.
  • the present invention provides a power conversion device that converts a DC voltage into an AC voltage, and includes an inverter circuit that applies phase voltages generated at connection points of switching elements of each phase to a load, and that controls switching of the switching elements of the inverter circuit.
  • a control device the control device includes a modulator whose modulation region is a part of a basic voltage space that is a voltage vector region that can be output in the inverter circuit; a phase voltage command correction unit that calculates a corrected voltage vector in which the command voltage vector is corrected to be within the modulation possible area when the command voltage vector is within the modulation possible area and outside the modulation possible area;
  • This is a power conversion device characterized by outputting power using a power converter.
  • the modulation unit includes a first modulation processing unit having a first modulation area that is the modulation area, and an area that is the modulation area and is different from the first modulation area. a second modulation processing section having a second modulation possible region, wherein the phase voltage command modification section has a second modulation processing section having a second modulation possible region; It may also be a feature to modify the vector.
  • the phase voltage command modification section includes a modulation region selection section that selects either the first modulation possible region or the second modulation possible region as a modification destination of the command voltage vector.
  • the modulation area selection unit may switch between the first modulation possible area and the second modulation possible area based on the phase of the command voltage vector.
  • the first modulation processing section executes pulse width modulation that outputs only odd voltage vectors
  • the second modulation processing section executes pulse width modulation that outputs only even voltage vectors. It may also be characterized by executing.
  • the phase voltage command modification section includes a modulation region selection section that selects either the first modulation possible region or the second modulation possible region as a modification destination of the command voltage vector. and the modulation area selection unit does not switch the first modulation area and the second modulation area immediately after switching the first modulation area and the second modulation area. may be a feature.
  • the modulation region selection section when defining a phase that is a boundary for switching between the first modulation possible region and the second modulation possible region in the modulation region selection section as a switching boundary phase, the modulation region selection section , when the voltage vector passes through the switching boundary phase in the reverse rotation direction, switching between the first modulation possible region and the second modulation possible region may not be performed.
  • the modulation region selection unit estimates continuous switching of the first modulation possible region and the second modulation possible region by predicting the future command voltage vector; As a result of the estimation, if it is estimated that switching will be performed continuously, switching of the first modulation possible region and the second modulation possible region is not performed when the command voltage vector arrives in the future. Good too.
  • a command calculation unit that generates the command voltage vector is provided, and the command calculation unit is configured to combine the corrected voltage vector calculated by the phase voltage command correction unit and the command voltage vector before correction.
  • the present invention may be characterized in that the error in the command voltage vector is compensated for in the calculation of the command voltage vector from the next time onwards.
  • the phase voltage command correction unit may set the corrected voltage vector on a boundary line that defines the modifiable region.
  • the phase voltage command correction unit sets the relationship between the voltage vector and the corrected voltage vector so that the lengths thereof are the same and the phases thereof are different from each other. You can also use it as
  • the phase voltage command correction unit sets the relationship between the voltage vector and the corrected voltage vector so that they have the same phase and different lengths. You can also use it as
  • the modulator can perform modulation control after correcting a voltage vector that is outside the operable region to within the operable region, so a modulation method that always suppresses the excitation of common mode noise is used. This makes it possible to achieve an excellent effect of comprehensively suppressing common mode noise.
  • the next voltage vector to be output is calculated by taking into account the error between the corrected voltage vector and the voltage vector before correction. However, even when the inverter circuit is within the output range and outside the modulation unit's operable range, it is possible to output a voltage vector equivalent to the immediately previous command voltage vector.
  • FIG. 1 is an electrical circuit diagram of a power conversion device according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing three-phase AC voltage command values.
  • FIG. 3 is a diagram showing a basic voltage space for explaining a linear output region.
  • FIG. 3 is a diagram showing the relationship between voltage vectors and phase voltages. It is a figure showing a voltage vector (basic voltage vector). It is a flowchart explaining the operation of the control device of the power converter.
  • FIG. 3 is a diagram showing a voltage space for explaining an output region of an odd voltage RSPWM.
  • FIG. 3 is a diagram showing a correlation between an output region and a function value.
  • FIG. 3 is a diagram illustrating a linear output region of an odd voltage RSPWM.
  • FIG. 6 is a diagram showing an example of an output vector of odd voltage RSPWM. It is a figure which shows the PWM pattern of odd voltage RSPWM.
  • FIG. 7 is a diagram showing a modulation waveform of an odd voltage RSPWM at a low modulation rate.
  • FIG. 3 is a diagram showing a voltage space for explaining an output region of an even voltage RSPWM.
  • FIG. 3 is a diagram showing a correlation between an output region and a function value.
  • FIG. 3 is a diagram illustrating a linear output region of an even voltage RSPWM. It is a figure which shows the output vector and output time of even number voltage RSPWM.
  • FIG. 6 is a diagram showing an example of an output vector of odd voltage RSPWM. It is a figure which shows the PWM pattern of odd voltage RSPWM.
  • FIG. 7 is a diagram showing a modulation waveform of an odd voltage RSPWM at a low modulation rate.
  • FIG. 3 is a diagram showing a voltage space for explaining an
  • FIG. 7 is a diagram showing an example of an output vector of even voltage RSPWM.
  • FIG. 7 is a diagram showing an example of an output vector of even voltage RSPWM. It is a figure which shows the PWM pattern of even number voltage RSPWM.
  • FIG. 7 is a diagram showing a modulation waveform of an even voltage RSPWM at a low modulation rate.
  • FIG. 13 is a diagram showing the operating region of the full voltage RSPWM.
  • FIG. 7 is a diagram showing in voltage space the application range of odd voltage RSPWM and even voltage RSPWM in the total voltage RSPWM of the phase determination formula.
  • FIG. 7 is a diagram showing each phase range to which an odd voltage RSPWM and an even voltage RSPWM are applied in the total voltage RSPWM of a phase determination formula.
  • FIG. 6 is a diagram showing a modulation waveform at a low modulation rate of full voltage RSPWM.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 7 is a diagram showing the correspondence between each phase range of the voltage vector, the operable region to which the voltage vector is corrected, and the line segment of the boundary selected in the correction destination in full voltage RSPWM.
  • FIG. 2 is a block diagram showing the functional configuration of a phase voltage command modification section in the control device.
  • FIG. 6 is a diagram showing a voltage vector correction destination in a voltage space for an inoperable region in full voltage RSPWM.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space. It is a block diagram showing a modification of the functional configuration of a phase voltage command modification section in the control device. It is a flowchart explaining the modification of the operation of a common mode voltage command modification part.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 3 is a diagram representing a voltage vector correction method in voltage space.
  • FIG. 3 is a diagram showing a modulation waveform at a high modulation rate of the present power conversion device.
  • (A) is a conceptual diagram that averages the movement locus of three-phase voltage command values generated by the present power converter
  • (B) is a conceptual diagram that shows a part of the same movement locus in an enlarged manner.
  • FIG. 3 is a diagram showing a modulation waveform at a high modulation rate of the present power conversion device.
  • FIG. 7 is a diagram representing a modification of a voltage vector correction method in a voltage space.
  • a power conversion device 1 drives a motor 8 (load) of a so-called inverter-integrated electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner installed in a vehicle such as an electric vehicle. It is something.
  • the power converter 1 of the embodiment includes a three-phase inverter circuit 27 and a control device 21.
  • the inverter circuit 27 is a circuit that converts the DC voltage Vdc of a DC power source (vehicle battery: for example, 350V) 29 into a three-phase AC voltage and applies it to the motor 8 .
  • the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor).
  • the inverter circuit 27 includes a U-phase half-bridge circuit 19U, a V-phase half-bridge circuit 19V, and a W-phase half-bridge circuit 19W.
  • Each phase half-bridge circuit 19U to 19W is connected to an upper arm switching element 18A to 18C, respectively. and lower arm switching elements 18D to 18F. Further, a free wheel diode 31 is connected in antiparallel to each of the switching elements 18A to 18F.
  • each of the upper and lower arm switching elements 18A to 18F is composed of an insulated gate bipolar transistor (IGBT) in which a MOS structure is incorporated in the gate portion.
  • IGBT insulated gate bipolar transistor
  • the collectors of the upper arm switching elements 18A to 18C of the inverter circuit 27 are connected to the DC power supply 29 and the upper arm power supply line (positive bus) 10 of the smoothing capacitor 32.
  • the emitters of the lower arm switching elements 18D to 18F of the inverter circuit 27 are connected to the lower arm power supply line (negative bus) 15 of the DC power supply 29 and the smoothing capacitor 32.
  • the emitter of the upper arm switching element 18A of the U-phase half bridge circuit 19U and the collector of the lower arm switching element 18D are connected in series, and the emitter of the upper arm switching element 18B and the lower arm switching element of the V-phase half bridge circuit 19V are connected in series.
  • 18E are connected in series, and the emitter of the upper arm switching element 18C and the collector of the lower arm switching element 18F of the W-phase half bridge circuit 19W are connected in series.
  • connection point (U phase voltage Vu) between the upper arm switching element 18A and the lower arm switching element 18D of the U phase half bridge circuit 19U is connected to the U phase armature coil of the motor 8, and the V phase half bridge circuit 19U is connected to the U phase armature coil of the motor 8.
  • the connection point (V-phase voltage Vv) between the upper arm switching element 18B and the lower arm switching element 18E is connected to the V-phase armature coil of the motor 8
  • the connection point between the upper arm switching element 18C and the lower arm switching element 18B of the W-phase half bridge circuit 19W is connected to the V-phase armature coil of the motor 8.
  • a connection point (W-phase voltage Vw) of the arm switching element 18F is connected to the W-phase armature coil of the motor 8.
  • the control device 21 is composed of a microcomputer having a processor, and in the embodiment, inputs a rotation speed command value from the ECU of the vehicle, obtains a motor current (phase current) from the motor 8, and based on these, , controls the ON/OFF state (switching) of each switching element 18A to 18F of the inverter circuit 27. Specifically, the gate voltage applied to the gate of each switching element 18A to 18F is controlled.
  • the control device 21 of the embodiment includes a dq-axis current command calculation section 28, a phase voltage command value calculation section 33, a phase voltage command modification section 40, a modulation section 50, a PWM signal generation section 36, and a gate driver 37.
  • Each current sensor 26A to 26C is connected to a phase voltage command calculation section 33.
  • the current sensor 26A measures the U-phase current iu
  • the current sensor 26B measures the V-phase current iv
  • the current sensor 26C measures the W-phase current iw.
  • the V-phase current iv may be measured by the current sensor 26B, and the W-phase current iw may be calculated from these.
  • the current value of the lower arm power supply line 15 is detected with a shunt resistor, and the current value and the motor 8
  • the phase voltage command calculation unit 33 there is no particular limitation on the method of detecting and estimating each phase current, as there is a method for the phase voltage command calculation unit 33 to estimate it from the operating state of the phase voltage command calculation unit 33.
  • the dq-axis current command calculation unit 28 outputs a d-axis current command value and a q-axis current command value as target values for controlling the motor 8.
  • phase voltage command calculation unit 33 calculates the electrical angle of the motor 8, the d-axis current command value Id ref , the q-axis current command value Iq ref , and the d-axis current obtained by converting the three-phase current detected by the current sensor 26B into the dq-axis.
  • Phase voltage command for three-phase modulation to generate U-phase voltage Vu, V-phase voltage Vv, and W-phase voltage Vw to be applied to the armature coil of each phase of motor 8 by vector control based on Id and q-axis current Iq.
  • the values Vu ref (hereinafter referred to as U-phase voltage command value Vu ref ), Vv ref (hereinafter referred to as V-phase voltage command value Vv ref ), and Vw ref (hereinafter referred to as W-phase voltage command value Vw ref ) are calculated and output.
  • the phase voltage command calculation unit 33 includes a dq-axis current controller 34 and a coordinate conversion unit 35. Note that although a case is exemplified here in which the phase voltage command calculation unit 33 outputs a three-phase AC phase voltage command value (command voltage vector), the present invention is not limited to this. Other forms of output may be used as long as the command calculation unit can calculate some command voltage vector.
  • the dq-axis current controller 34 outputs a d-axis current Id and a q-axis current Iq obtained by converting the three-phase current flowing through the motor 8 into dq-axes, and a d-axis current command value Id ref output from the dq-axis current command calculation unit 28. and q-axis current command value Iq ref are compared, and the current is feedback-controlled (for example, PI control) so that the two match.
  • this dq-axis current controller 34 has a d-axis correction amount converted into a dq-axis voltage by a correction amount (Vm'-Vm) of a corrected voltage vector Vm' outputted from a phase voltage command correction unit 40, which will be described later. It is fed back in the form of Vd err and q-axis correction amount Vq err , and these values are also reflected in the above-mentioned PI control. As a result, the dq-axis current controller 34 outputs the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref . As a specific example, the dq-axis current controller 34 may perform PI control using the following formula (I).
  • the coordinate conversion unit 35 converts the ⁇ -axis voltage command value V ⁇ ref and the ⁇ -axis voltage command value V ⁇ ref and the ⁇ -axis voltage command value using the following formula (II) from the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref obtained from the dq-axis current controller 34.
  • the voltage command value V ⁇ ref is calculated, and the voltage command values Vu ref , Vv ref , Vw ref ( phases voltage command value).
  • FIG. 2 shows the waveforms of the voltage command values Vu ref , Vv ref , and Vw ref for each phase calculated using formula (IV), and FIG. 3 shows the linear output region kH.
  • the linear output region is the maximum value of the amplitude at which the voltage vector can make one complete rotation (draw a circle) in the diagram representing the voltage space in FIG. 3. Since the voltage space of a three-phase inverter is hexagonal as shown in FIG. 3, the linear output region is theoretically the inscribed circle of the hexagon. In this application, the linear output region kH in general three-phase modulation is expressed as 1, and the linear output regions of other modulation methods are normalized and discussed.
  • the coordinate conversion unit 35 of the embodiment further calculates voltage command values Vu ref2 , Vv ref2 , and Vw ref2 for two-phase modulation of each phase using the following formula (V) and formula (VI).
  • Vmod in each formula (V) and (VI) calculates the voltage command values Vu ref2 , Vv ref2 , Vw ref2 for two-phase modulation from the voltage command values Vu ref , Vv ref , Vw ref for three-phase modulation.
  • it is the value obtained by adding the minimum value (min) of the three-phase voltage command values Vu ref , Vv ref , and Vw ref to Vdc/2
  • it is the correction value for The value is obtained by subtracting the maximum value (max) of the phase voltage command values Vu ref , Vv ref , and Vw ref from Vdc/2.
  • the amplitude is determined to be the maximum using formula (VI).
  • the upper arm switching element of the phase of Two-phase modulation is used in which the lower arm switching element of the phase with the maximum amplitude is fixed ON. If the sign of the phase with the maximum amplitude is positive, use formula (VI) to perform two-phase modulation in which the upper arm switching element of the phase with the maximum amplitude is fixed ON, and if the sign of the phase with the maximum amplitude is negative. In this case, two-phase modulation may be performed in which the lower arm switching element of the phase in which the amplitude is maximum is fixed to ON using equation (V).
  • the phase voltage command correction unit 40 corrects the voltage vector Vm composed of the ⁇ -axis voltage command value V ⁇ ref and the ⁇ -axis voltage command value V ⁇ ref , which are temporarily converted by the coordinate conversion unit 35, to obtain a modified ⁇ -axis voltage.
  • a corrected voltage vector Vm' composed of the command value V ⁇ ' ref and the corrected ⁇ -axis voltage command value V ⁇ ' ref is generated, and this is passed to the coordinate conversion unit 35 .
  • the phase voltage command correction unit 40 uses equation (III) to calculate a corrected phase voltage command value Vu' for three-phase modulation from the corrected ⁇ -axis voltage command value V ⁇ ' ref and the corrected ⁇ -axis voltage command value V ⁇ ' ref .
  • the modulation section 50 includes an odd voltage modulation processing section 52 and an even voltage modulation processing section 54.
  • the odd voltage modulation processing unit 52 uses the above-mentioned modified voltage vector Vm' to perform odd side pulse width modulation in which only the odd voltage vectors V1, V3, and V5 of the basic voltage vectors are output during one control period. do.
  • the even voltage modulation processing unit 54 executes even-number side pulse width modulation in which only the even voltage vectors V2, V4, and V6 of the basic voltage vectors are output during one control period.
  • the ON times tu, tv, and tw of the upper arm switching elements of each phase are directly generated from the modified ⁇ -axis voltage command value V ⁇ ' ref and the modified ⁇ -axis voltage command value V ⁇ ' ref , and the voltage Output vectors (V1, V3, V5) and their output times.
  • the ON times tuv, tvw, and twu of the two-phase upper arm switching elements are directly generated from the corrected ⁇ -axis voltage command value V ⁇ ' ref and the corrected ⁇ -axis voltage command value V ⁇ ' ref , and the voltage vector (V2, V4, V6) and their output times are output.
  • this odd-numbered pulse width modulation is hereinafter referred to as odd-numbered voltage RSPWM (Remote State PWM), and the even-numbered side pulse width modulation is hereinafter referred to as even-numbered voltage RSPWM (Remote State PWM).
  • RSPWM Remote State PWM
  • even-numbered voltage RSPWM Remote State PWM
  • pulse width modulation is based on the concept of instantaneous space vector modulation in which space vector modulation is performed without waiting for the next sampling point.
  • the modulation unit 50 switches between the odd voltage RSPWM and the even voltage RSPWM by determining whether the maximum phase is positive or negative.
  • this pulse width modulation is hereinafter referred to as the total voltage RSPWM of the maximum phase determination formula.
  • the PWM signal generation section 36 inputs the voltage vector and output time output by the modulation section 50, and compares the magnitude with the carrier signal, thereby generating signals between the U-phase inverter 19U, V-phase inverter 19V, and W-phase inverter of the inverter circuit 27.
  • a PWM signal serving as a 19W drive command signal is generated and output.
  • the gate driver 37 Based on the PWM signal output from the PWM signal generation section 36, the gate driver 37 outputs the gate voltages of the switching elements 18A and 18D of the U-phase inverter 19U, the gate voltages of the switching elements 18B and 18E of the V-phase inverter 19V, and W. Gate voltages of switching elements 18C and 18F of phase inverter 19W are generated.
  • each of the switching elements 18A to 18F of the inverter circuit 27 is driven ON/OFF based on the gate voltage output from the gate driver 37. That is, when the gate voltage is in an ON state (predetermined voltage value), the switching element is turned on, and when the gate voltage is in an OFF state (zero), the switching element is turned off.
  • the gate driver 37 is a circuit for applying a gate voltage to the IGBTs based on a PWM signal, and is composed of a photocoupler, a logic IC, a transistor, etc. Ru.
  • the voltage at the connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half-bridge circuit 19V is applied (output) to the V-phase armature coil of the motor 8 as a V-phase voltage Vv (phase voltage)
  • Vv phase voltage
  • Vw W-phase voltage
  • FIG. 6 is a flowchart illustrating the overall flow of pulse width modulation performed by the modulation section 50.
  • step S1 a modified ⁇ -axis voltage command value V ⁇ ' ref and a modified ⁇ -axis voltage command value V ⁇ ' ref modified by the phase voltage command modification unit 40, the details of which will be described later, and a modified phase voltage command value Vu of three-phase modulation.
  • the modulator 50 receives ' ref , Vv'ref , and Vw'ref .
  • step S2 it is determined whether the sign of the phase with the maximum amplitude is positive or negative among the modified phase voltage command values Vu' ref , Vv' ref , and Vw' ref of the three-phase modulation described above. do. Then, if the sign of the phase with the maximum amplitude among the corrected phase voltage command values Vu' ref , Vv' ref , Vw' ref of the three-phase modulation is positive, the process proceeds to step S3, and odd voltage RSPWM is performed.
  • step S3 of the odd voltage RSPWM the modulation unit 50 calculates each phase from the corrected ⁇ -axis voltage command value V ⁇ ' ref and the corrected ⁇ -axis voltage command value V ⁇ ' ref using the following formula (VII) and formula (VIII).
  • the ON times tu, tv, and tw of the upper arm switching elements 18A, 18B, and 18C are calculated.
  • V1, V3, and V5 in formula (VII) are odd voltage vectors
  • Ts is one control period. This control period Ts may be one carrier period. However, this one control period Ts is a period sufficiently shorter than one period of electrical angle.
  • Su, Sv, and Sw are functions corresponding to output regions (sectors) A to C of the voltage space shown in FIG. 7, and the correspondence between each output region and the functions Su, Sv, and Sw is shown in FIG.
  • These functions Su, Sv, and Sw select voltage vectors in space vector modulation. Note that since the calculation result of formula (VIII) is the same as that of formula (V), either one may be used in step S3.
  • step S4 the zero voltage output time t0 , which is the time to output the zero voltage vector V0, is calculated using formula (IX). Note that here, since the modified ⁇ -axis voltage command value V ⁇ ' ref and the modified ⁇ -axis voltage command value V ⁇ ' ref that have been modified in advance through the modulation range determination unit 42, which will be described later, are adopted, this zero voltage output Time t0 always takes a value greater than or equal to zero.
  • step S5 based on the calculated zero voltage output time t0 , the ON time of the upper arm switching element of each phase is corrected using the following formula (X). This is done by adding t 0 /3 to all of the ON times tu, tv, and tw. This eliminates the zero voltage output time and eliminates fluctuations in the common mode voltage Vc of the motor 8.
  • step S6 the modulation unit 50 determines the odd voltage vectors (V1, V3, V5) and their output times based on each output region (Sector). These values are finally output to the PWM signal generation section 36 in step S14.
  • FIG. 10 shows the relationship among the output region (sector), voltage vector, and output time of the odd voltage RSPWM.
  • a circle Q1 in FIG. 9 indicates a linear output region when odd voltage RSPWM (odd RSPWM) is used alone.
  • the entire range of the triangular region Z1 (hereinafter referred to as the odd-number side operable region) connecting the vertices of the odd-numbered voltage vectors (V1, V3, V5) is used for output.
  • the odd-numbered operable region Z1 has three line segments Z1a, Z1b, and Z1c that define the region.
  • FIG. 11 shows the output times of odd voltage vectors V1, V3, and V5 calculated based on the corrected voltage vector Vm' in the output region A, for example.
  • FIG. 12 shows output patterns of odd voltage vectors V1, V3, and V5 in output region A.
  • the corrected voltage vector Vm' falls within the range of the circle Q1 in FIG. 9, it means that the control state in which the modulation rate is low continues. For example, assuming a case where modulation is performed with "only" the odd voltage RSPWM at a low modulation rate, the modulation waveform of each UVW phase will be as shown in Figure 13, and there will be no fluctuation in the common mode voltage Vc (at a low modulation rate). (Modulation waveform of odd voltage RSPWM only).
  • the corrected voltage vector Vm' does not fall within the range of the circle Q1, it means that the modulation rate is in a high control state. Details of the modulation waveform in this case will be described later.
  • step S2 if in step S2 the sign of the phase with the maximum amplitude among the corrected phase voltage command values Vu' ref , Vv' ref , Vw' ref of the three-phase modulation is negative, the process proceeds to step S8 and the even number voltage RSPWM is set.
  • the modulation unit 50 uses the following formula (XI) and formula (XII) to determine the two-phase upper arm switching from the modified ⁇ -axis voltage command value V ⁇ ′ ref and the modified ⁇ -axis voltage command value V ⁇ ′ ref .
  • the ON times tuv, tvw, and twu of the elements are calculated.
  • tuv is the ON time of the upper arm switching elements 18A and 18B of the U phase and V phase
  • tvw is the ON time of the upper arm switching elements 18B and 18C of the V phase and W phase
  • twu is the upper arm of the W phase and U phase. This is the ON time of the switching elements 18C and 18A.
  • V2, V4, and V6 in formula (XI) are even voltage vectors
  • Suv, Svw, and Swu are functions corresponding to output regions (Sectors) A to C of the voltage space shown in FIG. 14, and each output region and function The correspondence between Suv, Svw, and Swu is shown in FIG. 15. These functions Suv, Svw, and Swu select voltage vectors in space vector modulation.
  • the modulation unit 50 calculates the OFF times tu (upper bar), tv (upper bar), and tw (upper bar) of the upper arm switching elements 18A, 18B, and 18C of each phase using the following formula (XIII). do. Note that since the calculation result of formula (XIII) is the same as formula (XII), either one may be used in step S8.
  • step S9 the zero voltage output time t7 , which is the time to output the zero voltage vector V7, is calculated using formula (XIV). Note that here, since the modified ⁇ -axis voltage command value V ⁇ ' ref and the modified ⁇ -axis voltage command value V ⁇ ' ref that have been modified in advance through the modulation range determination unit 42, which will be described later, are adopted, this zero voltage output The time t7 always takes a value greater than or equal to zero.
  • step S10 based on the calculated zero voltage output time t7 , the OFF time of the upper arm switching element of each phase is corrected using the following formulas (XV) and (XVI). This is performed by adding t 7 /3, which is the OFF time, to all of the OFF times tu (upper bar), tv (upper bar), and tw (upper bar). This eliminates the zero voltage output time and eliminates fluctuations in the common mode voltage Vc of the motor 8.
  • step S11 the modulation unit 50 determines the even voltage vectors (V2, V4, V6) and their output times based on each output region (sector). Then, those values are finally output to the PWM signal generation section 36 in step S14.
  • FIG. 17 shows the relationship among the output region (sector), voltage vector, and output time of the even voltage RSPWM.
  • Circle Q2 in FIG. 16 indicates the linear output region when this even voltage RSPWM (even RSPWM) is used alone.
  • the entire range of the triangular region Z2 (hereinafter referred to as even-number side operable region) connecting the vertices of the even-numbered voltage vectors (V2, V4, V6) is used for output.
  • the even-numbered operable region Z2 has three line segments Z2a, Z2b, and Z2c that define the region.
  • FIG. 18 shows the output times of even voltage vectors V2, V4, and V6 based on the modified voltage vector Vm' in the output region A, for example, and FIG. The output times of the even voltage vectors V2, V4, and V6 based on the graph are shown.
  • FIG. 20 shows the output pattern of each voltage vector V4, V2, and V6 in the output region C.
  • the corrected voltage vector Vm' falls within the range of the circle Q2, it means that the control state with a low modulation rate continues. For example, assuming that in a low modulation rate state, modulation is performed with "only" the even voltage RSPWM, the modulation waveform of each phase of UVW will be as shown in Figure 21, and there will be no fluctuation in the common mode voltage Vc (low modulation rate (Modulation waveform of only even voltage RSPWM).
  • the corrected voltage vector Vm' does not fall within the range of the circle Q2, it means that the modulation rate is in a high control state. Details of the modulation waveform in this case will be described later.
  • Total voltage RSPWM of maximum phase determination formula Note that in this embodiment, since modulation control is performed while switching between the odd voltage RSPWM and the even voltage RSPWM, the result is RSPWM that uses all voltage vectors. This is called the total voltage RSPWM.
  • the total voltage RSPWM among the corrected phase voltage command values Vu' ref , Vv' ref , Vw' ref , the odd number is determined depending on whether the sign of the phase with the maximum amplitude is positive or negative. Since the voltage RSPWM and the even voltage RSPWM are switched, the total voltage RSPWM is the maximum phase determination formula.
  • FIG. 22 shows the operable region Z3 of the total voltage RSPWM of the maximum phase determination formula.
  • the full-voltage RSPWM operable region (hereinafter referred to as full-voltage operable region) Z3 is a region in which the odd-number side operable region Z1 and the even-number side operable region Z2 overlap.
  • there are a total of six areas X (hereinafter referred to as inoperable areas) that surround the full voltage operable area Z3 and are outside the range of the full voltage operable area Z3.
  • the inoperable region X is an isosceles triangle.
  • circle Q3 in FIG. 22 indicates the linear output region when the total voltage RSPWM of the maximum phase determination formula is used alone.
  • Circle Q3 which is the linear output region due to the total voltage RSPWM, is enlarged compared to circles Q1 and Q2, which are the linear output regions when odd voltage RSPWM or even voltage RSPWM is performed alone.
  • output is performed using the entire range of the full voltage operable region Z3 beyond this linear output region (circle Q3).
  • the corrected voltage vector Vm' falls within the range of the circle Q3, it means that the control state with a low modulation rate continues. On the other hand, if the corrected voltage vector Vm' does not fall within the range of the circle Q3, it means that the modulation rate is in a high control state.
  • Total voltage RSPWM of phase judgment formula In the total voltage RSPWM of the maximum phase determination formula described above, the modulation unit 50 selects the corrected phase voltage command values Vu' ref , Vv' ref , Vw' ref of the three-phase modulation, in which the sign of the phase with the maximum amplitude is positive. The positive and negative cases are determined, and the odd voltage RSPWM and the even voltage RSPWM are switched accordingly.
  • the present invention is not limited thereto.
  • the odd voltage RSPWM and the even voltage RSPWM may be switched depending on the phase ⁇ m' of the corrected voltage vector with respect to the ⁇ axis of the corrected voltage vector Vm'. In this application, this pulse width modulation is hereinafter referred to as phase-determined total voltage RSPWM.
  • FIG. 23 shows a phase region odd to which an odd voltage RSPWM is applied and a phase region even to which an even voltage RSPWM is applied in the operation region of the total voltage RSPWM of the phase determination formula.
  • FIG. 24 shows the correspondence between each phase range and the odd voltage RSPWM and even voltage RSPWM applied thereto.
  • one period of electrical angle is divided into six regions (330° ⁇ m' ⁇ 30°, 30° ⁇ m' ⁇ 90°, 90° ⁇ m' ⁇ 150°, 150° ⁇ m ' ⁇ 210°, 210° ⁇ m' ⁇ 270°, 270° ⁇ m' ⁇ 330°), and the odd voltage RSPWM and the even voltage RSPWM are alternately switched.
  • the operable region output region Z3 of the total voltage RSPWM of the phase determination formula is the same as the total voltage RSPWM of the maximum phase determination formula in FIG.
  • the full voltage RSPWM operable region (hereinafter referred to as full voltage operable region) Z3 is a region in which the odd-number side operable region Z1 and the even-number side operable region Z2 overlap.
  • the corrected voltage vector Vm' falls within the range of the circle Q3, it means that the control state with a low modulation rate continues.
  • the modulation waveform of each phase of UVW by the total voltage RSPWM is as shown in FIG.
  • the common mode voltage Vc fluctuates when switching between the odd voltage RSPWM and the even voltage RSPWM (modulation waveform due to the total voltage RSPWM at a low modulation rate).
  • the corrected voltage vector Vm' does not fall within the range of the circle Q3, it means that the modulation rate is in a high control state. Details of the modulation waveform in this case will be described later.
  • phase voltage command correction unit 40 adjusts the voltage vector Vm composed of the ⁇ -axis voltage command value V ⁇ ref and the ⁇ -axis voltage command value V ⁇ ref (before modification) to the full voltage operable region Z3. Determine whether it is within the range. Note that when the voltage vector Vm falls within the full voltage operable region Z3, there is no need to correct the voltage vector Vm, so the voltage vector Vm is set to be equal to the corrected voltage vector Vm'. On the other hand, as shown in FIG.
  • the inoperable area X means an area within the hexagonal basic voltage space B surrounded by the V1 to V6 basic voltage vectors in vector control and outside the full voltage operable area Z3.
  • this approximation range is, for example, a range in which the vector length N' of the corrected voltage vector Vm' is 0.3N ⁇ N' ⁇ 1.7N with respect to the vector length N of the voltage vector Vm, or 0.5N ⁇ Examples include a range where N' ⁇ 1.5N and a range where 0.7N ⁇ N' ⁇ 1.3N.
  • the approximation range is, for example, a range in which the voltage phase ⁇ m' of the corrected voltage vector Vm' satisfies ⁇ m-120° ⁇ m' ⁇ m+120° with respect to the voltage phase ⁇ m of the voltage vector Vm, or ⁇ m-90° ⁇ m
  • Examples include a range where ' ⁇ m+90°, a range where ⁇ m-60° ⁇ m' ⁇ m+60°, and a range where ⁇ m-45° ⁇ m' ⁇ m+45°.
  • Method A Correction to the boundary between the inoperable region and the voltage operable region
  • arbitrary coordinates on the boundary lines Y1 and Y2 between the inoperable region X to which the voltage vector Vm belongs and the full voltage operable region Z3 are set as the corrected voltage vector Vm'.
  • the correction is made on the boundary lines Y1 and Y2 of the full voltage operable region Z3
  • the present invention is not limited to this, and the correction is made on the boundary line between the inoperable region X and the odd-number side operable region Z1.
  • the correction may be made within the odd operable region Z1, or may be made on the boundary line between the inoperable region X and the even operable region Z2, or within the even operable region Z2.
  • Method B Voltage phase correction
  • the phase ⁇ m of the voltage vector Vm is modified without changing the length of the voltage vector Vm, and the location where it intersects with the boundary lines Y1 and Y2 of the inoperable region X and the full voltage operable region Z3 is shown. is the modified voltage vector Vm'.
  • the phase ⁇ m selects the one with the smaller absolute value of the amount of correction of the voltage phase ⁇ m. It is preferable to do so.
  • the present invention is not limited to this, and the correction is made on the boundary line between the inoperable region X and the odd-number side operable region Z1.
  • the correction may be made within the odd operable region Z1, or may be made on the boundary line between the inoperable region X and the even operable region Z2, or within the even operable region Z2.
  • Method C Voltage vector length correction
  • the correction is made on the boundary lines Y1 and Y2 of the full voltage operable region Z3
  • the present invention is not limited to this, and the correction is made on the boundary line between the inoperable region X and the odd-number side operable region Z1.
  • the correction may be made within the odd operable region Z1, or may be made on the boundary line between the inoperable region X and the even operable region Z2, or within the even operable region Z2.
  • Method D Correct the coordinates of the voltage vector by moving it parallel to the outermost line of the inoperable area X
  • Method D Correct the coordinates of the voltage vector by moving it parallel to the outermost line of the inoperable area X
  • the present invention is not limited to this, and the correction is made on the boundary line between the inoperable region X and the odd-number side operable region Z1.
  • the correction may be made within the odd operable region Z1, or may be made on the boundary line between the inoperable region X and the even operable region Z2, or within the even operable region Z2.
  • the corrected voltage vector Vm' may be calculated by appropriately combining the above (Method A) to (Method D).
  • the modification to the even-numbered operable region Z2 may be selected, and if the sign of the phase with the maximum amplitude is positive, the modification to the odd-numbered side operable region Z1 may be selected.
  • FIG. 31 shows a line segment of the boundary selected when correcting the voltage vector Vm on the neighboring boundary line of the even-number side operable region Z2 or the odd-number side operable region Z1 based on the phase ⁇ m. ).
  • FIG. 33 is a flowchart illustrating the flow of operation of the phase voltage command modification section 40.
  • the phase voltage command modification section 40 includes a modulation range determining section 42, a modulation region selection section 44, a modification command calculation section 46, a modification command selection section 48, and a feedback processing section 49.
  • the modulation range determining unit 42 determines whether the coordinates of the voltage vector Vm are within the full voltage operable region Z3 (step S41). If the voltage vector Vm falls within the full voltage operable region Z3, there is no need to correct the voltage vector Vm, so the process proceeds to step S42, where the correction command calculation unit 46 changes the voltage vector Vm itself to a corrected voltage. Set to vector Vm'. Next, the process proceeds to step S80, and this modified voltage vector Vm' is output to the modulation section 50.
  • step S41 if the coordinates of the voltage vector Vm are located outside the full voltage operable region Z3, that is, in the inoperable region X, the voltage vector Vm needs to be corrected, so the process proceeds to step S44. , the modulation area selection unit 44 is activated.
  • step S44 the modulation region selection unit 44 refers to the phase ⁇ m of the voltage vector Vm with respect to the ⁇ axis, and according to the relationship shown in FIG. Select one of the modifications to.
  • the inoperable region It will have X2. If the voltage vector Vm belongs to the odd modification region X1, the modulation region selection unit 44 modifies the voltage vector so that it falls within the odd operable region Z1.
  • the modulation region selection unit 44 modifies the voltage vector so that it falls within the even number side operable region Z2.
  • the correction destination of the voltage vector Vm of the odd correction area X1 is an isolated triangular area that is adjacent to the odd correction area It is preferable to correct the area Zlt.
  • the correction destination of the voltage vector Vm of the even correction region It is preferable to correct the area Z2t.
  • step S44 when the voltage vector Vm is in the state shown in FIG. 35, that is, the phase ⁇ m is within the range of 330° ⁇ m ⁇ 30°, the odd-number side operable region Z1 is selected based on the correlation table shown in FIG. Ru. After that, the process proceeds to step S50, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the odd-number side operable region Z1.
  • the modification command calculation unit 46 defines a perfect circle P having a radius equal to the coordinates of the voltage vector Vm as a function of the ⁇ and ⁇ axes, as shown in FIG. As a result, the perfect circle P is expressed by the following formula (XX).
  • step S50 the modification command calculation unit 46 calculates first and second voltage vectors (hereinafter referred to as first and second modification candidate voltage vectors) VAm', VBm' is calculated.
  • step S52 the modification command selection unit 48 selects one voltage vector from the first and second modification candidate voltage vectors VAm' and VBm', and sets this as the modified voltage vector Vm'.
  • the modification command selection unit 48 selects a first phase modification amount ⁇ Amod of the first modification candidate voltage vector VAm' based on the voltage vector Vm, and a second modification candidate voltage vector based on the voltage vector Vm.
  • the second phase modification amount ⁇ Bmod of VBm' is calculated using the following formula (XXII).
  • the modification command selection unit 48 compares the first phase modification amount ⁇ Amod and the second phase modification amount ⁇ Bmod, and selects the smaller modification candidate voltage vector VAm', VBm' (here, the first modification candidate voltage vector VAm'). , the modified voltage vector Vm' is determined. Thereafter, the process proceeds to step S80, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S82, and the feedback processing unit 49 converts the modification amount (Vm'-Vm) of the modified voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis modification amount Vd err and the q-axis modification amount Vq err. is generated and fed back to the dq-axis current controller 34.
  • step S44 when the voltage vector Vm is in the state shown in FIG. 36, that is, the phase ⁇ m is within the range of 30° ⁇ m ⁇ 90°, the even-number side operable region Z2 is determined based on the correlation table of FIG. selected. After that, the process proceeds to step S60, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the even number side operable region Z2.
  • the modification command calculation unit 46 defines a perfect circle P whose radius is the coordinates of the voltage vector Vm using the above formula (XX), as shown in FIG. Furthermore, since the phase ⁇ m of this voltage vector Vm belongs to 30° ⁇ m ⁇ 60°, a function representing the line segment Z2a is selected from formula (XVIII) based on the correlation table of FIG. , and the two intersection points (VA ⁇ ', VA ⁇ ') and (VB ⁇ ', VB ⁇ ') of the function representing the perfect circle P of formula (XX) are calculated. Note that the reason why line segment Z2a is selected is that when this voltage vector Vm is rotated in both forward and reverse directions, it intersects line segment Z2a first.
  • step S60 the modification command calculation unit 46 calculates the first and second voltage vectors (hereinafter referred to as first and second modification candidate voltage vectors) VAm′, which are candidates for modification to the even-number side operable region Z2.
  • VBm' is calculated.
  • step S62 the modification command selection unit 48 selects one voltage vector from the first and second modification candidate voltage vectors VAm' and VBm', and sets this as the modified voltage vector Vm'.
  • the modification command selection unit 48 selects a first phase modification amount ⁇ Amod of the first modification candidate voltage vector VAm' based on the voltage vector Vm, and a second modification candidate voltage vector based on the voltage vector Vm.
  • the second phase modification amount ⁇ Bmod of VBm' is calculated using the above formula (XXII).
  • the modification command selection unit 48 compares the first phase modification amount ⁇ Amod and the second phase modification amount ⁇ Bmod, and selects the smaller modification candidate voltage vector VAm', VBm' (here, the second modification candidate voltage vector VBm'). , the modified voltage vector Vm' is determined. Thereafter, the process proceeds to step S80, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S82, and the feedback processing unit 49 converts the modification amount (Vm'-Vm) of the modified voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis modification amount Vd err and the q-axis modification amount Vq err. is generated and fed back to the dq-axis current controller 34.
  • FIG. 38 is a flowchart illustrating the flow of operation of the phase voltage command modification section 40.
  • the phase voltage command modification section 40 includes a modulation range determining section 42, a modulation region selection section 44, a modification command calculation section 46, and a feedback processing section 49.
  • the modulation range determination unit 42 determines whether the coordinates of the voltage vector Vm are within the full voltage operable range Z3 (step S71). If the voltage vector Vm is within the full voltage operable range Z3, there is no need to modify the voltage vector Vm, so the process proceeds to step S72, where the correction command calculation unit 46 sets the voltage vector Vm itself to the modified voltage vector Vm'. Next, the process proceeds to step S100, where the modified voltage vector Vm' is output to the modulation unit 50.
  • step S71 if the coordinates of the voltage vector Vm are located outside the full voltage operable area Z3, that is, in the inoperable area X, the voltage vector Vm needs to be corrected, so the process proceeds to step S74. , the modulation area selection section 44 is activated.
  • step S74 the modulation area selection unit 44 refers to the phase ⁇ m of the voltage vector Vm with respect to the ⁇ axis, and according to the correlation table of FIG. Select one of the modifications to Z1. For example, when the voltage vector Vm is in the state shown in FIG. 39, that is, when the phase ⁇ m is within the range of 330° ⁇ m ⁇ 30°, the odd-number side operable region Z1 is selected based on the correlation table shown in FIG. After that, the process proceeds to step S80, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the odd-number side operable region Z1.
  • the modification command calculation unit 46 defines a radial line segment E having the same phase as the voltage vector Vm as a function of the ⁇ and ⁇ axes, as shown in FIG. As a result, the radial line segment E becomes the following formula (XXIII).
  • step S80 the modification command calculation unit 46 calculates the modified voltage vector Vm' that is the result of modification to the odd-number side operable region Z1. Thereafter, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S102, and the feedback processing unit 49 converts the correction amount (Vm'-Vm) of the correction voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis correction amount Vd err and the q-axis correction amount Vq err. is generated and fed back to the dq-axis current controller 34.
  • step S74 when the voltage vector Vm is in the state shown in FIG. 40, that is, the phase ⁇ m is within the range of 30° ⁇ m ⁇ 90°, the even-number side operable region Z2 is determined based on the correlation table of FIG. selected. After that, the process proceeds to step S90, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the even number side operable region Z2.
  • the modification command calculation unit 46 defines a radial line segment E having the same phase as the voltage vector Vm as a function of the ⁇ and ⁇ axes, as shown in FIG. As a result, the radial line segment E becomes the above formula (XXIII).
  • step S90 the modification command calculation unit 46 calculates the modified voltage vector Vm' that is the result of modification to the even-number side operable region Z2. Thereafter, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S102, and the feedback processing unit 49 converts the correction amount (Vm'-Vm) of the correction voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis correction amount Vd err and the q-axis correction amount Vq err. is generated and fed back to the dq-axis current controller 34.
  • the modulation range determining unit 42 determines whether the coordinates of the voltage vector Vm are within the full voltage operable region Z3 (step S71). If the voltage vector Vm falls within the full voltage operable region Z3, there is no need to modify the voltage vector Vm, so the process proceeds to step S72, where the modification command calculation unit 46 changes the voltage vector Vm itself to a modified voltage. Set to vector Vm'. Next, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50.
  • step S71 if the coordinates of the voltage vector Vm are located outside the full voltage operable area Z3, that is, in the inoperable area X, it is necessary to correct the voltage vector Vm, so the process proceeds to step S74. , the modulation area selection section 44 is activated.
  • step S74 the modulation area selection unit 44 refers to the phase ⁇ m of the voltage vector Vm with respect to the ⁇ axis, and according to the correlation table of FIG. Select one of the modifications to Z1.
  • step S74 when the voltage vector Vm is in the state shown in FIG. 41, that is, the phase ⁇ m is within the range of 330° ⁇ m ⁇ 30°, the odd-number side operable region Z1 is selected based on the correlation table shown in FIG. Ru. After that, the process proceeds to step S80, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the odd-number side operable region Z1.
  • the modification command calculation unit 46 calculates the ON time of the upper arm switching elements 18A, 18B, and 18C of each phase by applying formula (VIII) to the voltage vector Vm, as shown in FIG. Calculate command values tu, tv, and tw. Note that adjustments using formulas (VIX) and (X) are not performed here. As a result, one of tu, tv, and tw is always zero. Note that in the case of the voltage vector Vm in FIG. 41, tw is always zero.
  • the remaining two non-zero command values among the ON times tu, tv, and tw calculated by applying formula (VIII) to the voltage vector Vm are Define t1 and t2.
  • the coordinates (t1', t2') that fall within the odd-numbered operable region Z1 of the corrected voltage vector Vm' are determined by maintaining the larger command value of t1 and t2 as is, and by changing the remaining smaller command value. , the following formula (XXVI) is obtained.
  • step S80 the modification command calculation unit 46 calculates the modified voltage vector Vm' that is the result of modification to the odd-number side operable region Z1. Thereafter, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S102, and the feedback processing unit 49 converts the correction amount (Vm'-Vm) of the correction voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis correction amount Vd err and the q-axis correction amount Vq err. is generated and fed back to the dq-axis current controller 34.
  • step S74 when the voltage vector Vm is in the state shown in FIG. 42, that is, the phase ⁇ m is within the range of 30° ⁇ m ⁇ 90°, the even-number side operable region Z2 is determined based on the correlation table of FIG. selected. After that, the process proceeds to step S90, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the even number side operable region Z2.
  • the modification command calculation unit 46 calculates the OFF time of the upper arm switching elements 18A, 18B, and 18C of each phase by applying formula (XIII) to the voltage vector Vm, as shown in FIG.
  • Command values tu (upper bar), tv (upper bar), and tw (upper bar) are calculated. Note that adjustment using formula (XIV) is not performed here. As a result, one of tu (upper bar), tv (upper bar), and tw (upper bar) is always zero. Note that in the case of the voltage vector Vm in FIG. 42, tu (upper bar) is always zero.
  • step S90 the modification command calculation unit 46 calculates the modified voltage vector Vm' that is the result of modification to the even-number side operable region Z2. Thereafter, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S102, and the feedback processing unit 49 converts the correction amount (Vm'-Vm) of the correction voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis correction amount Vd err and the q-axis correction amount Vq err. is generated and fed back to the dq-axis current controller 34.
  • the phase voltage command correction unit 40 converts the voltage vector Vm belonging to the inoperable region X to the corrected voltage vector Vm' in the full voltage operable region Z3. Since the modulation section 50 then performs modulation control, it is possible to always perform modulation using the same modulation method. As a result, when controlling at a high modulation rate, even if the voltage vector Vm partially deviates from the full voltage operable region Z3, it is all corrected to within the full voltage operable region Z3, so common mode noise is always eliminated. Since it is driven using a modulation method that does not excite, common mode noise is significantly suppressed overall.
  • the voltage vector Vm when converting the voltage vector Vm into the corrected voltage vector Vm' within the full-voltage operable region Z3 in the phase voltage command modification unit 40, the voltage vector Vm is close to the inoperable region X to which the voltage vector Vm belongs.
  • the range is selected.
  • control since control is performed by feeding back the amount of correction of the corrected voltage vector Vm', it is possible to suppress the amount of correction of the corrected voltage vector Vm'. , Vv, and Vw can be stabilized.
  • FIG. 43 shows the waveform B (reference) of the three-phase voltage commands Vu, Vv, and Vw output from the modulation unit 50 by the power conversion device 1 of this embodiment and the common mode voltage waveform Vc. It can be seen that fluctuations in the common mode voltage waveform Vc are suppressed to a greater extent than in the conventional power converter 1.
  • the modulation region selection unit 44 refers to the phase ⁇ m of the voltage vector Vm with respect to the ⁇ axis, and according to the correlation table of FIG. In the method of selecting one of the modifications to the region Z1, as long as the rotational speed of the phase ⁇ m is always positive, the modulation region selection unit 44 selects the even-number side operable region Z2 and the phase ⁇ m at every phase interval of 60°. The odd number side operable region Z1 is alternately switched.
  • the amount of correction of the corrected voltage vector Vm' is fed back to the dq-axis current controller 34 to perform current control, as shown in equation (I). ing. Since the corrected voltage vector Vm' moves forward or backward in phase ⁇ m or increases or decreases in vector length with respect to the original voltage vector Vm, information regarding these correction amounts is fed back to the dq-axis current controller 34.
  • the current is controlled using the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref that are output, the influence thereof is reflected.
  • FIG. 44(A) shows the influence on the phase voltage command value due to the modification of the voltage vector Vm.
  • Line D in FIG. 44(A) indicates the ⁇ -axis voltage command value V ⁇ ref and the ⁇ -axis obtained by coordinate-converting the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref to the ⁇ -axis using formula (II).
  • the concept is to virtually smooth out the movement trajectory by applying filters in the rotational direction and the radial direction.
  • the voltage vector Vm has the switching boundary phase (30°, 90°, 150° , 210°, 270°, 330°).
  • FIG. 44(B) is a conceptual diagram showing a part of the movement locus in this area D1 enlarged without smoothing. Since the actual voltage vector Vm vibrates finely, the movement locus of the voltage vector Vm reciprocates in the circumferential direction before and after the switching boundary phase of 270°. If the movement locus of the voltage vector Vm is defined by the control timing time series k1 to k7 for each control cycle Ts, and if the correlation table of FIG.
  • the modulation area selection unit 44 modifies the correlation table of FIG. 31. Specifically, the voltage vector Vm rotates in the opposite direction, passes through the switching boundary phase (270° in FIG. 44(B)) in the reverse rotation direction, and enters the operable region of the reverse rotation destination (in FIG. 44(B)). When the odd-number side operable area Z1) is about to be selected, it is forcibly replaced with the operable area before reverse rotation (even-number side operable area Z2 in FIG. 44(B)).
  • the modulation area selection unit 44 selects the d-axis voltage command value Vd output from the dq-axis current controller 34 from the current control timing k to the next (future) control timing k+1. ref and the q-axis voltage command value Vq ref are estimated using the following formula (XXVIII).
  • the voltage vector Vm is reversely rotated at the next control timing k+1, and the switching boundary phase is also reversely rotated. It is possible to determine whether or not to pass in the direction. Only when the vehicle passes in the reverse rotation direction, the operable region before reverse rotation may be selected.
  • FIG. 45 shows the waveform B (reference) of the three-phase voltage commands Vu, Vv, and Vw output from the modulation section 50 and the common mode voltage waveform Vc when correction control is applied in the modulation region selection section 44. It can be seen that fluctuations in the common mode voltage waveform Vc are suppressed compared to the fluctuations in FIG. 43.
  • odd voltage RSPWM, even voltage RSPWM, or full voltage RSPWM has been exemplified as a modulation method using a part of the basic vector area B, but the present invention is not limited to this. , other modulation schemes can be adopted.
  • the modulation unit 50 has two modulation methods: the odd voltage modulation processing unit 52 that performs odd voltage RSPWM, and the even voltage modulation processing unit 54 that performs even voltage RSPWM.
  • Modulation section 50 may have a single modulation method.
  • the modulation section 50 may include a first modulation processing section that executes another first modulation method and a second modulation processing section that executes another second modulation method, and these may be switched as appropriate. Furthermore, in the present invention, the modulation section 50 can employ three or more types of modulation methods and switch between them as appropriate.
  • (Method A) in the phase voltage command modification unit 40 the case where the voltage vector Vm is modified to be on the boundary between the inoperable region and the voltage operable region is illustrated, but the present invention is limited to this. It is also possible to modify it inside this boundary. Further, (Method A), (Method B), (Method C), and (Method D) which are voltage vector correction methods are examples, and other correction methods can be adopted. For example, as an example of combining (Method A), (Method B), and (Method C), as shown in FIG. It is also preferable to correct the corrected voltage vector Vm' at the intersection of G and the boundary line Y1.
  • the driving of the motor (load) of an electric compressor has been explained as an example, but the present invention is not limited thereto, and is also effective when driving a motor other than the motor of the electric compressor. Furthermore, the present invention is applicable to various power conversion devices that convert DC voltage into AC voltage using an inverter and apply the voltage to a load.

Abstract

[Problem] To suppress common-mode noise without changing the modulation method by outputting an identical voltage vector by using only a region capable of modulating a voltage vector outside the region capable of modulation in a modulation method for suppressing excitation of common-mode noise for which the region capable of modulation is limited. [Solution] A power conversion device 1 equipped with an inverter circuit 27 and a control device 21 for controlling the switching of a switching element. The control device 21 is equipped with: a modulation unit 50 which sets a partial region in a base voltage space, which is a voltage vector region capable of outputting in an inverter circuit, as a region capable of modulation; and a phase voltage command correction unit 40 for calculating a corrected voltage vector obtained by correcting the voltage vector to within the region capable of modulation when the voltage vector falls inside the base voltage space and outside the region capable of modulation. As a result, the modulation unit 50 outputs by using the corrected voltage vector.

Description

電力変換装置power converter
 本発明は、直流電圧を交流電圧に変換する電力変換装置に関するものである。 The present invention relates to a power conversion device that converts DC voltage to AC voltage.
 従来、電源に伝搬する伝導ノイズを抑制するためのパルス幅変調(PWM)は種々提案されているが、その手法は大きく二つに分けられる。一つはコモンモードノイズの要因となるコモンモード電圧の変動を完全に抑制する手法であり、もう一つはコモンモード電圧の変動を許容しながら部分的に抑制する手法である。 Conventionally, various pulse width modulation (PWM) methods have been proposed for suppressing conduction noise propagating to a power supply, but the methods can be broadly divided into two. One is a method that completely suppresses fluctuations in the common mode voltage that cause common mode noise, and the other is a method that partially suppresses fluctuations in the common mode voltage while allowing the fluctuations.
 前者の手法としては奇数電圧ベクトルのみ、或いは、偶数電圧ベクトルのみを出力するパルス幅変調が挙げられる。この手法によれば、キャリア周期内におけるコモンモード電圧の変動を完全に抑制することが可能である。また、電気角位相に応じて奇数電圧ベクトルのみを出力するか、偶数電圧ベクトルのみを出力するかを切り換えるパルス幅変調もある。この手法によっても、コモンモード電圧の変動を大きく抑制することができる(例えば、特許文献1参照)。 The former method includes pulse width modulation that outputs only odd voltage vectors or only even voltage vectors. According to this method, it is possible to completely suppress fluctuations in common mode voltage within a carrier period. There is also pulse width modulation that switches between outputting only odd-numbered voltage vectors and outputting only even-numbered voltage vectors depending on the electrical angle phase. Also by this method, fluctuations in the common mode voltage can be largely suppressed (see, for example, Patent Document 1).
 後者の手法としてはPWMパターンにおいて特定の相の相電圧の立ち上がりと立ち下がりに他の相の相電圧の立ち下がりと立ち上がりのタイミングを合わせるパルス幅変調が挙げられる(例えば、特許文献2参照)。更に、一相のスイッチングを固定し、他の二相をスイッチングする二相変調のパルス幅変調によってもコモンモード電圧の変動を抑制することができる(例えば、特許文献3参照)。 The latter method includes pulse width modulation in which the timing of the rise and fall of the phase voltage of a specific phase is matched with the fall and rise of the phase voltage of other phases in a PWM pattern (for example, see Patent Document 2). Furthermore, fluctuations in the common mode voltage can also be suppressed by pulse width modulation of two-phase modulation in which switching of one phase is fixed and switching of the other two phases is fixed (see, for example, Patent Document 3).
特許第5397448号公報Patent No. 5397448 WO2019/180763WO2019/180763 特許第5298003号公報Patent No. 5298003
 前者の手法(特許文献1)はコモンモード電圧変動抑制の方法として最も有効であるものの、使用する電圧ベクトルに制限があるため、線形出力領域(電圧ベクトルが一定の半径で一回転することができる振幅の最大値)が限られ、出力可能な変調率が制限される欠点がある。そのため、コンプレッサのモータを駆動する場合などには適用が困難であるか、或いは、回転数・変調率が高い場合には特許文献3の如く変調方式を切り換える必要がある。しかし、変調方式を切り替えると、切り替え時にコモンモード電圧の変動が生じるほか、より広い線形出力領域をもつ変調法式ではコモンモード電圧変動の抑制効果が劣化してしまう問題がある。 Although the former method (Patent Document 1) is the most effective method for suppressing common mode voltage fluctuations, it has limitations on the voltage vectors used, so it is limited to the linear output region (where the voltage vector can rotate once with a constant radius). The disadvantage is that the maximum value of amplitude) is limited, and the modulation rate that can be output is limited. Therefore, it is difficult to apply this method when driving a compressor motor, or when the rotational speed and modulation rate are high, it is necessary to switch the modulation method as in Patent Document 3. However, when the modulation method is switched, there is a problem in that the common mode voltage fluctuates at the time of switching, and the effect of suppressing common mode voltage fluctuation is degraded in a modulation method having a wider linear output region.
 これに対して後者の手法(特許文献2、特許文献3)は、線形出力領域を通常の最大まで利用可能であり、高い変調率を実現できるものの、やはりコモンモード電圧の変動抑制効果は、前者の手法よりも劣る。  On the other hand, although the latter method (Patent Document 2, Patent Document 3) can utilize the linear output region to the normal maximum and achieve a high modulation rate, the effect of suppressing common mode voltage fluctuation is still lower than that of the former method. method. 
 ここで、特許文献3では、二相変調と三相変調を運転領域によって切り換えており、これと同様に前述した前者の手法と後者の手法を切り換えることが考えられるが、パルス幅変調方式の切り換えショックが発生する問題が生じる。  Here, in Patent Document 3, two-phase modulation and three-phase modulation are switched depending on the operating region, and it is possible to switch between the former method and the latter method described above in the same way, but switching of the pulse width modulation method A shock problem arises. 
 本発明は、係る従来の技術的課題を解決するために成されたものであり、ノイズ抑制効果は高いが変調率が限られるパルス幅変調において、高い変調率動作を可能とする電力変換装置を提供することを目的とする。 The present invention has been made in order to solve such conventional technical problems, and provides a power conversion device that enables high modulation rate operation in pulse width modulation, which has a high noise suppression effect but has a limited modulation rate. The purpose is to provide.
 本発明は、直流電圧を交流電圧に変換する電力変換装置において、各相のスイッチング素子の接続点に生じる相電圧を負荷に印加するインバータ回路と、前記インバータ回路の前記スイッチング素子のスイッチングを制御する制御装置と、を備え、前記制御装置は、前記インバータ回路における出力可能な電圧ベクトル領域である基本電圧空間の一部の領域を変調可能領域とする変調部と、指令電圧ベクトルが前記基本電圧空間内且つ前記変調可能領域外に属する場合に、前記指令電圧ベクトルを前記変調可能領域内に修正した修正電圧ベクトルを算出する相電圧指令修正部と、を備え、前記変調部は、前記修正電圧ベクトルを利用して出力することを特徴とする電力変換装置である。 The present invention provides a power conversion device that converts a DC voltage into an AC voltage, and includes an inverter circuit that applies phase voltages generated at connection points of switching elements of each phase to a load, and that controls switching of the switching elements of the inverter circuit. a control device, the control device includes a modulator whose modulation region is a part of a basic voltage space that is a voltage vector region that can be output in the inverter circuit; a phase voltage command correction unit that calculates a corrected voltage vector in which the command voltage vector is corrected to be within the modulation possible area when the command voltage vector is within the modulation possible area and outside the modulation possible area; This is a power conversion device characterized by outputting power using a power converter.
 上記電力変換装置に関連して、前記変調部は、前記変調可能領域となる第一変調可能領域を有する第一変調処理部と、前記変調可能領域となり、前記第一変調可能領域と異なる領域となる第二変調可能領域を有する第二変調処理部と、を備え、前記相電圧指令修正部は、前記第一変調可能領域及び前記第二変調可能領域のいずれかの領域内に、前記修正電圧ベクトルを修正すること特徴としてもよい。 In relation to the power conversion device, the modulation unit includes a first modulation processing unit having a first modulation area that is the modulation area, and an area that is the modulation area and is different from the first modulation area. a second modulation processing section having a second modulation possible region, wherein the phase voltage command modification section has a second modulation processing section having a second modulation possible region; It may also be a feature to modify the vector.
 上記電力変換装置に関連して、前記相電圧指令修正部は、前記指令電圧ベクトルの修正先として、前記第一変調可能領域及び前記第二変調可能領域のいずれかを選択する変調領域選択部を有し、前記変調領域選択部は、前記指令電圧ベクトルの位相に基づいて、前記第一変調可能領域及び前記第二変調可能領域を切り替えることを特徴としてもよい。 In relation to the power conversion device, the phase voltage command modification section includes a modulation region selection section that selects either the first modulation possible region or the second modulation possible region as a modification destination of the command voltage vector. The modulation area selection unit may switch between the first modulation possible area and the second modulation possible area based on the phase of the command voltage vector.
 上記電力変換装置に関連して、前記第一変調処理部は、奇数電圧ベクトルのみを出力するパルス幅変調を実行し、前記第二変調処理部は、偶数電圧ベクトルのみを出力するパルス幅変調を実行することを特徴としてもよい。 In relation to the power conversion device, the first modulation processing section executes pulse width modulation that outputs only odd voltage vectors, and the second modulation processing section executes pulse width modulation that outputs only even voltage vectors. It may also be characterized by executing.
 上記電力変換装置に関連して、前記相電圧指令修正部は、前記指令電圧ベクトルの修正先として、前記第一変調可能領域及び前記第二変調可能領域のいずれかを選択する変調領域選択部を有し、前記変調領域選択部は、前記第一変調可能領域及び前記第二変調可能領域の切り替えを実行した直後は、前記第一変調可能領域及び前記第二変調可能領域の切り替えを実行しないことを特徴としてもよい。 In relation to the power conversion device, the phase voltage command modification section includes a modulation region selection section that selects either the first modulation possible region or the second modulation possible region as a modification destination of the command voltage vector. and the modulation area selection unit does not switch the first modulation area and the second modulation area immediately after switching the first modulation area and the second modulation area. may be a feature.
 上記電力変換装置に関連して、前記変調領域選択部における前記第一変調可能領域及び前記第二変調可能領域を切り替える境界となる位相を切替境界位相と定義する際に、前記変調領域選択部は、前記電圧ベクトルが逆回転方向に前記切替境界位相を通過した場合は、前記第一変調可能領域及び前記第二変調可能領域の切り替えを実行しないことを特徴としてもよい。 In relation to the power conversion device, when defining a phase that is a boundary for switching between the first modulation possible region and the second modulation possible region in the modulation region selection section as a switching boundary phase, the modulation region selection section , when the voltage vector passes through the switching boundary phase in the reverse rotation direction, switching between the first modulation possible region and the second modulation possible region may not be performed.
 上記電力変換装置に関連して、前記変調領域選択部において、未来の前記指令電圧ベクトルを予測することで、前記第一変調可能領域及び前記第二変調可能領域の連続した切り替えを推定し、前記推定の結果、連続して切り替えが行われると推定された場合は、未来の前記指令電圧ベクトルの到来時に、前記第一変調可能領域及び前記第二変調可能領域の切り替えを実行しないことを特徴としてもよい。 In relation to the power conversion device, the modulation region selection unit estimates continuous switching of the first modulation possible region and the second modulation possible region by predicting the future command voltage vector; As a result of the estimation, if it is estimated that switching will be performed continuously, switching of the first modulation possible region and the second modulation possible region is not performed when the command voltage vector arrives in the future. Good too.
 上記電力変換装置に関連して、前記指令電圧ベクトルを生成する指令演算部を備え、前記指令演算部は、前記相電圧指令修正部によって算出される前記修正電圧ベクトルと修正前の前記指令電圧ベクトルの誤差を、次回以降の前記指令電圧ベクトルの演算で補償することを特徴としてもよい。 In relation to the power conversion device, a command calculation unit that generates the command voltage vector is provided, and the command calculation unit is configured to combine the corrected voltage vector calculated by the phase voltage command correction unit and the command voltage vector before correction. The present invention may be characterized in that the error in the command voltage vector is compensated for in the calculation of the command voltage vector from the next time onwards.
 上記電力変換装置に関連して、前記相電圧指令修正部は、前記変調可能領域を画定する境界線上に、前記修正電圧ベクトルを設定することを特徴としてもよい。 In relation to the power conversion device, the phase voltage command correction unit may set the corrected voltage vector on a boundary line that defines the modifiable region.
 上記電力変換装置に関連して、前記相電圧指令修正部は、前記電圧ベクトルと前記修正電圧ベクトルの関係について、互いの長さが同じ、且つ、互いの位相が異なるように設定することを特徴としてもよい。 In relation to the power conversion device, the phase voltage command correction unit sets the relationship between the voltage vector and the corrected voltage vector so that the lengths thereof are the same and the phases thereof are different from each other. You can also use it as
 上記電力変換装置に関連して、前記相電圧指令修正部は、前記電圧ベクトルと前記修正電圧ベクトルの関係について、互いの位相が同じ、且つ、互いの長さが異なるように設定することを特徴としてもよい。 In relation to the power conversion device, the phase voltage command correction unit sets the relationship between the voltage vector and the corrected voltage vector so that they have the same phase and different lengths. You can also use it as
 本発明によれば、動作可能領域外に属する電圧ベクトルを動作可能領域内に修正してから、変調部が変調制御を行うことができるので、常にコモンモードノイズの励起を抑制する変調方式が利用可能となり、総合的にコモンモードノイズを抑制することができるという優れた効果を奏し得る。また、本発明に関連する他の発明によれば、修正した電圧ベクトルと修正前の電圧ベクトルの誤差を考慮して、次に出力する電圧ベクトルの計算を行うようにしているので、指令電圧ベクトルが、インバータ回路が出力可能な範囲内でかつ変調部の動作可能領域外にある場合においても、直前の指令電圧ベクトルと等価な電圧ベクトルを出力することが可能となる。 According to the present invention, the modulator can perform modulation control after correcting a voltage vector that is outside the operable region to within the operable region, so a modulation method that always suppresses the excitation of common mode noise is used. This makes it possible to achieve an excellent effect of comprehensively suppressing common mode noise. Further, according to another invention related to the present invention, the next voltage vector to be output is calculated by taking into account the error between the corrected voltage vector and the voltage vector before correction. However, even when the inverter circuit is within the output range and outside the modulation unit's operable range, it is possible to output a voltage vector equivalent to the immediately previous command voltage vector.
本発明の実施形態にかかる電力変換装置の電気回路図である。FIG. 1 is an electrical circuit diagram of a power conversion device according to an embodiment of the present invention. 三相交流電圧指令値を示す図である。FIG. 3 is a diagram showing three-phase AC voltage command values. 線形出力領域を説明するための基本電圧空間を表す図である。FIG. 3 is a diagram showing a basic voltage space for explaining a linear output region. 電圧ベクトルと相電圧の関係を示す図である。FIG. 3 is a diagram showing the relationship between voltage vectors and phase voltages. 電圧ベクトル(基本電圧ベクトル)を示す図である。It is a figure showing a voltage vector (basic voltage vector). 同電力変換装置の制御装置の動作を説明するフローチャートである。It is a flowchart explaining the operation of the control device of the power converter. 奇数電圧RSPWMの出力領域を説明するための電圧空間を表す図である。FIG. 3 is a diagram showing a voltage space for explaining an output region of an odd voltage RSPWM. 出力領域と関数値の相関を示す図である。FIG. 3 is a diagram showing a correlation between an output region and a function value. 奇数電圧RSPWMの線形出力領域を説明する図である。FIG. 3 is a diagram illustrating a linear output region of an odd voltage RSPWM. 奇数電圧RSPWMの出力ベクトルと出力時間を示す図である。It is a figure which shows the output vector and output time of odd number voltage RSPWM. 奇数電圧RSPWMの出力ベクトルの例を示す図である。FIG. 6 is a diagram showing an example of an output vector of odd voltage RSPWM. 奇数電圧RSPWMのPWMパターンを示す図である。It is a figure which shows the PWM pattern of odd voltage RSPWM. 奇数電圧RSPWMの低変調率時の変調波形を示す図である。FIG. 7 is a diagram showing a modulation waveform of an odd voltage RSPWM at a low modulation rate. 偶数電圧RSPWMの出力領域を説明するための電圧空間を表す図である。FIG. 3 is a diagram showing a voltage space for explaining an output region of an even voltage RSPWM. 出力領域と関数値の相関を示す図である。FIG. 3 is a diagram showing a correlation between an output region and a function value. 偶数電圧RSPWMの線形出力領域を説明する図である。FIG. 3 is a diagram illustrating a linear output region of an even voltage RSPWM. 偶数電圧RSPWMの出力ベクトルと出力時間を示す図である。It is a figure which shows the output vector and output time of even number voltage RSPWM. 偶数電圧RSPWMの出力ベクトルの例を示す図である。FIG. 7 is a diagram showing an example of an output vector of even voltage RSPWM. 偶数電圧RSPWMの出力ベクトルの例を示す図である。FIG. 7 is a diagram showing an example of an output vector of even voltage RSPWM. 偶数電圧RSPWMのPWMパターンを示す図である。It is a figure which shows the PWM pattern of even number voltage RSPWM. 偶数電圧RSPWMの低変調率時の変調波形を示す図である。FIG. 7 is a diagram showing a modulation waveform of an even voltage RSPWM at a low modulation rate. 全電圧RSPWMの動作領域を示す図である。FIG. 13 is a diagram showing the operating region of the full voltage RSPWM. 位相判定式の全電圧RSPWMにおける奇数電圧RSPWMと偶数電圧RSPWMの適用範囲を電圧空間で表す図である。FIG. 7 is a diagram showing in voltage space the application range of odd voltage RSPWM and even voltage RSPWM in the total voltage RSPWM of the phase determination formula. 位相判定式の全電圧RSPWMにおける奇数電圧RSPWMと偶数電圧RSPWMが適用される各位相範囲を示す図である。FIG. 7 is a diagram showing each phase range to which an odd voltage RSPWM and an even voltage RSPWM are applied in the total voltage RSPWM of a phase determination formula. 全電圧RSPWMの低変調率時の変調波形を示す図である。FIG. 6 is a diagram showing a modulation waveform at a low modulation rate of full voltage RSPWM. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 全電圧RSPWMにおける、電圧ベクトルの各位相範囲と、電圧ベクトルの修正先の動作可能領域と、修正先で選択される境界の線分の対応関係を示す図である。FIG. 7 is a diagram showing the correspondence between each phase range of the voltage vector, the operable region to which the voltage vector is corrected, and the line segment of the boundary selected in the correction destination in full voltage RSPWM. 同制御装置における相電圧指令修正部の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a phase voltage command modification section in the control device. 同相電圧指令修正部の動作を説明するフローチャートである。It is a flowchart explaining operation of a common mode voltage command modification part. 全電圧RSPWMにおける、動作不能領域について、電圧ベクトルの修正先を電圧空間で表す図である。FIG. 6 is a diagram showing a voltage vector correction destination in a voltage space for an inoperable region in full voltage RSPWM. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 同制御装置における相電圧指令修正部の機能構成の変形例を示すブロック図である。It is a block diagram showing a modification of the functional configuration of a phase voltage command modification section in the control device. 同相電圧指令修正部の動作の変形例を説明するフローチャートである。It is a flowchart explaining the modification of the operation of a common mode voltage command modification part. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 電圧ベクトルの修正手法を電圧空間で表す図である。FIG. 3 is a diagram representing a voltage vector correction method in voltage space. 本電力変換装置の高変調率時の変調波形を示す図である。FIG. 3 is a diagram showing a modulation waveform at a high modulation rate of the present power conversion device. (A)は、本電力変換装置で生成される三相電圧指令値の移動軌跡を平均化した概念図であり、(B)は同移動軌跡の一部を拡大して示す概念図である。(A) is a conceptual diagram that averages the movement locus of three-phase voltage command values generated by the present power converter, and (B) is a conceptual diagram that shows a part of the same movement locus in an enlarged manner. 本電力変換装置の高変調率時の変調波形を示す図である。FIG. 3 is a diagram showing a modulation waveform at a high modulation rate of the present power conversion device. 電圧ベクトルの修正手法の変形例を電圧空間で表す図である。FIG. 7 is a diagram representing a modification of a voltage vector correction method in a voltage space.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings.
 本発明を適用した実施例の電力変換装置1は、電気自動車等の車両に搭載される車両用空気調和装置の冷媒回路を構成する所謂インバータ一体型電動圧縮機のモータ8(負荷)を駆動するものである。 A power conversion device 1 according to an embodiment of the present invention drives a motor 8 (load) of a so-called inverter-integrated electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner installed in a vehicle such as an electric vehicle. It is something.
 (1)電力変換装置1の回路構成
図1において実施例の電力変換装置1は、三相のインバータ回路27と、制御装置21を備えている。インバータ回路27は、直流電源(車両のバッテリ:例えば、350V)29の直流電圧Vdcを三相の交流電圧に変換してモータ8に印加する回路である。この場合、実施例のモータ8はIPMSM(Interior Permanent Magnet Synchronous Motor)である。
(1) Circuit configuration of power converter 1 In FIG. 1, the power converter 1 of the embodiment includes a three-phase inverter circuit 27 and a control device 21. The inverter circuit 27 is a circuit that converts the DC voltage Vdc of a DC power source (vehicle battery: for example, 350V) 29 into a three-phase AC voltage and applies it to the motor 8 . In this case, the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor).
 インバータ回路27は、U相ハーフブリッジ回路19U、V相ハーフブリッジ回路19V、W相ハーフブリッジ回路19Wを有しており、各相のハーフブリッジ回路19U~19Wは、それぞれ上アームスイッチング素子18A~18Cと、下アームスイッチング素子18D~18Fを個別に有している。更に、各スイッチング素子18A~18Fには、それぞれ還流ダイオード31が逆並列に接続されている。各上下アームスイッチング素子18A~18Fは、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)から構成されている。 The inverter circuit 27 includes a U-phase half-bridge circuit 19U, a V-phase half-bridge circuit 19V, and a W-phase half-bridge circuit 19W. Each phase half-bridge circuit 19U to 19W is connected to an upper arm switching element 18A to 18C, respectively. and lower arm switching elements 18D to 18F. Further, a free wheel diode 31 is connected in antiparallel to each of the switching elements 18A to 18F. In the embodiment, each of the upper and lower arm switching elements 18A to 18F is composed of an insulated gate bipolar transistor (IGBT) in which a MOS structure is incorporated in the gate portion.
 そして、インバータ回路27の上アームスイッチング素子18A~18Cのコレクタは、直流電源29及び平滑コンデンサ32の上アーム電源ライン(正極側母線)10に接続されている。一方、インバータ回路27の下アームスイッチング素子18D~18Fのエミッタは、直流電源29及び平滑コンデンサ32の下アーム電源ライン(負極側母線)15に接続されている。 The collectors of the upper arm switching elements 18A to 18C of the inverter circuit 27 are connected to the DC power supply 29 and the upper arm power supply line (positive bus) 10 of the smoothing capacitor 32. On the other hand, the emitters of the lower arm switching elements 18D to 18F of the inverter circuit 27 are connected to the lower arm power supply line (negative bus) 15 of the DC power supply 29 and the smoothing capacitor 32.
 この場合、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aのエミッタと下アームスイッチング素子18Dのコレクタが直列に接続され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bのエミッタと下アームスイッチング素子18Eのコレクタが直列に接続され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cのエミッタと下アームスイッチング素子18Fのコレクタが直列に接続されている。 In this case, the emitter of the upper arm switching element 18A of the U-phase half bridge circuit 19U and the collector of the lower arm switching element 18D are connected in series, and the emitter of the upper arm switching element 18B and the lower arm switching element of the V-phase half bridge circuit 19V are connected in series. 18E are connected in series, and the emitter of the upper arm switching element 18C and the collector of the lower arm switching element 18F of the W-phase half bridge circuit 19W are connected in series.
 そして、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dの接続点(U相電圧Vu)は、モータ8のU相の電機子コイルに接続され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eの接続点(V相電圧Vv)は、モータ8のV相の電機子コイルに接続され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fの接続点(W相電圧Vw)は、モータ8のW相の電機子コイルに接続されている。 The connection point (U phase voltage Vu) between the upper arm switching element 18A and the lower arm switching element 18D of the U phase half bridge circuit 19U is connected to the U phase armature coil of the motor 8, and the V phase half bridge circuit 19U is connected to the U phase armature coil of the motor 8. The connection point (V-phase voltage Vv) between the upper arm switching element 18B and the lower arm switching element 18E is connected to the V-phase armature coil of the motor 8, and the connection point between the upper arm switching element 18C and the lower arm switching element 18B of the W-phase half bridge circuit 19W is connected to the V-phase armature coil of the motor 8. A connection point (W-phase voltage Vw) of the arm switching element 18F is connected to the W-phase armature coil of the motor 8.
 (制御装置の基本構成)
次に、制御装置21はプロセッサを有するマイクロコンピュータから構成されており、実施例では車両のECUから回転数指令値を入力し、モータ8からモータ電流(相電流)を取得して、これらに基づき、インバータ回路27の各スイッチング素子18A~18FのON/OFF状態(スイッチング)を制御する。具体的には、各スイッチング素子18A~18Fのゲートに印加するゲート電圧を制御する。
(Basic configuration of control device)
Next, the control device 21 is composed of a microcomputer having a processor, and in the embodiment, inputs a rotation speed command value from the ECU of the vehicle, obtains a motor current (phase current) from the motor 8, and based on these, , controls the ON/OFF state (switching) of each switching element 18A to 18F of the inverter circuit 27. Specifically, the gate voltage applied to the gate of each switching element 18A to 18F is controlled.
 実施例の制御装置21は、dq軸電流指令演算部28と、相電圧指令値演算部33と、相電圧指令修正部40と、変調部50と、PWM信号生成部36と、ゲートドライバ37と、モータ8に流れる各相のモータ電流(相電流)であるU相電流iu、V相電流iv、W相電流iwを測定するためのカレントトランスから成る電流センサ26A、26B、26Cを有している。各電流センサ26A~26Cは相電圧指令演算部33に接続されている。 The control device 21 of the embodiment includes a dq-axis current command calculation section 28, a phase voltage command value calculation section 33, a phase voltage command modification section 40, a modulation section 50, a PWM signal generation section 36, and a gate driver 37. , has current sensors 26A, 26B, and 26C comprising current transformers for measuring the motor currents (phase currents) of each phase flowing through the motor 8, such as U-phase current iu, V-phase current iv, and W-phase current iw. There is. Each current sensor 26A to 26C is connected to a phase voltage command calculation section 33.
 尚、実施例では電流センサ26AはU相電流iuを測定し、電流センサ26BはV相電流ivを測定し、電流センサ26CはW相電流iwを測定するが、電流センサ26AによりU相電流iuを測定し、電流センサ26BによりV相電流ivを測定して、W相電流iwはこれらから計算により求めてもよい。また、各相のモータ電流を検出する方法については実施例のように電流センサ26A~26Cで測定する以外に、下アーム電源ライン15の電流値をシャント抵抗により検出し、その電流値とモータ8の運転状態から相電圧指令演算部33が推定する方法などがあることから、各相電流を検出・推定する方法に関しては、特に限定しない。 In the embodiment, the current sensor 26A measures the U-phase current iu, the current sensor 26B measures the V-phase current iv, and the current sensor 26C measures the W-phase current iw. The V-phase current iv may be measured by the current sensor 26B, and the W-phase current iw may be calculated from these. In addition, as for the method of detecting the motor current of each phase, in addition to measuring with the current sensors 26A to 26C as in the embodiment, the current value of the lower arm power supply line 15 is detected with a shunt resistor, and the current value and the motor 8 There is no particular limitation on the method of detecting and estimating each phase current, as there is a method for the phase voltage command calculation unit 33 to estimate it from the operating state of the phase voltage command calculation unit 33.
 (dq軸電流指令演算部)
dq軸電流指令演算部28は、モータ8を制御するための目標値として、d軸電流指令値及びq軸電流指令値を出力する。
(dq-axis current command calculation section)
The dq-axis current command calculation unit 28 outputs a d-axis current command value and a q-axis current command value as target values for controlling the motor 8.
 (相電圧指令演算部)
相電圧指令演算部33は、モータ8の電気角、d軸電流指令値Idref及びq軸電流指令値Iqrefと、電流センサ26Bで検出される三相電流をdq軸に変換したd軸電流Id及びq軸電流Iqに基づくベクトル制御により、モータ8の各相の電機子コイルに印加するU相電圧Vu、V相電圧Vv、W相電圧Vwを生成するための三相変調の相電圧指令値Vuref(以下、U相電圧指令値Vuref)、Vvref(以下、V相電圧指令値Vvref)、Vwref(以下、W相電圧指令値Vwref)を演算し、出力する。具体的に、相電圧指令演算部33は、dq軸電流制御器34、座標変換部35を有する。なお、ここでは相電圧指令演算部33が、三相交流の相電圧指令値(指令電圧ベクトル)を出力する場合を例示しているが、本発明はこれに限定されない。指令演算部が、何らかの指令電圧ベクトルを演算することができれば、他の形態の出力であっても良い。
(Phase voltage command calculation section)
The phase voltage command calculation unit 33 calculates the electrical angle of the motor 8, the d-axis current command value Id ref , the q-axis current command value Iq ref , and the d-axis current obtained by converting the three-phase current detected by the current sensor 26B into the dq-axis. Phase voltage command for three-phase modulation to generate U-phase voltage Vu, V-phase voltage Vv, and W-phase voltage Vw to be applied to the armature coil of each phase of motor 8 by vector control based on Id and q-axis current Iq. The values Vu ref (hereinafter referred to as U-phase voltage command value Vu ref ), Vv ref (hereinafter referred to as V-phase voltage command value Vv ref ), and Vw ref (hereinafter referred to as W-phase voltage command value Vw ref ) are calculated and output. Specifically, the phase voltage command calculation unit 33 includes a dq-axis current controller 34 and a coordinate conversion unit 35. Note that although a case is exemplified here in which the phase voltage command calculation unit 33 outputs a three-phase AC phase voltage command value (command voltage vector), the present invention is not limited to this. Other forms of output may be used as long as the command calculation unit can calculate some command voltage vector.
 dq軸電流制御器34は、モータ8に流れる三相電流をdq軸に変換したd軸電流Id及びq軸電流Iqと、dq軸電流指令演算部28から出力されるd軸電流指令値Idref及びq軸電流指令値Iqrefを比較して、両者が一致するように電流をフィードバック制御(例えばPI制御)する。更に、このdq軸電流制御器34には、後述する相電圧指令修正部40から出力される修正電圧ベクトルVm'の修正量(Vm'-Vm)が、dq軸電圧に変換したd軸修正量Vderr及びq軸修正量Vqerrとなる形態でフィードバックされており、これらも値も、上記PI制御に反映させている。その結果、dq軸電流制御器34から、d軸電圧指令値Vdref及びq軸電圧指令値Vqrefが出力される。具体例として、dq軸電流制御器34は、下記数式(I)によってPI制御を実行すればよい。
Figure JPOXMLDOC01-appb-M000001
The dq-axis current controller 34 outputs a d-axis current Id and a q-axis current Iq obtained by converting the three-phase current flowing through the motor 8 into dq-axes, and a d-axis current command value Id ref output from the dq-axis current command calculation unit 28. and q-axis current command value Iq ref are compared, and the current is feedback-controlled (for example, PI control) so that the two match. Furthermore, this dq-axis current controller 34 has a d-axis correction amount converted into a dq-axis voltage by a correction amount (Vm'-Vm) of a corrected voltage vector Vm' outputted from a phase voltage command correction unit 40, which will be described later. It is fed back in the form of Vd err and q-axis correction amount Vq err , and these values are also reflected in the above-mentioned PI control. As a result, the dq-axis current controller 34 outputs the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref . As a specific example, the dq-axis current controller 34 may perform PI control using the following formula (I).
Figure JPOXMLDOC01-appb-M000001
 座標変換部35は、dq軸電流制御器34から得られるd軸電圧指令値Vdref及びq軸電圧指令値Vqrefにより、下記数式(II)を用いてα軸電圧指令値Vαref及びβ軸電圧指令値Vβrefを算出し、これらα軸電圧指令値Vαref及びβ軸電圧指令値Vβrefから数式(III)を用いてUVW各相の電圧指令値Vuref、Vvref、Vwref(相電圧指令値)を算出する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
The coordinate conversion unit 35 converts the α-axis voltage command value Vα ref and the β-axis voltage command value Vα ref and the β-axis voltage command value using the following formula (II) from the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref obtained from the dq-axis current controller 34. The voltage command value Vβ ref is calculated, and the voltage command values Vu ref , Vv ref , Vw ref ( phases voltage command value).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 上記数式(III)を、α軸を基準とした位相θmと、α軸電圧指令値Vαref及びβ軸電圧指令値Vβrefから構成される電圧ベクトル(指令電圧ベクトル)Vmで書き直すと下記数式(IV)のようになる。
Figure JPOXMLDOC01-appb-M000004
If the above formula (III) is rewritten as a voltage vector (command voltage vector) Vm composed of a phase θm with the α axis as a reference, an α axis voltage command value Vα ref , and a β axis voltage command value Vβ ref , the following formula ( IV).
Figure JPOXMLDOC01-appb-M000004
 図2は数式(IV)で算出された各相の電圧指令値Vuref、Vvref、Vwrefの波形を示し、図3は線形出力領域kHを示している。線形出力領域とは、図3の電圧空間を表す図において、電圧ベクトルが綺麗に一回転する(円を描く)ことができる振幅の最大値である。三相インバータの電圧空間は図3のように六角形となるため、理論上、線形出力領域は六角形の内接円となる。この出願では一般的な三相変調における線形出力領域kHを1として表記し、他の変調方式の線形出力領域を正規化して論ずる。 FIG. 2 shows the waveforms of the voltage command values Vu ref , Vv ref , and Vw ref for each phase calculated using formula (IV), and FIG. 3 shows the linear output region kH. The linear output region is the maximum value of the amplitude at which the voltage vector can make one complete rotation (draw a circle) in the diagram representing the voltage space in FIG. 3. Since the voltage space of a three-phase inverter is hexagonal as shown in FIG. 3, the linear output region is theoretically the inscribed circle of the hexagon. In this application, the linear output region kH in general three-phase modulation is expressed as 1, and the linear output regions of other modulation methods are normalized and discussed.
 また、U相電圧Vu、V相電圧Vv、W相電圧VwのHigh、Lowの状態を纏めると、図4に示すようなV0~V7の8つの電圧ベクトル(基本電圧ベクトル)の状態に表現することができる。このうち、V1、V3、V5が奇数電圧ベクトル、V2、V4、V6が偶数電圧ベクトル、V0、V7が零電圧ベクトルであり、各電圧ベクトルを電圧空間で示すと図5のようになる。 Furthermore, when the High and Low states of the U-phase voltage Vu, V-phase voltage Vv, and W-phase voltage Vw are summarized, they are expressed in the states of eight voltage vectors (basic voltage vectors) from V0 to V7 as shown in Figure 4. be able to. Among these, V1, V3, and V5 are odd voltage vectors, V2, V4, and V6 are even voltage vectors, and V0 and V7 are zero voltage vectors. When each voltage vector is shown in voltage space, it becomes as shown in FIG.
 実施例の座標変換部35は、更に下記数式(V)と数式(VI)を用いて各相の二相変調の電圧指令値Vuref2、Vvref2、Vwref2を算出している。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
The coordinate conversion unit 35 of the embodiment further calculates voltage command values Vu ref2 , Vv ref2 , and Vw ref2 for two-phase modulation of each phase using the following formula (V) and formula (VI).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 尚、各数式(V)、(VI)中のVmodは、三相変調の電圧指令値Vuref、Vvref、Vwrefから二相変調の電圧指令値Vuref2、Vvref2、Vwref2を算出するための補正値であり、数式(V)では三相の電圧指令値Vuref、Vvref、Vwrefのうち最小の値(min)をVdc/2に加算した値となり、数式(VI)では三相の電圧指令値Vuref、Vvref、Vwrefのうち最大の値(max)をVdc/2から減算した値となる。 Note that Vmod in each formula (V) and (VI) calculates the voltage command values Vu ref2 , Vv ref2 , Vw ref2 for two-phase modulation from the voltage command values Vu ref , Vv ref , Vw ref for three-phase modulation. In formula (V), it is the value obtained by adding the minimum value (min) of the three-phase voltage command values Vu ref , Vv ref , and Vw ref to Vdc/2, and in formula (VI), it is the correction value for The value is obtained by subtracting the maximum value (max) of the phase voltage command values Vu ref , Vv ref , and Vw ref from Vdc/2.
 そして、三相変調の電圧指令値Vuref、Vvref、Vwref(相電圧指令値)のうち振幅が最大となる相の符号が負の場合、数式(VI)を用いて当該振幅が最大となる相の上アームスイッチング素子をON固定する二相変調とし、電圧指令値Vuref、Vvref、Vwrefのうち振幅が最大となる相の符号が正の場合、数式(V)を用いて当該振幅が最大となる相の下アームスイッチング素子をON固定する二相変調とするものである。なお、振幅最大となる相の符号が正の場合、数式(VI)を用いて当該振幅が最大相の上アームスイッチング素子をON固定する二相変調とし、振幅最大となる相の符号が負の場合、数式(V)を用いて当該振幅が最大となる相の下アームスイッチング素子をON固定する二相変調としてもよい。 If the sign of the phase with the maximum amplitude among the three-phase modulation voltage command values Vu ref , Vv ref , and Vw ref (phase voltage command values) is negative, the amplitude is determined to be the maximum using formula (VI). The upper arm switching element of the phase of Two-phase modulation is used in which the lower arm switching element of the phase with the maximum amplitude is fixed ON. If the sign of the phase with the maximum amplitude is positive, use formula (VI) to perform two-phase modulation in which the upper arm switching element of the phase with the maximum amplitude is fixed ON, and if the sign of the phase with the maximum amplitude is negative. In this case, two-phase modulation may be performed in which the lower arm switching element of the phase in which the amplitude is maximum is fixed to ON using equation (V).
 (相電圧指令修正部)
相電圧指令修正部40は、座標変換部35で一時的に変換されるα軸電圧指令値Vαref及びβ軸電圧指令値Vβrefから構成される電圧ベクトルVmを修正して、修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'refから構成される修正電圧ベクトルVm'を生成し、これを座標変換部35に受け渡す。また、相電圧指令修正部40は、式(III)を利用して、修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'refから三相変調の修正相電圧指令値Vu'ref、Vv'ref、Vw'refを算出し、数式(V)と数式(VI)を用いて、各相の二相変調の修正電圧指令値Vu'ref2、Vv'ref2、Vw'ref2を算出して、これを座標変換部35に受け渡す。なお、相電圧指令修正部40における具体的な修正手法は、変調部50の変調手法と密接に関連するため、ここでは先に変調部50の説明を行うようにし、相電圧指令修正部40の詳細は後述する。
(Phase voltage command correction section)
The phase voltage command correction unit 40 corrects the voltage vector Vm composed of the α-axis voltage command value Vα ref and the β-axis voltage command value Vβ ref , which are temporarily converted by the coordinate conversion unit 35, to obtain a modified α-axis voltage. A corrected voltage vector Vm' composed of the command value Vα' ref and the corrected β-axis voltage command value Vβ' ref is generated, and this is passed to the coordinate conversion unit 35 . Further, the phase voltage command correction unit 40 uses equation (III) to calculate a corrected phase voltage command value Vu' for three-phase modulation from the corrected α-axis voltage command value Vα' ref and the corrected β-axis voltage command value Vβ' ref . Calculate ref , Vv' ref , and Vw' ref , and use formula (V) and formula (VI) to calculate corrected voltage command values Vu' ref2 , Vv' ref2 , and Vw' ref2 for two-phase modulation for each phase. Then, this is passed to the coordinate transformation section 35. Note that since the specific modification method in the phase voltage command modification section 40 is closely related to the modulation method in the modulation section 50, the modulation section 50 will be explained first here, and the modification method of the phase voltage command modification section 40 will be explained first. Details will be described later.
 (変調部)
変調部50は、奇数電圧変調処理部52と偶数電圧変調処理部54を有する。奇数電圧変調処理部52は、前述した修正電圧ベクトルVm'を利用して、基本電圧ベクトルのうちの奇数電圧ベクトルV1、V3、V5のみを一制御周期中に出力する奇数側パルス幅変調を実行する。偶数電圧変調処理部54は、基本電圧ベクトルのうちの偶数電圧ベクトルV2、V4、V6のみを一制御周期中に出力する偶数側パルス幅変調を実行する。奇数側パルス幅変調では、修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'refからから、直接各相の上アームスイッチング素子のON時間tu、tv、twを生成し、電圧ベクトル(V1、V3、V5)とそれらの出力時間を出力する。偶数側パルス幅変調では、修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'refから、直接二相の上アームスイッチング素子のON時間tuv、tvw、twuを生成し、電圧ベクトル(V2、V4、V6)とそれらの出力時間を出力する。本出願ではこの奇数側パルス幅変調を以下、奇数電圧RSPWM(Remote State PWM)と称し、偶数側パルス幅変調を以下、偶数電圧RSPWM(Remote State PWM)と称する。尚、係るパルス幅変調は、次のサンプリング点を待たずに空間ベクトル変調を行う瞬時空間ベクトル変調の考え方に基づくものである。
(Modulation section)
The modulation section 50 includes an odd voltage modulation processing section 52 and an even voltage modulation processing section 54. The odd voltage modulation processing unit 52 uses the above-mentioned modified voltage vector Vm' to perform odd side pulse width modulation in which only the odd voltage vectors V1, V3, and V5 of the basic voltage vectors are output during one control period. do. The even voltage modulation processing unit 54 executes even-number side pulse width modulation in which only the even voltage vectors V2, V4, and V6 of the basic voltage vectors are output during one control period. In odd-number side pulse width modulation, the ON times tu, tv, and tw of the upper arm switching elements of each phase are directly generated from the modified α-axis voltage command value Vα' ref and the modified β-axis voltage command value Vβ' ref , and the voltage Output vectors (V1, V3, V5) and their output times. In even-number side pulse width modulation, the ON times tuv, tvw, and twu of the two-phase upper arm switching elements are directly generated from the corrected α-axis voltage command value Vα' ref and the corrected β-axis voltage command value Vβ' ref , and the voltage vector (V2, V4, V6) and their output times are output. In this application, this odd-numbered pulse width modulation is hereinafter referred to as odd-numbered voltage RSPWM (Remote State PWM), and the even-numbered side pulse width modulation is hereinafter referred to as even-numbered voltage RSPWM (Remote State PWM). Note that such pulse width modulation is based on the concept of instantaneous space vector modulation in which space vector modulation is performed without waiting for the next sampling point.
 変調部50は、最大となる相の正負判定によって、奇数電圧RSPWMと偶数電圧RSPWMを切り替える。本出願では、このパルス幅変調を以下、最大相判定式の全電圧RSPWMと称する。 The modulation unit 50 switches between the odd voltage RSPWM and the even voltage RSPWM by determining whether the maximum phase is positive or negative. In this application, this pulse width modulation is hereinafter referred to as the total voltage RSPWM of the maximum phase determination formula.
 (PWM信号生成部)
PWM信号生成部36は、変調部50が出力する電圧ベクトルと出力時間を入力し、キャリア信号との大小を比較することによって、インバータ回路27のU相インバータ19U、V相インバータ19V、W相インバータ19Wの駆動指令信号となるPWM信号を生成し、出力する。 
(PWM signal generation section)
The PWM signal generation section 36 inputs the voltage vector and output time output by the modulation section 50, and compares the magnitude with the carrier signal, thereby generating signals between the U-phase inverter 19U, V-phase inverter 19V, and W-phase inverter of the inverter circuit 27. A PWM signal serving as a 19W drive command signal is generated and output.
 (ゲートドライバ)
ゲートドライバ37は、PWM信号生成部36から出力されるPWM信号に基づき、U相インバータ19Uのスイッチング素子18A、18Dのゲート電圧と、V相インバータ19Vのスイッチング素子18B、18Eのゲート電圧と、W相インバータ19Wのスイッチング素子18C、18Fのゲート電圧を発生させる。 
(gate driver)
Based on the PWM signal output from the PWM signal generation section 36, the gate driver 37 outputs the gate voltages of the switching elements 18A and 18D of the U-phase inverter 19U, the gate voltages of the switching elements 18B and 18E of the V-phase inverter 19V, and W. Gate voltages of switching elements 18C and 18F of phase inverter 19W are generated.
 そして、インバータ回路27の各スイッチング素子18A~18Fは、ゲートドライバ37から出力されるゲート電圧に基づき、ON/OFF駆動される。即ち、ゲート電圧がON状態(所定の電圧値)となるとスイッチング素子がON動作し、ゲート電圧がOFF状態(零)となるとスイッチング素子がOFF動作する。このゲートドライバ37は、スイッチング素子18A~18Fが前述したIGBTである場合には、PWM信号に基づいてゲート電圧をIGBTに印加するための回路であり、フォトカプラやロジックIC、トランジスタ等から構成される。  Then, each of the switching elements 18A to 18F of the inverter circuit 27 is driven ON/OFF based on the gate voltage output from the gate driver 37. That is, when the gate voltage is in an ON state (predetermined voltage value), the switching element is turned on, and when the gate voltage is in an OFF state (zero), the switching element is turned off. When the switching elements 18A to 18F are the above-mentioned IGBTs, the gate driver 37 is a circuit for applying a gate voltage to the IGBTs based on a PWM signal, and is composed of a photocoupler, a logic IC, a transistor, etc. Ru. 
 そして、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dの接続点の電圧がU相電圧Vu(相電圧)としてモータ8のU相の電機子コイルに印加(出力)され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eの接続点の電圧がV相電圧Vv(相電圧)としてモータ8のV相の電機子コイルに印加(出力)され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fの接続点の電圧がW相電圧Vw(相電圧)としてモータ8のW相の電機子コイルに印加(出力)される。  Then, the voltage at the connection point between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U is applied (output) to the U-phase armature coil of the motor 8 as the U-phase voltage Vu (phase voltage). , the voltage at the connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half-bridge circuit 19V is applied (output) to the V-phase armature coil of the motor 8 as a V-phase voltage Vv (phase voltage), The voltage at the connection point between the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half-bridge circuit 19W is applied (output) to the W-phase armature coil of the motor 8 as the W-phase voltage Vw (phase voltage). 
 (変調部の動作の詳細説明)
次に、図6以降を参照しながら、この実施例における変調部50の動作について説明する。図6は変調部50が行うパルス幅変調の全体の流れを説明するフローチャートである。ステップS1では、詳細を後述する相電圧指令修正部40によって修正された修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'ref、及び、三相変調の修正相電圧指令値Vu'ref、Vv'ref、Vw'refを、変調部50が受け取る。 
(Detailed explanation of the operation of the modulation section)
Next, the operation of the modulation section 50 in this embodiment will be explained with reference to FIG. 6 and subsequent figures. FIG. 6 is a flowchart illustrating the overall flow of pulse width modulation performed by the modulation section 50. In step S1, a modified α-axis voltage command value Vα' ref and a modified β-axis voltage command value Vβ' ref modified by the phase voltage command modification unit 40, the details of which will be described later, and a modified phase voltage command value Vu of three-phase modulation. The modulator 50 receives ' ref , Vv'ref , and Vw'ref .
 そして、ステップS2では前述した三相変調の修正相電圧指令値Vu'ref、Vv'ref、Vw'refのうち、振幅が最大となる相の符号が正であるか、負であるかを判別する。そして、三相変調の修正相電圧指令値Vu'ref、Vv'ref、Vw'refのうち、振幅が最大となる相の符号が正の場合、ステップS3に進み、奇数電圧RSPWMを実行する。 Then, in step S2, it is determined whether the sign of the phase with the maximum amplitude is positive or negative among the modified phase voltage command values Vu' ref , Vv' ref , and Vw' ref of the three-phase modulation described above. do. Then, if the sign of the phase with the maximum amplitude among the corrected phase voltage command values Vu' ref , Vv' ref , Vw' ref of the three-phase modulation is positive, the process proceeds to step S3, and odd voltage RSPWM is performed.
 (奇数電圧RSPWM)
奇数電圧RSPWMのステップS3で、変調部50は、下記数式(VII)と数式(VIII)を用いて、修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'refから各相の上アームスイッチング素子18A、18B、18CのON時間tu、tv、twを算出する。尚、数式(VII)のV1、V3、V5は奇数電圧ベクトル、Tsは一制御周期である。この制御周期Tsは一キャリア周期であってもよい。但し、この一制御周期Tsは、電気角一周期よりも十分に短い期間とする。また、Su、Sv、Swは、図7に示す電圧空間の出力領域(Sector)A~Cに対応する関数であり、各出力領域と関数Su、Sv、Swの対応は図8に示される。これら関数Su、Sv、Swは空間ベクトル変調における電圧ベクトルを選択するものである。尚、数式(VIII)の演算結果は数式(V)と同じになるため、ステップS3ではどちらを使用してもよい。 
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
(odd voltage RSPWM)
In step S3 of the odd voltage RSPWM, the modulation unit 50 calculates each phase from the corrected α-axis voltage command value Vα' ref and the corrected β-axis voltage command value Vβ' ref using the following formula (VII) and formula (VIII). The ON times tu, tv, and tw of the upper arm switching elements 18A, 18B, and 18C are calculated. Note that V1, V3, and V5 in formula (VII) are odd voltage vectors, and Ts is one control period. This control period Ts may be one carrier period. However, this one control period Ts is a period sufficiently shorter than one period of electrical angle. Further, Su, Sv, and Sw are functions corresponding to output regions (sectors) A to C of the voltage space shown in FIG. 7, and the correspondence between each output region and the functions Su, Sv, and Sw is shown in FIG. These functions Su, Sv, and Sw select voltage vectors in space vector modulation. Note that since the calculation result of formula (VIII) is the same as that of formula (V), either one may be used in step S3.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 次に、ステップS4では、数式(IX)を用いて、零電圧ベクトルV0を出力する時間である零電圧出力時間tを算出する。なお、ここでは、後述する変調域内判定部42を経て、あらかじめ修正された修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'refを採用していることから、この零電圧出力時間t0は、必ず零以上の値となる。
Figure JPOXMLDOC01-appb-M000009
Next, in step S4, the zero voltage output time t0 , which is the time to output the zero voltage vector V0, is calculated using formula (IX). Note that here, since the modified α-axis voltage command value Vα' ref and the modified β-axis voltage command value Vβ' ref that have been modified in advance through the modulation range determination unit 42, which will be described later, are adopted, this zero voltage output Time t0 always takes a value greater than or equal to zero.
Figure JPOXMLDOC01-appb-M000009
 ステップS5では、算出された零電圧出力時間tに基づいて、下記数式(X)を用いて各相の上アームスイッチング素子のON時間を修正する。これはON時間tu、tv、twの全てにt/3を加算することで行われる。これにより、零電圧出力時間が無くなり、モータ8のコモンモード電圧Vcの変動が解消されることになる。
Figure JPOXMLDOC01-appb-M000010
In step S5, based on the calculated zero voltage output time t0 , the ON time of the upper arm switching element of each phase is corrected using the following formula (X). This is done by adding t 0 /3 to all of the ON times tu, tv, and tw. This eliminates the zero voltage output time and eliminates fluctuations in the common mode voltage Vc of the motor 8.
Figure JPOXMLDOC01-appb-M000010
 そして、ステップS6において、図10に示されるように、変調部50が、各出力領域(Sector)に基づいて、その奇数電圧ベクトル(V1、V3、V5)とそれらの出力時間を決定する。そして、これらの値がステップS14で最終的にPWM信号生成部36に出力される。尚、図10は、奇数電圧RSPWMの出力領域(Sector)と電圧ベクトル、出力時間の関係を示している。  Then, in step S6, as shown in FIG. 10, the modulation unit 50 determines the odd voltage vectors (V1, V3, V5) and their output times based on each output region (Sector). These values are finally output to the PWM signal generation section 36 in step S14. Note that FIG. 10 shows the relationship among the output region (sector), voltage vector, and output time of the odd voltage RSPWM. 
 図9の円Q1は、奇数電圧RSPWM(odd RSPWM)を単体で利用した場合の線形出力領域を示している。一方、本実施例では、奇数電圧ベクトル(V1、V3、V5)の各頂点を結んだ三角形となる領域(以下、奇数側動作可能領域)Z1の全範囲を利用して出力を行っている。なお、奇数側動作可能領域Z1は、領域を画定する3つの線分Z1a、Z1b、Z1cを有している。図11には例えば出力領域Aにおいて、修正電圧ベクトルVm'に基づいて算出される奇数電圧ベクトルV1、V3、V5の出力時間を示している。更に、図12には、出力領域Aでの奇数電圧ベクトルV1、V3、V5の出力パターンを示している。 A circle Q1 in FIG. 9 indicates a linear output region when odd voltage RSPWM (odd RSPWM) is used alone. On the other hand, in this embodiment, the entire range of the triangular region Z1 (hereinafter referred to as the odd-number side operable region) connecting the vertices of the odd-numbered voltage vectors (V1, V3, V5) is used for output. Note that the odd-numbered operable region Z1 has three line segments Z1a, Z1b, and Z1c that define the region. FIG. 11 shows the output times of odd voltage vectors V1, V3, and V5 calculated based on the corrected voltage vector Vm' in the output region A, for example. Further, FIG. 12 shows output patterns of odd voltage vectors V1, V3, and V5 in output region A.
 なお、図9の円Q1の範囲内に、修正電圧ベクトルVm'が収まっている場合は、変調率が低い制御状態が続いていることを意味する。例えば、低変調率において、奇数電圧RSPWM「のみ」で変調する場合を仮定すると、UVW各相の変調波形は図13に示すようになって、コモンモード電圧Vcの変動は無い(低変調率時の奇数電圧RSPWMのみの変調波形)。 Note that if the corrected voltage vector Vm' falls within the range of the circle Q1 in FIG. 9, it means that the control state in which the modulation rate is low continues. For example, assuming a case where modulation is performed with "only" the odd voltage RSPWM at a low modulation rate, the modulation waveform of each UVW phase will be as shown in Figure 13, and there will be no fluctuation in the common mode voltage Vc (at a low modulation rate). (Modulation waveform of odd voltage RSPWM only).
 一方、円Q1の範囲内に、修正電圧ベクトルVm'が収まっていない場合は、変調率が高い制御状態になっていることを意味する。この場合の変調波形の詳細は後述する。 On the other hand, if the corrected voltage vector Vm' does not fall within the range of the circle Q1, it means that the modulation rate is in a high control state. Details of the modulation waveform in this case will be described later.
 (偶数電圧RSPWM) (Even voltage RSPWM)
 一方、ステップS2で三相変調の修正相電圧指令値Vu'ref、Vv'ref、Vw'refのうち、振幅が最大となる相の符号が負の場合、ステップS8に進み、偶数電圧RSPWMを実行する。このステップS8で、変調部50は、下記数式(XI)と数式(XII)を用いて、修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'refから二相の上アームスイッチング素子のON時間tuv、tvw、twuを算出する。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
On the other hand, if in step S2 the sign of the phase with the maximum amplitude among the corrected phase voltage command values Vu' ref , Vv' ref , Vw' ref of the three-phase modulation is negative, the process proceeds to step S8 and the even number voltage RSPWM is set. Execute. In this step S8, the modulation unit 50 uses the following formula (XI) and formula (XII) to determine the two-phase upper arm switching from the modified α-axis voltage command value Vα′ ref and the modified β-axis voltage command value Vβ′ ref . The ON times tuv, tvw, and twu of the elements are calculated.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 尚、tuvはU相とV相の上アームスイッチング素子18A、18BのON時間、tvwはV相とW相の上アームスイッチング素子18B、18CのON時間、twuはW相とU相の上アームスイッチング素子18C、18AのON時間である。また、数式(XI)のV2、V4、V6は偶数電圧ベクトル、Suv、Svw、Swuは図14に示す電圧空間の出力領域(Sector)A~Cに対応する関数であり、各出力領域と関数Suv、Svw、Swuの対応は図15に示される。これら関数Suv、Svw、Swuは空間ベクトル変調における電圧ベクトルを選択するものである。 In addition, tuv is the ON time of the upper arm switching elements 18A and 18B of the U phase and V phase, tvw is the ON time of the upper arm switching elements 18B and 18C of the V phase and W phase, and twu is the upper arm of the W phase and U phase. This is the ON time of the switching elements 18C and 18A. In addition, V2, V4, and V6 in formula (XI) are even voltage vectors, Suv, Svw, and Swu are functions corresponding to output regions (Sectors) A to C of the voltage space shown in FIG. 14, and each output region and function The correspondence between Suv, Svw, and Swu is shown in FIG. 15. These functions Suv, Svw, and Swu select voltage vectors in space vector modulation.
 更に、変調部50は、下記数式(XIII)を用いて、各相の上アームスイッチング素子18A、18B、18CのOFF時間tu(アッパーバー)、tv(アッパーバー)、tw(アッパーバー)を算出する。尚、数式(XIII)の演算結果は数式(XII)と同じになるため、ステップS8ではどちらを使用してもよい。
Figure JPOXMLDOC01-appb-M000013
Furthermore, the modulation unit 50 calculates the OFF times tu (upper bar), tv (upper bar), and tw (upper bar) of the upper arm switching elements 18A, 18B, and 18C of each phase using the following formula (XIII). do. Note that since the calculation result of formula (XIII) is the same as formula (XII), either one may be used in step S8.
Figure JPOXMLDOC01-appb-M000013
 次に、ステップS9では、数式(XIV)を用いて、零電圧ベクトルV7を出力する時間である零電圧出力時間tを算出する。なお、ここでは、後述する変調域内判定部42を経て、あらかじめ修正された修正α軸電圧指令値Vα'ref及び修正β軸電圧指令値Vβ'refを採用していることから、この零電圧出力時間tは、必ず零以上の値となる。
Figure JPOXMLDOC01-appb-M000014
Next, in step S9, the zero voltage output time t7 , which is the time to output the zero voltage vector V7, is calculated using formula (XIV). Note that here, since the modified α-axis voltage command value Vα' ref and the modified β-axis voltage command value Vβ' ref that have been modified in advance through the modulation range determination unit 42, which will be described later, are adopted, this zero voltage output The time t7 always takes a value greater than or equal to zero.
Figure JPOXMLDOC01-appb-M000014
 ステップS10では、算出された零電圧出力時間tに基づいて、下記数式(XV)、(XVI)を用いて各相の上アームスイッチング素子のOFF時間を修正する。これはOFF時間tu(アッパーバー)、tv(アッパーバー)、tw(アッパーバー)の全てにOFF時間となるt/3を加算することで行われる。これにより、零電圧出力時間が無くなり、モータ8のコモンモード電圧Vcの変動が解消されることになる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
In step S10, based on the calculated zero voltage output time t7 , the OFF time of the upper arm switching element of each phase is corrected using the following formulas (XV) and (XVI). This is performed by adding t 7 /3, which is the OFF time, to all of the OFF times tu (upper bar), tv (upper bar), and tw (upper bar). This eliminates the zero voltage output time and eliminates fluctuations in the common mode voltage Vc of the motor 8.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 そして、ステップS11において、図17に示されるように、変調部50が、各出力領域(Sector)に基づいて、その偶数電圧ベクトル(V2、V4、V6)とそれらの出力時間を決定する。そして、それらの値がステップS14で最終的にPWM信号生成部36に出力される。尚、図17は、偶数電圧RSPWMの出力領域(Sector)と電圧ベクトル、出力時間の関係を示している。  Then, in step S11, as shown in FIG. 17, the modulation unit 50 determines the even voltage vectors (V2, V4, V6) and their output times based on each output region (sector). Then, those values are finally output to the PWM signal generation section 36 in step S14. Note that FIG. 17 shows the relationship among the output region (sector), voltage vector, and output time of the even voltage RSPWM. 
 図16の円Q2は、この偶数電圧RSPWM(even RSPWM)を単体で利用した場合の線形出力領域を示している。一方、本実施例では、偶数電圧ベクトル(V2、V4、V6)の各頂点を結んだ三角形となる領域(以下、偶数側動作可能領域)Z2の全範囲を利用して出力を行っている。なお、偶数側動作可能領域Z2は、領域を画定する3つの線分Z2a、Z2b、Z2cを有している。図18には例えば出力領域Aにおいて、修正電圧ベクトルVm'に基づく偶数電圧ベクトルV2、V4、V6の出力時間を示しており、図19には例えば出力領域Cおいて、修正電圧ベクトルVm'に基づく偶数電圧ベクトルV2、V4、V6の出力時間を示している。更に、図20には出力領域Cでの各電圧ベクトルV4、V2、V6の出力パターンを示している。 Circle Q2 in FIG. 16 indicates the linear output region when this even voltage RSPWM (even RSPWM) is used alone. On the other hand, in this embodiment, the entire range of the triangular region Z2 (hereinafter referred to as even-number side operable region) connecting the vertices of the even-numbered voltage vectors (V2, V4, V6) is used for output. Note that the even-numbered operable region Z2 has three line segments Z2a, Z2b, and Z2c that define the region. FIG. 18 shows the output times of even voltage vectors V2, V4, and V6 based on the modified voltage vector Vm' in the output region A, for example, and FIG. The output times of the even voltage vectors V2, V4, and V6 based on the graph are shown. Further, FIG. 20 shows the output pattern of each voltage vector V4, V2, and V6 in the output region C.
 なお、円Q2の範囲内に、修正電圧ベクトルVm'が収まっている場合は、変調率が低い制御状態が続いていることを意味する。例えば、低変調率状態において、偶数電圧RSPWM「のみ」で変調する場合を仮定すると、UVW各相の変調波形は図21に示すようになって、コモンモード電圧Vcの変動は無い(低変調率時の偶数電圧RSPWMのみの変調波形)。  Note that if the corrected voltage vector Vm' falls within the range of the circle Q2, it means that the control state with a low modulation rate continues. For example, assuming that in a low modulation rate state, modulation is performed with "only" the even voltage RSPWM, the modulation waveform of each phase of UVW will be as shown in Figure 21, and there will be no fluctuation in the common mode voltage Vc (low modulation rate (Modulation waveform of only even voltage RSPWM). 
 一方、円Q2の範囲内に、修正電圧ベクトルVm'が収まっていない場合は、変調率が高い制御状態になっていることを意味する。この場合の変調波形の詳細は後述する。 On the other hand, if the corrected voltage vector Vm' does not fall within the range of the circle Q2, it means that the modulation rate is in a high control state. Details of the modulation waveform in this case will be described later.
 (最大相判定式の全電圧RSPWM)
なお、本実施形態では、奇数電圧RSPWMと偶数電圧RSPWMを切り替えながら、変調制御を行っているので、結果として、全電圧ベクトルを利用したRSPWMとなる。これを全電圧RSPWMと称する。全電圧RSPWMの中でも、本実施形態は、修正相電圧指令値Vu'ref、Vv'ref、Vw'refのうち、振幅が最大となる相の符号が正であるか負であるかによって、奇数電圧RSPWMと偶数電圧RSPWMを切り替えていることから、最大相判定式の全電圧RSPWMとなる。
(Total voltage RSPWM of maximum phase determination formula)
Note that in this embodiment, since modulation control is performed while switching between the odd voltage RSPWM and the even voltage RSPWM, the result is RSPWM that uses all voltage vectors. This is called the total voltage RSPWM. Among the total voltage RSPWM, in this embodiment, among the corrected phase voltage command values Vu' ref , Vv' ref , Vw' ref , the odd number is determined depending on whether the sign of the phase with the maximum amplitude is positive or negative. Since the voltage RSPWM and the even voltage RSPWM are switched, the total voltage RSPWM is the maximum phase determination formula.
 図22は、最大相判定式の全電圧RSPWMの動作可能領域Z3を示す。全電圧RSPWMの動作可能領域(以下、全電圧動作可能領域)Z3は、奇数側動作可能領域Z1と偶数側動作可能領域Z2を重畳させた領域となる。また、全電圧動作可能領域Z3の周囲を取り囲むようにして、全電圧動作可能領域Z3の範囲外となる領域(以下、動作不能領域)Xが、合計6か所存在している。動作不能領域Xは、二等辺三角形となる。 FIG. 22 shows the operable region Z3 of the total voltage RSPWM of the maximum phase determination formula. The full-voltage RSPWM operable region (hereinafter referred to as full-voltage operable region) Z3 is a region in which the odd-number side operable region Z1 and the even-number side operable region Z2 overlap. Further, there are a total of six areas X (hereinafter referred to as inoperable areas) that surround the full voltage operable area Z3 and are outside the range of the full voltage operable area Z3. The inoperable region X is an isosceles triangle.
 なお、図22の円Q3は、最大相判定式の全電圧RSPWMを単体で利用した場合の線形出力領域を示している。全電圧RSPWMによる線形出力領域となる円Q3は、奇数電圧RSPWMまたは偶数電圧RSPWMのそれぞれを単体で行う場合の線形出力領域となる円Q1、Q2に比して拡大される。一方、本実施例では、この線形出力領域(円Q3)を超えて、全電圧動作可能領域Z3の全範囲を利用して出力を行う。 Note that the circle Q3 in FIG. 22 indicates the linear output region when the total voltage RSPWM of the maximum phase determination formula is used alone. Circle Q3, which is the linear output region due to the total voltage RSPWM, is enlarged compared to circles Q1 and Q2, which are the linear output regions when odd voltage RSPWM or even voltage RSPWM is performed alone. On the other hand, in this embodiment, output is performed using the entire range of the full voltage operable region Z3 beyond this linear output region (circle Q3).
 なお、円Q3の範囲内に、修正電圧ベクトルVm'が収まっている場合は、変調率が低い制御状態が続いていることを意味する。一方、円Q3の範囲内に、修正電圧ベクトルVm'が収まっていない場合は、変調率が高い制御状態になっていることを意味する。 Note that if the corrected voltage vector Vm' falls within the range of the circle Q3, it means that the control state with a low modulation rate continues. On the other hand, if the corrected voltage vector Vm' does not fall within the range of the circle Q3, it means that the modulation rate is in a high control state.
 (位相判定式の全電圧RSPWM)
上記最大相判定式の全電圧RSPWMでは、変調部50が、三相変調の修正相電圧指令値Vu'ref、Vv'ref、Vw'refのうち、振幅が最大となる相の符号が正の場合と負の場合を判定し、これにより奇数電圧RSPWMと、偶数電圧RSPWMを切り換えるようにしている。一方で、本発明はそれに限らず、例えば、修正電圧ベクトルVm'のα軸を基準とした修正後の電圧ベクトルの位相θm'によって、奇数電圧RSPWMと偶数電圧RSPWMを切り換えるようにしてもよい。本出願ではこのパルス幅変調を以下、位相判定式の全電圧RSPWMと称する。
(Total voltage RSPWM of phase judgment formula)
In the total voltage RSPWM of the maximum phase determination formula described above, the modulation unit 50 selects the corrected phase voltage command values Vu' ref , Vv' ref , Vw' ref of the three-phase modulation, in which the sign of the phase with the maximum amplitude is positive. The positive and negative cases are determined, and the odd voltage RSPWM and the even voltage RSPWM are switched accordingly. On the other hand, the present invention is not limited thereto. For example, the odd voltage RSPWM and the even voltage RSPWM may be switched depending on the phase θm' of the corrected voltage vector with respect to the α axis of the corrected voltage vector Vm'. In this application, this pulse width modulation is hereinafter referred to as phase-determined total voltage RSPWM.
 図23は、位相判定式の全電圧RSPWMの動作領域において、奇数電圧RSPWMが適用される位相領域oddと、偶数電圧RSPWMが適用される位相領域evenを示している。なお、図24は、各位相範囲と、これに適用される奇数電圧RSPWM及び偶数電圧RSPWMの対応関係を示している。図23及び図24に示すように、電気角一周期を六つの領域(330°<θm'≦30°、30°<θm'≦90°、90°<θm'≦150°、150°<θm'≦210°、210°<θm'≦270°、270°<θm'≦330°)に分け、交互に奇数電圧RSPWMと偶数電圧RSPWMを切り換える。 FIG. 23 shows a phase region odd to which an odd voltage RSPWM is applied and a phase region even to which an even voltage RSPWM is applied in the operation region of the total voltage RSPWM of the phase determination formula. Note that FIG. 24 shows the correspondence between each phase range and the odd voltage RSPWM and even voltage RSPWM applied thereto. As shown in FIGS. 23 and 24, one period of electrical angle is divided into six regions (330°<θm'≦30°, 30°<θm'≦90°, 90°<θm'≦150°, 150°<θm '≦210°, 210°<θm'≦270°, 270°<θm'≦330°), and the odd voltage RSPWM and the even voltage RSPWM are alternately switched.
 なお、位相判定式の全電圧RSPWMの動作可能領域出力領域Z3は、図22の最大相判定式の全電圧RSPWMと同じである。つまり、全電圧RSPWMの動作可能領域(以下、全電圧動作可能領域)Z3は、奇数側動作可能領域Z1と偶数側動作可能領域Z2を重畳させた領域となる。また、全電圧動作可能領域Z3の周囲を取り囲むようにして、全電圧動作可能領域Z3の範囲外となる領域(以下、動作不能領域)Xが、合計6か所存在する。 Note that the operable region output region Z3 of the total voltage RSPWM of the phase determination formula is the same as the total voltage RSPWM of the maximum phase determination formula in FIG. In other words, the full voltage RSPWM operable region (hereinafter referred to as full voltage operable region) Z3 is a region in which the odd-number side operable region Z1 and the even-number side operable region Z2 overlap. Further, there are a total of six regions (hereinafter referred to as inoperable regions) X that surround the full voltage operable region Z3 and are outside the range of the full voltage operable region Z3.
 なお、円Q3の範囲内に、修正電圧ベクトルVm'が収まっている場合は、変調率が低い制御状態が続いていることを意味する。円Q3の範囲内に修正電圧ベクトルVm'が収まっている状況における、全電圧RSPWMによるUVW各相の変調波形は図25に示すようになる。この場合、奇数電圧RSPWMと偶数電圧RSPWMの切り換え時にコモンモード電圧Vcが変動する(低変調率時の全電圧RSPWMによる変調波形)。 Note that if the corrected voltage vector Vm' falls within the range of the circle Q3, it means that the control state with a low modulation rate continues. In a situation where the corrected voltage vector Vm' is within the range of the circle Q3, the modulation waveform of each phase of UVW by the total voltage RSPWM is as shown in FIG. In this case, the common mode voltage Vc fluctuates when switching between the odd voltage RSPWM and the even voltage RSPWM (modulation waveform due to the total voltage RSPWM at a low modulation rate).
 一方、円Q3の範囲内に、修正電圧ベクトルVm'が収まっていない場合は、変調率が高い制御状態になっていることを意味する。この場合の変調波形の詳細は後述する。 On the other hand, if the corrected voltage vector Vm' does not fall within the range of the circle Q3, it means that the modulation rate is in a high control state. Details of the modulation waveform in this case will be described later.
 (相電圧指令修正部の詳細動作の説明)
図1に戻って、相電圧指令修正部40は、(修正前となる)α軸電圧指令値Vαref及びβ軸電圧指令値Vβrefから構成される電圧ベクトルVmが、全電圧動作可能領域Z3の範囲内か否かを判定する。なお、電圧ベクトルVmが、全電圧動作可能領域Z3の範囲内となる場合は、電圧ベクトルVmの修正が不要となることから、電圧ベクトルVm=修正電圧ベクトルVm'に設定する。一方、図26に示すように、電圧ベクトルVmが、全電圧動作可能領域Z3の範囲外、すなわち、動作不能領域Xに位置する場合は、この電圧ベクトルVmに近い範囲(近似範囲)であって、全電圧動作可能領域Z3の範囲内となる電圧ベクトルを算出し、これを修正電圧ベクトルVm'とする。なお、動作不能領域Xは、ベクトル制御におけるV1~V6基本電圧ベクトルで囲まれる六角形の基本電圧空間Bの範囲内、かつ、全電圧動作可能領域Z3の範囲外となる領域を意味する。なお、この近似範囲は、例えば、電圧ベクトルVmのベクトル長Nに対して、修正電圧ベクトルVm'のベクトル長N'が、0.3N≦N'≦1.7Nとなる範囲や0.5N≦N'≦1.5Nとなる範囲、0.7N≦N'≦1.3Nとなる範囲が挙げられる。また近似範囲は、例えば、電圧ベクトルVmの電圧位相θmに対して、修正電圧ベクトルVm'の電圧位相θm'が、θm-120°≦θm'≦θm+120°となる範囲やθm-90°≦θm'≦θm+90°となる範囲、θm-60°≦θm'≦θm+60°となる範囲、θm-45°≦θm'≦θm+45°となる範囲が挙げられる。
(Explanation of detailed operation of phase voltage command correction section)
Returning to FIG. 1, the phase voltage command correction unit 40 adjusts the voltage vector Vm composed of the α-axis voltage command value Vα ref and the β-axis voltage command value Vβ ref (before modification) to the full voltage operable region Z3. Determine whether it is within the range. Note that when the voltage vector Vm falls within the full voltage operable region Z3, there is no need to correct the voltage vector Vm, so the voltage vector Vm is set to be equal to the corrected voltage vector Vm'. On the other hand, as shown in FIG. 26, when the voltage vector Vm is located outside the full voltage operable region Z3, that is, in the inoperable region , a voltage vector within the full voltage operable region Z3 is calculated, and this is set as a corrected voltage vector Vm'. Note that the inoperable area X means an area within the hexagonal basic voltage space B surrounded by the V1 to V6 basic voltage vectors in vector control and outside the full voltage operable area Z3. Note that this approximation range is, for example, a range in which the vector length N' of the corrected voltage vector Vm' is 0.3N≦N'≦1.7N with respect to the vector length N of the voltage vector Vm, or 0.5N≦ Examples include a range where N'≦1.5N and a range where 0.7N≦N'≦1.3N. The approximation range is, for example, a range in which the voltage phase θm' of the corrected voltage vector Vm' satisfies θm-120°≦θm'≦θm+120° with respect to the voltage phase θm of the voltage vector Vm, or θm-90°≦θm Examples include a range where '≦θm+90°, a range where θm-60°≦θm'≦θm+60°, and a range where θm-45°≦θm'≦θm+45°.
 この近似範囲Kにおける修正電圧ベクトルVm'の算出手法には、例えば、以下(手法A)~(手法E)が存在する。 As methods for calculating the corrected voltage vector Vm' in this approximation range K, there are, for example, the following (method A) to (method E).
 (手法A:動作不能領域と電圧動作可能領域の境界への修正)
例えば、図27に示すように、電圧ベクトルVmが属する動作不能領域Xと全電圧動作可能領域Z3の境界線Y1,Y2上の任意の座標を、修正電圧ベクトルVm'とする。なお、ここでは全電圧動作可能領域Z3の境界線Y1,Y2上に修正する場合を例示しているが、本発明はこれに限られず、動作不能領域Xと奇数側動作可能領域Z1の境界線上や奇数側動作可能領域Z1内に修正してもよく、また、動作不能領域Xと偶数側動作可能領域Z2の境界線上や偶数側動作可能領域Z2内に修正してもよい。
(Method A: Correction to the boundary between the inoperable region and the voltage operable region)
For example, as shown in FIG. 27, arbitrary coordinates on the boundary lines Y1 and Y2 between the inoperable region X to which the voltage vector Vm belongs and the full voltage operable region Z3 are set as the corrected voltage vector Vm'. Although a case is illustrated here in which the correction is made on the boundary lines Y1 and Y2 of the full voltage operable region Z3, the present invention is not limited to this, and the correction is made on the boundary line between the inoperable region X and the odd-number side operable region Z1. The correction may be made within the odd operable region Z1, or may be made on the boundary line between the inoperable region X and the even operable region Z2, or within the even operable region Z2.
 (手法B:電圧位相修正)
図28に示すように、電圧ベクトルVmの長さを変えずに、電圧ベクトルVmの位相θmのみを修正して、動作不能領域Xと全電圧動作可能領域Z3の境界線Y1,Y2と交わる場所を修正電圧ベクトルVm'とする。位相θmを正回転(正方向修正)する場合と、逆回転(負方向修正)する場合の2つの修正電圧ベクトル候補が存在する際は、電圧位相θmの修正量の絶対値が小さいほうを選択することが好ましい。なお、ここでは全電圧動作可能領域Z3の境界線Y1,Y2上に修正する場合を例示しているが、本発明はこれに限られず、動作不能領域Xと奇数側動作可能領域Z1の境界線上や奇数側動作可能領域Z1内に修正してもよく、また、動作不能領域Xと偶数側動作可能領域Z2の境界線上や偶数側動作可能領域Z2内に修正してもよい。
(Method B: Voltage phase correction)
As shown in FIG. 28, only the phase θm of the voltage vector Vm is modified without changing the length of the voltage vector Vm, and the location where it intersects with the boundary lines Y1 and Y2 of the inoperable region X and the full voltage operable region Z3 is shown. is the modified voltage vector Vm'. When there are two correction voltage vector candidates, one for forward rotation (correction in the positive direction) and the other for rotation (correction in the negative direction) of the phase θm, select the one with the smaller absolute value of the amount of correction of the voltage phase θm. It is preferable to do so. Although a case is illustrated here in which the correction is made on the boundary lines Y1 and Y2 of the full voltage operable region Z3, the present invention is not limited to this, and the correction is made on the boundary line between the inoperable region X and the odd-number side operable region Z1. The correction may be made within the odd operable region Z1, or may be made on the boundary line between the inoperable region X and the even operable region Z2, or within the even operable region Z2.
 (手法C:電圧ベクトルの長さ修正)
図29に示すように、電圧ベクトルVmの位相θmを変えずに、電圧ベクトルVmの長さのみを修正して、動作不能領域Xと全電圧動作可能領域Z3の境界線Y1,Y2と交わる場所を修正電圧ベクトルVm'とする。なお、ここでは全電圧動作可能領域Z3の境界線Y1,Y2上に修正する場合を例示しているが、本発明はこれに限られず、動作不能領域Xと奇数側動作可能領域Z1の境界線上や奇数側動作可能領域Z1内に修正してもよく、また、動作不能領域Xと偶数側動作可能領域Z2の境界線上や偶数側動作可能領域Z2内に修正してもよい。
(Method C: Voltage vector length correction)
As shown in FIG. 29, only the length of the voltage vector Vm is corrected without changing the phase θm of the voltage vector Vm, and the location where it intersects with the boundaries Y1 and Y2 of the inoperable region X and the full voltage operable region Z3 is is the modified voltage vector Vm'. Although a case is illustrated here in which the correction is made on the boundary lines Y1 and Y2 of the full voltage operable region Z3, the present invention is not limited to this, and the correction is made on the boundary line between the inoperable region X and the odd-number side operable region Z1. The correction may be made within the odd operable region Z1, or may be made on the boundary line between the inoperable region X and the even operable region Z2, or within the even operable region Z2.
 (手法D:電圧ベクトルの座標を動作不能領域Xの最外線と平行移動修正)
図30に示すように、電圧ベクトルVmのα軸座標Vα、β軸座標Vβを、動作不能領域Xの最外線Y3(基本電圧空間Bの輪郭線)と平行に移動させて、全電圧動作可能領域Z3の境界線Y1,Y2と交わる場所を修正電圧ベクトルVm'とする。位相θmを正回転(正方向修正)する場合と、逆回転(負方向修正)する場合の2つの修正電圧ベクトル候補が存在する際は、電圧位相θmの修正量の絶対値が小さいほうを選択することが好ましい。なお、ここでは全電圧動作可能領域Z3の境界線Y1,Y2上に修正する場合を例示しているが、本発明はこれに限られず、動作不能領域Xと奇数側動作可能領域Z1の境界線上や奇数側動作可能領域Z1内に修正してもよく、また、動作不能領域Xと偶数側動作可能領域Z2の境界線上や偶数側動作可能領域Z2内に修正してもよい。
(Method D: Correct the coordinates of the voltage vector by moving it parallel to the outermost line of the inoperable area X)
As shown in FIG. 30, by moving the α-axis coordinate Vα and the β-axis coordinate Vβ of the voltage vector Vm parallel to the outermost line Y3 (outline of the basic voltage space B) of the inoperable region X, full voltage operation is possible. The location where the region Z3 intersects with the boundaries Y1 and Y2 is defined as a corrected voltage vector Vm'. When there are two correction voltage vector candidates, one for forward rotation (correction in the positive direction) and the other for rotation (correction in the negative direction) of the phase θm, select the one with the smaller absolute value of the amount of correction of the voltage phase θm. It is preferable to do so. Although a case is illustrated here in which the correction is made on the boundary lines Y1 and Y2 of the full voltage operable region Z3, the present invention is not limited to this, and the correction is made on the boundary line between the inoperable region X and the odd-number side operable region Z1. The correction may be made within the odd operable region Z1, or may be made on the boundary line between the inoperable region X and the even operable region Z2, or within the even operable region Z2.
 (手法E:上記(手法A)~(手法D)の組み合わせ修正)
上記(手法A)~(手法D)を適宜組み合わせて、修正電圧ベクトルVm'を算出してもよい。
(Method E: Combination modification of the above (Method A) to (Method D))
The corrected voltage vector Vm' may be calculated by appropriately combining the above (Method A) to (Method D).
 上記(手法A)~(手法E)では、電圧ベクトルVmを、全電圧動作可能領域Z3の境界上に修正する場合を例示したが、予め、修正先領域として、奇数側動作可能領域Z1と偶数側動作可能領域Z2のいずれかを選択しておくようにし、奇数側動作可能領域Z1と偶数側動作可能領域Z2のいずれか一方の境界上に絞り込んで修正しても良い。例えば、最大相判定式の全電圧RSPWMを適用する場合、修正前の三相変調の相電圧指令値Vuref、Vvref、Vwrefのうち、振幅が最大となる相の符号が負の場合は、偶数側動作可能領域Z2への修正を選択し、振幅が最大となる相の符号が正であれば奇数側動作可能領域Z1への修正を選択しても良い。 In the above (Methods A) to (Method E), the case where the voltage vector Vm is corrected to be on the boundary of the full voltage operable region Z3 is illustrated, but in advance, as the correction destination region, the odd number side operable region Z1 and the even number side The modification may be performed by selecting one of the side operable areas Z2 and narrowing down to the boundary of either the odd-number side operable area Z1 or the even-number side operable area Z2. For example, when applying the total voltage RSPWM of the maximum phase determination formula, if the sign of the phase with the maximum amplitude among the three-phase modulation phase voltage command values Vu ref , Vv ref , and Vw ref before modification is negative, , the modification to the even-numbered operable region Z2 may be selected, and if the sign of the phase with the maximum amplitude is positive, the modification to the odd-numbered side operable region Z1 may be selected.
 また例えば、位相判定式の全電圧RSPWMを適用する場合、図31に示すように、α軸を基準とした電圧ベクトルVmの位相θmの範囲に従って、偶数側動作可能領域Z2への修正と、奇数側動作可能領域Z1への修正を切り替えても良い。なお、図31には、位相θmに基づいて、偶数側動作可能領域Z2または奇数側動作可能領域Z1の近傍境界線上に電圧ベクトルVmを修正する場合に、選択される境界の線分(図31参照)を示している。 For example, when applying the total voltage RSPWM of the phase determination formula, as shown in FIG. The modification to the side operable area Z1 may be switched. Note that FIG. 31 shows a line segment of the boundary selected when correcting the voltage vector Vm on the neighboring boundary line of the even-number side operable region Z2 or the odd-number side operable region Z1 based on the phase θm. ).
 (手法B:電圧位相修正の詳細動作の説明) (Method B: Explanation of detailed operation of voltage phase correction)
 次に、位相判定式の全電圧RSPWMを適用することを前提として、上記(手法B)を採用する場合における、相電圧指令修正部40の詳細動作例について説明する。図33は相電圧指令修正部40の動作の流れを説明するフローチャートである。図32に示すように、相電圧指令修正部40は、変調域内判定部42、変調領域選択部44、修正指令計算部46、修正指令選択部48、フィードバック処理部49を有する。 Next, a detailed operation example of the phase voltage command modification unit 40 in the case where the above (method B) is adopted will be described on the premise that the phase determination type total voltage RSPWM is applied. FIG. 33 is a flowchart illustrating the flow of operation of the phase voltage command modification section 40. As shown in FIG. 32, the phase voltage command modification section 40 includes a modulation range determining section 42, a modulation region selection section 44, a modification command calculation section 46, a modification command selection section 48, and a feedback processing section 49.
 変調域内判定部42は、電圧ベクトルVmの座標が、全電圧動作可能領域Z3の範囲内か否かを判定する(ステップS41)。電圧ベクトルVmが、全電圧動作可能領域Z3の範囲内となる場合は、電圧ベクトルVmの修正が不要となることから、ステップS42に進み、修正指令計算部46によって、電圧ベクトルVmそのものを修正電圧ベクトルVm'に設定する。次いで、ステップS80に進み、この修正電圧ベクトルVm'を変調部50に出力する。 The modulation range determining unit 42 determines whether the coordinates of the voltage vector Vm are within the full voltage operable region Z3 (step S41). If the voltage vector Vm falls within the full voltage operable region Z3, there is no need to correct the voltage vector Vm, so the process proceeds to step S42, where the correction command calculation unit 46 changes the voltage vector Vm itself to a corrected voltage. Set to vector Vm'. Next, the process proceeds to step S80, and this modified voltage vector Vm' is output to the modulation section 50.
 一方、ステップS41において、電圧ベクトルVmの座標が、全電圧動作可能領域Z3の範囲外、即ち、動作不能領域Xに位置する場合は、電圧ベクトルVmの修正が必要となるので、ステップS44に進み、変調領域選択部44が起動される。 On the other hand, in step S41, if the coordinates of the voltage vector Vm are located outside the full voltage operable region Z3, that is, in the inoperable region X, the voltage vector Vm needs to be corrected, so the process proceeds to step S44. , the modulation area selection unit 44 is activated.
 ステップS44において、変調領域選択部44では、α軸を基準とした電圧ベクトルVmの位相θmを参照し、図31の関係に従って、偶数側動作可能領域Z2への修正と、奇数側動作可能領域Z1への修正のいずれかを選択する。図31の関係を図34に図示すると、動作不能領域Xは、奇数側動作可能領域Z1へ電圧ベクトルを修正する奇数修正領域X1と、偶数側動作可能領域Z2へ電圧ベクトルを修正する偶数修正領域X2を有することになる。電圧ベクトルVmが、奇数修正領域X1に属する場合は、変調領域選択部44が、奇数側動作可能領域Z1の範囲内となるように電圧ベクトルを修正する。電圧ベクトルVmが、偶数修正領域X2に属する場合は、変調領域選択部44が、偶数側動作可能領域Z2の範囲内となるように電圧ベクトルを修正する。この際、奇数修正領域X1の電圧ベクトルVmの修正先は、この奇数修正領域X1に隣接する奇数側動作可能領域Z1であって、かつ、偶数側動作可能領域Z2と重畳していない三角形の単独領域Z1tに修正することが好ましい。同様に、偶数修正領域X2の電圧ベクトルVmの修正先は、この偶数修正領域X2に隣接する偶数側動作可能領域Z2であって、かつ、奇数側動作可能領域Z1と重畳していない三角形の単独領域Z2tに修正することが好ましい。 In step S44, the modulation region selection unit 44 refers to the phase θm of the voltage vector Vm with respect to the α axis, and according to the relationship shown in FIG. Select one of the modifications to. When the relationship in FIG. 31 is illustrated in FIG. 34, the inoperable region It will have X2. If the voltage vector Vm belongs to the odd modification region X1, the modulation region selection unit 44 modifies the voltage vector so that it falls within the odd operable region Z1. When the voltage vector Vm belongs to the even number modification region X2, the modulation region selection unit 44 modifies the voltage vector so that it falls within the even number side operable region Z2. At this time, the correction destination of the voltage vector Vm of the odd correction area X1 is an isolated triangular area that is adjacent to the odd correction area It is preferable to correct the area Zlt. Similarly, the correction destination of the voltage vector Vm of the even correction region It is preferable to correct the area Z2t.
 なお、奇数側動作可能領域Z1を区画する3つの線分Z1a、Z1b、Z1cを、α軸β軸の関数で表現すると、下記数式(XVII)となる。この関数は、電圧ベクトルVmの修正先座標を算出する際に利用される。
Figure JPOXMLDOC01-appb-M000017
Note that when the three line segments Z1a, Z1b, and Z1c that partition the odd-number side operable region Z1 are expressed as functions of the α and β axes, the following equation (XVII) is obtained. This function is used when calculating the correction destination coordinates of the voltage vector Vm.
Figure JPOXMLDOC01-appb-M000017
 同様に、偶数側動作可能領域Z2を区画する3つの線分Z2a、Z2b、Z2cを、α軸β軸の関数で表現すると、下記数式(XVIII)となる。この関数は、電圧ベクトルVmの修正先座標を算出する際に利用される。
Figure JPOXMLDOC01-appb-M000018
Similarly, when the three line segments Z2a, Z2b, and Z2c that partition the even-number side operable region Z2 are expressed as functions of the α and β axes, the following equation (XVIII) is obtained. This function is used when calculating the correction destination coordinates of the voltage vector Vm.
Figure JPOXMLDOC01-appb-M000018
 なお、説明の便宜上、以降においては、上記下記数式(XVII)及び数式(XVIII)を、下記数式(XIX)で一般化しておく。
Figure JPOXMLDOC01-appb-M000019
For convenience of explanation, hereinafter, the following formula (XVII) and formula (XVIII) will be generalized as the following formula (XIX).
Figure JPOXMLDOC01-appb-M000019
 ステップS44において、電圧ベクトルVmが例えば図35の状態、即ち、位相θmが330°<θm≦30°の範囲内の場合、図31の相関テーブルに基づいて、奇数側動作可能領域Z1が選択される。その後、ステップS50に進み、修正指令計算部46が、電圧ベクトルVmを、奇数側動作可能領域Z1の域内に修正する。 In step S44, when the voltage vector Vm is in the state shown in FIG. 35, that is, the phase θm is within the range of 330°<θm≦30°, the odd-number side operable region Z1 is selected based on the correlation table shown in FIG. Ru. After that, the process proceeds to step S50, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the odd-number side operable region Z1.
 修正に先立って、修正指令計算部46では、図35に示すように、電圧ベクトルVmの座標を半径とする正円Pをα軸β軸の関数で定義する。結果、正円Pは下記数式(XX)となる。
Figure JPOXMLDOC01-appb-M000020
Prior to modification, the modification command calculation unit 46 defines a perfect circle P having a radius equal to the coordinates of the voltage vector Vm as a function of the α and β axes, as shown in FIG. As a result, the perfect circle P is expressed by the following formula (XX).
Figure JPOXMLDOC01-appb-M000020
 次に、この電圧ベクトルVmの位相θmは、0°<θm≦30°に属しているので、図31の相関テーブルに基づいて、数式(XVIII)の中から線分Z1aを意味する関数を選択し、これと数式(XX)の正円Pを意味する関数の2つの交点(VAα',VAβ')及び(VBα',VBβ')を算出する。なお、線分Z1aが選択される理由は、この電圧ベクトルVmを正逆双方向に回転させた場合、この線分Z1aに最初に交差することに起因している。 Next, since the phase θm of this voltage vector Vm belongs to 0°<θm≦30°, a function representing the line segment Z1a is selected from formula (XVIII) based on the correlation table in FIG. Then, the two intersection points (VAα', VAβ') and (VBα', VBβ') of this and the function representing the perfect circle P of formula (XX) are calculated. Note that the reason why the line segment Z1a is selected is that when this voltage vector Vm is rotated in both forward and reverse directions, it intersects this line segment Z1a first.
 数式(XIX)によって一般化した関数を利用すると、2つの交点の座標は以下数式(XXI)となる。
Figure JPOXMLDOC01-appb-M000021
When a function generalized by formula (XIX) is used, the coordinates of the two intersection points are expressed by formula (XXI) below.
Figure JPOXMLDOC01-appb-M000021
 以上の結果、ステップS50において、修正指令計算部46は、奇数側動作可能領域Z1への修正候補となる第一及び第二電圧ベクトル(以下、第一及び第二修正候補電圧ベクトル)VAm',VBm'が算出される。 As a result of the above, in step S50, the modification command calculation unit 46 calculates first and second voltage vectors (hereinafter referred to as first and second modification candidate voltage vectors) VAm', VBm' is calculated.
 次に、ステップS52に進み、修正指令選択部48が、第一及び第二修正候補電圧ベクトルVAm',VBm'の中から、1つの電圧ベクトルを選択し、これを修正電圧ベクトルVm'とする。この選択に先立って、修正指令選択部48では、電圧ベクトルVmを基準とした第一修正候補電圧ベクトルVAm'の第一位相修正量θAmodと、電圧ベクトルVmを基準とした第二修正候補電圧ベクトルVBm'の第二位相修正量θBmodを、以下数式(XXII)によって算出する。
Figure JPOXMLDOC01-appb-M000022
Next, the process proceeds to step S52, and the modification command selection unit 48 selects one voltage vector from the first and second modification candidate voltage vectors VAm' and VBm', and sets this as the modified voltage vector Vm'. . Prior to this selection, the modification command selection unit 48 selects a first phase modification amount θAmod of the first modification candidate voltage vector VAm' based on the voltage vector Vm, and a second modification candidate voltage vector based on the voltage vector Vm. The second phase modification amount θBmod of VBm' is calculated using the following formula (XXII).
Figure JPOXMLDOC01-appb-M000022
 修正指令選択部48では、第一位相修正量θAmodと第二位相修正量θBmodを比較して、小さいほうの修正候補電圧ベクトルVAm',VBm'(ここでは第一修正候補電圧ベクトルVAm')を、修正電圧ベクトルVm'に決定する。その後、ステップS80に進み、この修正電圧ベクトルVm'を変調部50に出力する。更に、ステップS82に進み、フィードバック処理部49が、修正電圧ベクトルVm'の修正量(Vm'-Vm)を、dq軸電圧に変換することでd軸修正量Vderr及びq軸修正量Vqerrを生成し、これをdq軸電流制御器34にフィードバックする。 The modification command selection unit 48 compares the first phase modification amount θAmod and the second phase modification amount θBmod, and selects the smaller modification candidate voltage vector VAm', VBm' (here, the first modification candidate voltage vector VAm'). , the modified voltage vector Vm' is determined. Thereafter, the process proceeds to step S80, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S82, and the feedback processing unit 49 converts the modification amount (Vm'-Vm) of the modified voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis modification amount Vd err and the q-axis modification amount Vq err. is generated and fed back to the dq-axis current controller 34.
 ステップS44に戻って、電圧ベクトルVmが例えば図36の状態、即ち、位相θmが30°<θm≦90°の範囲内の場合、図31の相関テーブルに基づいて、偶数側動作可能領域Z2が選択される。その後、ステップS60に進み、修正指令計算部46が、電圧ベクトルVmを、偶数側動作可能領域Z2の域内に修正する。 Returning to step S44, when the voltage vector Vm is in the state shown in FIG. 36, that is, the phase θm is within the range of 30°<θm≦90°, the even-number side operable region Z2 is determined based on the correlation table of FIG. selected. After that, the process proceeds to step S60, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the even number side operable region Z2.
 修正に先立って、修正指令計算部46では、図36に示すように、電圧ベクトルVmの座標を半径とする正円Pを上記数式(XX)で定義する。更に、この電圧ベクトルVmの位相θmは、30°<θm≦60°に属しているので、図31の相関テーブルに基づいて、数式(XVIII)の中から線分Z2aを意味する関数を選択し、これと数式(XX)の正円Pを意味する関数の2つの交点(VAα',VAβ')及び(VBα',VBβ')を算出する。なお、線分Z2aが選択される理由は、この電圧ベクトルVmを正逆双方向に回転させた場合、この線分Z2aに最初に交差することに起因している。 Prior to the modification, the modification command calculation unit 46 defines a perfect circle P whose radius is the coordinates of the voltage vector Vm using the above formula (XX), as shown in FIG. Furthermore, since the phase θm of this voltage vector Vm belongs to 30°<θm≦60°, a function representing the line segment Z2a is selected from formula (XVIII) based on the correlation table of FIG. , and the two intersection points (VAα', VAβ') and (VBα', VBβ') of the function representing the perfect circle P of formula (XX) are calculated. Note that the reason why line segment Z2a is selected is that when this voltage vector Vm is rotated in both forward and reverse directions, it intersects line segment Z2a first.
 以上の結果、ステップS60において、修正指令計算部46は、偶数側動作可能領域Z2への修正候補となる第一及び第二電圧ベクトル(以下、第一及び第二修正候補電圧ベクトル)VAm',VBm'が算出される。 As a result of the above, in step S60, the modification command calculation unit 46 calculates the first and second voltage vectors (hereinafter referred to as first and second modification candidate voltage vectors) VAm′, which are candidates for modification to the even-number side operable region Z2. VBm' is calculated.
 次に、ステップS62に進み、修正指令選択部48が、第一及び第二修正候補電圧ベクトルVAm',VBm'の中から、1つの電圧ベクトルを選択し、これを修正電圧ベクトルVm'とする。この選択に先立って、修正指令選択部48では、電圧ベクトルVmを基準とした第一修正候補電圧ベクトルVAm'の第一位相修正量θAmodと、電圧ベクトルVmを基準とした第二修正候補電圧ベクトルVBm'の第二位相修正量θBmodを、上記数式(XXII)によって算出する。 Next, the process proceeds to step S62, and the modification command selection unit 48 selects one voltage vector from the first and second modification candidate voltage vectors VAm' and VBm', and sets this as the modified voltage vector Vm'. . Prior to this selection, the modification command selection unit 48 selects a first phase modification amount θAmod of the first modification candidate voltage vector VAm' based on the voltage vector Vm, and a second modification candidate voltage vector based on the voltage vector Vm. The second phase modification amount θBmod of VBm' is calculated using the above formula (XXII).
 修正指令選択部48では、第一位相修正量θAmodと第二位相修正量θBmodを比較して、小さいほうの修正候補電圧ベクトルVAm',VBm'(ここでは第二修正候補電圧ベクトルVBm')を、修正電圧ベクトルVm'に決定する。その後、ステップS80に進み、この修正電圧ベクトルVm'を変調部50に出力する。更に、ステップS82に進み、フィードバック処理部49が、修正電圧ベクトルVm'の修正量(Vm'-Vm)を、dq軸電圧に変換することでd軸修正量Vderr及びq軸修正量Vqerrを生成し、これをdq軸電流制御器34にフィードバックする。 The modification command selection unit 48 compares the first phase modification amount θAmod and the second phase modification amount θBmod, and selects the smaller modification candidate voltage vector VAm', VBm' (here, the second modification candidate voltage vector VBm'). , the modified voltage vector Vm' is determined. Thereafter, the process proceeds to step S80, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S82, and the feedback processing unit 49 converts the modification amount (Vm'-Vm) of the modified voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis modification amount Vd err and the q-axis modification amount Vq err. is generated and fed back to the dq-axis current controller 34.
 (手法C:電圧ベクトルの長さ修正の詳細動作の説明) (Method C: Detailed explanation of voltage vector length correction)
 次に、位相判定式の全電圧RSPWMを適用することを前提として、上記(手法C)を採用する場合における、相電圧指令修正部40の詳細動作例について説明する。図38は相電圧指令修正部40の動作の流れを説明するフローチャートである。図37に示すように、相電圧指令修正部40は、変調域内判定部42、変調領域選択部44、修正指令計算部46、フィードバック処理部49を有する。 Next, a detailed operation example of the phase voltage command modification unit 40 in the case where the above (Method C) is adopted will be described on the premise that the phase determination type total voltage RSPWM is applied. FIG. 38 is a flowchart illustrating the flow of operation of the phase voltage command modification section 40. As shown in FIG. 37, the phase voltage command modification section 40 includes a modulation range determining section 42, a modulation region selection section 44, a modification command calculation section 46, and a feedback processing section 49.
 変調域内判定部42は、電圧ベクトルVmの座標が、全電圧動作可能領域Z3の範囲内か否かを判定する(ステップS71)。電圧ベクトルVmが、全電圧動作可能領域Z3の範囲内となる場合は、電圧ベクトルVmの修正が不要となることから、ステップS72に進み、修正指令計算部46によって、電圧ベクトルVmそのものを修正電圧ベクトルVm'に設定する。次いで、ステップS100に進み、この修正電圧ベクトルVm'を変調部50に出力する。 The modulation range determination unit 42 determines whether the coordinates of the voltage vector Vm are within the full voltage operable range Z3 (step S71). If the voltage vector Vm is within the full voltage operable range Z3, there is no need to modify the voltage vector Vm, so the process proceeds to step S72, where the correction command calculation unit 46 sets the voltage vector Vm itself to the modified voltage vector Vm'. Next, the process proceeds to step S100, where the modified voltage vector Vm' is output to the modulation unit 50.
 一方、ステップS71において、電圧ベクトルVmの座標が、全電圧動作可能領域Z3の範囲外、即ち、動作不能領域Xに位置する場合は、電圧ベクトルVmの修正が必要となるので、ステップS74に進み、変調領域選択部44が起動される。 On the other hand, in step S71, if the coordinates of the voltage vector Vm are located outside the full voltage operable area Z3, that is, in the inoperable area X, the voltage vector Vm needs to be corrected, so the process proceeds to step S74. , the modulation area selection section 44 is activated.
 ステップS74において、変調領域選択部44では、α軸を基準とした電圧ベクトルVmの位相θmを参照し、図31の相関テーブルに従って、偶数側動作可能領域Z2への修正と、奇数側動作可能領域Z1への修正のいずれかを選択する。例えば、電圧ベクトルVmが例えば図39の状態、即ち、位相θmが330°<θm≦30°の範囲内の場合、図31の相関テーブルに基づいて、奇数側動作可能領域Z1が選択される。その後、ステップS80に進み、修正指令計算部46が、電圧ベクトルVmを、奇数側動作可能領域Z1の域内に修正する。 In step S74, the modulation area selection unit 44 refers to the phase θm of the voltage vector Vm with respect to the α axis, and according to the correlation table of FIG. Select one of the modifications to Z1. For example, when the voltage vector Vm is in the state shown in FIG. 39, that is, when the phase θm is within the range of 330°<θm≦30°, the odd-number side operable region Z1 is selected based on the correlation table shown in FIG. After that, the process proceeds to step S80, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the odd-number side operable region Z1.
 修正に先立って、修正指令計算部46では、図39に示すように、電圧ベクトルVmと同位相となる径方向線分Eをα軸β軸の関数で定義する。結果、径方向線分Eは下記数式(XXIII)となる。
Figure JPOXMLDOC01-appb-M000023
Prior to the modification, the modification command calculation unit 46 defines a radial line segment E having the same phase as the voltage vector Vm as a function of the α and β axes, as shown in FIG. As a result, the radial line segment E becomes the following formula (XXIII).
Figure JPOXMLDOC01-appb-M000023
 次に、この電圧ベクトルVmの位相θmは、0°<θm≦30°に属しているので、図31の相関テーブルに基づいて、数式(XVII)の中から線分Z1aを意味する関数を選択し、これと数式(XXIII)の径方向線分Eを意味する関数との交点(Vα',Vβ')を算出する。なお、線分Z1aが選択される理由は、この電圧ベクトルVmから最も近い境界線となるからである。 Next, since the phase θm of this voltage vector Vm belongs to 0°<θm≦30°, a function representing the line segment Z1a is selected from formula (XVII) based on the correlation table in FIG. Then, the intersection point (Vα', Vβ') between this and the function representing the radial line segment E of formula (XXIII) is calculated. Note that the line segment Z1a is selected because it is the closest boundary line to the voltage vector Vm.
 なお、ここでは説明の便宜上、上記数式(XVII)及び数式(XVIII)を、下記数式(XXIV)によって一般化する。
Figure JPOXMLDOC01-appb-M000024
For the sake of convenience, the above formulas (XVII) and (XVIII) are generalized by the following formula (XXIV).
Figure JPOXMLDOC01-appb-M000024
 この一般化した数式(XXIV)と、数式(XXIII)の交点の座標は以下数式(XXV)となる。
Figure JPOXMLDOC01-appb-M000025
The coordinates of the intersection of this generalized formula (XXIV) and formula (XXIII) are expressed by formula (XXV) below.
Figure JPOXMLDOC01-appb-M000025
 以上の結果、ステップS80において、修正指令計算部46は、奇数側動作可能領域Z1への修正結果となる修正電圧ベクトルVm'が算出される。その後、ステップS100に進み、この修正電圧ベクトルVm'を変調部50に出力する。更に、ステップS102に進み、フィードバック処理部49が、修正電圧ベクトルVm'の修正量(Vm'-Vm)を、dq軸電圧に変換することでd軸修正量Vderr及びq軸修正量Vqerrを生成し、これをdq軸電流制御器34にフィードバックする。 As a result of the above, in step S80, the modification command calculation unit 46 calculates the modified voltage vector Vm' that is the result of modification to the odd-number side operable region Z1. Thereafter, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S102, and the feedback processing unit 49 converts the correction amount (Vm'-Vm) of the correction voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis correction amount Vd err and the q-axis correction amount Vq err. is generated and fed back to the dq-axis current controller 34.
 ステップS74に戻って、電圧ベクトルVmが例えば図40の状態、即ち、位相θmが30°<θm≦90°の範囲内の場合、図31の相関テーブルに基づいて、偶数側動作可能領域Z2が選択される。その後、ステップS90に進み、修正指令計算部46が、電圧ベクトルVmを、偶数側動作可能領域Z2の域内に修正する。 Returning to step S74, when the voltage vector Vm is in the state shown in FIG. 40, that is, the phase θm is within the range of 30°<θm≦90°, the even-number side operable region Z2 is determined based on the correlation table of FIG. selected. After that, the process proceeds to step S90, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the even number side operable region Z2.
 修正に先立って、修正指令計算部46では、図40に示すように、電圧ベクトルVmと同位相となる径方向線分Eをα軸β軸の関数で定義する。結果、径方向線分Eは上記数式(XXIII)となる。 Prior to modification, the modification command calculation unit 46 defines a radial line segment E having the same phase as the voltage vector Vm as a function of the α and β axes, as shown in FIG. As a result, the radial line segment E becomes the above formula (XXIII).
 次に、この電圧ベクトルVmの位相θmは、30°<θm≦60°に属しているので、図31の相関テーブルに基づいて、数式(XVIII)の中から線分Z2aを意味する関数を選択し、これと数式(XXIII)の径方向線分Eを意味する関数との交点(Vα',Vβ')を算出する。なお、線分Z2aが選択される理由は、この電圧ベクトルVmから最も近い境界線となるからである。 Next, since the phase θm of this voltage vector Vm belongs to 30°<θm≦60°, a function representing the line segment Z2a is selected from formula (XVIII) based on the correlation table in FIG. Then, the intersection point (Vα', Vβ') between this and the function representing the radial line segment E of formula (XXIII) is calculated. Note that the line segment Z2a is selected because it is the closest boundary line to the voltage vector Vm.
 以上の結果、ステップS90において、修正指令計算部46は、偶数側動作可能領域Z2への修正結果となる修正電圧ベクトルVm'が算出される。その後、ステップS100に進み、この修正電圧ベクトルVm'を変調部50に出力する。更に、ステップS102に進み、フィードバック処理部49が、修正電圧ベクトルVm'の修正量(Vm'-Vm)を、dq軸電圧に変換することでd軸修正量Vderr及びq軸修正量Vqerrを生成し、これをdq軸電流制御器34にフィードバックする。 As a result of the above, in step S90, the modification command calculation unit 46 calculates the modified voltage vector Vm' that is the result of modification to the even-number side operable region Z2. Thereafter, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S102, and the feedback processing unit 49 converts the correction amount (Vm'-Vm) of the correction voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis correction amount Vd err and the q-axis correction amount Vq err. is generated and fed back to the dq-axis current controller 34.
 (手法D:電圧ベクトルの座標を動作不能領域Xの最外線と平行移動する場合の詳細動作の説明)
次に、位相判定式の全電圧RSPWMを適用することを前提として、上記(手法D)を採用する場合における、相電圧指令修正部40の詳細動作例について説明する。なお、相電圧指令修正部40の内部構成と動作の流れフローチャートは、図37及び図38と同じであるので、これを援用する。
(Method D: Explanation of detailed operation when moving the coordinates of the voltage vector in parallel with the outermost line of the inoperable region X)
Next, a detailed operation example of the phase voltage command modification unit 40 in the case of employing the above (Method D) will be described on the premise that the total voltage RSPWM of the phase determination formula is applied. Note that the internal configuration and operation flowchart of the phase voltage command modification unit 40 are the same as those in FIGS. 37 and 38, so these will be referred to.
 変調域内判定部42は、電圧ベクトルVmの座標が、全電圧動作可能領域Z3の範囲内か否かを判定する(ステップS71)。電圧ベクトルVmが、全電圧動作可能領域Z3の範囲内となる場合は、電圧ベクトルVmの修正が不要となることから、ステップS72に進み、修正指令計算部46によって、電圧ベクトルVmそのものを修正電圧ベクトルVm'に設定する。次いで、ステップS100に進み、この修正電圧ベクトルVm'を変調部50に出力する。 The modulation range determining unit 42 determines whether the coordinates of the voltage vector Vm are within the full voltage operable region Z3 (step S71). If the voltage vector Vm falls within the full voltage operable region Z3, there is no need to modify the voltage vector Vm, so the process proceeds to step S72, where the modification command calculation unit 46 changes the voltage vector Vm itself to a modified voltage. Set to vector Vm'. Next, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50.
 一方、ステップS71において、電圧ベクトルVmの座標が、全電圧動作可能領域Z3の範囲外、即ち、動作不能領域Xに位置する場合は、電圧ベクトルVmの修正が必要となるので、ステップS74に進み、変調領域選択部44が起動される。 On the other hand, in step S71, if the coordinates of the voltage vector Vm are located outside the full voltage operable area Z3, that is, in the inoperable area X, it is necessary to correct the voltage vector Vm, so the process proceeds to step S74. , the modulation area selection section 44 is activated.
 ステップS74において、変調領域選択部44では、α軸を基準とした電圧ベクトルVmの位相θmを参照し、図31の相関テーブルに従って、偶数側動作可能領域Z2への修正と、奇数側動作可能領域Z1への修正のいずれかを選択する。 In step S74, the modulation area selection unit 44 refers to the phase θm of the voltage vector Vm with respect to the α axis, and according to the correlation table of FIG. Select one of the modifications to Z1.
 ステップS74において、電圧ベクトルVmが例えば図41の状態、即ち、位相θmが330°<θm≦30°の範囲内の場合、図31の相関テーブルに基づいて、奇数側動作可能領域Z1が選択される。その後、ステップS80に進み、修正指令計算部46が、電圧ベクトルVmを、奇数側動作可能領域Z1の域内に修正する。 In step S74, when the voltage vector Vm is in the state shown in FIG. 41, that is, the phase θm is within the range of 330°<θm≦30°, the odd-number side operable region Z1 is selected based on the correlation table shown in FIG. Ru. After that, the process proceeds to step S80, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the odd-number side operable region Z1.
 修正に先立って、修正指令計算部46では、図41に示すように、電圧ベクトルVmに対して、数式(VIII)を適用して、各相の上アームスイッチング素子18A、18B、18CのON時間指令値tu、tv、twを算出する。なお、ここでは、数式(VIX)及び(X)による調整を行わない。結果、tu、tv、twのいずれかは常に零となる。なお、図41の電圧ベクトルVmの場合はtwが常に零となる。 Prior to the modification, the modification command calculation unit 46 calculates the ON time of the upper arm switching elements 18A, 18B, and 18C of each phase by applying formula (VIII) to the voltage vector Vm, as shown in FIG. Calculate command values tu, tv, and tw. Note that adjustments using formulas (VIX) and (X) are not performed here. As a result, one of tu, tv, and tw is always zero. Note that in the case of the voltage vector Vm in FIG. 41, tw is always zero.
 電圧ベクトルVmの位相θmは、0°<θm≦30°に属していることから、常にtu>tvが成立する。そこで、大きい方の値であるtuを維持しつつ、tv側を、tv'=Ts-tuの関係式で修正する。つまり、Ts=tu+tv'の関係式を利用して、tvをtv'に修正する。結果、図41の通り、修正後のON時間指令値(tu,tv')に基づいて、奇数側動作可能領域Z1の域内となる修正電圧ベクトルVm'が算出される。 Since the phase θm of the voltage vector Vm belongs to 0°<θm≦30°, tu>tv always holds true. Therefore, while maintaining the larger value tu, the tv side is modified using the relational expression tv'=Ts-tu. That is, tv is corrected to tv' using the relational expression Ts=tu+tv'. As a result, as shown in FIG. 41, a corrected voltage vector Vm' that falls within the odd-number side operable region Z1 is calculated based on the corrected ON time command values (tu, tv').
 なお、この修正電圧ベクトルVm'のα軸β軸上の座標(Vα',Vβ')は、修正前の電圧ベクトルVmの座標を通り、かつ、動作不能領域Xの最外線Y3と平行となる線分Fと、図31の相関テーブルに基づいて数式(XVII)の中から選択される線分Z1aを意味する関数との交点となる。 Note that the coordinates (Vα', Vβ') of this corrected voltage vector Vm' on the α and β axes pass through the coordinates of the voltage vector Vm before correction, and are parallel to the outermost line Y3 of the inoperable region X. This is the intersection of the line segment F and the function representing the line segment Z1a selected from the formula (XVII) based on the correlation table of FIG.
 なお、上記説明を一般化するために、電圧ベクトルVmに対して、数式(VIII)を適用して算出されるON時間tu、tv、twの中で、零ではない残りの2つの指令値をt1、t2と定義する。この場合、修正電圧ベクトルVm'の奇数側動作可能領域Z1の域内となる座標(t1',t2')は、t1、t2の大きい方の指令値をそのまま維持し、残りの小さい方の指令値を修正するので、以下数式(XXVI)となる。
Figure JPOXMLDOC01-appb-M000026
In addition, in order to generalize the above explanation, the remaining two non-zero command values among the ON times tu, tv, and tw calculated by applying formula (VIII) to the voltage vector Vm are Define t1 and t2. In this case, the coordinates (t1', t2') that fall within the odd-numbered operable region Z1 of the corrected voltage vector Vm' are determined by maintaining the larger command value of t1 and t2 as is, and by changing the remaining smaller command value. , the following formula (XXVI) is obtained.
Figure JPOXMLDOC01-appb-M000026
 以上の結果、ステップS80において、修正指令計算部46は、奇数側動作可能領域Z1への修正結果となる修正電圧ベクトルVm'が算出される。その後、ステップS100に進み、この修正電圧ベクトルVm'を変調部50に出力する。更に、ステップS102に進み、フィードバック処理部49が、修正電圧ベクトルVm'の修正量(Vm'-Vm)を、dq軸電圧に変換することでd軸修正量Vderr及びq軸修正量Vqerrを生成し、これをdq軸電流制御器34にフィードバックする。 As a result of the above, in step S80, the modification command calculation unit 46 calculates the modified voltage vector Vm' that is the result of modification to the odd-number side operable region Z1. Thereafter, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S102, and the feedback processing unit 49 converts the correction amount (Vm'-Vm) of the correction voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis correction amount Vd err and the q-axis correction amount Vq err. is generated and fed back to the dq-axis current controller 34.
 ステップS74に戻って、電圧ベクトルVmが例えば図42の状態、即ち、位相θmが30°<θm≦90°の範囲内の場合、図31の相関テーブルに基づいて、偶数側動作可能領域Z2が選択される。その後、ステップS90に進み、修正指令計算部46が、電圧ベクトルVmを、偶数側動作可能領域Z2の域内に修正する。 Returning to step S74, when the voltage vector Vm is in the state shown in FIG. 42, that is, the phase θm is within the range of 30°<θm≦90°, the even-number side operable region Z2 is determined based on the correlation table of FIG. selected. After that, the process proceeds to step S90, and the modification command calculation unit 46 modifies the voltage vector Vm to be within the even number side operable region Z2.
 修正に先立って、修正指令計算部46では、図42に示すように、電圧ベクトルVmに対して、数式(XIII)を適用して、各相の上アームスイッチング素子18A、18B、18CのOFF時間指令値tu(アッパーバー)、tv(アッパーバー)、tw(アッパーバー)を算出する。なお、ここでは、数式(XIV)による調整を行わない。結果、tu(アッパーバー)、tv(アッパーバー)、tw(アッパーバー)のいずれかは常に零となる。なお、図42の電圧ベクトルVmの場合はtu(アッパーバー)が常に零となる。 Prior to the modification, the modification command calculation unit 46 calculates the OFF time of the upper arm switching elements 18A, 18B, and 18C of each phase by applying formula (XIII) to the voltage vector Vm, as shown in FIG. Command values tu (upper bar), tv (upper bar), and tw (upper bar) are calculated. Note that adjustment using formula (XIV) is not performed here. As a result, one of tu (upper bar), tv (upper bar), and tw (upper bar) is always zero. Note that in the case of the voltage vector Vm in FIG. 42, tu (upper bar) is always zero.
 電圧ベクトルVmの位相θmは、30°<θm≦60°に属していることから、常にtw(アッパーバー)>tv(アッパーバー)が成立する。そこで、大きい方の値であるtw(アッパーバー)を維持しつつ、tv(アッパーバー)側を、tv' (アッパーバー)=Ts-tw(アッパーバー)の関係式で修正する。つまり、Ts=tw(アッパーバー)+tv' (アッパーバー)の関係式を利用して、tv(アッパーバー)をtv' (アッパーバー)に修正する。結果、図42の通り、修正後のOFF時間指令値(tv' (アッパーバー),tw(アッパーバー)に基づいて、偶数側動作可能領域Z2の域内の修正電圧ベクトルVm'が算出される。なお、この修正電圧ベクトルVm'のα軸β軸上の座標(Vα',Vβ')は、修正前の電圧ベクトルVmの座標を通り、かつ、動作不能領域Xの最外線Y3と平行となる線分Fと、図31の相関テーブルに基づいて数式(XVIII)の中から選択される線分Z2aを意味する関数との交点となる。 Since the phase θm of the voltage vector Vm belongs to 30°<θm≦60°, tw (upper bar)>tv (upper bar) always holds true. Therefore, while maintaining the larger value tw (upper bar), the tv (upper bar) side is modified using the relational expression tv' (upper bar)=Ts-tw (upper bar). That is, tv (upper bar) is corrected to tv' (upper bar) using the relational expression Ts=tw (upper bar) + tv' (upper bar). As a result, as shown in FIG. 42, a corrected voltage vector Vm' within the even-number side operable area Z2 is calculated based on the corrected OFF time command values (tv' (upper bar), tw (upper bar)). Note that the coordinates (Vα', Vβ') of this corrected voltage vector Vm' on the α and β axes pass through the coordinates of the voltage vector Vm before correction, and are parallel to the outermost line Y3 of the inoperable region X. This is the intersection of the line segment F and the function representing the line segment Z2a selected from the formula (XVIII) based on the correlation table of FIG.
 以上の結果、ステップS90において、修正指令計算部46は、偶数側動作可能領域Z2への修正結果となる修正電圧ベクトルVm'が算出される。その後、ステップS100に進み、この修正電圧ベクトルVm'を変調部50に出力する。更に、ステップS102に進み、フィードバック処理部49が、修正電圧ベクトルVm'の修正量(Vm'-Vm)を、dq軸電圧に変換することでd軸修正量Vderr及びq軸修正量Vqerrを生成し、これをdq軸電流制御器34にフィードバックする。 As a result of the above, in step S90, the modification command calculation unit 46 calculates the modified voltage vector Vm' that is the result of modification to the even-number side operable region Z2. Thereafter, the process proceeds to step S100, and this modified voltage vector Vm' is output to the modulation section 50. Furthermore, the process proceeds to step S102, and the feedback processing unit 49 converts the correction amount (Vm'-Vm) of the correction voltage vector Vm' into a dq-axis voltage, thereby obtaining the d-axis correction amount Vd err and the q-axis correction amount Vq err. is generated and fed back to the dq-axis current controller 34.
 なお、上記説明を一般化するために、電圧ベクトルVmに対して、数式(XIII)を適用して算出されるOFF時間tu(アッパーバー)、tv(アッパーバー)、tw(アッパーバー)の中で、零ではない残りの2つの指令値をt1(アッパーバー)、t2(アッパーバー)と定義する。この場合、修正電圧ベクトルVm'の偶数側動作可能領域Z2の域内の座標(t1' (アッパーバー),t2' (アッパーバー))は、t1(アッパーバー)、t2(アッパーバー)の大きい方の指令値を残し、小さい方の指令値を修正することから、以下数式(XXVII)となる。
Figure JPOXMLDOC01-appb-M000027
In addition, in order to generalize the above explanation, among the OFF times tu (upper bar), tv (upper bar), and tw (upper bar) calculated by applying formula (XIII) to the voltage vector Vm, The remaining two non-zero command values are defined as t1 (upper bar) and t2 (upper bar). In this case, the coordinates (t1' (upper bar), t2' (upper bar)) within the even number side operable region Z2 of the corrected voltage vector Vm' are the larger of t1 (upper bar) and t2 (upper bar). Since the command value of is left and the smaller command value is corrected, the following formula (XXVII) is obtained.
Figure JPOXMLDOC01-appb-M000027
 以上の通り、本実施形態の電力変換装置1によれば、相電圧指令修正部40によって、動作不能領域Xに属する電圧ベクトルVmを全電圧動作可能領域Z3内の修正電圧ベクトルVm'に変換してから、変調部50が変調制御を行うことから、常に同じ変調方式を利用して変調を行うことが可能となる。結果、高変調率で制御する際に、電圧ベクトルVmが全電圧動作可能領域Z3から部分的に外れたとしても、全て、全電圧動作可能領域Z3内に修正されるので、常にコモンモードノイズを励起しない変調方式で駆動されるため、総合的にコモンモードノイズが大幅に抑制される。 As described above, according to the power conversion device 1 of the present embodiment, the phase voltage command correction unit 40 converts the voltage vector Vm belonging to the inoperable region X to the corrected voltage vector Vm' in the full voltage operable region Z3. Since the modulation section 50 then performs modulation control, it is possible to always perform modulation using the same modulation method. As a result, when controlling at a high modulation rate, even if the voltage vector Vm partially deviates from the full voltage operable region Z3, it is all corrected to within the full voltage operable region Z3, so common mode noise is always eliminated. Since it is driven using a modulation method that does not excite, common mode noise is significantly suppressed overall.
 また、電力変換装置1では、相電圧指令修正部40において、電圧ベクトルVmを全電圧動作可能領域Z3内の修正電圧ベクトルVm'に変換する際に、電圧ベクトルVmが属する動作不能領域Xに近い範囲を選定している。また、修正電圧ベクトルVm'の修正量をフィードバックして制御を行っていることから、修正電圧ベクトルVm'の修正量を抑制することができるので、変調部50から出力される三相電圧指令Vu、Vv、Vwを、安定させることが可能となる。 In the power conversion device 1, when converting the voltage vector Vm into the corrected voltage vector Vm' within the full-voltage operable region Z3 in the phase voltage command modification unit 40, the voltage vector Vm is close to the inoperable region X to which the voltage vector Vm belongs. The range is selected. In addition, since control is performed by feeding back the amount of correction of the corrected voltage vector Vm', it is possible to suppress the amount of correction of the corrected voltage vector Vm'. , Vv, and Vw can be stabilized.
 図43に、本実施形態の電力変換装置1によって変調部50から出力される三相電圧指令Vu、Vv、Vwの波形B(reference)及びコモンモード電圧波形Vcを示す。コモンモード電圧波形Vcの変動が、従来の電力変換装置1よりも大幅に抑制されることが分かる。 FIG. 43 shows the waveform B (reference) of the three-phase voltage commands Vu, Vv, and Vw output from the modulation unit 50 by the power conversion device 1 of this embodiment and the common mode voltage waveform Vc. It can be seen that fluctuations in the common mode voltage waveform Vc are suppressed to a greater extent than in the conventional power converter 1.
 (変調領域選択部における動作可能領域の選択手法の修正制御)
既に述べたように、変調領域選択部44においてα軸を基準とした電圧ベクトルVmの位相θmを参照し、図31の相関テーブルに従って、偶数側動作可能領域Z2への修正と、奇数側動作可能領域Z1への修正のいずれかを選択する方式において、位相θmの回転速度が常に正である限り、位相θmが60°の位相間隔毎に、変調領域選択部44が偶数側動作可能領域Z2と奇数側動作可能領域Z1を交互に切り替える。
(Correction control of selection method of operable area in modulation area selection unit)
As already mentioned, the modulation region selection unit 44 refers to the phase θm of the voltage vector Vm with respect to the α axis, and according to the correlation table of FIG. In the method of selecting one of the modifications to the region Z1, as long as the rotational speed of the phase θm is always positive, the modulation region selection unit 44 selects the even-number side operable region Z2 and the phase θm at every phase interval of 60°. The odd number side operable region Z1 is alternately switched.
 ところで、本実施形態では、モータ8の出力制御を安定させるため、数式(I)に示すように、修正電圧ベクトルVm'の修正量を、dq軸電流制御器34にフィードバックして電流制御を行っている。修正電圧ベクトルVm'は、元となる電圧ベクトルVmに対して位相θmが前進・後進したり、ベクトル長が増減したりするので、これらの修正量に関する情報をdq軸電流制御器34にフィードバックして電流制御すると、出力されるd軸電圧指令値Vdref及びq軸電圧指令値Vqrefにその影響が反映される。 By the way, in this embodiment, in order to stabilize the output control of the motor 8, the amount of correction of the corrected voltage vector Vm' is fed back to the dq-axis current controller 34 to perform current control, as shown in equation (I). ing. Since the corrected voltage vector Vm' moves forward or backward in phase θm or increases or decreases in vector length with respect to the original voltage vector Vm, information regarding these correction amounts is fed back to the dq-axis current controller 34. When the current is controlled using the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref that are output, the influence thereof is reflected.
 電圧ベクトルVmの修正による相電圧指令値への影響を図44(A)に示す。図44(A)の線Dは、d軸電圧指令値Vdref及びq軸電圧指令値Vqrefを、数式(II)を用いてαβ軸に座標変換したα軸電圧指令値Vαref及びβ軸電圧指令値Vβref(電圧ベクトルVm)の移動軌跡を平均化して表現した概念図である。なお、この「移動軌跡の平均化」とは、実際にdq軸電流制御器34から出力される電圧ベクトルVmは、αβ軸において回転方向及び径方向に大きく振動しているため、その図示が困難となることから、仮想的に回転方向及び径方向にフィルタをかけて移動軌跡を均した概念である。線Dの領域D1に示すように、電圧ベクトルVmは、図31の相関テーブルにおける偶数側動作可能領域Z2と奇数側動作可能領域Z1を切り替えるための切替境界位相(30°、90°、150°、210°、270°、330°)の近傍で逆回転することがわかる。 FIG. 44(A) shows the influence on the phase voltage command value due to the modification of the voltage vector Vm. Line D in FIG. 44(A) indicates the α-axis voltage command value Vα ref and the β-axis obtained by coordinate-converting the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref to the αβ-axis using formula (II). It is a conceptual diagram which averages and expresses the movement locus of voltage command value Vβ ref (voltage vector Vm). Note that this "averaging of the movement locus" means that the voltage vector Vm actually output from the dq-axis current controller 34 oscillates greatly in the rotational direction and radial direction on the αβ axis, so it is difficult to illustrate it. Therefore, the concept is to virtually smooth out the movement trajectory by applying filters in the rotational direction and the radial direction. As shown in the region D1 of the line D, the voltage vector Vm has the switching boundary phase (30°, 90°, 150° , 210°, 270°, 330°).
 図44(B)は、この領域D1における移動軌跡の一部について、均すことなく拡大して示す概念図である。実際の電圧ベクトルVmは、細かく振動していることから、電圧ベクトルVmの移動軌跡は、切替境界位相270°の前後を周方向に往復する。電圧ベクトルVmの移動軌跡を、制御周期Ts毎の制御タイミング時系列k1~k7で定義し、このk1~k7において図31の相関テーブルをそのまま適用すると、修正先は、k1:奇数側動作可能領域Z1、k2:奇数側動作可能領域Z1、k3:偶数側動作可能領域Z2、k4:奇数側動作可能領域Z1、k5:偶数側動作可能領域Z2、k6:奇数側動作可能領域Z1、k7:偶数側動作可能領域Z2、k8:偶数側動作可能領域Z2となる。結果、k3~k7の短い制御期間(5制御周期)において、奇数側動作可能領域Z1と偶数側動作可能領域Z2が交互に切り替わることになり、図43の点線Cで示す領域のように、意図しないコモンモード電圧変動が励起されてしまう。 FIG. 44(B) is a conceptual diagram showing a part of the movement locus in this area D1 enlarged without smoothing. Since the actual voltage vector Vm vibrates finely, the movement locus of the voltage vector Vm reciprocates in the circumferential direction before and after the switching boundary phase of 270°. If the movement locus of the voltage vector Vm is defined by the control timing time series k1 to k7 for each control cycle Ts, and if the correlation table of FIG. Z1, k2: Odd number side operable area Z1, k3: Even number side operable area Z2, k4: Odd number side operable area Z1, k5: Even number side operable area Z2, k6: Odd number side operable area Z1, k7: Even number Side operable area Z2, k8: Even number side operable area Z2. As a result, during the short control period (5 control cycles) from k3 to k7, the odd-number side operable area Z1 and the even-number side operable area Z2 are alternately switched, and as shown in the area indicated by the dotted line C in FIG. Common mode voltage fluctuations that do not occur will be excited.
 そこで、変調領域選択部44では、図31の相関テーブルに修正を加える。具体的には、電圧ベクトルVmが逆回転して、切替境界位相(図44(B)では270°)を、逆回転方向に通過し、逆回転先の動作可能領域(図44(B)では奇数側動作可能領域Z1)が選択されようとする場合、それを強制的に、逆回転前の動作可能領域(図44(B)では偶数側動作可能領域Z2)に置き換える。つまり、制御タイミング時系列のk3→k4のように、電圧ベクトルVmが逆回転して、逆回転前の偶数側動作可能領域Z2→逆回転後の奇数側動作可能領域Z1と選択され得る場合は、k4おける選択を、逆回転前の偶数側動作可能領域Z2に強制的に置き換える。同様に、制御タイミング時系列のk5→k6のように、電圧ベクトルVmが逆回転して、逆回転前の偶数側動作可能領域Z2→逆回転後の奇数側動作可能領域Z1と選択され得る場合は、k6おける選択を、逆回転前の偶数側動作可能領域Z2に強制的に置き換える。つまり、切替境界位相での切替に関して、正転方向の一方向特性を持たせるようにし、逆回転方向の切り替えを禁止する。 Therefore, the modulation area selection unit 44 modifies the correlation table of FIG. 31. Specifically, the voltage vector Vm rotates in the opposite direction, passes through the switching boundary phase (270° in FIG. 44(B)) in the reverse rotation direction, and enters the operable region of the reverse rotation destination (in FIG. 44(B)). When the odd-number side operable area Z1) is about to be selected, it is forcibly replaced with the operable area before reverse rotation (even-number side operable area Z2 in FIG. 44(B)). In other words, when the voltage vector Vm reversely rotates and can be selected from the even-numbered operable region Z2 before the reverse rotation to the odd-numbered operable region Z1 after the reverse rotation, as in k3→k4 in the control timing time series, , k4 is forcibly replaced with the even number side operable region Z2 before reverse rotation. Similarly, as in k5→k6 in the control timing time series, when the voltage vector Vm is reversely rotated and the even number side operable region Z2 before the reverse rotation can be selected as the odd number side operable region Z1 after the reverse rotation. Forcibly replaces the selection in k6 with the even number side operable region Z2 before reverse rotation. In other words, the switching at the switching boundary phase is made to have a unidirectional characteristic in the forward rotation direction, and switching in the reverse rotation direction is prohibited.
 この修正制御を実行するために、変調領域選択部44は、現在の制御タイミングkから、次の(未来の)制御タイミングk+1における、dq軸電流制御器34から出力されるd軸電圧指令値Vdref及びq軸電圧指令値Vqrefを、以下の数式(XXVIII)で推測する。
Figure JPOXMLDOC01-appb-M000028
In order to execute this correction control, the modulation area selection unit 44 selects the d-axis voltage command value Vd output from the dq-axis current controller 34 from the current control timing k to the next (future) control timing k+1. ref and the q-axis voltage command value Vq ref are estimated using the following formula (XXVIII).
Figure JPOXMLDOC01-appb-M000028
 推定されるd軸電圧指令値Vdref及びq軸電圧指令値Vqrefから位相θmを算出することで、次回の制御タイミングk+1で、電圧ベクトルVmが逆回転し、しかも、切替境界位相を逆回転方向に通過するか否かを判定することができる。逆回転方向に通過した場合に限って、逆回転前の動作可能領域を選択すればよい。 By calculating the phase θm from the estimated d-axis voltage command value Vd ref and q-axis voltage command value Vq ref , the voltage vector Vm is reversely rotated at the next control timing k+1, and the switching boundary phase is also reversely rotated. It is possible to determine whether or not to pass in the direction. Only when the vehicle passes in the reverse rotation direction, the operable region before reverse rotation may be selected.
 図45に、変調領域選択部44において修正制御を加えた場合に、変調部50から出力される三相電圧指令Vu、Vv、Vwの波形B(reference)及びコモンモード電圧波形Vcを示す。コモンモード電圧波形Vcの変動が、図43の変動と比較して抑制されることが分かる。 FIG. 45 shows the waveform B (reference) of the three-phase voltage commands Vu, Vv, and Vw output from the modulation section 50 and the common mode voltage waveform Vc when correction control is applied in the modulation region selection section 44. It can be seen that fluctuations in the common mode voltage waveform Vc are suppressed compared to the fluctuations in FIG. 43.
 以上、本実施形態では、基本ベクトル領域Bの中の一部領域を利用した変調方式として、奇数電圧RSPWM、偶数電圧RSPWM、または、全電圧RSPWMを例示したが、本発明はこれに限定されず、他の変調方式を採用できる。また、本実施形態では、変調部50が、奇数電圧RSPWMを実行する奇数電圧変調処理部52と、偶数電圧RSPWMを実行する偶数電圧変調処理部54の2つの変調方式を有する場合を例示したが、本発明は、これに限られない。変調部50が、単一の変調方式を有しても良い。更に、変調部50が、他の第1変調方式を実行する第一変調処理部と、他の第2変調方式を実行する第二変調処理部を有するようにし、これらを適宜切り替えても良い。また更に、本発明では、変調部50が、3種以上の変調方式を採用し、これらを適宜切り替えることもできる。 As described above, in this embodiment, odd voltage RSPWM, even voltage RSPWM, or full voltage RSPWM has been exemplified as a modulation method using a part of the basic vector area B, but the present invention is not limited to this. , other modulation schemes can be adopted. Furthermore, in the present embodiment, the modulation unit 50 has two modulation methods: the odd voltage modulation processing unit 52 that performs odd voltage RSPWM, and the even voltage modulation processing unit 54 that performs even voltage RSPWM. However, the present invention is not limited to this. Modulation section 50 may have a single modulation method. Furthermore, the modulation section 50 may include a first modulation processing section that executes another first modulation method and a second modulation processing section that executes another second modulation method, and these may be switched as appropriate. Furthermore, in the present invention, the modulation section 50 can employ three or more types of modulation methods and switch between them as appropriate.
 また、本実施形態では、相電圧指令修正部40における(手法A)として、動作不能領域と電圧動作可能領域の境界上へ電圧ベクトルVmを修正する場合を例示したが、本発明はこれに限定されず、この境界よりも内側に修正することもできる。また、電圧ベクトルの修正手法となる(手法A)(手法B)(手法C)(手法D)は例示であり、他の修正手法を採用できる。例えば、(手法A)(手法B)(手法C)の組み合わせる事例として、例えば図46に示すように、電圧ベクトルVmの座標から、最も近い境界線Y1に対して垂線Gを定義し、この垂線Gと境界線Y1の交点に、修正電圧ベクトルVm'を修正することも好ましい。 Furthermore, in the present embodiment, as (Method A) in the phase voltage command modification unit 40, the case where the voltage vector Vm is modified to be on the boundary between the inoperable region and the voltage operable region is illustrated, but the present invention is limited to this. It is also possible to modify it inside this boundary. Further, (Method A), (Method B), (Method C), and (Method D) which are voltage vector correction methods are examples, and other correction methods can be adopted. For example, as an example of combining (Method A), (Method B), and (Method C), as shown in FIG. It is also preferable to correct the corrected voltage vector Vm' at the intersection of G and the boundary line Y1.
 また、上記各実施例では電動圧縮機のモータ(負荷)の駆動を例に説明したが、それに限らず、電動圧縮機のモータ以外のモータを駆動する場合も有効である。更に、インバータにより直流電圧を交流電圧に変換して負荷に印加する各種電力変換装置に本発明は適用可能である。 Further, in each of the above embodiments, the driving of the motor (load) of an electric compressor has been explained as an example, but the present invention is not limited thereto, and is also effective when driving a motor other than the motor of the electric compressor. Furthermore, the present invention is applicable to various power conversion devices that convert DC voltage into AC voltage using an inverter and apply the voltage to a load.
 1 電力変換装置
 8 モータ
 18A~18F 上下アームスイッチング素子
 19U U相インバータ
 19V V相インバータ
 19W W相インバータ
 21 制御装置
 27 インバータ回路
 28 dq軸電流指令演算部
 33 相電圧指令演算部
 34 dq軸電流制御器
 35 座標変換部
 36 PWM信号生成部
 37 ゲートドライバ
 40 相電圧指令修正部
 42 変調域内判定部
 44 変調領域選択部
 46 修正指令計算部
 48 修正指令選択部
 49 フィードバック処理部
 50 変調部
1 Power converter 8 Motor 18A to 18F Upper and lower arm switching elements 19U U-phase inverter 19V V-phase inverter 19W W-phase inverter 21 Control device 27 Inverter circuit 28 dq-axis current command calculation unit 33 Phase voltage command calculation unit 34 dq-axis current controller 35 Coordinate conversion section 36 PWM signal generation section 37 Gate driver 40 Phase voltage command modification section 42 Modulation range inside determination section 44 Modulation region selection section 46 Modification command calculation section 48 Modification command selection section 49 Feedback processing section 50 Modulation section

Claims (11)

  1.  直流電圧を交流電圧に変換する電力変換装置において、
     各相のスイッチング素子の接続点に生じる相電圧を負荷に印加するインバータ回路と、
     前記インバータ回路の前記スイッチング素子のスイッチングを制御する制御装置と、を備え、
     前記制御装置は、
     前記インバータ回路における出力可能な電圧ベクトル領域である基本電圧空間の一部の領域を変調可能領域とする変調部と、
     指令電圧ベクトルが前記基本電圧空間内且つ前記変調可能領域外に属する場合に、前記指令電圧ベクトルを前記変調可能領域内に修正した修正電圧ベクトルを算出する相電圧指令修正部と、を備え、
     前記変調部は、前記修正電圧ベクトルを利用して出力することを特徴とする電力変換装置。
    In a power conversion device that converts DC voltage to AC voltage,
    an inverter circuit that applies phase voltages generated at the connection points of switching elements of each phase to a load;
    a control device that controls switching of the switching element of the inverter circuit,
    The control device includes:
    a modulator whose modulation region is a part of a basic voltage space that is a voltage vector region that can be output in the inverter circuit;
    a phase voltage command correction unit that calculates a corrected voltage vector in which the command voltage vector is corrected to be within the modulation possible region when the command voltage vector belongs to the basic voltage space and outside the modulation possible region;
    The power converter device, wherein the modulation unit outputs the modified voltage vector using the modified voltage vector.
  2.  前記変調部は、
     前記変調可能領域となる第一変調可能領域を有する第一変調処理部と、
     前記変調可能領域となり、前記第一変調可能領域と異なる領域となる第二変調可能領域を有する第二変調処理部と、を備え、
     前記相電圧指令修正部は、
     前記第一変調可能領域及び前記第二変調可能領域のいずれかの領域内に、前記修正電圧ベクトルを修正すること特徴とする請求項1に記載の電力変換装置。
    The modulation section is
    a first modulation processing section having a first modulation possible area that is the modulation possible area;
    a second modulation processing unit having a second modulation area that is the modulation area and is different from the first modulation area;
    The phase voltage command correction unit includes:
    The power conversion device according to claim 1, wherein the modified voltage vector is modified within either the first modulatable region or the second modulatable region.
  3.  前記相電圧指令修正部は、前記指令電圧ベクトルの修正先として、前記第一変調可能領域及び前記第二変調可能領域のいずれかを選択する変調領域選択部を有し、
     前記変調領域選択部は、前記指令電圧ベクトルの位相に基づいて、前記第一変調可能領域及び前記第二変調可能領域を切り替えることを特徴とする請求項2に記載の電力変換装置。
    The phase voltage command modification section includes a modulation region selection section that selects either the first modulation possible region or the second modulation possible region as a modification destination of the command voltage vector,
    The power conversion device according to claim 2, wherein the modulation area selection unit switches between the first modulation possible area and the second modulation possible area based on the phase of the command voltage vector.
  4.  前記第一変調処理部は、奇数電圧ベクトルのみを出力するパルス幅変調を実行し、
     前記第二変調処理部は、偶数電圧ベクトルのみを出力するパルス幅変調を実行すること
    を特徴とする請求項2に記載の電力変換装置。
    The first modulation processing unit executes pulse width modulation that outputs only odd voltage vectors,
    The power conversion device according to claim 2, wherein the second modulation processing unit executes pulse width modulation that outputs only even voltage vectors.
  5.  前記相電圧指令修正部は、前記指令電圧ベクトルの修正先として、前記第一変調可能領域及び前記第二変調可能領域のいずれかを選択する変調領域選択部を有し、
     前記変調領域選択部は、前記第一変調可能領域及び前記第二変調可能領域の切り替えを実行した直後は、前記第一変調可能領域及び前記第二変調可能領域の切り替えを実行しないことを特徴とする請求項2に記載の電力変換装置。
    The phase voltage command modification section includes a modulation region selection section that selects either the first modulation possible region or the second modulation possible region as a modification destination of the command voltage vector,
    The modulation area selection unit is characterized in that immediately after switching between the first modulation area and the second modulation area, the modulation area selection unit does not switch between the first modulation area and the second modulation area. The power conversion device according to claim 2.
  6.  前記変調領域選択部における前記第一変調可能領域及び前記第二変調可能領域を切り替える境界となる位相を切替境界位相と定義する際に、
     前記変調領域選択部は、前記電圧ベクトルが逆回転方向に前記切替境界位相を通過した場合は、前記第一変調可能領域及び前記第二変調可能領域の切り替えを実行しないことを特徴とする請求項3に記載の電力変換装置。
    When defining a phase serving as a boundary for switching between the first modulation possible area and the second modulation possible area in the modulation area selection section as a switching boundary phase,
    The modulation area selection unit is characterized in that when the voltage vector passes through the switching boundary phase in a reverse rotation direction, the modulation area selection unit does not perform switching between the first modulation possible area and the second modulation possible area. 3. The power conversion device according to 3.
  7.  前記変調領域選択部において、未来の前記指令電圧ベクトルを予測することで、前記第一変調可能領域及び前記第二変調可能領域の連続した切り替えを推定し、前記推定の結果、連続して切り替えが行われると推定された場合は、未来の前記指令電圧ベクトルの到来時に、前記第一変調可能領域及び前記第二変調可能領域の切り替えを実行しないことを特徴とする請求項3に記載の電力変換装置。 In the modulation area selection unit, by predicting the future command voltage vector, continuous switching of the first modulation possible area and the second modulation possible area is estimated, and as a result of the estimation, continuous switching is performed. If it is estimated that the power conversion will be performed, switching of the first modulation possible region and the second modulation possible region is not performed when the command voltage vector arrives in the future. Device.
  8.  前記指令電圧ベクトルを生成する指令演算部を備え、
     前記指令演算部は、
     前記相電圧指令修正部によって算出される前記修正電圧ベクトルと修正前の前記指令電圧ベクトルの誤差を、次回以降の前記指令電圧ベクトルの演算で補償することを特徴とする請求項1に記載の電力変換装置。
    comprising a command calculation unit that generates the command voltage vector,
    The command calculation unit is
    The electric power according to claim 1, wherein an error between the corrected voltage vector calculated by the phase voltage command correction unit and the command voltage vector before correction is compensated for in subsequent calculations of the command voltage vector. conversion device.
  9.  前記相電圧指令修正部は、前記変調可能領域を画定する境界線上に、前記修正電圧ベクトルを設定することを特徴とする請求項1から7に記載の電力変換装置。 The power conversion device according to claim 1, wherein the phase voltage command correction unit sets the corrected voltage vector on a boundary line that defines the modifiable region.
  10.  前記相電圧指令修正部は、前記電圧ベクトルと前記修正電圧ベクトルの関係について、互いの長さが同じ、且つ、互いの位相が異なるように設定することを特徴とする請求項1から7に記載の電力変換装置。 8. The phase voltage command modification unit sets the relationship between the voltage vector and the modified voltage vector so that they have the same length and different phases. power converter.
  11.  前記相電圧指令修正部は、前記電圧ベクトルと前記修正電圧ベクトルの関係について、互いの位相が同じ、且つ、互いの長さが異なるように設定することを特徴とする請求項1から7に記載の電力変換装置。 8. The phase voltage command modification unit sets the relationship between the voltage vector and the modified voltage vector so that their phases are the same and their lengths are different. power converter.
PCT/JP2023/031172 2022-09-13 2023-08-29 Power conversion device WO2024057913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022145274A JP2024040733A (en) 2022-09-13 2022-09-13 power converter
JP2022-145274 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024057913A1 true WO2024057913A1 (en) 2024-03-21

Family

ID=90274985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031172 WO2024057913A1 (en) 2022-09-13 2023-08-29 Power conversion device

Country Status (2)

Country Link
JP (1) JP2024040733A (en)
WO (1) WO2024057913A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070619A (en) * 2010-09-16 2012-04-05 Abb Technology Ag Flux offset compensation for rotary electric machine
US20170361732A1 (en) * 2016-06-20 2017-12-21 Faraday&Future Inc. Voltage generation with high modulation indices in inverter drives
JP2018506253A (en) * 2015-01-06 2018-03-01 ユニヴェルシテ・クレルモン・オーヴェルニュ Current conversion method and device, and vehicle equipped with such a device
JP2019140896A (en) * 2018-02-06 2019-08-22 エルエス産電株式会社Lsis Co., Ltd. Inverter control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012070619A (en) * 2010-09-16 2012-04-05 Abb Technology Ag Flux offset compensation for rotary electric machine
JP2018506253A (en) * 2015-01-06 2018-03-01 ユニヴェルシテ・クレルモン・オーヴェルニュ Current conversion method and device, and vehicle equipped with such a device
US20170361732A1 (en) * 2016-06-20 2017-12-21 Faraday&Future Inc. Voltage generation with high modulation indices in inverter drives
JP2019140896A (en) * 2018-02-06 2019-08-22 エルエス産電株式会社Lsis Co., Ltd. Inverter control device

Also Published As

Publication number Publication date
JP2024040733A (en) 2024-03-26

Similar Documents

Publication Publication Date Title
JP4749874B2 (en) Power conversion device and motor drive device using the same
JP4497235B2 (en) AC motor control apparatus and control method
US8373380B2 (en) Device and method for controlling alternating-current motor
US9692346B2 (en) Control apparatus for electric power inverter
JPWO2019008676A1 (en) Inverter device and electric power steering device
WO2017056258A1 (en) Power control method and power control device
WO2021020231A1 (en) Inverter device
WO2024057913A1 (en) Power conversion device
JP2018007390A (en) Motor control device
JP6005429B2 (en) Motor control device and control method
JP6458684B2 (en) Power control method and power control apparatus
JP6493135B2 (en) In-vehicle electric compressor
JP7452200B2 (en) motor control device
JP6471670B2 (en) Power control method and power control apparatus
EP4213373A1 (en) Control device for rotating electrical machine
WO2023136340A1 (en) Power conversion device
JP7070330B2 (en) Rotating electric machine control device
WO2023037589A1 (en) Inverter control device
WO2021200236A1 (en) Motor control device, motor system, and motor control method
US20220278621A1 (en) Power conversion apparatus
WO2021200209A1 (en) Motor control device, motor system, and motor control method
JP4140500B2 (en) Two-phase modulation control type inverter device
JP2023141697A (en) Motor compressor
JP6458683B2 (en) Power control method and power control apparatus
JP6683922B2 (en) Voltage source inverter device