WO2024057803A1 - Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board - Google Patents

Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board Download PDF

Info

Publication number
WO2024057803A1
WO2024057803A1 PCT/JP2023/029463 JP2023029463W WO2024057803A1 WO 2024057803 A1 WO2024057803 A1 WO 2024057803A1 JP 2023029463 W JP2023029463 W JP 2023029463W WO 2024057803 A1 WO2024057803 A1 WO 2024057803A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
compound
resin
composition according
Prior art date
Application number
PCT/JP2023/029463
Other languages
French (fr)
Japanese (ja)
Inventor
幹男 佐藤
伸一 勝田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024057803A1 publication Critical patent/WO2024057803A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4

Definitions

  • the present invention relates to a resin composition, a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board.
  • wiring board used in various electronic devices it is desirable to use a wiring board compatible with high frequencies, such as a millimeter wave radar board for in-vehicle applications.
  • Wiring boards used in various electronic devices are required to reduce loss during signal transmission in order to increase signal transmission speed, and this is especially required for wiring boards compatible with high frequencies. Therefore, substrate materials for forming the substrates of wiring boards used in various electronic devices are required to have excellent low dielectric properties such as low relative permittivity and low dielectric loss tangent.
  • resin compositions used as substrate materials often contain halogen-based flame retardants such as brominated flame retardants and halogen-containing compounds such as halogen-containing epoxy resins.
  • a resin composition containing such a halogen-containing compound will contain a halogen in its cured product. When this cured product is burned, there is a risk of generating harmful substances such as hydrogen halides, and it has been pointed out that there is a concern that it will have an adverse effect on the human body and the natural environment.
  • substrate materials and the like are required to be halogen-free, that is, to be halogen-free.
  • Such a substrate material for example, includes a thermosetting resin and a curing agent, and is compatible with a mixture of the thermosetting resin and curing agent as a halogen-free flame retardant, as disclosed in Patent Document 1.
  • PPE-containing resin compositions are described that include compatible phosphorus compounds and incompatible phosphorus compounds that are incompatible with the mixture. It has been reported that by curing such a resin composition, a cured product having excellent low dielectric properties, flame retardance, etc. can be obtained (Patent Document 1).
  • the substrate material for constituting the insulating layer of the wiring board is also required to be a material that can yield a cured product that maintains excellent withstand voltage characteristics even after heat treatment and moisture absorption treatment.
  • wiring boards used in various electronic devices are also required to have excellent adhesion between the metal foil (wiring) and the insulating layer.
  • Metal-clad laminates and resin-coated metal foils used in manufacturing wiring boards and the like include not only an insulating layer but also a metal foil on the insulating layer.
  • the wiring board is also provided with not only an insulating layer but also wiring on the insulating layer. Examples of the wiring include wiring derived from metal foil provided in the metal-clad laminate or the like.
  • the wiring board does not peel off from the insulating layer even if the wiring provided on the wiring board is a finer wiring.
  • the wiring and the insulating layer have high adhesion in the wiring board. Therefore, metal-clad laminates are required to have high adhesion between the metal foil and the insulating layer, and the substrate material for forming the insulating layer of the wiring board must be a hardened material that has excellent adhesion to the metal foil. It is required that things be obtained.
  • the present invention has been made in view of the above circumstances, and has low dielectric properties (relative permittivity), excellent flame retardancy and adhesion to metal foil, high thermal conductivity, and It is possible to provide a resin composition from which a cured product is obtained in which deterioration of withstand voltage is suppressed.
  • the resin composition according to one aspect of the present invention comprises a radically polymerizable compound (A) having a carbon-carbon unsaturated double bond in the molecule, and a phosphoric acid ester compound (A) having an alicyclic hydrocarbon structure in the molecule.
  • B) and an inorganic filler (C), and the cured product thereof has a thermal conductivity of 1.0 W/m ⁇ K or more.
  • FIG. 1 is a schematic cross-sectional view showing an example of a prepreg according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a metal-clad laminate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an example of a wiring board according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an example of a resin-coated metal foil according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing an example of a resin-coated film according to an embodiment of the present invention.
  • the resin composition according to one embodiment of the present invention comprises a radically polymerizable compound (A) having a carbon-carbon unsaturated double bond in the molecule, and a phosphoric acid ester compound having an alicyclic hydrocarbon structure in the molecule. (B) and an inorganic filler (C), and the cured product has a thermal conductivity of 1.0 W/m ⁇ K or more.
  • a resin composition with such a structure has low dielectric properties (relative permittivity), excellent adhesion to metal foil and flame retardancy, high thermal conductivity, and high resistance to heat and moisture absorption after heat treatment and moisture absorption treatment.
  • a cured product with suppressed deterioration of withstand voltage can be obtained.
  • the thermal conductivity of the cured product of the resin composition is 1.0 W/m ⁇ K or more, the heat dissipation properties of a substrate such as a wiring board using the cured product of the resin composition can be improved.
  • the thermal conductivity is preferably 1.1 W/m ⁇ K or more, more preferably 1.2 W/m ⁇ K or more.
  • the upper limit of the thermal conductivity is not particularly limited, and is preferably a high value, but preferably 2.0 W/m ⁇ K or less. By setting the thermal conductivity to 2.0 W/m ⁇ K or less, a cured product with excellent adhesion to metal foil can be obtained more reliably.
  • the cured product of the resin composition has a relative dielectric constant of 3.2 to 3.8 at a frequency of 10 GHz.
  • the relative dielectric constant is more preferably 3.3 to 3.5.
  • the radically polymerizable compound (A) is not particularly limited as long as it is a radically polymerizable compound having a carbon-carbon unsaturated double bond in its molecule.
  • the radically polymerizable compound (A) preferably includes, for example, a polyphenylene ether compound (A1) having a carbon-carbon unsaturated double bond in the molecule. Thereby, low dielectric properties can be ensured in the cured product of the resin composition. It is more preferable to include the polyphenylene ether compound (A1) and the radically polymerizable compound (other radically polymerizable compound) (A2) other than the polyphenylene ether compound (A1). Examples of the other radically polymerizable compound (A2) include a curing agent for the polyphenylene ether compound (A1).
  • the polyphenylene ether compound (A1) is not particularly limited as long as it is a polyphenylene ether compound having a carbon-carbon unsaturated double bond in the molecule.
  • examples of the polyphenylene ether compound (A1) include polyphenylene ether compounds having a carbon-carbon unsaturated double bond at the end. More specifically, the polyphenylene ether compound (A1) is a substituted polyphenylene ether compound having a carbon-carbon unsaturated double bond, such as a modified polyphenylene ether compound terminal-modified with a substituent having a carbon-carbon unsaturated double bond. Examples include polyphenylene ether compounds having a group at the end of the molecule.
  • the substituent having a carbon-carbon unsaturated double bond examples include a group represented by the following formula (3) and a group represented by the following formula (4). That is, the polyphenylene ether compound (A1) is, for example, a polyphenylene ether compound having in its molecule at least one selected from a group represented by the following formula (3) and a group represented by the following formula (4). etc.
  • the polyphenylene ether compound (A1) is preferably a polyphenylene ether compound having a group represented by the following formula (3) in the molecule. If so, low dielectric properties can be more reliably obtained in the cured product of the resin composition.
  • p represents 0 to 10.
  • Ar 3 represents an arylene group.
  • R 11 to R 13 are each independent. That is, R 11 to R 13 may be the same group or different groups.
  • R 11 to R 13 represent a hydrogen atom or an alkyl group.
  • the arylene group is not particularly limited.
  • Examples of the arylene group include monocyclic aromatic groups such as a phenylene group, and polycyclic aromatic groups such as a naphthalene ring.
  • the arylene group also includes derivatives in which the hydrogen atom bonded to the aromatic ring is substituted with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. .
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • R 14 represents a hydrogen atom or an alkyl group.
  • the alkyl group is not particularly limited, and, for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • Examples of the group represented by the formula (3) include a vinylbenzyl group (ethenylbenzyl group) represented by the following formula (5). Furthermore, examples of the group represented by the formula (4) include an acryloyl group and a methacryloyl group.
  • the substituent includes vinylbenzyl groups (ethenylbenzyl groups) such as o-ethenylbenzyl group, m-ethenylbenzyl group, and p-ethenylbenzyl group, vinylphenyl group, and acryloyl group. group, and methacryloyl group.
  • the polyphenylene ether compound (A1) may have one type of substituent, or may have two or more types of substituents.
  • the polyphenylene ether compound (A1) may have, for example, any one of an o-ethenylbenzyl group, a m-ethenylbenzyl group, and a p-ethenylbenzyl group, or two types thereof. Or it may have three types.
  • the polyphenylene ether compound (A1) has a polyphenylene ether chain in the molecule, and preferably has a repeating unit represented by the following formula (6) in the molecule.
  • t represents 1 to 50.
  • R 15 to R 18 are each independent. That is, R 15 to R 18 may be the same group or different groups. Further, R 15 to R 18 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, hydrogen atoms and alkyl groups are preferred.
  • R 15 to R 18 Specific examples of the functional groups listed in R 15 to R 18 include the following.
  • the alkyl group is not particularly limited, but for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable.
  • examples of the alkenyl group include a vinyl group, an allyl group, and a 3-butenyl group.
  • the alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable.
  • examples of the alkynyl group include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable.
  • examples of the alkylcarbonyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • examples of the alkenylcarbonyl group include an acryloyl group, a methacryloyl group, and a crotonoyl group.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • the alkynylcarbonyl group includes, for example, a propioloyl group.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyphenylene ether compound (A1) are not particularly limited, but specifically, it is preferably 500 to 5000, more preferably 800 to 4000. It is preferably 1,000 to 3,000. Note that the weight average molecular weight and number average molecular weight here may be those measured by a general molecular weight measurement method, and specifically, the values measured using gel permeation chromatography (GPC) are listed. It will be done.
  • t is such that the weight average molecular weight and number average molecular weight of the polyphenylene ether compound are within such ranges. It is preferable that the value is within the range. Specifically, t in the above formula (6) is preferably 1 to 50.
  • the polyphenylene ether compound (A1) When the weight average molecular weight and number average molecular weight of the polyphenylene ether compound (A1) are within the above ranges, the polyphenylene ether has excellent low dielectric properties, and the cured product not only has excellent heat resistance but also has good moldability. will also be excellent. This is thought to be due to the following. When the weight average molecular weight and number average molecular weight of ordinary polyphenylene ether are within the above ranges, the heat resistance tends to decrease because the molecular weight is relatively low. In this regard, since the polyphenylene ether compound (A1) has one or more unsaturated double bonds at the terminal, it is thought that as the curing reaction progresses, a cured product with sufficiently high heat resistance can be obtained. .
  • the weight average molecular weight and number average molecular weight of the polyphenylene ether compound (A1) are within the above ranges, it is considered to have a relatively low molecular weight and therefore has excellent moldability. Therefore, it is thought that such a polyphenylene ether compound not only provides a cured product with excellent heat resistance but also excellent moldability.
  • the average number of the substituents (number of terminal functional groups) at the molecular ends per molecule of the polyphenylene ether compound is not particularly limited, but specifically, 1 to 5.
  • the number is preferably 1 to 3, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. Furthermore, if the number of terminal functional groups is too large, the reactivity becomes too high, which may cause problems such as a decrease in the storage stability of the resin composition or a decrease in the fluidity of the resin composition. In other words, when such a polyphenylene ether compound is used, molding defects such as voids occur during multilayer molding due to insufficient fluidity, resulting in poor moldability that makes it difficult to obtain a highly reliable printed wiring board. Problems may occur.
  • the number of terminal functional groups of the polyphenylene ether compound includes a numerical value representing the average value of the substituents per molecule of all polyphenylene ether compounds present in 1 mole of the polyphenylene ether compound.
  • the number of terminal functional groups can be determined, for example, by measuring the number of hydroxyl groups remaining in the obtained polyphenylene ether compound and calculating the decrease from the number of hydroxyl groups in the polyphenylene ether before having the substituent (before modification). , can be measured.
  • the number of terminal functional groups is the decrease from the number of hydroxyl groups in the polyphenylene ether before modification.
  • the method for measuring the number of hydroxyl groups remaining in a polyphenylene ether compound is to add a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to a solution of the polyphenylene ether compound, and measure the UV absorbance of the mixed solution. It can be found by
  • the intrinsic viscosity of the polyphenylene ether compound (A1) is not particularly limited, but specifically, it may be from 0.03 to 0.12 dl/g, but preferably from 0.04 to 0.11 dl/g. It is preferably 0.06 to 0.095 dl/g, and more preferably 0.06 to 0.095 dl/g. If the intrinsic viscosity is too low, the molecular weight tends to be low, making it difficult to obtain low dielectric properties such as a low dielectric constant and a low dielectric loss tangent. Moreover, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity cannot be obtained, and the moldability of the cured product tends to decrease. Therefore, if the intrinsic viscosity of the polyphenylene ether compound is within the above range, excellent heat resistance and moldability of the cured product can be achieved.
  • the intrinsic viscosity here is the intrinsic viscosity measured in methylene chloride at 25°C, and more specifically, for example, a 0.18 g/45 ml methylene chloride solution (liquid temperature 25°C) is measured using a viscometer. These are the values measured in . Examples of this viscometer include AVS500 Visco System manufactured by Schott.
  • polyphenylene ether compound (A1) examples include a polyphenylene ether compound represented by the following formula (7), a polyphenylene ether compound represented by the following formula (8), and the like. Further, as the polyphenylene ether compound (A1), these polyphenylene ether compounds may be used alone, or these two types of polyphenylene ether compounds may be used in combination.
  • R 19 to R 26 and R 27 to R 34 are each independent. That is, R 19 to R 26 and R 27 to R 34 may be the same group or different groups. Furthermore, R 19 to R 26 and R 27 to R 34 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • X 1 and X 2 are each independent. That is, X 1 and X 2 may be the same group or different groups. X 1 and X 2 represent substituents having a carbon-carbon unsaturated double bond.
  • a and B represent repeating units represented by the following formula (9) and the following formula (10), respectively.
  • Y represents a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
  • R 35 to R 38 and R 39 to R 42 are each independent. That is, R 35 to R 38 and R 39 to R 42 may be the same group or different groups. Further, R 35 to R 38 and R 39 to R 42 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • the polyphenylene ether compound represented by the formula (7) and the polyphenylene ether compound represented by the formula (8) are not particularly limited as long as they satisfy the above configuration.
  • R 19 to R 26 and R 27 to R 34 are each independent, as described above. That is, R 19 to R 26 and R 27 to R 34 may be the same group or different groups.
  • R 19 to R 26 and R 27 to R 34 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, hydrogen atoms and alkyl groups are preferred.
  • m and n each preferably represent 0 to 20, as described above. Further, m and n preferably represent numerical values such that the total value of m and n is 1 to 30. Therefore, it is more preferable that m represents 0 to 20, n represents 0 to 20, and the sum of m and n represents 1 to 30. Further, R 35 to R 38 and R 39 to R 42 are each independent. That is, R 35 to R 38 and R 39 to R 42 may be the same group or different groups.
  • R 35 to R 38 and R 39 to R 42 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • hydrogen atoms and alkyl groups are preferred.
  • R 19 to R 42 are the same as R 15 to R 18 in the above formula (6).
  • Y is a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms, as described above.
  • Examples of Y include a group represented by the following formula (11).
  • R 43 and R 44 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group include a methyl group.
  • the group represented by formula (11) include a methylene group, a methylmethylene group, and a dimethylmethylene group, and among these, a dimethylmethylene group is preferred.
  • X 1 and X 2 are each independently a substituent having a carbon-carbon double bond.
  • X 1 and X 2 may be the same group or different groups. You can.
  • polyphenylene ether compound represented by the formula (7) include, for example, the polyphenylene ether compound represented by the following formula (12).
  • polyphenylene ether compound represented by the formula (8) include, for example, a polyphenylene ether compound represented by the following formula (13), a polyphenylene ether compound represented by the following formula (14), etc. can be mentioned.
  • m and n are the same as m and n in the above formula (9) and the above formula (10). Furthermore, in the above formula (12) and the above formula (13), R 11 to R 13 , p, and Ar 3 are the same as R 11 to R 13 , p, and Ar 3 in the above formula (3). Further, in the above formula (13) and the above formula (14), Y is the same as Y in the above formula (8). Further, in the above formula (14), R 14 is the same as R 14 in the above formula (4).
  • the method for synthesizing the polyphenylene ether compound (A1) used in this embodiment is not particularly limited as long as it can synthesize a polyphenylene ether compound having a carbon-carbon unsaturated double bond in the molecule.
  • this method includes a method in which polyphenylene ether is reacted with a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded.
  • Examples of compounds in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include a compound in which a substituent represented by the formulas (3) to (5) above and a halogen atom are bonded.
  • Examples include compounds.
  • Specific examples of the halogen atom include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, and among these, a chlorine atom is preferred.
  • the compounds in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include o-chloromethylstyrene, p-chloromethylstyrene, m-chloromethylstyrene, etc. can be mentioned.
  • the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded may be used alone or in combination of two or more.
  • o-chloromethylstyrene, p-chloromethylstyrene, and m-chloromethylstyrene may be used alone, or two or three types may be used in combination.
  • the raw material polyphenylene ether is not particularly limited as long as it can ultimately synthesize a predetermined polyphenylene ether compound.
  • polyphenylene ethers such as poly(2,6-dimethyl-1,4-phenylene oxide) and polyphenylene ethers composed of 2,6-dimethylphenol and at least one of bifunctional phenols and trifunctional phenols are used. Examples include those having the main component.
  • a bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in the molecule, and examples thereof include tetramethylbisphenol A and the like.
  • trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in the molecule.
  • Examples of the method for synthesizing the polyphenylene ether compound (A1) include the method described above. Specifically, polyphenylene ether as described above and a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded are dissolved in a solvent and stirred. By doing so, the polyphenylene ether and the compound in which the substituent having the carbon-carbon unsaturated double bond and the halogen atom are bonded react, and the polyphenylene ether compound used in this embodiment is obtained.
  • the reaction is preferably carried out in the presence of an alkali metal hydroxide. It is thought that this reaction proceeds suitably by doing so. This is considered to be because the alkali metal hydroxide functions as a dehydrohalogenation agent, specifically, as a dehydrochlorination agent. That is, the alkali metal hydroxide eliminates hydrogen halide from the phenol group of polyphenylene ether, the compound in which the substituent having the carbon-carbon unsaturated double bond and the halogen atom are bonded, and so on. By doing so, it is thought that the substituent having the carbon-carbon unsaturated double bond bonds to the oxygen atom of the phenol group instead of the hydrogen atom of the phenol group of polyphenylene ether.
  • the alkali metal hydroxide is not particularly limited as long as it can function as a dehalogenating agent, and examples thereof include sodium hydroxide. Further, the alkali metal hydroxide is usually used in the form of an aqueous solution, specifically, as an aqueous sodium hydroxide solution.
  • Reaction conditions such as reaction time and reaction temperature vary depending on the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded, and the reaction conditions such as reaction time and reaction temperature are determined under conditions that allow the above-mentioned reaction to proceed suitably. If so, there are no particular limitations.
  • the reaction temperature is preferably room temperature to 100°C, more preferably 30 to 100°C.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours.
  • the solvent used during the reaction can dissolve polyphenylene ether and the compound in which a substituent having the carbon-carbon unsaturated double bond and a halogen atom are bonded, and the solvent can dissolve the polyphenylene ether and the compound having the carbon-carbon unsaturated double bond. It is not particularly limited as long as it does not inhibit the reaction between a substituent having a double bond and a compound to which a halogen atom is bonded. Specifically, toluene etc. are mentioned.
  • the above reaction is preferably carried out in the presence of not only the alkali metal hydroxide but also a phase transfer catalyst. That is, the above reaction is preferably carried out in the presence of an alkali metal hydroxide and a phase transfer catalyst. It is thought that by doing so, the above reaction proceeds more suitably. This is thought to be due to the following. Phase transfer catalysts have the ability to take up alkali metal hydroxides, are soluble in both polar solvent phases such as water, and non-polar solvent phases such as organic solvents, and transfer between these phases. This is thought to be due to the fact that it is a catalyst that can transfer .
  • aqueous sodium hydroxide solution when used as the alkali metal hydroxide and an organic solvent such as toluene that is incompatible with water is used as the solvent, the aqueous sodium hydroxide solution is subjected to the reaction. Even if it is added dropwise to the solvent, the solvent and the aqueous sodium hydroxide solution will separate, and it is thought that the sodium hydroxide will be difficult to transfer to the solvent. In this case, it is thought that the aqueous sodium hydroxide solution added as the alkali metal hydroxide becomes less likely to contribute to the promotion of the reaction.
  • the phase transfer catalyst is not particularly limited, but includes, for example, quaternary ammonium salts such as tetra-n-butylammonium bromide.
  • the resin composition used in this embodiment preferably contains the polyphenylene ether compound obtained as described above as the polyphenylene ether compound.
  • Examples of the radically polymerizable compounds (other radically polymerizable compounds) (A2) other than the polyphenylene ether compound include vinyl compounds, allyl compounds, methacrylate compounds, acrylate compounds, and acenaphthylene compounds.
  • the vinyl compound is a compound having a vinyl group in the molecule.
  • the vinyl compound include monofunctional vinyl compounds (monovinyl compounds) having one vinyl group in the molecule, and polyfunctional vinyl compounds having two or more vinyl groups in the molecule.
  • the monofunctional vinyl compound include styrene compounds and the like.
  • the polyfunctional vinyl compound include polyfunctional aromatic vinyl compounds, vinyl hydrocarbon compounds, and the like.
  • examples of the polyfunctional aromatic vinyl compound include divinylbenzene and the like.
  • examples of the vinyl hydrocarbon compounds include polybutadiene compounds and the like.
  • the allyl compound is a compound having an allyl group in the molecule, and includes, for example, triallyl isocyanurate compounds such as triallyl isocyanurate (TAIC), diallyl bisphenol compounds, and diallyl phthalate (DAP).
  • triallyl isocyanurate compounds such as triallyl isocyanurate (TAIC), diallyl bisphenol compounds, and diallyl phthalate (DAP).
  • the methacrylate compound is a compound having a methacryloyl group in the molecule, and includes, for example, a monofunctional methacrylate compound having one methacryloyl group in the molecule, and a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule. It will be done.
  • the monofunctional methacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • Examples of the polyfunctional methacrylate compound include dimethacrylate compounds such as tricyclodecane dimethanol dimethacrylate (DCP).
  • the acrylate compound is a compound having an acryloyl group in the molecule, and includes, for example, a monofunctional acrylate compound having one acryloyl group in the molecule, and a polyfunctional acrylate compound having two or more acryloyl groups in the molecule. It will be done.
  • the monofunctional acrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate.
  • Examples of the polyfunctional acrylate compound include diacrylate compounds such as tricyclodecane dimethanol diacrylate.
  • the acenaphthylene compound is a compound having an acenaphthylene structure in its molecule.
  • the acenaphthylene compound include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes.
  • the alkylacenaphthylenes include 1-methylacenaphthylene, 3-methylacenaphthylene, 4-methylacenaphthylene, 5-methylacenaphthylene, 1-ethylacenaphthylene, and 3-ethylacenaphthylene.
  • Examples include phthylene, 4-ethylacenaphthylene, 5-ethylacenaphthylene, and the like.
  • Examples of the halogenated acenaphthylenes include 1-chloroacenaphthylene, 3-chloroacenaphthylene, 4-chloroacenaphthylene, 5-chloroacenaphthylene, 1-bromoacenaphthylene, and 3-bromoacenaphthylene.
  • Examples include ethylene, 4-bromoacenaphthylene, 5-bromoacenaphthylene, and the like.
  • phenylacenaphthylenes examples include 1-phenylacenaphthylene, 3-phenylacenaphthylene, 4-phenylacenaphthylene, and 5-phenylacenaphthylene.
  • the acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule, as described above, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule. .
  • the radically polymerizable compound (A) may be composed of the polyphenylene ether compound (A1), or may be composed of the radically polymerizable compound (other radically polymerizable compound) other than the polyphenylene ether compound (A1) ( A2) may also be used.
  • the radically polymerizable compound (A) preferably contains the polyphenylene ether compound (A1), and the polyphenylene ether compound (A1) and the other radically polymerizable compound (A2) are combined. It is more preferable to include.
  • the other radically polymerizable compounds (A2) may be used alone or in combination of two or more.
  • the other radically polymerizable compounds (A2) include polyfunctional aromatic vinyl compounds, allyl compounds, polyfunctional methacrylate compounds, polyfunctional acrylate compounds, polybutadiene compounds, acenaphthylene compounds, and styrene. Compounds etc. are preferred.
  • divinylbenzene and acenaphthylene are more preferable among the above-mentioned radically polymerizable compounds. deterioration can be suppressed more reliably.
  • the weight average molecular weight of the radically polymerizable compound (A) varies depending on the radically polymerizable compound (A) and is not particularly limited, but for example, it is preferably less than 10,000, and preferably from 500 to 5000. More preferred.
  • the radically polymerizable compound (A) is, for example, the polyphenylene ether compound (A1)
  • its weight average molecular weight is preferably from 500 to 5,000, and preferably from 800 to 4,000, as described above. is more preferable, and even more preferably 1000 to 3000.
  • the weight average molecular weight here may be one measured by a general molecular weight measurement method, and specifically, a value measured using gel permeation chromatography (GPC), etc. can be mentioned.
  • the content of the polyphenylene ether compound (A1) is 50 to 90 parts by mass based on 100 parts by mass of the radically polymerizable compound (A). Parts by mass are preferred.
  • the content of the polyphenylene ether compound (A1) is within the above range, the resin composition can be suitably cured, and the cured product has excellent low dielectric properties, adhesion to metal foil, and While maintaining flame retardancy, it is possible to increase thermal conductivity and suppress deterioration of withstand voltage after heat treatment and moisture absorption treatment.
  • a more preferable range is 60 to 80 parts by mass.
  • the phosphoric ester compound (B) is not particularly limited as long as it is a phosphoric ester compound having an alicyclic hydrocarbon structure in its molecule. Since the phosphoric acid ester compound (B) is a phosphoric acid ester compound having an alicyclic hydrocarbon structure in its molecule, even if a compatible phosphorus flame retardant is used as a flame retardant, the cured product of the resin composition is It is possible to suppress the generation of phosphate ions due to heat treatment, suppress deterioration of withstand voltage after heat treatment and moisture absorption treatment, impart flame retardancy, and ensure low dielectric properties.
  • the alicyclic hydrocarbon structure is not particularly limited, and, for example, a 3- to 12-membered saturated alicyclic hydrocarbon structure is preferred, and a 5- to 7-membered saturated alicyclic hydrocarbon structure is more preferred. That is, the phosphoric acid ester compound (B) preferably contains a 3- to 12-membered saturated alicyclic hydrocarbon structure as the alicyclic hydrocarbon structure; More preferably, it contains a hydrocarbon structure.
  • the alicyclic hydrocarbon structure include a divalent group of a saturated alicyclic hydrocarbon, which may have a substituent bonded to carbon forming the ring.
  • the alicyclic hydrocarbon structure may be a monocyclic alicyclic hydrocarbon structure or a polycyclic alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure include divalent groups of cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, cycloundecane, and cyclododecane.
  • Examples of the polycyclic alicyclic hydrocarbon structure include divalent groups of bicyclic alicyclic hydrocarbons and divalent groups of tricyclic alicyclic hydrocarbons.
  • Examples of the divalent group of the bicyclic alicyclic hydrocarbon include bicyclo[1.1.0]butane, bicyclo[3.2.1]octane, bicyclo[5.2.0]nonane, and bicyclo [4.3.2] Divalent groups of bicyclic alicyclic hydrocarbons such as undecane and the like can be mentioned.
  • Examples of the divalent group of the tricyclic alicyclic hydrocarbon include tricyclic alicyclic groups such as tricyclo[2.2.1.0]heptane and tricyclo[5.3.1.1]dodecane. Examples include divalent groups of formula hydrocarbons.
  • the alicyclic hydrocarbon structure may be used alone or in combination of two or more.
  • the substituent bonded to the carbon forming the ring is not particularly limited, and includes, for example, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group, More specifically, the substituents listed below as R 1 to R 10 may be mentioned. These substituents may be used alone or in combination of two or more. That is, the number of substituents bonded to the carbon constituting the ring of the alicyclic hydrocarbon structure may be one, or two or more, and in the case of two or more, each substituent is , may be the same group or may be different groups.
  • each of the substituents may be bonded to the same carbon among the carbons constituting the ring of the alicyclic hydrocarbon structure, or may be bonded to different carbon atoms. May be bonded to carbon.
  • the alicyclic hydrocarbon structure includes divalent groups represented by the following formulas (15) to (18).
  • Examples of the phosphoric ester compound (B) include phosphoric ester compounds having at least one structure represented by the following formula (1) in the molecule. That is, examples of the phosphoric ester compound (B) include phosphoric ester compounds containing a structure represented by the following formula (1) as a structure containing phosphorus in the phosphoric ester compound (B). More specifically, examples of the phosphoric ester compound (B) include phosphoric ester compounds having the alicyclic hydrocarbon structure and a structure represented by the following formula (1) in the molecule.
  • R 1 to R 10 are each independent. That is, R 1 to R 10 may be the same group or different groups. Further, R 1 to R 10 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • R 1 , R 5 , R 6 , and R 10 are atoms other than hydrogen atoms, that is, alkyl groups, alkenyl groups, alkynyl groups, formyl groups, and alkyl groups.
  • R 1 to R 10 in the formula (1) include the following groups.
  • the alkyl group is not particularly limited, and is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and even more preferably an alkyl group having 1 to 4 carbon atoms. Further, R 1 , R 5 , R 6 and R 10 are particularly preferably alkyl groups having 1 to 4 carbon atoms.
  • the alkyl group may be linear or branched.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, 1- Methylbutyl group, 1,2-dimethylpropyl group, neopentyl group (2,2-dimethylpropyl group), tert-pentyl group (1,1-dimethylpropyl group), n-hexyl group, isohexyl group, 1-methylpentyl group , 2-methylpentyl group, 3-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2 -dimethylbutyl group, 2,3-dimethylbutyl
  • the alkenyl group is not particularly limited, and is preferably an alkenyl group having 1 to 10 carbon atoms, more preferably an alkenyl group having 1 to 6 carbon atoms, and even more preferably an alkenyl group having 1 to 4 carbon atoms. Further, R 1 , R 5 , R 6 and R 10 are particularly preferably alkenyl groups having 1 to 4 carbon atoms.
  • the alkenyl group may be linear or branched.
  • alkenyl group examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, 2-methyl Butoxy group, 1-methylbutoxy group, 1,2-dimethylpropoxy group, neopentyloxy group (2,2-dimethylpropoxy group), tert-pentyloxy group (1,1-dimethylpropoxy group), n-hexyloxy group, isohexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group, 3-methylpentyloxy group, 1-ethylbutoxy group, 2-ethylbutoxy group, 1,1-dimethylbutoxy group, 1, 2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 2,3-dimethylbutoxy group, 1-ethyl-1-methylpropoxy
  • the alkynyl group is not particularly limited, but is preferably an alkynyl group having 2 to 18 carbon atoms, more preferably an alkynyl group having 2 to 10 carbon atoms.
  • examples of the alkynyl group include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable.
  • examples of the alkylcarbonyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • examples of the alkenylcarbonyl group include an acryloyl group, a methacryloyl group, and a crotonoyl group.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • the alkynylcarbonyl group includes, for example, a propioloyl group.
  • the structure represented by the formula (1) includes any one of a hydrogen atom, the alkyl group, the alkenyl group, the alkynyl group, the formyl group, the alkylcarbonyl group, the alkenylcarbonyl group, and the alkynylcarbonyl group. It may have seeds or a combination of two or more types.
  • the phosphoric ester compound (B) includes a phosphoric ester compound having a structure represented by the following formula (2), and preferably contains this phosphoric ester compound.
  • Ar 1 and Ar 2 each independently represent an arylene group.
  • T represents a divalent group of a 3- to 12-membered saturated alicyclic hydrocarbon.
  • the arylene group is not particularly limited.
  • Examples of the arylene group include monocyclic aromatic groups such as a phenylene group, and polycyclic aromatic groups such as a naphthalene ring.
  • Examples of the arylene group include a group represented by the following formula (19).
  • R 45 to R 48 are each independent. That is, R 45 to R 48 may be the same group or different groups. Furthermore, R 45 to R 48 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • R 45 to R 48 in the formula (19) include the same groups as R 1 to R 10 in the formula (1).
  • phosphoric ester compound having the structure represented by the above formula (2) include, for example, the phosphoric ester compound represented by the following formula (20).
  • R 49 to R 68 are each independent. That is, R 49 to R 68 may be the same group or different groups. Further, R 49 to R 68 in the above formula (20) include the same groups as R 1 to R 10 in the above formula (1), such as a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, and an alkyl group. Indicates a carbonyl group, alkenylcarbonyl group, or alkynylcarbonyl group. Moreover, Ar 1 , Ar 2 and T are the same as Ar 1 , Ar 2 and T in the above formula (2).
  • phosphoric acid ester compound (B) include, for example, compounds represented by the following formulas (21) to (24).
  • the phosphoric acid ester compound (B) may be used alone or in combination of two or more.
  • the method for producing the phosphoric ester compound (B) is not particularly limited as long as the phosphoric ester compound (B) can be produced, and any known method can be used.
  • Examples of the method for producing the phosphoric acid ester compound (B) include a method using phosphoryl chloride (phosphorus oxychloride).
  • the content of the phosphoric acid ester compound (B) is preferably 15 to 50 parts by mass, more preferably 15 to 35 parts by mass, based on 100 parts by mass of the radically polymerizable compound (A). , more preferably 15 to 25 parts by mass.
  • the obtained cured product tends to have insufficient flame retardancy.
  • the content of the phosphoric acid ester compound (B) is too large, the content of the radically polymerizable compound (A) becomes relatively too small, and after heat treatment and moisture absorption treatment of the obtained cured product, The withstand voltage tends to deteriorate. From these facts, when the content of the phosphoric acid ester compound (B) is 15 to 50 parts by mass with respect to 100 parts by mass of the radically polymerizable compound (A), heat treatment and moisture absorption treatment in the cured product are possible. A resin composition that can exhibit sufficient flame retardancy while suppressing subsequent deterioration of withstand voltage can be obtained.
  • the resin composition may contain a flame retardant other than the phosphoric acid ester compound (B).
  • the resin composition further includes the incompatible phosphorus compound (D). That is, it is preferable that the resin composition contains the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D) as compounds that can act as a flame retardant. By using the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D) together, in the cured product of the resin composition, flame retardance is ensured while reducing adhesion to the metal foil. Can be suppressed.
  • the incompatible phosphorus compound (D) is not particularly limited as long as it acts as a flame retardant and is incompatible with the mixture.
  • the term "incompatible” refers to a state in which the target substance (phosphorus compound) is not compatible with the radically polymerizable compound (A) and is dispersed in the form of islands in the mixture.
  • the incompatible phosphorus compound (D) include compounds containing phosphorus and forming salts, such as phosphinate compounds, polyphosphate compounds, and phosphonium salt compounds, and phosphine oxide compounds.
  • examples of phosphinate compounds include aluminum dialkylphosphinate, aluminum trisdiethylphosphinate, aluminum trismethylethylphosphinate, aluminum trisdiphenylphosphinate, zinc bisdiethylphosphinate, zinc bismethylethylphosphinate, and bisdiphenyl.
  • examples of the polyphosphate compound include melamine polyphosphate, melam polyphosphate, and melem polyphosphate.
  • examples of the phosphonium salt compound include tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium bromide, and the like.
  • examples of phosphine oxide compounds include phosphine oxide compounds having two or more diphenylphosphine oxide groups in the molecule (diphenylphosphine oxide compounds), and more specifically, paraxylylenebisdiphenylphosphine oxide, etc. can be mentioned. Further, the above-mentioned incompatible phosphorus compounds may be used alone or in combination of two or more.
  • the content of the phosphoric acid ester compound (B) is 25 to 100 parts by mass based on a total of 100 parts by mass of the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D). parts, more preferably 25 to 75 parts by weight, and most preferably 25 to 50 parts by weight.
  • the content of the phosphoric acid ester compound (B) is 25 to 100 parts by mass based on the total of 100 parts by mass of the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D), It is possible to obtain a cured product that has excellent adhesion to metal foil while ensuring flame retardancy.
  • the resin composition according to this embodiment further contains an inorganic filler (C).
  • the inorganic filler (C) is not particularly limited as long as it can be used as an inorganic filler contained in a resin composition, but examples include boron nitride filler, silica filler, aluminum oxide filler, titanium oxide filler, and titanium oxide filler.
  • Metal oxide fillers such as magnesium fillers and mica fillers, aluminum hydroxide fillers, and metal hydroxide fillers such as magnesium hydroxide fillers, talc fillers, aluminum borate fillers, barium sulfate fillers, aluminum nitride fillers, silicon nitride fillers, Examples include magnesium carbonate fillers such as anhydrous magnesium carbonate fillers, calcium carbonate fillers, and the like.
  • the boron nitride filler is not particularly limited, and examples include hexagonal normal pressure phase (h-BN) filler, cubic high pressure phase (c-BN) filler, and the like.
  • the silica filler is not particularly limited, and examples thereof include crushed silica filler and silica particle filler, and silica particle filler is preferable.
  • examples of the silica particle filler include crystalline silica filler, amorphous silica filler, fused silica filler, precipitated silica filler, etc., and fused silica filler is preferable.
  • the magnesium carbonate filler is not particularly limited, but anhydrous magnesium carbonate (synthetic magnesite) filler is preferable.
  • These inorganic fillers may be used alone or in combination of two or more.
  • the inorganic fillers as exemplified above include an inorganic filler (C-1) with a thermal conductivity of 10 W/m ⁇ K or more and an inorganic filler (C-1) with a thermal conductivity of less than 10 W/m ⁇ K.
  • the inorganic filler (C) preferably includes an inorganic filler (C-1) having a thermal conductivity of 10 W/m ⁇ K or more. It is thought that this makes it possible to more reliably achieve high thermal conductivity in the cured product of the resin composition.
  • the inorganic filler (C) includes an inorganic filler (C-1) with a thermal conductivity of 10 W/m ⁇ K or more, and an inorganic filler (C-2) with a thermal conductivity of less than 10 W/m ⁇ K. ).
  • the inorganic filler (C-1) and the inorganic filler (C-2) together as the inorganic filler (C) it is possible to ensure adhesion to the metal foil and to achieve high filling of the inorganic filler. This has the advantage that deterioration of withstand voltage after heat treatment and moisture absorption treatment due to chemical reaction can be suppressed.
  • Examples of the inorganic filler (C-1) include boron nitride filler, aluminum oxide filler, magnesium oxide filler, magnesium carbonate filler, silicon nitride filler, aluminum nitride filler, and the like.
  • the inorganic filler (C-1) boron nitride filler, aluminum oxide filler, magnesium oxide filler, and magnesium carbonate filler are preferable, and boron nitride filler is more preferable.
  • the inorganic filler (C-1) contains a boron nitride filler, that is, the inorganic filler (C) contains a boron nitride filler, thereby ensuring low dielectric properties in the cured product of the resin composition.
  • the heat dissipation properties of a cured product and a substrate such as a wiring board using the cured product can be improved.
  • the inorganic filler (C-1) the inorganic fillers exemplified above may be used alone or in combination of two or more.
  • Examples of the inorganic filler (C-2) include fused silica filler, magnesium hydroxide filler, mica filler, and the like. Among these, fused silica filler is preferable as the inorganic filler (C-2). As the inorganic filler (C-2), the inorganic fillers exemplified above may be used alone or in combination of two or more.
  • the inorganic filler (C) may be a surface-treated inorganic filler or may be a surface-untreated inorganic filler. Furthermore, examples of the surface treatment include treatment with a silane coupling agent.
  • silane coupling agent examples include a silane coupling agent having at least one functional group selected from the group consisting of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, and a phenylamino group. That is, this silane coupling agent has at least one of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, and a phenylamino group as a reactive functional group, and also has a methoxy group, an ethoxy group, etc. Examples include compounds having a hydrolyzable group.
  • the silane coupling agent has a vinyl group, and examples thereof include vinyltriethoxysilane and vinyltrimethoxysilane.
  • the silane coupling agent has a styryl group, and examples thereof include p-styryltrimethoxysilane and p-styryltriethoxysilane.
  • the silane coupling agent has a methacryloyl group, and examples thereof include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropylethyldiethoxysilane.
  • the silane coupling agent has an acryloyl group, and examples thereof include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropyltriethoxysilane.
  • Examples of the silane coupling agent that has a phenylamino group include N-phenyl-3-aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltriethoxysilane.
  • the content of the inorganic filler (C) is preferably 100 to 380 parts by mass based on 100 parts by mass of the radically polymerizable compound (A). Thereby, in the cured product of the resin composition, deterioration of withstand voltage after heat treatment and moisture absorption treatment can be more reliably suppressed.
  • the content of the inorganic filler (C) is more preferably 200 to 380 parts by mass, and even more preferably 300 to 380 parts by mass, based on 100 parts by mass of the radically polymerizable compound (A). .
  • the inorganic filler (C) includes an inorganic filler (C-1) having a thermal conductivity of 10 W/m ⁇ K or more
  • the inorganic filler (C-1) is The content of the filler (C-1) is preferably 25 to 100 parts by mass. It is thought that this makes it possible to more reliably achieve high thermal conductivity in the cured product of the resin composition.
  • the inorganic filler (C-1) contains a boron nitride filler
  • the content of the boron nitride filler is the same as that of the inorganic filler (C).
  • the amount is preferably 25 to 100 parts by weight per 100 parts by weight. It is thought that this makes it possible to more reliably achieve high thermal conductivity in the cured product of the resin composition.
  • the content of the boron nitride filler is more preferably 25 to 70 parts by mass, and even more preferably 30 to 50 parts by mass, based on 100 parts by mass of the inorganic filler (C).
  • the inorganic filler (C) includes an inorganic filler (C-1) having a thermal conductivity of 10 W/m ⁇ K or more, and an inorganic filler (C-2) having a thermal conductivity of less than 10 W/m ⁇ K.
  • the content of the inorganic filler (C-1) is 25 parts by mass based on a total of 100 parts by mass of the inorganic filler (C-1) and the inorganic filler (C-2).
  • the amount is preferably 70 parts by mass.
  • the content of the inorganic filler (C-1) is 25 to 50 parts by mass based on a total of 100 parts by mass of the inorganic filler (C-1) and the inorganic filler (C-2).
  • the amount is more preferably 25 to 40 parts by mass.
  • the peak of the particle size distribution measured by laser diffraction particle size distribution measuring method is 1.0 to 50.0 ⁇ m. It is preferable that at least two of them exist in the range of . That is, in the inorganic filler used in this embodiment, it is preferable that inorganic fillers having at least two types of peak particle sizes (peak tops) are mixed.
  • inorganic filler having at least two peaks within the above particle size range high thermal conductivity and low dielectric properties (Dk) can be achieved in the cured product of the resin composition.
  • the inorganic fillers used in a more preferred embodiment include an inorganic filler with a relatively small particle size, an inorganic filler with a relatively large particle size, and an inorganic filler with at least two types of peak particle sizes (peak tops). Fillers are mixed. It is thought that this makes it possible to ensure both adhesion with the metal foil and high thermal conductivity.
  • the particle size distribution is a value measured by particle size distribution measurement using a laser diffraction/scattering method.
  • the particle size distribution measuring device "LA-960V2" used in the examples described below manufactured by Horiba, Ltd.
  • the peak refers to the maximum value in a particle size distribution graph, and specifically, in a particle size distribution graph where the horizontal axis is the particle diameter and the vertical axis is the relative particle amount (frequency). This is the numerical value obtained by the maximum value of .
  • the resin composition according to the present embodiment may contain components other than the above-mentioned components (other components), as necessary, within a range that does not impair the effects of the present invention.
  • Other components contained in the resin composition according to the present embodiment include, for example, a styrene polymer, a free radical compound, a reaction initiator, a silane coupling agent, an antifoaming agent, an antioxidant, a heat stabilizer, It may further contain additives such as antistatic agents, ultraviolet absorbers, dyes and pigments, dispersants, and lubricants.
  • the resin composition of the present embodiment also contains a thermosetting resin such as an epoxy resin, a maleimide resin, an aromatic hydrocarbon resin, and an aliphatic hydrocarbon resin. Good too.
  • the resin composition of the present embodiment may further contain a styrene polymer in addition to the components described above. It is thought that the resin composition containing the styrene polymer has the advantage of further lowering the dielectric constant of the resin.
  • the styrenic polymer used in this embodiment is, for example, a polymer obtained by polymerizing a monomer containing a styrene monomer, and may be a styrene copolymer.
  • the styrenic copolymer is, for example, a copolymer of one or more styrene monomers and one or more other monomers copolymerizable with the styrene monomer. Examples include the resulting copolymers.
  • the styrene monomer include styrene, styrene derivatives, and styrene in which some of the hydrogen atoms are substituted with substituents.
  • polystyrenic polymer As a specific styrenic polymer, a wide variety of conventionally known polymers can be used, and is not particularly limited. Examples include polymers having the following.
  • R 69 to R 71 each independently represent a hydrogen atom or an alkyl group
  • R 72 is selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, and an isopropenyl group. Indicates the group.
  • the alkyl group is not particularly limited, and, for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • the alkenyl group is preferably an alkenyl group having 1 to 10 carbon atoms. Specific examples include methyl group, ethyl group, propyl group, hexyl group, and decyl group.
  • the styrenic polymer of this embodiment preferably contains at least one type of structural unit represented by the above formula (25), but may contain a combination of two or more different types. Moreover, it is preferable that the styrenic polymer includes a structure in which structural units represented by the above formula (25) are repeated.
  • styrenic polymers include those obtained by polymerizing or copolymerizing one or more styrene monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, isopropenyltoluene, divinylbenzene, and allylstyrene.
  • styrene monomers such as styrene, vinyltoluene, ⁇ -methylstyrene, isopropenyltoluene, divinylbenzene, and allylstyrene.
  • examples include polymers or copolymers, and more specific examples include styrene-butadiene copolymers, styrene-isobutylene copolymers, and the like.
  • the styrenic polymer may be a hydrogenated styrene polymer, such as hydrogenated methylstyrene (ethylene/butylene) methylstyrene copolymer, hydrogenated methylstyrene (ethylene-ethylene /propylene) methylstyrene copolymer, hydrogenated styrene isoprene copolymer, hydrogenated styrene isoprene styrene copolymer, hydrogenated styrene (ethylene/butylene) styrene copolymer, and hydrogenated styrene (ethylene-ethylene/propylene) Examples include styrene copolymers.
  • styrene-based polymer those exemplified above may be used alone, or two or more types may be used in combination.
  • the moisture absorption rate of the cured product of the resin composition can be suppressed, and the deterioration of electrical properties due to an increase in the amount of moisture absorption can be suppressed. It can also be effective.
  • the molar fraction of the structural unit is about 10 to 70% with respect to the entire polymer. It is preferably 15% to 65%, more preferably 15% to 65%.
  • the polymerization form of the styrenic polymer is not particularly limited, and may be a block copolymer, an alternating copolymer, a random copolymer, a graft copolymer, or the like. It may also be in the form of an elastomer.
  • the weight average molecular weight of the styrenic polymer of this embodiment is preferably about 10,000 to 200,000, more preferably about 20,000 to 150,000.
  • the weight average molecular weight is within the above range, there is an advantage that appropriate resin fluidity can be ensured in the B stage of the cured resin product.
  • the number average molecular weight here may be one measured by a general molecular weight measurement method, and specifically, a value measured using gel permeation chromatography, etc. can be mentioned.
  • the styrenic polymer more desirably includes a styrene-isobutylene-styrene block copolymer (SIBS) containing a structural unit represented by the following formula (26).
  • SIBS styrene-isobutylene-styrene block copolymer
  • a1, a2 represents an integer of 1,000 to 60,000
  • b represents an integer of 1,000 to 70,000
  • the sum of a1, a2 and b is 10, 000 to 130,000.
  • the method for producing the styrenic polymer used in this embodiment is not particularly limited, for example, to show an example of the method for producing the SIBS, first, isobutylene is polymerized by a living cationic polymerization method, and then styrene is added. It can be synthesized by polymerization.
  • the styrenic polymer of this embodiment can be a commercially available one, such as "SIBSTAR (registered trademark) 073T", “SIBSTAR (registered trademark) 103T", “SIBSTAR (registered trademark)” manufactured by Kaneka Corporation. ) 102T” and “Septon V9827” manufactured by Kuraray Co., Ltd..
  • the content of the styrene polymer is not particularly limited, but is 1 to 30 parts by mass based on 100 parts by mass of the radically polymerizable compound (A). It is preferably 1 to 20 parts by weight, more preferably 1 to 15 parts by weight.
  • the content of the styrene polymer is 30 parts by mass or less based on 100 parts by mass of the radically polymerizable compound (A)
  • the cured product of the resin composition has excellent moldability and flame retardancy. is more reliably obtained, and by using 1 part by mass or more, low dielectric properties can be more reliably ensured in the cured product of the resin composition.
  • the resin composition of this embodiment may contain a free radical compound. It is thought that the inclusion of the free radical compound in the resin composition has the advantage of improving the flowability of the resin and improving the moldability.
  • the free radical compound is not particularly limited as long as it is a free radical compound used as a polymerization inhibitor.
  • More specific free radical compounds that can be preferably used in this embodiment include 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-acetamido-2,2,6, 6-tetramethylpiperidine 1-oxyl free radical, 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-carboxy-2,2,6,6-tetramethylpiperidine 1-oxyl Free radical, 4-cyano-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-glycidyloxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy- 2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxylbenzoate free radical, 4-isothiocyanato-2,2,6, 6-tetramethylpiperidine 1-oxyl free radical, 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine 1-
  • the content of the free radical compound is not particularly limited, but is 0.01 to 0.0 with respect to 100 parts by mass of the radically polymerizable compound (A).
  • the amount is preferably 0.1 part by weight, and more preferably 0.01 to 0.05 part by weight.
  • the resin composition according to the present embodiment may contain a reaction initiator (initiator). Even if the resin composition contains, for example, the polyphenylene ether compound and the curing agent, the curing reaction can proceed. However, depending on the process conditions, it may be difficult to raise the temperature to a high temperature until curing progresses, so a reaction initiator may be added.
  • a reaction initiator initiator
  • the reaction initiator is not particularly limited as long as it can promote the curing reaction of the resin composition.
  • Specific examples include metal oxides, azo compounds, and organic peroxides.
  • metal oxide examples include carboxylic acid metal salts.
  • organic peroxides examples include ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexyne, benzoyl peroxide, 3,3',5,5'-tetramethyl-1,4-diphenoquinone, chloranil, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, azobisisobutyronitrile, etc. can be mentioned.
  • the azo compounds include 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(N-butyl-2-methylpropionamide), 2,2'- Examples include azobis(2-methylbutyronitrile).
  • reaction initiators are 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(N-butyl-2-methylpropionamide), and the like. These reaction initiators have little effect on dielectric properties.
  • reaction initiation temperature is relatively high, it is possible to suppress the acceleration of the curing reaction at a time when curing is not necessary, such as when drying the prepreg, and it is possible to suppress a decrease in the storage stability of the resin composition. This is because it has the advantage of being possible.
  • reaction initiators as described above may be used alone or in combination of two or more.
  • the content thereof is not particularly limited, but is 0.5 to 3 parts by mass based on 100 parts by mass of the radically polymerizable compound (A).
  • the amount is preferably 0.5 to 2 parts by mass, and more preferably 0.5 to 2 parts by mass.
  • the resin composition according to this embodiment may contain a silane coupling agent.
  • the silane coupling agent may be contained in the resin composition as it is, or may be contained as a silane coupling agent used when surface-treating the inorganic filler in advance.
  • the silane coupling agent is preferably contained as a silane coupling agent used when surface-treating the inorganic filler in advance.
  • it is more preferable that the silane coupling agent is contained as a silane coupling agent used when surface-treating the inorganic filler in advance, and that the silane coupling agent is further contained in the resin composition as it is.
  • the prepreg may contain a silane coupling agent used when surface-treating the fibrous base material in advance.
  • a silane coupling agent used when surface-treating the fibrous base material in advance.
  • examples of the silane coupling agent include those similar to the silane coupling agents described above used when surface treating the inorganic filler.
  • the resin composition of the present embodiment contains a silane coupling agent
  • its content is not particularly limited, but it should be 1 to 6 parts by mass based on 100 parts by mass of the radically polymerizable compound (A).
  • the amount is preferably 2 to 5 parts by mass, and more preferably 2 to 5 parts by mass.
  • the resin composition is used when manufacturing prepreg, as described below. Further, the resin composition is used when forming a resin layer included in a resin-coated metal foil and a resin-coated film, and an insulating layer included in a metal-clad laminate and a wiring board. Further, as described above, the resin composition provides a cured product having excellent low dielectric properties such as a low relative dielectric constant. Therefore, the resin composition is suitably used to form an insulating layer included in a high frequency compatible wiring board such as a wiring board for an antenna or an antenna substrate for millimeter wave radar. That is, the resin composition is suitable for manufacturing wiring boards compatible with high frequencies.
  • the method for producing the resin composition is not particularly limited, and for example, the radically polymerizable compound (A) and the phosphoric acid ester compound (B) are mixed with other organic components as necessary, and then , a method of adding the inorganic filler (C), and the like. Specifically, in the case of obtaining a varnish-like composition containing an organic solvent, the method described in the explanation of the prepreg mentioned later may be used.
  • symbol is 1: prepreg, 2: resin composition or semi-cured product of a resin composition, 3: fibrous base material, 11: metal-clad laminate, 12: insulating layer, 13: metal Foil, 14: Wiring, 21: Wiring board, 31: Metal plate with resin, 32 and 42: Resin layer, 41: Film with resin, 43: Support film.
  • FIG. 1 is a schematic cross-sectional view showing an example of a prepreg 1 according to an embodiment of the present invention.
  • the prepreg 1 includes the resin composition or a semi-cured product 2 of the resin composition, and a fibrous base material 3.
  • This prepreg 1 includes the resin composition or a semi-cured product 2 of the resin composition, and a fibrous base material 3 present in the resin composition or the semi-cured product 2 of the resin composition.
  • the semi-cured product is a state in which the resin composition is partially cured to the extent that it can be further cured. That is, the semi-cured product is a semi-cured (B-staged) resin composition.
  • the semi-cured product is a semi-cured (B-staged) resin composition.
  • semi-curing includes a state between when the viscosity begins to rise and before it is completely cured.
  • the prepreg obtained using the resin composition according to the present embodiment may include a semi-cured product of the resin composition as described above, or may include the uncured resin composition. It may also include the composition itself. That is, it may be a prepreg comprising a semi-cured product of the resin composition (the resin composition at the B stage) and a fibrous base material, or a prepreg comprising the semi-cured product of the resin composition (the resin composition at the A stage), or a prepreg comprising the resin composition before curing (the resin composition at the A stage). It may be a prepreg comprising a material) and a fibrous base material. Further, the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition.
  • the resin composition 2 is often prepared in the form of a varnish and used in order to impregnate the fibrous base material 3, which is the base material for forming the prepreg. That is, the resin composition 2 is often a resin varnish prepared in the form of a varnish.
  • a varnish-like resin composition (resin varnish) is prepared, for example, as follows.
  • each component of the resin composition that can be dissolved in an organic solvent is poured into an organic solvent and dissolved therein. At this time, heating may be performed if necessary.
  • components that do not dissolve in organic solvents for example, inorganic fillers, etc.
  • components that do not dissolve in organic solvents are added as necessary, and dispersed using a ball mill, bead mill, planetary mixer, roll mill, etc. until a predetermined dispersion state is achieved.
  • a varnish-like resin composition is prepared.
  • the organic solvent used here is not particularly limited as long as it dissolves the modified polyphenylene ether compound, the curing agent, etc. and does not inhibit the curing reaction. Specific examples include toluene and methyl ethyl ketone (MEK).
  • the method for manufacturing the prepreg is not particularly limited as long as the prepreg can be manufactured. Specifically, when manufacturing a prepreg, the resin composition used in this embodiment described above is often prepared in the form of a varnish and used as a resin varnish, as described above.
  • the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper.
  • the flattening process includes, for example, a method in which a glass cloth is continuously pressed with a press roll at an appropriate pressure to compress the yarn into a flat shape.
  • the thickness of the commonly used fibrous base material is, for example, 0.01 mm or more and 0.3 mm or less.
  • the method for manufacturing the prepreg is not particularly limited as long as the prepreg can be manufactured. Specifically, when manufacturing a prepreg, the resin composition according to the present embodiment described above is often prepared in the form of a varnish and used as a resin varnish, as described above.
  • Examples of the method for manufacturing the prepreg 1 include a method in which the fibrous base material 3 is impregnated with the resin composition 2, for example, the resin composition 2 prepared in the form of a varnish, and then dried.
  • the resin composition 2 is impregnated into the fibrous base material 3 by dipping, coating, or the like. It is also possible to repeat the impregnation multiple times if necessary. Further, at this time, by repeating impregnation using a plurality of resin compositions having different compositions and concentrations, it is possible to finally adjust the desired composition and impregnation amount.
  • the fibrous base material 3 impregnated with the resin composition (resin varnish) 2 is heated under desired heating conditions, for example, at 80° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less.
  • desired heating conditions for example, at 80° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less.
  • prepreg 1 in a pre-cured (A stage) or semi-cured state (B stage) is obtained.
  • the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
  • the resin composition according to the present embodiment or the prepreg comprising the semi-cured product of this resin composition has low dielectric properties (relative permittivity), excellent adhesion with metal foil and flame retardancy, and high thermal conductivity. This is a prepreg from which a cured product with suppressed deterioration of withstand voltage after heat treatment and moisture absorption treatment can be obtained.
  • FIG. 2 is a schematic cross-sectional view showing an example of the metal-clad laminate 11 according to the embodiment of the present invention.
  • the metal-clad laminate 11 is composed of an insulating layer 12 containing a cured product of the prepreg 1 shown in FIG. has been done. That is, the metal-clad laminate 11 includes an insulating layer 12 containing a cured resin composition and a metal foil 13 provided on the insulating layer 12. Further, the insulating layer 12 may be made of a cured product of the resin composition, or may be made of a cured product of the prepreg. Further, the thickness of the metal foil 13 is not particularly limited and varies depending on the performance required of the ultimately obtained wiring board. The thickness of the metal foil 13 can be appropriately set depending on the desired purpose, and is preferably 0.2 to 70 ⁇ m, for example. Further, examples of the metal foil 13 include copper foil and aluminum foil, and when the metal foil is thin, it may be a carrier-attached copper foil provided with a peeling layer and a carrier to improve handling properties. Good too.
  • the method for manufacturing the metal-clad laminate 11 is not particularly limited as long as the metal-clad laminate 11 can be manufactured.
  • a method of producing the metal-clad laminate 11 using the prepreg 1 can be mentioned. This method involves stacking one or more prepregs 1, then stacking a metal foil 13 such as copper foil on both or one side of the top and bottom, and forming the metal foil 13 and the prepreg 1 under heat and pressure to form an integrated laminate.
  • a method of producing a laminate 11 with metal foil on both sides or with metal foil on one side can be mentioned. That is, the metal-clad laminate 11 is obtained by laminating the metal foil 13 on the prepreg 1 and molding it under heat and pressure.
  • the heating and pressing conditions can be appropriately set depending on the thickness of the metal-clad laminate 11 to be manufactured, the type of composition of the prepreg 1, and the like.
  • the temperature can be 170 to 220°C
  • the pressure can be 3 to 4 MPa
  • the time can be 60 to 150 minutes.
  • the metal-clad laminate may be manufactured without using prepreg.
  • a method may be used in which a varnish-like resin composition is applied onto a metal foil, a layer containing the resin composition is formed on the metal foil, and then heated and pressed.
  • the metal-clad laminate including the insulating layer containing the cured product of the resin composition according to the present embodiment has low dielectric properties (relative permittivity), excellent adhesion with metal foil and flame retardancy, and high thermal conductivity.
  • This is a metal-clad laminate including an insulating layer that is high in voltage and has suppressed deterioration of withstand voltage after heat treatment and moisture absorption treatment.
  • FIG. 3 is a schematic cross-sectional view showing an example of the wiring board 21 according to the embodiment of the present invention.
  • the wiring board 21 includes an insulating layer 12 used by curing the prepreg 1 shown in FIG.
  • the wiring 14 is formed by partially removing the foil 13. That is, the wiring board 21 has an insulating layer 12 containing a cured resin composition, and wiring 14 provided on both or one side of the upper and lower sides of the insulating layer 12. Further, the insulating layer 12 may be made of a cured product of the resin composition, or may be made of a cured product of the prepreg.
  • the method for manufacturing the wiring board 21 is not particularly limited as long as the wiring board 21 can be manufactured. Specifically, a method of manufacturing the wiring board 21 using the prepreg 1 may be mentioned. In this method, for example, wiring is provided as a circuit on the surface of the insulating layer 12 by etching the metal foil 13 on the surface of the metal-clad laminate 11 produced as described above to form wiring. For example, a method of manufacturing the printed circuit board 21 may be mentioned. That is, the wiring board 21 is obtained by partially removing the metal foil 13 on the surface of the metal-clad laminate 11 to form a circuit. In addition to the above-mentioned methods, methods for forming the circuit include, for example, semi-additive process (SAP) and modified semi-additive process (MSAP).
  • SAP semi-additive process
  • MSAP modified semi-additive process
  • the wiring board 21 is an insulating layer that has low dielectric properties (relative permittivity), excellent adhesion with metal foil and flame retardancy, high thermal conductivity, and suppresses deterioration of withstand voltage after heat treatment and moisture absorption treatment. It has 12.
  • Such wiring boards have low dielectric properties (relative permittivity), excellent adhesion to metal foil and flame retardancy, high thermal conductivity, and suppressed deterioration of withstand voltage after heat treatment and moisture absorption treatment. It is a wiring board including an insulating layer.
  • FIG. 4 is a schematic cross-sectional view showing an example of a resin-coated metal foil 31 according to the present embodiment.
  • the resin-coated metal foil 31 includes a resin layer 32 containing the resin composition or a semi-cured product of the resin composition, and a metal foil 13.
  • This resin-coated metal foil 31 has a metal foil 13 on the surface of the resin layer 32. That is, this resin-coated metal foil 31 includes the resin layer 32 and the metal foil 13 laminated together with the resin layer 32. Further, the resin-coated metal foil 31 may include another layer between the resin layer 32 and the metal foil 13.
  • the resin layer 32 may include a semi-cured product of the resin composition as described above, or may include an uncured resin composition.
  • the resin-coated metal foil 31 may be a resin-coated metal foil that includes a resin layer containing a semi-cured product of the resin composition (the B-stage resin composition) and a metal foil, or The resin-coated metal foil may include a resin layer containing the previous resin composition (the A-stage resin composition) and a metal foil.
  • the resin layer only needs to contain the resin composition or a semi-cured product of the resin composition, and may or may not contain a fibrous base material.
  • the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition.
  • the fibrous base material the same fibrous base material as the prepreg can be used.
  • metal foils used for metal-clad laminates can be used without limitation.
  • examples of the metal foil include copper foil and aluminum foil.
  • the resin-coated metal foil 31 and the resin-coated film 41 described below may be provided with a cover fill or the like, if necessary.
  • a cover film By providing a cover film, it is possible to prevent foreign matter from entering.
  • the cover film is not particularly limited, but includes, for example, a polyolefin film, a polyester film, a polymethylpentene film, and a film formed by providing a release agent layer on these films.
  • the method for manufacturing the resin-coated metal foil 31 is not particularly limited as long as the resin-coated metal foil 31 can be manufactured.
  • Examples of the method for manufacturing the resin-coated metal foil 31 include a method in which the varnish-like resin composition (resin varnish) is applied onto the metal foil 13 and heated.
  • the varnish-like resin composition is applied onto the metal foil 13 using, for example, a bar coater.
  • the applied resin composition is heated under conditions of, for example, 80° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less.
  • the heated resin composition is formed on the metal foil 13 as an uncured resin layer 32 .
  • the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
  • the resin-coated metal foil provided with the resin layer containing the resin composition or semi-cured product of this resin composition according to the present embodiment has low dielectric properties (relative dielectric constant), and has low adhesion with the metal foil and flame retardancy.
  • This is a resin-coated metal foil that can suitably yield a cured product with excellent thermal conductivity and suppressed deterioration of withstand voltage after heat treatment and moisture absorption treatment.
  • FIG. 5 is a schematic cross-sectional view showing an example of the resin-coated film 41 according to the present embodiment.
  • the resin-coated film 41 includes a resin layer 42 containing the resin composition or a semi-cured product of the resin composition, and a support film 43.
  • This resin-coated film 41 includes the resin layer 42 and a support film 43 laminated together with the resin layer 42. Further, the resin-coated film 41 may include another layer between the resin layer 42 and the support film 43.
  • the resin layer 42 may include a semi-cured product of the resin composition as described above, or may include an uncured resin composition.
  • the resin-coated film 41 may include a resin layer containing a semi-cured product of the resin composition (the B-stage resin composition) and a support film, or may include a support film containing the resin composition before curing.
  • the resin-coated film may include a resin layer containing a substance (the resin composition at A stage) and a support film.
  • the resin layer only needs to contain the resin composition or a semi-cured product of the resin composition, and may or may not contain a fibrous base material.
  • the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition.
  • the fibrous base material the same fibrous base material as the prepreg can be used.
  • any support film used for a resin-coated film can be used without limitation.
  • the support film include electrically insulating films such as polyester film, polyethylene terephthalate (PET) film, polyimide film, polyparabanic acid film, polyether ether ketone film, polyphenylene sulfide film, polyamide film, polycarbonate film, and polyarylate film. Examples include films.
  • the resin-coated film 41 may include a cover film or the like, if necessary. By providing a cover film, it is possible to prevent foreign matter from entering.
  • the cover film is not particularly limited, and examples thereof include polyolefin film, polyester film, and polymethylpentene film.
  • the support film and cover film may be subjected to surface treatments such as matte treatment, corona treatment, mold release treatment, and roughening treatment, as necessary.
  • the method for producing the resin-coated film 41 is not particularly limited as long as the resin-coated film 41 can be produced.
  • Examples of the method for manufacturing the resin-coated film 41 include a method in which the varnish-like resin composition (resin varnish) is applied onto the support film 43 and heated.
  • the varnish-like resin composition is applied onto the support film 43 using, for example, a bar coater.
  • the applied resin composition is heated under conditions of, for example, 80° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less.
  • the heated resin composition is formed on the support film 43 as an uncured resin layer 42 .
  • the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
  • a resin-coated film including a resin layer containing the resin composition or a semi-cured product of this resin composition according to the present embodiment has low dielectric properties (relative dielectric constant), and has excellent adhesion to metal foil and flame retardancy.
  • This is a resin-coated film that can suitably yield a cured product that has high thermal conductivity and suppresses deterioration of withstand voltage after heat treatment and moisture absorption treatment.
  • the resin composition in the first aspect includes a radically polymerizable compound (A) having a carbon-carbon unsaturated double bond in the molecule, and a phosphoric acid ester compound (B) having an alicyclic hydrocarbon structure in the molecule. and an inorganic filler (C), and the cured product has a thermal conductivity of 1.0 W/m ⁇ K or more.
  • the phosphoric acid ester compound (B) has at least one structure represented by the following formula (1) in the molecule.
  • R 1 to R 10 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
  • the alicyclic hydrocarbon structure includes a 3- to 12-membered saturated alicyclic hydrocarbon structure.
  • the resin composition according to the fourth aspect is the resin composition according to any one of the first to third aspects, in which the phosphoric acid ester compound (B) has a structure represented by the following formula (2) in the molecule. Contains a phosphoric acid ester compound having at least one of the following.
  • Ar 1 and Ar 2 each independently represent an arylene group, and T represents a divalent group of a 3- to 12-membered saturated alicyclic hydrocarbon.
  • the content of the inorganic filler (C) is 100 parts by mass of the radically polymerizable compound (A). 100 to 380 parts by mass.
  • the inorganic filler (C) is an inorganic filler having a thermal conductivity of 10 W/m ⁇ K or more. (C-1) and an inorganic filler (C-2) having a thermal conductivity of less than 10 W/m ⁇ K.
  • the resin composition according to the seventh aspect is the resin composition according to the sixth aspect, wherein the inorganic filler (C-1) is a boron nitride filler, an aluminum oxide filler, a magnesium oxide filler, a magnesium carbonate filler, a silicon nitride filler. , aluminum nitride filler.
  • the inorganic filler (C-1) is a boron nitride filler, an aluminum oxide filler, a magnesium oxide filler, a magnesium carbonate filler, a silicon nitride filler. , aluminum nitride filler.
  • the resin composition according to the eighth aspect is the resin composition according to the sixth or seventh aspect, wherein the inorganic filler (C-2) is selected from the group consisting of fused silica filler, magnesium hydroxide filler, and mica filler. Contains at least one species.
  • the content of the inorganic filler (C-1) is higher than that of the inorganic filler (C-1).
  • the amount is 25 to 70 parts by mass based on 100 parts by mass in total with the inorganic filler (C-2).
  • the content of the phosphoric acid ester compound (B) is 100% by mass of the radically polymerizable compound (A). 15 to 50 parts by mass.
  • the resin composition in the eleventh aspect further includes an incompatible phosphorus compound (D) that is not compatible with the radically polymerizable compound (A) in the resin composition in any one of the first to tenth aspects. .
  • the resin composition according to the twelfth aspect is the resin composition according to any one of the first to eleventh aspects, wherein the incompatible phosphorus compound (D) is a phosphine oxide compound, a phosphinate compound, a polyphosphate compound, and at least one selected from the group consisting of phosphonium salt compounds.
  • the incompatible phosphorus compound (D) is a phosphine oxide compound, a phosphinate compound, a polyphosphate compound, and at least one selected from the group consisting of phosphonium salt compounds.
  • the content of the phosphoric ester compound (B) is such that the content of the phosphoric ester compound (B) and the content of the phosphoric ester compound (B) are as follows.
  • the amount is 25 to 100 parts by mass based on 100 parts by mass in total with the incompatible phosphorus compound (D).
  • the resin composition according to the fourteenth aspect is the resin composition according to any one of the first to thirteenth aspects, wherein the radically polymerizable compound (A) has a carbon-carbon unsaturated double bond in the molecule.
  • the radically polymerizable compound (A) has a carbon-carbon unsaturated double bond in the molecule.
  • the resin composition according to the fifteenth aspect is the resin composition according to the fourteenth aspect, wherein the polyphenylene ether compound is at least one of a group represented by the following formula (3) and a group represented by the following formula (4). Contains polyphenylene ether compounds having in the molecule.
  • R 14 represents a hydrogen atom or an alkyl group.
  • the resin composition according to a sixteenth aspect is the resin composition according to any one of the first to fifteenth aspects, wherein a cured product of the resin composition has a dielectric constant of 3.2 to 3.8 at 10 GHz. be.
  • the prepreg in the seventeenth embodiment includes the resin composition in any one of the first to sixteenth embodiments or a semi-cured product of the resin composition, and a fibrous base material.
  • the resin-coated film in the eighteenth embodiment includes a resin layer containing the resin composition in any one of the first to sixteenth embodiments or a semi-cured product of the resin composition, and a support film.
  • the resin-coated metal foil in the nineteenth embodiment includes a resin layer containing the resin composition in any one of the first to sixteenth embodiments or a semi-cured product of the resin composition, and a metal foil.
  • the metal-clad laminate in the 20th embodiment includes an insulating layer containing the cured product of the resin composition in any one of the 1st to 16th embodiments or the cured prepreg in the 17th embodiment, and a metal foil. .
  • the wiring board in the 21st embodiment includes an insulating layer containing a cured product of the resin composition in any one of the 1st to 16th embodiments or a cured product of the prepreg in the 17th embodiment, and wiring.
  • ⁇ PPE-1 Modified polyphenylene ether in which the terminal hydroxyl group of polyphenylene ether is modified with a methacryloyl group (SA9000 manufactured by SABIC Innovative Plastics, number average molecular weight Mn 2300, number of terminal functional groups: 2)
  • PPE-2 A polyphenylene ether compound (modified polyphenylene ether compound obtained by reacting polyphenylene ether and chloromethylstyrene) having a vinylbenzyl group (ethenylbenzyl group) at the end. Specifically, it is a modified polyphenylene ether compound obtained by reacting as follows.
  • polyphenylene ether (SA90 manufactured by SABIC Innovative Plastics, number of terminal hydroxyl groups: 2, weight average molecular weight Mw 1700) was placed in a 1 liter three-necked flask equipped with a temperature controller, stirring device, cooling equipment, and dropping funnel. 200 g, 30 g of a mixture of p-chloromethylstyrene and m-chloromethylstyrene in a mass ratio of 50:50 (chloromethylstyrene: CMS manufactured by Tokyo Chemical Industry Co., Ltd.), and tetra-n-butylammonium as a phase transfer catalyst. 1.227 g of bromide and 400 g of toluene were charged and stirred.
  • the obtained solid was analyzed by 1 H-NMR (400 MHz, CDCl 3 , TMS). As a result of NMR measurement, a peak derived from vinylbenzyl group (ethenylbenzyl group) was confirmed at 5 to 7 ppm. This confirmed that the obtained solid was a modified polyphenylene ether compound having a vinylbenzyl group (ethenylbenzyl group) as the substituent in the molecule at the end of the molecule. Specifically, it was confirmed that it was ethenylbenzylated polyphenylene ether.
  • the obtained modified polyphenylene ether compound is represented by the above formula (13), Y in formula (13) is a dimethylmethylene group (represented by formula (11), and R 43 and R 44 in formula (11) was a methyl group), Ar 3 was a phenylene group, R 11 to R 13 were hydrogen atoms, and p was 1.
  • the number of terminal functional groups of the modified polyphenylene ether was measured as follows.
  • TEAH tetraethylammonium hydroxide
  • Residual OH amount ( ⁇ mol/g) [(25 ⁇ Abs)/( ⁇ OPL ⁇ X)] ⁇ 106
  • indicates the extinction coefficient and is 4700 L/mol ⁇ cm.
  • OPL is the cell optical path length and is 1 cm.
  • the calculated residual OH amount (number of terminal hydroxyl groups) of the modified polyphenylene ether was almost zero, it was found that the hydroxyl groups of the polyphenylene ether before modification were almost modified. From this, it was found that the decrease from the number of terminal hydroxyl groups of polyphenylene ether before modification was the number of terminal hydroxyl groups of polyphenylene ether before modification. That is, it was found that the number of terminal hydroxyl groups of polyphenylene ether before modification is the number of terminal functional groups of modified polyphenylene ether. In other words, the number of terminal functional groups was two.
  • the intrinsic viscosity (IV) of the modified polyphenylene ether was measured in methylene chloride at 25°C. Specifically, the intrinsic viscosity (IV) of the modified polyphenylene ether was determined by measuring a 0.18 g/45 ml methylene chloride solution (liquid temperature 25°C) of the modified polyphenylene ether using a viscometer (AVS500 Visco System manufactured by Schott). It was measured. As a result, the intrinsic viscosity (IV) of the modified polyphenylene ether was 0.086 dl/g.
  • Mw weight average molecular weight
  • ⁇ Curing agent-1 Triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd., "TAIC")
  • TAIC Triggerlyl isocyanurate
  • TAIC Divinylbenzene
  • ((B) Phosphoric ester compound) ⁇ (B) Phosphoric ester compound-1 Phosphoric ester compound having an alicyclic hydrocarbon structure in the molecule (3,3,5-trimethyl-1,1-bis(4-hydroxyphenyl)cyclohexane and 2, It is a phosphoric acid ester compound obtained by reacting 6-xylenol and phosphoryl chloride. Specifically, it is a phosphoric acid ester compound obtained by reacting as follows.
  • DXPC dixylyl phosphorochloridate
  • the liquid in the four-necked flask was heated while stirring until the liquid temperature reached 65°C. Thereafter, while maintaining the same temperature (65° C.), triethylamine in the dropping funnel was added dropwise over 1 hour and 30 minutes. After the dropwise addition was completed, the mixture was stirred at the same temperature (65°C) for 2 hours.
  • the reaction product thus obtained was washed with dilute hydrochloric acid and water, neutralized and washed with an aqueous sodium hydroxide solution, and washed again with water. Thereafter, the solution was heated until the temperature reached 110° C., the pressure was reduced to 1 kPa, and water, toluene, and tetrahydrofuran were recovered. Furthermore, steam distillation was performed at 110° C.
  • Inorganic filler ((C) Inorganic filler) ⁇ (C-1)
  • Inorganic filler-1 Boron nitride filler (manufactured by Denka Co., Ltd., "SGP”, thermal conductivity 40 to 80 W/m K, volume average particle diameter 18 ⁇ m)
  • Inorganic filler-2 Boron nitride filler (manufactured by MARUKA Co., Ltd., "AP-20S”, thermal conductivity 60 W/m K, volume average particle diameter 0.7 ⁇ m)
  • Inorganic filler-3 Aluminum oxide filler (manufactured by Denka Co., Ltd., "DAW-03DC”, thermal conductivity 20 to 40 W/m K, volume average particle diameter 4.9 ⁇ m)
  • Inorganic filler-4 Magnesium carbonate filler (manufactured by Kamishima Chemical Co., Ltd., "Magthermo MS-L”, thermal conductivity 15 W/m K, volume average particle diameter
  • reaction initiator ⁇ Reaction initiator-1: peroxide (1,3-bis(butylperoxyisopropyl)benzene, manufactured by NOF Corporation, "Perbutyl P")
  • Coupled agent Silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., "KBM-503")
  • Free radical compound-1 4-benzoyloxy TEMPO, a free radical compound represented by the following formula (manufactured by Tokyo Chemical Industry Co., Ltd., "H0878")
  • each organic resin component other than the inorganic filler is added to toluene as a solvent and mixed in the composition (parts by mass) shown in Tables 1 and 2 so that the solid content concentration is 60 to 70% by mass. Ta. The mixture was stirred for 60 minutes. Thereafter, each component was added to the resulting liquid in the proportions (parts by mass) listed in Tables 1 and 2, and the inorganic filler was dispersed using a bead mill. By doing so, a varnish-like resin composition (varnish) was obtained.
  • an evaluation board (cured prepreg) was obtained as follows.
  • a prepreg was produced by impregnating a fibrous base material (glass cloth: #1078 type, L glass manufactured by Asahi Kasei Corporation) with the obtained varnish, and then heating and drying it at 120° C. for 2 minutes. Then, 1, 2, 4, and 6 sheets of each of the obtained prepregs were stacked, and each side was laminated with copper foil (Fukuda Metal Foil & Powder Industries Co., Ltd. "CF-T4X-SV" copper foil thickness: 35 ⁇ m) and heated. Copper-clad laminates of four different thicknesses were prepared by heating to a temperature of 200°C at a rate of 4°C/min and heating and pressing at 200°C for 120 minutes at a pressure of 3 MPa.
  • the copper-clad laminate prepared as described above was used as an evaluation board and evaluated by the method shown below.
  • a copper-clad laminate made of four prepregs from which the copper foil was removed (cured prepreg) was used.
  • a copper-clad laminate made of four prepreg layers was used.
  • thermal conductivity a cured product of one prepreg and a copper-clad laminate made of two prepregs from which the copper foil was removed (cured prepreg) were used.
  • a copper-clad laminate made of six prepregs from which the copper foil was removed (cured prepreg) was used.
  • an evaluation substrate (cured prepreg) was obtained as follows.
  • a prepreg was produced by impregnating a fibrous base material (glass cloth: #3313 type, E glass, manufactured by Nitto Boseki Co., Ltd.) with the obtained varnish, and then heating and drying it at 110° C. for 2 minutes.
  • Four sheets of each of the obtained prepregs were stacked, and copper foil (Fukuda Metal Foil & Powder Industries Co., Ltd. "CF-T4X-SV" copper foil thickness: 35 ⁇ m) was laminated on both sides, and the temperature was increased at a heating rate of 4°C/min.
  • Copper-clad laminates of three different thicknesses were produced by heating to 200° C. and heating and pressing at 200° C. for 120 minutes at a pressure of 3 MPa.
  • the obtained copper-clad laminate from which the copper foil was removed (cured prepreg) was used.
  • the relative dielectric constant (Dk) of the evaluation substrate (cured prepreg) at a frequency of 10 GHz was measured using the cavity resonator perturbation method. Specifically, the dielectric constant of the evaluation board at 10 GHz was measured using a network analyzer (N5230A manufactured by Keysight Technologies, Inc.). Note that a dielectric constant of 3.2 to 3.8 is favorable.
  • Thermal conductivity of the obtained evaluation board (cured prepreg) was measured by a method based on ASTM D5470. Specifically, using a thermal property evaluation device (T3Ster DynTIM Tester manufactured by Mentor Graphics), the thermal resistance and The thickness was measured, the measured values were plotted on a graph, approximated by a straight line, and the thermal conductivity was calculated from the increase in thermal resistance and thickness.
  • the acceptance criterion for thermal conductivity in this example was 1.0 W/m ⁇ K or more.
  • test pieces Each having a diameter of 100 ⁇ 5 mm and a thickness of 0.5 mm were further cut out from the evaluation board.
  • the cut test pieces were subjected to aging treatment at a treatment temperature of 150° C. and treatment times of 500 hours, 750 hours, and 1000 hours, respectively.
  • the test pieces subjected to each aging treatment were subjected to a moisture absorption treatment at 35° C. and 90% for 96 hours.
  • Example 2 when comparing Example 1 and Example 2, the sample of Example 2 using divinylbenzene as a curing agent was more heat-treated and moisture-absorbing than the sample of Example 1 using triallylisocyanurate as a curing agent. It was confirmed that the subsequent deterioration of withstand voltage was suppressed.
  • Example 3 when comparing Example 1 and Example 3, the sample of Example 3 using a modified polyphenylene ether compound having a vinylbenzyl group at the end is different from the sample using a polyphenylene ether compound in which the terminal hydroxyl group of polyphenylene ether is modified with a methacroyl group. It was confirmed that the sample had a lower dielectric property superior to that of the sample of Example 1 used.
  • the samples of Examples 7, 16, and 17 had a lower content of inorganic filler (C-2) than Example 1, and together with boron nitride filler as inorganic filler (C-1), aluminum oxide filler, Magnesium carbonate filler and magnesium oxide filler are used respectively. It was confirmed that the samples of Examples 7, 16, and 17 had better thermal conductivity than the sample of Example 1. This is because the thermal conductivity of the inorganic filler itself is higher for the inorganic filler (C-1) than for the inorganic filler (C-2), so the thermal conductivity of the cured product also tends to be higher. It is thought that.
  • the present invention has wide industrial applicability in technical fields related to electronic materials and various devices using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

One aspect of the present invention relates to a resin composition comprising a radically polymerizable compound (A) that has a carbon-carbon unsaturated double bond in each molecule, a phosphate ester compound (B) that has an alicyclic hydrocarbon structure in each molecule, and an inorganic filler (C), wherein a cured product of said resin composition has a thermal conductivity of not less than 1.0W/m・K.

Description

樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板Resin compositions, prepregs, resin-coated films, resin-coated metal foils, metal-clad laminates, and wiring boards
 本発明は、樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板に関する。 The present invention relates to a resin composition, a prepreg, a resin-coated film, a resin-coated metal foil, a metal-clad laminate, and a wiring board.
 各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化等の実装技術が進展している。また、各種電子機器に用いられる配線板としては、例えば、車載用途におけるミリ波レーダ基板等の、高周波対応の配線板であることが望ましい。各種電子機器において用いられる配線板には、信号の伝送速度を高めるために、信号伝送時の損失を低減させることが求められ、高周波対応の配線板には、特にそれが求められる。したがって、各種電子機器において用いられる配線板の基板を構成するための基板材料には、比誘電率や誘電正接が低いなどの低誘電特性に優れていることが要求される。 As the amount of information processed in various electronic devices increases, mounting technologies such as higher integration of mounted semiconductor devices, higher wiring density, and multilayering are progressing. Moreover, as a wiring board used in various electronic devices, it is desirable to use a wiring board compatible with high frequencies, such as a millimeter wave radar board for in-vehicle applications. Wiring boards used in various electronic devices are required to reduce loss during signal transmission in order to increase signal transmission speed, and this is especially required for wiring boards compatible with high frequencies. Therefore, substrate materials for forming the substrates of wiring boards used in various electronic devices are required to have excellent low dielectric properties such as low relative permittivity and low dielectric loss tangent.
 また、配線板には難燃性に優れていることも求められる。この点、基板材料として用いられる樹脂組成物には、臭素系難燃剤等のハロゲン系難燃剤及びハロゲン含有エポキシ樹脂等の、ハロゲンを含有する化合物が配合されることが多かった。このようなハロゲンを含有する化合物が配合された樹脂組成物は、その硬化物にハロゲンが含有されることになる。この硬化物を燃焼した際には、ハロゲン化水素等の有害物質を生成するおそれがあり、人体及び自然環境等に対して悪影響を及ぼす懸念が指摘されている。このような背景のもと、基板材料等には、ハロゲンを含まないこと、いわゆるハロゲンフリー化が求められている。 Additionally, wiring boards are required to have excellent flame retardancy. In this regard, resin compositions used as substrate materials often contain halogen-based flame retardants such as brominated flame retardants and halogen-containing compounds such as halogen-containing epoxy resins. A resin composition containing such a halogen-containing compound will contain a halogen in its cured product. When this cured product is burned, there is a risk of generating harmful substances such as hydrogen halides, and it has been pointed out that there is a concern that it will have an adverse effect on the human body and the natural environment. Against this background, substrate materials and the like are required to be halogen-free, that is, to be halogen-free.
 このような基板材料としては、例えば、特許文献1には、熱硬化性樹脂と、硬化剤とを含み、さらにハロゲンフリーの難燃剤として、熱硬化性樹脂と硬化剤との混合物に相溶する相溶性リン化合物と前記混合物に相溶しない非相溶性リン化合物とを含む、PPE含有樹脂組成物が記載されている。このような樹脂組成物を硬化させることによって、低誘電特性、難燃性などに優れる硬化物を得ることができると報告されている(特許文献1)。 Such a substrate material, for example, includes a thermosetting resin and a curing agent, and is compatible with a mixture of the thermosetting resin and curing agent as a halogen-free flame retardant, as disclosed in Patent Document 1. PPE-containing resin compositions are described that include compatible phosphorus compounds and incompatible phosphorus compounds that are incompatible with the mixture. It has been reported that by curing such a resin composition, a cured product having excellent low dielectric properties, flame retardance, etc. can be obtained (Patent Document 1).
 一方で、近年、各種電子機器に用いられる配線板の絶縁層における各種特性の要求はさらに高まっている。例えば、各種電子機器に用いられる配線板には、外部環境の変化等の影響を受けにくいことも望まれている。具体的には、幅広い温度範囲において優れた信頼性を有する配線板を得るために、配線板の絶縁層を構成するための基板材料の熱伝導性を高める技術が求められている。また、前記配線板には、温度及び湿度が比較的高い環境でも耐電圧が劣化しないような、耐電圧特性に優れていることも望まれている。そのため、配線板の絶縁層を構成するための基板材料としては、熱処理及び吸湿処理後でも優れた耐電圧特性が維持される硬化物が得られる材料であることも要求される。 On the other hand, in recent years, demands for various properties in insulating layers of wiring boards used in various electronic devices have further increased. For example, it is also desired that wiring boards used in various electronic devices be less susceptible to changes in the external environment. Specifically, in order to obtain a wiring board that has excellent reliability over a wide temperature range, there is a need for a technology that increases the thermal conductivity of a substrate material that constitutes the insulating layer of the wiring board. Further, it is also desired that the wiring board has excellent withstand voltage characteristics such that the withstand voltage does not deteriorate even in an environment with relatively high temperature and humidity. Therefore, the substrate material for constituting the insulating layer of the wiring board is also required to be a material that can yield a cured product that maintains excellent withstand voltage characteristics even after heat treatment and moisture absorption treatment.
 ところが、本発明者らの研究によって、ハロゲンフリーのリン系難燃剤として用いられる相溶性リン化合物の中には、熱分解によりリン酸が発生するものがあり、それによって熱処理及び吸湿処理後の耐電圧が劣化することがわかってきた。 However, research by the present inventors revealed that some compatible phosphorus compounds used as halogen-free phosphorus-based flame retardants generate phosphoric acid upon thermal decomposition, resulting in poor resistance after heat treatment and moisture absorption treatment. It has been found that the voltage deteriorates.
 さらに、各種電子機器に用いられる配線板には、金属箔(配線)と絶縁層との密着性に優れることも求められている。配線板等を製造する際に用いられる金属張積層板及び樹脂付き金属箔は、絶縁層だけではなく、前記絶縁層上に金属箔を備える。また、配線板も、絶縁層だけではなく、前記絶縁層上に配線が備えられる。そして、前記配線としては、前記金属張積層板等に備えられる金属箔由来の配線等が挙げられる。 Furthermore, wiring boards used in various electronic devices are also required to have excellent adhesion between the metal foil (wiring) and the insulating layer. Metal-clad laminates and resin-coated metal foils used in manufacturing wiring boards and the like include not only an insulating layer but also a metal foil on the insulating layer. Further, the wiring board is also provided with not only an insulating layer but also wiring on the insulating layer. Examples of the wiring include wiring derived from metal foil provided in the metal-clad laminate or the like.
 前記配線板には、備えられる配線が微細化された配線であっても、前記絶縁層から前記配線が剥離しないことが望まれる。この要求を満たすためには、前記配線板において、配線と絶縁層との密着性が高いことが好ましい。よって、金属張積層板には、金属箔と絶縁層との密着性が高いことが求められ、配線板の絶縁層を構成するための基板材料には、金属箔との密着性に優れた硬化物が得られることが求められる。 It is desired that the wiring board does not peel off from the insulating layer even if the wiring provided on the wiring board is a finer wiring. In order to meet this requirement, it is preferable that the wiring and the insulating layer have high adhesion in the wiring board. Therefore, metal-clad laminates are required to have high adhesion between the metal foil and the insulating layer, and the substrate material for forming the insulating layer of the wiring board must be a hardened material that has excellent adhesion to the metal foil. It is required that things be obtained.
 本発明は、かかる事情に鑑みてなされたものであって、誘電特性(比誘電率)が低く、難燃性及び金属箔との密着性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された硬化物が得られる樹脂組成物を提供することができる。 The present invention has been made in view of the above circumstances, and has low dielectric properties (relative permittivity), excellent flame retardancy and adhesion to metal foil, high thermal conductivity, and It is possible to provide a resin composition from which a cured product is obtained in which deterioration of withstand voltage is suppressed.
国際公開第2018/074278号International Publication No. 2018/074278
 本発明の一態様に係る樹脂組成物は、炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物(A)と、脂環式炭化水素構造を分子内に有するリン酸エステル化合物(B)と、無機充填剤(C)とを含み、その硬化物の熱伝導率が1.0W/m・K以上である。 The resin composition according to one aspect of the present invention comprises a radically polymerizable compound (A) having a carbon-carbon unsaturated double bond in the molecule, and a phosphoric acid ester compound (A) having an alicyclic hydrocarbon structure in the molecule. B) and an inorganic filler (C), and the cured product thereof has a thermal conductivity of 1.0 W/m·K or more.
図1は、本発明の実施形態に係るプリプレグの一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a prepreg according to an embodiment of the present invention. 図2は、本発明の実施形態に係る金属張積層板の一例を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a metal-clad laminate according to an embodiment of the present invention. 図3は、本発明の実施形態に係る配線板の一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a wiring board according to an embodiment of the present invention. 図4は、本発明の実施形態に係る樹脂付き金属箔の一例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing an example of a resin-coated metal foil according to an embodiment of the present invention. 図5は、本発明の実施形態に係る樹脂付きフィルムの一例を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing an example of a resin-coated film according to an embodiment of the present invention.
 以下、本発明に係る実施形態について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 [樹脂組成物]
 本発明の一実施形態に係る樹脂組成物は、炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物(A)と、脂環式炭化水素構造を分子内に有するリン酸エステル化合物(B)と、無機充填剤(C)とを含み、その硬化物の熱伝導率が1.0W/m・K以上である。このような構成の樹脂組成物は、硬化させることによって、誘電特性(比誘電率)が低く、金属箔との密着性及び難燃性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された硬化物が得られる。
[Resin composition]
The resin composition according to one embodiment of the present invention comprises a radically polymerizable compound (A) having a carbon-carbon unsaturated double bond in the molecule, and a phosphoric acid ester compound having an alicyclic hydrocarbon structure in the molecule. (B) and an inorganic filler (C), and the cured product has a thermal conductivity of 1.0 W/m·K or more. When cured, a resin composition with such a structure has low dielectric properties (relative permittivity), excellent adhesion to metal foil and flame retardancy, high thermal conductivity, and high resistance to heat and moisture absorption after heat treatment and moisture absorption treatment. A cured product with suppressed deterioration of withstand voltage can be obtained.
 前記樹脂組成物の硬化物の熱伝導率が1.0W/m・K以上であることにより、樹脂組成物の硬化物を用いた配線板等の基板の放熱性を高めることができる。前記熱伝導率は好ましくは1.1W/m・K以上であり、より好ましくは1.2W/m・K以上である。なお、前記熱伝導率の上限は特に限定されず、高い値であることが好ましいが、2.0W/m・K以下であることが好ましい。熱伝導率を2.0W/m・K以下とすることにより、金属箔との密着性に優れた硬化物をより確実に得ることができる。 When the thermal conductivity of the cured product of the resin composition is 1.0 W/m·K or more, the heat dissipation properties of a substrate such as a wiring board using the cured product of the resin composition can be improved. The thermal conductivity is preferably 1.1 W/m·K or more, more preferably 1.2 W/m·K or more. Note that the upper limit of the thermal conductivity is not particularly limited, and is preferably a high value, but preferably 2.0 W/m·K or less. By setting the thermal conductivity to 2.0 W/m·K or less, a cured product with excellent adhesion to metal foil can be obtained more reliably.
 また、前記樹脂組成物の硬化物の周波数10GHzにおける比誘電率が3.2~3.8であることが好ましい。前記比誘電率は、3.3~3.5であることがより好ましい。 Further, it is preferable that the cured product of the resin composition has a relative dielectric constant of 3.2 to 3.8 at a frequency of 10 GHz. The relative dielectric constant is more preferably 3.3 to 3.5.
 (ラジカル重合性化合物(A))
 前記ラジカル重合性化合物(A)は、炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物であれば、特に限定されない。前記ラジカル重合性化合物(A)としては、例えば、炭素-炭素不飽和二重結合を分子内に有するポリフェニレンエーテル化合物(A1)を含むことが好ましい。これによって、樹脂組成物の硬化物において、低誘電特性を担保することができる。前記ポリフェニレンエーテル化合物(A1)と、前記ポリフェニレンエーテル化合物(A1)以外の前記ラジカル重合性化合物(その他のラジカル重合性化合物)(A2)とを含むことがより好ましい。前記その他のラジカル重合性化合物(A2)としては、例えば、前記ポリフェニレンエーテル化合物(A1)の硬化剤等が挙げられる。
(Radical polymerizable compound (A))
The radically polymerizable compound (A) is not particularly limited as long as it is a radically polymerizable compound having a carbon-carbon unsaturated double bond in its molecule. The radically polymerizable compound (A) preferably includes, for example, a polyphenylene ether compound (A1) having a carbon-carbon unsaturated double bond in the molecule. Thereby, low dielectric properties can be ensured in the cured product of the resin composition. It is more preferable to include the polyphenylene ether compound (A1) and the radically polymerizable compound (other radically polymerizable compound) (A2) other than the polyphenylene ether compound (A1). Examples of the other radically polymerizable compound (A2) include a curing agent for the polyphenylene ether compound (A1).
 前記ポリフェニレンエーテル化合物(A1)は、炭素-炭素不飽和二重結合を分子内に有するポリフェニレンエーテル化合物であれば、特に限定されない。前記ポリフェニレンエーテル化合物(A1)としては、例えば、炭素-炭素不飽和二重結合を末端に有するポリフェニレンエーテル化合物等が挙げられる。より具体的に、前記ポリフェニレンエーテル化合物(A1)としては、炭素-炭素不飽和二重結合を有する置換基により末端変性された変性ポリフェニレンエーテル化合物等の、炭素-炭素不飽和二重結合を有する置換基を分子末端に有するポリフェニレンエーテル化合物等が挙げられる。 The polyphenylene ether compound (A1) is not particularly limited as long as it is a polyphenylene ether compound having a carbon-carbon unsaturated double bond in the molecule. Examples of the polyphenylene ether compound (A1) include polyphenylene ether compounds having a carbon-carbon unsaturated double bond at the end. More specifically, the polyphenylene ether compound (A1) is a substituted polyphenylene ether compound having a carbon-carbon unsaturated double bond, such as a modified polyphenylene ether compound terminal-modified with a substituent having a carbon-carbon unsaturated double bond. Examples include polyphenylene ether compounds having a group at the end of the molecule.
 前記炭素-炭素不飽和二重結合を有する置換基としては、例えば、下記式(3)で表される基及び下記式(4)で表される基等が挙げられる。すなわち、前記ポリフェニレンエーテル化合物(A1)としては、例えば、下記式(3)で表される基及び下記式(4)で表される基から選択される少なくとも1種を分子中に有するポリフェニレンエーテル化合物等が挙げられる。前記ポリフェニレンエーテル化合物(A1)は、下記式(3)で表される基を分子中に有するポリフェニレンエーテル化合物であることが好ましい。そうであれば、樹脂組成物の硬化物において、低誘電特性をより確実に得ることができる。 Examples of the substituent having a carbon-carbon unsaturated double bond include a group represented by the following formula (3) and a group represented by the following formula (4). That is, the polyphenylene ether compound (A1) is, for example, a polyphenylene ether compound having in its molecule at least one selected from a group represented by the following formula (3) and a group represented by the following formula (4). etc. The polyphenylene ether compound (A1) is preferably a polyphenylene ether compound having a group represented by the following formula (3) in the molecule. If so, low dielectric properties can be more reliably obtained in the cured product of the resin composition.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(3)中、pは、0~10を示す。Arは、アリーレン基を示す。R11~R13は、それぞれ独立している。すなわち、R11~R13は、それぞれ同一の基であっても、異なる基であってもよい。R11~R13は、水素原子又はアルキル基を示す。なお、前記式(3)において、pが0である場合は、Arがポリフェニレンエーテルに直接結合していることを示す。 In formula (3), p represents 0 to 10. Ar 3 represents an arylene group. R 11 to R 13 are each independent. That is, R 11 to R 13 may be the same group or different groups. R 11 to R 13 represent a hydrogen atom or an alkyl group. In addition, in the above formula (3), when p is 0, it indicates that Ar 3 is directly bonded to the polyphenylene ether.
 前記アリーレン基は、特に限定されない。このアリーレン基としては、例えば、フェニレン基等の単環芳香族基や、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、このアリーレン基には、芳香族環に結合する水素原子が、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基等の官能基で置換された誘導体も含む。 The arylene group is not particularly limited. Examples of the arylene group include monocyclic aromatic groups such as a phenylene group, and polycyclic aromatic groups such as a naphthalene ring. The arylene group also includes derivatives in which the hydrogen atom bonded to the aromatic ring is substituted with a functional group such as an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. .
 前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的に、前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 The alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(4)中、R14は、水素原子又はアルキル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的に、前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 In formula (4), R 14 represents a hydrogen atom or an alkyl group. The alkyl group is not particularly limited, and, for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
 前記式(3)で表される基としては、例えば、下記式(5)で表されるビニルベンジル基(エテニルベンジル基)等が挙げられる。また、前記式(4)で表される基としては、例えば、アクリロイル基及びメタクリロイル基等が挙げられる。 Examples of the group represented by the formula (3) include a vinylbenzyl group (ethenylbenzyl group) represented by the following formula (5). Furthermore, examples of the group represented by the formula (4) include an acryloyl group and a methacryloyl group.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記置換基としては、より具体的には、o-エテニルベンジル基、m-エテニルベンジル基、及びp-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリロイル基、及びメタクリロイル基等が挙げられる。前記ポリフェニレンエーテル化合物(A1)は、前記置換基として、1種を有するものであってもよいし、2種以上有するものであってもよい。前記ポリフェニレンエーテル化合物(A1)は、例えば、o-エテニルベンジル基、m-エテニルベンジル基、及びp-エテニルベンジル基等のいずれかを有するものであってもよいし、これらを2種又は3種有するものであってもよい。 More specifically, the substituent includes vinylbenzyl groups (ethenylbenzyl groups) such as o-ethenylbenzyl group, m-ethenylbenzyl group, and p-ethenylbenzyl group, vinylphenyl group, and acryloyl group. group, and methacryloyl group. The polyphenylene ether compound (A1) may have one type of substituent, or may have two or more types of substituents. The polyphenylene ether compound (A1) may have, for example, any one of an o-ethenylbenzyl group, a m-ethenylbenzyl group, and a p-ethenylbenzyl group, or two types thereof. Or it may have three types.
 前記ポリフェニレンエーテル化合物(A1)は、ポリフェニレンエーテル鎖を分子中に有しており、例えば、下記式(6)で表される繰り返し単位を分子中に有していることが好ましい。 The polyphenylene ether compound (A1) has a polyphenylene ether chain in the molecule, and preferably has a repeating unit represented by the following formula (6) in the molecule.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(6)において、tは、1~50を示す。また、R15~R18は、それぞれ独立している。すなわち、R15~R18は、それぞれ同一の基であっても、異なる基であってもよい。また、R15~R18は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 In formula (6), t represents 1 to 50. Furthermore, R 15 to R 18 are each independent. That is, R 15 to R 18 may be the same group or different groups. Further, R 15 to R 18 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, hydrogen atoms and alkyl groups are preferred.
 R15~R18において、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。 Specific examples of the functional groups listed in R 15 to R 18 include the following.
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的に、前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 The alkyl group is not particularly limited, but for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specifically, examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
 アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的に、前記アルケニル基としては、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。 The alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specifically, examples of the alkenyl group include a vinyl group, an allyl group, and a 3-butenyl group.
 アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的に、前記アルキニル基としては、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。 The alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specifically, examples of the alkynyl group include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
 アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的に、前記アルキルカルボニル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。 The alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable. Specifically, examples of the alkylcarbonyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
 アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的に、前記アルケニルカルボニル基としては、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。 The alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable. Specifically, examples of the alkenylcarbonyl group include an acryloyl group, a methacryloyl group, and a crotonoyl group.
 アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的に、前記アルキニルカルボニル基としては、例えば、プロピオロイル基等が挙げられる。 The alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable. Specifically, the alkynylcarbonyl group includes, for example, a propioloyl group.
 前記ポリフェニレンエーテル化合物(A1)の重量平均分子量(Mw)及び数平均分子量(Mn)は、特に限定されないが、具体的には、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。なお、ここで、重量平均分子量及び数平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、ポリフェニレンエーテル化合物(A1)が、前記式(6)で表される繰り返し単位を分子中に有している場合、tは、ポリフェニレンエーテル化合物の重量平均分子量及び数平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、上記式(6)におけるtは、1~50であることが好ましい。 The weight average molecular weight (Mw) and number average molecular weight (Mn) of the polyphenylene ether compound (A1) are not particularly limited, but specifically, it is preferably 500 to 5000, more preferably 800 to 4000. It is preferably 1,000 to 3,000. Note that the weight average molecular weight and number average molecular weight here may be those measured by a general molecular weight measurement method, and specifically, the values measured using gel permeation chromatography (GPC) are listed. It will be done. In addition, when the polyphenylene ether compound (A1) has a repeating unit represented by the above formula (6) in the molecule, t is such that the weight average molecular weight and number average molecular weight of the polyphenylene ether compound are within such ranges. It is preferable that the value is within the range. Specifically, t in the above formula (6) is preferably 1 to 50.
 前記ポリフェニレンエーテル化合物(A1)の重量平均分子量及び数平均分子量が上記範囲内であると、ポリフェニレンエーテルの有する優れた低誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルでは、その重量平均分子量及び数平均分子量が上記範囲内であると、比較的低分子量のものであるので、耐熱性が低下する傾向がある。この点、前記ポリフェニレンエーテル化合物(A1)は、末端に不飽和二重結合を1個以上有するので、硬化反応が進行することで、硬化物の耐熱性が十分に高いものが得られると考えられる。また、前記ポリフェニレンエーテル化合物(A1)の重量平均分子量及び数平均分子量が上記範囲内であると、比較的低分子量のものであるので、成形性にも優れると考えられる。よって、このようなポリフェニレンエーテル化合物は、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。 When the weight average molecular weight and number average molecular weight of the polyphenylene ether compound (A1) are within the above ranges, the polyphenylene ether has excellent low dielectric properties, and the cured product not only has excellent heat resistance but also has good moldability. will also be excellent. This is thought to be due to the following. When the weight average molecular weight and number average molecular weight of ordinary polyphenylene ether are within the above ranges, the heat resistance tends to decrease because the molecular weight is relatively low. In this regard, since the polyphenylene ether compound (A1) has one or more unsaturated double bonds at the terminal, it is thought that as the curing reaction progresses, a cured product with sufficiently high heat resistance can be obtained. . Further, when the weight average molecular weight and number average molecular weight of the polyphenylene ether compound (A1) are within the above ranges, it is considered to have a relatively low molecular weight and therefore has excellent moldability. Therefore, it is thought that such a polyphenylene ether compound not only provides a cured product with excellent heat resistance but also excellent moldability.
 前記ポリフェニレンエーテル化合物(A1)における、ポリフェニレンエーテル化合物1分子当たりの、分子末端に有する、前記置換基の平均個数(末端官能基数)は、特に限定されないが、具体的には、1~5個であることが好ましく、1~3個であることがより好ましく、1.5~3個であることがさらに好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては十分なものが得られにくい傾向がある。また、末端官能基数が多すぎると反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。すなわち、このようなポリフェニレンエーテル化合物を用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高いプリント配線板が得られにくいという成形性の問題が生じるおそれがある。 In the polyphenylene ether compound (A1), the average number of the substituents (number of terminal functional groups) at the molecular ends per molecule of the polyphenylene ether compound is not particularly limited, but specifically, 1 to 5. The number is preferably 1 to 3, more preferably 1 to 3, and even more preferably 1.5 to 3. If the number of terminal functional groups is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. Furthermore, if the number of terminal functional groups is too large, the reactivity becomes too high, which may cause problems such as a decrease in the storage stability of the resin composition or a decrease in the fluidity of the resin composition. In other words, when such a polyphenylene ether compound is used, molding defects such as voids occur during multilayer molding due to insufficient fluidity, resulting in poor moldability that makes it difficult to obtain a highly reliable printed wiring board. Problems may occur.
 なお、ポリフェニレンエーテル化合物の末端官能基数は、ポリフェニレンエーテル化合物1モル中に存在する全てのポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られたポリフェニレンエーテル化合物に残存する水酸基数を測定して、前記置換基を有する前の(変性前の)ポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。 Note that the number of terminal functional groups of the polyphenylene ether compound includes a numerical value representing the average value of the substituents per molecule of all polyphenylene ether compounds present in 1 mole of the polyphenylene ether compound. The number of terminal functional groups can be determined, for example, by measuring the number of hydroxyl groups remaining in the obtained polyphenylene ether compound and calculating the decrease from the number of hydroxyl groups in the polyphenylene ether before having the substituent (before modification). , can be measured. The number of terminal functional groups is the decrease from the number of hydroxyl groups in the polyphenylene ether before modification. The method for measuring the number of hydroxyl groups remaining in a polyphenylene ether compound is to add a quaternary ammonium salt (tetraethylammonium hydroxide) that associates with hydroxyl groups to a solution of the polyphenylene ether compound, and measure the UV absorbance of the mixed solution. It can be found by
 前記ポリフェニレンエーテル化合物(A1)の固有粘度は、特に限定されないが、具体的には、0.03~0.12dl/gであればよいが、0.04~0.11dl/gであることが好ましく、0.06~0.095dl/gであることがより好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低比誘電率や低誘電正接等の低誘電特性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、十分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、ポリフェニレンエーテル化合物の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。 The intrinsic viscosity of the polyphenylene ether compound (A1) is not particularly limited, but specifically, it may be from 0.03 to 0.12 dl/g, but preferably from 0.04 to 0.11 dl/g. It is preferably 0.06 to 0.095 dl/g, and more preferably 0.06 to 0.095 dl/g. If the intrinsic viscosity is too low, the molecular weight tends to be low, making it difficult to obtain low dielectric properties such as a low dielectric constant and a low dielectric loss tangent. Moreover, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity cannot be obtained, and the moldability of the cured product tends to decrease. Therefore, if the intrinsic viscosity of the polyphenylene ether compound is within the above range, excellent heat resistance and moldability of the cured product can be achieved.
 なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。 Note that the intrinsic viscosity here is the intrinsic viscosity measured in methylene chloride at 25°C, and more specifically, for example, a 0.18 g/45 ml methylene chloride solution (liquid temperature 25°C) is measured using a viscometer. These are the values measured in . Examples of this viscometer include AVS500 Visco System manufactured by Schott.
 前記ポリフェニレンエーテル化合物(A1)としては、例えば、下記式(7)で表されるポリフェニレンエーテル化合物、及び下記式(8)で表されるポリフェニレンエーテル化合物等が挙げられる。また、前記ポリフェニレンエーテル化合物(A1)としては、これらのポリフェニレンエーテル化合物を単独で用いてもよいし、この2種のポリフェニレンエーテル化合物を組み合わせて用いてもよい。 Examples of the polyphenylene ether compound (A1) include a polyphenylene ether compound represented by the following formula (7), a polyphenylene ether compound represented by the following formula (8), and the like. Further, as the polyphenylene ether compound (A1), these polyphenylene ether compounds may be used alone, or these two types of polyphenylene ether compounds may be used in combination.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(7)及び式(8)中、R19~R26並びにR27~R34は、それぞれ独立している。すなわち、R19~R26並びにR27~R34は、それぞれ同一の基であっても、異なる基であってもよい。また、R19~R26並びにR27~R34は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。X及びXは、それぞれ独立している。すなわち、XとXとは、同一の基であってもよいし、異なる基であってもよい。X及びXは、炭素-炭素不飽和二重結合を有する置換基を示す。A及びBは、それぞれ、下記式(9)及び下記式(10)で表される繰り返し単位を示す。また、式(8)中、Yは、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素を示す。 In formulas (7) and (8), R 19 to R 26 and R 27 to R 34 are each independent. That is, R 19 to R 26 and R 27 to R 34 may be the same group or different groups. Furthermore, R 19 to R 26 and R 27 to R 34 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. X 1 and X 2 are each independent. That is, X 1 and X 2 may be the same group or different groups. X 1 and X 2 represent substituents having a carbon-carbon unsaturated double bond. A and B represent repeating units represented by the following formula (9) and the following formula (10), respectively. Further, in formula (8), Y represents a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(9)及び式(10)中、m及びnは、それぞれ、0~20を示す。R35~R38並びにR39~R42は、それぞれ独立している。すなわち、R35~R38並びにR39~R42は、それぞれ同一の基であっても、異なる基であってもよい。また、R35~R38並びにR39~R42は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。 In formulas (9) and (10), m and n each represent 0 to 20. R 35 to R 38 and R 39 to R 42 are each independent. That is, R 35 to R 38 and R 39 to R 42 may be the same group or different groups. Further, R 35 to R 38 and R 39 to R 42 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
 前記式(7)で表されるポリフェニレンエーテル化合物、及び前記式(8)で表されるポリフェニレンエーテル化合物は、上記構成を満たす化合物であれば特に限定されない。具体的には、前記式(7)及び前記式(8)において、R19~R26並びにR27~R34は、上述したように、それぞれ独立している。すなわち、R19~R26並びにR27~R34は、それぞれ同一の基であっても、異なる基であってもよい。また、R19~R26並びにR27~R34は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 The polyphenylene ether compound represented by the formula (7) and the polyphenylene ether compound represented by the formula (8) are not particularly limited as long as they satisfy the above configuration. Specifically, in the formula (7) and the formula (8), R 19 to R 26 and R 27 to R 34 are each independent, as described above. That is, R 19 to R 26 and R 27 to R 34 may be the same group or different groups. Furthermore, R 19 to R 26 and R 27 to R 34 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, hydrogen atoms and alkyl groups are preferred.
 式(9)及び式(10)中、m及びnは、それぞれ、上述したように、0~20を示すことが好ましい。また、m及びnは、mとnとの合計値が、1~30となる数値を示すことが好ましい。よって、mは、0~20を示し、nは、0~20を示し、mとnとの合計は、1~30を示すことがより好ましい。また、R35~R38並びにR39~R42は、それぞれ独立している。すなわち、R35~R38並びにR39~R42は、それぞれ同一の基であっても、異なる基であってもよい。また、R35~R38並びにR39~R42は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 In formulas (9) and (10), m and n each preferably represent 0 to 20, as described above. Further, m and n preferably represent numerical values such that the total value of m and n is 1 to 30. Therefore, it is more preferable that m represents 0 to 20, n represents 0 to 20, and the sum of m and n represents 1 to 30. Further, R 35 to R 38 and R 39 to R 42 are each independent. That is, R 35 to R 38 and R 39 to R 42 may be the same group or different groups. Further, R 35 to R 38 and R 39 to R 42 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, hydrogen atoms and alkyl groups are preferred.
 R19~R42は、上記式(6)におけるR15~R18と同じである。 R 19 to R 42 are the same as R 15 to R 18 in the above formula (6).
 前記式(8)中において、Yは、上述したように、炭素数20以下の直鎖状、分岐状、又は環状の炭化水素である。Yとしては、例えば、下記式(11)で表される基等が挙げられる。 In the formula (8), Y is a linear, branched, or cyclic hydrocarbon having 20 or less carbon atoms, as described above. Examples of Y include a group represented by the following formula (11).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 前記式(11)中、R43及びR44は、それぞれ独立して、水素原子、又はアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(11)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられ、この中でも、ジメチルメチレン基が好ましい。 In the formula (11), R 43 and R 44 each independently represent a hydrogen atom or an alkyl group. Examples of the alkyl group include a methyl group. Examples of the group represented by formula (11) include a methylene group, a methylmethylene group, and a dimethylmethylene group, and among these, a dimethylmethylene group is preferred.
 前記式(7)及び前記式(8)中において、X及びXは、それぞれ独立して、炭素-炭素二重結合を有する置換基である。なお、前記式(7)で表されるポリフェニレンエーテル化合物及び前記式(8)で表されるポリフェニレンエーテル化合物において、X及びXは、同一の基であってもよいし、異なる基であってもよい。 In the formula (7) and the formula (8), X 1 and X 2 are each independently a substituent having a carbon-carbon double bond. In addition, in the polyphenylene ether compound represented by the formula (7) and the polyphenylene ether compound represented by the formula (8), X 1 and X 2 may be the same group or different groups. You can.
 前記式(7)で表されるポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(12)で表されるポリフェニレンエーテル化合物等が挙げられる。 More specific examples of the polyphenylene ether compound represented by the formula (7) include, for example, the polyphenylene ether compound represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 前記式(8)で表されるポリフェニレンエーテル化合物のより具体的な例示としては、例えば、下記式(13)で表されるポリフェニレンエーテル化合物、及び下記式(14)で表されるポリフェニレンエーテル化合物等が挙げられる。 More specific examples of the polyphenylene ether compound represented by the formula (8) include, for example, a polyphenylene ether compound represented by the following formula (13), a polyphenylene ether compound represented by the following formula (14), etc. can be mentioned.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(12)~式(14)において、m及びnは、上記式(9)及び上記式(10)におけるm及びnと同じである。また、上記式(12)及び上記式(13)において、R11~R13、p及びArは、上記式(3)におけるR11~R13、p及びArと同じである。また、上記式(13)及び上記式(14)において、Yは、上記式(8)におけるYと同じである。また、上記式(14)において、R14は、上記式(4)におけるR14と同じである。 In the above formulas (12) to (14), m and n are the same as m and n in the above formula (9) and the above formula (10). Furthermore, in the above formula (12) and the above formula (13), R 11 to R 13 , p, and Ar 3 are the same as R 11 to R 13 , p, and Ar 3 in the above formula (3). Further, in the above formula (13) and the above formula (14), Y is the same as Y in the above formula (8). Further, in the above formula (14), R 14 is the same as R 14 in the above formula (4).
 本実施形態において用いられるポリフェニレンエーテル化合物(A1)の合成方法は、炭素-炭素不飽和二重結合を分子中に有するポリフェニレンエーテル化合物を合成できれば、特に限定されない。この方法としては、具体的には、ポリフェニレンエーテルに、炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。 The method for synthesizing the polyphenylene ether compound (A1) used in this embodiment is not particularly limited as long as it can synthesize a polyphenylene ether compound having a carbon-carbon unsaturated double bond in the molecule. Specifically, this method includes a method in which polyphenylene ether is reacted with a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded.
 前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、例えば、前記式(3)~(5)で表される置換基とハロゲン原子とが結合された化合物等が挙げられる。前記ハロゲン原子としては、具体的には、塩素原子、臭素原子、ヨウ素原子、及びフッ素原子が挙げられ、この中でも、塩素原子が好ましい。前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物としては、より具体的には、o-クロロメチルスチレン、p-クロロメチルスチレン、及びm-クロロメチルスチレン等が挙げられる。前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。例えば、o-クロロメチルスチレン、p-クロロメチルスチレン、及びm-クロロメチルスチレンを単独で用いてもよいし、2種又は3種を組み合わせて用いてもよい。 Examples of compounds in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include a compound in which a substituent represented by the formulas (3) to (5) above and a halogen atom are bonded. Examples include compounds. Specific examples of the halogen atom include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, and among these, a chlorine atom is preferred. More specifically, the compounds in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded include o-chloromethylstyrene, p-chloromethylstyrene, m-chloromethylstyrene, etc. can be mentioned. The compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded may be used alone or in combination of two or more. For example, o-chloromethylstyrene, p-chloromethylstyrene, and m-chloromethylstyrene may be used alone, or two or three types may be used in combination.
 原料であるポリフェニレンエーテルは、最終的に、所定のポリフェニレンエーテル化合物を合成することができるものであれば、特に限定されない。具体的には、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテルやポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。また、2官能フェノールとは、フェノール性水酸基を分子中に2個有するフェノール化合物であり、例えば、テトラメチルビスフェノールA等が挙げられる。また、3官能フェノールとは、フェノール性水酸基を分子中に3個有するフェノール化合物である。 The raw material polyphenylene ether is not particularly limited as long as it can ultimately synthesize a predetermined polyphenylene ether compound. Specifically, polyphenylene ethers such as poly(2,6-dimethyl-1,4-phenylene oxide) and polyphenylene ethers composed of 2,6-dimethylphenol and at least one of bifunctional phenols and trifunctional phenols are used. Examples include those having the main component. Moreover, a bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in the molecule, and examples thereof include tetramethylbisphenol A and the like. Moreover, trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in the molecule.
 ポリフェニレンエーテル化合物(A1)の合成方法は、上述した方法が挙げられる。具体的には、上記のようなポリフェニレンエーテルと、前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶媒に溶解させ、攪拌する。そうすることによって、ポリフェニレンエーテルと、前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とが反応し、本実施形態で用いられるポリフェニレンエーテル化合物が得られる。 Examples of the method for synthesizing the polyphenylene ether compound (A1) include the method described above. Specifically, polyphenylene ether as described above and a compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded are dissolved in a solvent and stirred. By doing so, the polyphenylene ether and the compound in which the substituent having the carbon-carbon unsaturated double bond and the halogen atom are bonded react, and the polyphenylene ether compound used in this embodiment is obtained.
 前記反応の際、アルカリ金属水酸化物の存在下で行うことが好ましい。そうすることによって、この反応が好適に進行すると考えられる。このことは、アルカリ金属水酸化物が、脱ハロゲン化水素剤、具体的には、脱塩酸剤として機能するためと考えられる。すなわち、アルカリ金属水酸化物が、ポリフェニレンエーテルのフェノール基と、前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とから、ハロゲン化水素を脱離させ、そうすることによって、ポリフェニレンエーテルのフェノール基の水素原子の代わりに、前記炭素-炭素不飽和二重結合を有する置換基が、フェノール基の酸素原子に結合すると考えられる。 The reaction is preferably carried out in the presence of an alkali metal hydroxide. It is thought that this reaction proceeds suitably by doing so. This is considered to be because the alkali metal hydroxide functions as a dehydrohalogenation agent, specifically, as a dehydrochlorination agent. That is, the alkali metal hydroxide eliminates hydrogen halide from the phenol group of polyphenylene ether, the compound in which the substituent having the carbon-carbon unsaturated double bond and the halogen atom are bonded, and so on. By doing so, it is thought that the substituent having the carbon-carbon unsaturated double bond bonds to the oxygen atom of the phenol group instead of the hydrogen atom of the phenol group of polyphenylene ether.
 アルカリ金属水酸化物は、脱ハロゲン化剤として働きうるものであれば、特に限定されないが、例えば、水酸化ナトリウム等が挙げられる。また、アルカリ金属水酸化物は、通常、水溶液の状態で用いられ、具体的には、水酸化ナトリウム水溶液として用いられる。 The alkali metal hydroxide is not particularly limited as long as it can function as a dehalogenating agent, and examples thereof include sodium hydroxide. Further, the alkali metal hydroxide is usually used in the form of an aqueous solution, specifically, as an aqueous sodium hydroxide solution.
 反応時間や反応温度等の反応条件は、前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物等によっても異なり、上記のような反応が好適に進行する条件であれば、特に限定されない。具体的には、反応温度は、室温~100℃であることが好ましく、30~100℃であることがより好ましい。また、反応時間は、0.5~20時間であることが好ましく、0.5~10時間であることがより好ましい。 Reaction conditions such as reaction time and reaction temperature vary depending on the compound in which a substituent having a carbon-carbon unsaturated double bond and a halogen atom are bonded, and the reaction conditions such as reaction time and reaction temperature are determined under conditions that allow the above-mentioned reaction to proceed suitably. If so, there are no particular limitations. Specifically, the reaction temperature is preferably room temperature to 100°C, more preferably 30 to 100°C. Further, the reaction time is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours.
 反応時に用いる溶媒は、ポリフェニレンエーテルと、前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物とを溶解させることができ、ポリフェニレンエーテルと、前記炭素-炭素不飽和二重結合を有する置換基とハロゲン原子とが結合された化合物との反応を阻害しないものであれば、特に限定されない。具体的には、トルエン等が挙げられる。 The solvent used during the reaction can dissolve polyphenylene ether and the compound in which a substituent having the carbon-carbon unsaturated double bond and a halogen atom are bonded, and the solvent can dissolve the polyphenylene ether and the compound having the carbon-carbon unsaturated double bond. It is not particularly limited as long as it does not inhibit the reaction between a substituent having a double bond and a compound to which a halogen atom is bonded. Specifically, toluene etc. are mentioned.
 上記の反応は、アルカリ金属水酸化物だけではなく、相間移動触媒も存在した状態で反応させることが好ましい。すなわち、上記の反応は、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させることが好ましい。そうすることによって、上記反応がより好適に進行すると考えられる。このことは、以下のことによると考えられる。相間移動触媒は、アルカリ金属水酸化物を取り込む機能を有し、水のような極性溶剤の相と、有機溶剤のような非極性溶剤の相との両方の相に可溶で、これらの相間を移動することができる触媒であることによると考えられる。具体的には、アルカリ金属水酸化物として、水酸化ナトリウム水溶液を用い、溶媒として、水に相溶しない、トルエン等の有機溶剤を用いた場合、水酸化ナトリウム水溶液を、反応に供されている溶媒に滴下しても、溶媒と水酸化ナトリウム水溶液とが分離し、水酸化ナトリウムが、溶媒に移行しにくいと考えられる。そうなると、アルカリ金属水酸化物として添加した水酸化ナトリウム水溶液が、反応促進に寄与しにくくなると考えられる。これに対して、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、アルカリ金属水酸化物が相間移動触媒に取り込まれた状態で、溶媒に移行し、水酸化ナトリウム水溶液が、反応促進に寄与しやすくなると考えられる。このため、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、上記反応がより好適に進行すると考えられる。 The above reaction is preferably carried out in the presence of not only the alkali metal hydroxide but also a phase transfer catalyst. That is, the above reaction is preferably carried out in the presence of an alkali metal hydroxide and a phase transfer catalyst. It is thought that by doing so, the above reaction proceeds more suitably. This is thought to be due to the following. Phase transfer catalysts have the ability to take up alkali metal hydroxides, are soluble in both polar solvent phases such as water, and non-polar solvent phases such as organic solvents, and transfer between these phases. This is thought to be due to the fact that it is a catalyst that can transfer . Specifically, when an aqueous sodium hydroxide solution is used as the alkali metal hydroxide and an organic solvent such as toluene that is incompatible with water is used as the solvent, the aqueous sodium hydroxide solution is subjected to the reaction. Even if it is added dropwise to the solvent, the solvent and the aqueous sodium hydroxide solution will separate, and it is thought that the sodium hydroxide will be difficult to transfer to the solvent. In this case, it is thought that the aqueous sodium hydroxide solution added as the alkali metal hydroxide becomes less likely to contribute to the promotion of the reaction. On the other hand, when the reaction is carried out in the presence of an alkali metal hydroxide and a phase transfer catalyst, the alkali metal hydroxide is incorporated into the phase transfer catalyst and transferred to the solvent, and the aqueous sodium hydroxide solution is reacted. This is thought to make it easier to contribute to promotion. Therefore, it is considered that the above reaction proceeds more suitably when the reaction is carried out in the presence of an alkali metal hydroxide and a phase transfer catalyst.
 相間移動触媒は、特に限定されないが、例えば、テトラ-n-ブチルアンモニウムブロマイド等の第4級アンモニウム塩等が挙げられる。 The phase transfer catalyst is not particularly limited, but includes, for example, quaternary ammonium salts such as tetra-n-butylammonium bromide.
 本実施形態で用いられる樹脂組成物には、前記ポリフェニレンエーテル化合物として、上記のようにして得られたポリフェニレンエーテル化合物を含むことが好ましい。 The resin composition used in this embodiment preferably contains the polyphenylene ether compound obtained as described above as the polyphenylene ether compound.
 前記ポリフェニレンエーテル化合物以外の前記ラジカル重合性化合物(その他のラジカル重合性化合物)(A2)としては、ビニル化合物、アリル化合物、メタクリレート化合物、アクリレート化合物、及びアセナフチレン化合物等が挙げられる。 Examples of the radically polymerizable compounds (other radically polymerizable compounds) (A2) other than the polyphenylene ether compound include vinyl compounds, allyl compounds, methacrylate compounds, acrylate compounds, and acenaphthylene compounds.
 前記ビニル化合物は、分子中にビニル基を有する化合物である。前記ビニル化合物としては、分子中にビニル基を1個有する単官能ビニル化合物(モノビニル化合物)、及び分子中にビニル基を2個以上有する多官能ビニル化合物が挙げられる。前記単官能ビニル化合物としては、例えば、スチレン化合物等が挙げられる。前記多官能ビニル化合物としては、例えば、多官能芳香族ビニル化合物、及びビニル炭化水素系化合物等が挙げられる。また、前記多官能芳香族ビニル化合物としては、ジビニルベンゼン等が挙げられる。また、前記ビニル炭化水素系化合物としては、例えば、ポリブタジエン化合物等が挙げられる。 The vinyl compound is a compound having a vinyl group in the molecule. Examples of the vinyl compound include monofunctional vinyl compounds (monovinyl compounds) having one vinyl group in the molecule, and polyfunctional vinyl compounds having two or more vinyl groups in the molecule. Examples of the monofunctional vinyl compound include styrene compounds and the like. Examples of the polyfunctional vinyl compound include polyfunctional aromatic vinyl compounds, vinyl hydrocarbon compounds, and the like. Furthermore, examples of the polyfunctional aromatic vinyl compound include divinylbenzene and the like. Furthermore, examples of the vinyl hydrocarbon compounds include polybutadiene compounds and the like.
 前記アリル化合物は、分子中にアリル基を有する化合物であり、例えば、トリアリルイソシアヌレート(TAIC)等のトリアリルイソシアヌレート化合物、ジアリルビスフェノール化合物、及びジアリルフタレート(DAP)等が挙げられる。 The allyl compound is a compound having an allyl group in the molecule, and includes, for example, triallyl isocyanurate compounds such as triallyl isocyanurate (TAIC), diallyl bisphenol compounds, and diallyl phthalate (DAP).
 前記メタクリレート化合物は、分子中にメタクリロイル基を有する化合物であり、例えば、分子中にメタクリロイル基を1個有する単官能メタクリレート化合物、及び分子中にメタクリロイル基を2個以上有する多官能メタクリレート化合物等が挙げられる。前記単官能メタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、及びブチルメタクリレート等が挙げられる。前記多官能メタクリレート化合物としては、例えば、トリシクロデカンジメタノールジメタクリレート(DCP)等のジメタクリレート化合物等が挙げられる。 The methacrylate compound is a compound having a methacryloyl group in the molecule, and includes, for example, a monofunctional methacrylate compound having one methacryloyl group in the molecule, and a polyfunctional methacrylate compound having two or more methacryloyl groups in the molecule. It will be done. Examples of the monofunctional methacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate. Examples of the polyfunctional methacrylate compound include dimethacrylate compounds such as tricyclodecane dimethanol dimethacrylate (DCP).
 前記アクリレート化合物は、分子中にアクリロイル基を有する化合物であり、例えば、分子中にアクリロイル基を1個有する単官能アクリレート化合物、及び分子中にアクリロイル基を2個以上有する多官能アクリレート化合物等が挙げられる。前記単官能アクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、及びブチルアクリレート等が挙げられる。前記多官能アクリレート化合物としては、例えば、トリシクロデカンジメタノールジアクリレート等のジアクリレート化合物等が挙げられる。 The acrylate compound is a compound having an acryloyl group in the molecule, and includes, for example, a monofunctional acrylate compound having one acryloyl group in the molecule, and a polyfunctional acrylate compound having two or more acryloyl groups in the molecule. It will be done. Examples of the monofunctional acrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, and butyl acrylate. Examples of the polyfunctional acrylate compound include diacrylate compounds such as tricyclodecane dimethanol diacrylate.
 前記アセナフチレン化合物は、分子中にアセナフチレン構造を有する化合物である。前記アセナフチレン化合物としては、例えば、アセナフチレン、アルキルアセナフチレン類、ハロゲン化アセナフチレン類、及びフェニルアセナフチレン類等が挙げられる。前記アルキルアセナフチレン類としては、例えば、1-メチルアセナフチレン、3-メチルアセナフチレン、4-メチルアセナフチレン、5-メチルアセナフチレン、1-エチルアセナフチレン、3-エチルアセナフチレン、4-エチルアセナフチレン、5-エチルアセナフチレン等が挙げられる。前記ハロゲン化アセナフチレン類としては、例えば、1-クロロアセナフチレン、3-クロロアセナフチレン、4-クロロアセナフチレン、5-クロロアセナフチレン、1-ブロモアセナフチレン、3-ブロモアセナフチレン、4-ブロモアセナフチレン、5-ブロモアセナフチレン等が挙げられる。前記フェニルアセナフチレン類としては、例えば、1-フェニルアセナフチレン、3-フェニルアセナフチレン、4-フェニルアセナフチレン、5-フェニルアセナフチレン等が挙げられる。前記アセナフチレン化合物としては、前記のような、分子中にアセナフチレン構造を1個有する単官能アセナフチレン化合物であってもよいし、分子中にアセナフチレン構造を2個以上有する多官能アセナフチレン化合物であってもよい。 The acenaphthylene compound is a compound having an acenaphthylene structure in its molecule. Examples of the acenaphthylene compound include acenaphthylene, alkylacenaphthylenes, halogenated acenaphthylenes, and phenylacenaphthylenes. Examples of the alkylacenaphthylenes include 1-methylacenaphthylene, 3-methylacenaphthylene, 4-methylacenaphthylene, 5-methylacenaphthylene, 1-ethylacenaphthylene, and 3-ethylacenaphthylene. Examples include phthylene, 4-ethylacenaphthylene, 5-ethylacenaphthylene, and the like. Examples of the halogenated acenaphthylenes include 1-chloroacenaphthylene, 3-chloroacenaphthylene, 4-chloroacenaphthylene, 5-chloroacenaphthylene, 1-bromoacenaphthylene, and 3-bromoacenaphthylene. Examples include ethylene, 4-bromoacenaphthylene, 5-bromoacenaphthylene, and the like. Examples of the phenylacenaphthylenes include 1-phenylacenaphthylene, 3-phenylacenaphthylene, 4-phenylacenaphthylene, and 5-phenylacenaphthylene. The acenaphthylene compound may be a monofunctional acenaphthylene compound having one acenaphthylene structure in the molecule, as described above, or a polyfunctional acenaphthylene compound having two or more acenaphthylene structures in the molecule. .
 前記ラジカル重合性化合物(A)は、前記ポリフェニレンエーテル化合物(A1)からなるものであってもよいし、前記ポリフェニレンエーテル化合物(A1)以外の前記ラジカル重合性化合物(その他のラジカル重合性化合物)(A2)からなるものであってもよい。前記ラジカル重合性化合物(A)としては、上述したように、前記ポリフェニレンエーテル化合物(A1)を含むことが好ましく、前記ポリフェニレンエーテル化合物(A1)と、前記その他のラジカル重合性化合物(A2)とを含むことがより好ましい。 The radically polymerizable compound (A) may be composed of the polyphenylene ether compound (A1), or may be composed of the radically polymerizable compound (other radically polymerizable compound) other than the polyphenylene ether compound (A1) ( A2) may also be used. As described above, the radically polymerizable compound (A) preferably contains the polyphenylene ether compound (A1), and the polyphenylene ether compound (A1) and the other radically polymerizable compound (A2) are combined. It is more preferable to include.
 また、前記その他のラジカル重合性化合物(A2)としては、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。前記その他のラジカル重合性化合物(A2)としては、上記のラジカル重合性化合物の中でも、多官能芳香族ビニル化合物、アリル化合物、多官能メタクリレート化合物、多官能アクリレート化合物、ポリブタジエン化合物、アセナフチレン化合物、及びスチレン化合物等が好ましい。また、前記その他のラジカル重合性化合物(A2)としては、上記のラジカル重合性化合物の中でも、ジビニルベンゼン、アセナフチレンがより好ましく、それによって、組成物の硬化物において、熱処理及び吸湿処理後の耐電圧の劣化をより確実に抑制することができる。 Further, the other radically polymerizable compounds (A2) may be used alone or in combination of two or more. Among the above-mentioned radically polymerizable compounds, the other radically polymerizable compounds (A2) include polyfunctional aromatic vinyl compounds, allyl compounds, polyfunctional methacrylate compounds, polyfunctional acrylate compounds, polybutadiene compounds, acenaphthylene compounds, and styrene. Compounds etc. are preferred. Further, as the other radically polymerizable compound (A2), divinylbenzene and acenaphthylene are more preferable among the above-mentioned radically polymerizable compounds. deterioration can be suppressed more reliably.
 前記ラジカル重合性化合物(A)の重量平均分子量は、前記ラジカル重合性化合物(A)によっても異なり、特に限定されないが、例えば、10,000未満であることが好ましく、500~5000であることがより好ましい。前記ラジカル重合性化合物(A)が、例えば、前記ポリフェニレンエーテル化合物(A1)である場合は、その重量平均分子量は、上述したように、500~5000であることが好ましく、800~4000であることがより好ましく、1000~3000であることがさらに好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。 The weight average molecular weight of the radically polymerizable compound (A) varies depending on the radically polymerizable compound (A) and is not particularly limited, but for example, it is preferably less than 10,000, and preferably from 500 to 5000. More preferred. When the radically polymerizable compound (A) is, for example, the polyphenylene ether compound (A1), its weight average molecular weight is preferably from 500 to 5,000, and preferably from 800 to 4,000, as described above. is more preferable, and even more preferably 1000 to 3000. Note that the weight average molecular weight here may be one measured by a general molecular weight measurement method, and specifically, a value measured using gel permeation chromatography (GPC), etc. can be mentioned.
 前記ラジカル重合性化合物(A)が前記ポリフェニレンエーテル化合物(A1)を含む場合、前記ポリフェニレンエーテル化合物(A1)の含有量は、前記ラジカル重合性化合物(A)100質量部に対して、50~90質量部であることが好ましい。前記ポリフェニレンエーテル化合物(A1)の含有量が上記範囲内であると、前記樹脂組成物を好適に硬化させることができ、その硬化物において、優れた低誘電特性、金属箔との密着性、及び難燃性を維持しつつ、熱伝導率を高め、熱処理及び吸湿処理後の耐電圧の劣化を抑制することができる。より好ましい範囲は、60~80質量部である。 When the radically polymerizable compound (A) contains the polyphenylene ether compound (A1), the content of the polyphenylene ether compound (A1) is 50 to 90 parts by mass based on 100 parts by mass of the radically polymerizable compound (A). Parts by mass are preferred. When the content of the polyphenylene ether compound (A1) is within the above range, the resin composition can be suitably cured, and the cured product has excellent low dielectric properties, adhesion to metal foil, and While maintaining flame retardancy, it is possible to increase thermal conductivity and suppress deterioration of withstand voltage after heat treatment and moisture absorption treatment. A more preferable range is 60 to 80 parts by mass.
 (リン酸エステル化合物(B))
 前記リン酸エステル化合物(B)は、脂環式炭化水素構造を分子内に有するリン酸エステル化合物であれば、特に限定されない。前記リン酸エステル化合物(B)は、脂環式炭化水素構造を分子内に有するリン酸エステル化合物であることによって、難燃剤として相溶性リン難燃剤を用いても、樹脂組成物の硬化物において、熱処理によるリン酸イオンの発生を抑制し、熱処理及び吸湿処理後の耐電圧劣化を抑制しつつ、難燃性を付与し、低誘電特性を担保することができる。
(Phosphate ester compound (B))
The phosphoric ester compound (B) is not particularly limited as long as it is a phosphoric ester compound having an alicyclic hydrocarbon structure in its molecule. Since the phosphoric acid ester compound (B) is a phosphoric acid ester compound having an alicyclic hydrocarbon structure in its molecule, even if a compatible phosphorus flame retardant is used as a flame retardant, the cured product of the resin composition is It is possible to suppress the generation of phosphate ions due to heat treatment, suppress deterioration of withstand voltage after heat treatment and moisture absorption treatment, impart flame retardancy, and ensure low dielectric properties.
 前記脂環式炭化水素構造としては、特に限定されず、例えば、3~12員環の飽和脂環式炭化水素構造が好ましく、5~7員環の飽和脂環式炭化水素構造がより好ましい。すなわち、前記リン酸エステル化合物(B)が、前記脂環式炭化水素構造として、3~12員環の飽和脂環式炭化水素構造を含むことが好ましく、5~7員環の飽和脂環式炭化水素構造を含むことがより好ましい。前記脂環式炭化水素構造としては、例えば、飽和脂環式炭化水素の二価基等が挙げられ、環状を構成する炭素に結合される置換基を有していてもよい。また、前記脂環式炭化水素構造としては、単環の脂環式炭化水素構造であってもよいし、多環の脂環式炭化水素構造であってもよい。前記脂環式炭化水素構造としては、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、シクロウンデカン、及びシクロドデカン等のシクロアルカンの二価基等が挙げられる。多環の脂環式炭化水素構造としては、例えば、二環系脂環式炭化水素の二価基、及び三環系脂環式炭化水素の二価基等が挙げられる。前記二環系脂環式炭化水素の二価基としては、例えば、ビシクロ[1.1.0]ブタン、ビシクロ[3.2.1]オクタン、ビシクロ[5.2.0]ノナン、及びビシクロ[4.3.2]ウンデカン等の二環系脂環式炭化水素の二価基等が挙げられる。前記三環系脂環式炭化水素の二価基としては、例えば、トリシクロ[2.2.1.0]へプタン、及びトリシクロ[5.3.1.1]ドデカン等の三環系脂環式炭化水素の二価基等が挙げられる。前記脂環式炭化水素構造としては、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。前記環状を構成する炭素に結合される置換基としては、特に限定されず、例えば、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基が挙げられ、より具体的には、後述するR~R10として挙げられる置換基等が挙げられる。この置換基としては、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。すなわち、前記脂環式炭化水素構造の環状を構成する炭素に結合される置換基としては、1つであってもよいし、2つ以上であってもよく、2つ以上の場合、それぞれが、同じ基であってもよいし、異なる基であってもよい。また、前記置換基が2つ以上である場合、前記置換基が、それぞれ、前記脂環式炭化水素構造の環状を構成する炭素のうちの、同一の炭素に結合されていてもよいし、異なる炭素に結合されていてもよい。 The alicyclic hydrocarbon structure is not particularly limited, and, for example, a 3- to 12-membered saturated alicyclic hydrocarbon structure is preferred, and a 5- to 7-membered saturated alicyclic hydrocarbon structure is more preferred. That is, the phosphoric acid ester compound (B) preferably contains a 3- to 12-membered saturated alicyclic hydrocarbon structure as the alicyclic hydrocarbon structure; More preferably, it contains a hydrocarbon structure. Examples of the alicyclic hydrocarbon structure include a divalent group of a saturated alicyclic hydrocarbon, which may have a substituent bonded to carbon forming the ring. Further, the alicyclic hydrocarbon structure may be a monocyclic alicyclic hydrocarbon structure or a polycyclic alicyclic hydrocarbon structure. Examples of the alicyclic hydrocarbon structure include divalent groups of cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, cycloundecane, and cyclododecane. . Examples of the polycyclic alicyclic hydrocarbon structure include divalent groups of bicyclic alicyclic hydrocarbons and divalent groups of tricyclic alicyclic hydrocarbons. Examples of the divalent group of the bicyclic alicyclic hydrocarbon include bicyclo[1.1.0]butane, bicyclo[3.2.1]octane, bicyclo[5.2.0]nonane, and bicyclo [4.3.2] Divalent groups of bicyclic alicyclic hydrocarbons such as undecane and the like can be mentioned. Examples of the divalent group of the tricyclic alicyclic hydrocarbon include tricyclic alicyclic groups such as tricyclo[2.2.1.0]heptane and tricyclo[5.3.1.1]dodecane. Examples include divalent groups of formula hydrocarbons. The alicyclic hydrocarbon structure may be used alone or in combination of two or more. The substituent bonded to the carbon forming the ring is not particularly limited, and includes, for example, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group, More specifically, the substituents listed below as R 1 to R 10 may be mentioned. These substituents may be used alone or in combination of two or more. That is, the number of substituents bonded to the carbon constituting the ring of the alicyclic hydrocarbon structure may be one, or two or more, and in the case of two or more, each substituent is , may be the same group or may be different groups. Furthermore, when there are two or more substituents, each of the substituents may be bonded to the same carbon among the carbons constituting the ring of the alicyclic hydrocarbon structure, or may be bonded to different carbon atoms. May be bonded to carbon.
 前記脂環式炭化水素構造の環状を構成する炭素のうち、下記式(15)~式(18)で表される二価基のように、2つの結合手が同一の炭素に形成されていてもよいし、異なる炭素に形成されていてもよい。 Among the carbons constituting the ring of the alicyclic hydrocarbon structure, two bonds are formed on the same carbon, as in the divalent groups represented by the following formulas (15) to (18). or may be formed of different carbons.
 前記脂環式炭化水素構造としては、より具体的には、下記式(15)~式(18)で表される二価基等が挙げられる。 More specifically, the alicyclic hydrocarbon structure includes divalent groups represented by the following formulas (15) to (18).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 前記リン酸エステル化合物(B)としては、下記式(1)で表される構造を分子内に少なくとも1つ有するリン酸エステル化合物等が挙げられる。すなわち、前記リン酸エステル化合物(B)としては、前記リン酸エステル化合物(B)においてリンを含む構造として、下記式(1)で表される構造を含むリン酸エステル化合物等が挙げられる。より具体的には、前記リン酸エステル化合物(B)としては、前記脂環式炭化水素構造及び下記式(1)で表される構造を分子内に有するリン酸エステル化合物等が挙げられる。 Examples of the phosphoric ester compound (B) include phosphoric ester compounds having at least one structure represented by the following formula (1) in the molecule. That is, examples of the phosphoric ester compound (B) include phosphoric ester compounds containing a structure represented by the following formula (1) as a structure containing phosphorus in the phosphoric ester compound (B). More specifically, examples of the phosphoric ester compound (B) include phosphoric ester compounds having the alicyclic hydrocarbon structure and a structure represented by the following formula (1) in the molecule.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(1)中、R~R10は、それぞれ独立している。すなわち、R~R10は、それぞれ同一の基であっても、異なる基であってもよい。また、R~R10は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。 In formula (1), R 1 to R 10 are each independent. That is, R 1 to R 10 may be the same group or different groups. Further, R 1 to R 10 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
 前記式(1)で表される構造は、特に限定されないが、オルト位に置換基を有することが好ましい。具体的には、前記式(1)で表される構造において、R、R、R、及びR10は、水素原子以外、すなわち、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基であり、前記式(1)で表される構造において、R、R、R、及びR10以外(すなわち、R~R、及びR~R)は、水素原子であることが好ましい。前記式(1)におけるR~R10は、具体的には以下の基等が挙げられる。 The structure represented by the formula (1) is not particularly limited, but preferably has a substituent at the ortho position. Specifically, in the structure represented by formula (1), R 1 , R 5 , R 6 , and R 10 are atoms other than hydrogen atoms, that is, alkyl groups, alkenyl groups, alkynyl groups, formyl groups, and alkyl groups. A carbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group, and in the structure represented by the above formula (1), a group other than R 1 , R 5 , R 6 , and R 10 (that is, R 2 to R 4 , and R 7 to R 9 ) are preferably hydrogen atoms. Specific examples of R 1 to R 10 in the formula (1) include the following groups.
 前記アルキル基は、特に限定されず、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基がより好ましく、炭素数1~4のアルキル基がさらに好ましい。また、R、R、R、及びR10は、炭素数1~4のアルキル基が特に好ましい。前記アルキル基は、直鎖状であっても、分岐状であってもよい。 The alkyl group is not particularly limited, and is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and even more preferably an alkyl group having 1 to 4 carbon atoms. Further, R 1 , R 5 , R 6 and R 10 are particularly preferably alkyl groups having 1 to 4 carbon atoms. The alkyl group may be linear or branched.
 前記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、1,2-ジメチルプロピル基、ネオペンチル基(2,2-ジメチルプロピル基)、tert-ペンチル基(1,1-ジメチルプロピル基)、n-ヘキシル基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1-エチルブチル基、2-エチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチル-1-メチルプロピル基、1-エチル-2-メチルプロピル基、n-ヘプチル基、イソヘプチル基、1-メチルヘキシル基、2-メチルヘキシル基、3-メチルヘキシル基、4-メチルヘキシル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1-プロピルブチル基、1,1-ジメチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、1,4-ジメチルペンチル基、1-エチル-1-メチルブチル基、1-エチル-2-メチルブチル基、1-エチル-3-メチルブチル基、2-エチル-1-メチルブチル基、2-エチル-1-メチルブチル基、2-エチル-2-メチルブチル基、2-エチル-3-メチルブチル基、1,1-ジエチルプロピル基、n-オクチル基、イソオクチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、1-エチルヘキシル基、2-エチルヘキシル基、3-エチルヘキシル基、4-エチルヘキシル基、1-プロピルヘプチル基、2-プロピルヘプチル基、ノニル基、及びデシル基等が挙げられる。この中でも、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、2-メチルブチル基、1-メチルブチル基、1,2-ジメチルプロピル基、ネオペンチル基(2,2-ジメチルプロピル基)、tert-ペンチル基(1,1-ジメチルプロピル基)、n-ヘキシル基、イソヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1-エチルブチル基、2-エチルブチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチル-1-メチルプロピル基、及び1-エチル-2-メチルプロピル基等の炭素数1~6のアルキル基がより好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及びtert-ブチル基等の炭素数1~4のアルキル基がさらに好ましい。 Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, 1- Methylbutyl group, 1,2-dimethylpropyl group, neopentyl group (2,2-dimethylpropyl group), tert-pentyl group (1,1-dimethylpropyl group), n-hexyl group, isohexyl group, 1-methylpentyl group , 2-methylpentyl group, 3-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2 -dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethyl-1-methylpropyl group, 1-ethyl-2-methylpropyl group, n-heptyl group, isoheptyl group, 1-methylhexyl group, 2-methyl Hexyl group, 3-methylhexyl group, 4-methylhexyl group, 1-ethylpentyl group, 2-ethylpentyl group, 3-ethylpentyl group, 1-propylbutyl group, 1,1-dimethylpentyl group, 1,2 -dimethylpentyl group, 1,3-dimethylpentyl group, 1,4-dimethylpentyl group, 1-ethyl-1-methylbutyl group, 1-ethyl-2-methylbutyl group, 1-ethyl-3-methylbutyl group, 2- Ethyl-1-methylbutyl group, 2-ethyl-1-methylbutyl group, 2-ethyl-2-methylbutyl group, 2-ethyl-3-methylbutyl group, 1,1-diethylpropyl group, n-octyl group, isooctyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 1-ethylhexyl group, 2-ethylhexyl group, 3-ethylhexyl group, 4-ethylhexyl group, Examples include 1-propylheptyl group, 2-propylheptyl group, nonyl group, and decyl group. Among these, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, 2-methylbutyl group, 1-methylbutyl group, 1, 2-dimethylpropyl group, neopentyl group (2,2-dimethylpropyl group), tert-pentyl group (1,1-dimethylpropyl group), n-hexyl group, isohexyl group, 1-methylpentyl group, 2-methylpentyl group group, 3-methylpentyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, Alkyl groups having 1 to 6 carbon atoms such as 2,3-dimethylbutyl group, 1-ethyl-1-methylpropyl group, and 1-ethyl-2-methylpropyl group are more preferable, and methyl group, ethyl group, n- More preferred are alkyl groups having 1 to 4 carbon atoms such as propyl group, isopropyl group, n-butyl group, isobutyl group, and tert-butyl group.
 前記アルケニル基は、特に限定されず、炭素数1~10のアルケニル基であることが好ましく、炭素数1~6のアルケニル基がより好ましく、炭素数1~4のアルケニル基がさらに好ましい。また、R、R、R、及びR10は、炭素数1~4のアルケニル基が特に好ましい。前記アルケニル基は、直鎖状であっても、分岐状であってもよい。 The alkenyl group is not particularly limited, and is preferably an alkenyl group having 1 to 10 carbon atoms, more preferably an alkenyl group having 1 to 6 carbon atoms, and even more preferably an alkenyl group having 1 to 4 carbon atoms. Further, R 1 , R 5 , R 6 and R 10 are particularly preferably alkenyl groups having 1 to 4 carbon atoms. The alkenyl group may be linear or branched.
 前記アルケニル基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、2-メチルブトキシ基、1-メチルブトキシ基、1,2-ジメチルプロポキシ基、ネオペンチルオキシ基(2,2-ジメチルプロポキシ基)、tert-ペンチルオキシ基(1,1-ジメチルプロポキシ基)、n-ヘキシルオキシ基、イソヘキシルオキシ基、1-メチルペンチルオキシ基、2-メチルペンチルオキシ基、3-メチルペンチルオキシ基、1-エチルブトキシ基、2-エチルブトキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、1,3-ジメチルブトキシ基、2,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、1-エチル-1-メチルプロポキシ基、1-エチル-2-メチルプロポキシ基、n-ヘプチルオキシ基、イソヘプチルオキシ基、1-メチルヘキシルオキシ基、2-メチルヘキシルオキシ基、3-メチルヘキシルオキシ基、4-メチルヘキシルオキシ基、1-エチルペンチルオキシ基、2-エチルペンチルオキシ基、3-エチルペンチルオキシ基、1-プロピルブトキシ基、1,1-ジメチルペンチルオキシ基、1,2-ジメチルペンチルオキシ基、1,3-ジメチルペンチルオキシ基、1,4-ジメチルペンチルオキシ基、1-エチル-1-メチルブトキシ基、1-エチル-2-メチルブトキシ基、1-エチル-3-メチルブトキシ基、2-エチル-1-メチルブトキシ基、2-エチル-1-メチルブトキシ基、2-エチル-2-メチルブトキシ基、2-エチル-3-メチルブトキシ基、1,1-ジエチルプロポキシ基、n-オクチルオキシ基、イソオクチルオキシ基、1-メチルヘプチルオキシ基、2-メチルヘプチルオキシ基、3-メチルヘプチルオキシ基、4-メチルヘプチルオキシ基、5-メチルヘプチルオキシ基、1-エチルヘキシルオキシ基、2-エチルヘキシルオキシ基、3-エチルヘキシルオキシ基、4-エチルヘキシルオキシ基、1-プロピルヘプチルオキシ基、2-プロピルヘプチルオキシ基、ノニルオキシ基、及びデシルオキシ基等が挙げられる。この中でも、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、2-メチルブトキシ基、1-メチルブトキシ基、1,2-ジメチルプロポキシ基、ネオペンチルオキシ基(2,2-ジメチルプロポキシ基)、tert-ペンチルオキシ基(1,1-ジメチルプロポキシ基)、n-ヘキシルオキシ基、イソヘキシルオキシ基、1-メチルペンチルオキシ基、2-メチルペンチルオキシ基、3-メチルペンチルオキシ基、1-エチルブトキシ基、2-エチルブトキシ基、1,1-ジメチルブトキシ基、1,2-ジメチルブトキシ基、1,3-ジメチルブトキシ基、2,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、1-エチル-1-メチルプロポキシ基、及び1-エチル-2-メチルプロポキシ基等の炭素数1~6のアルケニル基がより好ましく、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、及びtert-ブトキシ基等の炭素数1~4のアルケニル基がさらに好ましい。 Examples of the alkenyl group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, 2-methyl Butoxy group, 1-methylbutoxy group, 1,2-dimethylpropoxy group, neopentyloxy group (2,2-dimethylpropoxy group), tert-pentyloxy group (1,1-dimethylpropoxy group), n-hexyloxy group, isohexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group, 3-methylpentyloxy group, 1-ethylbutoxy group, 2-ethylbutoxy group, 1,1-dimethylbutoxy group, 1, 2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 2,3-dimethylbutoxy group, 1-ethyl-1-methylpropoxy group, 1-ethyl-2-methylpropoxy group, n-heptyloxy group, isoheptyloxy group, 1-methylhexyloxy group, 2-methylhexyloxy group, 3-methylhexyloxy group, 4-methylhexyloxy group, 1-ethylpentyloxy group, 2-ethylpentyl group Oxy group, 3-ethylpentyloxy group, 1-propylbutoxy group, 1,1-dimethylpentyloxy group, 1,2-dimethylpentyloxy group, 1,3-dimethylpentyloxy group, 1,4-dimethylpentyloxy group group, 1-ethyl-1-methylbutoxy group, 1-ethyl-2-methylbutoxy group, 1-ethyl-3-methylbutoxy group, 2-ethyl-1-methylbutoxy group, 2-ethyl-1-methylbutoxy group group, 2-ethyl-2-methylbutoxy group, 2-ethyl-3-methylbutoxy group, 1,1-diethylpropoxy group, n-octyloxy group, isooctyloxy group, 1-methylheptyloxy group, 2- Methylheptyloxy group, 3-methylheptyloxy group, 4-methylheptyloxy group, 5-methylheptyloxy group, 1-ethylhexyloxy group, 2-ethylhexyloxy group, 3-ethylhexyloxy group, 4-ethylhexyloxy group, Examples include 1-propylheptyloxy group, 2-propylheptyloxy group, nonyloxy group, and decyloxy group. Among these, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, tert-butoxy group, n-pentyloxy group, isopentyloxy group, 2-methylbutoxy group, 1- Methylbutoxy group, 1,2-dimethylpropoxy group, neopentyloxy group (2,2-dimethylpropoxy group), tert-pentyloxy group (1,1-dimethylpropoxy group), n-hexyloxy group, isohexyloxy group group, 1-methylpentyloxy group, 2-methylpentyloxy group, 3-methylpentyloxy group, 1-ethylbutoxy group, 2-ethylbutoxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group , 1,3-dimethylbutoxy group, 2,2-dimethylbutoxy group, 2,3-dimethylbutoxy group, 1-ethyl-1-methylpropoxy group, and 1-ethyl-2-methylpropoxy group with 1 carbon number -6 alkenyl groups are more preferred, and alkenyl groups having 1 to 4 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, and tert-butoxy are even more preferred. .
 前記アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的に、前記アルキニル基としては、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。 The alkynyl group is not particularly limited, but is preferably an alkynyl group having 2 to 18 carbon atoms, more preferably an alkynyl group having 2 to 10 carbon atoms. Specifically, examples of the alkynyl group include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
 前記アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的に、前記アルキルカルボニル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。 The alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group, but for example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable. Specifically, examples of the alkylcarbonyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
 前記アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的に、前記アルケニルカルボニル基としては、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。 The alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group, but for example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable. Specifically, examples of the alkenylcarbonyl group include an acryloyl group, a methacryloyl group, and a crotonoyl group.
 前記アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的に、前記アルキニルカルボニル基としては、例えば、プロピオロイル基等が挙げられる。 The alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group, but for example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable. Specifically, the alkynylcarbonyl group includes, for example, a propioloyl group.
 前記式(1)で表される構造は、水素原子、前記アルキル基、前記アルケニル基、前記アルキニル基、前記ホルミル基、前記アルキルカルボニル基、前記アルケニルカルボニル基、及び前記アルキニルカルボニル基のいずれか1種を有していてもよいし、2種以上を組み合わせて有していてもよい。 The structure represented by the formula (1) includes any one of a hydrogen atom, the alkyl group, the alkenyl group, the alkynyl group, the formyl group, the alkylcarbonyl group, the alkenylcarbonyl group, and the alkynylcarbonyl group. It may have seeds or a combination of two or more types.
 また、前記リン酸エステル化合物(B)としては、下記式(2)で表される構造を有するリン酸エステル化合物が挙げられ、このリン酸エステル化合物を含むことが好ましい。 Further, the phosphoric ester compound (B) includes a phosphoric ester compound having a structure represented by the following formula (2), and preferably contains this phosphoric ester compound.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(2)中、Ar及びArは、それぞれ独立して、アリーレン基を示す。Tは、3~12員環の飽和脂環式炭化水素の二価基を示す。 In formula (2), Ar 1 and Ar 2 each independently represent an arylene group. T represents a divalent group of a 3- to 12-membered saturated alicyclic hydrocarbon.
 前記アリーレン基は、特に限定されない。前記アリーレン基としては、例えば、フェニレン基等の単環芳香族基や、ナフタレン環等の多環芳香族である多環芳香族基等が挙げられる。また、前記アリーレン基としては、例えば、下記式(19)で表される基等が挙げられる。 The arylene group is not particularly limited. Examples of the arylene group include monocyclic aromatic groups such as a phenylene group, and polycyclic aromatic groups such as a naphthalene ring. Examples of the arylene group include a group represented by the following formula (19).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 式(19)中、R45~R48は、それぞれ独立している。すなわち、R45~R48は、それぞれ同一の基であっても、異なる基であってもよい。また、R45~R48は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。 In formula (19), R 45 to R 48 are each independent. That is, R 45 to R 48 may be the same group or different groups. Furthermore, R 45 to R 48 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group.
 前記式(19)におけるR45~R48は、前記式(1)におけるR~R10と同様の基が挙げられる。 Examples of R 45 to R 48 in the formula (19) include the same groups as R 1 to R 10 in the formula (1).
 また、上記式(2)で表される構造を有するリン酸エステル化合物のより具体的な例示としては、例えば、下記式(20)で表されるリン酸エステル化合物等が挙げられる。 Further, more specific examples of the phosphoric ester compound having the structure represented by the above formula (2) include, for example, the phosphoric ester compound represented by the following formula (20).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(20)中、R49~R68は、それぞれ独立している。すなわち、R49~R68は、それぞれ同一の基であっても、異なる基であってもよい。また、前記式(20)におけるR49~R68は、前記式(1)におけるR~R10と同様の基が挙げられ、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。また、Ar、Ar及びTは、上記式(2)におけるAr、Ar及びTと同じである。 In formula (20), R 49 to R 68 are each independent. That is, R 49 to R 68 may be the same group or different groups. Further, R 49 to R 68 in the above formula (20) include the same groups as R 1 to R 10 in the above formula (1), such as a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, and an alkyl group. Indicates a carbonyl group, alkenylcarbonyl group, or alkynylcarbonyl group. Moreover, Ar 1 , Ar 2 and T are the same as Ar 1 , Ar 2 and T in the above formula (2).
 前記リン酸エステル化合物(B)のより具体的な例示としては、例えば、下記式(21)~(24)で表される化合物等が挙げられる。 More specific examples of the phosphoric acid ester compound (B) include, for example, compounds represented by the following formulas (21) to (24).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 前記リン酸エステル化合物(B)は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The phosphoric acid ester compound (B) may be used alone or in combination of two or more.
 前記リン酸エステル化合物(B)の製造方法としては、前記リン酸エステル化合物(B)を製造することができれば、特に限定されず、公知の方法を用いることができる。前記リン酸エステル化合物(B)の製造方法としては、例えば、塩化ホスホリル(オキシ塩化リン)を用いる方法等が挙げられる。 The method for producing the phosphoric ester compound (B) is not particularly limited as long as the phosphoric ester compound (B) can be produced, and any known method can be used. Examples of the method for producing the phosphoric acid ester compound (B) include a method using phosphoryl chloride (phosphorus oxychloride).
 前記リン酸エステル化合物(B)の含有量は、前記ラジカル重合性化合物(A)100質量部に対して、15~50質量部であることが好ましく、15~35質量部であることがより好ましく、15~25質量部であることがさらに好ましい。 The content of the phosphoric acid ester compound (B) is preferably 15 to 50 parts by mass, more preferably 15 to 35 parts by mass, based on 100 parts by mass of the radically polymerizable compound (A). , more preferably 15 to 25 parts by mass.
 前記リン酸エステル化合物(B)の含有量が少なすぎると、得られた硬化物の難燃性が不十分になる傾向がある。また、前記リン酸エステル化合物(B)の含有量が多すぎると、前記ラジカル重合性化合物(A)の含有量が相対的に少なくなりすぎて、得られた硬化物の熱処理及び吸湿処理後の耐電圧が劣化する傾向がある。これらのことから、前記リン酸エステル化合物(B)の含有量が、前記ラジカル重合性化合物(A)100質量部に対して、15~50質量部であると、硬化物における、熱処理及び吸湿処理後の耐電圧の劣化を抑制しつつ、十分な難燃性を発揮できる樹脂組成物が得られる。 If the content of the phosphoric acid ester compound (B) is too low, the obtained cured product tends to have insufficient flame retardancy. Moreover, when the content of the phosphoric acid ester compound (B) is too large, the content of the radically polymerizable compound (A) becomes relatively too small, and after heat treatment and moisture absorption treatment of the obtained cured product, The withstand voltage tends to deteriorate. From these facts, when the content of the phosphoric acid ester compound (B) is 15 to 50 parts by mass with respect to 100 parts by mass of the radically polymerizable compound (A), heat treatment and moisture absorption treatment in the cured product are possible. A resin composition that can exhibit sufficient flame retardancy while suppressing subsequent deterioration of withstand voltage can be obtained.
 なお、前記樹脂組成物には、前記リン酸エステル化合物(B)以外の難燃剤を含有していてもよい。 Note that the resin composition may contain a flame retardant other than the phosphoric acid ester compound (B).
 (非相溶性リン化合物(D))
 前記樹脂組成物には、前記非相溶性リン化合物(D)をさらに含むことが好ましい。すなわち、前記樹脂組成物には、難燃剤として作用しうる化合物として、前記リン酸エステル化合物(B)と前記非相溶性リン化合物(D)を含むことが好ましい。前記リン酸エステル化合物(B)と前記非相溶性リン化合物(D)とを併用することによって、樹脂組成物の硬化物において、難燃性を担保しつつ、金属箔との密着性の低下を抑制することができる。
(Incompatible phosphorus compound (D))
It is preferable that the resin composition further includes the incompatible phosphorus compound (D). That is, it is preferable that the resin composition contains the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D) as compounds that can act as a flame retardant. By using the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D) together, in the cured product of the resin composition, flame retardance is ensured while reducing adhesion to the metal foil. Can be suppressed.
 前記非相溶性リン化合物(D)は、難燃剤として作用し、かつ、前記混合物に相溶しない非相溶のリン化合物であれば、特に限定されない。ここで、非相溶とは、前記ラジカル重合性化合物(A)中で相溶せず、対象物(リン化合物)が混合物中に島状に分散する状態になることをいう。前記非相溶性リン化合物(D)としては、ホスフィン酸塩化合物、ポリリン酸塩化合物、及びホスホニウム塩化合物等の、リンを含み塩を形成している化合物、及びホスフィンオキサイド化合物等が挙げられる。また、ホスフィン酸塩化合物としては、例えば、ジアルキルホスフィン酸アルミニウム、トリスジエチルホスフィン酸アルミニウム、トリスメチルエチルホスフィン酸アルミニウム、トリスジフェニルホスフィン酸アルミニウム、ビスジエチルホスフィン酸亜鉛、ビスメチルエチルホスフィン酸亜鉛、ビスジフェニルホスフィン酸亜鉛、ビスジエチルホスフィン酸チタニル、ビスメチルエチルホスフィン酸チタニル、ビスジフェニルホスフィン酸チタニル等が挙げられる。また、ポリリン酸塩化合物としては、例えば、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸メレム等が挙げられる。また、ホスホニウム塩化合物としては、例えば、テトラフェニルホスホニウムテトラフェニルボレート、及びテトラフェニルホスホニウムブロマイド等が挙げられる。また、ホスフィンオキサイド化合物としては、例えば、ジフェニルホスフィンオキサイド基を分子中に2つ以上有するホスフィンオキサイド化合物(ジフェニルホスフィンオキサイド化合物)等が挙げられ、より具体的には、パラキシリレンビスジフェニルホスフィンオキサイド等が挙げられる。また、前記非相溶性リン化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The incompatible phosphorus compound (D) is not particularly limited as long as it acts as a flame retardant and is incompatible with the mixture. Here, the term "incompatible" refers to a state in which the target substance (phosphorus compound) is not compatible with the radically polymerizable compound (A) and is dispersed in the form of islands in the mixture. Examples of the incompatible phosphorus compound (D) include compounds containing phosphorus and forming salts, such as phosphinate compounds, polyphosphate compounds, and phosphonium salt compounds, and phosphine oxide compounds. In addition, examples of phosphinate compounds include aluminum dialkylphosphinate, aluminum trisdiethylphosphinate, aluminum trismethylethylphosphinate, aluminum trisdiphenylphosphinate, zinc bisdiethylphosphinate, zinc bismethylethylphosphinate, and bisdiphenyl. Zinc phosphinate, titanyl bisdiethylphosphinate, titanyl bismethylethylphosphinate, titanyl bisdiphenylphosphinate, and the like. Examples of the polyphosphate compound include melamine polyphosphate, melam polyphosphate, and melem polyphosphate. Further, examples of the phosphonium salt compound include tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium bromide, and the like. Examples of phosphine oxide compounds include phosphine oxide compounds having two or more diphenylphosphine oxide groups in the molecule (diphenylphosphine oxide compounds), and more specifically, paraxylylenebisdiphenylphosphine oxide, etc. can be mentioned. Further, the above-mentioned incompatible phosphorus compounds may be used alone or in combination of two or more.
 本実施形態において、前記リン酸エステル化合物(B)の含有量は、前記リン酸エステル化合物(B)と前記非相溶性リン化合物(D)との合計100質量部に対して、25~100質量部であることが好ましく、25~75質量部であることがより好ましく、25~50質量部であることが最も好ましい。 In the present embodiment, the content of the phosphoric acid ester compound (B) is 25 to 100 parts by mass based on a total of 100 parts by mass of the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D). parts, more preferably 25 to 75 parts by weight, and most preferably 25 to 50 parts by weight.
 前記リン酸エステル化合物(B)の含有量が前記リン酸エステル化合物(B)と前記非相溶性リン化合物(D)との合計100質量部に対して、25~100質量部であることにより、難燃性を担保しつつ、金属箔との密着性に優れる硬化物を得ることができる。 The content of the phosphoric acid ester compound (B) is 25 to 100 parts by mass based on the total of 100 parts by mass of the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D), It is possible to obtain a cured product that has excellent adhesion to metal foil while ensuring flame retardancy.
 (無機充填剤(C))
 本実施形態に係る樹脂組成物は、さらに、無機充填剤(C)を含む。無機充填剤(C)としては、樹脂組成物に含有される無機充填剤として使用できるものであれば、特に限定されないが、例えば、窒化ホウ素フィラー、シリカフィラー、酸化アルミニウムフィラー、酸化チタンフィラー、酸化マグネシウムフィラー及びマイカフィラー等の金属酸化物フィラー、水酸化アルミニウムフィラー、及び水酸化マグネシウムフィラー等の金属水酸化物フィラー、タルクフィラー、ホウ酸アルミニウムフィラー、硫酸バリウムフィラー、窒化アルミニウムフィラー、窒化ケイ素フィラー、無水炭酸マグネシウムフィラー等の炭酸マグネシウムフィラー、及び炭酸カルシウムフィラー等が挙げられる。
(Inorganic filler (C))
The resin composition according to this embodiment further contains an inorganic filler (C). The inorganic filler (C) is not particularly limited as long as it can be used as an inorganic filler contained in a resin composition, but examples include boron nitride filler, silica filler, aluminum oxide filler, titanium oxide filler, and titanium oxide filler. Metal oxide fillers such as magnesium fillers and mica fillers, aluminum hydroxide fillers, and metal hydroxide fillers such as magnesium hydroxide fillers, talc fillers, aluminum borate fillers, barium sulfate fillers, aluminum nitride fillers, silicon nitride fillers, Examples include magnesium carbonate fillers such as anhydrous magnesium carbonate fillers, calcium carbonate fillers, and the like.
 前記窒化ホウ素フィラーは、特に限定されないが、例えば、六方晶系の常圧相(h-BN)フィラー、及び立方晶系の高圧相(c-BN)フィラー等が挙げられる。また、前記シリカフィラーは、特に限定されないが、例えば、破砕状シリカフィラー及びシリカ粒子フィラー等が挙げられ、シリカ粒子フィラーが好ましい。また、前記シリカ粒子フィラーは、例えば、結晶性シリカフィラー、無定形シリカフィラー、溶融シリカフィラー、沈降シリカフィラー等が挙げられ、溶融シリカフィラーが好ましい。前記炭酸マグネシウムフィラーは、特に限定されないが、無水炭酸マグネシウム(合成マグネサイト)フィラーが好ましい。 The boron nitride filler is not particularly limited, and examples include hexagonal normal pressure phase (h-BN) filler, cubic high pressure phase (c-BN) filler, and the like. Further, the silica filler is not particularly limited, and examples thereof include crushed silica filler and silica particle filler, and silica particle filler is preferable. Further, examples of the silica particle filler include crystalline silica filler, amorphous silica filler, fused silica filler, precipitated silica filler, etc., and fused silica filler is preferable. The magnesium carbonate filler is not particularly limited, but anhydrous magnesium carbonate (synthetic magnesite) filler is preferable.
 これらの無機充填剤は1種単独で用いてもよいし、2種以上を併用して用いてもよい。 These inorganic fillers may be used alone or in combination of two or more.
 また、上記に例示したような無機充填剤は、熱伝導率が10W/m・K以上の無機充填剤(C-1)と熱伝導率が10W/m・K未満の無機充填剤(C-2)に分類することができ、前記無機充填剤(C)としては、熱伝導率が10W/m・K以上の無機充填剤(C-1)を含むことが好ましい。これによって、樹脂組成物の硬化物において高い熱伝導率をより確実に達成できると考えられる。また、前記無機充填剤(C)は、熱伝導率が10W/m・K以上の無機充填剤(C-1)と、熱伝導率が10W/m・K未満の無機充填剤(C-2)とを含むことがより好ましい。前記無機充填剤(C)として、前記無機充填剤(C-1)と前記無機充填剤(C-2)とを併用することによって、金属箔との密着性の担保、無機充填剤の高充填化による熱処理及び吸湿処理後の耐電圧の劣化を抑制することができるという利点がある。 In addition, the inorganic fillers as exemplified above include an inorganic filler (C-1) with a thermal conductivity of 10 W/m・K or more and an inorganic filler (C-1) with a thermal conductivity of less than 10 W/m・K. The inorganic filler (C) preferably includes an inorganic filler (C-1) having a thermal conductivity of 10 W/m·K or more. It is thought that this makes it possible to more reliably achieve high thermal conductivity in the cured product of the resin composition. In addition, the inorganic filler (C) includes an inorganic filler (C-1) with a thermal conductivity of 10 W/m·K or more, and an inorganic filler (C-2) with a thermal conductivity of less than 10 W/m·K. ). By using the inorganic filler (C-1) and the inorganic filler (C-2) together as the inorganic filler (C), it is possible to ensure adhesion to the metal foil and to achieve high filling of the inorganic filler. This has the advantage that deterioration of withstand voltage after heat treatment and moisture absorption treatment due to chemical reaction can be suppressed.
 前記無機充填剤(C-1)としては、例えば、窒化ホウ素フィラー、酸化アルミニウムフィラー、酸化マグネシウムフィラー、炭酸マグネシウムフィラー、窒化ケイ素フィラー、窒化アルミニウムフィラー等が挙げられる。無機充填剤(C-1)としては、この中でも、窒化ホウ素フィラー、酸化アルミニウムフィラー、酸化マグネシウムフィラー、及び炭酸マグネシウムフィラーが好ましく、窒化ホウ素フィラーがより好ましい。無機充填剤(C-1)が窒化ホウ素フィラーを含む、すなわち、無機充填剤(C)が窒化ホウ素フィラーを含むことによって、樹脂組成物の硬化物において低誘電特性を担保しつつ、樹脂組成物の硬化物及び硬化物を用いた配線板等の基板の放熱性を高めることができる。無機充填剤(C-1)としては、上記に例示したような無機充填剤を1種単独で用いてもよいし、2種以上を併用して用いてもよい。 Examples of the inorganic filler (C-1) include boron nitride filler, aluminum oxide filler, magnesium oxide filler, magnesium carbonate filler, silicon nitride filler, aluminum nitride filler, and the like. Among these, as the inorganic filler (C-1), boron nitride filler, aluminum oxide filler, magnesium oxide filler, and magnesium carbonate filler are preferable, and boron nitride filler is more preferable. The inorganic filler (C-1) contains a boron nitride filler, that is, the inorganic filler (C) contains a boron nitride filler, thereby ensuring low dielectric properties in the cured product of the resin composition. The heat dissipation properties of a cured product and a substrate such as a wiring board using the cured product can be improved. As the inorganic filler (C-1), the inorganic fillers exemplified above may be used alone or in combination of two or more.
 前記無機充填剤(C-2)としては、例えば、溶融シリカフィラー、水酸化マグネシウムフィラー、マイカフィラー等が挙げられる。無機充填剤(C-2)としては、この中でも、溶融シリカフィラーが好ましい。無機充填剤(C-2)としては、上記に例示したような無機充填剤を1種単独で用いてもよいし、2種以上を併用して用いてもよい。 Examples of the inorganic filler (C-2) include fused silica filler, magnesium hydroxide filler, mica filler, and the like. Among these, fused silica filler is preferable as the inorganic filler (C-2). As the inorganic filler (C-2), the inorganic fillers exemplified above may be used alone or in combination of two or more.
 前記無機充填剤(C)は、表面処理された無機充填剤であってもよいし、表面処理されていない無機充填剤であってもよい。また、前記表面処理としては、例えば、シランカップリング剤による処理等が挙げられる。 The inorganic filler (C) may be a surface-treated inorganic filler or may be a surface-untreated inorganic filler. Furthermore, examples of the surface treatment include treatment with a silane coupling agent.
 前記シランカップリング剤としては、例えば、ビニル基、スチリル基、メタクリロイル基、アクリロイル基、フェニルアミノ基からなる群から選ばれる少なくとも1種の官能基を有するシランカップリング剤等が挙げられる。すなわち、このシランカップリング剤は、反応性官能基として、ビニル基、スチリル基、メタクリロイル基、アクリロイル基、及びフェニルアミノ基のうち、少なくとも1つを有し、さらに、メトキシ基やエトキシ基等の加水分解性基を有する化合物等が挙げられる。 Examples of the silane coupling agent include a silane coupling agent having at least one functional group selected from the group consisting of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, and a phenylamino group. That is, this silane coupling agent has at least one of a vinyl group, a styryl group, a methacryloyl group, an acryloyl group, and a phenylamino group as a reactive functional group, and also has a methoxy group, an ethoxy group, etc. Examples include compounds having a hydrolyzable group.
 前記シランカップリング剤としては、ビニル基を有するものとして、例えば、ビニルトリエトキシシラン、及びビニルトリメトキシシラン等が挙げられる。前記シランカップリング剤としては、スチリル基を有するものとして、例えば、p-スチリルトリメトキシシラン、及びp-スチリルトリエトキシシラン等が挙げられる。前記シランカップリング剤としては、メタクリロイル基を有するものとして、例えば、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、及び3-メタクリロキシプロピルエチルジエトキシシラン等が挙げられる。前記シランカップリング剤としては、アクリロイル基を有するものとして、例えば、3-アクリロキシプロピルトリメトキシシラン、及び3-アクリロキシプロピルトリエトキシシラン等が挙げられる。前記シランカップリング剤としては、フェニルアミノ基を有するものとして、例えば、N-フェニル-3-アミノプロピルトリメトキシシラン及びN-フェニル-3-アミノプロピルトリエトキシシラン等が挙げられる。 The silane coupling agent has a vinyl group, and examples thereof include vinyltriethoxysilane and vinyltrimethoxysilane. The silane coupling agent has a styryl group, and examples thereof include p-styryltrimethoxysilane and p-styryltriethoxysilane. The silane coupling agent has a methacryloyl group, and examples thereof include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, and 3-methacryloxypropylethyldiethoxysilane. The silane coupling agent has an acryloyl group, and examples thereof include 3-acryloxypropyltrimethoxysilane and 3-acryloxypropyltriethoxysilane. Examples of the silane coupling agent that has a phenylamino group include N-phenyl-3-aminopropyltrimethoxysilane and N-phenyl-3-aminopropyltriethoxysilane.
 前記無機充填剤(C)の含有量は、前記ラジカル重合性化合物(A)100質量部に対して、100~380質量部であることが好ましい。それにより、樹脂組成物の硬化物において、熱処理及び吸湿処理後の耐電圧の劣化をより確実に抑制することができる。前記無機充填剤(C)の含有量は、前記ラジカル重合性化合物(A)100質量部に対して、200~380質量部であることがより好ましく、300~380質量部であることがさらに好ましい。 The content of the inorganic filler (C) is preferably 100 to 380 parts by mass based on 100 parts by mass of the radically polymerizable compound (A). Thereby, in the cured product of the resin composition, deterioration of withstand voltage after heat treatment and moisture absorption treatment can be more reliably suppressed. The content of the inorganic filler (C) is more preferably 200 to 380 parts by mass, and even more preferably 300 to 380 parts by mass, based on 100 parts by mass of the radically polymerizable compound (A). .
 また、前記無機充填剤(C)が、熱伝導率が10W/m・K以上の無機充填剤(C-1)を含む場合、前記無機充填剤(C)100質量部に対して、前記無機充填剤(C-1)の含有量は25~100質量部であることが好ましい。それにより、樹脂組成物の硬化物において、高い熱伝導率をより確実に達成できると考えられる。 Further, when the inorganic filler (C) includes an inorganic filler (C-1) having a thermal conductivity of 10 W/m·K or more, the inorganic filler (C-1) is The content of the filler (C-1) is preferably 25 to 100 parts by mass. It is thought that this makes it possible to more reliably achieve high thermal conductivity in the cured product of the resin composition.
 前記無機充填剤(C-1)が窒化ホウ素フィラーを含む場合、すなわち、前記無機充填剤(C)が窒化ホウ素フィラーを含む場合、前記窒化ホウ素フィラーの含有量が、前記無機充填剤(C)100質量部に対して、25~100質量部であることが好ましい。それにより、樹脂組成物の硬化物において、高い熱伝導率をより確実に達成できると考えられる。前記窒化ホウ素フィラーの含有量は、前記無機充填剤(C)100質量部に対して、25~70質量部であることがより好ましく、30~50質量部であることがさらに好ましい。 When the inorganic filler (C-1) contains a boron nitride filler, that is, when the inorganic filler (C) contains a boron nitride filler, the content of the boron nitride filler is the same as that of the inorganic filler (C). The amount is preferably 25 to 100 parts by weight per 100 parts by weight. It is thought that this makes it possible to more reliably achieve high thermal conductivity in the cured product of the resin composition. The content of the boron nitride filler is more preferably 25 to 70 parts by mass, and even more preferably 30 to 50 parts by mass, based on 100 parts by mass of the inorganic filler (C).
 さらに、前記無機充填剤(C)が、熱伝導率が10W/m・K以上の無機充填剤(C-1)と、熱伝導率が10W/m・K未満の無機充填剤(C-2)とを含む場合、前記無機充填剤(C-1)の含有量は、前記無機充填剤(C-1)と前記無機充填剤(C-2)との合計100質量部に対して、25~70質量部であることが好ましい。それにより、樹脂組成物の硬化物において、熱処理及び吸湿処理後の耐電圧の劣化をより確実に抑制することができる。前記無機充填剤(C-1)の含有量は、前記無機充填剤(C-1)と前記無機充填剤(C-2)との合計100質量部に対して、25~50質量部であることがより好ましく、25~40質量部であることがさらに好ましい。 Furthermore, the inorganic filler (C) includes an inorganic filler (C-1) having a thermal conductivity of 10 W/m·K or more, and an inorganic filler (C-2) having a thermal conductivity of less than 10 W/m·K. ), the content of the inorganic filler (C-1) is 25 parts by mass based on a total of 100 parts by mass of the inorganic filler (C-1) and the inorganic filler (C-2). The amount is preferably 70 parts by mass. Thereby, in the cured product of the resin composition, deterioration of withstand voltage after heat treatment and moisture absorption treatment can be more reliably suppressed. The content of the inorganic filler (C-1) is 25 to 50 parts by mass based on a total of 100 parts by mass of the inorganic filler (C-1) and the inorganic filler (C-2). The amount is more preferably 25 to 40 parts by mass.
 本実施形態の無機充填剤(C)では、前記無機充填剤(C)の粒度分布において、レーザー回折式粒度分布測定法で測定される粒度分布のピークが、粒径1.0~50.0μmの範囲に少なくとも2つ存在することが好ましい。つまり、本実施形態で使用する無機充填剤では、少なくとも2種以上のピーク粒径(ピークトップ)を有する無機充填剤が混合されていることが好ましい。このようにピークが前記粒径範囲内に少なくとも2つ存在する無機充填剤を用いることによって、樹脂組成物の硬化物において高熱伝導率と低誘電特性(Dk)を達成できる。 In the inorganic filler (C) of the present embodiment, in the particle size distribution of the inorganic filler (C), the peak of the particle size distribution measured by laser diffraction particle size distribution measuring method is 1.0 to 50.0 μm. It is preferable that at least two of them exist in the range of . That is, in the inorganic filler used in this embodiment, it is preferable that inorganic fillers having at least two types of peak particle sizes (peak tops) are mixed. By using an inorganic filler having at least two peaks within the above particle size range, high thermal conductivity and low dielectric properties (Dk) can be achieved in the cured product of the resin composition.
 さらに、それらのピークは、それぞれ、粒径1.0~5.0μm範囲に少なくとも一つと、粒径5.0~50.0μm範囲に少なくとも一つ存在することが好ましい。つまり、より好ましい実施形態で使用する無機充填剤では、比較的小粒径の無機充填剤と比較的大粒径の無機充填剤と、少なくとも2種以上のピーク粒径(ピークトップ)を有する無機充填剤が混合されている。それにより金属箔との密着性の担保と高い熱伝導率を両立させることができると考えられる。 Furthermore, it is preferable that at least one peak exists in the particle size range of 1.0 to 5.0 μm and at least one peak exists in the particle size range of 5.0 to 50.0 μm. In other words, the inorganic fillers used in a more preferred embodiment include an inorganic filler with a relatively small particle size, an inorganic filler with a relatively large particle size, and an inorganic filler with at least two types of peak particle sizes (peak tops). Fillers are mixed. It is thought that this makes it possible to ensure both adhesion with the metal foil and high thermal conductivity.
 本明細書において、前記粒度分布は、レーザー回折・散乱法による粒度分布測定により測定した値であり、例えば、後述する実施例で使用したレーザー回折/散乱式粒度分布測定装置「LA-960V2」(株式会社堀場製作所製)などにより測定できる。また、本実施形態において、前記ピークとは、粒度分布のグラフにおける極大値を指し、具体的には、横軸を粒子径、縦軸を相対粒子量(頻度)とした際の粒度分布のグラフにおける極大値によって得られる数値である。 In this specification, the particle size distribution is a value measured by particle size distribution measurement using a laser diffraction/scattering method. For example, the particle size distribution measuring device "LA-960V2" used in the examples described below (manufactured by Horiba, Ltd.), etc. Furthermore, in the present embodiment, the peak refers to the maximum value in a particle size distribution graph, and specifically, in a particle size distribution graph where the horizontal axis is the particle diameter and the vertical axis is the relative particle amount (frequency). This is the numerical value obtained by the maximum value of .
 (その他の成分)
 本実施形態に係る樹脂組成物は、本発明の効果を損なわない範囲で、必要に応じて、上述した成分以外の成分(その他の成分)を含有してもよい。本実施形態に係る樹脂組成物に含有されるその他の成分としては、例えば、スチレン系重合体、フリーラジカル化合物、反応開始剤、シランカップリング剤、消泡剤、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、分散剤及び滑剤等の添加剤をさらに含んでもよい。また、本実施形態の樹脂組成物は、前記ラジカル重合性化合物(A)以外にも、エポキシ樹脂、マレイミド樹脂、芳香族炭化水素樹脂、脂肪族炭化水素樹脂等の熱硬化性樹脂を含有してもよい。
(Other ingredients)
The resin composition according to the present embodiment may contain components other than the above-mentioned components (other components), as necessary, within a range that does not impair the effects of the present invention. Other components contained in the resin composition according to the present embodiment include, for example, a styrene polymer, a free radical compound, a reaction initiator, a silane coupling agent, an antifoaming agent, an antioxidant, a heat stabilizer, It may further contain additives such as antistatic agents, ultraviolet absorbers, dyes and pigments, dispersants, and lubricants. In addition to the radically polymerizable compound (A), the resin composition of the present embodiment also contains a thermosetting resin such as an epoxy resin, a maleimide resin, an aromatic hydrocarbon resin, and an aliphatic hydrocarbon resin. Good too.
 ・スチレン系重合体
 本実施形態の樹脂組成物は、上述したような成分以外にも、さらにスチレン系重合体を含んでいてもよい。前記樹脂組成物がスチレン系重合体を含むことによって、さらなる樹脂の低誘電率化といった利点があると考えられる。
- Styrenic polymer The resin composition of the present embodiment may further contain a styrene polymer in addition to the components described above. It is thought that the resin composition containing the styrene polymer has the advantage of further lowering the dielectric constant of the resin.
 本実施形態で使用されるスチレン系重合体とは、例えば、スチレン系単量体を含む単量体を重合して得られる重合体であり、スチレン系共重合体であってもよい。また、前記スチレン系共重合体としては、例えば、スチレン系単量体の1種以上と、スチレン系単量体と共重合可能な他の単量体の1種以上とを、共重合させて得られる共重合体等が挙げられる。前記スチレン系単量体としては、スチレン、スチレン誘導体、スチレンの水素原子の一部が置換基で置換されたもの等が挙げられる。 The styrenic polymer used in this embodiment is, for example, a polymer obtained by polymerizing a monomer containing a styrene monomer, and may be a styrene copolymer. The styrenic copolymer is, for example, a copolymer of one or more styrene monomers and one or more other monomers copolymerizable with the styrene monomer. Examples include the resulting copolymers. Examples of the styrene monomer include styrene, styrene derivatives, and styrene in which some of the hydrogen atoms are substituted with substituents.
 具体的なスチレン系重合体としては、従来公知のものを広く使用でき、特に限定されないが、例えば、下記式(25)で表される構造単位(スチレン系単量体由来の構造)を分子中に有する重合体等が挙げられる。 As a specific styrenic polymer, a wide variety of conventionally known polymers can be used, and is not particularly limited. Examples include polymers having the following.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(25)中、R69~R71は、それぞれ独立して、水素原子又はアルキル基を示し、R72は水素原子、アルキル基、アルケニル基、及び、イソプロペニル基からなる群から選択される基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。また、前記アルケニル基は、炭素数1~10のアルケニル基が好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 In formula (25), R 69 to R 71 each independently represent a hydrogen atom or an alkyl group, and R 72 is selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group, and an isopropenyl group. Indicates the group. The alkyl group is not particularly limited, and, for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Further, the alkenyl group is preferably an alkenyl group having 1 to 10 carbon atoms. Specific examples include methyl group, ethyl group, propyl group, hexyl group, and decyl group.
 本実施形態のスチレン系重合体は、上記式(25)で表される構造単位を少なくとも1種含んでいることが好ましいが、異なる2種以上を組み合わせて含んでいてもよい。また、前記スチレン系重合体は、上記式(25)で表される構造単位を繰り返した構造を含んでいることが好ましい。 The styrenic polymer of this embodiment preferably contains at least one type of structural unit represented by the above formula (25), but may contain a combination of two or more different types. Moreover, it is preferable that the styrenic polymer includes a structure in which structural units represented by the above formula (25) are repeated.
 スチレン系重合体の好ましい例示としては、スチレン、ビニルトルエン、α-メチルスチレン、イソプロペニルトルエン、ジビニルベンゼン、アリルスチレンなどのスチレン系単量体の1種以上を重合若しくは共重合して得られる、重合体もしくは共重合体が挙げられ、より具体的には、スチレン-ブタジエン共重合体、スチレン-イソブチレン共重合体等が挙げられる。また、前記スチレン系重合体は水素添加(水添)したスチレン系重合体であってもよく、例えば、水添メチルスチレン(エチレン/ブチレン)メチルスチレン共重合体、水添メチルスチレン(エチレン-エチレン/プロピレン)メチルスチレン共重合体、水添スチレンイソプレン共重合体、水添スチレンイソプレンスチレン共重合体、水添スチレン(エチレン/ブチレン)スチレン共重合体、及び水添スチレン(エチレン-エチレン/プロピレン)スチレン共重合体等が挙げられる。 Preferred examples of styrenic polymers include those obtained by polymerizing or copolymerizing one or more styrene monomers such as styrene, vinyltoluene, α-methylstyrene, isopropenyltoluene, divinylbenzene, and allylstyrene. Examples include polymers or copolymers, and more specific examples include styrene-butadiene copolymers, styrene-isobutylene copolymers, and the like. Further, the styrenic polymer may be a hydrogenated styrene polymer, such as hydrogenated methylstyrene (ethylene/butylene) methylstyrene copolymer, hydrogenated methylstyrene (ethylene-ethylene /propylene) methylstyrene copolymer, hydrogenated styrene isoprene copolymer, hydrogenated styrene isoprene styrene copolymer, hydrogenated styrene (ethylene/butylene) styrene copolymer, and hydrogenated styrene (ethylene-ethylene/propylene) Examples include styrene copolymers.
 なお、前記スチレン系重合体としては、上記例示したものを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Note that, as the styrene-based polymer, those exemplified above may be used alone, or two or more types may be used in combination.
 このようなスチレン系重合体を含むことにより、上述したような効果に加えて、樹脂組成物の硬化物における吸湿率を抑制し、吸湿量の増加による電気特性の劣化を抑えることができるというさらなる効果を奏することもできる。 By including such a styrene polymer, in addition to the above-mentioned effects, the moisture absorption rate of the cured product of the resin composition can be suppressed, and the deterioration of electrical properties due to an increase in the amount of moisture absorption can be suppressed. It can also be effective.
 好ましい実施形態の前記スチレン系重合体において、上記式(25)で表される構造単位の少なくとも一種を含む場合、その構造単位のモル分率は、前記重合体全体に対して10~70%程度であることが好ましく、更には15~65%であることが好ましい。それにより、樹脂との相溶性を保てることから樹脂組成物内部における特性の均一性が保たれるといったさらなる利点がある。 In the case where the styrenic polymer of the preferred embodiment contains at least one type of structural unit represented by the above formula (25), the molar fraction of the structural unit is about 10 to 70% with respect to the entire polymer. It is preferably 15% to 65%, more preferably 15% to 65%. As a result, compatibility with the resin can be maintained, resulting in the further advantage that uniformity of properties within the resin composition can be maintained.
 前記スチレン系重合体の重合形態は、特に限定はなく、ブロック共重合体、交互共重合体、ランダム共重合体、グラフト共重合体等であってもよい。また、エラストマーの形態であってもよい。 The polymerization form of the styrenic polymer is not particularly limited, and may be a block copolymer, an alternating copolymer, a random copolymer, a graft copolymer, or the like. It may also be in the form of an elastomer.
 本実施形態のスチレン系重合体の重量平均分子量は、10,000~200,000程度であることが好ましく、さらに、20,000~150,000程度であることがより好ましい。重量平均分子量が上記範囲であれば、樹脂硬化物のBステージにおいて適正な樹脂流動性を担保することが可能であるといった利点がある。なお、ここで、数平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲル浸透クロマトグラフィーを用いて測定した値等が挙げられる。 The weight average molecular weight of the styrenic polymer of this embodiment is preferably about 10,000 to 200,000, more preferably about 20,000 to 150,000. When the weight average molecular weight is within the above range, there is an advantage that appropriate resin fluidity can be ensured in the B stage of the cured resin product. Note that the number average molecular weight here may be one measured by a general molecular weight measurement method, and specifically, a value measured using gel permeation chromatography, etc. can be mentioned.
 好ましい実施形態において、前記スチレン系重合体は、下記式(26)で表される構造単位を含む、スチレン・イソブチレン・スチレン系ブロック共重合体(SIBS)を含むことがより望ましい。それにより、ガスバリア性の高い樹脂組成物を得られる事が可能となり、樹脂組成物への吸湿を抑制できるといった利点がある。 In a preferred embodiment, the styrenic polymer more desirably includes a styrene-isobutylene-styrene block copolymer (SIBS) containing a structural unit represented by the following formula (26). Thereby, it becomes possible to obtain a resin composition with high gas barrier properties, and there is an advantage that moisture absorption into the resin composition can be suppressed.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 式(26)中、a1,a2の合計は1,000~60,000の整数を示し、bは1,000~70,000の整数を示し、かつ、a1、a2およびbの合計は10,000~130,000を示す。 In formula (26), the sum of a1, a2 represents an integer of 1,000 to 60,000, b represents an integer of 1,000 to 70,000, and the sum of a1, a2 and b is 10, 000 to 130,000.
 本実施形態で使用するスチレン系重合体の製造方法は特に限定はされないが、例えば、前記SIBSの製造方法の一例を示すと、まず、リビングカチオン重合法によってイソブチレンを重合した後、引き続きスチレンを添加して重合させることによって合成することができる。 Although the method for producing the styrenic polymer used in this embodiment is not particularly limited, for example, to show an example of the method for producing the SIBS, first, isobutylene is polymerized by a living cationic polymerization method, and then styrene is added. It can be synthesized by polymerization.
 本実施形態のスチレン系重合体は、市販のものを使用することもでき、例えば、株式会社カネカ製の「SIBSTAR(登録商標)073T」、「SIBSTAR(登録商標)103T」、「SIBSTAR(登録商標)102T」、株式会社クラレ製の「セプトンV9827」等が挙げられる。 The styrenic polymer of this embodiment can be a commercially available one, such as "SIBSTAR (registered trademark) 073T", "SIBSTAR (registered trademark) 103T", "SIBSTAR (registered trademark)" manufactured by Kaneka Corporation. ) 102T" and "Septon V9827" manufactured by Kuraray Co., Ltd..
 本実施形態の樹脂組成物が前記スチレン系重合体を含む場合、前記スチレン系重合体の含有量は、特に限定されないが、前記ラジカル重合性化合物(A)100質量部に対して、1~30質量部であることが好ましく、1~20質量部であることがより好ましく、1~15質量部であることがより好ましい。前記スチレン系重合体の含有量が、前記ラジカル重合性化合物(A)100質量部に対して、30質量部以下であることにより、樹脂組成物の硬化物において、優れた成形性及び難燃性がより確実に得られ、1質量部以上であることにより、樹脂組成物の硬化物において、低誘電特性をより確実に担保することができる。 When the resin composition of the present embodiment contains the styrenic polymer, the content of the styrene polymer is not particularly limited, but is 1 to 30 parts by mass based on 100 parts by mass of the radically polymerizable compound (A). It is preferably 1 to 20 parts by weight, more preferably 1 to 15 parts by weight. When the content of the styrene polymer is 30 parts by mass or less based on 100 parts by mass of the radically polymerizable compound (A), the cured product of the resin composition has excellent moldability and flame retardancy. is more reliably obtained, and by using 1 part by mass or more, low dielectric properties can be more reliably ensured in the cured product of the resin composition.
 ・フリーラジカル化合物
 本実施形態の樹脂組成物にはフリーラジカル化合物を含有してもよい。前記樹脂組成物がフリーラジカル化合物を含むことによって、樹脂の流れ性が良化し成形性が良化するといった利点があると考えられる。前記フリーラジカル化合物としては、重合禁止剤として使用されるようなフリーラジカル化合物であれば特に限定はされない。
-Free radical compound The resin composition of this embodiment may contain a free radical compound. It is thought that the inclusion of the free radical compound in the resin composition has the advantage of improving the flowability of the resin and improving the moldability. The free radical compound is not particularly limited as long as it is a free radical compound used as a polymerization inhibitor.
 本実施形態で好ましく使用されうる、より具体的なフリーラジカル化合物としては、4-アミノ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-アセトアミド-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-アミノ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-カルボキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-シアノ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-グリシジルオキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン1-オキシルベンゾアート フリーラジカル、4-イソチオシアナト-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-(2-ヨードアセトアミド)-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-[2-[2-(4-ヨードフェノキシ)エトキシ]カルボニル]ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-メトキシ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-メタクリロイルオキシ-2,2,6,6-テトラメチルピペリジン1-オキシルフリーラジカル、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4-オキソ-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、2,2,6,6-テトラメチル-4-(2-プロピニルオキシ)ピペリジン1-オキシル フリーラジカル、2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、4,5-ジヒドロ-4,4,5,5-テトラメチル-2-フェニル-1H-イミダゾール-1-イルオキシ-1-オキシド、セバシン酸ビス(2,2,6,6-テトラメチル-4-ピペリジル-1-オキシル)、3-カルボキシ-2,2,5,5-テトラメチルピロリジン1-オキシル フリーラジカル、4-(2-クロロアセトアミド)-2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル、2-(4-ニトロフェニル)-4,4,5,5-テトラメチルイミダゾリン-3-オキシド-1-オキシル フリーラジカル、2-(14-カルボキシテトラデシル)-2-エチル-4,4-ジメチル-3-オキサゾリジニルオキシ フリーラジカル、1,1-ジフェニル-2-ピクリルヒドラジル フリーラジカル等が挙げられる。これらは1種単独で使用しても、2種以上を組み合わせて使用してもよい。上述したようなフリーラジカル化合物は市販のものを使用することもでき、例えば、東京化成工業株式会社などから入手可能である。 More specific free radical compounds that can be preferably used in this embodiment include 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-acetamido-2,2,6, 6-tetramethylpiperidine 1-oxyl free radical, 4-amino-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-carboxy-2,2,6,6-tetramethylpiperidine 1-oxyl Free radical, 4-cyano-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-glycidyloxy-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy- 2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxylbenzoate free radical, 4-isothiocyanato-2,2,6, 6-tetramethylpiperidine 1-oxyl free radical, 4-(2-iodoacetamido)-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-[2-[2-(4-iodophenoxy) ) Ethoxy]carbonyl]benzoyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical, 4-methacryloyloxy- 2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-oxo-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 4-oxo-2,2,6,6- Tetramethylpiperidine 1-oxyl free radical, 2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 2,2,6,6-tetramethyl-4-(2-propynyloxy)piperidine 1-oxyl free Radical, 2,2,6,6-tetramethylpiperidine-1-oxyl Free radical, 4,5-dihydro-4,4,5,5-tetramethyl-2-phenyl-1H-imidazol-1-yloxy-1- oxide, sebacate bis(2,2,6,6-tetramethyl-4-piperidyl-1-oxyl), 3-carboxy-2,2,5,5-tetramethylpyrrolidine 1-oxyl free radical, 4-( 2-chloroacetamido)-2,2,6,6-tetramethylpiperidine 1-oxyl free radical, 2-(4-nitrophenyl)-4,4,5,5-tetramethylimidazoline-3-oxide-1- Oxyl free radical, 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy free radical, 1,1-diphenyl-2-picrylhydrazyl free radical, etc. Can be mentioned. These may be used alone or in combination of two or more. Commercially available free radical compounds such as those described above can also be used, and are available from Tokyo Chemical Industry Co., Ltd., for example.
 本実施形態の樹脂組成物が前記フリーラジカル化合物を含む場合、前記フリーラジカル化合物の含有量は、特に限定されないが、前記ラジカル重合性化合物(A)100質量部に対して、0.01~0.1質量部であることが好ましく、0.01~0.05質量部であることがより好ましい。 When the resin composition of the present embodiment contains the free radical compound, the content of the free radical compound is not particularly limited, but is 0.01 to 0.0 with respect to 100 parts by mass of the radically polymerizable compound (A). The amount is preferably 0.1 part by weight, and more preferably 0.01 to 0.05 part by weight.
 ・反応開始剤
 本実施形態に係る樹脂組成物には、上述の通り、反応開始剤(開始剤)を含有してもよい。前記樹脂組成物は、例えば、前記ポリフェニレンエーテル化合物と前記硬化剤を含むものであっても、硬化反応は進行し得る。しかしながら、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。
- Reaction initiator As described above, the resin composition according to the present embodiment may contain a reaction initiator (initiator). Even if the resin composition contains, for example, the polyphenylene ether compound and the curing agent, the curing reaction can proceed. However, depending on the process conditions, it may be difficult to raise the temperature to a high temperature until curing progresses, so a reaction initiator may be added.
 前記反応開始剤は、前記樹脂組成物の硬化反応を促進することができるものであれば、特に限定されない。具体的には、例えば、金属酸化物、アゾ化合物、有機過酸化物等が挙げられる。 The reaction initiator is not particularly limited as long as it can promote the curing reaction of the resin composition. Specific examples include metal oxides, azo compounds, and organic peroxides.
 金属酸化物としては、具体的には、カルボン酸金属塩等が挙げられる。 Specific examples of the metal oxide include carboxylic acid metal salts.
 有機過酸化物としては、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等が挙げられる。 Examples of organic peroxides include α,α'-di(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexyne, benzoyl peroxide, 3,3',5,5'-tetramethyl-1,4-diphenoquinone, chloranil, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, azobisisobutyronitrile, etc. can be mentioned.
 アゾ化合物としては、具体的には、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(2-メチルブチロニトリル)等が挙げられる。 Specifically, the azo compounds include 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(N-butyl-2-methylpropionamide), 2,2'- Examples include azobis(2-methylbutyronitrile).
 中でも好ましい反応開始剤は、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)等である。これらの反応開始剤は、誘電特性への影響が小さい。また、反応開始温度が比較的に高いため、プリプレグ乾燥時等の硬化する必要がない時点での硬化反応の促進を抑制することができ、前記樹脂組成物の保存性の低下を抑制することができるといった利点があるからである。 Among these, preferred reaction initiators are 2,2'-azobis(2,4,4-trimethylpentane), 2,2'-azobis(N-butyl-2-methylpropionamide), and the like. These reaction initiators have little effect on dielectric properties. In addition, since the reaction initiation temperature is relatively high, it is possible to suppress the acceleration of the curing reaction at a time when curing is not necessary, such as when drying the prepreg, and it is possible to suppress a decrease in the storage stability of the resin composition. This is because it has the advantage of being possible.
 上述したような反応開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。 The reaction initiators as described above may be used alone or in combination of two or more.
 本実施形態の樹脂組成物が前記反応開始剤を含む場合、その含有量としては、特に限定されないが、前記ラジカル重合性化合物(A)100質量部に対して、0.5~3質量部であることが好ましく、0.5~2質量部であることがより好ましい。 When the resin composition of the present embodiment contains the reaction initiator, the content thereof is not particularly limited, but is 0.5 to 3 parts by mass based on 100 parts by mass of the radically polymerizable compound (A). The amount is preferably 0.5 to 2 parts by mass, and more preferably 0.5 to 2 parts by mass.
 ・シランカップリング剤
 本実施形態に係る樹脂組成物には、上述したように、シランカップリング剤を含有してもよい。前記シランカップリング剤は、前記樹脂組成物にそのまま含有されていてもよいし、前記無機充填剤を予め表面処理する際に用いるシランカップリング剤として含有されていてもよい。この中でも、前記シランカップリング剤としては、無機充填剤を予め表面処理する際に用いるシランカップリング剤として含有されることが好ましい。また、無機充填剤を予め表面処理する際に用いるシランカップリング剤として含有され、さらに、樹脂組成物にシランカップリング剤がそのまま含有されることがより好ましい。また、プリプレグの場合、そのプリプレグには、繊維質基材を予め表面処理する際に用いるシランカップリング剤として含有されていてもよい。前記シランカップリング剤としては、例えば、上述した、前記無機充填剤を表面処理する際に用いるシランカップリング剤と同様のものが挙げられる。
- Silane coupling agent As mentioned above, the resin composition according to this embodiment may contain a silane coupling agent. The silane coupling agent may be contained in the resin composition as it is, or may be contained as a silane coupling agent used when surface-treating the inorganic filler in advance. Among these, the silane coupling agent is preferably contained as a silane coupling agent used when surface-treating the inorganic filler in advance. Moreover, it is more preferable that the silane coupling agent is contained as a silane coupling agent used when surface-treating the inorganic filler in advance, and that the silane coupling agent is further contained in the resin composition as it is. Further, in the case of prepreg, the prepreg may contain a silane coupling agent used when surface-treating the fibrous base material in advance. Examples of the silane coupling agent include those similar to the silane coupling agents described above used when surface treating the inorganic filler.
 本実施形態の樹脂組成物がシランカップリング剤を含む場合、その含有量としては、特に限定されないが、前記ラジカル重合性化合物(A)100質量部に対して、1~6質量部であることが好ましく、2~5質量部であることがより好ましい。 When the resin composition of the present embodiment contains a silane coupling agent, its content is not particularly limited, but it should be 1 to 6 parts by mass based on 100 parts by mass of the radically polymerizable compound (A). The amount is preferably 2 to 5 parts by mass, and more preferably 2 to 5 parts by mass.
 (用途)
 前記樹脂組成物は、後述するように、プリプレグを製造する際に用いられる。また、前記樹脂組成物は、樹脂付き金属箔及び樹脂付きフィルムに備えられる樹脂層、及び金属張積層板及び配線板に備えられる絶縁層を形成する際に用いられる。また、前記樹脂組成物は、上述したように、比誘電率が低い等の低誘電特性に優れた硬化物が得られる。このため、前記樹脂組成物は、アンテナ用の配線板やミリ波レーダ向けアンテナ基板等の高周波対応の配線板に備えられる絶縁層を形成するために好適に用いられる。すなわち、前記樹脂組成物は、高周波対応の配線板製造用として好適である。
(Application)
The resin composition is used when manufacturing prepreg, as described below. Further, the resin composition is used when forming a resin layer included in a resin-coated metal foil and a resin-coated film, and an insulating layer included in a metal-clad laminate and a wiring board. Further, as described above, the resin composition provides a cured product having excellent low dielectric properties such as a low relative dielectric constant. Therefore, the resin composition is suitably used to form an insulating layer included in a high frequency compatible wiring board such as a wiring board for an antenna or an antenna substrate for millimeter wave radar. That is, the resin composition is suitable for manufacturing wiring boards compatible with high frequencies.
 (製造方法)
 前記樹脂組成物を製造する方法としては、特に限定されず、例えば、前記ラジカル重合性化合物(A)と前記リン酸エステル化合物(B)と、必要に応じてその他の有機成分を混合し、その後、前記無機充填剤(C)を添加する方法等が挙げられる。具体的には、有機溶媒を含むワニス状の組成物を得る場合は、後述するプリプレグの説明において記載している方法等が挙げられる。
(Production method)
The method for producing the resin composition is not particularly limited, and for example, the radically polymerizable compound (A) and the phosphoric acid ester compound (B) are mixed with other organic components as necessary, and then , a method of adding the inorganic filler (C), and the like. Specifically, in the case of obtaining a varnish-like composition containing an organic solvent, the method described in the explanation of the prepreg mentioned later may be used.
 次に、本実施形態に係る樹脂組成物を用いたプリプレグ、金属張積層板、配線板、樹脂付き金属箔、及び樹脂付きフィルムについて図面を参照しながら説明する。なお、それぞれの図面において各符号は、1:プリプレグ、2:樹脂組成物又は樹脂組成物の半硬化物、3:繊維質基材、11:金属張積層板、12:絶縁層、13:金属箔、14:配線、21:配線板、31:樹脂付き金属板、32・42:樹脂層、41:樹脂付きフィルム、43:支持フィルムを示す。 Next, prepregs, metal-clad laminates, wiring boards, resin-coated metal foils, and resin-coated films using the resin composition according to the present embodiment will be described with reference to the drawings. In addition, in each drawing, each code|symbol is 1: prepreg, 2: resin composition or semi-cured product of a resin composition, 3: fibrous base material, 11: metal-clad laminate, 12: insulating layer, 13: metal Foil, 14: Wiring, 21: Wiring board, 31: Metal plate with resin, 32 and 42: Resin layer, 41: Film with resin, 43: Support film.
 [プリプレグ]
 図1は、本発明の実施形態に係るプリプレグ1の一例を示す概略断面図である。
[Prepreg]
FIG. 1 is a schematic cross-sectional view showing an example of a prepreg 1 according to an embodiment of the present invention.
 本実施形態に係るプリプレグ1は、図1に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、繊維質基材3とを備える。このプリプレグ1は、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、前記樹脂組成物又は前記樹脂組成物の半硬化物2の中に存在する繊維質基材3とを備える。 As shown in FIG. 1, the prepreg 1 according to the present embodiment includes the resin composition or a semi-cured product 2 of the resin composition, and a fibrous base material 3. This prepreg 1 includes the resin composition or a semi-cured product 2 of the resin composition, and a fibrous base material 3 present in the resin composition or the semi-cured product 2 of the resin composition.
 なお、本実施形態において、半硬化物とは、樹脂組成物をさらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が上昇し始めてから、完全に硬化する前の間の状態等が挙げられる。 Note that in this embodiment, the semi-cured product is a state in which the resin composition is partially cured to the extent that it can be further cured. That is, the semi-cured product is a semi-cured (B-staged) resin composition. For example, when a resin composition is heated, the viscosity first gradually decreases, and then curing starts and the viscosity gradually increases. In such a case, semi-curing includes a state between when the viscosity begins to rise and before it is completely cured.
 また、本実施形態に係る樹脂組成物を用いて得られるプリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。 Further, the prepreg obtained using the resin composition according to the present embodiment may include a semi-cured product of the resin composition as described above, or may include the uncured resin composition. It may also include the composition itself. That is, it may be a prepreg comprising a semi-cured product of the resin composition (the resin composition at the B stage) and a fibrous base material, or a prepreg comprising the semi-cured product of the resin composition (the resin composition at the A stage), or a prepreg comprising the resin composition before curing (the resin composition at the A stage). It may be a prepreg comprising a material) and a fibrous base material. Further, the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition.
 プリプレグを製造する際には、プリプレグを形成するための基材である繊維質基材3に含浸するために、樹脂組成物2は、ワニス状に調製されて用いられることが多い。すなわち、樹脂組成物2は、通常、ワニス状に調製された樹脂ワニスであることが多い。このようなワニス状の樹脂組成物(樹脂ワニス)は、例えば、以下のようにして調製される。 When manufacturing prepreg, the resin composition 2 is often prepared in the form of a varnish and used in order to impregnate the fibrous base material 3, which is the base material for forming the prepreg. That is, the resin composition 2 is often a resin varnish prepared in the form of a varnish. Such a varnish-like resin composition (resin varnish) is prepared, for example, as follows.
 まず、樹脂組成物の組成のうち有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて、加熱してもよい。その後、必要に応じて用いられる、有機溶媒に溶解しない成分(例えば、無機充填剤など)を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の樹脂組成物が調製される。ここで用いられる有機溶媒としては、前記変性ポリフェニレンエーテル化合物や前記硬化剤等を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエンやメチルエチルケトン(MEK)等が挙げられる。 First, each component of the resin composition that can be dissolved in an organic solvent is poured into an organic solvent and dissolved therein. At this time, heating may be performed if necessary. After that, components that do not dissolve in organic solvents (for example, inorganic fillers, etc.) are added as necessary, and dispersed using a ball mill, bead mill, planetary mixer, roll mill, etc. until a predetermined dispersion state is achieved. By doing so, a varnish-like resin composition is prepared. The organic solvent used here is not particularly limited as long as it dissolves the modified polyphenylene ether compound, the curing agent, etc. and does not inhibit the curing reaction. Specific examples include toluene and methyl ethyl ketone (MEK).
 前記プリプレグの製造方法は、前記プリプレグを製造することができれば、特に限定されない。具体的には、プリプレグを製造する際には、上述した本実施形態で用いる樹脂組成物は、上述したように、ワニス状に調製し、樹脂ワニスとして用いられることが多い。 The method for manufacturing the prepreg is not particularly limited as long as the prepreg can be manufactured. Specifically, when manufacturing a prepreg, the resin composition used in this embodiment described above is often prepared in the form of a varnish and used as a resin varnish, as described above.
 前記繊維質基材としては、具体的には、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、及びリンター紙が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。偏平処理加工として、具体的には、例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮する方法が挙げられる。なお、一般的に使用される繊維質基材の厚さは、例えば、0.01mm以上、0.3mm以下である。 Specific examples of the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, and linter paper. Note that when glass cloth is used, a laminate with excellent mechanical strength can be obtained, and glass cloth that has been flattened is particularly preferred. Specifically, the flattening process includes, for example, a method in which a glass cloth is continuously pressed with a press roll at an appropriate pressure to compress the yarn into a flat shape. Note that the thickness of the commonly used fibrous base material is, for example, 0.01 mm or more and 0.3 mm or less.
 前記プリプレグの製造方法は、前記プリプレグを製造することができれば、特に限定されない。具体的には、プリプレグを製造する際には、上述した本実施形態に係る樹脂組成物は、上述したように、ワニス状に調製し、樹脂ワニスとして用いられることが多い。 The method for manufacturing the prepreg is not particularly limited as long as the prepreg can be manufactured. Specifically, when manufacturing a prepreg, the resin composition according to the present embodiment described above is often prepared in the form of a varnish and used as a resin varnish, as described above.
 プリプレグ1を製造する方法としては、例えば、樹脂組成物2、例えば、ワニス状に調製された樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。樹脂組成物2は、繊維質基材3へ、浸漬及び塗布等によって含浸される。必要に応じて複数回繰り返して含浸することも可能である。また、この際、組成や濃度の異なる複数の樹脂組成物を用いて含浸を繰り返すことにより、最終的に希望とする組成及び含浸量に調整することも可能である。 Examples of the method for manufacturing the prepreg 1 include a method in which the fibrous base material 3 is impregnated with the resin composition 2, for example, the resin composition 2 prepared in the form of a varnish, and then dried. The resin composition 2 is impregnated into the fibrous base material 3 by dipping, coating, or the like. It is also possible to repeat the impregnation multiple times if necessary. Further, at this time, by repeating impregnation using a plurality of resin compositions having different compositions and concentrations, it is possible to finally adjust the desired composition and impregnation amount.
 樹脂組成物(樹脂ワニス)2が含浸された繊維質基材3は、所望の加熱条件、例えば、80℃以上180℃以下で1分間以上10分間以下加熱される。加熱によって、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。 The fibrous base material 3 impregnated with the resin composition (resin varnish) 2 is heated under desired heating conditions, for example, at 80° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less. By heating, prepreg 1 in a pre-cured (A stage) or semi-cured state (B stage) is obtained. In addition, by the heating, the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
 本実施形態に係る樹脂組成物又はこの樹脂組成物の半硬化物を備えるプリプレグは、誘電特性(比誘電率)が低く、金属箔との密着性及び難燃性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された硬化物が好適に得られるプリプレグである。 The resin composition according to the present embodiment or the prepreg comprising the semi-cured product of this resin composition has low dielectric properties (relative permittivity), excellent adhesion with metal foil and flame retardancy, and high thermal conductivity. This is a prepreg from which a cured product with suppressed deterioration of withstand voltage after heat treatment and moisture absorption treatment can be obtained.
 [金属張積層板]
 図2は、本発明の実施形態に係る金属張積層板11の一例を示す概略断面図である。
[Metal-clad laminate]
FIG. 2 is a schematic cross-sectional view showing an example of the metal-clad laminate 11 according to the embodiment of the present invention.
 金属張積層板11は、図2に示すように、図1に示したプリプレグ1の硬化物を含む絶縁層12と、絶縁層12の上下の両面又は片面に積層される金属箔13とから構成されている。すなわち、金属張積層板11は、樹脂組成物の硬化物を含む絶縁層12と、絶縁層12の上に設けられた金属箔13とを有する。また、絶縁層12は、前記樹脂組成物の硬化物からなるものであってもよいし、前記プリプレグの硬化物からなるものであってもよい。また、前記金属箔13の厚みは、最終的に得られる配線板に求められる性能等に応じて異なり、特に限定されない。金属箔13の厚みは、所望の目的に応じて、適宜設定することができ、例えば、0.2~70μmであることが好ましい。また、前記金属箔13としては、例えば、銅箔及びアルミニウム箔等が挙げられ、前記金属箔が薄い場合は、ハンドリング性を向上させるために剥離層及びキャリアを備えたキャリア付銅箔であってもよい。 As shown in FIG. 2, the metal-clad laminate 11 is composed of an insulating layer 12 containing a cured product of the prepreg 1 shown in FIG. has been done. That is, the metal-clad laminate 11 includes an insulating layer 12 containing a cured resin composition and a metal foil 13 provided on the insulating layer 12. Further, the insulating layer 12 may be made of a cured product of the resin composition, or may be made of a cured product of the prepreg. Further, the thickness of the metal foil 13 is not particularly limited and varies depending on the performance required of the ultimately obtained wiring board. The thickness of the metal foil 13 can be appropriately set depending on the desired purpose, and is preferably 0.2 to 70 μm, for example. Further, examples of the metal foil 13 include copper foil and aluminum foil, and when the metal foil is thin, it may be a carrier-attached copper foil provided with a peeling layer and a carrier to improve handling properties. Good too.
 前記金属張積層板11を製造する方法としては、前記金属張積層板11を製造することができれば、特に限定されない。具体的には、プリプレグ1を用いて金属張積層板11を作製する方法が挙げられる。この方法としては、プリプレグ1を1枚又は複数枚重ね、さらに、その上下の両面又は片面に銅箔等の金属箔13を重ね、金属箔13およびプリプレグ1を加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層板11を作製する方法等が挙げられる。すなわち、金属張積層板11は、プリプレグ1に金属箔13を積層して、加熱加圧成形して得られる。また、加熱加圧条件は、製造する金属張積層板11の厚みやプリプレグ1の組成物の種類等により適宜設定することができる。例えば、温度を170~220℃、圧力を3~4MPa、時間を60~150分間とすることができる。また、前記金属張積層板は、プリプレグを用いずに製造してもよい。例えば、ワニス状の樹脂組成物を金属箔上に塗布し、金属箔上に樹脂組成物を含む層を形成した後に、加熱加圧する方法等が挙げられる。 The method for manufacturing the metal-clad laminate 11 is not particularly limited as long as the metal-clad laminate 11 can be manufactured. Specifically, a method of producing the metal-clad laminate 11 using the prepreg 1 can be mentioned. This method involves stacking one or more prepregs 1, then stacking a metal foil 13 such as copper foil on both or one side of the top and bottom, and forming the metal foil 13 and the prepreg 1 under heat and pressure to form an integrated laminate. By doing so, a method of producing a laminate 11 with metal foil on both sides or with metal foil on one side can be mentioned. That is, the metal-clad laminate 11 is obtained by laminating the metal foil 13 on the prepreg 1 and molding it under heat and pressure. Further, the heating and pressing conditions can be appropriately set depending on the thickness of the metal-clad laminate 11 to be manufactured, the type of composition of the prepreg 1, and the like. For example, the temperature can be 170 to 220°C, the pressure can be 3 to 4 MPa, and the time can be 60 to 150 minutes. Further, the metal-clad laminate may be manufactured without using prepreg. For example, a method may be used in which a varnish-like resin composition is applied onto a metal foil, a layer containing the resin composition is formed on the metal foil, and then heated and pressed.
 本実施形態に係る樹脂組成物の硬化物を含む絶縁層を備える金属張積層板は、誘電特性(比誘電率)が低く、金属箔との密着性及び難燃性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された絶縁層を備える金属張積層板である。 The metal-clad laminate including the insulating layer containing the cured product of the resin composition according to the present embodiment has low dielectric properties (relative permittivity), excellent adhesion with metal foil and flame retardancy, and high thermal conductivity. This is a metal-clad laminate including an insulating layer that is high in voltage and has suppressed deterioration of withstand voltage after heat treatment and moisture absorption treatment.
 [配線板]
 図3は、本発明の実施形態に係る配線板21の一例を示す概略断面図である。
[Wiring board]
FIG. 3 is a schematic cross-sectional view showing an example of the wiring board 21 according to the embodiment of the present invention.
 本実施形態に係る配線板21は、図3に示すように、図1に示したプリプレグ1を硬化して用いられる絶縁層12と、絶縁層12の上下の両面又は片面に積層された、金属箔13を部分的に除去して形成された配線14とから構成されている。すなわち、前記配線板21は、樹脂組成物の硬化物を含む絶縁層12と、絶縁層12の上下の両面又は片面に設けられた配線14とを有する。また、絶縁層12は、前記樹脂組成物の硬化物からなるものであってもよいし、前記プリプレグの硬化物からなるものであってもよい。 As shown in FIG. 3, the wiring board 21 according to the present embodiment includes an insulating layer 12 used by curing the prepreg 1 shown in FIG. The wiring 14 is formed by partially removing the foil 13. That is, the wiring board 21 has an insulating layer 12 containing a cured resin composition, and wiring 14 provided on both or one side of the upper and lower sides of the insulating layer 12. Further, the insulating layer 12 may be made of a cured product of the resin composition, or may be made of a cured product of the prepreg.
 前記配線板21を製造する方法は、前記配線板21を製造することができれば、特に限定されない。具体的には、前記プリプレグ1を用いて配線板21を作製する方法等が挙げられる。この方法としては、例えば、上記のように作製された金属張積層板11の表面の金属箔13をエッチング加工等して配線形成をすることによって、絶縁層12の表面に回路として配線が設けられた配線板21を作製する方法等が挙げられる。すなわち、配線板21は、金属張積層板11の表面の金属箔13を部分的に除去することにより回路形成して得られる。また、回路形成する方法としては、上記の方法以外に、例えば、セミアディティブ法(SAP:Semi Additive Process)やモディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)による回路形成等が挙げられる。配線板21は、誘電特性(比誘電率)が低く、金属箔との密着性及び難燃性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された絶縁層12を有する。 The method for manufacturing the wiring board 21 is not particularly limited as long as the wiring board 21 can be manufactured. Specifically, a method of manufacturing the wiring board 21 using the prepreg 1 may be mentioned. In this method, for example, wiring is provided as a circuit on the surface of the insulating layer 12 by etching the metal foil 13 on the surface of the metal-clad laminate 11 produced as described above to form wiring. For example, a method of manufacturing the printed circuit board 21 may be mentioned. That is, the wiring board 21 is obtained by partially removing the metal foil 13 on the surface of the metal-clad laminate 11 to form a circuit. In addition to the above-mentioned methods, methods for forming the circuit include, for example, semi-additive process (SAP) and modified semi-additive process (MSAP). The wiring board 21 is an insulating layer that has low dielectric properties (relative permittivity), excellent adhesion with metal foil and flame retardancy, high thermal conductivity, and suppresses deterioration of withstand voltage after heat treatment and moisture absorption treatment. It has 12.
 このような配線板は、誘電特性(比誘電率)が低く、金属箔との密着性及び難燃性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された絶縁層を備える配線板である。 Such wiring boards have low dielectric properties (relative permittivity), excellent adhesion to metal foil and flame retardancy, high thermal conductivity, and suppressed deterioration of withstand voltage after heat treatment and moisture absorption treatment. It is a wiring board including an insulating layer.
 [樹脂付き金属箔]
 図4は、本実施の形態に係る樹脂付き金属箔31の一例を示す概略断面図である。
[Metal foil with resin]
FIG. 4 is a schematic cross-sectional view showing an example of a resin-coated metal foil 31 according to the present embodiment.
 本実施形態に係る樹脂付き金属箔31は、図4に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層32と、金属箔13とを備える。この樹脂付き金属箔31は、前記樹脂層32の表面上に金属箔13を有する。すなわち、この樹脂付き金属箔31は、前記樹脂層32と、前記樹脂層32とともに積層される金属箔13とを備える。また、前記樹脂付き金属箔31は、前記樹脂層32と前記金属箔13との間に、他の層を備えていてもよい。 As shown in FIG. 4, the resin-coated metal foil 31 according to the present embodiment includes a resin layer 32 containing the resin composition or a semi-cured product of the resin composition, and a metal foil 13. This resin-coated metal foil 31 has a metal foil 13 on the surface of the resin layer 32. That is, this resin-coated metal foil 31 includes the resin layer 32 and the metal foil 13 laminated together with the resin layer 32. Further, the resin-coated metal foil 31 may include another layer between the resin layer 32 and the metal foil 13.
 また、前記樹脂層32としては、上記のような、前記樹脂組成物の半硬化物を含むものであってもよいし、また、硬化させていない前記樹脂組成物を含むものであってもよい。すなわち、前記樹脂付き金属箔31は、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付き金属箔であってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)を含む樹脂層と、金属箔とを備える樹脂付き金属箔であってもよい。また、前記樹脂層としては、前記樹脂組成物又は前記樹脂組成物の半硬化物を含んでいればよく、繊維質基材を含んでいても、含んでいなくてもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。また、繊維質基材としては、プリプレグの繊維質基材と同様のものを用いることができる。 Further, the resin layer 32 may include a semi-cured product of the resin composition as described above, or may include an uncured resin composition. . That is, the resin-coated metal foil 31 may be a resin-coated metal foil that includes a resin layer containing a semi-cured product of the resin composition (the B-stage resin composition) and a metal foil, or The resin-coated metal foil may include a resin layer containing the previous resin composition (the A-stage resin composition) and a metal foil. Further, the resin layer only needs to contain the resin composition or a semi-cured product of the resin composition, and may or may not contain a fibrous base material. Further, the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition. Further, as the fibrous base material, the same fibrous base material as the prepreg can be used.
 また、金属箔としては、金属張積層板に用いられる金属箔を限定なく用いることができる。金属箔としては、例えば、銅箔及びアルミニウム箔等が挙げられる。 Furthermore, as the metal foil, metal foils used for metal-clad laminates can be used without limitation. Examples of the metal foil include copper foil and aluminum foil.
 前記樹脂付き金属箔31及び後述する樹脂付きフィルム41は、必要に応じて、カバーフィル等を備えてもよい。カバーフィルムを備えることにより、異物の混入等を防ぐことができる。前記カバーフィルムとしては、特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、ポリメチルペンテンフィルム、及びこれらのフィルムに離型剤層を設けて形成されたフィルム等が挙げられる。 The resin-coated metal foil 31 and the resin-coated film 41 described below may be provided with a cover fill or the like, if necessary. By providing a cover film, it is possible to prevent foreign matter from entering. The cover film is not particularly limited, but includes, for example, a polyolefin film, a polyester film, a polymethylpentene film, and a film formed by providing a release agent layer on these films.
 前記樹脂付き金属箔31を製造する方法は、前記樹脂付き金属箔31を製造することができれば、特に限定されない。前記樹脂付き金属箔31の製造方法としては、上記ワニス状の樹脂組成物(樹脂ワニス)を金属箔13上に塗布し、加熱することにより製造する方法等が挙げられる。ワニス状の樹脂組成物は、例えば、バーコーターを用いることにより、金属箔13上に塗布される。塗布された樹脂組成物は、例えば、80℃以上180℃以下、1分以上10分以下の条件で加熱される。加熱された樹脂組成物は、未硬化の樹脂層32として、金属箔13上に形成される。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。 The method for manufacturing the resin-coated metal foil 31 is not particularly limited as long as the resin-coated metal foil 31 can be manufactured. Examples of the method for manufacturing the resin-coated metal foil 31 include a method in which the varnish-like resin composition (resin varnish) is applied onto the metal foil 13 and heated. The varnish-like resin composition is applied onto the metal foil 13 using, for example, a bar coater. The applied resin composition is heated under conditions of, for example, 80° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less. The heated resin composition is formed on the metal foil 13 as an uncured resin layer 32 . In addition, by the heating, the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
 本実施形態に係る樹脂組成物又はこの樹脂組成物の半硬化物を含む樹脂層を備える樹脂付き金属箔は、誘電特性(比誘電率)が低く、金属箔との密着性及び難燃性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された硬化物が好適に得られる樹脂付き金属箔である。 The resin-coated metal foil provided with the resin layer containing the resin composition or semi-cured product of this resin composition according to the present embodiment has low dielectric properties (relative dielectric constant), and has low adhesion with the metal foil and flame retardancy. This is a resin-coated metal foil that can suitably yield a cured product with excellent thermal conductivity and suppressed deterioration of withstand voltage after heat treatment and moisture absorption treatment.
 [樹脂付きフィルム]
 図5は、本実施の形態に係る樹脂付きフィルム41の一例を示す概略断面図である。
[Film with resin]
FIG. 5 is a schematic cross-sectional view showing an example of the resin-coated film 41 according to the present embodiment.
 本実施形態に係る樹脂付きフィルム41は、図5に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層42と、支持フィルム43とを備える。この樹脂付きフィルム41は、前記樹脂層42と、前記樹脂層42とともに積層される支持フィルム43とを備える。また、前記樹脂付きフィルム41は、前記樹脂層42と前記支持フィルム43との間に、他の層を備えていてもよい。 As shown in FIG. 5, the resin-coated film 41 according to the present embodiment includes a resin layer 42 containing the resin composition or a semi-cured product of the resin composition, and a support film 43. This resin-coated film 41 includes the resin layer 42 and a support film 43 laminated together with the resin layer 42. Further, the resin-coated film 41 may include another layer between the resin layer 42 and the support film 43.
 また、前記樹脂層42としては、上記のような、前記樹脂組成物の半硬化物を含むものであってもよいし、また、硬化させていない前記樹脂組成物を含むものであってもよい。すなわち、前記樹脂付きフィルム41は、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)を含む樹脂層と、支持フィルムとを備えるであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)を含む樹脂層と、支持フィルムとを備える樹脂付きフィルムであってもよい。また、前記樹脂層としては、前記樹脂組成物又は前記樹脂組成物の半硬化物を含んでいればよく、繊維質基材を含んでいても、含んでいなくてもよい。また、前記樹脂組成物又は前記樹脂組成物の半硬化物としては、前記樹脂組成物を乾燥又は加熱乾燥させたものであってもよい。また、繊維質基材としては、プリプレグの繊維質基材と同様のものを用いることができる。 Further, the resin layer 42 may include a semi-cured product of the resin composition as described above, or may include an uncured resin composition. . That is, the resin-coated film 41 may include a resin layer containing a semi-cured product of the resin composition (the B-stage resin composition) and a support film, or may include a support film containing the resin composition before curing. The resin-coated film may include a resin layer containing a substance (the resin composition at A stage) and a support film. Further, the resin layer only needs to contain the resin composition or a semi-cured product of the resin composition, and may or may not contain a fibrous base material. Further, the resin composition or the semi-cured product of the resin composition may be one obtained by drying or heating drying the resin composition. Further, as the fibrous base material, the same fibrous base material as the prepreg can be used.
 また、支持フィルム43としては、樹脂付きフィルムに用いられる支持フィルムを限定なく用いることができる。前記支持フィルムとしては、例えば、ポリエステルフィルム、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、ポリアミドフィルム、ポリカーボネートフィルム、及びポリアリレートフィルム等の電気絶縁性フィルム等が挙げられる。 Further, as the support film 43, any support film used for a resin-coated film can be used without limitation. Examples of the support film include electrically insulating films such as polyester film, polyethylene terephthalate (PET) film, polyimide film, polyparabanic acid film, polyether ether ketone film, polyphenylene sulfide film, polyamide film, polycarbonate film, and polyarylate film. Examples include films.
 前記樹脂付きフィルム41は、必要に応じて、カバーフィルム等を備えてもよい。カバーフィルムを備えることにより、異物の混入等を防ぐことができる。前記カバーフィルムとしては、特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、及びポリメチルペンテンフィルム等が挙げられる。 The resin-coated film 41 may include a cover film or the like, if necessary. By providing a cover film, it is possible to prevent foreign matter from entering. The cover film is not particularly limited, and examples thereof include polyolefin film, polyester film, and polymethylpentene film.
 前記支持フィルム及びカバーフィルムとしては、必要に応じて、マット処理、コロナ処理、離型処理、及び粗化処理等の表面処理が施されたものであってもよい。 The support film and cover film may be subjected to surface treatments such as matte treatment, corona treatment, mold release treatment, and roughening treatment, as necessary.
 前記樹脂付きフィルム41を製造する方法は、前記樹脂付きフィルム41を製造することができれば、特に限定されない。前記樹脂付きフィルム41の製造方法は、例えば、上記ワニス状の樹脂組成物(樹脂ワニス)を支持フィルム43上に塗布し、加熱することにより製造する方法等が挙げられる。ワニス状の樹脂組成物は、例えば、バーコーターを用いることにより、支持フィルム43上に塗布される。塗布された樹脂組成物は、例えば、80℃以上180℃以下、1分以上10分以下の条件で加熱される。加熱された樹脂組成物は、未硬化の樹脂層42として、支持フィルム43上に形成される。なお、前記加熱によって、前記樹脂ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させることができる。 The method for producing the resin-coated film 41 is not particularly limited as long as the resin-coated film 41 can be produced. Examples of the method for manufacturing the resin-coated film 41 include a method in which the varnish-like resin composition (resin varnish) is applied onto the support film 43 and heated. The varnish-like resin composition is applied onto the support film 43 using, for example, a bar coater. The applied resin composition is heated under conditions of, for example, 80° C. or higher and 180° C. or lower for 1 minute or more and 10 minutes or less. The heated resin composition is formed on the support film 43 as an uncured resin layer 42 . In addition, by the heating, the organic solvent can be volatilized from the resin varnish, and the organic solvent can be reduced or removed.
 本実施形態に係る樹脂組成物又はこの樹脂組成物の半硬化物を含む樹脂層を備える樹脂付きフィルムは、誘電特性(比誘電率)が低く、金属箔との密着性及び難燃性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された硬化物が好適に得られる樹脂付きフィルムである。 A resin-coated film including a resin layer containing the resin composition or a semi-cured product of this resin composition according to the present embodiment has low dielectric properties (relative dielectric constant), and has excellent adhesion to metal foil and flame retardancy. This is a resin-coated film that can suitably yield a cured product that has high thermal conductivity and suppresses deterioration of withstand voltage after heat treatment and moisture absorption treatment.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses techniques in various aspects as described above, and the main techniques are summarized below.
 第1の態様における樹脂組成物は、炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物(A)と、脂環式炭化水素構造を分子内に有するリン酸エステル化合物(B)と、無機充填剤(C)とを含み、その硬化物の熱伝導率が1.0W/m・K以上である。 The resin composition in the first aspect includes a radically polymerizable compound (A) having a carbon-carbon unsaturated double bond in the molecule, and a phosphoric acid ester compound (B) having an alicyclic hydrocarbon structure in the molecule. and an inorganic filler (C), and the cured product has a thermal conductivity of 1.0 W/m·K or more.
 第2の形態における樹脂組成物は、第1の態様における樹脂組成物において、前記リン酸エステル化合物(B)が、下記式(1)で表される構造を分子内に少なくとも1つ有する。 In the resin composition in the second embodiment, in the resin composition in the first embodiment, the phosphoric acid ester compound (B) has at least one structure represented by the following formula (1) in the molecule.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
[式(1)中、R~R10は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。] [In formula (1), R 1 to R 10 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. ]
 第3の形態における樹脂組成物は、第1または第2の態様における樹脂組成物において、前記脂環式炭化水素構造が、3~12員環の飽和脂環式炭化水素構造を含む。 In the resin composition according to the third aspect, in the resin composition according to the first or second aspect, the alicyclic hydrocarbon structure includes a 3- to 12-membered saturated alicyclic hydrocarbon structure.
 第4の形態における樹脂組成物は、第1から第3のいずれか1つの態様における樹脂組成物において、前記リン酸エステル化合物(B)が、下記式(2)で表される構造を分子内に少なくとも1つ有するリン酸エステル化合物を含む。 The resin composition according to the fourth aspect is the resin composition according to any one of the first to third aspects, in which the phosphoric acid ester compound (B) has a structure represented by the following formula (2) in the molecule. Contains a phosphoric acid ester compound having at least one of the following.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
[式(2)中、Ar及びArは、それぞれ独立して、アリーレン基を示し、Tは、3~12員環の飽和脂環式炭化水素の二価基を示す。] [In formula (2), Ar 1 and Ar 2 each independently represent an arylene group, and T represents a divalent group of a 3- to 12-membered saturated alicyclic hydrocarbon. ]
 第5の形態における樹脂組成物は、第1から第4のいずれか1つの態様における樹脂組成物において、前記無機充填剤(C)の含有量は、前記ラジカル重合性化合物(A)100質量部に対して、100~380質量部である。 In the resin composition according to any one of the first to fourth aspects, the content of the inorganic filler (C) is 100 parts by mass of the radically polymerizable compound (A). 100 to 380 parts by mass.
 第6の形態における樹脂組成物は、第1から第5のいずれか1つの態様における樹脂組成物において、前記無機充填剤(C)が、熱伝導率が10W/m・K以上の無機充填剤(C-1)と、熱伝導率が10W/m・K未満の無機充填剤(C-2)とを含む。 In the resin composition according to any one of the first to fifth aspects, the inorganic filler (C) is an inorganic filler having a thermal conductivity of 10 W/m·K or more. (C-1) and an inorganic filler (C-2) having a thermal conductivity of less than 10 W/m·K.
 第7の形態における樹脂組成物は、第6の態様における樹脂組成物において、前記無機充填剤(C-1)が、窒化ホウ素フィラー、酸化アルミニウムフィラー、酸化マグネシウムフィラー、炭酸マグネシウムフィラー、窒化ケイ素フィラー、窒化アルミニウムフィラーからなる群より選択される少なくとも1種を含む。 The resin composition according to the seventh aspect is the resin composition according to the sixth aspect, wherein the inorganic filler (C-1) is a boron nitride filler, an aluminum oxide filler, a magnesium oxide filler, a magnesium carbonate filler, a silicon nitride filler. , aluminum nitride filler.
 第8の形態における樹脂組成物は、第6または第7の態様における樹脂組成物において、前記無機充填剤(C-2)が、溶融シリカフィラー、水酸化マグネシウムフィラー、マイカフィラーからなる群より選択される少なくとも1種を含む。 The resin composition according to the eighth aspect is the resin composition according to the sixth or seventh aspect, wherein the inorganic filler (C-2) is selected from the group consisting of fused silica filler, magnesium hydroxide filler, and mica filler. Contains at least one species.
 第9の形態における樹脂組成物は、第6から第8のいずれか1つの態様における樹脂組成物において、前記無機充填剤(C-1)の含有量は、無機充填剤(C-1)と無機充填剤(C-2)との合計100質量部に対して、25~70質量部である。 In the resin composition according to any one of the sixth to eighth aspects, the content of the inorganic filler (C-1) is higher than that of the inorganic filler (C-1). The amount is 25 to 70 parts by mass based on 100 parts by mass in total with the inorganic filler (C-2).
 第10の形態における樹脂組成物は、第1から第9のいずれか1つの態様における樹脂組成物において、前記リン酸エステル化合物(B)の含有量は、前記ラジカル重合性化合物(A)100質量部に対して、15~50質量部である。 In the resin composition according to any one of the first to ninth aspects, the content of the phosphoric acid ester compound (B) is 100% by mass of the radically polymerizable compound (A). 15 to 50 parts by mass.
 第11の形態における樹脂組成物は、第1から第10のいずれか1つの態様における樹脂組成物において、前記ラジカル重合性化合物(A)に相溶しない非相溶性リン化合物(D)をさらに含む。 The resin composition in the eleventh aspect further includes an incompatible phosphorus compound (D) that is not compatible with the radically polymerizable compound (A) in the resin composition in any one of the first to tenth aspects. .
 第12の形態における樹脂組成物は、第1から第11のいずれか1つの態様における樹脂組成物において、前記非相溶性リン化合物(D)が、ホスフィンオキサイド化合物、ホスフィン酸塩化合物、ポリリン酸塩化合物、及びホスホニウム塩化合物からなる群から選ばれる少なくとも1種を含む。 The resin composition according to the twelfth aspect is the resin composition according to any one of the first to eleventh aspects, wherein the incompatible phosphorus compound (D) is a phosphine oxide compound, a phosphinate compound, a polyphosphate compound, and at least one selected from the group consisting of phosphonium salt compounds.
 第13の形態における樹脂組成物は、第1から第12のいずれか1つの態様における樹脂組成物において、前記リン酸エステル化合物(B)の含有量は、前記リン酸エステル化合物(B)と前記非相溶性リン化合物(D)との合計100質量部に対して、25~100質量部である。 In the resin composition according to any one of the first to twelfth aspects, the content of the phosphoric ester compound (B) is such that the content of the phosphoric ester compound (B) and the content of the phosphoric ester compound (B) are as follows. The amount is 25 to 100 parts by mass based on 100 parts by mass in total with the incompatible phosphorus compound (D).
 第14の形態における樹脂組成物は、第1から第13のいずれか1つの態様における樹脂組成物において、前記ラジカル重合性化合物(A)が、炭素-炭素不飽和二重結合を分子内に有するポリフェニレンエーテル化合物、多官能芳香族ビニル化合物、アリル化合物、多官能メタクリレート化合物、多官能アクリレート化合物、ポリブタジエン化合物、アセナフチレン化合物、及びスチレン化合物からなる群から選ばれる少なくとも1種を含む。 The resin composition according to the fourteenth aspect is the resin composition according to any one of the first to thirteenth aspects, wherein the radically polymerizable compound (A) has a carbon-carbon unsaturated double bond in the molecule. Contains at least one selected from the group consisting of polyphenylene ether compounds, polyfunctional aromatic vinyl compounds, allyl compounds, polyfunctional methacrylate compounds, polyfunctional acrylate compounds, polybutadiene compounds, acenaphthylene compounds, and styrene compounds.
 第15の形態における樹脂組成物は、第14の態様における樹脂組成物において、前記ポリフェニレンエーテル化合物が、下記式(3)で表される基及び下記式(4)で表される基の少なくとも一方を分子中に有するポリフェニレンエーテル化合物を含む。 The resin composition according to the fifteenth aspect is the resin composition according to the fourteenth aspect, wherein the polyphenylene ether compound is at least one of a group represented by the following formula (3) and a group represented by the following formula (4). Contains polyphenylene ether compounds having in the molecule.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
[式(3)中、pは、0~10を示し、Arは、アリーレン基を示し、R11~R13は、それぞれ独立して、水素原子又はアルキル基を示す。] [In formula (3), p represents 0 to 10, Ar 3 represents an arylene group, and R 11 to R 13 each independently represent a hydrogen atom or an alkyl group. ]
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
[式(4)中、R14は、水素原子又はアルキル基を示す。] [In formula (4), R 14 represents a hydrogen atom or an alkyl group. ]
 第16の形態における樹脂組成物は、第1から第15のいずれか1つの態様における樹脂組成物において、前記樹脂組成物の硬化物の10GHzにおける比誘電率が、3.2~3.8である。 The resin composition according to a sixteenth aspect is the resin composition according to any one of the first to fifteenth aspects, wherein a cured product of the resin composition has a dielectric constant of 3.2 to 3.8 at 10 GHz. be.
 第17の形態におけるプリプレグは、第1から第16のいずれか1つの態様における樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備える。 The prepreg in the seventeenth embodiment includes the resin composition in any one of the first to sixteenth embodiments or a semi-cured product of the resin composition, and a fibrous base material.
 第18の形態における樹脂付きフィルムは、第1から第16のいずれか1つの態様における樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、支持フィルムとを備える。 The resin-coated film in the eighteenth embodiment includes a resin layer containing the resin composition in any one of the first to sixteenth embodiments or a semi-cured product of the resin composition, and a support film.
 第19の形態における樹脂付き金属箔は、第1から第16のいずれか1つの態様における樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、金属箔とを備える。 The resin-coated metal foil in the nineteenth embodiment includes a resin layer containing the resin composition in any one of the first to sixteenth embodiments or a semi-cured product of the resin composition, and a metal foil.
 第20の形態における金属張積層板は、第1から第16のいずれか1つの態様における樹脂組成物の硬化物または第17の態様におけるプリプレグの硬化物を含む絶縁層と、金属箔とを備える。 The metal-clad laminate in the 20th embodiment includes an insulating layer containing the cured product of the resin composition in any one of the 1st to 16th embodiments or the cured prepreg in the 17th embodiment, and a metal foil. .
 第21の形態における配線板は、第1から第16のいずれか1つの態様における樹脂組成物の硬化物または第17の態様におけるプリプレグの硬化物を含む絶縁層と、配線とを備える。 The wiring board in the 21st embodiment includes an insulating layer containing a cured product of the resin composition in any one of the 1st to 16th embodiments or a cured product of the prepreg in the 17th embodiment, and wiring.
 以下に、実施例により本発明をさらに具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 The present invention will be explained in more detail below with reference to Examples, but the scope of the present invention is not limited thereto.
 [実施例1~17、及び比較例1~5]
 本実施例において、樹脂組成物を調製する際に用いる各成分について説明する。
[Examples 1 to 17 and Comparative Examples 1 to 5]
In this example, each component used when preparing a resin composition will be explained.
 ((A)ラジカル重合性化合物)
・PPE-1:ポリフェニレンエーテルの末端水酸基をメタクリロイル基で変性した変性ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA9000、数平均分子量Mn2300、末端官能基数2個)
・PPE-2:末端にビニルベンジル基(エテニルベンジル基)を有するポリフェニレンエーテル化合物(ポリフェニレンエーテルとクロロメチルスチレンとを反応させて得られた変性ポリフェニレンエーテル化合物)である。具体的には、以下のように反応させて得られた変性ポリフェニレンエーテル化合物である。
((A) Radical polymerizable compound)
・PPE-1: Modified polyphenylene ether in which the terminal hydroxyl group of polyphenylene ether is modified with a methacryloyl group (SA9000 manufactured by SABIC Innovative Plastics, number average molecular weight Mn 2300, number of terminal functional groups: 2)
- PPE-2: A polyphenylene ether compound (modified polyphenylene ether compound obtained by reacting polyphenylene ether and chloromethylstyrene) having a vinylbenzyl group (ethenylbenzyl group) at the end. Specifically, it is a modified polyphenylene ether compound obtained by reacting as follows.
 まず、温度調節器、攪拌装置、冷却設備、及び滴下ロートを備えた1リットルの3つ口フラスコに、ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、末端水酸基数2個、重量平均分子量Mw1700)200g、p-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物(東京化成工業株式会社製のクロロメチルスチレン:CMS)30g、相間移動触媒として、テトラ-n-ブチルアンモニウムブロマイド1.227g、及びトルエン400gを仕込み、攪拌した。そして、ポリフェニレンエーテル、クロロメチルスチレン、及びテトラ-n-ブチルアンモニウムブロマイドが、トルエンに溶解するまで攪拌した。その際、徐々に加熱し、最終的に液温が75℃になるまで加熱した。そして、その溶液に、アルカリ金属水酸化物として、水酸化ナトリウム水溶液(水酸化ナトリウム20g/水20g)を20分間かけて、滴下した。その後、さらに、75℃で4時間攪拌した。次に、10質量%の塩酸でフラスコの内容物を中和した後、多量のメタノールを投入した。そうすることによって、フラスコ内の液体に沈殿物を生じさせた。すなわち、フラスコ内の反応液に含まれる生成物を再沈させた。そして、この沈殿物をろ過によって取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄した後、減圧下、80℃で3時間乾燥させた。 First, polyphenylene ether (SA90 manufactured by SABIC Innovative Plastics, number of terminal hydroxyl groups: 2, weight average molecular weight Mw 1700) was placed in a 1 liter three-necked flask equipped with a temperature controller, stirring device, cooling equipment, and dropping funnel. 200 g, 30 g of a mixture of p-chloromethylstyrene and m-chloromethylstyrene in a mass ratio of 50:50 (chloromethylstyrene: CMS manufactured by Tokyo Chemical Industry Co., Ltd.), and tetra-n-butylammonium as a phase transfer catalyst. 1.227 g of bromide and 400 g of toluene were charged and stirred. Then, the mixture was stirred until polyphenylene ether, chloromethylstyrene, and tetra-n-butylammonium bromide were dissolved in toluene. At that time, the mixture was gradually heated until the liquid temperature finally reached 75°C. Then, an aqueous sodium hydroxide solution (20 g of sodium hydroxide/20 g of water) was added dropwise to the solution as an alkali metal hydroxide over 20 minutes. Thereafter, the mixture was further stirred at 75°C for 4 hours. Next, after neutralizing the contents of the flask with 10% by mass hydrochloric acid, a large amount of methanol was added. By doing so, a precipitate formed in the liquid in the flask. That is, the product contained in the reaction solution in the flask was reprecipitated. Then, this precipitate was taken out by filtration, washed three times with a mixture of methanol and water in a mass ratio of 80:20, and then dried at 80° C. for 3 hours under reduced pressure.
 得られた固体を、H-NMR(400MHz、CDCl、TMS)で分析した。NMRを測定した結果、5~7ppmにビニルベンジル基(エテニルベンジル基)に由来するピークが確認された。これにより、得られた固体が、分子末端に、前記置換基としてビニルベンジル基(エテニルベンジル基)を分子中に有する変性ポリフェニレンエーテル化合物であることが確認できた。具体的には、エテニルベンジル化されたポリフェニレンエーテルであることが確認できた。この得られた変性ポリフェニレンエーテル化合物は、上記式(13)で表され、式(13)中のYがジメチルメチレン基(式(11)で表され、式(11)中のR43及びR44がメチル基である基)であり、Arがフェニレン基であり、R11~R13が水素原子であり、pが1である変性ポリフェニレンエーテル化合物であった。 The obtained solid was analyzed by 1 H-NMR (400 MHz, CDCl 3 , TMS). As a result of NMR measurement, a peak derived from vinylbenzyl group (ethenylbenzyl group) was confirmed at 5 to 7 ppm. This confirmed that the obtained solid was a modified polyphenylene ether compound having a vinylbenzyl group (ethenylbenzyl group) as the substituent in the molecule at the end of the molecule. Specifically, it was confirmed that it was ethenylbenzylated polyphenylene ether. The obtained modified polyphenylene ether compound is represented by the above formula (13), Y in formula (13) is a dimethylmethylene group (represented by formula (11), and R 43 and R 44 in formula (11) was a methyl group), Ar 3 was a phenylene group, R 11 to R 13 were hydrogen atoms, and p was 1.
 また、変性ポリフェニレンエーテルの末端官能基数を、以下のようにして測定した。 Additionally, the number of terminal functional groups of the modified polyphenylene ether was measured as follows.
 まず、変性ポリフェニレンエーテルを正確に秤量した。その際の重量を、X(mg)とする。そして、この秤量した変性ポリフェニレンエーテルを、25mLの塩化メチレンに溶解させ、その溶液に、10質量%のテトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液(TEAH:エタノール(体積比)=15:85)を100μL添加した後、UV分光光度計(株式会社島津製作所製のUV-1600)を用いて、318nmの吸光度(Abs)を測定した。そして、その測定結果から、下記式を用いて、変性ポリフェニレンエーテルの末端水酸基数を算出した。 First, the modified polyphenylene ether was accurately weighed. The weight at that time is assumed to be X (mg). Then, this weighed modified polyphenylene ether was dissolved in 25 mL of methylene chloride, and a 10% by mass ethanol solution of tetraethylammonium hydroxide (TEAH) (TEAH:ethanol (volume ratio) = 15:85) was added to the solution. After adding 100 μL, absorbance (Abs) at 318 nm was measured using a UV spectrophotometer (UV-1600, manufactured by Shimadzu Corporation). Then, from the measurement results, the number of terminal hydroxyl groups of the modified polyphenylene ether was calculated using the following formula.
 残存OH量(μmol/g)=[(25×Abs)/(ε×OPL×X)]×106
 ここで、εは吸光係数を示し、4700L/mol・cmである。また、OPLは、セル光路長であり、1cmである。
Residual OH amount (μmol/g) = [(25×Abs)/(ε×OPL×X)]×106
Here, ε indicates the extinction coefficient and is 4700 L/mol·cm. Further, OPL is the cell optical path length and is 1 cm.
 そして、その算出された変性ポリフェニレンエーテルの残存OH量(末端水酸基数)は、ほぼゼロであることから、変性前のポリフェニレンエーテルの水酸基が、ほぼ変性されていることがわかった。このことから、変性前のポリフェニレンエーテルの末端水酸基数からの減少分は、変性前のポリフェニレンエーテルの末端水酸基数であることがわかった。すなわち、変性前のポリフェニレンエーテルの末端水酸基数が、変性ポリフェニレンエーテルの末端官能基数であることがわかった。つまり、末端官能基数が、2個であった。 Since the calculated residual OH amount (number of terminal hydroxyl groups) of the modified polyphenylene ether was almost zero, it was found that the hydroxyl groups of the polyphenylene ether before modification were almost modified. From this, it was found that the decrease from the number of terminal hydroxyl groups of polyphenylene ether before modification was the number of terminal hydroxyl groups of polyphenylene ether before modification. That is, it was found that the number of terminal hydroxyl groups of polyphenylene ether before modification is the number of terminal functional groups of modified polyphenylene ether. In other words, the number of terminal functional groups was two.
 また、変性ポリフェニレンエーテルの、25℃の塩化メチレン中で固有粘度(IV)を測定した。具体的には、変性ポリフェニレンエーテルの固有粘度(IV)を、変性ポリフェニレンエーテルの、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計(Schott社製のAVS500 Visco System)で測定した。その結果、変性ポリフェニレンエーテルの固有粘度(IV)は、0.086dl/gであった。 Additionally, the intrinsic viscosity (IV) of the modified polyphenylene ether was measured in methylene chloride at 25°C. Specifically, the intrinsic viscosity (IV) of the modified polyphenylene ether was determined by measuring a 0.18 g/45 ml methylene chloride solution (liquid temperature 25°C) of the modified polyphenylene ether using a viscometer (AVS500 Visco System manufactured by Schott). It was measured. As a result, the intrinsic viscosity (IV) of the modified polyphenylene ether was 0.086 dl/g.
 また、変性ポリフェニレンエーテルの分子量分布を、GPCを用いて、測定した。そして、その得られた分子量分布から、重量平均分子量(Mw)を算出した。その結果、Mwは、1900であった。 Additionally, the molecular weight distribution of the modified polyphenylene ether was measured using GPC. Then, the weight average molecular weight (Mw) was calculated from the obtained molecular weight distribution. As a result, Mw was 1900.
・硬化剤-1:トリアリルイソシアヌレート(日本化成株式会社製、「TAIC」)
・硬化剤-2:ジビニルベンゼン(新日鐵住金株式会社製、「DVB810」)
・Curing agent-1: Triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd., "TAIC")
・Curing agent-2: Divinylbenzene (manufactured by Nippon Steel & Sumitomo Metal Corporation, "DVB810")
 ((B)リン酸エステル化合物)
・(B)リン酸エステル化合物-1:脂環式炭化水素構造を分子内に有するリン酸エステル化合物(3,3,5-トリメチル-1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンと2,6-キシレノールと塩化ホスホリルとを反応させて得られたリン酸エステル化合物)である。具体的には、以下のように反応させて得られたリン酸エステル化合物である。
((B) Phosphoric ester compound)
・(B) Phosphoric ester compound-1: Phosphoric ester compound having an alicyclic hydrocarbon structure in the molecule (3,3,5-trimethyl-1,1-bis(4-hydroxyphenyl)cyclohexane and 2, It is a phosphoric acid ester compound obtained by reacting 6-xylenol and phosphoryl chloride. Specifically, it is a phosphoric acid ester compound obtained by reacting as follows.
 <DXPCの合成法>
 まず、ジキシリルホスホロクロリデート(DXPC)を合成した。具体的には、以下のようにして合成した。
<DXPC synthesis method>
First, dixylyl phosphorochloridate (DXPC) was synthesized. Specifically, it was synthesized as follows.
 撹拌機、温度計、及び塩酸回収装置(水スクラバーを連結したコンデンサ)を備えた容量2リットルの4つ口フラスコに、塩化ホスホリル(オキシ塩化リン)(東京化成工業株式会社製)767g、2,6-キシレノール(東京化成工業株式会社製)1200g、溶剤としてのキシレン140g、及び触媒としての塩化マグネシウム6.2gを充填した。 Into a 2-liter four-necked flask equipped with a stirrer, a thermometer, and a hydrochloric acid recovery device (condenser connected to a water scrubber), 767 g of phosphoryl chloride (phosphorus oxychloride) (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2, It was filled with 1200 g of 6-xylenol (manufactured by Tokyo Chemical Industry Co., Ltd.), 140 g of xylene as a solvent, and 6.2 g of magnesium chloride as a catalyst.
 前記4つ口フラスコ中の液体を攪拌しながら加熱して、約3時間かけて液温を160℃まで徐々に昇温させた。これにより、2,6-キシレノールと塩化ホスホリルとの反応が進行し、前記反応により発生する塩化水素(塩酸ガス)を水スクラバーで回収した。その後、同温度(160℃)でフラスコ内の圧力を徐々に20kPaまで減圧し、キシレン、未反応の塩化ホスホリル、及び未反応の2,6-キシレノール、及び副生する塩化水素を除去した。そうすることによって、下記式(27)で表されるジキシリルホスホロクロリデート(DXPC)1700gが得られた。 The liquid in the four-necked flask was heated while stirring, and the temperature of the liquid was gradually raised to 160° C. over about 3 hours. As a result, the reaction between 2,6-xylenol and phosphoryl chloride proceeded, and hydrogen chloride (hydrochloric acid gas) generated by the reaction was recovered with a water scrubber. Thereafter, the pressure inside the flask was gradually reduced to 20 kPa at the same temperature (160° C.) to remove xylene, unreacted phosphoryl chloride, unreacted 2,6-xylenol, and by-produced hydrogen chloride. By doing so, 1700 g of dixylyl phosphorochloridate (DXPC) represented by the following formula (27) was obtained.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 <リン酸エステル化合物の合成法>
 次に、前記DXPCの合成法で得られたジキシリルホスホロクロリデート(DXPC)を用いて、脂環式炭化水素構造を分子内に有するリン酸エステル化合物(前記式(22)で表されるリン酸エステル化合物)を合成した。具体的には、以下のようにして合成した。
<Synthesis method of phosphate ester compound>
Next, using dixylyl phosphorochloridate (DXPC) obtained by the above-mentioned DXPC synthesis method, a phosphoric acid ester compound having an alicyclic hydrocarbon structure in the molecule (represented by the above formula (22) A phosphoric acid ester compound) was synthesized. Specifically, it was synthesized as follows.
 撹拌機、温度計、滴下ロート、及びコンデンサを備えた容量2リットルの4つ口フラスコに、前記DXPCの合成法で得られたジキシリルホスホロクロリデート(DXPC)460g、3,3,5-トリメチル-1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(本州化学工業株式会社製のBisP-TMC)196g、溶剤としてトルエン540g及びテトラヒドロフラン140gを充填した。また、前記滴下ロートにハロゲン化水素捕捉剤としてトリエチルアミン151gを充填した。 In a 2-liter four-necked flask equipped with a stirrer, thermometer, dropping funnel, and condenser, 460 g of dixylylphosphorochloridate (DXPC) obtained by the DXPC synthesis method, 3,3,5- 196 g of trimethyl-1,1-bis(4-hydroxyphenyl)cyclohexane (BisP-TMC manufactured by Honshu Kagaku Kogyo Co., Ltd.), 540 g of toluene as a solvent, and 140 g of tetrahydrofuran were charged. Additionally, 151 g of triethylamine was charged into the dropping funnel as a hydrogen halide scavenger.
 前記4つ口フラスコ中の液体を攪拌しながら、液温が65℃になるまで加熱した。その後、同温度(65℃)を維持しながら、前記滴下ロート中のトリエチルアミンを1時間30分かけて滴下した。滴下終了後、同温度(65℃)で2時間攪拌した。このようにして得られた反応生成物を、希塩酸及び水で洗浄後、水酸化ナトリウム水溶液で中和洗浄し、再び水で洗浄した。その後、液温が110℃になるまで加熱し、1kPaまで減圧して、水、トルエン、及びテトラヒドロフランを回収した。さらに、1kPaの減圧下、110℃で水蒸気蒸留を行って、低沸分を留去し、その後、常温まで冷却させた。そうすることによって、淡黄色透明のガラス状固体553gが得られた。この得られた生成物が、前記式(22)で表されるリン酸エステル化合物であることをH-NMRで確認した。 The liquid in the four-necked flask was heated while stirring until the liquid temperature reached 65°C. Thereafter, while maintaining the same temperature (65° C.), triethylamine in the dropping funnel was added dropwise over 1 hour and 30 minutes. After the dropwise addition was completed, the mixture was stirred at the same temperature (65°C) for 2 hours. The reaction product thus obtained was washed with dilute hydrochloric acid and water, neutralized and washed with an aqueous sodium hydroxide solution, and washed again with water. Thereafter, the solution was heated until the temperature reached 110° C., the pressure was reduced to 1 kPa, and water, toluene, and tetrahydrofuran were recovered. Furthermore, steam distillation was performed at 110° C. under a reduced pressure of 1 kPa to distill off low-boiling components, and then the mixture was cooled to room temperature. By doing so, 553 g of a pale yellow transparent glassy solid was obtained. It was confirmed by 1 H-NMR that the obtained product was a phosphoric acid ester compound represented by the above formula (22).
 (その他のリン酸エステル化合物)
・その他のリン酸エステル化合物-1:脂環式炭化水素構造を分子内に有さないリン酸エステル化合物(大八化学工業株式会社製、「PX-200」、下記式(28)で表されるリン酸エステル化合物)
(Other phosphate ester compounds)
・Other phosphate ester compounds-1: Phosphate ester compounds that do not have an alicyclic hydrocarbon structure in the molecule (manufactured by Daihachi Chemical Co., Ltd., "PX-200", represented by the following formula (28) phosphoric acid ester compound)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 ((D)非相溶性リン化合物)
・(D)非相溶性リン化合物-1:ジフェニルホスフィンオキサイド化合物(晋一化工有限公司製、「PQ60」)
・(D)非相溶性リン化合物-2:ホスフィン酸塩化合物(クラリアントジャパン株式会社製、「OP-935」)
((D) Incompatible phosphorus compound)
・(D) Incompatible phosphorus compound-1: diphenylphosphine oxide compound (manufactured by Shinichi Kako Co., Ltd., "PQ60")
・(D) Incompatible phosphorus compound-2: phosphinate compound (manufactured by Clariant Japan Co., Ltd., "OP-935")
 ((C)無機充填剤)
・(C-1)無機充填剤-1:窒化ホウ素フィラー(デンカ株式会社製、「SGP」、熱伝導率40~80W/m・K、体積平均粒子径18μm)
・(C-1)無機充填剤-2:窒化ホウ素フィラー(株式会社MARUKA製、「AP-20S」、熱伝導率60W/m・K、体積平均粒子径0.7μm)
・(C-1)無機充填剤-3:酸化アルミニウムフィラー(デンカ株式会社製、「DAW-03DC」、熱伝導率20~40W/m・K、体積平均粒子径4.9μm)
・(C-1)無機充填剤-4:炭酸マグネシウムフィラー(神島化学工業株式会社製、「マグサーモ MS-L」、熱伝導率15W/m・K、体積平均粒子径8.0μm)
・(C-1)無機充填剤-5:酸化マグネシウムフィラー(宇部マテリアルズ株式会社製、「RF-10CS」、熱伝導率60W/m・K、体積平均粒子径6.0μm)
・(C-2)無機充填剤-1:シリカフィラー(デンカ株式会社製、「FB-7SDC」、熱伝導率1W/m・K、体積平均粒子径5μm)
((C) Inorganic filler)
・(C-1) Inorganic filler-1: Boron nitride filler (manufactured by Denka Co., Ltd., "SGP", thermal conductivity 40 to 80 W/m K, volume average particle diameter 18 μm)
・(C-1) Inorganic filler-2: Boron nitride filler (manufactured by MARUKA Co., Ltd., "AP-20S", thermal conductivity 60 W/m K, volume average particle diameter 0.7 μm)
・(C-1) Inorganic filler-3: Aluminum oxide filler (manufactured by Denka Co., Ltd., "DAW-03DC", thermal conductivity 20 to 40 W/m K, volume average particle diameter 4.9 μm)
・(C-1) Inorganic filler-4: Magnesium carbonate filler (manufactured by Kamishima Chemical Co., Ltd., "Magthermo MS-L", thermal conductivity 15 W/m K, volume average particle diameter 8.0 μm)
・(C-1) Inorganic filler-5: Magnesium oxide filler (manufactured by Ube Materials Co., Ltd., "RF-10CS", thermal conductivity 60 W/m K, volume average particle diameter 6.0 μm)
・(C-2) Inorganic filler-1: Silica filler (manufactured by Denka Co., Ltd., "FB-7SDC", thermal conductivity 1 W/m K, volume average particle diameter 5 μm)
 (反応開始剤)
・反応開始剤-1:過酸化物(1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン、日油株式会社製、「パーブチルP」)
(Reaction initiator)
・Reaction initiator-1: peroxide (1,3-bis(butylperoxyisopropyl)benzene, manufactured by NOF Corporation, "Perbutyl P")
 (カップリング剤)
・カップリング剤-1:シランカップリング剤(信越化学工業株式会社製、「KBM-503」)
(coupling agent)
・Coupling agent-1: Silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., "KBM-503")
 (フリーラジカル化合物)
・フリーラジカル化合物-1:4-ベンゾイルオキシTEMPOであり、下記式で示されるフリーラジカル化合物(東京化成工業株式会社製、「H0878」)
(free radical compound)
・Free radical compound-1: 4-benzoyloxy TEMPO, a free radical compound represented by the following formula (manufactured by Tokyo Chemical Industry Co., Ltd., "H0878")
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 [調製方法]
 まず、無機充填剤以外の各有機樹脂成分を表1及び表2に記載の組成(質量部)で、固形分濃度が60~70質量%となるように、溶媒としてトルエンに添加し、混合させた。その混合物を60分間攪拌した。その後、得られた液体に表1及び表2に記載の配合(質量部)で各成分を添加し、ビーズミルで無機充填剤を分散させた。そうすることによって、ワニス状の樹脂組成物(ワニス)が得られた。
[Preparation method]
First, each organic resin component other than the inorganic filler is added to toluene as a solvent and mixed in the composition (parts by mass) shown in Tables 1 and 2 so that the solid content concentration is 60 to 70% by mass. Ta. The mixture was stirred for 60 minutes. Thereafter, each component was added to the resulting liquid in the proportions (parts by mass) listed in Tables 1 and 2, and the inorganic filler was dispersed using a bead mill. By doing so, a varnish-like resin composition (varnish) was obtained.
 次に、以下のようにして、評価基板(プリプレグの硬化物)を得た。 Next, an evaluation board (cured prepreg) was obtained as follows.
 得られたワニスを繊維質基材(ガラスクロス:旭化成株式会社製の#1078タイプ、Lガラス)に含浸させた後、120℃で2分間加熱乾燥することによりプリプレグを作製した。そして、得られた各プリプレグを1、2、4、6枚重ねたものの、それぞれ両面に銅箔(福田金属箔粉工業株式会社「CF-T4X-SV」銅箔厚み:35μm)と張り合わせ昇温速度4℃/分で温度200℃まで加熱し、200℃、120分間、圧力3MPaの条件で加熱加圧することにより、4種類の板厚の銅張積層板を作成した。 A prepreg was produced by impregnating a fibrous base material (glass cloth: #1078 type, L glass manufactured by Asahi Kasei Corporation) with the obtained varnish, and then heating and drying it at 120° C. for 2 minutes. Then, 1, 2, 4, and 6 sheets of each of the obtained prepregs were stacked, and each side was laminated with copper foil (Fukuda Metal Foil & Powder Industries Co., Ltd. "CF-T4X-SV" copper foil thickness: 35 μm) and heated. Copper-clad laminates of four different thicknesses were prepared by heating to a temperature of 200°C at a rate of 4°C/min and heating and pressing at 200°C for 120 minutes at a pressure of 3 MPa.
 上記のように調製された、銅張積層板を、評価基板とし、以下に示す方法により評価を行った。なお、後述の誘電特性(比誘電率)の評価試験においては、プリプレグ4枚重ねの銅張積層板から銅箔を除去したもの(プリプレグの硬化物)を使用した。後述の銅箔ピール強度の評価試験においては、プリプレグ4枚重ねの銅張積層板を使用した。後述の熱伝導率の測定においては、プリプレグ1枚の硬化物及びプリプレグ2枚重ねの銅張積層板から銅箔を除去したもの(プリプレグの硬化物)を使用した。後述の難燃性の評価試験においては、プリプレグ6枚重ねの銅張積層板から銅箔を除去したもの(プリプレグの硬化物)を使用した。 The copper-clad laminate prepared as described above was used as an evaluation board and evaluated by the method shown below. In addition, in the evaluation test of dielectric properties (relative permittivity) described later, a copper-clad laminate made of four prepregs from which the copper foil was removed (cured prepreg) was used. In the copper foil peel strength evaluation test described below, a copper-clad laminate made of four prepreg layers was used. In the measurement of thermal conductivity described below, a cured product of one prepreg and a copper-clad laminate made of two prepregs from which the copper foil was removed (cured prepreg) were used. In the flame retardancy evaluation test described below, a copper-clad laminate made of six prepregs from which the copper foil was removed (cured prepreg) was used.
 また、後述の熱処理及び吸湿処理後の耐電圧の評価試験においては、以下のようにして、評価基板(プリプレグの硬化物)を得た。得られたワニスを繊維質基材(ガラスクロス:日東紡績株式会社製の#3313タイプ、Eガラス)に含浸させた後、110℃で2分間加熱乾燥することによりプリプレグを作製した。そして、得られた各プリプレグを4枚重ねたものの、両面に銅箔(福田金属箔粉工業株式会社「CF-T4X-SV」銅箔厚み:35μm)と張り合わせ昇温速度4℃/分で温度200℃まで加熱し、200℃、120分間、圧力3MPaの条件で加熱加圧することにより、3種類の板厚の銅張積層板を作成した。得られた銅張積層板から銅箔を除去したもの(プリプレグの硬化物)を使用した。 In addition, in the evaluation test of withstand voltage after heat treatment and moisture absorption treatment, which will be described later, an evaluation substrate (cured prepreg) was obtained as follows. A prepreg was produced by impregnating a fibrous base material (glass cloth: #3313 type, E glass, manufactured by Nitto Boseki Co., Ltd.) with the obtained varnish, and then heating and drying it at 110° C. for 2 minutes. Four sheets of each of the obtained prepregs were stacked, and copper foil (Fukuda Metal Foil & Powder Industries Co., Ltd. "CF-T4X-SV" copper foil thickness: 35 μm) was laminated on both sides, and the temperature was increased at a heating rate of 4°C/min. Copper-clad laminates of three different thicknesses were produced by heating to 200° C. and heating and pressing at 200° C. for 120 minutes at a pressure of 3 MPa. The obtained copper-clad laminate from which the copper foil was removed (cured prepreg) was used.
 [誘電特性(比誘電率)]
 周波数10GHzにおける評価基板(プリプレグの硬化物)の比誘電率(Dk)を、空洞共振器摂動法で測定した。具体的には、ネットワークアナライザ(キーサイト・テクノロジー株式会社製のN5230A)を用い、10GHzにおける評価基板の比誘電率を測定した。なお、比誘電率が3.2~3.8であると良好である。
[Dielectric properties (relative permittivity)]
The relative dielectric constant (Dk) of the evaluation substrate (cured prepreg) at a frequency of 10 GHz was measured using the cavity resonator perturbation method. Specifically, the dielectric constant of the evaluation board at 10 GHz was measured using a network analyzer (N5230A manufactured by Keysight Technologies, Inc.). Note that a dielectric constant of 3.2 to 3.8 is favorable.
 [銅箔ピール強度]
 上述した評価基板を用いて、絶縁層からの銅箔の引き剥がし強さをJIS C 6481に準拠して測定した。幅10mm、長さ100mmのパターンを形成し、引っ張り試験機により50mm/分の速度で引き剥がし、その時の引き剥がし強さ(ピール強度)を測定した。測定単位はN/mmである。本実施例における合格基準は0.50N/mm以上とした。
[Copper foil peel strength]
Using the evaluation board described above, the peel strength of the copper foil from the insulating layer was measured in accordance with JIS C 6481. A pattern with a width of 10 mm and a length of 100 mm was formed and peeled off at a speed of 50 mm/min using a tensile tester, and the peel strength at that time was measured. The unit of measurement is N/mm. The acceptance criterion in this example was 0.50 N/mm or more.
 [熱伝導率]
 得られた評価基板(プリプレグの硬化物)の熱伝導率を、ASTM D5470に準拠した方法により測定した。具体的には、熱特性評価装置(メンター・グラフィックス社製のT3Ster DynTIM Tester)を用いて、得られた評価基板(プリプレグ1枚の硬化物、プリプレグ2枚重ねの硬化物)の熱抵抗と厚みを測定し、その測定値をグラフにプロット、直線で近似し、熱抵抗と厚みの増加分から熱伝導率を算出した。本実施例における熱伝導率の合格基準は、1.0W/m・K以上とした。
[Thermal conductivity]
The thermal conductivity of the obtained evaluation board (cured prepreg) was measured by a method based on ASTM D5470. Specifically, using a thermal property evaluation device (T3Ster DynTIM Tester manufactured by Mentor Graphics), the thermal resistance and The thickness was measured, the measured values were plotted on a graph, approximated by a straight line, and the thermal conductivity was calculated from the increase in thermal resistance and thickness. The acceptance criterion for thermal conductivity in this example was 1.0 W/m·K or more.
 [難燃性]
 評価基板から、長さ125mm、幅12.5mmの試験片を切り出した。そして、この試験片について、Underwriters Laboratoriesの“Test for Flammability of Plastic Materials-UL 94”に準じて、燃焼試験を行った。その結果、燃焼性を、「V-0」レベルであれば、「V-0」と評価し、「HB」レベルであれば、「HB」と評価した。
[Flame retardance]
A test piece with a length of 125 mm and a width of 12.5 mm was cut out from the evaluation board. Then, a combustion test was conducted on this test piece according to "Test for Flammability of Plastic Materials-UL 94" by Underwriters Laboratories. As a result, if the flammability was at the "V-0" level, it was evaluated as "V-0", and if it was at the "HB" level, it was evaluated as "HB".
 [熱処理及び吸湿処理後の耐電圧]
 評価基板から、100±5mmφ、厚さ0.5mmの試験片を切り出した。そして、この試験片について、耐電圧(交流)試験装置(有限会社恩田製 YOU-DAA-100R)を用いてASTM-D-149規格試験法に準じて、熱処理及び吸湿処理後の耐電圧を測定した。具体的な測定条件は以下の通りである。
[Withstand voltage after heat treatment and moisture absorption treatment]
A test piece with a diameter of 100±5 mm and a thickness of 0.5 mm was cut from the evaluation board. Then, with respect to this test piece, the withstand voltage after heat treatment and moisture absorption treatment was measured using a withstand voltage (AC) testing device (YOU-DAA-100R manufactured by Onda Co., Ltd.) according to the ASTM-D-149 standard test method. did. The specific measurement conditions are as follows.
 (昇圧速度の選定)
 評価基板から、100±5mmφ、厚さ0.5mmの試験片を切り出した。この試験片を、25mmφ×25mm、エッジ3.2mmRの上下電極(形状:円柱形、材質:ステンレススチール)で挟み、10~20秒で0Vから絶縁破壊が起こる昇圧速度を選定した。
(Selection of boost speed)
A test piece with a diameter of 100±5 mm and a thickness of 0.5 mm was cut from the evaluation board. This test piece was sandwiched between upper and lower electrodes (shape: cylindrical, material: stainless steel) with a diameter of 25 mm x 25 mm and an edge of 3.2 mm R, and a voltage increase rate at which dielectric breakdown occurred from 0 V in 10 to 20 seconds was selected.
 (エージング処理)
 評価基板から、100±5mmφ、厚さ0.5mmの試験片をさらに3つ切り出した。切り出した試験片に対して、処理温度150℃で、処理時間をそれぞれ500時間、750時間、1000時間としてエージング処理を行った。そして、各エージング処理を行った試験片に対して35℃90%96時間の吸湿処理を行った。
(Aging treatment)
Three test pieces each having a diameter of 100±5 mm and a thickness of 0.5 mm were further cut out from the evaluation board. The cut test pieces were subjected to aging treatment at a treatment temperature of 150° C. and treatment times of 500 hours, 750 hours, and 1000 hours, respectively. Then, the test pieces subjected to each aging treatment were subjected to a moisture absorption treatment at 35° C. and 90% for 96 hours.
 (耐電圧の測定)
 エージング及び吸湿処理を行った試験片において、上記で選定した昇圧速度で電圧を上昇させ、絶縁破壊電圧を測定した。エージング処理を行っていない試験片の耐電圧を100%とした際に、エージング処理後の試験片の耐電圧が50%未満となるエージング処理時間(半減時間)で有意差を判定した。評価基準は以下の通りである。
◎:エージング処理時間1000時間で耐電圧50%以上
〇:エージング処理時間750時間で耐電圧50%以上、エージング処理時間1000時間で耐電圧50%未満
△:エージング処理時間500時間で耐電圧50%以上、エージング処理時間750時間で耐電圧50%未満
×:エージング処理時間500時間で耐電圧50%未満
(Measurement of withstand voltage)
In the test piece subjected to aging and moisture absorption treatment, the voltage was increased at the voltage increase rate selected above, and the dielectric breakdown voltage was measured. A significant difference was determined by the aging treatment time (half-life time) at which the withstand voltage of the test piece after the aging treatment was less than 50% when the withstand voltage of the test piece that had not been subjected to the aging treatment was 100%. The evaluation criteria are as follows.
◎: Withstand voltage 50% or more after aging treatment time of 1000 hours 〇: Withstand voltage 50% or more after aging treatment time 750 hours, withstand voltage less than 50% after aging treatment time 1000 hours △: Withstand voltage 50% after aging treatment time 500 hours Above, withstand voltage is less than 50% after aging treatment time of 750 hours ×: Withstand voltage is less than 50% after aging treatment time of 500 hours
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 [考察]
 表1からわかるように、本発明の樹脂組成物を使用した実施例では、いずれも、誘電特性(比誘電率)が低く、金属箔との密着性及び難燃性に優れ、熱伝導率が高く、熱処理及び吸湿処理後の耐電圧の劣化が抑制された硬化物が得られることが確認された。
[Consideration]
As can be seen from Table 1, all examples using the resin composition of the present invention had low dielectric properties (relative permittivity), excellent adhesion to metal foil and flame retardancy, and high thermal conductivity. It was confirmed that a cured product was obtained in which the voltage resistance was high and the deterioration of withstand voltage after heat treatment and moisture absorption treatment was suppressed.
 一方、表2に示されるように、脂環式炭化水素構造を分子内に有するリン酸エステル化合物(B)を含んでいない比較例1~3、5のサンプルは、ピール強度、難燃性、または熱処理及び吸湿処理後の耐電圧の劣化の抑制のいずれかが十分ではなかった。具体的には、非相溶性リン化合物のみを使用した比較例1のサンプルは、十分なピール強度を得ることができなかった。また、脂環式炭化水素構造を分子内に有していないリン酸エステル化合物のみを使用した比較例2のサンプル、及び、脂環式炭化水素構造を分子内に有していないリン酸エステル化合物と非相溶性リン化合物を使用した比較例3のサンプルは、熱処理及び吸湿処理後の耐電圧の劣化がみられた。難燃剤を使用していない比較例5のサンプルは、難燃性が十分ではなかった。また、比較例4のサンプルは、樹脂組成物の硬化物の熱伝導率が1.0W/m・K未満であり、熱伝導率が十分ではなかった。 On the other hand, as shown in Table 2, the samples of Comparative Examples 1 to 3 and 5, which did not contain the phosphoric acid ester compound (B) having an alicyclic hydrocarbon structure in the molecule, had good peel strength, flame retardancy, Or, the suppression of deterioration of withstand voltage after heat treatment and moisture absorption treatment was insufficient. Specifically, the sample of Comparative Example 1 using only an incompatible phosphorus compound was unable to obtain sufficient peel strength. In addition, a sample of Comparative Example 2 using only a phosphoric acid ester compound that does not have an alicyclic hydrocarbon structure in its molecule, and a phosphoric ester compound that does not have an alicyclic hydrocarbon structure in its molecule In the sample of Comparative Example 3 using a phosphorus compound incompatible with the above, deterioration in withstand voltage was observed after heat treatment and moisture absorption treatment. The sample of Comparative Example 5 in which no flame retardant was used did not have sufficient flame retardancy. Further, the sample of Comparative Example 4 had a thermal conductivity of a cured product of the resin composition of less than 1.0 W/m·K, and thus did not have sufficient thermal conductivity.
 また、実施例1と実施例2とを比較すると、硬化剤としてジビニルベンゼンを用いた実施例2のサンプルは、硬化剤としてトリアリルイソシアヌレートを用いた実施例1のサンプルよりも熱処理及び吸湿処理後の耐電圧の劣化が抑制されていることが確認された。 Furthermore, when comparing Example 1 and Example 2, the sample of Example 2 using divinylbenzene as a curing agent was more heat-treated and moisture-absorbing than the sample of Example 1 using triallylisocyanurate as a curing agent. It was confirmed that the subsequent deterioration of withstand voltage was suppressed.
 また、実施例1と実施例3とを比較すると、末端にビニルベンジル基を有する変性ポリフェニレンエーテル化合物を用いた実施例3のサンプルは、ポリフェニレンエーテルの末端水酸基をメタクロイル基で変性したポリフェニレンエーテル化合物を用いた実施例1のサンプルよりも優れた低誘電特性を有することが確認された。 Moreover, when comparing Example 1 and Example 3, the sample of Example 3 using a modified polyphenylene ether compound having a vinylbenzyl group at the end is different from the sample using a polyphenylene ether compound in which the terminal hydroxyl group of polyphenylene ether is modified with a methacroyl group. It was confirmed that the sample had a lower dielectric property superior to that of the sample of Example 1 used.
 また、実施例7、16、17のサンプルは、実施例1よりも無機充填剤(C-2)の含有量が少なく、無機充填剤(C-1)として窒化ホウ素フィラーとともに、酸化アルミニウムフィラー、炭酸マグネシウムフィラー、酸化マグネシウムフィラーがそれぞれ用いられている。このような実施例7、16、17のサンプルは実施例1のサンプルよりも、熱伝導率が良好であることが確認された。これは、無機充填剤(C-2)よりも無機充填剤(C-1)の方が無機充填剤そのものの熱伝導率が高くなるため、硬化物の熱伝導率も高くなる傾向にあったためだと考えられる。 In addition, the samples of Examples 7, 16, and 17 had a lower content of inorganic filler (C-2) than Example 1, and together with boron nitride filler as inorganic filler (C-1), aluminum oxide filler, Magnesium carbonate filler and magnesium oxide filler are used respectively. It was confirmed that the samples of Examples 7, 16, and 17 had better thermal conductivity than the sample of Example 1. This is because the thermal conductivity of the inorganic filler itself is higher for the inorganic filler (C-1) than for the inorganic filler (C-2), so the thermal conductivity of the cured product also tends to be higher. It is thought that.
 この出願は、2022年9月16日に出願された日本国特許出願特願2022-148396号を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2022-148396 filed on September 16, 2022, and its contents are included in the present application.
 本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been appropriately and fully explained through the embodiments above with reference to specific examples, drawings, etc., but those skilled in the art will be able to modify and/or improve the above-described embodiments. It should be recognized that this can be done easily. Therefore, unless the modification or improvement carried out by a person skilled in the art does not leave the scope of the claims stated in the claims, such modifications or improvements do not fall outside the scope of the claims. It is interpreted as encompassing.
 本発明は、電子材料やそれを用いた各種デバイスに関する技術分野において、広範な産業上の利用可能性を有する。 The present invention has wide industrial applicability in technical fields related to electronic materials and various devices using the same.

Claims (23)

  1.  炭素-炭素不飽和二重結合を分子内に有するラジカル重合性化合物(A)と、
     脂環式炭化水素構造を分子内に有するリン酸エステル化合物(B)と、
     無機充填剤(C)とを含み、
     その硬化物の熱伝導率が1.0W/m・K以上である、樹脂組成物。
    A radically polymerizable compound (A) having a carbon-carbon unsaturated double bond in the molecule,
    A phosphoric acid ester compound (B) having an alicyclic hydrocarbon structure in the molecule;
    Including an inorganic filler (C),
    A resin composition whose cured product has a thermal conductivity of 1.0 W/m·K or more.
  2.  前記リン酸エステル化合物(B)が、下記式(1)で表される構造を分子内に少なくとも1つ有する請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R~R10は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。]
    The resin composition according to claim 1, wherein the phosphoric acid ester compound (B) has at least one structure represented by the following formula (1) in the molecule.
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R 1 to R 10 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. ]
  3.  前記脂環式炭化水素構造が、3~12員環の飽和脂環式炭化水素構造を含む請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the alicyclic hydrocarbon structure includes a 3- to 12-membered saturated alicyclic hydrocarbon structure.
  4.  前記リン酸エステル化合物(B)が、下記式(2)で表される構造を分子内に少なくとも1つ有するリン酸エステル化合物を含む請求項1に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Ar及びArは、それぞれ独立して、アリーレン基を示し、Tは、3~12員環の飽和脂環式炭化水素の二価基を示す。]
    The resin composition according to claim 1, wherein the phosphoric ester compound (B) contains a phosphoric ester compound having at least one structure represented by the following formula (2) in the molecule.
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), Ar 1 and Ar 2 each independently represent an arylene group, and T represents a divalent group of a 3- to 12-membered saturated alicyclic hydrocarbon. ]
  5.  前記無機充填剤(C)の含有量は、前記ラジカル重合性化合物(A)100質量部に対して、100~380質量部である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the inorganic filler (C) is 100 to 380 parts by mass based on 100 parts by mass of the radically polymerizable compound (A).
  6.  前記無機充填剤(C)が、熱伝導率が10W/m・K以上の無機充填剤(C-1)と、熱伝導率が10W/m・K未満の無機充填剤(C-2)とを含む請求項1に記載の樹脂組成物。 The inorganic filler (C) is an inorganic filler (C-1) with a thermal conductivity of 10 W/m・K or more, and an inorganic filler (C-2) with a thermal conductivity of less than 10 W/m・K. The resin composition according to claim 1, comprising:
  7.  前記無機充填剤(C-1)が、窒化ホウ素フィラー、酸化アルミニウムフィラー、酸化マグネシウムフィラー、炭酸マグネシウムフィラー、窒化ケイ素フィラー、窒化アルミニウムフィラーからなる群より選択される少なくとも1種を含む請求項6に記載の樹脂組成物。 7. The inorganic filler (C-1) includes at least one selected from the group consisting of boron nitride filler, aluminum oxide filler, magnesium oxide filler, magnesium carbonate filler, silicon nitride filler, and aluminum nitride filler. The resin composition described.
  8.  前記無機充填剤(C-2)が、溶融シリカフィラー、水酸化マグネシウムフィラー、マイカフィラーからなる群より選択される少なくとも1種を含む請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the inorganic filler (C-2) contains at least one selected from the group consisting of fused silica filler, magnesium hydroxide filler, and mica filler.
  9.  前記無機充填剤(C-1)の含有量は、無機充填剤(C-1)と無機充填剤(C-2)との合計100質量部に対して、25~70質量部である請求項6に記載の樹脂組成物。 A content of the inorganic filler (C-1) is 25 to 70 parts by mass based on a total of 100 parts by mass of the inorganic filler (C-1) and the inorganic filler (C-2). 6. The resin composition according to 6.
  10.  前記リン酸エステル化合物(B)の含有量は、前記ラジカル重合性化合物(A)100質量部に対して、15~50質量部である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the content of the phosphoric acid ester compound (B) is 15 to 50 parts by mass based on 100 parts by mass of the radically polymerizable compound (A).
  11.  前記ラジカル重合性化合物(A)に相溶しない非相溶性リン化合物(D)をさらに含む請求項1に記載の樹脂組成物。 The resin composition according to claim 1, further comprising an incompatible phosphorus compound (D) that is incompatible with the radically polymerizable compound (A).
  12.  前記非相溶性リン化合物(D)が、ホスフィンオキサイド化合物、ホスフィン酸塩化合物、ポリリン酸塩化合物、及びホスホニウム塩化合物からなる群から選ばれる少なくとも1種を含む請求項11に記載の樹脂組成物。 The resin composition according to claim 11, wherein the incompatible phosphorus compound (D) contains at least one selected from the group consisting of a phosphine oxide compound, a phosphinate compound, a polyphosphate compound, and a phosphonium salt compound.
  13.  前記リン酸エステル化合物(B)の含有量は、前記リン酸エステル化合物(B)と前記非相溶性リン化合物(D)との合計100質量部に対して、25~100質量部である請求項11に記載の樹脂組成物。 A content of the phosphoric acid ester compound (B) is 25 to 100 parts by mass based on a total of 100 parts by mass of the phosphoric acid ester compound (B) and the incompatible phosphorus compound (D). 12. The resin composition according to 11.
  14.  前記ラジカル重合性化合物(A)が、炭素-炭素不飽和二重結合を分子内に有するポリフェニレンエーテル化合物、多官能芳香族ビニル化合物、アリル化合物、多官能メタクリレート化合物、多官能アクリレート化合物、ポリブタジエン化合物、アセナフチレン化合物、及びスチレン化合物からなる群から選ばれる少なくとも1種を含む請求項1に記載の樹脂組成物。 The radically polymerizable compound (A) is a polyphenylene ether compound having a carbon-carbon unsaturated double bond in the molecule, a polyfunctional aromatic vinyl compound, an allyl compound, a polyfunctional methacrylate compound, a polyfunctional acrylate compound, a polybutadiene compound, The resin composition according to claim 1, containing at least one selected from the group consisting of an acenaphthylene compound and a styrene compound.
  15.  前記ポリフェニレンエーテル化合物が、下記式(3)で表される基及び下記式(4)で表される基の少なくとも一方を分子中に有するポリフェニレンエーテル化合物を含む請求項14に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、pは、0~10を示し、Arは、アリーレン基を示し、R11~R13は、それぞれ独立して、水素原子又はアルキル基を示す。]
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、R14は、水素原子又はアルキル基を示す。]
    The resin composition according to claim 14, wherein the polyphenylene ether compound contains a polyphenylene ether compound having at least one of a group represented by the following formula (3) and a group represented by the following formula (4) in the molecule.
    Figure JPOXMLDOC01-appb-C000003
    [In formula (3), p represents 0 to 10, Ar 3 represents an arylene group, and R 11 to R 13 each independently represent a hydrogen atom or an alkyl group. ]
    Figure JPOXMLDOC01-appb-C000004
    [In formula (4), R 14 represents a hydrogen atom or an alkyl group. ]
  16.  前記樹脂組成物の硬化物の10GHzにおける比誘電率が、3.2~3.8である請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the cured product of the resin composition has a dielectric constant of 3.2 to 3.8 at 10 GHz.
  17.  請求項1~16のいずれか1項に記載の樹脂組成物又は前記樹脂組成物の半硬化物と、繊維質基材とを備えるプリプレグ。 A prepreg comprising the resin composition according to any one of claims 1 to 16 or a semi-cured product of the resin composition, and a fibrous base material.
  18.  請求項1~16のいずれか1項に記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、支持フィルムとを備える樹脂付きフィルム。 A resin-coated film comprising a resin layer containing the resin composition according to any one of claims 1 to 16 or a semi-cured product of the resin composition, and a support film.
  19.  請求項1~16のいずれか1項に記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、金属箔とを備える樹脂付き金属箔。 A resin-coated metal foil comprising a resin layer containing the resin composition according to any one of claims 1 to 16 or a semi-cured product of the resin composition, and a metal foil.
  20.  請求項1~16のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層と、金属箔とを備える金属張積層板。 A metal-clad laminate comprising an insulating layer containing a cured product of the resin composition according to any one of claims 1 to 16, and metal foil.
  21.  請求項1~16のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層と、配線とを備える配線板。 A wiring board comprising an insulating layer containing a cured product of the resin composition according to any one of claims 1 to 16, and wiring.
  22.  請求項17に記載のプリプレグの硬化物を含む絶縁層と、金属箔とを備える金属張積層板。 A metal-clad laminate comprising an insulating layer containing the cured prepreg according to claim 17 and metal foil.
  23.  請求項17に記載のプリプレグの硬化物を含む絶縁層と、配線とを備える配線板。 A wiring board comprising an insulating layer containing the cured prepreg according to claim 17 and wiring.
PCT/JP2023/029463 2022-09-16 2023-08-14 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board WO2024057803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022148396 2022-09-16
JP2022-148396 2022-09-16

Publications (1)

Publication Number Publication Date
WO2024057803A1 true WO2024057803A1 (en) 2024-03-21

Family

ID=90274903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/029463 WO2024057803A1 (en) 2022-09-16 2023-08-14 Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board

Country Status (1)

Country Link
WO (1) WO2024057803A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173855A (en) * 2007-12-27 2009-08-06 Daiso Co Ltd Thermosetting resin composition
JP2011084657A (en) * 2009-10-15 2011-04-28 Daiso Co Ltd Thermosetting resin composition
WO2019012954A1 (en) * 2017-07-12 2019-01-17 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film including resin, metal foil including resin, metal-clad laminate, and wiring board
JP2019021829A (en) * 2017-07-20 2019-02-07 日立化成株式会社 Heat-dissipating die bonding film and dicing die bonding film
WO2021079900A1 (en) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 Resin composition, resin film, resin-attached metal foil, prepreg, metal-clad laminate sheet, and printed wiring board
WO2022014582A1 (en) * 2020-07-17 2022-01-20 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2022014584A1 (en) * 2020-07-17 2022-01-20 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2022259851A1 (en) * 2021-06-08 2022-12-15 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
WO2023119805A1 (en) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminated sheet, and wiring board

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173855A (en) * 2007-12-27 2009-08-06 Daiso Co Ltd Thermosetting resin composition
JP2011084657A (en) * 2009-10-15 2011-04-28 Daiso Co Ltd Thermosetting resin composition
WO2019012954A1 (en) * 2017-07-12 2019-01-17 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film including resin, metal foil including resin, metal-clad laminate, and wiring board
JP2019021829A (en) * 2017-07-20 2019-02-07 日立化成株式会社 Heat-dissipating die bonding film and dicing die bonding film
WO2021079900A1 (en) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 Resin composition, resin film, resin-attached metal foil, prepreg, metal-clad laminate sheet, and printed wiring board
WO2022014582A1 (en) * 2020-07-17 2022-01-20 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2022014584A1 (en) * 2020-07-17 2022-01-20 パナソニックIpマネジメント株式会社 Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2022259851A1 (en) * 2021-06-08 2022-12-15 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
WO2023119805A1 (en) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminated sheet, and wiring board

Similar Documents

Publication Publication Date Title
EP3715393B1 (en) Resin composition, prepreg, resin-including film, resin-including metal foil, metal-clad laminate, and wiring board
JP6941786B2 (en) Resin composition, method of manufacturing resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
WO2020262089A1 (en) Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-cladded laminate sheet, and wiring board
JP6635415B2 (en) Curable composition, prepreg, metal foil with composition, metal-clad laminate, and wiring board
JPWO2019188189A1 (en) Resin composition, and prepreg using it, film with resin, metal foil with resin, metal-clad laminate and wiring board
WO2019130735A1 (en) Polyphenylene ether resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminate and wiring board
WO2022049965A1 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
WO2021059911A1 (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-cladded layered sheet, and wiring board
JPWO2019188187A1 (en) Resin composition, and prepreg using it, film with resin, metal foil with resin, metal-clad laminate and wiring board
WO2022014584A1 (en) Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2022014582A1 (en) Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2021010432A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
CN111094453B (en) Polyphenylene ether resin composition, and prepreg, metal-clad laminate and wiring board using same
JPWO2020017399A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
WO2022259851A1 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
US20220159830A1 (en) Prepreg, metal-clad laminate, and wiring board
WO2020203320A1 (en) Resin composition, prepreg obtained using same, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
WO2023119805A1 (en) Resin composition, prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminated sheet, and wiring board
WO2024057803A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
WO2022054861A1 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
WO2022054303A1 (en) Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
WO2021010431A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JPWO2019188185A1 (en) Resin composition, and prepreg using it, film with resin, metal foil with resin, metal-clad laminate and wiring board
WO2024101056A1 (en) Resin composition, and prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminated plate, and wiring board using said resin composition
JP2024070465A (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865162

Country of ref document: EP

Kind code of ref document: A1