WO2024057556A1 - Turbo refrigerator, refrigerator control device, turbo refrigerator control method, and program - Google Patents

Turbo refrigerator, refrigerator control device, turbo refrigerator control method, and program Download PDF

Info

Publication number
WO2024057556A1
WO2024057556A1 PCT/JP2022/037979 JP2022037979W WO2024057556A1 WO 2024057556 A1 WO2024057556 A1 WO 2024057556A1 JP 2022037979 W JP2022037979 W JP 2022037979W WO 2024057556 A1 WO2024057556 A1 WO 2024057556A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant gas
opening degree
vane
turbo
turbo compressor
Prior art date
Application number
PCT/JP2022/037979
Other languages
French (fr)
Japanese (ja)
Inventor
和馬 深澤
亮介 末光
明正 横山
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2024057556A1 publication Critical patent/WO2024057556A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type

Definitions

  • the present disclosure relates to a centrifugal chiller, a chiller control device, a centrifugal chiller control method, and a program.
  • Patent Document 1 discloses a turbo refrigerator that includes a turbo compressor that compresses refrigerant gas and a suction capacity control section that controls the capacity of the refrigerant gas that passes through the turbo compressor.
  • the suction capacity control section when starting the turbo compressor, the suction capacity control section is set to a target opening degree. Setting the target opening degree of the suction capacity control unit in this manner prevents the refrigerant dissolved in the lubricating oil in the oil tank of the turbo compressor from forming when the turbo chiller is started, thereby suppressing oil drainage. It is done for a purpose.
  • the opening degree of the vane provided at the inlet of the refrigerant gas in the turbo compressor is reduced to limit the flow rate of the refrigerant gas sucked in.
  • the flow rate of the refrigerant gas sucked into the turbo compressor at startup may vary depending on the state of the refrigerant, such as the density of the refrigerant at the time of startup.
  • the present disclosure has been made to solve the above problems, and includes a turbo chiller, a chiller control device, and a turbo chiller control device that can improve startup performance regardless of the state of refrigerant gas at the time of startup.
  • the purpose is to provide methods and programs.
  • a turbo chiller includes: a turbo compressor that compresses refrigerant gas; a vane that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor; a condenser that radiates heat and condenses the refrigerant gas compressed by the machine through heat exchange, an expansion valve that expands the liquid refrigerant led from the condenser, and a liquid refrigerant expanded by the expansion valve that absorbs heat through heat exchange.
  • the present invention includes an opening degree determining section that determines the opening degree of the vane based on a state quantity, and an opening degree control section that controls the opening degree of the vane based on the determined opening degree.
  • a refrigerator control device includes a turbo compressor that compresses refrigerant gas, a vane that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor, and a refrigerant gas compressed by the turbo compressor.
  • a condenser that radiates heat through heat exchange and condenses it; an expansion valve that expands liquid refrigerant led from the condenser; and an evaporator that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve through heat exchange.
  • a refrigerating machine control device for a centrifugal chiller comprising: an acquisition unit that acquires at least a state quantity of the refrigerant gas when starting the centrifugal chiller;
  • the vane includes an opening degree determination section that determines the opening degree, and an opening degree control section that controls the opening degree of the vane based on the determined opening degree.
  • a method for controlling a turbo chiller includes: a turbo compressor that compresses refrigerant gas; a vane that can adjust the flow rate of the refrigerant gas taken into the turbo compressor; A condenser that radiates heat from refrigerant gas through heat exchange and condenses it; an expansion valve that expands liquid refrigerant led from the condenser; and evaporation that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve.
  • a control method for a centrifugal chiller comprising: acquiring at least a state quantity of the refrigerant gas when starting the centrifugal chiller; and controlling the opening degree of the vane based on the obtained state quantity. The opening degree of the vane is controlled based on the determined opening degree.
  • a program according to the present disclosure includes a turbo compressor that compresses refrigerant gas, a vane that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor, and a heat exchanger for the refrigerant gas compressed by the turbo compressor.
  • a condenser that radiates heat and condenses it; an expansion valve that expands liquid refrigerant led from the condenser; and an evaporator that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve through heat exchange.
  • a computer provided in the centrifugal chiller is configured to determine, upon startup of the centrifugal chiller, at least a procedure for acquiring the state quantity of the refrigerant gas, a procedure for determining the opening degree of the vane based on the acquired state quantity.
  • a procedure for controlling the opening degree of the vane is executed based on the opening degree.
  • startup performance can be improved regardless of the state of refrigerant gas at the time of startup.
  • FIG. 1 is a diagram showing the overall configuration of a centrifugal chiller according to an embodiment of the present disclosure. It is a block diagram showing the functional composition of the refrigerator control device of the above-mentioned turbo refrigerator. It is a flowchart which shows the procedure of the control method of the centrifugal chiller concerning an embodiment of this indication.
  • the turbo refrigerator 1 mainly includes a turbo compressor 3 that compresses refrigerant gas, a condenser 5, an expansion valve 7, an evaporator 9, and a refrigerator control device 100. ing.
  • the condenser 5 condenses the high temperature, high pressure gas refrigerant compressed by the turbo compressor 3.
  • the condenser 5 condenses the refrigerant gas compressed by the turbo compressor 3 by radiating heat through heat exchange with cooling water.
  • a shell and tube type heat exchanger, a plate type heat exchanger, or the like can be exemplified.
  • the expansion valve 7 expands the liquid refrigerant condensed in the condenser 5.
  • the expansion valve 7 is, for example, electrically operated, and its opening degree is arbitrarily set by the refrigerator control device 100.
  • the evaporator 9 evaporates the liquid refrigerant expanded by the expansion valve 7.
  • the evaporator 9 evaporates the liquid refrigerant expanded by the expansion valve 7 by absorbing heat through heat exchange with water or the like to be cooled.
  • a shell and tube type heat exchanger, a plate type heat exchanger, or the like can be exemplified.
  • the turbo compressor 3 is a centrifugal compressor, and is driven by an electric motor 11 whose rotation speed is controlled by an inverter (not shown). The output of the inverter is controlled by the refrigerator control device 100.
  • the turbo compressor 3 includes an impeller 3a that rotates around a rotating shaft 3b. Rotational power is transmitted from the electric motor 11 to the rotating shaft 3b via the speed increaser 15.
  • the rotating shaft 3b is rotatably supported around the central axis of the rotating shaft 3b by a bearing 3c.
  • the turbo compressor 3 compresses refrigerant gas sucked into a housing (not shown) of the turbo compressor 3 using an impeller 3a rotating around a rotation shaft 3b, and discharges the refrigerant gas to the condenser 5.
  • the turbo compressor 3 may be of a mode that does not include the speed increaser 15 (for example, a type that is directly connected to an electric motor).
  • a vane 13 (so-called inlet guide vane: IGV) is provided at the refrigerant suction port of the turbo compressor 3.
  • the opening degree of the refrigerant suction port of the vane 13 can be adjusted by an opening degree adjustment mechanism 17 that includes a motor or the like. By adjusting the opening degree of the vane 13, the flow rate of the refrigerant sucked into the turbo compressor 3 at the refrigerant suction port is adjusted.
  • the refrigerator control device 100 controls the operation of each part of the turbo refrigerator 1.
  • the refrigerator control device 100 controls the opening degree of the vane 13 by controlling the opening degree adjustment mechanism 17 when starting the turbo refrigerator 1 .
  • a pressure sensor 120 is provided on the outlet side of the evaporator 9. Pressure sensor 120 detects the pressure of refrigerant gas on the exit side of evaporator 9. The pressure sensor 120 outputs the detection result of the refrigerant gas pressure to the refrigerator control device 100.
  • FIG. 2 is a block diagram showing the functional configuration of the refrigerator control device for the centrifugal refrigerator.
  • the refrigerator control device 100 uses a computer equipped with a CPU (Central Processing Unit), volatile and nonvolatile storage devices, input/output devices, communication devices, etc., and hardware including computer peripheral circuits, peripheral devices, etc. It can be configured as follows.
  • the refrigerator control device 100 has a functional configuration composed of a combination of hardware and software such as a program executed by a computer, and includes an acquisition section 101, an opening degree determination section 102, It includes an opening control section 103 and a storage section 105.
  • the acquisition unit 101 acquires information necessary for determining the opening degree of the vanes 13 (hereinafter referred to as the required vane opening degree) when starting the centrifugal chiller 1.
  • the acquisition unit 101 acquires equipment information of the turbo compressor 3.
  • the equipment information of the turbo compressor 3 include the type of the turbo compressor 3, the type of refrigerant used, the shape of the vane 13, and the like.
  • the equipment information of the turbo compressor 3 may be input into the refrigerator control device 100 from the outside by an operator, or may be obtained from an external storage device that stores equipment information of the turbo compressor 3. good.
  • the acquisition unit 101 acquires state information at the time of startup of the centrifugal chiller 1 (immediately before startup) as information necessary to determine the required vane opening degree.
  • the acquisition unit 101 acquires at least the state quantity of refrigerant gas as state information.
  • the acquisition unit 101 acquires the pressure of the refrigerant gas sucked into the turbo compressor 3 as the state quantity of the refrigerant gas.
  • the acquisition unit 101 acquires the detection result of the pressure of the refrigerant gas on the outlet side of the evaporator 9, which is detected by the pressure sensor 120, as the pressure of the refrigerant gas sucked into the turbo compressor 3.
  • the acquisition unit 101 may acquire the temperature of the refrigerant gas sucked into the turbo compressor 3 as the state quantity of the refrigerant gas.
  • the acquisition unit 101 acquires, as state information, the number of revolutions used by the turbo compressor 3 when the turbo chiller 1 is in steady operation.
  • the number of rotations to be used may be inputted into the refrigerator control device 100 by an operator from the outside, or may be set in advance in the refrigerator control device 100 from the outside when starting the turbo refrigerator 1, and stored in the storage section.
  • the value of the number of rotations used stored in 105 may be acquired.
  • the storage unit 105 stores device information, status information, etc. acquired by the acquisition unit 101.
  • the opening determining unit 102 determines the required vane opening of the vane 13 when starting the centrifugal chiller 1 based on the equipment information and status information acquired by the acquiring unit 101.
  • the opening control section 103 controls the opening of the vane 13 by controlling the opening adjustment mechanism 17 based on the required vane opening determined by the opening determining section 102 .
  • FIG. 3 is a flowchart illustrating a procedure of a method for controlling a centrifugal chiller according to an embodiment of the present disclosure.
  • the acquisition unit 101 when starting the turbo chiller 1, the acquisition unit 101 first acquires equipment information of the turbo compressor 3 (step S10).
  • the acquisition unit 101 reads out and acquires equipment information of the turbo compressor 3, such as the type of the turbo compressor 3, the type of refrigerant used, the shape of the vane 13, etc. from the storage unit 105. More specifically, the acquisition unit 101 acquires the allowable differential pressure across the vane 13 ⁇ Psb, which is preset based on the shape of the vane 13 and the like.
  • the allowable differential pressure across the vane 13 ⁇ Psb is a preset allowable value of the differential pressure between the upstream and downstream sides of the vane 13 in the suction direction of the refrigerant gas. Further, the acquisition unit 101 acquires a correction value K of the allowable front-back differential pressure ⁇ Psb, which is preset according to the type of the turbo compressor 3. The acquisition unit 101 also acquires a function (calculation formula) that is preset for each type of refrigerant used and that indicates the correlation between the refrigerant pressure (or temperature) and the refrigerant density ⁇ .
  • This function obtains information on the (saturation) pressure, (saturation) temperature, and density of the refrigerant based on a refrigerant physical property database (for example, REFPROP by the National Institute of Standards and Technology (NIST)), and approximates it from that data. It can be obtained by creating an expression.
  • a refrigerant physical property database for example, REFPROP by the National Institute of Standards and Technology (NIST)
  • the acquisition unit 101 acquires state information at the time of startup (immediately before startup) of the centrifugal chiller 1 (step S20).
  • the acquisition unit 101 acquires the detection result of the pressure of the refrigerant gas on the outlet side of the evaporator 9, which is detected by the pressure sensor 120, as the state information. Furthermore, the acquisition unit 101 acquires, as state information, the number of rotations used by the turbo compressor 3 during steady operation of the turbo chiller 1.
  • the opening determination unit 102 determines the required vane opening degree as the opening degree of the vane 13 when starting the turbo compressor 3 based on the equipment information acquired in step S10 and the state information acquired in step S20.
  • the opening degree is determined (step S30).
  • this step S30 includes steps S31 to S36 shown below.
  • the opening determining unit 102 calculates the required vane opening of the vane 13, which is necessary when starting the turbo compressor 3 (step S31). For this purpose, the opening determination unit 102 uses a preset function based on the type of refrigerant used in the centrifugal chiller 1 acquired in step S10 and the detection result of the refrigerant gas pressure acquired in step S20. Accordingly, the density ⁇ of the refrigerant immediately before starting the turbo compressor 3 is calculated.
  • the opening determining unit 102 uses the allowable front and rear differential pressure ⁇ Psb acquired in step S10, the correction value K, and the operating rotation speed of the turbo compressor 3 acquired in step S20, and based on the following formula (1), Calculate the vane opening increase/decrease coefficient XB.
  • XB ( ⁇ Psb ⁇ K)/(f( ⁇ ) ⁇ XN)...(1)
  • f( ⁇ ) is the reference estimated differential pressure of the vane 13 at the time of startup of the turbo compressor 3, which is calculated by a predetermined function based on the density of the refrigerant gas.
  • the equipment information of the turbo compressor 3 read from the storage unit 105 includes differences between each model (model difference).
  • the reference estimated differential pressure is intended to include this model difference, and is used as a control reference (base) for each model of the turbo compressor 3.
  • XN is an increase/decrease coefficient of the Mach number determined according to the rotation speed of the turbo compressor 3. As the Mach number (rotational speed of the turbo compressor 3) increases, more refrigerant flows into the turbo compressor 3, and the load on the vanes 13 increases. The Mach number increase/decrease coefficient is used to take into account load fluctuations on the vanes 13 according to the Mach number.
  • the opening determination unit 102 determines the vane 13 necessary for starting the turbo compressor 3 according to a predetermined function f(XB) based on the vane opening increase/decrease coefficient XB calculated by equation (1). Calculate the required vane opening.
  • the required vane opening of the vane 13 by taking into account the vane opening increase/decrease coefficient XB.
  • the required vane opening degree of the vane 13 calculated in step S31 in this manner increases as the pressure of the refrigerant gas acquired in step S20 increases. Further, the required vane opening degree of the vane 13 increases as the operating rotation speed of the turbo compressor 3 obtained in step S20 increases.
  • the opening determining unit 102 checks whether the required vane opening of the vane 13 calculated in step S31 falls within a preset opening range of the vane 13.
  • the opening determining unit 102 determines the required vane opening of the vane 13 so that it falls between a preset minimum opening and maximum opening of the vane 13. To do this, the opening determining unit 102 first determines whether the required vane opening of the vane 13 calculated in step S31 is equal to or greater than a preset minimum opening setting value (step S32).
  • step S32 if the required vane opening is not greater than or equal to the minimum opening setting value (step S32: No), the opening determination unit 102 determines the required vane opening of the vane 13 when starting the turbo compressor 3. , the minimum opening setting value is updated and determined (step S33). Thereby, when starting the turbo compressor 3, the actual opening degree of the vane 13 is prevented from becoming excessively small.
  • step S32 if the required vane opening is equal to or greater than the minimum opening setting value (step S32: Yes), the opening determination unit 102 determines that the required vane opening of the vane 13 calculated in step S31 is , it is determined whether or not the opening degree is less than or equal to a preset maximum opening setting value (step S34).
  • step S34 if the required vane opening is not less than the maximum opening setting value (step S34: No), the opening determination unit 102 determines the required vane opening of the vane 13 when starting the turbo compressor 3. , the maximum opening setting value is updated and determined (step S35). Thereby, when starting the turbo compressor 3, the actual opening degree of the vane 13 is prevented from becoming excessively large.
  • step S34 if the required vane opening is less than or equal to the maximum opening setting value (step S34: Yes), the opening determination unit 102 determines the required vane opening of the vane 13 calculated in step S31. , is determined as the required vane opening degree of the vane 13 when starting the turbo compressor 3 (step S36).
  • the opening control unit 103 adjusts the actual opening of the vane 13 by controlling the opening adjustment mechanism 17 based on the required vane opening determined as described above. After that, the refrigerator control device 100 starts up the turbo compressor 3. After the turbo compressor 3 is started, the refrigerator control device 100 adjusts the opening degree of the vanes 13 in accordance with the operating rotation speed of the turbo compressor 3.
  • the density of the refrigerant gas can be calculated.
  • the opening degree of the vane 13 can be controlled according to the density of refrigerant gas at the time of startup of the turbo chiller 1.
  • the pressure of the refrigerant gas sucked into the turbo compressor 3 can be easily obtained as the state quantity of the refrigerant gas. .
  • the differential pressure caused by the refrigerant gas acting on the vanes 13 is determined based on the pressure of the refrigerant gas sucked into the turbo compressor 3 and the rotational speed of the turbo compressor 3 during steady operation of the turbo refrigerator 1. You can ask for it.
  • the opening degree of the vane 13 can be adjusted appropriately while preventing the adjustment of the opening degree of the vane 13 from being hindered by the differential pressure acting on the vane 13. can be adjusted to
  • the opening degree of the vane 13 can be appropriately adjusted.
  • part or all of the program executed by the computer in the above embodiments can be distributed via a computer-readable recording medium or a communication line.
  • centrifugal chiller 1 the chiller control device 100, the control method and program for the centrifugal chiller 1 described in the embodiment can be understood, for example, as follows.
  • the turbo chiller 1 includes a turbo compressor 3 that compresses refrigerant gas, vanes 13 that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor 3, and the turbo A condenser 5 that radiates heat and condenses the refrigerant gas compressed by the compressor 3 through heat exchange, an expansion valve 7 that expands the liquid refrigerant led from the condenser 5, and a liquid expanded by the expansion valve 7.
  • the refrigerator control device 100 includes an evaporator 9 that absorbs heat from the refrigerant and evaporates it by heat exchange, and a refrigerator control device 100, and the refrigerator control device 100 controls at least the state quantity of the refrigerant gas when starting the turbo refrigerator 1.
  • An acquisition unit 101 that acquires information, an opening determination unit 102 that determines the opening degree of the vane 13 based on the acquired state quantity, and an opening degree determination unit 102 that controls the opening degree of the vane 13 based on the determined opening degree.
  • An opening control section 103 is provided.
  • This turbo chiller 1 acquires at least the state quantity of the refrigerant gas when starting the centrifugal chiller 1, and controls the opening degree of the vanes 13 based on the acquired state quantity. Thereby, when the turbo chiller 1 is started up, the opening degree of the vane 13 can be made in accordance with the state of the refrigerant gas at that time. Therefore, the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
  • the centrifugal chiller 1 is the centrifugal chiller 1 of (1), in which the acquisition unit 101 is configured to absorb the refrigerant gas into the turbo compressor 3 as a state quantity. At least one of the pressure and temperature of the refrigerant gas is acquired.
  • the refrigerant gas can be adjusted according to the state of the refrigerant gas at the time of startup of the turbo chiller 1. , the opening degree of the vane 13 can be controlled.
  • a centrifugal chiller 1 according to a third aspect is the centrifugal chiller 1 according to (2), and includes a pressure sensor 120 that detects the pressure of the refrigerant gas on the outlet side of the evaporator 9.
  • the acquisition unit 101 acquires the pressure of the refrigerant gas detected by the pressure sensor 120 as a state quantity of the refrigerant gas.
  • the pressure of the refrigerant gas sucked into the turbo compressor 3 can be easily obtained as the state quantity of the refrigerant gas. can.
  • the turbo chiller 1 according to the fourth aspect is the turbo chiller 1 of (2) or (3), and the acquisition unit 101 is configured to perform the turbo chiller 1 during steady operation of the turbo chiller 1.
  • the opening degree determination unit 102 obtains the operating rotation speed of the machine 3 and calculates the opening degree of the vane 13 based on the differential pressure between the upstream side and the downstream side of the vane 13 in the suction direction of the refrigerant gas.
  • the refrigerant in the vane 13 is determined based on at least one of the pressure and temperature of the refrigerant gas sucked into the turbo compressor 3 and the operating rotation speed of the turbo compressor 3 during steady operation of the turbo refrigerator 1.
  • the differential pressure between the upstream side and the downstream side in the gas suction direction can be determined.
  • the centrifugal chiller 1 according to the fifth aspect is the centrifugal chiller 1 according to any one of (1) to (4), in which the opening degree determining unit 102 The opening degree of the vane 13 is determined so that it falls between the minimum setting value and the maximum setting value of the opening degree.
  • the opening degree of the vane 13 can be appropriately adjusted by determining the opening degree of the vane 13 to fall between the minimum setting value and the maximum setting value.
  • the refrigerator control device 100 includes a turbo compressor 3 that compresses refrigerant gas, a vane 13 that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor 3, and the A condenser 5 that radiates heat and condenses the refrigerant gas compressed by the turbo compressor 3 through heat exchange, an expansion valve 7 that expands the liquid refrigerant led from the condenser 5, A refrigerator control device 100 for a turbo chiller 1 comprising an evaporator 9 that absorbs heat from a liquid refrigerant through heat exchange and evaporates the liquid refrigerant.
  • An acquisition unit 101 that acquires information, an opening determination unit 102 that determines the opening degree of the vane 13 based on the acquired state quantity, and an opening degree determination unit 102 that controls the opening degree of the vane 13 based on the determined opening degree.
  • An opening control section 103 is provided.
  • the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
  • a method for controlling a turbo chiller 1 according to a seventh aspect includes a turbo compressor 3 that compresses refrigerant gas, and a vane 13 that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor 3. , a condenser 5 that radiates heat and condenses the refrigerant gas compressed by the turbo compressor 3 through heat exchange; an expansion valve 7 that expands the liquid refrigerant guided from the condenser 5; an evaporator 9 that absorbs heat from the liquid refrigerant and evaporates it through heat exchange; Then, the opening degree of the vane 13 is determined based on the obtained state quantity, and the opening degree of the vane 13 is controlled based on the determined opening degree.
  • the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
  • the program according to the eighth aspect includes a turbo compressor 3 that compresses refrigerant gas, a vane 13 that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor 3, and the turbo compressor 3. a condenser 5 that radiates heat and condenses the refrigerant gas compressed by the compressor by heat exchange; an expansion valve 7 that expands the liquid refrigerant led from the condenser 5; and an expansion valve 7 that expands the liquid refrigerant expanded by the expansion valve 7.
  • An evaporator 9 that absorbs heat and evaporates through exchange, and a computer equipped with a turbo chiller 1 is provided with a procedure for acquiring at least the state quantity of the refrigerant gas when starting the centrifugal chiller 1, and the acquired state quantity. Based on this, a procedure for determining the opening degree of the vane 13 and a procedure for controlling the opening degree of the vane 13 based on the determined opening degree are executed.
  • the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
  • turbo chiller, chiller control device, turbo chiller control method, and program disclosed herein can improve start-up performance regardless of the state of the refrigerant gas at the time of startup.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This turbo refrigerator comprises: a turbo compressor that compresses a refrigerant gas; a vane that is capable of adjusting the flow rate of the refrigerant gas sucked in by the turbo compressor; a condenser that causes, by means of heat exchange, the refrigerant gas compressed by the turbo compressor to release heat and therefore become condensed; an expansion valve that expands a liquid refrigerant guided from the condenser; an evaporator that causes, by means of heat exchange, the liquid refrigerant expanded by the expansion valve to absorb heat and therefore evaporate; and a refrigerator control device. The refrigerator control device comprises: an acquisition unit that acquires at least a state quantity of the refrigerant gas during startup of the turbo refrigerator; an opening degree determination unit that determines the opening degree of the vane on the basis of the acquired state quantity; and an opening degree control unit that controls the opening degree of the vane on the basis of the determined opening degree.

Description

ターボ冷凍機、冷凍機制御装置、ターボ冷凍機の制御方法、プログラムTurbo chiller, chiller control device, turbo chiller control method, program
 本開示は、ターボ冷凍機、冷凍機制御装置、ターボ冷凍機の制御方法、プログラムに関する。本願は、2022年9月12日に、日本に出願された特願2022-144367号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to a centrifugal chiller, a chiller control device, a centrifugal chiller control method, and a program. This application claims priority based on Japanese Patent Application No. 2022-144367 filed in Japan on September 12, 2022, the contents of which are incorporated herein.
 特許文献1には、冷媒ガスを圧縮するターボ圧縮機と、ターボ圧縮機を通る冷媒ガスの容量を制御する吸入容量制御部と、を備えているターボ冷凍機が開示されている。特許文献1に開示されたターボ冷凍機では、ターボ圧縮機を起動させるとき、吸入容量制御部を目標開度に設定している。このような吸入容量制御部の目標開度への設定は、ターボ冷凍機の起動時に、ターボ圧縮機の油タンク内の潤滑油に溶けている冷媒がフォーミングを起こし、油上がりを抑制することを目的として行われている。 Patent Document 1 discloses a turbo refrigerator that includes a turbo compressor that compresses refrigerant gas and a suction capacity control section that controls the capacity of the refrigerant gas that passes through the turbo compressor. In the turbo chiller disclosed in Patent Document 1, when starting the turbo compressor, the suction capacity control section is set to a target opening degree. Setting the target opening degree of the suction capacity control unit in this manner prevents the refrigerant dissolved in the lubricating oil in the oil tank of the turbo compressor from forming when the turbo chiller is started, thereby suppressing oil drainage. It is done for a purpose.
特開2009-186030号公報Japanese Patent Application Publication No. 2009-186030
 ところで、ターボ冷凍機においては、起動時にターボ圧縮機に吸い込む冷媒ガスによる負荷が大きい場合、ターボ圧縮機を駆動する電動機の起動電流、起動時間が増大する。このため、ターボ冷凍機の起動時には、ターボ圧縮機における冷媒ガスの入口に設けたベーンの開度を小さくし、冷媒ガスの吸い込み流量を制限することが行われている。
 しかしながら、起動時にターボ圧縮機に吸い込まれる冷媒ガスの流量は、起動時における冷媒の密度等の冷媒の状態によって変動し得る。このため、当初設定したベーンの開度のままでは、ターボ圧縮機の起動時における冷媒ガスの状態にマッチせず、ターボ圧縮機の起動不良に繋がるという問題がある。
 特許文献1に記載のターボ冷凍機は、このような問題を解決するものではない。
By the way, in a turbo chiller, if the load due to the refrigerant gas sucked into the turbo compressor at the time of startup is large, the startup current and startup time of the electric motor that drives the turbo compressor increase. For this reason, when starting up the turbo chiller, the opening degree of the vane provided at the inlet of the refrigerant gas in the turbo compressor is reduced to limit the flow rate of the refrigerant gas sucked in.
However, the flow rate of the refrigerant gas sucked into the turbo compressor at startup may vary depending on the state of the refrigerant, such as the density of the refrigerant at the time of startup. For this reason, there is a problem in that if the opening degree of the vane remains as it is initially set, it does not match the state of the refrigerant gas at the time of startup of the turbo compressor, leading to a startup failure of the turbo compressor.
The turbo chiller described in Patent Document 1 does not solve such problems.
 本開示は、上記課題を解決するためになされたものであって、起動時における冷媒ガスの状態に関わらず、起動性を高めることができるターボ冷凍機、冷凍機制御装置、ターボ冷凍機の制御方法、プログラムを提供することを目的とする。 The present disclosure has been made to solve the above problems, and includes a turbo chiller, a chiller control device, and a turbo chiller control device that can improve startup performance regardless of the state of refrigerant gas at the time of startup. The purpose is to provide methods and programs.
 上記課題を解決するために、本開示に係るターボ冷凍機は、冷媒ガスを圧縮するターボ圧縮機と、前記ターボ圧縮機に吸入される前記冷媒ガスの流量を調整可能なベーンと、前記ターボ圧縮機によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器と、冷凍機制御装置と、を備え、前記冷凍機制御装置は、前記ターボ冷凍機の起動に際し、少なくとも前記冷媒ガスの状態量を取得する取得部と、取得された前記状態量に基づき、前記ベーンの開度を決定する開度決定部と、決定された前記開度に基づき、前記ベーンの開度を制御する開度制御部と、を備える。 In order to solve the above problems, a turbo chiller according to the present disclosure includes: a turbo compressor that compresses refrigerant gas; a vane that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor; a condenser that radiates heat and condenses the refrigerant gas compressed by the machine through heat exchange, an expansion valve that expands the liquid refrigerant led from the condenser, and a liquid refrigerant expanded by the expansion valve that absorbs heat through heat exchange. an evaporator for evaporating the refrigerant gas, and a refrigerator control device; The present invention includes an opening degree determining section that determines the opening degree of the vane based on a state quantity, and an opening degree control section that controls the opening degree of the vane based on the determined opening degree.
 本開示に係る冷凍機制御装置は、冷媒ガスを圧縮するターボ圧縮機と、前記ターボ圧縮機に吸入される前記冷媒ガスの流量を調整可能なベーンと、前記ターボ圧縮機によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器と、を備えたターボ冷凍機の冷凍機制御装置であって、前記ターボ冷凍機の起動に際し、少なくとも前記冷媒ガスの状態量を取得する取得部と、取得された前記状態量に基づき、前記ベーンの開度を決定する開度決定部と、決定された前記開度に基づき、前記ベーンの開度を制御する開度制御部と、を備える。 A refrigerator control device according to the present disclosure includes a turbo compressor that compresses refrigerant gas, a vane that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor, and a refrigerant gas compressed by the turbo compressor. a condenser that radiates heat through heat exchange and condenses it; an expansion valve that expands liquid refrigerant led from the condenser; and an evaporator that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve through heat exchange. A refrigerating machine control device for a centrifugal chiller, comprising: an acquisition unit that acquires at least a state quantity of the refrigerant gas when starting the centrifugal chiller; The vane includes an opening degree determination section that determines the opening degree, and an opening degree control section that controls the opening degree of the vane based on the determined opening degree.
 本開示に係るターボ冷凍機の制御方法は、冷媒ガスを圧縮するターボ圧縮機と、前記ターボ圧縮機に吸入される前記冷媒ガスの流量を調整可能なベーンと、前記ターボ圧縮機によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器と、を備えたターボ冷凍機の制御方法であって、前記ターボ冷凍機の起動に際し、少なくとも前記冷媒ガスの状態量を取得し、取得された前記状態量に基づき、前記ベーンの開度を決定し、決定された前記開度に基づき、前記ベーンの開度を制御する。 A method for controlling a turbo chiller according to the present disclosure includes: a turbo compressor that compresses refrigerant gas; a vane that can adjust the flow rate of the refrigerant gas taken into the turbo compressor; A condenser that radiates heat from refrigerant gas through heat exchange and condenses it; an expansion valve that expands liquid refrigerant led from the condenser; and evaporation that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve. A control method for a centrifugal chiller, comprising: acquiring at least a state quantity of the refrigerant gas when starting the centrifugal chiller; and controlling the opening degree of the vane based on the obtained state quantity. The opening degree of the vane is controlled based on the determined opening degree.
 本開示に係るプログラムは、冷媒ガスを圧縮するターボ圧縮機と、前記ターボ圧縮機に吸入される前記冷媒ガスの流量を調整可能なベーンと、前記ターボ圧縮機によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器と、前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、前記膨張弁によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器と、を有するターボ冷凍機が備えるコンピュータに、前記ターボ冷凍機の起動に際し、少なくとも前記冷媒ガスの状態量を取得する手順、取得された前記状態量に基づき、前記ベーンの開度を決定する手順、決定された前記開度に基づき、前記ベーンの開度を制御する手順、を実行させる。 A program according to the present disclosure includes a turbo compressor that compresses refrigerant gas, a vane that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor, and a heat exchanger for the refrigerant gas compressed by the turbo compressor. a condenser that radiates heat and condenses it; an expansion valve that expands liquid refrigerant led from the condenser; and an evaporator that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve through heat exchange. A computer provided in the centrifugal chiller is configured to determine, upon startup of the centrifugal chiller, at least a procedure for acquiring the state quantity of the refrigerant gas, a procedure for determining the opening degree of the vane based on the acquired state quantity. A procedure for controlling the opening degree of the vane is executed based on the opening degree.
 本開示のターボ冷凍機、冷凍機制御装置、ターボ冷凍機の制御方法、プログラムによれば、起動時における冷媒ガスの状態に関わらず、起動性を高めることができる。 According to the centrifugal chiller, chiller control device, centrifugal chiller control method, and program of the present disclosure, startup performance can be improved regardless of the state of refrigerant gas at the time of startup.
本開示の実施形態に係るターボ冷凍機の全体構成を示す図である。1 is a diagram showing the overall configuration of a centrifugal chiller according to an embodiment of the present disclosure. 上記ターボ冷凍機の冷凍機制御装置の機能構成を示すブロック図である。It is a block diagram showing the functional composition of the refrigerator control device of the above-mentioned turbo refrigerator. 本開示の実施形態に係るターボ冷凍機の制御方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the control method of the centrifugal chiller concerning an embodiment of this indication.
 以下、添付図面を参照して、本開示によるターボ冷凍機、冷凍機制御装置、ターボ冷凍機の制御方法、プログラムを実施するための形態を説明する。しかし、本開示はこの実施形態のみに限定されるものではない。
 (ターボ冷凍機の全体構成)
 図1に示すように、ターボ冷凍機1は、冷媒ガスを圧縮するターボ圧縮機3と、凝縮器5と、膨張弁7と、蒸発器9と、冷凍機制御装置100と、を主に備えている。
EMBODIMENT OF THE INVENTION Hereinafter, with reference to the accompanying drawings, a turbo chiller, a chiller control device, a control method for a centrifugal chiller, and a mode for implementing a program according to the present disclosure will be described. However, the present disclosure is not limited to this embodiment.
(Overall configuration of turbo chiller)
As shown in FIG. 1, the turbo refrigerator 1 mainly includes a turbo compressor 3 that compresses refrigerant gas, a condenser 5, an expansion valve 7, an evaporator 9, and a refrigerator control device 100. ing.
 凝縮器5は、ターボ圧縮機3によって圧縮された高温高圧のガス冷媒を凝縮する。凝縮器5は、ターボ圧縮機3によって圧縮された冷媒ガスを、冷却水との熱交換により放熱させて凝縮させる。凝縮器5としては、シェルアンドチューブ型やプレート型等の熱交換器を例示することができる。 The condenser 5 condenses the high temperature, high pressure gas refrigerant compressed by the turbo compressor 3. The condenser 5 condenses the refrigerant gas compressed by the turbo compressor 3 by radiating heat through heat exchange with cooling water. As the condenser 5, a shell and tube type heat exchanger, a plate type heat exchanger, or the like can be exemplified.
 膨張弁7は、凝縮器5で凝縮された液冷媒を膨張させる。膨張弁7は、例えば電動式であり、冷凍機制御装置100によって開度が任意に設定される。 The expansion valve 7 expands the liquid refrigerant condensed in the condenser 5. The expansion valve 7 is, for example, electrically operated, and its opening degree is arbitrarily set by the refrigerator control device 100.
 蒸発器9は、膨張弁7によって膨張された液冷媒を蒸発させる。蒸発器9は、膨張弁7によって膨張された液冷媒を、冷却対象となる水等との熱交換により吸熱させて蒸発させる。蒸発器9としては、シェルアンドチューブ型やプレート型等の熱交換器を例示することができる。 The evaporator 9 evaporates the liquid refrigerant expanded by the expansion valve 7. The evaporator 9 evaporates the liquid refrigerant expanded by the expansion valve 7 by absorbing heat through heat exchange with water or the like to be cooled. As the evaporator 9, a shell and tube type heat exchanger, a plate type heat exchanger, or the like can be exemplified.
 ターボ圧縮機3は、遠心式圧縮機であり、インバータ(図示無し)によって回転数制御された電動機11によって駆動される。インバータは、冷凍機制御装置100によってその出力が制御される。ターボ圧縮機3は、回転軸3b周りに回転する羽根車3aを備えている。回転軸3bには、増速機15を介して電動機11から回転動力が伝達される。回転軸3bは、軸受3cによって、回転軸3bの中心軸回りに回転自在に支持されている。ターボ圧縮機3は、ターボ圧縮機3のハウジング(図示無し)内に吸い込んだ冷媒ガスを、回転軸3b周りに回転する羽根車3aによって圧縮し、凝縮器5へと吐出する。
 なお、ターボ圧縮機3は、増速機15を具備しない態様(例えば、電動機直結型)であってもよい。
The turbo compressor 3 is a centrifugal compressor, and is driven by an electric motor 11 whose rotation speed is controlled by an inverter (not shown). The output of the inverter is controlled by the refrigerator control device 100. The turbo compressor 3 includes an impeller 3a that rotates around a rotating shaft 3b. Rotational power is transmitted from the electric motor 11 to the rotating shaft 3b via the speed increaser 15. The rotating shaft 3b is rotatably supported around the central axis of the rotating shaft 3b by a bearing 3c. The turbo compressor 3 compresses refrigerant gas sucked into a housing (not shown) of the turbo compressor 3 using an impeller 3a rotating around a rotation shaft 3b, and discharges the refrigerant gas to the condenser 5.
Note that the turbo compressor 3 may be of a mode that does not include the speed increaser 15 (for example, a type that is directly connected to an electric motor).
 ターボ圧縮機3の冷媒吸入口には、ベーン13(いわゆるインレットガイドベーン:IGV)が設けられている。ベーン13は、モータ等を備えた開度調整機構17により、冷媒吸入口の開度を調整可能とされている。ベーン13の開度を調整することで、冷媒吸入口における、ターボ圧縮機3に吸入される冷媒の流量が調整される。 A vane 13 (so-called inlet guide vane: IGV) is provided at the refrigerant suction port of the turbo compressor 3. The opening degree of the refrigerant suction port of the vane 13 can be adjusted by an opening degree adjustment mechanism 17 that includes a motor or the like. By adjusting the opening degree of the vane 13, the flow rate of the refrigerant sucked into the turbo compressor 3 at the refrigerant suction port is adjusted.
 冷凍機制御装置100は、ターボ冷凍機1の各部の動作を制御する。本実施形態において、冷凍機制御装置100は、ターボ冷凍機1の起動に際し、開度調整機構17を制御することで、ベーン13の開度を制御する。 The refrigerator control device 100 controls the operation of each part of the turbo refrigerator 1. In this embodiment, the refrigerator control device 100 controls the opening degree of the vane 13 by controlling the opening degree adjustment mechanism 17 when starting the turbo refrigerator 1 .
 蒸発器9の出口側には、圧力センサ120が設けられている。圧力センサ120は、蒸発器9の出口側における冷媒ガスの圧力を検出する。圧力センサ120は、冷媒ガスの圧力の検出結果を、冷凍機制御装置100に出力する。 A pressure sensor 120 is provided on the outlet side of the evaporator 9. Pressure sensor 120 detects the pressure of refrigerant gas on the exit side of evaporator 9. The pressure sensor 120 outputs the detection result of the refrigerant gas pressure to the refrigerator control device 100.
 図2は、上記ターボ冷凍機の冷凍機制御装置の機能構成を示すブロック図である。
 冷凍機制御装置100は、CPU(Central Processing Unit)、揮発性および不揮発性の記憶装置、入出力装置、通信装置等を備えたコンピュータと、コンピュータの周辺回路や周辺装置等を含むハードウェアを用いて構成することができる。図2に示すように、冷凍機制御装置100は、ハードウェアと、コンピュータが実行するプログラム等のソフトウェアとの組み合わせから構成される機能的構成として、取得部101と、開度決定部102と、開度制御部103と、記憶部105と、を備える。
FIG. 2 is a block diagram showing the functional configuration of the refrigerator control device for the centrifugal refrigerator.
The refrigerator control device 100 uses a computer equipped with a CPU (Central Processing Unit), volatile and nonvolatile storage devices, input/output devices, communication devices, etc., and hardware including computer peripheral circuits, peripheral devices, etc. It can be configured as follows. As shown in FIG. 2, the refrigerator control device 100 has a functional configuration composed of a combination of hardware and software such as a program executed by a computer, and includes an acquisition section 101, an opening degree determination section 102, It includes an opening control section 103 and a storage section 105.
 取得部101は、ターボ冷凍機1の起動に際して必要なベーン13の開度(以下、これを必要ベーン開度と称する)を決定するために必要な情報を取得する。
 取得部101は、ターボ圧縮機3の機器情報を取得する。ターボ圧縮機3の機器情報としては、例えば、ターボ圧縮機3の型式、使用される冷媒の種類、ベーン13の形状等が例示できる。
 ターボ圧縮機3の機器情報は、オペレータが、冷凍機制御装置100に対して、外部から入力してもよいし、ターボ圧縮機3の機器情報を記憶した外部の記憶装置等から取得してもよい。
The acquisition unit 101 acquires information necessary for determining the opening degree of the vanes 13 (hereinafter referred to as the required vane opening degree) when starting the centrifugal chiller 1.
The acquisition unit 101 acquires equipment information of the turbo compressor 3. Examples of the equipment information of the turbo compressor 3 include the type of the turbo compressor 3, the type of refrigerant used, the shape of the vane 13, and the like.
The equipment information of the turbo compressor 3 may be input into the refrigerator control device 100 from the outside by an operator, or may be obtained from an external storage device that stores equipment information of the turbo compressor 3. good.
 また、取得部101は、必要ベーン開度を決定するために必要な情報として、ターボ冷凍機1の起動時(起動直前)における状態情報を取得する。取得部101は、状態情報として、少なくとも冷媒ガスの状態量を取得する。本実施形態では、取得部101は、冷媒ガスの状態量として、ターボ圧縮機3に吸入される冷媒ガスの圧力を取得する。取得部101は、ターボ圧縮機3に吸入される冷媒ガスの圧力として、圧力センサ120で検出された、蒸発器9の出口側における冷媒ガスの圧力の検出結果を取得する。取得部101は、冷媒ガスの状態量として、ターボ圧縮機3に吸入される冷媒ガスの温度を取得するようにしてもよい。 Furthermore, the acquisition unit 101 acquires state information at the time of startup of the centrifugal chiller 1 (immediately before startup) as information necessary to determine the required vane opening degree. The acquisition unit 101 acquires at least the state quantity of refrigerant gas as state information. In this embodiment, the acquisition unit 101 acquires the pressure of the refrigerant gas sucked into the turbo compressor 3 as the state quantity of the refrigerant gas. The acquisition unit 101 acquires the detection result of the pressure of the refrigerant gas on the outlet side of the evaporator 9, which is detected by the pressure sensor 120, as the pressure of the refrigerant gas sucked into the turbo compressor 3. The acquisition unit 101 may acquire the temperature of the refrigerant gas sucked into the turbo compressor 3 as the state quantity of the refrigerant gas.
 さらに、取得部101は、状態情報として、ターボ冷凍機1の定常運転時における、ターボ圧縮機3の使用回転数を取得する。使用回転数は、例えば、オペレータが、冷凍機制御装置100に対して、外部から入力してもよいし、ターボ冷凍機1の起動に際して、予め外部から冷凍機制御装置100に設定され、記憶部105に記憶された使用回転数の値を取得してもよい。 Further, the acquisition unit 101 acquires, as state information, the number of revolutions used by the turbo compressor 3 when the turbo chiller 1 is in steady operation. The number of rotations to be used may be inputted into the refrigerator control device 100 by an operator from the outside, or may be set in advance in the refrigerator control device 100 from the outside when starting the turbo refrigerator 1, and stored in the storage section. The value of the number of rotations used stored in 105 may be acquired.
 記憶部105は、取得部101で取得した機器情報、状態情報等を記憶している。 The storage unit 105 stores device information, status information, etc. acquired by the acquisition unit 101.
 開度決定部102は、取得部101により取得された機器情報、及び状態情報に基づき、ターボ冷凍機1を起動する際のベーン13の必要ベーン開度を決定する。
 開度制御部103は、開度決定部102で決定された必要ベーン開度に基づき、開度調整機構17を制御することで、ベーン13の開度を制御する。
The opening determining unit 102 determines the required vane opening of the vane 13 when starting the centrifugal chiller 1 based on the equipment information and status information acquired by the acquiring unit 101.
The opening control section 103 controls the opening of the vane 13 by controlling the opening adjustment mechanism 17 based on the required vane opening determined by the opening determining section 102 .
(ターボ冷凍機の制御方法)
 図3は、本開示の実施形態に係るターボ冷凍機の制御方法の手順を示すフローチャートである。
 図3に示すように、ターボ冷凍機1を起動するに際しては、まず、取得部101が、ターボ圧縮機3の機器情報を取得する(ステップS10)。取得部101は、ターボ圧縮機3の機器情報として、例えば、ターボ圧縮機3の型式、使用される冷媒の種類、ベーン13の形状等を、記憶部105から読み出して取得する。より具体的には、取得部101は、ベーン13の形状等に基づいて予め設定されている、ベーン13の許容前後差圧ΔPsbを取得する。ベーン13の許容前後差圧ΔPsbとは、予め設定される、ベーン13における冷媒ガスの吸い込み方向上流側と下流側との差圧の許容値である。また、取得部101は、ターボ圧縮機3の型式に応じて予め設定されている、許容前後差圧ΔPsbの補正値Kを取得する。また、取得部101は、使用される冷媒の種類毎に予め設定されている、冷媒の圧力(又は温度)と、冷媒の密度ρとの相関を示す関数(計算式)を取得する。この関数は、冷媒の物性値データベース(例えば、アメリカ国立標準技術研究所(NIST)によるREFPROP)に基づき、冷媒の(飽和)圧力-(飽和)温度-密度の情報を取得し、そのデータから近似式を作成することで得られる。
(Control method of turbo chiller)
FIG. 3 is a flowchart illustrating a procedure of a method for controlling a centrifugal chiller according to an embodiment of the present disclosure.
As shown in FIG. 3, when starting the turbo chiller 1, the acquisition unit 101 first acquires equipment information of the turbo compressor 3 (step S10). The acquisition unit 101 reads out and acquires equipment information of the turbo compressor 3, such as the type of the turbo compressor 3, the type of refrigerant used, the shape of the vane 13, etc. from the storage unit 105. More specifically, the acquisition unit 101 acquires the allowable differential pressure across the vane 13 ΔPsb, which is preset based on the shape of the vane 13 and the like. The allowable differential pressure across the vane 13 ΔPsb is a preset allowable value of the differential pressure between the upstream and downstream sides of the vane 13 in the suction direction of the refrigerant gas. Further, the acquisition unit 101 acquires a correction value K of the allowable front-back differential pressure ΔPsb, which is preset according to the type of the turbo compressor 3. The acquisition unit 101 also acquires a function (calculation formula) that is preset for each type of refrigerant used and that indicates the correlation between the refrigerant pressure (or temperature) and the refrigerant density ρ. This function obtains information on the (saturation) pressure, (saturation) temperature, and density of the refrigerant based on a refrigerant physical property database (for example, REFPROP by the National Institute of Standards and Technology (NIST)), and approximates it from that data. It can be obtained by creating an expression.
 続いて、取得部101が、ターボ冷凍機1の起動時(起動直前)における状態情報を取得する(ステップS20)。取得部101は、状態情報として、圧力センサ120で検出された、蒸発器9の出口側における冷媒ガスの圧力の検出結果を取得する。また、取得部101は、状態情報として、ターボ冷凍機1の定常運転時における、ターボ圧縮機3の使用回転数を取得する。 Subsequently, the acquisition unit 101 acquires state information at the time of startup (immediately before startup) of the centrifugal chiller 1 (step S20). The acquisition unit 101 acquires the detection result of the pressure of the refrigerant gas on the outlet side of the evaporator 9, which is detected by the pressure sensor 120, as the state information. Furthermore, the acquisition unit 101 acquires, as state information, the number of rotations used by the turbo compressor 3 during steady operation of the turbo chiller 1.
 次いで、開度決定部102が、ステップS10で取得された機器情報と、ステップS20で取得された状態情報とに基づいて、ターボ圧縮機3を起動させる際のベーン13の開度として、必要ベーン開度を決定する(ステップS30)。本実施形態において、このステップS30は、以下に示すステップS31~S36を含んでいる。 Next, the opening determination unit 102 determines the required vane opening degree as the opening degree of the vane 13 when starting the turbo compressor 3 based on the equipment information acquired in step S10 and the state information acquired in step S20. The opening degree is determined (step S30). In this embodiment, this step S30 includes steps S31 to S36 shown below.
 まず、開度決定部102が、ターボ圧縮機3を起動させる際に必要な、ベーン13の必要ベーン開度を演算する(ステップS31)。
 これには、開度決定部102が、ステップS10で取得したターボ冷凍機1で使用される冷媒の種類と、ステップS20で取得した冷媒ガスの圧力の検出結果と基づき、予め設定されている関数により、ターボ圧縮機3を起動させる直前における冷媒の密度ρを算出する。
First, the opening determining unit 102 calculates the required vane opening of the vane 13, which is necessary when starting the turbo compressor 3 (step S31).
For this purpose, the opening determination unit 102 uses a preset function based on the type of refrigerant used in the centrifugal chiller 1 acquired in step S10 and the detection result of the refrigerant gas pressure acquired in step S20. Accordingly, the density ρ of the refrigerant immediately before starting the turbo compressor 3 is calculated.
 また、開度決定部102は、ステップS10で取得した、許容前後差圧ΔPsb、補正値K、ステップS20で取得したターボ圧縮機3の使用回転数を用い、下式(1)に基づいて、ベーン開度増減係数XBを算出する。
  XB=(ΔPsb×K)/(f(ρ)×XN)  ・・・(1)
 なお、f(ρ)は、冷媒ガスの密度に基づいて、予め定められた関数によって算出される、ターボ圧縮機3の起動時におけるベーン13の基準推定差圧である。記憶部105から読み出すターボ圧縮機3の機器情報には、各機種毎の差(機種差)が含まれる。基準推定差圧は、この機種差を含むためのものであり、ターボ圧縮機3の各機種毎における、制御の基準(ベース)として用いられる。また、XNは、ターボ圧縮機3の回転数に応じて定まるマッハ数の増減係数である。マッハ数(ターボ圧縮機3の回転数)が大きいほど、より多くの冷媒がターボ圧縮機3内に流入し、ベーン13への負荷が増大する。マッハ数の増減係数は、このマッハ数に応じたベーン13への負荷変動を加味するためものである。
Further, the opening determining unit 102 uses the allowable front and rear differential pressure ΔPsb acquired in step S10, the correction value K, and the operating rotation speed of the turbo compressor 3 acquired in step S20, and based on the following formula (1), Calculate the vane opening increase/decrease coefficient XB.
XB=(ΔPsb×K)/(f(ρ)×XN)...(1)
Note that f(ρ) is the reference estimated differential pressure of the vane 13 at the time of startup of the turbo compressor 3, which is calculated by a predetermined function based on the density of the refrigerant gas. The equipment information of the turbo compressor 3 read from the storage unit 105 includes differences between each model (model difference). The reference estimated differential pressure is intended to include this model difference, and is used as a control reference (base) for each model of the turbo compressor 3. Moreover, XN is an increase/decrease coefficient of the Mach number determined according to the rotation speed of the turbo compressor 3. As the Mach number (rotational speed of the turbo compressor 3) increases, more refrigerant flows into the turbo compressor 3, and the load on the vanes 13 increases. The Mach number increase/decrease coefficient is used to take into account load fluctuations on the vanes 13 according to the Mach number.
 開度決定部102は、式(1)によって算出される、ベーン開度増減係数XBに基づき、予め定められた関数f(XB)によって、ターボ圧縮機3を起動させる際に必要な、ベーン13の必要ベーン開度を算出する。ここで、ベーン13は、開度(=角度)が変わると、それに伴い、冷媒(流体)から受ける力(ベーン13を動かすための抵抗力)が変わる。このため、ベーン開度増減係数XBを加味し、ベーン13の必要ベーン開度を算出するのが好ましい。
 このようにしてステップS31で算出されるベーン13の必要ベーン開度は、ステップS20で取得される冷媒ガスの圧力が高いほど、大きくなる。また、ベーン13の必要ベーン開度は、ステップS20で取得されるターボ圧縮機3の使用回転数が高いほど、大きくなる。
The opening determination unit 102 determines the vane 13 necessary for starting the turbo compressor 3 according to a predetermined function f(XB) based on the vane opening increase/decrease coefficient XB calculated by equation (1). Calculate the required vane opening. Here, when the opening degree (=angle) of the vane 13 changes, the force (resistance force for moving the vane 13) received from the refrigerant (fluid) changes accordingly. Therefore, it is preferable to calculate the required vane opening of the vane 13 by taking into account the vane opening increase/decrease coefficient XB.
The required vane opening degree of the vane 13 calculated in step S31 in this manner increases as the pressure of the refrigerant gas acquired in step S20 increases. Further, the required vane opening degree of the vane 13 increases as the operating rotation speed of the turbo compressor 3 obtained in step S20 increases.
 続いて、開度決定部102は、ステップS31で算出されたベーン13の必要ベーン開度が、予め設定されたベーン13の設定開度範囲内に収まっているか否かを確認する。開度決定部102は、予め設定された前記ベーン13の最小開度設定値と最大開度設定値との間に収まるように、前記ベーン13の必要ベーン開度を決定する。
 これにはまず、開度決定部102は、ステップS31で算出されたベーン13の必要ベーン開度が、予め設定された最小開度設定値以上であるか否かを判定する(ステップS32)。
Subsequently, the opening determining unit 102 checks whether the required vane opening of the vane 13 calculated in step S31 falls within a preset opening range of the vane 13. The opening determining unit 102 determines the required vane opening of the vane 13 so that it falls between a preset minimum opening and maximum opening of the vane 13.
To do this, the opening determining unit 102 first determines whether the required vane opening of the vane 13 calculated in step S31 is equal to or greater than a preset minimum opening setting value (step S32).
 ステップS32において、必要ベーン開度が、最小開度設定値以上ではない場合(ステップS32:No)、開度決定部102は、ターボ圧縮機3を起動させる際のベーン13の必要ベーン開度を、最小開度設定値に更新して決定する(ステップS33)。これにより、ターボ圧縮機3を起動させる際に、ベーン13の実開度が、過度に小さくなることを抑える。 In step S32, if the required vane opening is not greater than or equal to the minimum opening setting value (step S32: No), the opening determination unit 102 determines the required vane opening of the vane 13 when starting the turbo compressor 3. , the minimum opening setting value is updated and determined (step S33). Thereby, when starting the turbo compressor 3, the actual opening degree of the vane 13 is prevented from becoming excessively small.
 また、ステップS32において、必要ベーン開度が、最小開度設定値以上であった場合(ステップS32:Yes)、開度決定部102は、ステップS31で算出されたベーン13の必要ベーン開度が、予め設定された最大開度設定値以下であるか否かを判定する(ステップS34)。 Further, in step S32, if the required vane opening is equal to or greater than the minimum opening setting value (step S32: Yes), the opening determination unit 102 determines that the required vane opening of the vane 13 calculated in step S31 is , it is determined whether or not the opening degree is less than or equal to a preset maximum opening setting value (step S34).
 ステップS34において、必要ベーン開度が、最大開度設定値以下ではない場合(ステップS34:No)、開度決定部102は、ターボ圧縮機3を起動させる際のベーン13の必要ベーン開度を、最大開度設定値に更新して決定する(ステップS35)。これにより、ターボ圧縮機3を起動させる際に、ベーン13の実開度が、過度に大きくなることを抑える。 In step S34, if the required vane opening is not less than the maximum opening setting value (step S34: No), the opening determination unit 102 determines the required vane opening of the vane 13 when starting the turbo compressor 3. , the maximum opening setting value is updated and determined (step S35). Thereby, when starting the turbo compressor 3, the actual opening degree of the vane 13 is prevented from becoming excessively large.
 また、ステップS34において、必要ベーン開度が、最大開度設定値以下であった場合(ステップS34:Yes)、開度決定部102は、ステップS31で算出されたベーン13の必要ベーン開度を、そのまま、ターボ圧縮機3を起動させる際のベーン13の必要ベーン開度として決定する(ステップS36)。 Further, in step S34, if the required vane opening is less than or equal to the maximum opening setting value (step S34: Yes), the opening determination unit 102 determines the required vane opening of the vane 13 calculated in step S31. , is determined as the required vane opening degree of the vane 13 when starting the turbo compressor 3 (step S36).
 開度制御部103は、上記のようにして決定された必要ベーン開度に基づいて、開度調整機構17を制御することで、ベーン13の実開度を調整する。その後、冷凍機制御装置100が、ターボ圧縮機3を起動させる。
 冷凍機制御装置100は、ターボ圧縮機3の起動後、ベーン13の開度を、ターボ圧縮機3の使用回転数に合わせて調整する。
The opening control unit 103 adjusts the actual opening of the vane 13 by controlling the opening adjustment mechanism 17 based on the required vane opening determined as described above. After that, the refrigerator control device 100 starts up the turbo compressor 3.
After the turbo compressor 3 is started, the refrigerator control device 100 adjusts the opening degree of the vanes 13 in accordance with the operating rotation speed of the turbo compressor 3.
(作用効果)
 上記構成のターボ冷凍機1、冷凍機制御装置100、ターボ冷凍機の制御方法、プログラムでは、ターボ冷凍機1の起動に際し、少なくとも冷媒ガスの状態量を取得し、取得された状態量に基づいて、ベーン13の開度を制御する。これにより、ターボ冷凍機1の起動時に、ベーン13の開度を、そのときの冷媒ガスの状態に応じたものとすることができる。したがって、起動時における冷媒ガスの状態に関わらず、ターボ冷凍機1の起動性を高めることができる。
(effect)
In the turbo chiller 1, the chiller control device 100, the centrifugal chiller control method, and the program configured as described above, when starting the centrifugal chiller 1, at least the state quantity of the refrigerant gas is acquired, and based on the acquired state quantity, , controls the opening degree of the vane 13. Thereby, when the turbo chiller 1 is started up, the opening degree of the vane 13 can be made in accordance with the state of the refrigerant gas at that time. Therefore, the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
 また、冷媒ガスの状態量として、ターボ圧縮機3に吸入される冷媒ガスの圧力を取得することで、冷媒ガスの密度を算出することができる。これにより、ターボ冷凍機1の起動時における冷媒ガスの密度に応じて、ベーン13の開度を制御することができる。 Furthermore, by acquiring the pressure of the refrigerant gas sucked into the turbo compressor 3 as the state quantity of the refrigerant gas, the density of the refrigerant gas can be calculated. Thereby, the opening degree of the vane 13 can be controlled according to the density of refrigerant gas at the time of startup of the turbo chiller 1.
 さらに、蒸発器9の出口側における冷媒ガスの圧力を圧力センサ120で検出することによって、冷媒ガスの状態量として、ターボ圧縮機3に吸入される冷媒ガスの圧力を容易に取得することができる。 Furthermore, by detecting the pressure of the refrigerant gas on the outlet side of the evaporator 9 with the pressure sensor 120, the pressure of the refrigerant gas sucked into the turbo compressor 3 can be easily obtained as the state quantity of the refrigerant gas. .
 また、ターボ圧縮機3に吸入される冷媒ガスの圧力と、ターボ冷凍機1の定常運転時におけるターボ圧縮機3の使用回転数と、に基づいて、ベーン13に作用する冷媒ガスによる差圧を求めることができる。求められた差圧に基づいて、ベーン13の開度を算出することで、ベーン13に作用する差圧によって、ベーン13の開度調整が妨げられるのを抑えつつ、ベーン13の開度を適切に調整することができる。 Further, the differential pressure caused by the refrigerant gas acting on the vanes 13 is determined based on the pressure of the refrigerant gas sucked into the turbo compressor 3 and the rotational speed of the turbo compressor 3 during steady operation of the turbo refrigerator 1. You can ask for it. By calculating the opening degree of the vane 13 based on the obtained differential pressure, the opening degree of the vane 13 can be adjusted appropriately while preventing the adjustment of the opening degree of the vane 13 from being hindered by the differential pressure acting on the vane 13. can be adjusted to
 また、ベーン13の開度を、最小開度設定値と最大設定値との間に収まるように決定することで、ベーン13の開度を適切に調整することができる。 Further, by determining the opening degree of the vane 13 so that it falls between the minimum opening degree setting value and the maximum opening degree setting value, the opening degree of the vane 13 can be appropriately adjusted.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、ターボ冷凍機1の制御方法の手順を例示したが、その順序は適宜変更可能である。
(Other embodiments)
Although the embodiment of the present disclosure has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes within the scope of the gist of the present disclosure. .
In addition, in the said embodiment, although the procedure of the control method of the centrifugal chiller 1 was illustrated, the order can be changed suitably.
 また、上記実施形態でコンピュータが実行するプログラムの一部または全部は、コンピュータが読取可能な記録媒体や通信回線を介して頒布することができる。 Further, part or all of the program executed by the computer in the above embodiments can be distributed via a computer-readable recording medium or a communication line.
<付記>
 実施形態に記載のターボ冷凍機1、冷凍機制御装置100、ターボ冷凍機1の制御方法、プログラムは、例えば以下のように把握される。
<Additional notes>
The centrifugal chiller 1, the chiller control device 100, the control method and program for the centrifugal chiller 1 described in the embodiment can be understood, for example, as follows.
(1)第1の態様に係るターボ冷凍機1は、冷媒ガスを圧縮するターボ圧縮機3と、前記ターボ圧縮機3に吸入される前記冷媒ガスの流量を調整可能なベーン13と、前記ターボ圧縮機3によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器5と、前記凝縮器5から導かれた液冷媒を膨張させる膨張弁7と、前記膨張弁7によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器9と、冷凍機制御装置100と、を備え、前記冷凍機制御装置100は、前記ターボ冷凍機1の起動に際し、少なくとも前記冷媒ガスの状態量を取得する取得部101と、取得された前記状態量に基づき、前記ベーン13の開度を決定する開度決定部102と、決定された前記開度に基づき、前記ベーン13の開度を制御する開度制御部103と、を備える。 (1) The turbo chiller 1 according to the first aspect includes a turbo compressor 3 that compresses refrigerant gas, vanes 13 that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor 3, and the turbo A condenser 5 that radiates heat and condenses the refrigerant gas compressed by the compressor 3 through heat exchange, an expansion valve 7 that expands the liquid refrigerant led from the condenser 5, and a liquid expanded by the expansion valve 7. The refrigerator control device 100 includes an evaporator 9 that absorbs heat from the refrigerant and evaporates it by heat exchange, and a refrigerator control device 100, and the refrigerator control device 100 controls at least the state quantity of the refrigerant gas when starting the turbo refrigerator 1. An acquisition unit 101 that acquires information, an opening determination unit 102 that determines the opening degree of the vane 13 based on the acquired state quantity, and an opening degree determination unit 102 that controls the opening degree of the vane 13 based on the determined opening degree. An opening control section 103 is provided.
 このターボ冷凍機1は、ターボ冷凍機1の起動に際し、少なくとも冷媒ガスの状態量を取得し、取得された状態量に基づいて、ベーン13の開度を制御する。これにより、ターボ冷凍機1の起動時に、ベーン13の開度を、そのときの冷媒ガスの状態に応じたものとすることができる。したがって、起動時における冷媒ガスの状態に関わらず、ターボ冷凍機1の起動性を高めることができる。 This turbo chiller 1 acquires at least the state quantity of the refrigerant gas when starting the centrifugal chiller 1, and controls the opening degree of the vanes 13 based on the acquired state quantity. Thereby, when the turbo chiller 1 is started up, the opening degree of the vane 13 can be made in accordance with the state of the refrigerant gas at that time. Therefore, the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
(2)第2の態様に係るターボ冷凍機1は、(1)のターボ冷凍機1であって、前記取得部101は、前記冷媒ガスの状態量として、前記ターボ圧縮機3に吸入される前記冷媒ガスの圧力、及び温度の少なくとも一つを取得する。 (2) The centrifugal chiller 1 according to the second aspect is the centrifugal chiller 1 of (1), in which the acquisition unit 101 is configured to absorb the refrigerant gas into the turbo compressor 3 as a state quantity. At least one of the pressure and temperature of the refrigerant gas is acquired.
 これにより、冷媒ガスの状態量として、ターボ圧縮機3に吸入される冷媒ガスの圧力、及び温度の少なくとも一つを取得することで、ターボ冷凍機1の起動時における冷媒ガスの状態に応じて、ベーン13の開度を制御することができる。 As a result, by acquiring at least one of the pressure and temperature of the refrigerant gas sucked into the turbo compressor 3 as the state quantity of the refrigerant gas, the refrigerant gas can be adjusted according to the state of the refrigerant gas at the time of startup of the turbo chiller 1. , the opening degree of the vane 13 can be controlled.
(3)第3の態様に係るターボ冷凍機1は、(2)のターボ冷凍機1であって、前記蒸発器9の出口側における前記冷媒ガスの圧力を検出する圧力センサ120を備え、前記取得部101は、前記圧力センサ120で検出される前記冷媒ガスの圧力を、前記冷媒ガスの状態量として取得する。 (3) A centrifugal chiller 1 according to a third aspect is the centrifugal chiller 1 according to (2), and includes a pressure sensor 120 that detects the pressure of the refrigerant gas on the outlet side of the evaporator 9. The acquisition unit 101 acquires the pressure of the refrigerant gas detected by the pressure sensor 120 as a state quantity of the refrigerant gas.
 これにより、蒸発器9の出口側における冷媒ガスの圧力を圧力センサ120で検出することによって、冷媒ガスの状態量として、ターボ圧縮機3に吸入される冷媒ガスの圧力を容易に取得することができる。 Thereby, by detecting the pressure of the refrigerant gas on the outlet side of the evaporator 9 with the pressure sensor 120, the pressure of the refrigerant gas sucked into the turbo compressor 3 can be easily obtained as the state quantity of the refrigerant gas. can.
(4)第4の態様に係るターボ冷凍機1は、(2)又は(3)のターボ冷凍機1であって、前記取得部101は、前記ターボ冷凍機1の定常運転時における前記ターボ圧縮機3の運転回転数を取得し、前記開度決定部102は、前記ベーン13における前記冷媒ガスの吸い込み方向上流側と下流側との差圧に基づき、前記ベーン13の開度を算出する。 (4) The turbo chiller 1 according to the fourth aspect is the turbo chiller 1 of (2) or (3), and the acquisition unit 101 is configured to perform the turbo chiller 1 during steady operation of the turbo chiller 1. The opening degree determination unit 102 obtains the operating rotation speed of the machine 3 and calculates the opening degree of the vane 13 based on the differential pressure between the upstream side and the downstream side of the vane 13 in the suction direction of the refrigerant gas.
 これにより、ターボ圧縮機3に吸入される冷媒ガスの圧力、温度の少なくとも一つと、ターボ冷凍機1の定常運転時における前記ターボ圧縮機3の運転回転数と、に基づいて、ベーン13における冷媒ガスの吸い込み方向上流側と下流側との差圧を求めることができる。求められた差圧に基づいて、ベーン13の開度を算出することで、ベーン13に作用する差圧によって、ベーン13の開度調整が妨げられるのを抑えつつ、ベーン13の開度を適切に調整することができる。 Thereby, the refrigerant in the vane 13 is determined based on at least one of the pressure and temperature of the refrigerant gas sucked into the turbo compressor 3 and the operating rotation speed of the turbo compressor 3 during steady operation of the turbo refrigerator 1. The differential pressure between the upstream side and the downstream side in the gas suction direction can be determined. By calculating the opening degree of the vane 13 based on the obtained differential pressure, the opening degree of the vane 13 can be adjusted appropriately while preventing the adjustment of the opening degree of the vane 13 from being hindered by the differential pressure acting on the vane 13. can be adjusted to
(5)第5の態様に係るターボ冷凍機1は、(1)から(4)の何れか一つのターボ冷凍機1であって、前記開度決定部102は、予め設定された前記ベーン13の開度の最小設定値と最大設定値との間に収まるように、前記ベーン13の開度を決定する。 (5) The centrifugal chiller 1 according to the fifth aspect is the centrifugal chiller 1 according to any one of (1) to (4), in which the opening degree determining unit 102 The opening degree of the vane 13 is determined so that it falls between the minimum setting value and the maximum setting value of the opening degree.
 これにより、ベーン13の開度を、最小設定値と最大設定値との間に収まるように決定することで、ベーン13の開度を適切に調整することができる。 Thereby, the opening degree of the vane 13 can be appropriately adjusted by determining the opening degree of the vane 13 to fall between the minimum setting value and the maximum setting value.
(6)第6の態様に係る冷凍機制御装置100は、冷媒ガスを圧縮するターボ圧縮機3と、前記ターボ圧縮機3に吸入される前記冷媒ガスの流量を調整可能なベーン13と、前記ターボ圧縮機3によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器5と、前記凝縮器5から導かれた液冷媒を膨張させる膨張弁7と、前記膨張弁7によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器9と、を備えたターボ冷凍機1の冷凍機制御装置100であって、前記ターボ冷凍機1の起動に際し、少なくとも前記冷媒ガスの状態量を取得する取得部101と、取得された前記状態量に基づき、前記ベーン13の開度を決定する開度決定部102と、決定された前記開度に基づき、前記ベーン13の開度を制御する開度制御部103と、を備える。 (6) The refrigerator control device 100 according to the sixth aspect includes a turbo compressor 3 that compresses refrigerant gas, a vane 13 that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor 3, and the A condenser 5 that radiates heat and condenses the refrigerant gas compressed by the turbo compressor 3 through heat exchange, an expansion valve 7 that expands the liquid refrigerant led from the condenser 5, A refrigerator control device 100 for a turbo chiller 1 comprising an evaporator 9 that absorbs heat from a liquid refrigerant through heat exchange and evaporates the liquid refrigerant. An acquisition unit 101 that acquires information, an opening determination unit 102 that determines the opening degree of the vane 13 based on the acquired state quantity, and an opening degree determination unit 102 that controls the opening degree of the vane 13 based on the determined opening degree. An opening control section 103 is provided.
 これにより、起動時における冷媒ガスの状態に関わらず、ターボ冷凍機1の起動性を高めることができる。 Thereby, the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
(7)第7の態様に係るターボ冷凍機1の制御方法は、冷媒ガスを圧縮するターボ圧縮機3と、前記ターボ圧縮機3に吸入される前記冷媒ガスの流量を調整可能なベーン13と、前記ターボ圧縮機3によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器5と、前記凝縮器5から導かれた液冷媒を膨張させる膨張弁7と、前記膨張弁7によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器9と、を備えたターボ冷凍機1の制御方法であって、前記ターボ冷凍機1の起動に際し、少なくとも前記冷媒ガスの状態量を取得し、取得された前記状態量に基づき、前記ベーン13の開度を決定し、決定された前記開度に基づき、前記ベーン13の開度を制御する。 (7) A method for controlling a turbo chiller 1 according to a seventh aspect includes a turbo compressor 3 that compresses refrigerant gas, and a vane 13 that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor 3. , a condenser 5 that radiates heat and condenses the refrigerant gas compressed by the turbo compressor 3 through heat exchange; an expansion valve 7 that expands the liquid refrigerant guided from the condenser 5; an evaporator 9 that absorbs heat from the liquid refrigerant and evaporates it through heat exchange; Then, the opening degree of the vane 13 is determined based on the obtained state quantity, and the opening degree of the vane 13 is controlled based on the determined opening degree.
 これにより、起動時における冷媒ガスの状態に関わらず、ターボ冷凍機1の起動性を高めることができる。 Thereby, the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
(8)第8の態様に係るプログラムは、冷媒ガスを圧縮するターボ圧縮機3と、前記ターボ圧縮機3に吸入される前記冷媒ガスの流量を調整可能なベーン13と、前記ターボ圧縮機3によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器5と、前記凝縮器5から導かれた液冷媒を膨張させる膨張弁7と、前記膨張弁7によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器9と、を有するターボ冷凍機1が備えるコンピュータに、前記ターボ冷凍機1の起動に際し、少なくとも前記冷媒ガスの状態量を取得する手順、取得された前記状態量に基づき、前記ベーン13の開度を決定する手順、決定された前記開度に基づき、前記ベーン13の開度を制御する手順、を実行させる。 (8) The program according to the eighth aspect includes a turbo compressor 3 that compresses refrigerant gas, a vane 13 that can adjust the flow rate of the refrigerant gas sucked into the turbo compressor 3, and the turbo compressor 3. a condenser 5 that radiates heat and condenses the refrigerant gas compressed by the compressor by heat exchange; an expansion valve 7 that expands the liquid refrigerant led from the condenser 5; and an expansion valve 7 that expands the liquid refrigerant expanded by the expansion valve 7. An evaporator 9 that absorbs heat and evaporates through exchange, and a computer equipped with a turbo chiller 1 is provided with a procedure for acquiring at least the state quantity of the refrigerant gas when starting the centrifugal chiller 1, and the acquired state quantity. Based on this, a procedure for determining the opening degree of the vane 13 and a procedure for controlling the opening degree of the vane 13 based on the determined opening degree are executed.
 これにより、起動時における冷媒ガスの状態に関わらず、ターボ冷凍機1の起動性を高めることができる。 Thereby, the startup performance of the turbo chiller 1 can be improved regardless of the state of the refrigerant gas at the time of startup.
 本開示のターボ冷凍機、冷凍機制御装置、ターボ冷凍機の制御方法、プログラムによれば、起動時における冷媒ガスの状態に関わらず、起動性を高めることができる。 The turbo chiller, chiller control device, turbo chiller control method, and program disclosed herein can improve start-up performance regardless of the state of the refrigerant gas at the time of startup.
1…ターボ冷凍機
3…ターボ圧縮機
3a…羽根車
3b…回転軸
3c…軸受
5…凝縮器
7…膨張弁
9…蒸発器
11…電動機
13…ベーン
15…増速機
17…開度調整機構
100…冷凍機制御装置
101…取得部
102…開度決定部
103…開度制御部
105…記憶部
120…圧力センサ
1... Turbo chiller 3... Turbo compressor 3a... Impeller 3b... Rotating shaft 3c... Bearing 5... Condenser 7... Expansion valve 9... Evaporator 11... Electric motor 13... Vane 15... Speed increaser 17... Opening adjustment mechanism 100... Refrigerator control device 101... Acquisition unit 102... Opening degree determination unit 103... Opening degree control unit 105... Storage unit 120... Pressure sensor

Claims (8)

  1.  冷媒ガスを圧縮するターボ圧縮機と、
     前記ターボ圧縮機に吸入される前記冷媒ガスの流量を調整可能なベーンと、
     前記ターボ圧縮機によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器と、
     前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
     前記膨張弁によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器と、
     冷凍機制御装置と、を備え、
     前記冷凍機制御装置は、
     ターボ冷凍機の起動に際し、少なくとも前記冷媒ガスの状態量を取得する取得部と、
     取得された前記状態量に基づき、前記ベーンの開度を決定する開度決定部と、
     決定された前記開度に基づき、前記ベーンの開度を制御する開度制御部と、を備える
    ターボ冷凍機。
    a turbo compressor that compresses refrigerant gas;
    a vane capable of adjusting the flow rate of the refrigerant gas sucked into the turbo compressor;
    a condenser that radiates heat and condenses the refrigerant gas compressed by the turbo compressor through heat exchange;
    an expansion valve that expands the liquid refrigerant led from the condenser;
    an evaporator that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve through heat exchange;
    A refrigerator control device;
    The refrigerator control device includes:
    an acquisition unit that acquires at least the state quantity of the refrigerant gas when starting the centrifugal chiller;
    an opening determining unit that determines the opening of the vane based on the obtained state quantity;
    A centrifugal refrigerator comprising: an opening degree control section that controls the opening degree of the vane based on the determined opening degree.
  2.  前記取得部は、前記冷媒ガスの状態量として、前記ターボ圧縮機に吸入される前記冷媒ガスの圧力、及び温度の少なくとも一つを取得する
     請求項1に記載のターボ冷凍機。
    The turbo chiller according to claim 1, wherein the acquisition unit acquires at least one of the pressure and temperature of the refrigerant gas sucked into the turbo compressor as the state quantity of the refrigerant gas.
  3.  前記蒸発器の出口側における前記冷媒ガスの圧力を検出する圧力センサを備え、
     前記取得部は、前記圧力センサで検出される前記冷媒ガスの圧力を、前記冷媒ガスの状態量として取得する
     請求項2に記載のターボ冷凍機。
    comprising a pressure sensor that detects the pressure of the refrigerant gas on the outlet side of the evaporator,
    The turbo chiller according to claim 2, wherein the acquisition unit acquires the pressure of the refrigerant gas detected by the pressure sensor as a state quantity of the refrigerant gas.
  4.  前記取得部は、前記ターボ冷凍機の定常運転時における前記ターボ圧縮機の運転回転数を取得し、
     前記開度決定部は、前記ベーンにおける前記冷媒ガスの吸い込み方向上流側と下流側との差圧に基づき、前記ベーンの開度を算出する
     請求項2又は3に記載のターボ冷凍機。
    The acquisition unit acquires the operating rotation speed of the turbo compressor during steady operation of the turbo chiller,
    The centrifugal chiller according to claim 2 or 3, wherein the opening degree determination unit calculates the opening degree of the vane based on a differential pressure between an upstream side and a downstream side of the vane in the suction direction of the refrigerant gas.
  5.  前記開度決定部は、予め設定された前記ベーンの開度の最小開度設定値と最大開度設定値との間に収まるように、前記ベーンの開度を決定する
     請求項1又は2に記載のターボ冷凍機。
    The opening degree determining unit determines the opening degree of the vane so that the opening degree falls between a preset minimum opening degree setting value and a maximum opening degree setting value of the opening degree of the vane. The mentioned centrifugal refrigerator.
  6.  冷媒ガスを圧縮するターボ圧縮機と、
     前記ターボ圧縮機に吸入される前記冷媒ガスの流量を調整可能なベーンと、
     前記ターボ圧縮機によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器と、
     前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
     前記膨張弁によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器と、
     を備えたターボ冷凍機の冷凍機制御装置であって、
     前記ターボ冷凍機の起動に際し、少なくとも前記冷媒ガスの状態量を取得する取得部と、
     取得された前記状態量に基づき、前記ベーンの開度を決定する開度決定部と、
     決定された前記開度に基づき、前記ベーンの開度を制御する開度制御部と、を備える
     冷凍機制御装置。
    a turbo compressor that compresses refrigerant gas;
    a vane capable of adjusting the flow rate of the refrigerant gas sucked into the turbo compressor;
    a condenser that radiates heat and condenses the refrigerant gas compressed by the turbo compressor through heat exchange;
    an expansion valve that expands the liquid refrigerant led from the condenser;
    an evaporator that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve through heat exchange;
    A refrigerator control device for a turbo refrigerator, comprising:
    an acquisition unit that acquires at least the state quantity of the refrigerant gas when starting the centrifugal chiller;
    an opening determining unit that determines the opening of the vane based on the obtained state quantity;
    A refrigerator control device, comprising: an opening degree control section that controls the opening degree of the vane based on the determined opening degree.
  7.  冷媒ガスを圧縮するターボ圧縮機と、
     前記ターボ圧縮機に吸入される前記冷媒ガスの流量を調整可能なベーンと、
     前記ターボ圧縮機によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器と、
     前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
     前記膨張弁によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器と、
     を備えたターボ冷凍機の制御方法であって、
     前記ターボ冷凍機の起動に際し、少なくとも前記冷媒ガスの状態量を取得し、
     取得された前記状態量に基づき、前記ベーンの開度を決定し、
     決定された前記開度に基づき、前記ベーンの開度を制御する、
     ターボ冷凍機の制御方法。
    A turbo compressor that compresses a refrigerant gas;
    a vane capable of adjusting a flow rate of the refrigerant gas sucked into the turbo compressor;
    a condenser that condenses the refrigerant gas compressed by the turbo compressor by dissipating heat through heat exchange;
    an expansion valve for expanding the liquid refrigerant guided from the condenser;
    an evaporator that absorbs heat from the liquid refrigerant expanded by the expansion valve and evaporates it through heat exchange;
    A method for controlling a turbo chiller comprising:
    At the start-up of the turbo chiller, at least a state quantity of the refrigerant gas is acquired;
    determining an opening degree of the vane based on the acquired state quantity;
    controlling the opening degree of the vane based on the determined opening degree;
    A method for controlling a turbo chiller.
  8.  冷媒ガスを圧縮するターボ圧縮機と、
     前記ターボ圧縮機に吸入される前記冷媒ガスの流量を調整可能なベーンと、
     前記ターボ圧縮機によって圧縮された冷媒ガスを熱交換により放熱させて凝縮させる凝縮器と、
     前記凝縮器から導かれた液冷媒を膨張させる膨張弁と、
     前記膨張弁によって膨張された液冷媒を熱交換により吸熱させて蒸発させる蒸発器と、
     を有するターボ冷凍機が備えるコンピュータに、
     前記ターボ冷凍機の起動に際し、少なくとも前記冷媒ガスの状態量を取得する手順、
     取得された前記状態量に基づき、前記ベーンの開度を決定する手順、
     決定された前記開度に基づき、前記ベーンの開度を制御する手順、
     を実行させるためのプログラム。
    a turbo compressor that compresses refrigerant gas;
    a vane capable of adjusting the flow rate of the refrigerant gas sucked into the turbo compressor;
    a condenser that radiates heat and condenses the refrigerant gas compressed by the turbo compressor through heat exchange;
    an expansion valve that expands the liquid refrigerant led from the condenser;
    an evaporator that absorbs heat and evaporates the liquid refrigerant expanded by the expansion valve through heat exchange;
    A computer included in a centrifugal refrigerator having
    a step of acquiring at least the state quantity of the refrigerant gas when starting the centrifugal chiller;
    a step of determining the opening degree of the vane based on the obtained state quantity;
    a procedure for controlling the opening degree of the vane based on the determined opening degree;
    A program to run.
PCT/JP2022/037979 2022-09-12 2022-10-12 Turbo refrigerator, refrigerator control device, turbo refrigerator control method, and program WO2024057556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-144367 2022-09-12
JP2022144367A JP2024039765A (en) 2022-09-12 2022-09-12 Turbo chiller, chiller control device, turbo chiller control method, program

Publications (1)

Publication Number Publication Date
WO2024057556A1 true WO2024057556A1 (en) 2024-03-21

Family

ID=90274680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037979 WO2024057556A1 (en) 2022-09-12 2022-10-12 Turbo refrigerator, refrigerator control device, turbo refrigerator control method, and program

Country Status (2)

Country Link
JP (1) JP2024039765A (en)
WO (1) WO2024057556A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281642A (en) * 1976-12-06 1977-07-08 Ebara Corp Turbo type refriegerator
JPS5415548A (en) * 1977-07-06 1979-02-05 Mitsubishi Heavy Ind Ltd Turbo refrigerating device
JP2003287295A (en) * 2002-03-28 2003-10-10 Mitsubishi Heavy Ind Ltd Capacity-controlled driving mechanism for turbo refrigerator
JP2009186030A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Turbo refrigerator
JP2011241760A (en) * 2010-05-18 2011-12-01 Mitsubishi Heavy Ind Ltd Motor-driven compressor, heat source machine, and method of controlling the heat source machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281642A (en) * 1976-12-06 1977-07-08 Ebara Corp Turbo type refriegerator
JPS5415548A (en) * 1977-07-06 1979-02-05 Mitsubishi Heavy Ind Ltd Turbo refrigerating device
JP2003287295A (en) * 2002-03-28 2003-10-10 Mitsubishi Heavy Ind Ltd Capacity-controlled driving mechanism for turbo refrigerator
JP2009186030A (en) * 2008-02-01 2009-08-20 Daikin Ind Ltd Turbo refrigerator
JP2011241760A (en) * 2010-05-18 2011-12-01 Mitsubishi Heavy Ind Ltd Motor-driven compressor, heat source machine, and method of controlling the heat source machine

Also Published As

Publication number Publication date
JP2024039765A (en) 2024-03-25

Similar Documents

Publication Publication Date Title
JP6454564B2 (en) Turbo refrigerator
JP5633737B2 (en) Air conditioner
JP6606280B2 (en) Centrifugal compressor for surge suppression by adjusting the flow rate and shifting the impeller axially
US10724773B2 (en) Turbo freezing machine and start-up control method therefor
CN106662364A (en) Refrigerant cooling for variable speed drive
US11346589B2 (en) Refrigeration machine control device, turbo refrigeration machine, refrigeration machine control method, and program
JP4767133B2 (en) Refrigeration cycle equipment
WO2024057556A1 (en) Turbo refrigerator, refrigerator control device, turbo refrigerator control method, and program
EP2751430B1 (en) Capacity control system and method for centrifugal compressor
JP2016036900A (en) Oil cooler and method for control of motor-operated valve in oil cooler
US10060298B2 (en) Thermal energy recovery device and start-up method thereof
US20210033316A1 (en) Oil pump control device, control method, control program, and turbo refrigerator
US11852150B2 (en) Gas bearing management for a compressor
JP2017122545A (en) Water heater
JP6938321B2 (en) Centrifugal chiller and its start control method
WO2020008916A1 (en) Refrigeration cycle device and method for controlling same
JP2019127827A (en) Turbo compressor
JP5519454B2 (en) Turbo refrigerator and method of remodeling turbo refrigerator
KR20200023836A (en) Method and apparatus for compressor
CN114857761B (en) Air Conditioning System
JP2010216678A (en) Refrigerating device
JP2003028516A (en) Refrigerating cycle controller
KR102057094B1 (en) Method for controlling compressor of air conditioner for vehicle
KR20050120396A (en) Air conditioner capable of continuous cooling operation
JP2008133967A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22958874

Country of ref document: EP

Kind code of ref document: A1