WO2024057552A1 - Terminal and communication method - Google Patents
Terminal and communication method Download PDFInfo
- Publication number
- WO2024057552A1 WO2024057552A1 PCT/JP2022/034848 JP2022034848W WO2024057552A1 WO 2024057552 A1 WO2024057552 A1 WO 2024057552A1 JP 2022034848 W JP2022034848 W JP 2022034848W WO 2024057552 A1 WO2024057552 A1 WO 2024057552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- resource
- information
- sci
- communication
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims description 108
- 238000000034 method Methods 0.000 title claims description 42
- 230000005540 biological transmission Effects 0.000 abstract description 79
- 238000010586 diagram Methods 0.000 description 46
- 230000006870 function Effects 0.000 description 28
- 238000012545 processing Methods 0.000 description 21
- 238000010408 sweeping Methods 0.000 description 13
- 230000000737 periodic effect Effects 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 230000004044 response Effects 0.000 description 10
- 238000013468 resource allocation Methods 0.000 description 8
- 238000007726 management method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 5
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- 102100036409 Activated CDC42 kinase 1 Human genes 0.000 description 4
- 230000010267 cellular communication Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 238000011867 re-evaluation Methods 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000013507 mapping Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
- H04W16/28—Cell structures using beam steering
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/18—Interfaces between hierarchically similar devices between terminal devices
Definitions
- the present invention relates to a terminal and a communication method in a wireless communication system.
- D2D is a system in which terminals communicate directly with each other without going through a base station.
- LTE-A Long Term Evolution Advanced
- NR New Radio
- 5G 5th Generation
- Non-Patent Document 1 Non-Patent Document 1
- D2D reduces traffic between terminals and base stations, and enables communication between terminals even if the base station becomes unable to communicate during a disaster or the like.
- D2D is referred to as "sidelink,” but in this specification, the more general term D2D is used. However, in the description of the embodiments to be described later, side links will also be used as necessary.
- D2D communication consists of D2D discovery (also called D2D discovery) for discovering other terminals that can communicate with each other, and D2D communication (D2D direct communication, direct communication between terminals) for direct communication between terminals. (also referred to as communications, etc.).
- D2D discovery also called D2D discovery
- D2D communication D2D direct communication, direct communication between terminals
- communications also referred to as communications, etc.
- Non-Patent Document 3 the use of a higher frequency band than in conventional releases is being considered.
- the frequency band from 52.6 GHz to 71 GHz applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, failures expected in actual wireless communication, etc. are being considered.
- 3GPP TS 38.211 V17.2.0 (2022-06) 3GPP TR 22.886 V15.1.0 (2017-03) 3GPP TS 38.306 V17.1.0 (2022-06) 3GPP TS 38.212 V17.2.0 (2022-06) 3GPP TS 38.214 V17.2.0 (2022-06)
- functions related to beam management were not supported.
- the present invention has been made in view of the above points, and aims to apply suitable beamforming in direct communication between terminals.
- a control unit that specifies a period for repeatedly transmitting control information, and a control unit that specifies a period for repeatedly transmitting control information, and a control unit that specifies a period for repeatedly transmitting control information, transmit the same control information, and transmit information regarding a beam.
- a terminal is provided that has a transmitter that transmits multiple times while switching.
- suitable beamforming can be applied in direct communication between terminals.
- FIG. 3 is a diagram showing an example of sensing operation. 3 is a flowchart for explaining an example of preemption operation. FIG. 3 is a diagram illustrating an example of preemption operation.
- FIG. 6 is a diagram illustrating an example of partial sensing operation.
- FIG. 3 is a diagram for explaining an example of periodic partial sensing.
- FIG. 3 is a diagram for explaining an example of continuous partial sensing.
- FIG. 3 is a diagram for explaining an example (1) of SCI transmission in the embodiment of the present invention.
- FIG. 7 is a diagram for explaining example (2) of SCI transmission in the embodiment of the present invention.
- FIG. 7 is a diagram for explaining example (3) of SCI transmission in the embodiment of the present invention.
- FIG. 3 is a diagram for explaining an example of data transmission in an embodiment of the present invention.
- FIG. 3 is a diagram for explaining an example of beam sweeping in an embodiment of the present invention.
- FIG. 6 is a diagram for explaining an example (1) in which beams to be applied are limited by resources in an embodiment of the present invention.
- FIG. 7 is a diagram for explaining an example (2) in which beams to be applied are limited by resources in the embodiment of the present invention.
- FIG. 7 is a diagram for explaining an example (3) in which beams to be applied are limited by resources in the embodiment of the present invention.
- 1 is a diagram showing an example of a functional configuration of a base station 10 in an embodiment of the present invention. It is a diagram showing an example of a functional configuration of a terminal 20 in an embodiment of the present invention.
- FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention. It is a figure showing an example of composition of vehicle 2001 in an embodiment of the present invention.
- LTE Long Term Evolution
- NR Universal Terrestrial Radio Access
- LAN Local Area Network
- the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
- configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
- FIG. 1 is a diagram for explaining V2X.
- V2X Vehicle to Everything
- eV2X enhanced V2X
- V2I Vehicle to Infrastructure
- V2N Vehicle to Network
- V2P Vehicle to Pedestrian
- V2X using LTE or NR cellular communication and terminal-to-terminal communication is being considered.
- V2X using cellular communication is also called cellular V2X.
- studies are underway to realize large capacity, low latency, high reliability, and QoS (Quality of Service) control.
- the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, the communication device may be a base station, RSU, relay station (relay node), It may also be a terminal or the like that has scheduling capability.
- SL may be distinguished from UL (Uplink) or DL (Downlink) based on any one or a combination of 1) to 4) below. Moreover, SL may have another name. 1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal)) 4) Reference signal used for path loss measurement for transmission power control
- OFDM Orthogonal Frequency Division Multiplexing
- CP-OFDM Cyclic-Prefix OFDM
- DFT-S-OFDM Discrete Fourier Transform - Spread - OFDM
- Mode 3 and Mode 4 are defined regarding SL resource allocation to the terminal 20.
- transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20.
- DCI Downlink Control Information
- SPS Semi Persistent Scheduling
- the terminal 20 autonomously selects transmission resources from the resource pool.
- the slot in the embodiment of the present invention may be read as a symbol, minislot, subframe, radio frame, or TTI (Transmission Time Interval).
- a cell in an embodiment of the present invention may be read as a cell group, a carrier component, a BWP, a resource pool, a resource, a RAT (Radio Access Technology), a system (including a wireless LAN), or the like.
- the terminal 20 is not limited to a V2X terminal, but may be any type of terminal that performs D2D communication.
- the terminal 20 may be a terminal owned by a user such as a smartphone, or may be an IoT (Internet of Things) device such as a smart meter.
- IoT Internet of Things
- HARQ Hybrid automatic repeat request
- SFCI Segmentlink Feedback Control Information
- PSFCH Physical Sidelink Feedback Channel
- PSFCH is used in transmitting HARQ-ACK on the side link, but this is just an example.
- PSCCH may be used to transmit HARQ-ACK on the side link
- PSSCH may be used to transmit HARQ-ACK on the side link
- other channels may be used to transmit HARQ-ACK on the side link.
- HARQ-ACK may be transmitted on the side link using the HARQ-ACK.
- HARQ-ACK all information reported by the terminal 20 in HARQ will be referred to as HARQ-ACK.
- This HARQ-ACK may be referred to as HARQ-ACK information.
- a codebook applied to HARQ-ACK information reported from the terminal 20 to the base station 10 etc. is called a HARQ-ACK codebook.
- the HARQ-ACK codebook defines a bit string of HARQ-ACK information. Note that with "HARQ-ACK", in addition to ACK, NACK is also transmitted.
- FIG. 2 is a sequence diagram showing an example of V2X operation (1).
- the wireless communication system may include a terminal 20A and a terminal 20B.
- FIG. 2 shows a terminal 20A and a terminal 20B as an example.
- terminal 20 or "user device.”
- FIG. 2 shows, as an example, a case where both the terminal 20A and the terminal 20B are within the coverage of the cell, the operation in the embodiment of the present invention can also be applied when the terminal 20B is outside the coverage.
- the terminal 20 is a device mounted on a vehicle such as a car, and has a cellular communication function as a UE in LTE or NR, and a side link function. There is.
- the terminal 20 may be a general mobile terminal (such as a smartphone). Further, the terminal 20 may be an RSU.
- the RSU may be a UE type RSU having UE functionality, or a gNB type RSU having base station device functionality.
- the terminal 20 does not need to be a device in one housing, and for example, even if various sensors are distributed and arranged within the vehicle, the terminal 20 may be a device including the various sensors.
- the processing content of the side link transmission data of the terminal 20 is basically the same as the processing content of UL transmission in LTE or NR.
- the terminal 20 scrambles and modulates the codeword of the transmission data to generate complex-valued symbols, maps the complex-valued symbols (transmission signal) to one or two layers, and performs precoding.
- the precoded complex-valued symbols are then mapped to resource elements to generate transmission signals (e.g., complex-valued time-domain SC-FDMA signals) and transmitted from each antenna port.
- the base station 10 has a cellular communication function as a base station in LTE or NR, and a function to enable communication of the terminal 20 in this embodiment (e.g., resource pool setting, resource allocation, etc.). have. Further, the base station 10 may be an RSU (gNB type RSU).
- RSU gNB type RSU
- the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or other signal waveform. It may be.
- S-SSB may include S-PSS (Sidelink Primary Synchronization Signal), S-SSS (Sidelink Secondary Synchronization Signal), and PSBCH (Physical Sidelink Broadcast Channel).
- S-PSS Sidelink Primary Synchronization Signal
- S-SSS Sidelink Secondary Synchronization Signal
- PSBCH Physical Sidelink Broadcast Channel
- the terminal 20 transmits the S-SSB to another terminal 20 based on a signal received from the base station device 10, a GNSS (Global Navigation Satellite System) signal, or a signal received from another terminal 20. Note that if the terminal 20 cannot transmit S-SSB based on any signal from the base station device 10, GNSS, or another terminal 20, the terminal 20 transmits the autonomously determined S-SSB to the other terminal 20. You can also send it to
- the resources available for S-SSB may be periodic slots and may be referred to as S-SSB opportunities.
- step S101 the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period.
- a resource selection window may be set from the base station 10 to the terminal 20.
- the period may be defined by terminal implementation conditions such as processing time or maximum allowable packet delay time, or the period may be defined in advance by specifications,
- the predetermined period may be called an interval in the time domain.
- the terminal 20A uses the resources autonomously selected in step S101 to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH.
- SCI Segment Control Information
- the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH, and using a frequency resource that is adjacent to or not adjacent to the frequency resource of the PSSCH.
- the terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
- the received SCI may include information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data.
- the terminal 20A may include information on the autonomously selected resource in the SCI and transmit it. Note that the resources available for the PSFCH may be periodic slots and symbols at the end (excluding the final symbol) within the slot, and may be referred to as PSFCH opportunities.
- step S104 the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
- step S105 the terminal 20A retransmits the PSCCH and PSSCH to the terminal 20B if the HARQ-ACK received in step S104 indicates a request for retransmission, that is, if it is a NACK (negative response).
- the terminal 20A may retransmit the PSCCH and PSSCH using autonomously selected resources.
- step S104 and step S105 may not be performed.
- FIG. 3 is a sequence diagram showing an example (2) of V2X operation. Blind retransmission without HARQ control may be performed to improve transmission success rate or reach.
- step S201 the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period.
- a resource selection window may be set from the base station 10 to the terminal 20.
- the terminal 20A uses the resources autonomously selected in step S201 to transmit SCI on the PSCCH and/or PSSCH, and also transmits SL data on the PSSCH.
- the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
- step S204 the terminal 20A uses the resources autonomously selected in step S201 to retransmit the SCI on the PSCCH and/or PSSCH and the SL data on the PSSCH to the terminal 20B.
- the retransmission in step S204 may be performed multiple times.
- step S204 may not be performed.
- FIG. 4 is a sequence diagram showing an example (3) of V2X operation.
- the base station 10 may perform sidelink scheduling. That is, the base station 10 may determine the side link resource used by the terminal 20 and transmit information indicating the resource to the terminal 20. Furthermore, when HARQ control with HARQ feedback is applied, the base station 10 may transmit information indicating PSFCH resources to the terminal 20.
- step S301 the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A via PDCCH.
- DCI Downlink Control Information
- the DCI for SL scheduling will be referred to as SL scheduling DCI.
- step S301 it is assumed that the base station 10 also transmits DCI for DL scheduling (also referred to as DL allocation) to the terminal 20A via PDCCH.
- DCI for DL scheduling also referred to as DL allocation
- the DCI for DL scheduling will be referred to as DL scheduling DCI.
- the terminal 20A that has received the DL scheduling DCI receives DL data on the PDSCH using the resources specified by the DL scheduling DCI.
- the terminal 20A uses the resources specified by the SL scheduling DCI to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH.
- SCI Segment Control Information
- PSSCH Physical Downlink Control Information
- the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
- the terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
- the SCI received on the PSCCH and/or PSSCH includes information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data.
- Information on the resource is included in the DL scheduling DCI or SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the information on the resource from the DL scheduling DCI or SL scheduling DCI and uses the SCI. Include in. Alternatively, the DCI transmitted from the base station 10 may not include information on the resource, and the terminal 20A may autonomously include the information on the resource in the SCI and transmit it.
- step S304 the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
- the terminal 20A transmits, for example, the PUCCH ( The HARQ-ACK is transmitted using the physical uplink control channel) resource, and the base station 10 receives the HARQ-ACK.
- the HARQ-ACK codebook may include a HARQ-ACK generated based on the HARQ-ACK received from the terminal 20B or a PSFCH not received, and a HARQ-ACK for DL data. However, if DL data is not allocated, HARQ-ACK for DL data is not included. NR Rel. In No. 16, the HARQ-ACK codebook does not include HARQ-ACK for DL data.
- step S304 and/or step S305 may not be performed.
- FIG. 5 is a sequence diagram showing an example of V2X operation (4).
- the HARQ response is transmitted on the PSFCH.
- a format similar to PUCCH (Physical Uplink Control Channel) format 0 can be used as the format of PSFCH, for example. That is, the format of the PSFCH may be a sequence-based format in which the PRB (Physical Resource Block) size is 1, and ACKs and NACKs are identified by differences in sequence and/or cyclic shift.
- the format of PSFCH is not limited to this.
- the PSFCH resource may be allocated to the last symbol or the last plural symbols of the slot. Furthermore, it is defined in advance whether a period N is set in the PSFCH resource.
- the period N may be set in units of slots or may be predefined.
- the vertical axis corresponds to the frequency domain
- the horizontal axis corresponds to the time domain.
- the PSCCH may be placed in one symbol at the beginning of the slot, in multiple symbols from the beginning, or in multiple symbols starting from a symbol other than the beginning.
- the PSFCH may be placed in one symbol at the end of the slot, or may be placed in multiple symbols at the end of the slot. Note that the above-mentioned "head of slot” and "end of slot” may omit consideration of symbols for AGC (Automatic Gain Control) and symbols for transmission/reception switching.
- AGC Automatic Gain Control
- the terminal 20A which is the transmitting terminal 20
- the terminal 20B uses PSFCH #B
- the terminal 20C uses PSFCH #C
- the terminal 20D uses PSFCH #D to transmit the HARQ response to the terminal 20A.
- the terminal 20B uses PSFCH #B
- the terminal 20C uses PSFCH #C
- the terminal 20D uses PSFCH #D to transmit the HARQ response to the terminal 20A.
- the transmitting terminal 20 may know the number of receiving terminals 20 in the group cast. Note that in group cast option 1, only NACK is transmitted as the HARQ response, and ACK is not transmitted.
- FIG. 6 is a diagram showing an example of sensing operation in NR.
- the terminal 20 selects a resource and performs transmission. As shown in FIG. 6, the terminal 20 performs sensing using a sensing window within the resource pool. Through sensing, the terminal 20 receives a resource reservation field or a resource assignment field included in the SCI transmitted from another terminal 20, and selects a resource in the resource pool based on the field. Identify available resource candidates within a resource selection window. Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
- the resource pool setting may have a periodicity.
- the period may be a period of 10240 milliseconds.
- FIG. 6 is an example in which slot t 0 SL to slot t Tmax-1 SL are set as a resource pool. Areas of the resource pool within each period may be set using, for example, a bitmap.
- the transmission trigger in the terminal 20 occurs in slot n, and the priority of the transmission is pTX .
- the terminal 20 can detect, for example, that another terminal 20 is transmitting priority p RX in the sensing window from slot nT 0 to the slot immediately before slot nT proc,0. . If an SCI is detected within the sensing window and RSRP (Reference Signal Received Power) exceeds a threshold, the resource within the resource selection window corresponding to the SCI is excluded. Further, if an SCI is detected within the sensing window and the RSRP is less than the threshold, the resource within the resource selection window corresponding to the SCI is not excluded.
- the thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing window based on the priority p TX and the priority p RX.
- resources within the resource selection window that are candidates for resource reservation information corresponding to resources within the sensing window that are not monitored, for example, for transmission, are excluded.
- the lower layer of the terminal 20 may report SA to the upper layer.
- the upper layer of the terminal 20 may perform random selection on the SA to determine the resources to be used.
- the terminal 20 may perform sidelink transmission using the determined resources.
- the upper layer may be a MAC layer
- the lower layer may be a PHY layer or a physical layer.
- the receiving terminal 20 detects data transmission from another terminal 20 based on the result of sensing or partial sensing, and transmits data to the other terminal 20. Data may be received from 20.
- FIG. 7 is a flowchart illustrating an example of preemption in NR.
- FIG. 8 is a diagram showing an example of preemption in NR.
- the terminal 20 performs sensing using the sensing window. When the terminal 20 performs power saving operation, sensing may be performed in a predefined limited period.
- the terminal 20 identifies each resource within the resource selection window based on the sensing results, determines a resource candidate set SA , and selects a resource to be used for transmission (S502). Subsequently, the terminal 20 selects a resource set (r_0, r_1, . . . ) for determining preemption from the resource candidate set SA (S503).
- the resource set may be notified from the upper layer to the PHY layer as a resource for determining whether or not it has been preempted.
- step S504 the terminal 20 re-identifies each resource within the resource selection window based on the sensing result and determines a resource candidate set S A at timing T(r_0) -T3 shown in FIG. , further determines whether to preempt the resource set (r_0, r_1, . . . ) based on the priority. For example, in r_1 shown in FIG. 8, the SCI transmitted from another terminal 20 has been detected by re-sensing and is not included in SA .
- the terminal 20 uses the resource r_1. It is determined that it has been preempted. Note that the lower the value indicating the priority, the higher the priority. That is, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is higher than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 does not exclude resource r_1 from SA . .
- preemption is valid only for a specific priority (for example, sl-PreemptionEnable is one of pl1, pl2, ..., pl8)
- this priority is set as prio_pre.
- prio_RX indicating the priority of the SCI transmitted from the other terminal 20
- prio_RX is lower than the value prio_TX indicating the priority of the transport block transmitted from the own terminal
- step S505 if preemption is determined in step S504, the terminal 20 notifies the upper layer of the preemption, reselects resources in the upper layer, and ends the preemption check.
- the resource set (r_0, r_1,%) is assigned to SA. If the resource is not included, the resource is not used and the resource is reselected in the upper layer.
- FIG. 9 is a diagram illustrating an example of partial sensing operation in LTE.
- the terminal 20 selects a resource and performs transmission, as shown in FIG.
- the terminal 20 performs partial sensing for a portion of the sensing window in the resource pool, that is, the sensing target.
- the terminal 20 receives the resource reservation field included in the SCI transmitted from other terminals 20 and identifies available resource candidates within the resource selection window within the resource pool based on the field. . Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
- FIG. 9 is an example in which subframe t 0 SL to subframe t Tmax-1 SL is set as a resource pool.
- the target area of the resource pool may be set using, for example, a bitmap.
- a transmission trigger in terminal 20 occurs in subframe n.
- Y subframes from subframe ty1 SL to subframe tyY SL among subframe n+T 1 to subframe n+T 2 may be set as the resource selection window.
- the terminal 20 is, for example, another terminal 20 transmitting at one or more sensing targets from subframe t y1-k ⁇ Pstep SL to subframe t yY-k ⁇ Pstep SL , which has a subframe length of Y. can be detected.
- k may be determined by a 10-bit bitmap, for example.
- FIG. 9 shows an example in which the third and sixth bits of the bitmap are set to "1" indicating that partial sensing is performed. That is, in FIG. 9, from subframe ty1-6 ⁇ Pstep SL to subframe tyY-6 ⁇ Pstep SL , and from subframe ty1-3 ⁇ Pstep SL to subframe tyY-3 ⁇ Pstep SL. Set as a sensing target.
- the kth bit of the bitmap may correspond to a sensing window from subframe t y1-k ⁇ Pstep SL to subframe t yY-k ⁇ Pstep SL .
- y i corresponds to the index (1...Y) within the Y subframe.
- k may be set or predefined in a 10-bit bitmap, and P step may be 100 ms.
- P step may be (U/(D+S+U))*100ms.
- U corresponds to the number of UL subframes
- D corresponds to the number of DL subframes
- S corresponds to the number of special subframes.
- the thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing target based on the transmitting side priority p TX and the receiving side priority p RX .
- the terminal 20 identifies the resources occupied by other UEs, and identifies the resources excluding the resources. are available resource candidates. Note that the Y subframes do not have to be consecutive. Assuming that the set of available resource candidates is S A , if S A is less than 20% of the resources in the resource selection window, the thresholds Th pTX and pRX set for each sensing target resource are increased by 3 dB and the process is performed again. Resource identification may also be performed.
- the number of resources that are not excluded because the RSRP is less than the threshold may be increased. Furthermore, the RSSI of each resource in SA may be measured, and the resource with the minimum RSSI may be added to the set SB . The operation of adding the resource with the smallest RSSI included in SA to SB may be repeated until the resource candidate set SB becomes 20% or more of the resource selection window.
- the lower layer of the terminal 20 may report the SB to the upper layer.
- the upper layer of the terminal 20 may perform random selection on the SB to determine the resources to be used.
- the terminal 20 may perform sidelink transmission using the determined resources. Note that, once the terminal 20 secures the resource, it may periodically use the resource without performing sensing for a predetermined number of times (for example, Cresel times).
- the terminal 20 to which partial sensing is applied performs reception and sensing only in specific slots within the sensing window. That is, the terminal 20 may perform partial sensing in which resources are identified by sensing only limited resources compared to full sensing, and resources are selected from the identified resource set. Furthermore, the terminal 20 sets the resources in the resource selection window as an identified resource set, without excluding resources from the resources in the resource selection window, and performs random selection to select resources from the identified resource set. You may.
- a method of performing random selection at the time of resource selection and using sensing information at the time of re-evaluation or preemption check may be treated as partial sensing or random selection.
- sensing and monitoring may be interchanged with each other, and the operation may include at least one of measurement of received RSRP, acquisition of reserved resource information, and acquisition of priority information.
- Periodic-based partial sensing In a system where only some slots are sensed, the operation of determining the sensing slot based on the reservation periodicity.
- the reservation period is a value related to a resource reservation period field. Note that the period may be replaced with periodicity.
- Contiguous partial sensing An operation in which sensing slots are determined based on aperiodic reservation in a system where only some slots are sensed. Note that the aperiodic reservation is a value related to a time resource assignment field.
- SL-DRX Discontinuous reception
- SL-DRX discontinuous reception
- partial sensing is supported as one of the power saving functions.
- the terminal 20 may perform the periodic partial sensing described above.
- the terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and periodic reservation is enabled.
- FIG. 10 is a diagram for explaining an example of periodic partial sensing. As shown in FIG. 10, Y candidate slots for resource selection are selected from the resource selection window [n+T 1 , n+T 2 ].
- Sensing may be performed using t y SL as one slot included in the Y candidate slots and t y ⁇ k ⁇ Preserve SL as a target slot for periodic partial sensing.
- P reserve may correspond to all values included in the configured or predefined set sl-ResourceReservePeriodList.
- the value of P reserve limited to a subset of sl-ResourceReservePeriodList may be set or predefined.
- P reserve and sl-ResourceReservePeriodList may be set for each transmission resource pool in resource allocation mode 2.
- the periods included in the sl-ResourceReservePeriodList other than the limited subset may be monitored.
- the terminal 20 may additionally monitor opportunities to support P_RSVP_Tx.
- the terminal 20 may monitor the newest sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time limitations. Additionally, the terminal 20 may additionally monitor periodic sensing opportunities corresponding to a set of one or more k values. For example, as the k value, a value corresponding to the newest sensing opportunity in a certain reservation cycle before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time restrictions, and a value corresponding to the latest sensing opportunity in a certain reservation cycle, and The value corresponding to the sensing opportunity immediately before the most recent sensing opportunity may be set.
- partial sensing is supported as one of the power saving functions.
- the terminal 20 may perform the continuous partial sensing described above.
- the terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and aperiodic reservation is enabled.
- FIG. 11 is a diagram for explaining an example of continuous partial sensing.
- the terminal 20 selects Y candidate slots for resource selection from the resource selection window [n+T 1 , n+T 2 ].
- the beginning of the Y candidate slots is expressed as slot ty1
- the next slot is expressed as ty2
- . . . the end of the Y candidate slots is expressed as slot tyY .
- the terminal 20 performs sensing in the interval [n+T A , n+T B ], and executes resource selection in n+T B or after n+T B (referred to as n+T C ).
- n+T C resource selection in n+T B or after n+T B
- T A and T B in the interval [n+T A , n+T B ] may have any value.
- n may be replaced with the index of any slot among the Y candidate slots.
- the section [a, b] is a section from slot a to slot b, and includes slot a and slot b.
- the section (a, b) is a section from slot a to slot b, and does not include slot a and slot b.
- the candidate resource that is the target of resource selection is described as Y candidate slot, but all slots in the interval [n+T 1 , n+T 2 ] may be candidate slots, or some slots may be candidate slots. There may be.
- inter-terminal cooperation has been specified as a method to improve reliability and delay performance.
- an inter-terminal cooperation method 1 and an inter-terminal cooperation method 2 shown below are specified.
- the terminal 20 that transmits coordination information will be referred to as UE-A
- the terminal 20 that receives coordination information will be referred to as UE-B.
- Inter-terminal cooperation method 1 For the transmission of UE-B, a preferred resource set and/or a non-preferred resource set is transmitted from UE-A to UE-B.
- the inter-terminal coordination method 1 will also be referred to as IUC scheme 1 (Inter-UE coordination scheme 1).
- Inter-terminal cooperation method 2 UE-A transmits information indicating that a collision with another transmission or reception is expected and/or a resource in which a collision has been detected in the resources indicated by the SCI received from UE-B. is sent to UE-B. This information may be sent via the PSFCH.
- the inter-terminal coordination method 2 will also be referred to as IUC scheme 2 (Inter-UE coordination scheme 2).
- 3GPP Release 16 or Release 17 sidelinks are specified for 1) and 2) shown below.
- unlicensed bands such as the 5GHz-7GHz band and the 60GHz band.
- FIG. 12 is a diagram showing an example of frequency bands used in a wireless communication system.
- FR Frequency range
- SCS Sub carrier spacing
- FR2-1 is a frequency band from 24.25 GHz to 52.6 GHz, SCS uses 60, 120 or 240 kHz, and the bandwidth is 50 MHz to 400 MHz.
- FR2-2 may assume a frequency range of 52.6 GHz to 71 GHz. Furthermore, it may be envisaged to support frequency bands above 71 GHz.
- CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
- DFT-S-OFDM Discrete Fourier Transform-Spread
- SCS Sub-Carrier Spacing
- ⁇ Periodic transmission and/or periodic transmission ⁇ Unicast, group cast ⁇ HARQ feedback ⁇ 256QAM (Quadrature amplitude modulation), MIMO (multiple input multiple output), CSI (Channel state information) reporting ⁇ Single carrier ⁇ Mainly Use FR1 (FR2 can also be used)
- NR-SL in 3GPP Release 17 extends NR-SL in Release 16 to cover public safety and commercial use cases. Partial sensing, random selection, and DRX may be supported for power reduction purposes. Additionally, inter-terminal coordination may be supported for the purpose of improving reliability and delay performance.
- NR-SL in 3GPP Release 18 may further extend Release 16/17 to add functions such as data rate improvement, new frequency support, and V2X expansion.
- SL-CA, SL in unlicensed bands, FR2 support with beam management, coexistence of LTE-SL and NR-SL on the same channel may be supported.
- FR2 Frequency Range 2
- S-SSB transmission opportunity in FR2 can be set or pre-configured multiple times in each cycle, for example up to 64 times when the SCS is 120kHz, the details of how to use it are not defined. Ta. Also, beam management related to data transmission was not defined.
- an appropriate transmission beam may be used when transmitting the reservation information.
- the terminal 20 when applying beamforming on the side link, if the reception beam during sensing is not appropriate, the terminal 20 that cannot receive the SCI including reservation information may cause a resource conflict or a half-duplex communication problem. Therefore, an appropriate receiving beam may be used during sensing.
- beam or “beam forming” may be replaced with a predetermined parameter related to the beam.
- Predetermined parameters related to the beam include the beam, antenna port, codebook, TCI (Transmission Configuration Indicator) state (see Non-Patent Document 3), QCL assumption (Quasi Co Location assumption), reference signal, antenna panel, and spatial domain transmission filter. (Spatial domain transmission filter) or spatial domain reception filter.
- One or more of the predetermined parameters related to the beam may be "predetermined information related to the beam” described below. Further, the "predetermined information regarding the beam” may be other parameters that specify or determine the beam.
- the embodiments of the present invention may be applied not only to FR2, but may also be applied to any frequency band that uses a beam, that is, a function of performing transmission and reception in a specific direction.
- the terminal 20 may transmit the SCI while changing predetermined beam-related information depending on time.
- the operation of transmitting predetermined beam-related information while changing it over time may be called beam sweeping.
- FIG. 13 is a diagram for explaining example (1) of SCI transmission in the embodiment of the present invention.
- the SCI dedicated slots used for transmitting the SCI may be defined, and the arrangement of the SCI dedicated slots in the resource pool may be set or preset.
- the same SCI may be transmitted while changing predetermined beam-related information within the same slot.
- FIG. 13 is an example in which the 1st stage SCI and 2nd stage SCI are transmitted three times while changing predetermined information regarding the beam.
- FIG. 14 is a diagram for explaining example (2) of SCI transmission in the embodiment of the present invention.
- FIG. 14 is an example in which only the 1st stage SCI is transmitted four times while changing predetermined information regarding the beam.
- the new SCI format has priority, resource reservation period, time resource assignment, and frequency resource assignment. Good too.
- the number of symbols when using the existing SCI format, may be 1 symbol (for AGC) and 2 or 3 symbols (SCI) as the minimum time unit for beam switching.
- the payload When defining a new SCI format, the payload may be used as the minimum information related to reservation, and one symbol (for AGC) and one symbol (SCI) may be used as the minimum time unit for beam switching.
- the minimum time unit for beam switching is not limited to the above, and may be a different number of symbols, or may be given by setting or presetting.
- DMRS and SCI When SCI is transmitted in one symbol, DMRS and SCI may be frequency division multiplexed. When SCI is transmitted in two or three symbols, DMRS and SCI may be frequency division multiplexed or time division multiplexed. In the case of time division multiplexing, the SCI may be the first symbol, the SCI may be the second symbol, or may be given by setting or presetting.
- the power of the signal appears to change within the slot due to beam sweeping, so the AGC symbol may be inserted every time predetermined information regarding the beam is changed.
- FIG. 15 is a diagram for explaining example (3) of SCI transmission in the embodiment of the present invention.
- SCI dedicated slot for the operation of the receiving terminal 20
- only sidelink terminals that have the ability to decode a PSCCH with this slot configuration may be permitted to use the resource pool.
- the terminal 20 that supports the FR2 sidelink may have the ability to decode the PSCCH in the SCI dedicated slot as a mandatory ability.
- the UE processing time (T proc,0 /T proc,1 /T proc, 2 (see Non-Patent Document 5)) may be increased by one slot.
- resource selection and reservation of SCI-dedicated slots for beam-sweeping and transmitting the SCI may be performed. Further, as shown in FIG. 15, the period and period of the SCI dedicated slot may be set or preset. In the example of FIG. 15, the period of the SCI-dedicated slot is one slot, and the period of the SCI-dedicated slot is four slots.
- the transmitting terminal 20 may perform the transmitting operation by switching the transmitting beam.
- the receiving terminal 20 may receive using the same receiving beam, or may switch receiving beams and perform receiving operations.
- whether or not the set SCI dedicated slot may be used as a slot in an existing configuration may be given by setting or presetting, or the operation may be performed based on the setting or presetting.
- FIG. 15 shows an example in which the third SCI dedicated slot is used as a slot in an existing configuration.
- FIG. 16 is a diagram for explaining an example of data transmission in the embodiment of the present invention.
- the terminal 20 may transmit the same data using a plurality of slots while changing predetermined information regarding the beam according to the existing slot configuration.
- FIG. 16 is an example in which the same data is transmitted three times while changing predetermined information regarding the beam.
- the above operation enables commonality with conventional terminal reception operations, and makes it possible to avoid resource collisions due to SCI beam sweeping by utilizing the short slot length feature of FR2.
- the SCI including the reservation information may be repeatedly transmitted while changing the predetermined information regarding the beam.
- FIG. 17 is a diagram for explaining an example of beam sweeping in the embodiment of the present invention.
- the predetermined information related to the transmission beam determined individually for each terminal may be predetermined information related to the transmission beam determined in the PC5-RRC establishment procedure in unicast, or as shown in FIG. 17, It may also be predetermined information regarding the transmission beam determined by beam refinement after the PC5-RRC connection is established.
- settings may be configured or preset to limit applicable transmit beams or receive beams by time and/or frequency resources.
- a transmit beam or a receive beam may be associated with time and/or frequency resources.
- the applicable transmission beam may be determined based on the zone configuration (Zone config) related to the location information in the resource pool.
- Zone configuration Zone config
- a zone ID to which a transmission beam may be directed may be set or preset in a certain time-frequency resource from the zone ID of the own terminal in the resource pool.
- directing a transmission beam to a certain zone ID may mean transmitting with the center of the beam, that is, the maximum gain direction, relative to the center of the position specified by the zone.
- the operation when directing a transmission beam to a certain zone ID may be based on the terminal implementation or may be defined by standard specifications.
- FIG. 18 is a diagram for explaining an example (1) of restricting the beam to be applied by resources in an embodiment of the present invention.
- FIG. 19 is a diagram for explaining an example (2) of restricting the beam to be applied by resources in an embodiment of the present invention.
- the terminal 20 located in zone X may direct the transmission beam to zone (X-1), zone (X-M), zone (X+1), and zone (X+M). Further, as shown in FIG. 19, a terminal 20 located at the edge of a zone area, such as zone 1, utilizes the fact that zone ID assignment is periodically repeated. 1)+1), zone 2, and zone (M+1). For example, zone IDs to which the beams are directed may be similarly calculated for zone area edges such as zone M, zone (M(N-1)+1), and zone MN.
- predetermined information regarding the beam may be switched so as to direct the transmission beam.
- FIG. 20 is a diagram illustrating an example (3) in which beams to be applied are limited by resources in the embodiment of the present invention.
- the terminal 20 located in zone X is zone (X-1), zone (X-M-1), zone (X-M), zone (X-M+1), zone (X+1), The transmit beam may be directed to zone (X+M+1), zone (X+M), or zone (X+M-1).
- K may be a value such as 2, 3, or 8, or may be any other value.
- the receiving beam to be applied may be determined based on the zone setting in the resource pool. Through this operation, the direction in which the transmission beam will arrive during the reception operation can be predicted to some extent in advance, so that an appropriate reception beam can be formed and SCI reception accuracy can be improved.
- the above-described operation of limiting the applicable transmission beams or reception beams by time and/or frequency resources may be applied only to the PSCCH and/or PSSCH, or may be applied to the S-SSB.
- the location derived from the zone ID may be the closest location to the location of the own terminal.
- the above embodiment may be applied only when predetermined conditions are met. For example, it may be applied in connection with a given SL channel or SL signal. For example, this embodiment may be applied to any one of PSCCH/PSSCH, PSFCH, S-SSB, and SL positioning RS. For example, it may be applied based on predetermined settings or pre-settings. For example, in a resource pool, this embodiment may be applied when "validation" of this embodiment is given by setting or pre-setting.
- the UE capabilities related to the applicability and operation of this embodiment may be defined, may be reported to the base station 10 and/or the terminal 20, or may not be reported.
- the UE's SL transmission may be any of PSCCH, PSSCH, PSFCH, S-SSB, and SL-PRS, and different channels or signals may be applied to each operation of this embodiment.
- This embodiment may be applied to any of resource selection, resource reselection, re-evaluation, and preemption check.
- the above embodiments are not limited to V2X terminals, but may be applied to terminals that perform D2D communication.
- the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, can reduce resource collisions by beam sweeping that changes predetermined information regarding the beam. Furthermore, the sidelink terminal can improve the success rate of transmission and reception by switching the transmission beam and/or reception beam depending on time and/or frequency resources.
- suitable beamforming can be applied in direct communication between terminals.
- Base station 10 and terminal 20 include functionality to implement the embodiments described above. However, the base station 10 and the terminal 20 may each have only some of the functions in the embodiment.
- FIG. 21 is a diagram showing an example of the functional configuration of the base station 10.
- base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
- the functional configuration shown in FIG. 21 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
- the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
- the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signal, DL reference signal, etc. to the terminal 20.
- the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary.
- the content of the setting information is, for example, information related to the setting of D2D communication.
- control unit 140 performs processing related to settings for the terminal 20 to perform D2D communication. Further, the control unit 140 transmits the scheduling of D2D communication and DL communication to the terminal 20 via the transmitting unit 110. Further, the control unit 140 receives information related to HARQ responses for D2D communication and DL communication from the terminal 20 via the reception unit 120.
- a functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
- FIG. 22 is a diagram illustrating an example of the functional configuration of the terminal 20.
- the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
- the functional configuration shown in FIG. 22 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
- the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
- the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, reference signals, etc. transmitted from the base station 10.
- the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) to another terminal 20 as D2D communication.
- the receiving unit 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 20 .
- the setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary.
- the setting unit 230 also stores setting information that is set in advance.
- the content of the setting information is, for example, information related to the setting of D2D communication.
- the control unit 240 controls D2D communication to establish an RRC connection with another terminal 20. Further, the control unit 240 performs processing related to power saving operation. Further, the control unit 240 performs processing related to HARQ for D2D communication and DL communication. Further, the control unit 240 transmits to the base station 10 information related to HARQ responses for D2D communication and DL communication scheduled from the base station 10 to other terminals 20. Further, the control unit 240 may schedule D2D communication for other terminals 20. Further, the control unit 240 may autonomously select a resource to be used for D2D communication from the resource selection window based on the result of side link sensing, or may perform re-evaluation or preemption.
- control unit 240 performs processing related to power saving in transmission and reception of D2D communication. Further, the control unit 240 performs processing related to cooperation between terminals in D2D communication. Further, the control unit 240 performs processing related to LBT in D2D communication.
- a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
- each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
- the functional block may be realized by combining software with the one device or the plurality of devices.
- Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
- a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
- the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
- FIG. 23 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
- the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
- the word “apparatus” can be read as a circuit, a device, a unit, etc.
- the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
- Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
- the processor 1001 for example, operates an operating system to control the entire computer.
- the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
- CPU central processing unit
- control unit 140, control unit 240, etc. may be implemented by the processor 1001.
- the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
- programs program codes
- the control unit 140 of the base station 10 shown in FIG. 21 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
- the control unit 240 of the terminal 20 shown in FIG. 22 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
- Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
- the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
- the storage device 1002 may be called a register, cache, main memory, or the like.
- the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
- the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
- the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
- the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
- the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
- FDD frequency division duplex
- TDD time division duplex
- the transmitting/receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
- the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
- the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
- each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
- the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
- the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
- DSP digital signal processor
- ASIC application specific integrated circuit
- PLD programmable logic device
- FPGA field programmable gate array
- a part or all of each functional block may be realized by the hardware.
- processor 1001 may be implemented using at least one of these hardwares.
- FIG. 24 shows an example of the configuration of the vehicle 2001.
- the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
- Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
- the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
- the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
- the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
- the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
- Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
- the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
- the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
- the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
- the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
- the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
- Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
- the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
- the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
- the communication module 2013 may be located either inside or outside the electronic control unit 2010.
- the external device may be, for example, a base station, a mobile station, or the like.
- the communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
- the electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input.
- the PUSCH transmitted by the communication module 2013 may include information based on the above input.
- the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
- the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
- Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
- a terminal includes a transmitter that transmits control information for a plurality of times while switching information regarding the beam.
- the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, can reduce resource collisions by beam sweeping that changes predetermined information regarding the beam. That is, suitable beamforming can be applied in direct communication between terminals.
- the same control information may be composed of a first stage SCI (Sidelink Control Information) and a second stage SCI, or may be composed of the first stage SCI.
- the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding beams.
- the transmitter may transmit the same piece of control information in one symbol.
- the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding beams.
- the transmitter may select and reserve resources for a period for repeatedly transmitting the control information.
- the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding beams.
- the control unit specifies a position to direct the beam from the position information of the own device, and the transmission unit transmits the same control information and data in each resource associated with each position to direct the beam. , beam-related information may be transmitted while switching.
- the sidelink terminal can improve the success rate of transmission and reception by switching transmission beams and/or reception beams depending on time and/or frequency resources.
- a communication method in which a terminal executes a procedure of transmitting information multiple times while switching the information.
- the sidelink terminal in direct communication between terminals in a frequency band that requires beamforming, can reduce resource collisions by beam sweeping that changes predetermined information regarding the beam. That is, suitable beamforming can be applied in direct communication between terminals.
- the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
- the order of processing may be changed as long as there is no contradiction.
- Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
- the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
- the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
- RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
- Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
- the present invention may be
- the base station 10 may be performed by its upper node in some cases.
- various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
- MME Mobility Management Entity
- S-GW Packet Control Function
- the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
- the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
- the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
- the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
- Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
- software, instructions, information, etc. may be sent and received via a transmission medium.
- a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
- wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
- wireless technology infrared, microwave, etc.
- data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
- At least one of the channel and the symbol may be a signal.
- the signal may be a message.
- a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
- system and “network” are used interchangeably.
- radio resources may be indicated by an index.
- Base Station BS
- wireless base station base station
- base station fixed station
- NodeB eNodeB
- gNodeB gNodeB
- a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
- RRHs small indoor base stations
- Communication services can also be provided by Remote Radio Head).
- the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
- the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
- MS Mobile Station
- UE User Equipment
- a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
- At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
- the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
- the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
- the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
- the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
- the base station and the mobile station includes devices that do not necessarily move during communication operations.
- at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
- IoT Internet of Things
- the base station in the present disclosure may be replaced by a user terminal.
- communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
- the terminal 20 may have the functions that the base station 10 described above has.
- words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
- uplink channels, downlink channels, etc. may be replaced with side channels.
- the user terminal in the present disclosure may be replaced with a base station.
- the base station may have the functions that the user terminal described above has.
- determining may encompass a wide variety of operations.
- “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
- judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
- (accessing) may include considering something as a “judgment” or “decision.”
- judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
- judgment and “decision” may include regarding some action as having been “judged” or “determined.”
- judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
- connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
- the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
- two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
- the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
- RS Reference Signal
- the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
- any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
- a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
- the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
- SCS subcarrier spacing
- TTI transmission time interval
- transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
- a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
- a slot may be a unit of time based on numerology.
- a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
- PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
- PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
- Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
- one subframe may be called a transmission time interval (TTI)
- TTI transmission time interval
- multiple consecutive subframes may be called a TTI
- one slot or one minislot may be called a TTI.
- at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
- the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
- TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
- a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
- radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
- TTI is not limited to this.
- the TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc.
- the time interval e.g., the number of symbols
- the time interval in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
- one slot or one minislot is called a TTI
- one or more TTIs may be the minimum time unit for scheduling.
- the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
- a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
- TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
- long TTI for example, normal TTI, subframe, etc.
- short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
- a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
- the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
- the number of subcarriers included in an RB may be determined based on newerology.
- the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
- One TTI, one subframe, etc. may each be composed of one or more resource blocks.
- one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
- PRBs physical resource blocks
- SCGs sub-carrier groups
- REGs resource element groups
- PRB pairs RB pairs, etc. May be called.
- a resource block may be configured by one or more resource elements (REs).
- REs resource elements
- 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
- a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
- the common RB may be specified by an RB index based on a common reference point of the carrier.
- PRBs may be defined in a BWP and numbered within that BWP.
- the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
- UL BWP UL BWP
- DL BWP DL BWP
- One or more BWPs may be configured for the terminal 20 within one carrier.
- At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP.
- Note that "cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
- radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
- the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
- a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
- notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
- Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control section 2012 Information service section 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
This terminal has: a control unit that specifies, in a resource pool, a period for repeatedly transmitting control information; and a transmission unit that, in the period for repeatedly transmitting the control information, transmits the same control information a plurality of times while switching beam-related information.
Description
本発明は、無線通信システムにおける端末及び通信方法に関する。
The present invention relates to a terminal and a communication method in a wireless communication system.
LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、NR(New Radio)(5Gともいう。))では、端末同士が基地局を介さずに直接通信を行うD2D(Device to Device)技術が検討されている(例えば非特許文献1)。
In LTE (Long Term Evolution) and LTE successor systems (for example, LTE-A (LTE Advanced), NR (New Radio) (also referred to as 5G)), D2D is a system in which terminals communicate directly with each other without going through a base station. (Device to Device) technology is being considered (for example, Non-Patent Document 1).
D2Dは、端末と基地局との間のトラフィックを軽減し、災害時等に基地局が通信不能になった場合でも端末間の通信を可能とする。なお、3GPP(登録商標)(3rd Generation Partnership Project)では、D2Dを「サイドリンク(sidelink)」と称しているが、本明細書では、より一般的な用語であるD2Dを使用する。ただし、後述する実施の形態の説明では必要に応じてサイドリンクも使用する。
D2D reduces traffic between terminals and base stations, and enables communication between terminals even if the base station becomes unable to communicate during a disaster or the like. Note that in 3GPP (registered trademark) (3rd Generation Partnership Project), D2D is referred to as "sidelink," but in this specification, the more general term D2D is used. However, in the description of the embodiments to be described later, side links will also be used as necessary.
D2D通信は、通信可能な他の端末を発見するためのD2Dディスカバリ(D2D discovery、D2D発見ともいう。)と、端末間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信等ともいう。)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリ等を特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。NRにおけるV2X(Vehicle to Everything)に係るサービスの様々なユースケースが検討されている(例えば非特許文献2)。
D2D communication consists of D2D discovery (also called D2D discovery) for discovering other terminals that can communicate with each other, and D2D communication (D2D direct communication, direct communication between terminals) for direct communication between terminals. (also referred to as communications, etc.). Hereinafter, when D2D communication, D2D discovery, etc. are not particularly distinguished, they will simply be referred to as D2D. Further, a signal transmitted and received by D2D is called a D2D signal. Various use cases of services related to V2X (Vehicle to Everything) in NR are being considered (for example, Non-Patent Document 2).
また、NRリリース17では(例えば非特許文献3)、従来のリリースよりも高い周波数帯を使用することが検討されている。例えば、52.6GHzから71GHzまでの周波数帯における、サブキャリア間隔、チャネル帯域幅等を含む適用可能なニューメロロジ、物理レイヤのデザイン、実際の無線通信において想定される障害等が検討されている。
Furthermore, in NR Release 17 (for example, Non-Patent Document 3), the use of a higher frequency band than in conventional releases is being considered. For example, in the frequency band from 52.6 GHz to 71 GHz, applicable numerology including subcarrier spacing, channel bandwidth, etc., physical layer design, failures expected in actual wireless communication, etc. are being considered.
新たに運用される従来より高い周波数を使用する周波数帯では、カバレッジを強化するためビームフォーミングがより重要となる。しかしながら、従来の端末間直接通信では、ビームマネジメントに係る機能はサポートされていなかった。
Beamforming becomes more important in newly operated frequency bands that use higher frequencies than before to strengthen coverage. However, in conventional direct communication between terminals, functions related to beam management were not supported.
本発明は上記の点に鑑みてなされたものであり、端末間直接通信において好適なビームフォーミングを適用することを目的とする。
The present invention has been made in view of the above points, and aims to apply suitable beamforming in direct communication between terminals.
開示の技術によれば、リソースプールにおいて、制御情報を繰り返し送信するための期間を特定する制御部と、前記制御情報を繰り返し送信するための期間において、同一の制御情報を、ビームに係る情報を切り替えながら複数回送信する送信部を有する端末が提供される。
According to the disclosed technology, in a resource pool, a control unit that specifies a period for repeatedly transmitting control information, and a control unit that specifies a period for repeatedly transmitting control information, and a control unit that specifies a period for repeatedly transmitting control information, transmit the same control information, and transmit information regarding a beam. A terminal is provided that has a transmitter that transmits multiple times while switching.
開示の技術によれば、端末間直接通信において好適なビームフォーミングを適用することができる。
According to the disclosed technology, suitable beamforming can be applied in direct communication between terminals.
以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)、又は無線LAN(Local Area Network)を含む広い意味を有するものとする。
Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, existing LTE, but is not limited to existing LTE. Furthermore, unless otherwise specified, the term "LTE" used in this specification has a broad meaning including LTE-Advanced and a system after LTE-Advanced (e.g. NR), or wireless LAN (Local Area Network). shall have.
また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
Further, in the embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
Furthermore, in the embodiment of the present invention, "configure" the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
図1は、V2Xを説明するための図である。3GPPでは、D2D機能を拡張することでV2X(Vehicle to Everything)あるいはeV2X(enhanced V2X)を実現することが検討され、仕様化が進められている。図1に示されるように、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、車両間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、車両と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、車両とITSサーバとの間で行われる通信形態を意味するV2N(Vehicle to Network)、及び、車両と歩行者が所持するモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。
FIG. 1 is a diagram for explaining V2X. In 3GPP, the realization of V2X (Vehicle to Everything) or eV2X (enhanced V2X) by expanding D2D functions is being considered and specifications are being developed. As shown in Figure 1, V2X is a part of ITS (Intelligent Transport Systems), and refers to V2V (Vehicle to Vehicle), which is a form of communication between vehicles. V2I (Vehicle to Infrastructure), which refers to the form of communication between the vehicle and the ITS server (RSU: Road-Side Unit); V2N (Vehicle to Network), which refers to the form of communication between the vehicle and the ITS server; , is a general term for V2P (Vehicle to Pedestrian), which refers to a form of communication performed between a vehicle and a mobile terminal carried by a pedestrian.
また、3GPPにおいて、LTE又はNRのセルラ通信及び端末間通信を用いたV2Xが検討されている。セルラ通信を用いたV2XをセルラV2Xともいう。NRのV2Xにおいては、大容量化、低遅延、高信頼性、QoS(Quality of Service)制御を実現する検討が進められている。
Additionally, in 3GPP, V2X using LTE or NR cellular communication and terminal-to-terminal communication is being considered. V2X using cellular communication is also called cellular V2X. In NR's V2X, studies are underway to realize large capacity, low latency, high reliability, and QoS (Quality of Service) control.
LTE又はNRのV2Xについて、今後3GPP仕様に限られない検討も進められることが想定される。例えば、インターオペラビリティの確保、上位レイヤの実装によるコストの低減、複数RAT(Radio Access Technology)の併用又は切替方法、各国におけるレギュレーション対応、LTE又はNRのV2Xプラットフォームのデータ取得、配信、データベース管理及び利用方法が検討されることが想定される。
It is expected that studies on LTE or NR V2X that are not limited to 3GPP specifications will proceed in the future. For example, ensuring interoperability, reducing costs by implementing upper layers, combining or switching multiple RATs (Radio Access Technology), compliance with regulations in each country, data acquisition and distribution of LTE or NR V2X platforms, database management, and It is assumed that the usage method will be considered.
本発明の実施の形態において、通信装置が車両に搭載される形態を主に想定するが、本発明の実施の形態は、当該形態に限定されない。例えば、通信装置は人が保持する端末であってもよいし、通信装置がドローンあるいは航空機に搭載される装置であってもよいし、通信装置が基地局、RSU、中継局(リレーノード)、スケジューリング能力を有する端末等であってもよい。
In the embodiments of the present invention, a mode in which the communication device is mounted on a vehicle is mainly assumed, but the embodiments of the present invention are not limited to this mode. For example, the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, the communication device may be a base station, RSU, relay station (relay node), It may also be a terminal or the like that has scheduling capability.
なお、SL(Sidelink)は、UL(Uplink)又はDL(Downlink)と以下1)-4)のいずれか又は組み合わせに基づいて区別されてもよい。また、SLは、他の名称であってもよい。
1)時間領域のリソース配置
2)周波数領域のリソース配置
3)参照する同期信号(SLSS(Sidelink Synchronization Signal)を含む)
4)送信電力制御のためのパスロス測定に用いる参照信号 Note that SL (Sidelink) may be distinguished from UL (Uplink) or DL (Downlink) based on any one or a combination of 1) to 4) below. Moreover, SL may have another name.
1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal))
4) Reference signal used for path loss measurement for transmission power control
1)時間領域のリソース配置
2)周波数領域のリソース配置
3)参照する同期信号(SLSS(Sidelink Synchronization Signal)を含む)
4)送信電力制御のためのパスロス測定に用いる参照信号 Note that SL (Sidelink) may be distinguished from UL (Uplink) or DL (Downlink) based on any one or a combination of 1) to 4) below. Moreover, SL may have another name.
1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal))
4) Reference signal used for path loss measurement for transmission power control
また、SL又はULのOFDM(Orthogonal Frequency Division Multiplexing)に関して、CP-OFDM(Cyclic-Prefix OFDM)、DFT-S-OFDM(Discrete Fourier Transform - Spread - OFDM)、Transform precodingされていないOFDM又はTransform precodingされているOFDMのいずれが適用されてもよい。
Regarding OFDM (Orthogonal Frequency Division Multiplexing) of SL or UL, CP-OFDM (Cyclic-Prefix OFDM), DFT-S-OFDM (Discrete Fourier Transform - Spread - OFDM), OFDM without Transform precoding or Transform It has been precoded Any of the following OFDM methods may be applied.
LTEのSLにおいて、端末20へのSLのリソース割り当てに関してMode3とMode4が規定されている。Mode3では、基地局10から端末20に送信されるDCI(Downlink Control Information)によりダイナミックに送信リソースが割り当てられる。また、Mode3ではSPS(Semi Persistent Scheduling)も可能である。Mode4では、端末20はリソースプールから自律的に送信リソースを選択する。
In LTE SL, Mode 3 and Mode 4 are defined regarding SL resource allocation to the terminal 20. In Mode 3, transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20. Further, in Mode 3, SPS (Semi Persistent Scheduling) is also possible. In Mode 4, the terminal 20 autonomously selects transmission resources from the resource pool.
なお、本発明の実施の形態におけるスロットは、シンボル、ミニスロット、サブフレーム、無線フレーム、TTI(Transmission Time Interval)と読み替えられてもよい。また、本発明の実施の形態におけるセルは、セルグループ、キャリアコンポーネント、BWP、リソースプール、リソース、RAT(Radio Access Technology)、システム(無線LAN含む)等に読み替えられてもよい。
Note that the slot in the embodiment of the present invention may be read as a symbol, minislot, subframe, radio frame, or TTI (Transmission Time Interval). Furthermore, a cell in an embodiment of the present invention may be read as a cell group, a carrier component, a BWP, a resource pool, a resource, a RAT (Radio Access Technology), a system (including a wireless LAN), or the like.
なお、本発明の実施の形態において、端末20は、V2X端末に限定されず、D2D通信を行うあらゆる種別の端末であってもよい。例えば、端末20は、スマートフォンのようなユーザが所持する端末でもよいし、スマートメータ等のIoT(Internet of Things)機器であってもよい。
Note that in the embodiment of the present invention, the terminal 20 is not limited to a V2X terminal, but may be any type of terminal that performs D2D communication. For example, the terminal 20 may be a terminal owned by a user such as a smartphone, or may be an IoT (Internet of Things) device such as a smart meter.
また、NR-SLにおいて、サイドリンクのユニキャスト及びグループキャストにHARQ(Hybrid automatic repeat request)がサポートされることが想定される。さらに、NR-V2Xにおいて、HARQ応答を含むSFCI(Sidelink Feedback Control Information)が定義される。さらに、PSFCH(Physical Sidelink Feedback Channel)を介して、SFCIが送信されることが検討されている。
Additionally, in NR-SL, it is assumed that HARQ (Hybrid automatic repeat request) will be supported for sidelink unicast and group cast. Furthermore, SFCI (Sidelink Feedback Control Information) including HARQ responses is defined in NR-V2X. Furthermore, it is being considered that SFCI is transmitted via PSFCH (Physical Sidelink Feedback Channel).
なお、以下の説明では、サイドリンクでのHARQ-ACKの送信において、PSFCHを使用することとしているが、これは一例である。例えば、PSCCHを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよいし、PSSCHを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよいし、その他のチャネルを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよい。
Note that in the following description, PSFCH is used in transmitting HARQ-ACK on the side link, but this is just an example. For example, PSCCH may be used to transmit HARQ-ACK on the side link, PSSCH may be used to transmit HARQ-ACK on the side link, or other channels may be used to transmit HARQ-ACK on the side link. HARQ-ACK may be transmitted on the side link using the HARQ-ACK.
以下では、便宜上、HARQにおいて端末20が報告する情報全般をHARQ-ACKと呼ぶ。このHARQ-ACKをHARQ-ACK情報と称してもよい。また、より具体的には、端末20から基地局10等に報告されるHARQ-ACKの情報に適用されるコードブックをHARQ-ACKコードブックと呼ぶ。HARQ-ACKコードブックは、HARQ-ACK情報のビット列を規定する。なお、「HARQ-ACK」により、ACKの他、NACKも送信される。
Hereinafter, for convenience, all information reported by the terminal 20 in HARQ will be referred to as HARQ-ACK. This HARQ-ACK may be referred to as HARQ-ACK information. More specifically, a codebook applied to HARQ-ACK information reported from the terminal 20 to the base station 10 etc. is called a HARQ-ACK codebook. The HARQ-ACK codebook defines a bit string of HARQ-ACK information. Note that with "HARQ-ACK", in addition to ACK, NACK is also transmitted.
図2は、V2Xの動作例(1)を示すシーケンス図である。図2に示されるように、本発明の実施の形態に係る無線通信システムは、端末20A、及び端末20Bを有してもよい。なお、実際には多数のユーザ装置が存在するが、図2は例として端末20A、及び端末20Bを示している。
FIG. 2 is a sequence diagram showing an example of V2X operation (1). As shown in FIG. 2, the wireless communication system according to the embodiment of the present invention may include a terminal 20A and a terminal 20B. Although there are actually many user devices, FIG. 2 shows a terminal 20A and a terminal 20B as an example.
以下、端末20A、20B等を特に区別しない場合、単に「端末20」あるいは「ユーザ装置」と記述する。図2では、一例として端末20Aと端末20Bがともにセルのカバレッジ内にある場合を示しているが、本発明の実施の形態における動作は、端末20Bがカバレッジ外にある場合にも適用できる。
Hereinafter, unless the terminals 20A, 20B, etc. are particularly distinguished, they will be simply referred to as "terminal 20" or "user device." Although FIG. 2 shows, as an example, a case where both the terminal 20A and the terminal 20B are within the coverage of the cell, the operation in the embodiment of the present invention can also be applied when the terminal 20B is outside the coverage.
前述したように、本実施の形態において、端末20は、例えば、自動車等の車両に搭載された装置であり、LTEあるいはNRにおけるUEとしてのセルラ通信の機能、及び、サイドリンク機能を有している。端末20が、一般的な携帯端末(スマートフォン等)であってもよい。また、端末20が、RSUであってもよい。当該RSUは、UEの機能を有するUEタイプRSUであってもよいし、基地局装置の機能を有するgNBタイプRSUであってもよい。
As described above, in this embodiment, the terminal 20 is a device mounted on a vehicle such as a car, and has a cellular communication function as a UE in LTE or NR, and a side link function. There is. The terminal 20 may be a general mobile terminal (such as a smartphone). Further, the terminal 20 may be an RSU. The RSU may be a UE type RSU having UE functionality, or a gNB type RSU having base station device functionality.
なお、端末20は1つの筐体の装置である必要はなく、例えば、各種センサが車両内に分散して配置される場合でも、当該各種センサを含めた装置が端末20であってもよい。
Note that the terminal 20 does not need to be a device in one housing, and for example, even if various sensors are distributed and arranged within the vehicle, the terminal 20 may be a device including the various sensors.
また、端末20のサイドリンクの送信データの処理内容は基本的には、LTEあるいはNRでのUL送信の処理内容と同様である。例えば、端末20は、送信データのコードワードをスクランブルし、変調してcomplex-valued symbolsを生成し、当該complex-valued symbols(送信信号)を1又は2レイヤにマッピングし、プリコーディングを行う。そして、precoded complex-valued symbolsをリソースエレメントにマッピングして、送信信号(例:complex-valued time-domain SC-FDMA signal)を生成し、各アンテナポートから送信する。
Furthermore, the processing content of the side link transmission data of the terminal 20 is basically the same as the processing content of UL transmission in LTE or NR. For example, the terminal 20 scrambles and modulates the codeword of the transmission data to generate complex-valued symbols, maps the complex-valued symbols (transmission signal) to one or two layers, and performs precoding. The precoded complex-valued symbols are then mapped to resource elements to generate transmission signals (e.g., complex-valued time-domain SC-FDMA signals) and transmitted from each antenna port.
なお、基地局10については、LTEあるいはNRにおける基地局としてのセルラ通信の機能、及び、本実施の形態における端末20の通信を可能ならしめるための機能(例:リソースプール設定、リソース割り当て等)を有している。また、基地局10は、RSU(gNBタイプRSU)であってもよい。
Note that the base station 10 has a cellular communication function as a base station in LTE or NR, and a function to enable communication of the terminal 20 in this embodiment (e.g., resource pool setting, resource allocation, etc.). have. Further, the base station 10 may be an RSU (gNB type RSU).
また、本発明の実施の形態に係る無線通信システムにおいて、端末20がSLあるいはULに使用する信号波形は、OFDMAであってもよいし、SC-FDMAであってもよいし、その他の信号波形であってもよい。
Further, in the wireless communication system according to the embodiment of the present invention, the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or other signal waveform. It may be.
SLにおける同期信号として、端末20はサイドリンク同期信号ブロック(Sidelink Synchronization Signal Block)(S-SSB)を送信する。S-SSBには、S-PSS(Sidelink Primary Synchronization Signal)、S-SSS(Sidelink Secondary Synchronization Signal)、PSBCH(Physical Sidelink Broadcast Channel)が含まれ得る。なお、S-SSB、S-PSS、S-SSS等の名称は一例であり、S-SSB、S-PSS、S-SSS等以外の名称であってもよい。
As a synchronization signal in the SL, the terminal 20 transmits a Sidelink Synchronization Signal Block (S-SSB). S-SSB may include S-PSS (Sidelink Primary Synchronization Signal), S-SSS (Sidelink Secondary Synchronization Signal), and PSBCH (Physical Sidelink Broadcast Channel). Note that the names such as S-SSB, S-PSS, and S-SSS are just examples, and names other than S-SSB, S-PSS, S-SSS, etc. may be used.
端末20は、基地局装置10から受信した信号又はGNSS(Global Navigation Satellite System)信号又は他の端末20から受信した信号に基づいて、S-SSBを別の端末20へ送信する。なお、端末20が、基地局装置10、GNSS、および他の端末20のいずれの信号に基づいてS-SSBを送信できない場合、端末20は、自律的に決定したS-SSBを他の端末20へ送信してもよい。S-SSBに使用可能なリソースは周期的なスロットであってもよく、S-SSB機会と呼ばれてもよい。
The terminal 20 transmits the S-SSB to another terminal 20 based on a signal received from the base station device 10, a GNSS (Global Navigation Satellite System) signal, or a signal received from another terminal 20. Note that if the terminal 20 cannot transmit S-SSB based on any signal from the base station device 10, GNSS, or another terminal 20, the terminal 20 transmits the autonomously determined S-SSB to the other terminal 20. You can also send it to The resources available for S-SSB may be periodic slots and may be referred to as S-SSB opportunities.
ステップS101において、端末20Aは、所定の期間を有するリソース選択ウィンドウから自律的にPSCCH及びPSSCHに使用するリソースを選択する。リソース選択ウィンドウは、基地局10から端末20に設定されてもよい。ここで、リソース選択ウィンドウの所定の期間について、例えば処理時間又はパケット最大許容遅延時間のような端末の実装条件により期間が規定されてもよいし、仕様により予め期間が規定されてもよいし、所定の期間は時間領域上の区間と呼ばれてもよい。
In step S101, the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period. A resource selection window may be set from the base station 10 to the terminal 20. Here, regarding the predetermined period of the resource selection window, the period may be defined by terminal implementation conditions such as processing time or maximum allowable packet delay time, or the period may be defined in advance by specifications, The predetermined period may be called an interval in the time domain.
ステップS102及びステップS103において、端末20Aは、ステップS101で自律的に選択したリソースを用いて、PSCCH及び/又はPSSCHによりSCI(Sidelink Control Information)を送信するとともに、PSSCHによりSLデータを送信する。例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する又は隣接しない周波数リソースを使用して送信してもよい。
In steps S102 and S103, the terminal 20A uses the resources autonomously selected in step S101 to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH. For example, the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH, and using a frequency resource that is adjacent to or not adjacent to the frequency resource of the PSSCH.
端末20Bは、端末20Aから送信されたSCI(PSCCH及び/又はPSSCH)とSLデータ(PSSCH)を受信する。受信したSCIには、端末20Bが、当該データの受信に対するHARQ-ACKを送信するためのPSFCHのリソースの情報が含まれてもよい。端末20Aは自律的に選択したリソースの情報をSCIに含めて送信してもよい。なお、PSFCHに使用可能なリソースは周期的なスロットかつスロット内の末尾(最終シンボルは除く)のシンボルであってもよく、PSFCH機会と呼ばれてもよい。
The terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A. The received SCI may include information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data. The terminal 20A may include information on the autonomously selected resource in the SCI and transmit it. Note that the resources available for the PSFCH may be periodic slots and symbols at the end (excluding the final symbol) within the slot, and may be referred to as PSFCH opportunities.
ステップS104において、端末20Bは、受信したSCIから定まるPSFCHのリソースを使用して、受信したデータに対するHARQ-ACKを端末20Aに送信する。
In step S104, the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
ステップS105において、端末20Aは、ステップS104で受信したHARQ-ACKが再送を要求することを示す場合すなわちNACK(否定的応答)である場合、端末20BにPSCCH及びPSSCHを再送する。端末20Aは、自律的に選択したリソースを使用してPSCCH及びPSSCHを再送してもよい。
In step S105, the terminal 20A retransmits the PSCCH and PSSCH to the terminal 20B if the HARQ-ACK received in step S104 indicates a request for retransmission, that is, if it is a NACK (negative response). The terminal 20A may retransmit the PSCCH and PSSCH using autonomously selected resources.
なお、HARQフィードバックを伴うHARQ制御が実行されない場合、ステップS104及びステップS105は実行されなくてもよい。
Note that if HARQ control with HARQ feedback is not performed, step S104 and step S105 may not be performed.
図3は、V2Xの動作例(2)を示すシーケンス図である。送信の成功率又は到達距離を向上させるためのHARQ制御によらないブラインド再送が実行されてもよい。
FIG. 3 is a sequence diagram showing an example (2) of V2X operation. Blind retransmission without HARQ control may be performed to improve transmission success rate or reach.
ステップS201において、端末20Aは、所定の期間を有するリソース選択ウィンドウから自律的にPSCCH及びPSSCHに使用するリソースを選択する。リソース選択ウィンドウは、基地局10から端末20に設定されてもよい。
In step S201, the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period. A resource selection window may be set from the base station 10 to the terminal 20.
ステップS202及びステップS203において、端末20Aは、ステップS201で自律的に選択したリソースを使用して、PSCCH及び/又はPSSCHによりSCIを送信するとともに、PSSCHによりSLデータを送信する。例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信してもよい。
In steps S202 and S203, the terminal 20A uses the resources autonomously selected in step S201 to transmit SCI on the PSCCH and/or PSSCH, and also transmits SL data on the PSSCH. For example, the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
ステップS204において、端末20Aは、ステップS201で自律的に選択したリソースを使用して、PSCCH及び/又はPSSCHによるSCI及びPSSCHによるSLデータを端末20Bに再送する。ステップS204における再送は、複数回実行されてもよい。
In step S204, the terminal 20A uses the resources autonomously selected in step S201 to retransmit the SCI on the PSCCH and/or PSSCH and the SL data on the PSSCH to the terminal 20B. The retransmission in step S204 may be performed multiple times.
なお、ブラインド再送が実行されない場合、ステップS204は実行されなくてもよい。
Note that if blind retransmission is not performed, step S204 may not be performed.
図4は、V2Xの動作例(3)を示すシーケンス図である。基地局10は、サイドリンクのスケジューリングを行ってもよい。すなわち、基地局10は、端末20が使用するサイドリンクのリソースを決定して、当該リソースを示す情報を端末20に送信してもよい。さらに、HARQフィードバックを伴うHARQ制御が適用される場合、基地局10は、PSFCHのリソースを示す情報を端末20に送信してもよい。
FIG. 4 is a sequence diagram showing an example (3) of V2X operation. The base station 10 may perform sidelink scheduling. That is, the base station 10 may determine the side link resource used by the terminal 20 and transmit information indicating the resource to the terminal 20. Furthermore, when HARQ control with HARQ feedback is applied, the base station 10 may transmit information indicating PSFCH resources to the terminal 20.
ステップS301において、基地局10は端末20Aに対して、PDCCHによりDCI(Downlink Control Information)を送ることにより、SLスケジューリングを行う。以降、便宜上、SLスケジューリングのためのDCIをSLスケジューリングDCIと呼ぶ。
In step S301, the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A via PDCCH. Hereinafter, for convenience, the DCI for SL scheduling will be referred to as SL scheduling DCI.
また、ステップS301において、基地局10は端末20Aに対して、PDCCHにより、DLスケジューリング(DL割り当てと呼んでもよい)のためのDCIも送信することを想定している。以降、便宜上、DLスケジューリングのためのDCIをDLスケジューリングDCIと呼ぶ。DLスケジューリングDCIを受信した端末20Aは、DLスケジューリングDCIで指定されるリソースを用いて、PDSCHによりDLデータを受信する。
Furthermore, in step S301, it is assumed that the base station 10 also transmits DCI for DL scheduling (also referred to as DL allocation) to the terminal 20A via PDCCH. Hereinafter, for convenience, the DCI for DL scheduling will be referred to as DL scheduling DCI. The terminal 20A that has received the DL scheduling DCI receives DL data on the PDSCH using the resources specified by the DL scheduling DCI.
ステップS302及びステップS303において、端末20Aは、SLスケジューリングDCIで指定されたリソースを用いて、PSCCH及び/又はPSSCHによりSCI(Sidelink Control Information)を送信するとともに、PSSCHによりSLデータを送信する。なお、SLスケジューリングDCIでは、PSSCHのリソースのみが指定されることとしてもよい。この場合、例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信することとしてもよい。
In steps S302 and S303, the terminal 20A uses the resources specified by the SL scheduling DCI to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH. Note that in the SL scheduling DCI, only PSSCH resources may be specified. In this case, for example, the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
端末20Bは、端末20Aから送信されたSCI(PSCCH及び/又はPSSCH)とSLデータ(PSSCH)を受信する。PSCCH及び/又はPSSCHにより受信したSCIには、端末20Bが、当該データの受信に対するHARQ-ACKを送信するためのPSFCHのリソースの情報が含まれる。
The terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A. The SCI received on the PSCCH and/or PSSCH includes information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data.
当該リソースの情報は、ステップS301において基地局10から送信されるDLスケジューリングDCI又はSLスケジューリングDCIに含まれていて、端末20Aが、DLスケジューリングDCI又はSLスケジューリングDCIから当該リソースの情報を取得してSCIの中に含める。あるいは、基地局10から送信されるDCIには当該リソースの情報は含まれないこととし、端末20Aが自律的に当該リソースの情報をSCIに含めて送信することとしてもよい。
Information on the resource is included in the DL scheduling DCI or SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the information on the resource from the DL scheduling DCI or SL scheduling DCI and uses the SCI. Include in. Alternatively, the DCI transmitted from the base station 10 may not include information on the resource, and the terminal 20A may autonomously include the information on the resource in the SCI and transmit it.
ステップS304において、端末20Bは、受信したSCIから定まるPSFCHのリソースを使用して、受信したデータに対するHARQ-ACKを端末20Aに送信する。
In step S304, the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
ステップS305において、端末20Aは、例えば、DLスケジューリングDCI(又はSLスケジューリングDCI)により指定されたタイミング(例えばスロット単位のタイミング)で、当該DLスケジューリングDCI(又は当該SLスケジューリングDCI)により指定されたPUCCH(Physical uplink control channel)リソースを用いてHARQ-ACKを送信し、基地局10が当該HARQ-ACKを受信する。当該HARQ-ACKのコードブックには、端末20Bから受信したHARQ-ACK又は受信しなかったPSFCHに基づいて生成されるHARQ-ACKと、DLデータに対するHARQ-ACKとが含まれ得る。ただし、DLデータの割り当てがない場合等には、DLデータに対するHARQ-ACKは含まれない。NR Rel.16では、当該HARQ-ACKのコードブックに、DLデータに対するHARQ-ACKは含まれない。
In step S305, the terminal 20A transmits, for example, the PUCCH ( The HARQ-ACK is transmitted using the physical uplink control channel) resource, and the base station 10 receives the HARQ-ACK. The HARQ-ACK codebook may include a HARQ-ACK generated based on the HARQ-ACK received from the terminal 20B or a PSFCH not received, and a HARQ-ACK for DL data. However, if DL data is not allocated, HARQ-ACK for DL data is not included. NR Rel. In No. 16, the HARQ-ACK codebook does not include HARQ-ACK for DL data.
なお、HARQフィードバックを伴うHARQ制御が実行されない場合、ステップS304及び/又はステップS305は実行されなくてもよい。
Note that if HARQ control with HARQ feedback is not performed, step S304 and/or step S305 may not be performed.
図5は、V2Xの動作例(4)を示すシーケンス図である。上述のとおりNRのサイドリンクにおいて、HARQ応答はPSFCHで送信されることがサポートされている。なお、PSFCHのフォーマットは、例えばPUCCH(Physical Uplink Control Channel)フォーマット0と同様のフォーマットが使用可能である。すなわち、PSFCHのフォーマットは、PRB(Physical Resource Block)サイズは1であり、ACK及びNACKはシーケンス及び/又はサイクリックシフトの差異によって識別されるシーケンスベースのフォーマットであってもよい。PSFCHのフォーマットとしては、これに限られない。PSFCHのリソースは、スロットの末尾のシンボル又は末尾の複数シンボルに配置されてもよい。また、PSFCHリソースに、周期Nが設定されるか予め規定される。周期Nは、スロット単位で設定されるか予め規定されてもよい。
FIG. 5 is a sequence diagram showing an example of V2X operation (4). As described above, in the NR sidelink, it is supported that the HARQ response is transmitted on the PSFCH. Note that a format similar to PUCCH (Physical Uplink Control Channel) format 0 can be used as the format of PSFCH, for example. That is, the format of the PSFCH may be a sequence-based format in which the PRB (Physical Resource Block) size is 1, and ACKs and NACKs are identified by differences in sequence and/or cyclic shift. The format of PSFCH is not limited to this. The PSFCH resource may be allocated to the last symbol or the last plural symbols of the slot. Furthermore, it is defined in advance whether a period N is set in the PSFCH resource. The period N may be set in units of slots or may be predefined.
図5において、縦軸が周波数領域、横軸が時間領域に対応する。PSCCHは、スロット先頭の1シンボルに配置されてもよいし、先頭からの複数シンボルに配置されてもよいし、先頭以外のシンボルから複数シンボルに配置されてもよい。PSFCHは、スロット末尾の1シンボルに配置されてもよいし、スロット末尾の複数シンボルに配置されてもよい。なお、上述の「スロットの先頭」「スロットの末尾」は、AGC(Automatic Gain Control)用のシンボル及び送信/受信切替用のシンボルの考慮が省略されていてもよい。すなわち、例えば1スロットが14シンボルで構成される場合、「スロットの先頭」「スロットの末尾」は、先頭及び末尾のシンボルを除いた12シンボルにおいて、それぞれ先頭及び末尾のシンボルであることを意味してもよい。図5に示される例では、3つのサブチャネルがリソースプールに設定されており、PSSCHが配置されるスロットの3スロット後にPSFCHが2つ配置される。PSSCHからPSFCHへの矢印は、PSSCHに関連付けられるPSFCHの例を示す。
In FIG. 5, the vertical axis corresponds to the frequency domain, and the horizontal axis corresponds to the time domain. The PSCCH may be placed in one symbol at the beginning of the slot, in multiple symbols from the beginning, or in multiple symbols starting from a symbol other than the beginning. The PSFCH may be placed in one symbol at the end of the slot, or may be placed in multiple symbols at the end of the slot. Note that the above-mentioned "head of slot" and "end of slot" may omit consideration of symbols for AGC (Automatic Gain Control) and symbols for transmission/reception switching. That is, for example, when one slot is composed of 14 symbols, "the beginning of the slot" and "the end of the slot" mean the first and last symbols, respectively, among the 12 symbols excluding the first and last symbols. You can. In the example shown in FIG. 5, three subchannels are set in the resource pool, and two PSFCHs are arranged three slots after the slot in which the PSSCH is arranged. The arrow from PSSCH to PSFCH indicates an example of PSFCH associated with PSSCH.
NR-V2XのグループキャストにおけるHARQ応答がACK又はNACKを送信するグループキャストオプション2である場合、PSFCHの送受信に使用するリソースを決定する必要がある。図5に示されるように、ステップS401において、送信側端末20である端末20Aが、SL-SCH(Sidelink Shared Channel)を介して、受信側端末20である端末20B、端末20C及び端末20Dにグループキャストを実行する。続くステップS402において、端末20BはPSFCH#Bを使用し、端末20CはPSFCH#Cを使用し、端末20DはPSFCH#Dを使用してHARQ応答を端末20Aに送信する。ここで、図5の例に示されるように、利用可能なPSFCHのリソースの個数が、グループに属する受信側端末20の数より少ない場合、PSFCHのリソースをどのように割り当てるか決定する必要がある。なお、送信側端末20は、グループキャストにおける受信側端末20の数を把握していてもよい。なお、グループキャストオプション1では、HARQ応答として、NACKのみ送信され、ACKは送信されない。
If the HARQ response in NR-V2X group cast is group cast option 2, which transmits ACK or NACK, it is necessary to determine the resources to be used for transmitting and receiving the PSFCH. As shown in FIG. 5, in step S401, the terminal 20A, which is the transmitting terminal 20, is grouped into the terminal 20B, terminal 20C, and terminal 20D, which are the receiving terminals 20, via the SL-SCH (Sidelink Shared Channel). Execute the cast. In the following step S402, the terminal 20B uses PSFCH #B, the terminal 20C uses PSFCH #C, and the terminal 20D uses PSFCH #D to transmit the HARQ response to the terminal 20A. Here, as shown in the example of FIG. 5, if the number of available PSFCH resources is less than the number of receiving terminals 20 belonging to the group, it is necessary to decide how to allocate the PSFCH resources. . Note that the transmitting terminal 20 may know the number of receiving terminals 20 in the group cast. Note that in group cast option 1, only NACK is transmitted as the HARQ response, and ACK is not transmitted.
図6は、NRにおけるセンシング動作の例を示す図である。リソース割り当てモード2(Resource allocation mode 2)では、端末20がリソースを選択して送信を行う。図6に示されるように、端末20は、リソースプール内のセンシングウィンドウでセンシングを実行する。センシングにより、端末20は、他の端末20から送信されるSCIに含まれるリソース予約(resource reservation)フィールド又はリソース割り当て(resource assignment)フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ(resource selection window)内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。
FIG. 6 is a diagram showing an example of sensing operation in NR. In resource allocation mode 2, the terminal 20 selects a resource and performs transmission. As shown in FIG. 6, the terminal 20 performs sensing using a sensing window within the resource pool. Through sensing, the terminal 20 receives a resource reservation field or a resource assignment field included in the SCI transmitted from another terminal 20, and selects a resource in the resource pool based on the field. Identify available resource candidates within a resource selection window. Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
また、図6に示されるように、リソースプールの設定は周期を有してもよい。例えば、当該周期は、10240ミリ秒の期間であってもよい。図6は、スロットt0
SLからスロットtTmax-1
SLまでがリソースプールとして設定される例である。各周期内のリソースプールは、例えばビットマップによって領域が設定されてもよい。
Further, as shown in FIG. 6, the resource pool setting may have a periodicity. For example, the period may be a period of 10240 milliseconds. FIG. 6 is an example in which slot t 0 SL to slot t Tmax-1 SL are set as a resource pool. Areas of the resource pool within each period may be set using, for example, a bitmap.
また、図6に示されるように、端末20における送信トリガはスロットnで発生しており、当該送信の優先度はpTXであるとする。端末20は、スロットn-T0からスロットn-Tproc,0の直前のスロットまでのセンシングウィンドウにおいて、例えば他の端末20が優先度pRXの送信を行っていることを検出することができる。センシングウィンドウ内でSCIが検出され、かつRSRP(Reference Signal Received Power)が閾値を上回る場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングウィンドウ内でSCIが検出され、かつRSRPが閾値未満である場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、優先度pTX及び優先度pRXに基づいて、センシングウィンドウ内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。
Further, as shown in FIG. 6, it is assumed that the transmission trigger in the terminal 20 occurs in slot n, and the priority of the transmission is pTX . The terminal 20 can detect, for example, that another terminal 20 is transmitting priority p RX in the sensing window from slot nT 0 to the slot immediately before slot nT proc,0. . If an SCI is detected within the sensing window and RSRP (Reference Signal Received Power) exceeds a threshold, the resource within the resource selection window corresponding to the SCI is excluded. Further, if an SCI is detected within the sensing window and the RSRP is less than the threshold, the resource within the resource selection window corresponding to the SCI is not excluded. The thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing window based on the priority p TX and the priority p RX.
また、図6に示されるスロットtm
SLのように、例えば送信のため、モニタリングしなかったセンシングウィンドウ内のリソースに対応するリソース予約情報の候補となるリソース選択ウィンドウ内のリソースは除外される。
Further, like slot t m SL shown in FIG. 6, resources within the resource selection window that are candidates for resource reservation information corresponding to resources within the sensing window that are not monitored, for example, for transmission, are excluded.
スロットn+T1からスロットn+T2までのリソース選択ウィンドウは、図6に示されるように、他UEが占有するリソースが識別され、当該リソースが除外されたリソースが、使用可能なリソース候補となる。使用可能なリソース候補の集合をSAとすると、SAがリソース選択ウィンドウの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行してもよい。すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させて、リソース候補の集合SAがリソース選択ウィンドウの20%以上となるようにしてもよい。SAがリソース選択ウィンドウの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行する動作は繰り返されてもよい。
As shown in FIG. 6, in the resource selection window from slot n+T 1 to slot n+T 2 , resources occupied by other UEs are identified, and resources from which these resources are excluded become usable resource candidates. Assuming that the set of usable resource candidates is S A , if S A is less than 20% of the resource selection window, the thresholds Th pTX and pRX set for each resource in the sensing window are increased by 3 dB and the resource selection is performed again. Identification may be performed. That is, by increasing the thresholds Th pTX and pRX and performing resource identification again, the number of resources that are not excluded because their RSRPs are less than the thresholds is increased, and the set of resource candidates S A becomes 20% or more of the resource selection window. You may do so. If S A is less than 20% of the resource selection window, the operation of increasing the thresholds Th pTX and pRX set for each resource in the sensing window by 3 dB and performing resource identification again may be repeated.
端末20の下位レイヤは、SAを上位レイヤに報告してもよい。端末20の上位レイヤは、SAに対してランダム選択を実行して使用するリソースを決定してもよい。端末20は、決定したリソースを使用してサイドリンク送信を実行してもよい。例えば、上位レイヤはMACレイヤであってもよいし、下位レイヤはPHYレイヤ又は物理レイヤであってもよい。
The lower layer of the terminal 20 may report SA to the upper layer. The upper layer of the terminal 20 may perform random selection on the SA to determine the resources to be used. The terminal 20 may perform sidelink transmission using the determined resources. For example, the upper layer may be a MAC layer, and the lower layer may be a PHY layer or a physical layer.
上述の図6では、送信側端末20の動作を説明したが、受信側端末20は、センシング又は部分センシングの結果に基づいて、他の端末20からのデータ送信を検知して、当該他の端末20からデータを受信してもよい。
In FIG. 6 described above, the operation of the transmitting terminal 20 has been explained, but the receiving terminal 20 detects data transmission from another terminal 20 based on the result of sensing or partial sensing, and transmits data to the other terminal 20. Data may be received from 20.
図7は、NRにおけるプリエンプションの例を示すフローチャートである。図8は、NRにおけるプリエンプションの例を示す図である。ステップS501において、端末20は、センシングウィンドウでセンシングを実行する。端末20が省電力動作を行う場合、予め規定された限定された期間でセンシングが実行されてもよい。続いて、端末20は、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを識別してリソース候補の集合SAを決定し、送信に使用するリソースを選択する(S502)。続いて、端末20は、リソース候補の集合SAからプリエンプションを判定するリソースセット(r_0,r_1,・・・)を選択する(S503)。当該リソースセットは、プリエンプションされたか否かを判定するリソースとして上位レイヤからPHYレイヤに通知されてもよい。
FIG. 7 is a flowchart illustrating an example of preemption in NR. FIG. 8 is a diagram showing an example of preemption in NR. In step S501, the terminal 20 performs sensing using the sensing window. When the terminal 20 performs power saving operation, sensing may be performed in a predefined limited period. Next, the terminal 20 identifies each resource within the resource selection window based on the sensing results, determines a resource candidate set SA , and selects a resource to be used for transmission (S502). Subsequently, the terminal 20 selects a resource set (r_0, r_1, . . . ) for determining preemption from the resource candidate set SA (S503). The resource set may be notified from the upper layer to the PHY layer as a resource for determining whether or not it has been preempted.
ステップS504において、端末20は、図8に示されるT(r_0)-T3のタイミングで、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを再度識別してリソース候補の集合SAを決定し、さらに優先度に基づいてリソースセット(r_0,r_1,・・・)に対してプリエンプションを判定する。例えば、図8に示されるr_1は、再度のセンシングにより、他端末20から送信されたSCIが検出されており、SAに含まれていない。プリエンプションが有効である場合、他端末20から送信されたSCIの優先度を示す値prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも低い場合、端末20はリソースr_1をプリエンプションされたと判定する。なお、優先度を示す値はより低い値のほうが、優先度はより高くなる。すなわち、他端末20から送信されたSCIの優先度を示す値prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも高い場合、端末20はリソースr_1をSAから除外しない。または、プリエンプションが特定の優先度にのみ有効である場合(例えば、sl-PreemptionEnableがpl1, pl2, ..., pl8のいずれか)、この優先度をprio_preとする。このとき、他端末20から送信されたSCIの優先度を示す値prio_RXが、prio_preよりも低く、かつ、prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも低い場合、端末20はリソースr_1をプリエンプションされたと判定する。
In step S504, the terminal 20 re-identifies each resource within the resource selection window based on the sensing result and determines a resource candidate set S A at timing T(r_0) -T3 shown in FIG. , further determines whether to preempt the resource set (r_0, r_1, . . . ) based on the priority. For example, in r_1 shown in FIG. 8, the SCI transmitted from another terminal 20 has been detected by re-sensing and is not included in SA . When preemption is enabled, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is lower than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 uses the resource r_1. It is determined that it has been preempted. Note that the lower the value indicating the priority, the higher the priority. That is, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is higher than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 does not exclude resource r_1 from SA . . Alternatively, if preemption is valid only for a specific priority (for example, sl-PreemptionEnable is one of pl1, pl2, ..., pl8), this priority is set as prio_pre. At this time, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is lower than prio_pre, and prio_RX is lower than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, The terminal 20 determines that the resource r_1 has been preempted.
ステップS505において、端末20は、ステップS504においてプリエンプションが判定された場合、上位レイヤにプリエンプションを通知し、上位レイヤにおいてリソースの再選択を行い、プリエンプションのチェックを終了する。
In step S505, if preemption is determined in step S504, the terminal 20 notifies the upper layer of the preemption, reselects resources in the upper layer, and ends the preemption check.
なお、プリエンプションのチェックに代えて再評価(Re-evaluation)を実行する場合、上記ステップS504において、リソース候補の集合SAを決定した後、SAにリソースセット(r_0,r_1,・・・)のリソースが含まれない場合、当該リソースを使用せず、上位レイヤにおいてリソースの再選択を行う。
Note that when performing re-evaluation instead of checking preemption, after determining the set of resource candidates SA in step S504, the resource set (r_0, r_1,...) is assigned to SA. If the resource is not included, the resource is not used and the resource is reselected in the upper layer.
図9は、LTEにおける部分センシング動作の例を示す図である。LTEサイドリンクにおいて部分センシングが上位レイヤから設定された場合、図9に示されるように端末20はリソースを選択して送信を行う。図9に示されるように、端末20は、リソースプール内のセンシングウィンドウの一部すなわちセンシングターゲットに対して部分センシングを実行する。部分センシングにより、端末20は、他の端末20から送信されるSCIに含まれるリソース予約フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。
FIG. 9 is a diagram illustrating an example of partial sensing operation in LTE. When partial sensing is configured from an upper layer in the LTE sidelink, the terminal 20 selects a resource and performs transmission, as shown in FIG. As shown in FIG. 9, the terminal 20 performs partial sensing for a portion of the sensing window in the resource pool, that is, the sensing target. Through partial sensing, the terminal 20 receives the resource reservation field included in the SCI transmitted from other terminals 20 and identifies available resource candidates within the resource selection window within the resource pool based on the field. . Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
図9は、サブフレームt0
SLからサブフレームtTmax-1
SLまでがリソースプールとして設定される例である。リソースプールは、例えばビットマップによって対象領域が設定されてもよい。図9に示されるように、端末20における送信トリガはサブフレームnで発生するものとする。図9に示されるように、サブフレームn+T1からサブフレームn+T2までのうち、サブフレームty1
SLからサブフレームtyY
SLまでのYサブフレームがリソース選択ウィンドウとして設定されてもよい。
FIG. 9 is an example in which subframe t 0 SL to subframe t Tmax-1 SL is set as a resource pool. The target area of the resource pool may be set using, for example, a bitmap. As shown in FIG. 9, it is assumed that a transmission trigger in terminal 20 occurs in subframe n. As shown in FIG. 9, Y subframes from subframe ty1 SL to subframe tyY SL among subframe n+T 1 to subframe n+T 2 may be set as the resource selection window.
端末20は、Yサブフレーム長となるサブフレームty1-k×Pstep
SLからサブフレームtyY-k×Pstep
SLまでの1又は複数のセンシングターゲットにおいて、例えば他の端末20が送信を行っていることを検出することができる。kは、例えば10ビットのビットマップによって決定されてもよい。図9では、ビットマップの3番目と6番目のビットが、部分センシングを行うことを示す"1"に設定される例を示す。すなわち、図9において、サブフレームty1-6×Pstep
SLからサブフレームtyY-6×Pstep
SLまでと、サブフレームty1-3×Pstep
SLからサブフレームtyY-3×Pstep
SLまでとがセンシングターゲットとして設定される。上記のように、ビットマップのk番目のビットは、サブフレームty1-k×Pstep
SLからサブフレームtyY-k×Pstep
SLまでのセンシングウィンドウに対応してもよい。なお、yiはYサブフレーム内のインデックス(1...Y)に対応する。
The terminal 20 is, for example, another terminal 20 transmitting at one or more sensing targets from subframe t y1-k×Pstep SL to subframe t yY-k×Pstep SL , which has a subframe length of Y. can be detected. k may be determined by a 10-bit bitmap, for example. FIG. 9 shows an example in which the third and sixth bits of the bitmap are set to "1" indicating that partial sensing is performed. That is, in FIG. 9, from subframe ty1-6×Pstep SL to subframe tyY-6×Pstep SL , and from subframe ty1-3×Pstep SL to subframe tyY-3×Pstep SL. Set as a sensing target. As mentioned above, the kth bit of the bitmap may correspond to a sensing window from subframe t y1-k×Pstep SL to subframe t yY-k×Pstep SL . Note that y i corresponds to the index (1...Y) within the Y subframe.
なお、kは10ビットのビットマップで設定されるか予め規定され、Pstepは100msであってもよい。ただし、DL及びULキャリアでSL通信を行う場合、Pstepは(U/(D+S+U))*100msとしてもよい。UはULサブフレーム数、DはDLサブフレーム数、Sはスペシャルサブフレーム数に対応する。
Note that k may be set or predefined in a 10-bit bitmap, and P step may be 100 ms. However, when performing SL communication using DL and UL carriers, P step may be (U/(D+S+U))*100ms. U corresponds to the number of UL subframes, D corresponds to the number of DL subframes, and S corresponds to the number of special subframes.
上記のセンシングターゲットにおいてSCIが検出され、かつRSRPが閾値を上回る場合、当該SCIのリソース予約フィールドに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングターゲットにおいてSCIが検出され、かつRSRPが閾値未満である場合、当該SCIのリソース予約フィールドに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、送信側優先度pTX及び受信側優先度pRXに基づいて、センシングターゲット内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。
If an SCI is detected in the above sensing target and the RSRP is above the threshold, the resources within the resource selection window corresponding to the resource reservation field of the SCI are excluded. Additionally, if an SCI is detected in the sensing target and the RSRP is less than the threshold, the resources within the resource selection window corresponding to the resource reservation field of the SCI are not excluded. The thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing target based on the transmitting side priority p TX and the receiving side priority p RX .
図9に示されるように、区間[n+T1,n+T2]のうちYサブフレームに設定されるリソース選択ウィンドウにおいて、端末20は、他UEが占有するリソースを識別し、当該リソースを除外したリソースが、使用可能なリソース候補となる。なお、Yサブフレームは連続していなくてもよい。使用可能なリソース候補の集合をSAとすると、SAがリソース選択ウィンドウのリソースの20%未満であった場合、センシングターゲットのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行してもよい。
As shown in FIG. 9, in the resource selection window set in the Y subframe of the interval [n+T 1 , n+T 2 ], the terminal 20 identifies the resources occupied by other UEs, and identifies the resources excluding the resources. are available resource candidates. Note that the Y subframes do not have to be consecutive. Assuming that the set of available resource candidates is S A , if S A is less than 20% of the resources in the resource selection window, the thresholds Th pTX and pRX set for each sensing target resource are increased by 3 dB and the process is performed again. Resource identification may also be performed.
すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させてもよい。さらに、SAの各リソースのRSSIを測定し、RSSIが最小のリソースを集合SBに追加してもよい。リソース候補の集合SBがリソース選択ウィンドウの20%以上となるまで、SAに含まれるRSSIが最小のリソースをSBに追加する動作を繰り返してもよい。
That is, by increasing the thresholds Th pTX and pRX and performing resource identification again, the number of resources that are not excluded because the RSRP is less than the threshold may be increased. Furthermore, the RSSI of each resource in SA may be measured, and the resource with the minimum RSSI may be added to the set SB . The operation of adding the resource with the smallest RSSI included in SA to SB may be repeated until the resource candidate set SB becomes 20% or more of the resource selection window.
端末20の下位レイヤは、SBを上位レイヤに報告してもよい。端末20の上位レイヤは、SBに対してランダム選択を実行して使用するリソースを決定してもよい。端末20は、決定したリソースを使用してサイドリンク送信を実行してもよい。なお、端末20は、一度リソースを確保した後、所定の回数(例えばCresel回)はセンシングを行わずに周期的にリソースを使用してもよい。
The lower layer of the terminal 20 may report the SB to the upper layer. The upper layer of the terminal 20 may perform random selection on the SB to determine the resources to be used. The terminal 20 may perform sidelink transmission using the determined resources. Note that, once the terminal 20 secures the resource, it may periodically use the resource without performing sensing for a predetermined number of times (for example, Cresel times).
NRサイドリンクにおいて、ランダムリソース選択(random resource selection)及び部分センシング(partial sensing)をベースとする省電力化が仕様化されている。部分センシングが適用される端末20は、センシングウィンドウ内の特定のスロットでのみ受信及びセンシングを実行する。すなわち、端末20は、フルセンシングと比較して限定されたリソースのみに対するセンシングによってリソースの識別を実行し、識別されたリソースセットからリソース選択を行う部分センシングを実行してもよい。また、端末20は、リソース選択ウィンドウ内のリソースからリソースの除外を行うことなく、リソース選択ウィンドウ内のリソースを識別されたリソースセットとし、当該識別されたリソースセットからリソース選択を行うランダム選択を実行してもよい。
In the NR sidelink, power saving based on random resource selection and partial sensing is specified. The terminal 20 to which partial sensing is applied performs reception and sensing only in specific slots within the sensing window. That is, the terminal 20 may perform partial sensing in which resources are identified by sensing only limited resources compared to full sensing, and resources are selected from the identified resource set. Furthermore, the terminal 20 sets the resources in the resource selection window as an identified resource set, without excluding resources from the resources in the resource selection window, and performs random selection to select resources from the identified resource set. You may.
なお、リソース選択の時点では、ランダム選択を実行し、再評価又はプリエンプションチェック時にはセンシング情報を使用する方法が、部分センシングとして扱われてもよいし、ランダム選択として扱われてもよい。
Note that a method of performing random selection at the time of resource selection and using sensing information at the time of re-evaluation or preemption check may be treated as partial sensing or random selection.
なお、センシングにおける動作として、以下に示される1)及び2)が適用されてもよい。なお、センシングとモニタリングとは互いに読み替えられてもよく、受信RSRPの測定、予約リソース情報の取得及び優先度情報の取得のうち少なくとも一つが当該動作に含まれていてもよい。
Note that 1) and 2) shown below may be applied as the sensing operation. Note that sensing and monitoring may be interchanged with each other, and the operation may include at least one of measurement of received RSRP, acquisition of reserved resource information, and acquisition of priority information.
1)周期的部分センシング(Periodic-based partial sensing)
一部のスロットのみセンシングを行う仕組みにおいて、予約周期(Reservation periodicity)に基づいてセンシングスロットを決定する動作。なお、予約周期は、リソース予約周期フィールド(resource reservation period field)に関連する値である。なお、周期は周期性に置き換えられてもよい。 1) Periodic-based partial sensing
In a system where only some slots are sensed, the operation of determining the sensing slot based on the reservation periodicity. Note that the reservation period is a value related to a resource reservation period field. Note that the period may be replaced with periodicity.
一部のスロットのみセンシングを行う仕組みにおいて、予約周期(Reservation periodicity)に基づいてセンシングスロットを決定する動作。なお、予約周期は、リソース予約周期フィールド(resource reservation period field)に関連する値である。なお、周期は周期性に置き換えられてもよい。 1) Periodic-based partial sensing
In a system where only some slots are sensed, the operation of determining the sensing slot based on the reservation periodicity. Note that the reservation period is a value related to a resource reservation period field. Note that the period may be replaced with periodicity.
2)連続部分センシング(Contiguous partial sensing)
一部のスロットのみセンシングを仕組みにおいて、非周期的予約(aperiodic reservation)に基づいてセンシングスロットを決定する動作。なお、非周期的予約は、時間リソース割り当てフィールド(time resource assignment field)に関連する値である。 2) Contiguous partial sensing
An operation in which sensing slots are determined based on aperiodic reservation in a system where only some slots are sensed. Note that the aperiodic reservation is a value related to a time resource assignment field.
一部のスロットのみセンシングを仕組みにおいて、非周期的予約(aperiodic reservation)に基づいてセンシングスロットを決定する動作。なお、非周期的予約は、時間リソース割り当てフィールド(time resource assignment field)に関連する値である。 2) Contiguous partial sensing
An operation in which sensing slots are determined based on aperiodic reservation in a system where only some slots are sensed. Note that the aperiodic reservation is a value related to a time resource assignment field.
また、あるリソースプールに複数のリソース割り当て方法が設定され得る。また、省電力化機能の一つとして、SL-DRX(Discontinuous reception)がサポートされる。すなわち、所定の時間区間でのみ受信動作が行われる。
Additionally, multiple resource allocation methods may be set for a certain resource pool. Additionally, SL-DRX (Discontinuous reception) is supported as one of the power saving functions. That is, the reception operation is performed only in a predetermined time interval.
上記の通り、省電力機能の一つとして部分センシングがサポートされる。部分センシングが設定されたリソースプールにおいて、端末20は、上述した周期的部分センシングを実行してもよい。端末20は、部分センシングが設定され、かつ周期的予約が有効に設定されたリソースプールを設定するための情報を、基地局10から受信してもよい。
As mentioned above, partial sensing is supported as one of the power saving functions. In the resource pool in which partial sensing is configured, the terminal 20 may perform the periodic partial sensing described above. The terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and periodic reservation is enabled.
図10は、周期的部分センシングの例を説明するための図である。図10に示されるように、リソース選択のためのY候補スロットを、リソース選択ウィンドウ[n+T1,n+T2]から選択する。
FIG. 10 is a diagram for explaining an example of periodic partial sensing. As shown in FIG. 10, Y candidate slots for resource selection are selected from the resource selection window [n+T 1 , n+T 2 ].
ty
SLをY候補スロットに含まれる一つのスロットとして、ty-k×Preserve
SLを、周期的部分センシングの対象スロットとしてセンシングを行ってもよい。
Sensing may be performed using t y SL as one slot included in the Y candidate slots and t y−k×Preserve SL as a target slot for periodic partial sensing.
Preserveは、設定されるか予め規定されるセットsl-ResouceReservePeriodListに含まれるすべての値に対応してもよい。あるいは、sl-ResouceReservePeriodListのサブセットに限定されたPreserveの値が、設定されるか予め規定されてもよい。Preserve及びsl-ResouceReservePeriodListは、リソース割り当てモード2の送信リソースプールごとに設定されてもよい。また、UE実装として、限定されたサブセット以外のsl-ResouceReservePeriodListに含まれる周期をモニタリングしてもよい。例えば、端末20は、P_RSVP_Txに対応する機会を追加的にモニタリングしてもよい。
P reserve may correspond to all values included in the configured or predefined set sl-ResourceReservePeriodList. Alternatively, the value of P reserve limited to a subset of sl-ResourceReservePeriodList may be set or predefined. P reserve and sl-ResourceReservePeriodList may be set for each transmission resource pool in resource allocation mode 2. Furthermore, as a UE implementation, the periods included in the sl-ResourceReservePeriodList other than the limited subset may be monitored. For example, the terminal 20 may additionally monitor opportunities to support P_RSVP_Tx.
k値に関して、端末20は、リソース選択トリガのスロットn以前の、あるいは、処理時間の制限を受けるY候補スロットの先頭スロット以前の、ある予約周期における最も新しいセンシング機会をモニタリングしてもよい。また、端末20は、1以上のk値のセットに対応する周期的なセンシング機会を追加的にモニタリングしてもよい。例えば、k値として、リソース選択トリガのスロットn以前の、あるいは、処理時間の制限を受けるY候補スロットの先頭スロット以前の、ある予約周期における最も新しいセンシング機会に対応する値と、当該ある予約周期における最も新しいセンシング機会の直前のセンシング機会に対応する値とが設定されてもよい。
Regarding the k value, the terminal 20 may monitor the newest sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time limitations. Additionally, the terminal 20 may additionally monitor periodic sensing opportunities corresponding to a set of one or more k values. For example, as the k value, a value corresponding to the newest sensing opportunity in a certain reservation cycle before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time restrictions, and a value corresponding to the latest sensing opportunity in a certain reservation cycle, and The value corresponding to the sensing opportunity immediately before the most recent sensing opportunity may be set.
上記の通り、省電力機能の一つとして部分センシングがサポートされる。部分センシングが設定されたリソースプールにおいて、端末20は、上述した連続部分センシングを実行してもよい。端末20は、部分センシングが設定され、かつ非周期的予約が有効に設定されたリソースプールを設定するための情報を、基地局10から受信してもよい。
As mentioned above, partial sensing is supported as one of the power saving functions. In the resource pool in which partial sensing is configured, the terminal 20 may perform the continuous partial sensing described above. The terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and aperiodic reservation is enabled.
図11は、連続部分センシングの例を説明するための図である。図11に示されるように、端末20は、リソース選択のトリガをスロットnとした場合、リソース選択のためのY候補スロットをリソース選択ウィンドウ[n+T1,n+T2]から選択する。図11は、Y=7の場合の一例である。図11に示されるように、Y候補スロットの先頭をスロットty1とし、次のスロットをty2とし、・・・、Y候補スロットの末尾をスロットtyYと表記する。
FIG. 11 is a diagram for explaining an example of continuous partial sensing. As shown in FIG. 11, when the resource selection trigger is slot n, the terminal 20 selects Y candidate slots for resource selection from the resource selection window [n+T 1 , n+T 2 ]. FIG. 11 is an example when Y=7. As shown in FIG. 11, the beginning of the Y candidate slots is expressed as slot ty1 , the next slot is expressed as ty2 , . . . the end of the Y candidate slots is expressed as slot tyY .
端末20は、区間[n+TA,n+TB]でセンシングを行い、n+TB又はn+TB以降(n+TCとする)でリソース選択を実行する。なお、上述した周期的部分センシングが追加的に実行されてもよい。なお、区間[n+TA,n+TB]のTAおよびTBは何れの値であってもよい。また、nはY候補スロットのうちの何れかのスロットのインデックスに置き換えられてもよい。
The terminal 20 performs sensing in the interval [n+T A , n+T B ], and executes resource selection in n+T B or after n+T B (referred to as n+T C ). Note that the periodic partial sensing described above may be additionally performed. Note that T A and T B in the interval [n+T A , n+T B ] may have any value. Further, n may be replaced with the index of any slot among the Y candidate slots.
また、記号[は記号(に置き換えられてもよく、記号]は記号)に置き換えられてもよい。なお、例えば、区間[a,b]は、スロットaからスロットbまでの区間であって、スロットa及びスロットbを含む。例えば、区間(a,b)は、スロットaからスロットbまでの区間であって、スロットa及びスロットbを含まない。
Further, the symbol [may be replaced with the symbol (and the symbol] may be replaced with the symbol). Note that, for example, the section [a, b] is a section from slot a to slot b, and includes slot a and slot b. For example, the section (a, b) is a section from slot a to slot b, and does not include slot a and slot b.
なお、リソース選択の対象となる候補リソースを、Y候補スロットと記載するが、区間[n+T1,n+T2]のすべてのスロットが候補スロットであってもよいし、一部のスロットが候補スロットであってもよい。
Note that the candidate resource that is the target of resource selection is described as Y candidate slot, but all slots in the interval [n+T 1 , n+T 2 ] may be candidate slots, or some slots may be candidate slots. There may be.
また、信頼性及び遅延性能を向上させる手法として、端末間協調が仕様化されている。例えば、以下に示される端末間協調方法1及び端末間協調方法2が仕様化されている。以下、協調情報(Coordination information)を送信する端末20をUE-A、協調情報を受信する端末20をUE-Bと記載する。
In addition, inter-terminal cooperation has been specified as a method to improve reliability and delay performance. For example, an inter-terminal cooperation method 1 and an inter-terminal cooperation method 2 shown below are specified. Hereinafter, the terminal 20 that transmits coordination information will be referred to as UE-A, and the terminal 20 that receives coordination information will be referred to as UE-B.
端末間協調方法1)UE-Bの送信のため、推奨される(preferred)リソースセット及び/又は推奨されない(non-preferred)リソースセットが、UE-AからUE-Bに送信される。以下、端末間協調方法1を、IUCスキーム1(Inter-UE coordination scheme 1)とも記載する。
Inter-terminal cooperation method 1) For the transmission of UE-B, a preferred resource set and/or a non-preferred resource set is transmitted from UE-A to UE-B. Hereinafter, the inter-terminal coordination method 1 will also be referred to as IUC scheme 1 (Inter-UE coordination scheme 1).
端末間協調方法2)UE-Bから受信したSCIにより指示されたリソースにおいて、他の送信又は受信との衝突が予期されること及び/又は衝突が検出されたリソースを示す情報を、UE-AはUE-Bに送信する。当該情報は、PSFCHを介して送信されてもよい。以下、端末間協調方法2を、IUCスキーム2(Inter-UE coordination scheme 2)とも記載する。
Inter-terminal cooperation method 2) UE-A transmits information indicating that a collision with another transmission or reception is expected and/or a resource in which a collision has been detected in the resources indicated by the SCI received from UE-B. is sent to UE-B. This information may be sent via the PSFCH. Hereinafter, the inter-terminal coordination method 2 will also be referred to as IUC scheme 2 (Inter-UE coordination scheme 2).
3GPPリリース16又はリリース17サイドリンクは、以下に示される1)及び2)を対象に仕様化されている。
3GPP Release 16 or Release 17 sidelinks are specified for 1) and 2) shown below.
1)ITS(Intelligent Transport Systems)バンドにおいて3GPP端末のみが存在する環境
2)NRで定義されているFR1(Frequency range 1)及びFR2のライセンスバンドにおいてULリソースをSLに利用可能とする環境 1) An environment where only 3GPP terminals exist in the ITS (Intelligent Transport Systems) band 2) An environment where UL resources can be used for SL in the FR1 (Frequency range 1) and FR2 license bands defined by NR
2)NRで定義されているFR1(Frequency range 1)及びFR2のライセンスバンドにおいてULリソースをSLに利用可能とする環境 1) An environment where only 3GPP terminals exist in the ITS (Intelligent Transport Systems) band 2) An environment where UL resources can be used for SL in the FR1 (Frequency range 1) and FR2 license bands defined by NR
3GPPリリース18以降のサイドリンクとして、アンライセンスバンドを新たに対象とすることが検討されている。例えば、5GHz-7GHz帯、60GHz帯等のアンライセンスバンドである。
As a side link for 3GPP Release 18 and later, it is being considered to newly target unlicensed bands. For example, these are unlicensed bands such as the 5GHz-7GHz band and the 60GHz band.
図12は、無線通信システムにおいて使用される周波数帯域の例を示す図である。3GPPリリース15及びリリース16のNR仕様では、例えば52.6GHz以上の周波数帯を運用することが検討されている。なお、図12に示されるように、現状運用が規定されているFR(Frequency range)1は410MHzから7.125GHzまでの周波数帯であり、SCS(Sub carrier spacing)は15、30又は60kHzであり、帯域幅は5MHzから100MHzまでである。
FIG. 12 is a diagram showing an example of frequency bands used in a wireless communication system. In the NR specifications of 3GPP Release 15 and Release 16, operation of a frequency band of 52.6 GHz or higher is being considered, for example. As shown in Figure 12, FR (Frequency range) 1, which is currently regulated for operation, is a frequency band from 410 MHz to 7.125 GHz, and SCS (Sub carrier spacing) is 15, 30 or 60 kHz. , the bandwidth is from 5MHz to 100MHz.
FR2-1は24.25GHzから52.6GHzまでの周波数帯であり、SCSは60、120又は240kHzを使用し、帯域幅は50MHzから400MHzである。図12に示されるように、FR2-2は、52.6GHzから71GHzまでを想定してもよい。さらに、71GHzを超える周波数帯をサポートすることを想定してもよい。
FR2-1 is a frequency band from 24.25 GHz to 52.6 GHz, SCS uses 60, 120 or 240 kHz, and the bandwidth is 50 MHz to 400 MHz. As shown in FIG. 12, FR2-2 may assume a frequency range of 52.6 GHz to 71 GHz. Furthermore, it may be envisaged to support frequency bands above 71 GHz.
52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。
When using a band exceeding 52.6 GHz, apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM) with larger Sub-Carrier Spacing (SCS). Good too.
また、FR2-2のような高周波数帯域では、キャリア間の位相雑音の増大が問題となる。このため、より大きな(広い)SCS又はシングルキャリア波形の適用が必要となり得る。
Furthermore, in a high frequency band such as FR2-2, an increase in phase noise between carriers becomes a problem. This may require the application of larger (wider) SCS or single carrier waveforms.
なお、3GPPリリース16におけるNR-SLでは、以下に示される機能が少なくともサポートされてもよい。
・周期的な送信及び/又は周期的な送信
・ユニキャスト、グループキャスト
・HARQフィードバック
・256QAM(Quadrature amplitude modulation)、MIMO(multiple input multiple output)、CSI(Channel state information)報告
・シングルキャリア
・主にFR1を使用(FR2も使用可能) Note that in NR-SL in 3GPP Release 16, at least the functions shown below may be supported.
・Periodic transmission and/or periodic transmission ・Unicast, group cast ・HARQ feedback ・256QAM (Quadrature amplitude modulation), MIMO (multiple input multiple output), CSI (Channel state information) reporting ・Single carrier ・Mainly Use FR1 (FR2 can also be used)
・周期的な送信及び/又は周期的な送信
・ユニキャスト、グループキャスト
・HARQフィードバック
・256QAM(Quadrature amplitude modulation)、MIMO(multiple input multiple output)、CSI(Channel state information)報告
・シングルキャリア
・主にFR1を使用(FR2も使用可能) Note that in NR-SL in 3GPP Release 16, at least the functions shown below may be supported.
・Periodic transmission and/or periodic transmission ・Unicast, group cast ・HARQ feedback ・256QAM (Quadrature amplitude modulation), MIMO (multiple input multiple output), CSI (Channel state information) reporting ・Single carrier ・Mainly Use FR1 (FR2 can also be used)
なお、3GPPリリース17におけるNR-SLでは、リリース16におけるNR-SLを拡張して、パブリックセーフティ、商用ユースケースを対象とする。電力削減を目的として、部分センシング、ランダム選択、DRXがサポートされてもよい。また、信頼性向上、遅延性能の向上を目的として、端末間協調がサポートされてもよい。
Note that NR-SL in 3GPP Release 17 extends NR-SL in Release 16 to cover public safety and commercial use cases. Partial sensing, random selection, and DRX may be supported for power reduction purposes. Additionally, inter-terminal coordination may be supported for the purpose of improving reliability and delay performance.
なお、3GPPリリース18におけるNR-SLでは、リリース16/17をさらに拡張して、データレート向上、新規周波数サポート、V2X拡張等の機能が追加されてもよい。SL-CA、アンライセンスバンドにおけるSL、ビームマネジメントを行うFR2サポート、LTE-SL及びNR-SLの同一チャネルの共存がサポートされてもよい。
Note that NR-SL in 3GPP Release 18 may further extend Release 16/17 to add functions such as data rate improvement, new frequency support, and V2X expansion. SL-CA, SL in unlicensed bands, FR2 support with beam management, coexistence of LTE-SL and NR-SL on the same channel may be supported.
ここで、従来のNRサイドリンクでは、FR2(Frequency Range 2)向けの機能、特にビームマネジメントに係る機能がサポートされていなかった。FR2におけるS-SSB送信機会は、各周期において、例えばSCSが120kHzの場合最大64回のように、複数回が設定又は事前設定(pre-configuration)できるものの、使用方法の詳細は定義されていなかった。また、データ送信に係るビームマネジメントは、定義されていなかった。
Here, in the conventional NR side link, functions for FR2 (Frequency Range 2), especially functions related to beam management, were not supported. Although the S-SSB transmission opportunity in FR2 can be set or pre-configured multiple times in each cycle, for example up to 64 times when the SCS is 120kHz, the details of how to use it are not defined. Ta. Also, beam management related to data transmission was not defined.
FR2においてサイドリンク通信を効率的におこなうためには、ビームマネジメントに係る標準仕様を決定し、通信を行うUE間、同一のリソースプールを使用するUE間で、適切に、連携、制御、動作等を行う必要がある。
In order to perform sidelink communication efficiently in FR2, standard specifications related to beam management are determined, and appropriate cooperation, control, operation, etc. are established between UEs communicating and between UEs using the same resource pool. need to be done.
例えば、サイドリンクにおいてビームフォーミングを適用するとき、特定のビームのみで予約情報を含むSCIを送信した場合、当該SCIを受信できなかった端末20がリソースの衝突あるいは半二重複信問題を引き起こす可能性がある。そこで、予約情報を送信するとき適切な送信ビームを使用してもよい。
For example, when applying beamforming on the sidelink, if an SCI including reservation information is transmitted only on a specific beam, the terminal 20 that cannot receive the SCI may cause a resource conflict or a half-duplex communication problem. There is. Therefore, an appropriate transmission beam may be used when transmitting the reservation information.
例えば、サイドリンクにおいてビームフォーミングを適用するとき、センシング時の受信ビームが適切でない場合、予約情報を含むSCIを受信できない当該端末20がリソースの衝突あるいは半二重複信問題を引き起こす可能性がある。そこで、センシング時に適切な受信ビームを使用してもよい。
For example, when applying beamforming on the side link, if the reception beam during sensing is not appropriate, the terminal 20 that cannot receive the SCI including reservation information may cause a resource conflict or a half-duplex communication problem. Therefore, an appropriate receiving beam may be used during sensing.
なお、「ビーム」又は「ビームフォーミング」は、ビームに係る所定のパラメータに置換されてもよい。ビームに係る所定のパラメータは、ビーム、アンテナポート、コードブック、TCI(Transmission Configuration Indicator)状態(非特許文献3参照)、QCL想定(Quasi Co Location assumption)、参照信号、アンテナパネル、空間領域送信フィルタ(Spatial domain transmission filter)、空間領域受信フィルタ(Spatial domain reception filter)のいずれであってもよい。上記ビームに係る所定のパラメータのいずれか又は複数が、以下で説明する「ビームに係る所定の情報」であってもよい。また、当該「ビームに係る所定の情報」は、ビームを特定又は決定するその他のパラメータであってもよい。
Note that "beam" or "beam forming" may be replaced with a predetermined parameter related to the beam. Predetermined parameters related to the beam include the beam, antenna port, codebook, TCI (Transmission Configuration Indicator) state (see Non-Patent Document 3), QCL assumption (Quasi Co Location assumption), reference signal, antenna panel, and spatial domain transmission filter. (Spatial domain transmission filter) or spatial domain reception filter. One or more of the predetermined parameters related to the beam may be "predetermined information related to the beam" described below. Further, the "predetermined information regarding the beam" may be other parameters that specify or determine the beam.
なお、本発明の実施の形態は、FR2に限定されずに適用されてもよいし、ビームすなわち特定の方向に対して送受信を実行する機能を使用するいずれの周波数帯に適用されてもよい。
Note that the embodiments of the present invention may be applied not only to FR2, but may also be applied to any frequency band that uses a beam, that is, a function of performing transmission and reception in a specific direction.
端末20は、予約を含むSCI送信時にビームフォーミングを適用する場合、ビームに係る所定の情報を時間によって変更しながらSCIを送信してもよい。ビームに係る所定の情報を時間によって変更しながら送信する動作をビーム掃引(beam sweeping)と呼んでもよい。
When applying beamforming when transmitting an SCI including a reservation, the terminal 20 may transmit the SCI while changing predetermined beam-related information depending on time. The operation of transmitting predetermined beam-related information while changing it over time may be called beam sweeping.
図13は、本発明の実施の形態におけるSCI送信の例(1)を説明するための図である。図13に示されるように、SCIを送信するために使用するSCI専用スロットを規定し、リソースプールにおけるSCI専用スロットの配置を設定又は事前設定してもよい。SCI専用スロットでは、同一スロット内でビームに係る所定の情報を変更しながら同一SCIの送信を実行してもよい。
FIG. 13 is a diagram for explaining example (1) of SCI transmission in the embodiment of the present invention. As shown in FIG. 13, the SCI dedicated slots used for transmitting the SCI may be defined, and the arrangement of the SCI dedicated slots in the resource pool may be set or preset. In the SCI-dedicated slot, the same SCI may be transmitted while changing predetermined beam-related information within the same slot.
図13は、1stステージSCI及び2ndステージSCIを、ビームに係る所定の情報を変更しながら3回送信する例である。
FIG. 13 is an example in which the 1st stage SCI and 2nd stage SCI are transmitted three times while changing predetermined information regarding the beam.
図14は、本発明の実施の形態におけるSCI送信の例(2)を説明するための図である。図14は、1stステージSCIのみを、ビームに係る所定の情報を変更しながら4回送信する例である。
FIG. 14 is a diagram for explaining example (2) of SCI transmission in the embodiment of the present invention. FIG. 14 is an example in which only the 1st stage SCI is transmitted four times while changing predetermined information regarding the beam.
なお、以下に示す表1のように、新規のSCIフォーマットを規定してもよい。
Note that a new SCI format may be defined as shown in Table 1 below.
表1に示されるように、優先度(Priority)、リソース予約周期(Resource reservation period)、時間リソース割り当て(Time resource assignment)、周波数リソース割り当て(Freq. resource assignment)を新規のSCIフォーマットは有してもよい。
As shown in Table 1, the new SCI format has priority, resource reservation period, time resource assignment, and frequency resource assignment. Good too.
なお、表1のA*は数1、B*は数2、C*は数3に対応する(非特許文献4参照)。
Note that A* in Table 1 corresponds to Equation 1, B* corresponds to Equation 2, and C* corresponds to Equation 3 (see Non-Patent Document 4).
SCIの送信に使用する信号構成について、シンボル数は既存のSCIフォーマットを使用する場合、1シンボル(AGC向け)及び2又は3シンボル(SCI)をビーム切り替えの最小時間単位としてもよい。新規SCIフォーマットを規定する場合、ペイロードを予約に係る最低限の情報として、1シンボル(AGC向け)及び1シンボル(SCI)をビーム切り替えの最小時間単位としてもよい。
Regarding the signal configuration used for SCI transmission, when using the existing SCI format, the number of symbols may be 1 symbol (for AGC) and 2 or 3 symbols (SCI) as the minimum time unit for beam switching. When defining a new SCI format, the payload may be used as the minimum information related to reservation, and one symbol (for AGC) and one symbol (SCI) may be used as the minimum time unit for beam switching.
ビーム切り替えの最小時間単位は、上記に限定されず、異なるシンボル数であってよいし、設定又は事前設定により与えられてもよい。
The minimum time unit for beam switching is not limited to the above, and may be a different number of symbols, or may be given by setting or presetting.
SCIが1シンボルで送信される場合、DMRSとSCIとが周波数分割多重されてもよい。SCIが2又は3シンボルで送信される場合、DMRSとSCIとが周波数分割多重されてもよいし、時分割多重されてもよい。時分割多重される場合、SCIが先頭シンボルであってもよいし、SCIが2番目のシンボルであってもよいし、設定又は事前設定で与えられてもよい。
When SCI is transmitted in one symbol, DMRS and SCI may be frequency division multiplexed. When SCI is transmitted in two or three symbols, DMRS and SCI may be frequency division multiplexed or time division multiplexed. In the case of time division multiplexing, the SCI may be the first symbol, the SCI may be the second symbol, or may be given by setting or presetting.
なお、受信端末から見ると、ビーム掃引によってスロット内で信号の電力が変化するように見えるため、AGCシンボルはビームに係る所定の情報を変更するたびに挿入されてもよい。
Note that from the perspective of the receiving terminal, the power of the signal appears to change within the slot due to beam sweeping, so the AGC symbol may be inserted every time predetermined information regarding the beam is changed.
図15は、本発明の実施の形態におけるSCI送信の例(3)を説明するための図である。受信側端末20の動作について、SCI専用スロットを設定又は事前設定する場合、本スロット構成のPSCCHをデコードできる能力を有するサイドリンク端末のみが、当該リソースプールの使用を許可されてもよい。FR2サイドリンクをサポートする端末20は、SCI専用スロットのPSCCHをデコードできる能力を必須の能力(mandatory)としてもよい。
FIG. 15 is a diagram for explaining example (3) of SCI transmission in the embodiment of the present invention. When setting or presetting an SCI dedicated slot for the operation of the receiving terminal 20, only sidelink terminals that have the ability to decode a PSCCH with this slot configuration may be permitted to use the resource pool. The terminal 20 that supports the FR2 sidelink may have the ability to decode the PSCCH in the SCI dedicated slot as a mandatory ability.
SCI専用スロットを設定又は事前設定する場合、SCIの時間位置がスロット内で変更されることに伴い、UE処理時間(UE processing time)の規定(Tproc,0/Tproc,1/Tproc,2(非特許文献5参照))を、1スロット増加させた値を使用してもよい。
When setting or presetting an SCI dedicated slot, the UE processing time (T proc,0 /T proc,1 /T proc, 2 (see Non-Patent Document 5)) may be increased by one slot.
図15に示されるように、データ送信のためのリソース選択時に、当該SCIをビーム掃引して送信するためのSCI専用スロットのリソース選択及び予約を実行してもよい。また、図15に示されるように、SCI専用スロットの期間及び周期が設定又は事前設定されてもよい。図15の例では、SCI専用スロットの期間は1スロット、SCI専用スロットの周期は4スロットである。
As shown in FIG. 15, when selecting resources for data transmission, resource selection and reservation of SCI-dedicated slots for beam-sweeping and transmitting the SCI may be performed. Further, as shown in FIG. 15, the period and period of the SCI dedicated slot may be set or preset. In the example of FIG. 15, the period of the SCI-dedicated slot is one slot, and the period of the SCI-dedicated slot is four slots.
また、図15に示されるように、送信側端末20は、送信ビームを切り替えて送信動作を実行してもよい。なお、受信側端末20は、同一の受信ビームで受信してもよいし、受信ビームを切り替えて受信動作を実行してもよい。
Furthermore, as shown in FIG. 15, the transmitting terminal 20 may perform the transmitting operation by switching the transmitting beam. Note that the receiving terminal 20 may receive using the same receiving beam, or may switch receiving beams and perform receiving operations.
また、設定したSCI専用スロットを既存の構成のスロットとして使用してよいか否か、が設定又は事前設定で与えられてもよいし、当該設定又は事前設定に基づいて動作してもよい。図15では、3つ目のSCI専用スロットを既存の構成のスロットとして使用する例を示す。
Further, whether or not the set SCI dedicated slot may be used as a slot in an existing configuration may be given by setting or presetting, or the operation may be performed based on the setting or presetting. FIG. 15 shows an example in which the third SCI dedicated slot is used as a slot in an existing configuration.
上述の動作により、FR2の短スロット長の特徴を活用してSCIのビーム掃引によるリソース衝突の回避が可能となる。
The above operation makes it possible to avoid resource collisions due to SCI beam sweeping by utilizing the short slot length feature of FR2.
図16は、本発明の実施の形態におけるデータ送信の例を説明するための図である。図16に示されるように、端末20は、既存のスロット構成に従って、複数スロットを使用して同一のデータをビームに係る所定の情報を変更しながら送信してもよい。図16は、同一のデータを、ビームに係る所定の情報を変更しながら3回送信する例である。
FIG. 16 is a diagram for explaining an example of data transmission in the embodiment of the present invention. As shown in FIG. 16, the terminal 20 may transmit the same data using a plurality of slots while changing predetermined information regarding the beam according to the existing slot configuration. FIG. 16 is an example in which the same data is transmitted three times while changing predetermined information regarding the beam.
上述の動作により、従来の端末受信動作と共通化が可能となり、FR2の短スロット長の特徴を活用してSCIのビーム掃引によるリソース衝突の回避が可能となる。
The above operation enables commonality with conventional terminal reception operations, and makes it possible to avoid resource collisions due to SCI beam sweeping by utilizing the short slot length feature of FR2.
また、端末個別に決定した送信ビームに係る所定の情報を使用して、予約情報を含むSCIをビームに係る所定の情報を変更しながら繰り返し送信してもよい。
Furthermore, using predetermined information regarding the transmission beam determined for each terminal, the SCI including the reservation information may be repeatedly transmitted while changing the predetermined information regarding the beam.
図17は、本発明の実施の形態におけるビーム掃引の例を説明するための図である。上記端末個別に決定した送信ビームに係る所定の情報とは、ユニキャストにおけるPC5-RRC確立手順において決定された送信ビームに係る所定の情報であってもよいし、図17に示されるように、PC5-RRC接続確立後に、ビーム調整(beam refinement)により決定された送信ビームに係る所定の情報であってもよい。
FIG. 17 is a diagram for explaining an example of beam sweeping in the embodiment of the present invention. The predetermined information related to the transmission beam determined individually for each terminal may be predetermined information related to the transmission beam determined in the PC5-RRC establishment procedure in unicast, or as shown in FIG. 17, It may also be predetermined information regarding the transmission beam determined by beam refinement after the PC5-RRC connection is established.
また、適用可能な送信ビーム又は受信ビームを、時間及び/又は周波数リソースによって制限する設定を設定又は事前設定してもよい。例えば、送信ビーム又は受信ビームは、時間及び/又は周波数リソースに関連付けられてもよい。
Additionally, settings may be configured or preset to limit applicable transmit beams or receive beams by time and/or frequency resources. For example, a transmit beam or a receive beam may be associated with time and/or frequency resources.
適用可能な送信ビームは、当該リソースプールにおける位置情報に係るゾーン設定(Zone config)に基づいて決定されてもよい。当該リソースプールにおける自端末のゾーンIDから、ある時間周波数リソースにおいて、送信ビームを向けてよいゾーンIDが設定又は事前設定されてもよい。
The applicable transmission beam may be determined based on the zone configuration (Zone config) related to the location information in the resource pool. A zone ID to which a transmission beam may be directed may be set or preset in a certain time-frequency resource from the zone ID of the own terminal in the resource pool.
なお、あるゾーンIDに送信ビームを向けるとは、当該ゾーンが指定する位置の中心に対して、ビームの中心すなわち最大ゲイン方向を向けて送信することを意味してもよい。あるゾーンIDに送信ビームを向けるときの動作は、端末実装に基づいてもよいし、標準規定で定められてもよい。
Note that directing a transmission beam to a certain zone ID may mean transmitting with the center of the beam, that is, the maximum gain direction, relative to the center of the position specified by the zone. The operation when directing a transmission beam to a certain zone ID may be based on the terminal implementation or may be defined by standard specifications.
図18は、本発明の実施の形態における適用するビームをリソースにより制限する例(1)を説明するための図である。図19は、本発明の実施の形態における適用するビームをリソースにより制限する例(2)を説明するための図である。図18及び図19は、ビームの方向すなわちゾーンの分割数をK=4とし、L=3スロットごとにビームに係る所定の情報を変更する例である。図18に示されるように、本制御の周期はKL=12スロットとなる。各Lスロットにおいて、同一の制御情報及び/又はデータ、同一の参照信号等が送信されてもよい。
FIG. 18 is a diagram for explaining an example (1) of restricting the beam to be applied by resources in an embodiment of the present invention. FIG. 19 is a diagram for explaining an example (2) of restricting the beam to be applied by resources in an embodiment of the present invention. FIG. 18 and FIG. 19 show an example in which the beam direction, i.e., the number of zone divisions, is K=4, and specific information related to the beam is changed every L=3 slots. As shown in FIG. 18, the period of this control is KL=12 slots. The same control information and/or data, the same reference signal, etc. may be transmitted in each of the L slots.
図19に示されるように、ゾーンXに位置する端末20は、ゾーン(X-1)、ゾーン(X-M)、ゾーン(X+1)、ゾーン(X+M)に送信ビームを向けてもよい。また、図19に示されるように、例えばゾーン1のようなゾーン領域端に位置する端末20は、ゾーンIDの割り当てが周期的に繰り返されることを利用し、ゾーンM、ゾーン(M(N-1)+1)、ゾーン2、ゾーン(M+1)に送信ビームを向けてもよい。例えば、ゾーンM、ゾーン(M(N-1)+1)、ゾーンMNのようなゾーン領域端も同様にビームを向けるゾーンIDを算出してもよい。
As shown in FIG. 19, the terminal 20 located in zone X may direct the transmission beam to zone (X-1), zone (X-M), zone (X+1), and zone (X+M). Further, as shown in FIG. 19, a terminal 20 located at the edge of a zone area, such as zone 1, utilizes the fact that zone ID assignment is periodically repeated. 1)+1), zone 2, and zone (M+1). For example, zone IDs to which the beams are directed may be similarly calculated for zone area edges such as zone M, zone (M(N-1)+1), and zone MN.
図18及び図19の例では、ある本制御の周期において、ゾーンXに位置する端末20は、ゾーン(X-1)、ゾーン(X-M)、ゾーン(X+1)、ゾーン(X+M)の順で、送信ビームを向けるようにビームに係る所定の情報を切り替えてもよい。
In the examples of FIGS. 18 and 19, in a certain cycle of this control, the terminal 20 located in zone Then, predetermined information regarding the beam may be switched so as to direct the transmission beam.
図20は、本発明の実施の形態における適用するビームをリソースにより制限する例(3)を説明するための図である。図20に示されるように、ビームの方向すなわちゾーンの分割数をK=8としてもよい。K=8の場合、ゾーンXに位置する端末20は、ゾーン(X-1)、ゾーン(X-M-1)、ゾーン(X-M)、ゾーン(X-M+1)、ゾーン(X+1)、ゾーン(X+M+1)、ゾーン(X+M)、ゾーン(X+M-1)に送信ビームを向けてもよい。また、Kは、2、3、8等の値であってもよいし、その他の値であってもよい。
FIG. 20 is a diagram illustrating an example (3) in which beams to be applied are limited by resources in the embodiment of the present invention. As shown in FIG. 20, the direction of the beam, that is, the number of zone divisions may be set to K=8. In the case of K=8, the terminal 20 located in zone X is zone (X-1), zone (X-M-1), zone (X-M), zone (X-M+1), zone (X+1), The transmit beam may be directed to zone (X+M+1), zone (X+M), or zone (X+M-1). Moreover, K may be a value such as 2, 3, or 8, or may be any other value.
受信側端末20において、適用する受信ビームは、当該リソースプールにおけるゾーン設定に基づいて決定されてもよい。当該動作により、受信動作時に送信ビームが到来する方向がある程度事前に想定できるため、適切な受信ビームを形成することができ、SCI受信精度を向上させることができる。
In the receiving terminal 20, the receiving beam to be applied may be determined based on the zone setting in the resource pool. Through this operation, the direction in which the transmission beam will arrive during the reception operation can be predicted to some extent in advance, so that an appropriate reception beam can be formed and SCI reception accuracy can be improved.
上述の適用可能な送信ビーム又は受信ビームを、時間及び/又は周波数リソースによって制限する動作は、PSCCH及び/又はPSSCHのみに適用されてもよいし、S-SSBに適用されてもよい。
The above-described operation of limiting the applicable transmission beams or reception beams by time and/or frequency resources may be applied only to the PSCCH and/or PSSCH, or may be applied to the S-SSB.
なお、ゾーンIDは、位置に係る値の剰余によって算出されるため、サイドリンクが運用されている領域に対して同一のゾーンIDが繰り返し使用されるため、一つのゾーンIDが複数の位置を参照する可能性があるため、ゾーンIDから導出される位置は、自端末の位置から最も近い位置としてもよい。
In addition, since the zone ID is calculated by the remainder of the value related to the position, the same zone ID is repeatedly used for the area where the side link is operated, so one zone ID refers to multiple positions. Therefore, the location derived from the zone ID may be the closest location to the location of the own terminal.
なお、上述の実施例において、従来のSLチャネル及びSL信号の構成を用いているが、これに限定されない。例えば、OCB要件を満たすための構成としてインタレースチャネル(interlaced channel)が適用されている場合にも、本実施例は適用されてもよい。
Note that in the above embodiments, conventional SL channel and SL signal configurations are used, but the present invention is not limited to this. For example, this embodiment may be applied even when an interlaced channel is used as a configuration to satisfy OCB requirements.
なお、上述の実施例は、所定の条件が満たされた場合に限定して適用されてもよい。例えば、所定のSLチャネル又はSL信号に関連して適用されてもよい。例えば、PSCCH/PSSCH、PSFCH、S-SSB、SLポジショニングRSのいずれかに本実施例は適用されてもよい。例えば、所定の設定又は事前設定に基づいて適用されてもよい。例えば、リソースプールにおいて、本実施例を「有効化」することが設定又は事前設定により与えられた場合に、本実施例を適用してもよい。
Note that the above embodiment may be applied only when predetermined conditions are met. For example, it may be applied in connection with a given SL channel or SL signal. For example, this embodiment may be applied to any one of PSCCH/PSSCH, PSFCH, S-SSB, and SL positioning RS. For example, it may be applied based on predetermined settings or pre-settings. For example, in a resource pool, this embodiment may be applied when "validation" of this embodiment is given by setting or pre-setting.
なお、本実施例の適用可否及び動作に係るUE能力が定義されてもよいし、基地局10及び/又は端末20に報告されてもよいし、報告されなくてもよい。
Note that the UE capabilities related to the applicability and operation of this embodiment may be defined, may be reported to the base station 10 and/or the terminal 20, or may not be reported.
なお、UEのSL送信は、PSCCH、PSSCH、PSFCH、S-SSB、SL-PRSのいずれであってもよいし、本実施例の各動作に異なるチャネル又は信号が適用されてもよい。
Note that the UE's SL transmission may be any of PSCCH, PSSCH, PSFCH, S-SSB, and SL-PRS, and different channels or signals may be applied to each operation of this embodiment.
本実施例は、リソース選択、リソース再選択、再評価、プリエンプションチェックのいずれに適用されてもよい。
This embodiment may be applied to any of resource selection, resource reselection, re-evaluation, and preemption check.
なお、本発明の実施の形態における手法は、上述の端末間直接通信のケースに限定されず、他の同様のケースについて適用されてもよい。
Note that the method in the embodiment of the present invention is not limited to the above-mentioned case of direct communication between terminals, and may be applied to other similar cases.
上述の実施例は、V2X端末に限定されず、D2D通信を行う端末に適用されてもよい。
The above embodiments are not limited to V2X terminals, but may be applied to terminals that perform D2D communication.
上述の実施例により、ビームフォーミングが必要な周波数帯における端末間直接通信において、サイドリンク端末はビームに係る所定の情報を変更するビーム掃引によりリソースの衝突を低減することができる。また、サイドリンク端末は送信ビーム及び/又は受信ビームを時間及び/又は周波数リソースによって切り替えることにより送受信の成功率を向上させることができる。
According to the embodiment described above, in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding the beam. Furthermore, the sidelink terminal can improve the success rate of transmission and reception by switching the transmission beam and/or reception beam depending on time and/or frequency resources.
すなわち、端末間直接通信において好適なビームフォーミングを適用することができる。
In other words, suitable beamforming can be applied in direct communication between terminals.
(装置構成)
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。 (Device configuration)
Next, an example of the functional configuration of thebase station 10 and terminal 20 that execute the processes and operations described above will be described. Base station 10 and terminal 20 include functionality to implement the embodiments described above. However, the base station 10 and the terminal 20 may each have only some of the functions in the embodiment.
次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。 (Device configuration)
Next, an example of the functional configuration of the
<基地局10>
図21は、基地局10の機能構成の一例を示す図である。図21に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図21に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。 <Base station 10>
FIG. 21 is a diagram showing an example of the functional configuration of thebase station 10. As shown in FIG. 21, base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 21 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
図21は、基地局10の機能構成の一例を示す図である。図21に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図21に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。 <
FIG. 21 is a diagram showing an example of the functional configuration of the
送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DL参照信号等を送信する機能を有する。
The transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signal, DL reference signal, etc. to the terminal 20.
設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、D2D通信の設定に係る情報等である。
The setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary. The content of the setting information is, for example, information related to the setting of D2D communication.
制御部140は、実施例において説明したように、端末20がD2D通信を行うための設定に係る処理を行う。また、制御部140は、D2D通信及びDL通信のスケジューリングを送信部110を介して端末20に送信する。また、制御部140は、D2D通信及びDL通信のHARQ応答に係る情報を受信部120を介して端末20から受信する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
As described in the embodiment, the control unit 140 performs processing related to settings for the terminal 20 to perform D2D communication. Further, the control unit 140 transmits the scheduling of D2D communication and DL communication to the terminal 20 via the transmitting unit 110. Further, the control unit 140 receives information related to HARQ responses for D2D communication and DL communication from the terminal 20 via the reception unit 120. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
<端末20>
図22は、端末20の機能構成の一例を示す図である。図22に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図22に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。 <Terminal 20>
FIG. 22 is a diagram illustrating an example of the functional configuration of the terminal 20. As shown in FIG. 22, the terminal 20 includes atransmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 22 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
図22は、端末20の機能構成の一例を示す図である。図22に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図22に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。 <
FIG. 22 is a diagram illustrating an example of the functional configuration of the terminal 20. As shown in FIG. 22, the terminal 20 includes a
送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号又は参照信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
The transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, reference signals, etc. transmitted from the base station 10. For example, the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) to another terminal 20 as D2D communication. The receiving unit 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 20 .
設定部230は、受信部220により基地局10又は端末20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、D2D通信の設定に係る情報等である。
The setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance. The content of the setting information is, for example, information related to the setting of D2D communication.
制御部240は、実施例において説明したように、他の端末20との間のRRC接続を確立するD2D通信を制御する。また、制御部240は、省電力動作に係る処理を行う。また、制御部240は、D2D通信及びDL通信のHARQに係る処理を行う。また、制御部240は、基地局10からスケジューリングされた他の端末20へのD2D通信及びDL通信のHARQ応答に係る情報を基地局10に送信する。また、制御部240は、他の端末20にD2D通信のスケジューリングを行ってもよい。また、制御部240は、サイドリンクセンシングの結果に基づいてD2D通信に使用するリソースをリソース選択ウィンドウから自律的に選択してもよいし、再評価又はプリエンプションを実行してもよい。また、制御部240は、D2D通信の送受信における省電力に係る処理を行う。また、制御部240は、D2D通信における端末間協調に係る処理を行う。また、制御部240は、D2D通信におけるLBTに係る処理を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
As described in the embodiment, the control unit 240 controls D2D communication to establish an RRC connection with another terminal 20. Further, the control unit 240 performs processing related to power saving operation. Further, the control unit 240 performs processing related to HARQ for D2D communication and DL communication. Further, the control unit 240 transmits to the base station 10 information related to HARQ responses for D2D communication and DL communication scheduled from the base station 10 to other terminals 20. Further, the control unit 240 may schedule D2D communication for other terminals 20. Further, the control unit 240 may autonomously select a resource to be used for D2D communication from the resource selection window based on the result of side link sensing, or may perform re-evaluation or preemption. Further, the control unit 240 performs processing related to power saving in transmission and reception of D2D communication. Further, the control unit 240 performs processing related to cooperation between terminals in D2D communication. Further, the control unit 240 performs processing related to LBT in D2D communication. A functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
(ハードウェア構成)
上記実施形態の説明に用いたブロック図(図21及び図22)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 (Hardware configuration)
The block diagrams (FIGS. 21 and 22) used to explain the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
上記実施形態の説明に用いたブロック図(図21及び図22)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 (Hardware configuration)
The block diagrams (FIGS. 21 and 22) used to explain the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図23は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
For example, the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 23 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure. The base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, the above-described control unit 140, control unit 240, etc. may be implemented by the processor 1001.
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図21に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図22に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 140 of the base station 10 shown in FIG. 21 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 22 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
The storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may be called a register, cache, main memory, or the like. The storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
The auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. The above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission line interface, etc. may be realized by the communication device 1004. The transmitting/receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
The base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
図24に車両2001の構成例を示す。図24に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。
FIG. 24 shows an example of the configuration of the vehicle 2001. As shown in FIG. 24, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。
The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like. The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。
The communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
(実施の形態のまとめ)
以上、説明したように、本発明の実施の形態によれば、リソースプールにおいて、制御情報を繰り返し送信するための期間を特定する制御部と、前記制御情報を繰り返し送信するための期間において、同一の制御情報を、ビームに係る情報を切り替えながら複数回送信する送信部を有する端末が提供される。 (Summary of embodiments)
As described above, according to the embodiment of the present invention, in the resource pool, the control unit that specifies the period for repeatedly transmitting control information and the same period for repeatedly transmitting the control information, A terminal is provided that includes a transmitter that transmits control information for a plurality of times while switching information regarding the beam.
以上、説明したように、本発明の実施の形態によれば、リソースプールにおいて、制御情報を繰り返し送信するための期間を特定する制御部と、前記制御情報を繰り返し送信するための期間において、同一の制御情報を、ビームに係る情報を切り替えながら複数回送信する送信部を有する端末が提供される。 (Summary of embodiments)
As described above, according to the embodiment of the present invention, in the resource pool, the control unit that specifies the period for repeatedly transmitting control information and the same period for repeatedly transmitting the control information, A terminal is provided that includes a transmitter that transmits control information for a plurality of times while switching information regarding the beam.
上記の構成により、ビームフォーミングが必要な周波数帯における端末間直接通信において、サイドリンク端末はビームに係る所定の情報を変更するビーム掃引によりリソースの衝突を低減することができる。すなわち、端末間直接通信において好適なビームフォーミングを適用することができる。
With the above configuration, in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding the beam. That is, suitable beamforming can be applied in direct communication between terminals.
前記同一の制御情報は、第1ステージSCI(Sidelink Control Information)及び第2ステージSCIから構成されるか、又は第1ステージSCIから構成されてもよい。当該構成により、ビームフォーミングが必要な周波数帯における端末間直接通信において、サイドリンク端末はビームに係る所定の情報を変更するビーム掃引によりリソースの衝突を低減することができる。
The same control information may be composed of a first stage SCI (Sidelink Control Information) and a second stage SCI, or may be composed of the first stage SCI. With this configuration, in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding beams.
前記送信部は、前記同一の制御情報一つを1シンボルで送信してもよい。当該構成により、ビームフォーミングが必要な周波数帯における端末間直接通信において、サイドリンク端末はビームに係る所定の情報を変更するビーム掃引によりリソースの衝突を低減することができる。
The transmitter may transmit the same piece of control information in one symbol. With this configuration, in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding beams.
前記送信部は、前記制御情報を繰り返し送信するための期間のリソース選択及び予約を実行してもよい。当該構成により、ビームフォーミングが必要な周波数帯における端末間直接通信において、サイドリンク端末はビームに係る所定の情報を変更するビーム掃引によりリソースの衝突を低減することができる。
The transmitter may select and reserve resources for a period for repeatedly transmitting the control information. With this configuration, in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding beams.
前記制御部は、自装置の位置情報からビームの方向を向ける位置を特定し、前記送信部は、前記ビームの方向を向ける位置ごとに関連付けられたリソースのそれぞれにおいて、同一の制御情報及びデータを、ビームに係る情報を切り替えながら送信してもよい。当該構成により、サイドリンク端末は送信ビーム及び/又は受信ビームを時間及び/又は周波数リソースによって切り替えることにより送受信の成功率を向上させることができる。
The control unit specifies a position to direct the beam from the position information of the own device, and the transmission unit transmits the same control information and data in each resource associated with each position to direct the beam. , beam-related information may be transmitted while switching. With this configuration, the sidelink terminal can improve the success rate of transmission and reception by switching transmission beams and/or reception beams depending on time and/or frequency resources.
また、本発明の実施の形態によれば、リソースプールにおいて、制御情報を繰り返し送信するための期間を特定する手順と、前記制御情報を繰り返し送信するための期間において、同一の制御情報を、ビームに係る情報を切り替えながら複数回送信する手順とを端末が実行する通信方法が提供される。
Further, according to the embodiment of the present invention, in the resource pool, in the procedure of specifying a period for repeatedly transmitting control information, and in the period for repeatedly transmitting the control information, the same control information is A communication method is provided in which a terminal executes a procedure of transmitting information multiple times while switching the information.
上記の構成により、ビームフォーミングが必要な周波数帯における端末間直接通信において、サイドリンク端末はビームに係る所定の情報を変更するビーム掃引によりリソースの衝突を低減することができる。すなわち、端末間直接通信において好適なビームフォーミングを適用することができる。
With the above configuration, in direct communication between terminals in a frequency band that requires beamforming, the sidelink terminal can reduce resource collisions by beam sweeping that changes predetermined information regarding the beam. That is, suitable beamforming can be applied in direct communication between terminals.
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。 (Supplementary information on the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The classification of items in the above explanation is not essential to the present invention, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although thebase station 10 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。 (Supplementary information on the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The classification of items in the above explanation is not essential to the present invention, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the
また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
In this specification, specific operations performed by the base station 10 may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station 10, various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to). Although the case where there is one network node other than the base station 10 is illustrated above, the other network node may be a combination of multiple other network nodes (for example, MME and S-GW). .
本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
The information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
The determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
As used in this disclosure, the terms "system" and "network" are used interchangeably.
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
In this disclosure, "Base Station (BS)," "wireless base station," "base station," "fixed station," "NodeB," "eNodeB (eNB)," and "gNodeB ( gNB)”, “access point”, “transmission point”, “reception point”, “transmission/reception point”, “cell”, “sector”, Terms such as "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。
In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably. .
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions that the base station 10 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station may have the functions that the user terminal described above has.
本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
"Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. You can. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis. Note that the definition of TTI is not limited to this.
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
The TTI may be a transmission time unit for a channel-coded data packet (transport block), a code block, a code word, etc., or may be a processing unit for scheduling, link adaptation, etc. When a TTI is given, the time interval (e.g., the number of symbols) in which a transport block, a code block, a code word, etc. is actually mapped may be shorter than the TTI.
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
Note that one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
A bandwidth part (BWP) (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured for the terminal 20 within one carrier.
設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
10 基地局
110 送信部
120 受信部
130 設定部
140 制御部
20 端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
2001 車両
2002 駆動部
2003 操舵部
2004 アクセルペダル
2005 ブレーキペダル
2006 シフトレバー
2007 前輪
2008 後輪
2009 車軸
2010 電子制御部
2012 情報サービス部
2013 通信モジュール
2021 電流センサ
2022 回転数センサ
2023 空気圧センサ
2024 車速センサ
2025 加速度センサ
2026 ブレーキペダルセンサ
2027 シフトレバーセンサ
2028 物体検出センサ
2029 アクセルペダルセンサ
2030 運転支援システム部
2031 マイクロプロセッサ
2032 メモリ(ROM,RAM)
2033 通信ポート(IOポート) 10Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control section 2012 Information service section 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)
110 送信部
120 受信部
130 設定部
140 制御部
20 端末
210 送信部
220 受信部
230 設定部
240 制御部
1001 プロセッサ
1002 記憶装置
1003 補助記憶装置
1004 通信装置
1005 入力装置
1006 出力装置
2001 車両
2002 駆動部
2003 操舵部
2004 アクセルペダル
2005 ブレーキペダル
2006 シフトレバー
2007 前輪
2008 後輪
2009 車軸
2010 電子制御部
2012 情報サービス部
2013 通信モジュール
2021 電流センサ
2022 回転数センサ
2023 空気圧センサ
2024 車速センサ
2025 加速度センサ
2026 ブレーキペダルセンサ
2027 シフトレバーセンサ
2028 物体検出センサ
2029 アクセルペダルセンサ
2030 運転支援システム部
2031 マイクロプロセッサ
2032 メモリ(ROM,RAM)
2033 通信ポート(IOポート) 10
2033 Communication port (IO port)
Claims (6)
- リソースプールにおいて、制御情報を繰り返し送信するための期間を特定する制御部と、
前記制御情報を繰り返し送信するための期間において、同一の制御情報を、ビームに係る情報を切り替えながら複数回送信する送信部を有する端末。 a control unit that specifies a period for repeatedly transmitting control information in the resource pool;
A terminal including a transmitting unit that transmits the same control information multiple times while switching information regarding beams during a period for repeatedly transmitting the control information. - 前記同一の制御情報は、第1ステージSCI(Sidelink Control Information)及び第2ステージSCIから構成されるか、又は第1ステージSCIから構成される請求項1記載の端末。 The terminal according to claim 1, wherein the same control information is composed of a first stage SCI (Sidelink Control Information) and a second stage SCI, or is composed of the first stage SCI.
- 前記送信部は、前記同一の制御情報一つを1シンボルで送信する請求項1記載の端末。 The terminal according to claim 1, wherein the transmitter transmits the same piece of control information in one symbol.
- 前記送信部は、前記制御情報を繰り返し送信するための期間のリソース選択及び予約を実行する請求項1記載の端末。 The terminal according to claim 1, wherein the transmitter selects and reserves resources for a period for repeatedly transmitting the control information.
- 前記制御部は、自装置の位置情報からビームの方向を向ける位置を特定し、
前記送信部は、前記ビームの方向を向ける位置ごとに関連付けられたリソースのそれぞれにおいて、同一の制御情報及びデータを、ビームに係る情報を切り替えながら送信する請求項1記載の端末。 The control unit identifies a position to direct the beam from position information of the own device,
2. The terminal according to claim 1, wherein the transmitter transmits the same control information and data while switching beam-related information in each of the resources associated with each position to which the beam is directed. - リソースプールにおいて、制御情報を繰り返し送信するための期間を特定する手順と、
前記制御情報を繰り返し送信するための期間において、同一の制御情報を、ビームに係る情報を切り替えながら複数回送信する手順とを端末が実行する通信方法。 A procedure for identifying a period for repeatedly transmitting control information in a resource pool;
A communication method in which a terminal executes a procedure of transmitting the same control information multiple times while switching beam-related information during a period for repeatedly transmitting the control information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/034848 WO2024057552A1 (en) | 2022-09-16 | 2022-09-16 | Terminal and communication method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/034848 WO2024057552A1 (en) | 2022-09-16 | 2022-09-16 | Terminal and communication method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024057552A1 true WO2024057552A1 (en) | 2024-03-21 |
Family
ID=90274671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/034848 WO2024057552A1 (en) | 2022-09-16 | 2022-09-16 | Terminal and communication method |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024057552A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021096977A1 (en) * | 2019-11-11 | 2021-05-20 | Convida Wireless LLC | Link recovery and sidelink beamforming |
US20220046430A1 (en) * | 2020-08-05 | 2022-02-10 | Qualcomm Incorporated | Intra-slot transmit/receive beam selection for sidelink |
US20220140951A1 (en) * | 2019-04-18 | 2022-05-05 | Samsung Electronics Co., Ltd. | Method and apparatus for configuration of resource sensing in nr v2x resource allocation |
-
2022
- 2022-09-16 WO PCT/JP2022/034848 patent/WO2024057552A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220140951A1 (en) * | 2019-04-18 | 2022-05-05 | Samsung Electronics Co., Ltd. | Method and apparatus for configuration of resource sensing in nr v2x resource allocation |
WO2021096977A1 (en) * | 2019-11-11 | 2021-05-20 | Convida Wireless LLC | Link recovery and sidelink beamforming |
US20220046430A1 (en) * | 2020-08-05 | 2022-02-10 | Qualcomm Incorporated | Intra-slot transmit/receive beam selection for sidelink |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024057552A1 (en) | Terminal and communication method | |
WO2024057551A1 (en) | Terminal and communication method | |
WO2024062579A1 (en) | Terminal and communication method | |
WO2024034104A1 (en) | Terminal and communication method | |
WO2024029052A1 (en) | Terminal and communication method | |
WO2024062581A1 (en) | Terminal and communication method | |
WO2024029051A1 (en) | Terminal and communication method | |
WO2024029053A1 (en) | Terminal and communication method | |
WO2024062580A1 (en) | Terminal and communication method | |
WO2024034106A1 (en) | Terminal and communication method | |
WO2024034105A1 (en) | Terminal and communication method | |
WO2024062578A1 (en) | Terminal and communication method | |
WO2024034103A1 (en) | Terminal and communication method | |
WO2024033992A1 (en) | Terminal and communication method | |
WO2023218879A1 (en) | Terminal and communication method | |
WO2023203658A1 (en) | Terminal and communication method | |
WO2023248400A1 (en) | Terminal and communication method | |
WO2023175692A1 (en) | Terminal and communication method | |
WO2024171408A1 (en) | User equipment and communication method | |
WO2024171410A1 (en) | Terminal and communication method | |
WO2024176367A1 (en) | Terminal and communication method | |
WO2024176366A1 (en) | Terminal and communication method | |
WO2024004055A1 (en) | Terminal and communication method | |
WO2024100730A1 (en) | Terminal and communication method | |
WO2023243061A1 (en) | Terminal and communication method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22958871 Country of ref document: EP Kind code of ref document: A1 |