WO2023218879A1 - Terminal and communication method - Google Patents

Terminal and communication method Download PDF

Info

Publication number
WO2023218879A1
WO2023218879A1 PCT/JP2023/015580 JP2023015580W WO2023218879A1 WO 2023218879 A1 WO2023218879 A1 WO 2023218879A1 JP 2023015580 W JP2023015580 W JP 2023015580W WO 2023218879 A1 WO2023218879 A1 WO 2023218879A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
terminal
information
communication
rat
Prior art date
Application number
PCT/JP2023/015580
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
尚哉 芝池
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023218879A1 publication Critical patent/WO2023218879A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a terminal and a communication method in a wireless communication system.
  • D2D is a system in which terminals communicate directly with each other without going through a base station.
  • LTE-A Long Term Evolution Advanced
  • NR New Radio
  • 5G 5th Generation
  • Non-Patent Document 1 Non-Patent Document 1
  • D2D reduces traffic between terminals and base stations, and enables communication between terminals even if the base station becomes unable to communicate during a disaster or the like.
  • D2D is referred to as "sidelink,” but in this specification, the more general term D2D is used. However, in the description of the embodiments to be described later, side links will also be used as necessary.
  • D2D communication consists of D2D discovery (also called D2D discovery) for discovering other terminals that can communicate with each other, and D2D communication (D2D direct communication, direct communication between terminals) for direct communication between terminals. (also referred to as communications, etc.).
  • D2D discovery also called D2D discovery
  • D2D communication D2D direct communication, direct communication between terminals
  • communications also referred to as communications, etc.
  • 3GPP TS 38.211 V16.8.0 (2021-12) 3GPP TR 22.886 V15.1.0 (2017-03)
  • 3GPP TS 38.214 V16.8.0 (2021-12) 3GPP TS 38.213 V16.8.0 (2021-12)
  • a side link in a certain RAT supports a transmission mode in which a terminal autonomously determines the resources to be used for transmission. Furthermore, a transmission mode in which a terminal autonomously determines resources to be used for transmission is also supported for side links in other RATs. In this transmission mode, terminals detect future resource usage by decoding each other's signals and operate to avoid collisions.
  • the side link of one RAT and the side link of another RAT are defined as different signals, and it is not possible to detect each other and avoid collision. Therefore, it has been difficult for the sidelinks of one RAT and the sidelinks of another RAT to share resources.
  • the present invention has been made in view of the above points, and its purpose is to share resources between direct communications between terminals using different RATs (Radio Access Technologies).
  • RATs Radio Access Technologies
  • a first RAT Radio Access Technology
  • a first RAT includes a communication unit that performs transmission and reception, and a control unit that controls communication in the first RAT, and the communication unit receiving information from another terminal indicating that a resource reservation in the first RAT and a resource reservation in the second RAT conflict at least in the time domain;
  • the communication unit executes at least one of an operation of determining a possible resource set and an operation of selecting a resource from the resource set in a MAC (Medium Access Control) layer based on the information indicating the conflict, and the communication unit:
  • a terminal is provided that performs transmission to another terminal using the resource selected by the resource selection operation.
  • resources can be shared between direct communications between terminals that use different RATs (Radio Access Technologies).
  • RATs Radio Access Technologies
  • FIG. 2 is a diagram for explaining an example (1) of a V2X transmission mode.
  • FIG. 7 is a diagram for explaining an example (2) of V2X transmission mode.
  • FIG. 7 is a diagram for explaining an example (3) of V2X transmission mode.
  • FIG. 7 is a diagram for explaining an example (4) of V2X transmission mode.
  • FIG. 7 is a diagram for explaining an example (5) of V2X transmission mode.
  • FIG. 2 is a diagram for explaining an example (1) of V2X communication type.
  • FIG. 6 is a diagram for explaining an example (2) of V2X communication type.
  • FIG. 7 is a diagram for explaining an example (3) of V2X communication type. It is a sequence diagram which shows the example (1) of V2X operation.
  • FIG. 3 is a diagram showing an example of sensing operation. 3 is a flowchart for explaining an example of preemption operation.
  • FIG. 3 is a diagram illustrating an example of preemption operation.
  • FIG. 6 is a diagram illustrating an example of partial sensing operation.
  • FIG. 3 is a diagram for explaining an example of periodic partial sensing.
  • FIG. 3 is a diagram for explaining an example of continuous partial sensing.
  • FIG. 3 is a diagram for explaining an example (1) of communication status.
  • FIG. 7 is a diagram for explaining an example (2) of communication status.
  • FIG. 3 is a diagram showing an example of sensing operation.
  • FIG. 7 is a diagram for explaining an example (3) of communication status.
  • FIG. 7 is a diagram for explaining an example (4) of communication status.
  • FIG. 7 is a diagram for explaining an example (5) of communication status.
  • FIG. 3 is a sequence diagram for explaining an example of cooperation between UEs.
  • FIG. 2 is a diagram for explaining an example of NR-SL and LTE-SL. It is an example of information sharing in an embodiment of the present invention. It is a figure which shows the example (1) of resource exclusion in embodiment of this invention. It is a figure which shows the example (2) of resource exclusion in embodiment of this invention.
  • 1 is a diagram showing an example of a functional configuration of a base station 10 in an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention. It is a figure showing an example of composition of vehicle 2001 in an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR Universal Terrestrial Radio Access
  • LAN Local Area Network
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
  • FIG. 1 is a diagram for explaining V2X.
  • V2X Vehicle to Everything
  • eV2X enhanced V2X
  • V2I Vehicle to Infrastructure
  • V2N Vehicle to Network
  • V2P Vehicle to Pedestrian
  • V2X using LTE or NR cellular communication and terminal-to-terminal communication is being considered.
  • V2X using cellular communication is also called cellular V2X.
  • studies are underway to realize large capacity, low latency, high reliability, and QoS (Quality of Service) control.
  • the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, the communication device may be a base station, RSU, relay station (relay node), It may also be a terminal or the like that has scheduling capability.
  • SL may be distinguished from UL (Uplink) or DL (Downlink) based on any one or a combination of 1) to 4) below. Moreover, SL may have another name. 1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal)) 4) Reference signal used for path loss measurement for transmission power control
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic-Prefix OFDM
  • DFT-S-OFDM Discrete Fourier Transform-Spread-OFDM
  • OFDM without Transform precoding or Transform rm precoded Any of the following OFDM methods may be applied.
  • Mode 3 and Mode 4 are defined regarding SL resource allocation to the terminal 20.
  • transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20.
  • DCI Downlink Control Information
  • SPS Semi Persistent Scheduling
  • the terminal 20 autonomously selects transmission resources from the resource pool.
  • the slot in the embodiment of the present invention may be read as a symbol, minislot, subframe, radio frame, or TTI (Transmission Time Interval).
  • a cell in an embodiment of the present invention may be read as a cell group, a carrier component, a BWP, a resource pool, a resource, a RAT (Radio Access Technology), a system (including a wireless LAN), or the like.
  • the terminal 20 is not limited to a V2X terminal, but may be any type of terminal that performs D2D communication.
  • the terminal 20 may be a terminal owned by a user such as a smartphone, or may be an IoT (Internet of Things) device such as a smart meter.
  • IoT Internet of Things
  • FIG. 2 is a diagram for explaining an example (1) of the V2X transmission mode.
  • the base station 10 transmits sidelink scheduling to the terminal 20A.
  • the terminal 20A transmits a PSCCH (Physical Sidelink Control Channel) and a PSSCH (Physical Sidelink Shared Channel) to the terminal 20B based on the received scheduling (Step 2).
  • the transmission mode of sidelink communication shown in FIG. 2 may be referred to as sidelink transmission mode 3 in LTE.
  • sidelink transmission mode 3 in LTE Uu-based sidelink scheduling is performed.
  • Uu is a radio interface between UTRAN (Universal Terrestrial Radio Access Network) and UE (User Equipment).
  • the transmission mode of sidelink communication shown in FIG. 2 may be referred to as sidelink transmission mode 1 in NR.
  • FIG. 3 is a diagram for explaining an example (2) of V2X transmission mode.
  • the terminal 20A uses autonomously selected resources to transmit the PSCCH and PSSCH to the terminal 20B.
  • the transmission mode of sidelink communication shown in FIG. 3 may be referred to as sidelink transmission mode 4 in LTE.
  • sidelink transmission mode 4 in LTE the UE itself performs the resource selection.
  • FIG. 4 is a diagram for explaining an example (3) of V2X transmission mode.
  • the terminal 20A uses autonomously selected resources to transmit the PSCCH and PSSCH to the terminal 20B.
  • the terminal 20B uses autonomously selected resources to transmit the PSCCH and PSSCH to the terminal 20A (step 1).
  • the transmission mode of sidelink communication shown in FIG. 4 may be referred to as sidelink transmission mode 2a in NR.
  • sidelink transmission mode 2 in NR the terminal 20 itself performs resource selection.
  • FIG. 5 is a diagram for explaining an example (4) of V2X transmission mode.
  • a sidelink resource pattern is transmitted from the base station 10 to the terminal 20A via RRC (Radio Resource Control) settings, or is set in advance.
  • the terminal 20A transmits the PSSCH to the terminal 20B based on the resource pattern (step 1).
  • the transmission mode of sidelink communication shown in FIG. 5 may be referred to as sidelink transmission mode 2c in NR.
  • FIG. 6 is a diagram for explaining an example (5) of V2X transmission mode.
  • the terminal 20A transmits sidelink scheduling to the terminal 20B via the PSCCH. Subsequently, the terminal 20B transmits the PSSCH to the terminal 20A based on the received scheduling (step 2).
  • the transmission mode of sidelink communication shown in FIG. 6 may be referred to as sidelink transmission mode 2d in NR.
  • FIG. 7 is a diagram for explaining an example (1) of the V2X communication type.
  • the communication type of the side link shown in FIG. 7 is unicast.
  • Terminal 20A transmits PSCCH and PSSCH to terminal 20.
  • the terminal 20A performs unicasting to the terminal 20B, and also performs unicasting to the terminal 20C.
  • FIG. 8 is a diagram for explaining an example (2) of the V2X communication type.
  • the communication type of the side link shown in FIG. 8 is group cast.
  • Terminal 20A transmits PSCCH and PSSCH to a group to which one or more terminals 20 belong.
  • the group includes a terminal 20B and a terminal 20C, and the terminal 20A performs a group cast to the group.
  • FIG. 9 is a diagram for explaining an example (3) of V2X communication type.
  • the communication type of the side link shown in FIG. 9 is broadcast.
  • Terminal 20A transmits PSCCH and PSSCH to one or more terminals 20.
  • the terminal 20A broadcasts to the terminal 20B, the terminal 20C, and the terminal 20D.
  • the terminal 20A shown in FIGS. 7 to 9 may be referred to as a header-UE.
  • HARQ Hybrid automatic repeat request
  • SFCI Segmentlink Feedback Control Information
  • PSFCH Physical Sidelink Feedback Channel
  • PSFCH is used in transmitting HARQ-ACK on the side link, but this is just an example.
  • PSCCH may be used to transmit HARQ-ACK on the side link
  • PSSCH may be used to transmit HARQ-ACK on the side link
  • other channels may be used to transmit HARQ-ACK on the side link.
  • HARQ-ACK may be transmitted on the side link using the HARQ-ACK.
  • HARQ-ACK all information reported by the terminal 20 in HARQ will be referred to as HARQ-ACK.
  • This HARQ-ACK may be referred to as HARQ-ACK information.
  • a codebook applied to HARQ-ACK information reported from the terminal 20 to the base station 10 etc. is called a HARQ-ACK codebook.
  • the HARQ-ACK codebook defines a bit string of HARQ-ACK information. Note that with "HARQ-ACK", in addition to ACK, NACK is also transmitted.
  • FIG. 10 is a sequence diagram showing an example of V2X operation (1).
  • the wireless communication system may include a terminal 20A and a terminal 20B. Although there are actually many user devices, FIG. 10 shows the terminal 20A and the terminal 20B as an example.
  • terminal 20 or "user device.”
  • FIG. 10 shows, as an example, a case where both the terminal 20A and the terminal 20B are within the coverage of the cell, the operation in the embodiment of the present invention can also be applied when the terminal 20B is outside the coverage.
  • the terminal 20 is a device mounted on a vehicle such as a car, and has a cellular communication function as a UE in LTE or NR, and a side link function. There is.
  • the terminal 20 may be a general mobile terminal (such as a smartphone). Further, the terminal 20 may be an RSU.
  • the RSU may be a UE type RSU having UE functionality, or a gNB type RSU having base station device functionality.
  • the terminal 20 does not need to be a device in one housing, and for example, even if various sensors are distributed and arranged within the vehicle, the terminal 20 may be a device including the various sensors.
  • the processing content of the side link transmission data of the terminal 20 is basically the same as the processing content of UL transmission in LTE or NR.
  • the terminal 20 scrambles and modulates the codeword of the transmission data to generate complex-valued symbols, maps the complex-valued symbols (transmission signal) to one or two layers, and performs precoding.
  • the precoded complex-valued symbols are then mapped to resource elements to generate transmission signals (e.g., complex-valued time-domain SC-FDMA signals) and transmitted from each antenna port.
  • the base station 10 has a cellular communication function as a base station in LTE or NR, and a function to enable communication of the terminal 20 in this embodiment (e.g., resource pool setting, resource allocation, etc.). have. Further, the base station 10 may be an RSU (gNB type RSU).
  • RSU gNB type RSU
  • the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or other signal waveform. It may be.
  • step S101 the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period.
  • a resource selection window may be set from the base station 10 to the terminal 20.
  • the period may be defined by terminal implementation conditions such as processing time or maximum allowable packet delay time, or the period may be defined in advance by specifications,
  • the predetermined period may be called an interval in the time domain.
  • the terminal 20A uses the resources autonomously selected in step S101 to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH.
  • SCI Segment Control Information
  • the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH, and using a frequency resource that is adjacent to or not adjacent to the frequency resource of the PSSCH.
  • the terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
  • the received SCI may include information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data.
  • the terminal 20A may include information on the autonomously selected resource in the SCI and transmit it.
  • step S104 the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
  • step S105 the terminal 20A retransmits the PSCCH and PSSCH to the terminal 20B if the HARQ-ACK received in step S104 indicates a request for retransmission, that is, if it is a NACK (negative response).
  • the terminal 20A may retransmit the PSCCH and PSSCH using autonomously selected resources.
  • step S104 and step S105 may not be performed.
  • FIG. 11 is a sequence diagram showing operation example (2) of V2X. Blind retransmission without HARQ control may be performed to improve transmission success rate or reach.
  • step S201 the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period.
  • a resource selection window may be set from the base station 10 to the terminal 20.
  • the terminal 20A uses the resources autonomously selected in step S201 to transmit SCI on the PSCCH and/or PSSCH, and also transmits SL data on the PSSCH.
  • the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
  • step S204 the terminal 20A uses the resources autonomously selected in step S201 to retransmit the SCI on the PSCCH and/or PSSCH and the SL data on the PSSCH to the terminal 20B.
  • the retransmission in step S204 may be performed multiple times.
  • step S204 may not be performed.
  • FIG. 12 is a sequence diagram showing an example (3) of V2X operation.
  • the base station 10 may perform sidelink scheduling. That is, the base station 10 may determine the side link resource used by the terminal 20 and transmit information indicating the resource to the terminal 20. Furthermore, when HARQ control with HARQ feedback is applied, the base station 10 may transmit information indicating PSFCH resources to the terminal 20.
  • step S301 the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A via PDCCH.
  • DCI Downlink Control Information
  • the DCI for SL scheduling will be referred to as SL scheduling DCI.
  • step S301 it is assumed that the base station 10 also transmits DCI for DL scheduling (also referred to as DL allocation) to the terminal 20A via PDCCH.
  • DCI for DL scheduling also referred to as DL allocation
  • the DCI for DL scheduling will be referred to as DL scheduling DCI.
  • the terminal 20A that has received the DL scheduling DCI receives DL data on the PDSCH using the resources specified by the DL scheduling DCI.
  • the terminal 20A uses the resources specified by the SL scheduling DCI to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH.
  • SCI Segment Control Information
  • PSSCH Physical Downlink Control Information
  • the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
  • the terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A.
  • the SCI received on the PSCCH and/or PSSCH includes information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data.
  • Information on the resource is included in the DL scheduling DCI or SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the information on the resource from the DL scheduling DCI or SL scheduling DCI and uses the SCI. Include in. Alternatively, the DCI transmitted from the base station 10 may not include information on the resource, and the terminal 20A may autonomously include the information on the resource in the SCI and transmit it.
  • step S304 the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
  • the terminal 20A transmits, for example, the PUCCH ( The HARQ-ACK is transmitted using the physical uplink control channel) resource, and the base station 10 receives the HARQ-ACK.
  • the HARQ-ACK codebook may include a HARQ-ACK generated based on the HARQ-ACK received from the terminal 20B or a PSFCH not received, and a HARQ-ACK for DL data. However, if DL data is not allocated, HARQ-ACK for DL data is not included. NR Rel. In No. 16, the HARQ-ACK codebook does not include HARQ-ACK for DL data.
  • step S304 and/or step S305 may not be performed.
  • FIG. 13 is a sequence diagram showing operation example (4) of V2X.
  • the HARQ response is transmitted on the PSFCH.
  • a format similar to PUCCH (Physical Uplink Control Channel) format 0 can be used as the format of PSFCH, for example. That is, the format of the PSFCH may be a sequence-based format in which the PRB (Physical Resource Block) size is 1, and ACKs and NACKs are identified by differences in sequence and/or cyclic shift.
  • the format of PSFCH is not limited to this.
  • the PSFCH resource may be allocated to the last symbol or the last plural symbols of the slot. Furthermore, it is defined in advance whether a period N is set in the PSFCH resource. The period N may be set in units of slots or may be predefined.
  • the vertical axis corresponds to the frequency domain
  • the horizontal axis corresponds to the time domain.
  • the PSCCH may be placed in one symbol at the beginning of the slot, in multiple symbols from the beginning, or in multiple symbols starting from a symbol other than the beginning.
  • the PSFCH may be placed in one symbol at the end of the slot, or may be placed in multiple symbols at the end of the slot. Note that the above-mentioned "head of slot” and "end of slot” may omit consideration of symbols for AGC (Automatic Gain Control) and symbols for transmission/reception switching.
  • AGC Automatic Gain Control
  • the terminal 20A which is the transmitting terminal 20, performs a group cast to the receiving terminals 20, which are the terminals 20B, 20C, and 20D, via the SL-SCH.
  • the terminal 20B uses PSFCH #B
  • the terminal 20C uses PSFCH #C
  • the terminal 20D uses PSFCH #D to transmit the HARQ response to the terminal 20A.
  • the transmitting terminal 20 may know the number of receiving terminals 20 in the group cast. Note that in group cast option 1, only NACK is transmitted as the HARQ response, and ACK is not transmitted.
  • FIG. 14 is a diagram showing an example of sensing operation in NR.
  • the terminal 20 selects a resource and performs transmission. As shown in FIG. 14, the terminal 20 performs sensing using a sensing window within the resource pool. Through sensing, the terminal 20 receives a resource reservation field or a resource assignment field included in the SCI transmitted from another terminal 20, and selects a resource in the resource pool based on the field. Identify available resource candidates within a resource selection window. Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
  • the resource pool settings may have a periodicity.
  • the period may be a period of 10240 milliseconds.
  • FIG. 14 is an example in which slot t 0 SL to slot t Tmax-1 SL are set as a resource pool. Areas of the resource pool within each period may be set using, for example, a bitmap.
  • the transmission trigger in the terminal 20 occurs in slot n, and the priority of the transmission is p TX .
  • the terminal 20 can detect, for example, that another terminal 20 is transmitting priority p RX in the sensing window from slot nT 0 to the slot immediately before slot nT proc,0. . If an SCI is detected within the sensing window and RSRP (Reference Signal Received Power) exceeds a threshold, the resource within the resource selection window corresponding to the SCI is excluded. Further, if an SCI is detected within the sensing window and the RSRP is less than the threshold, the resource within the resource selection window corresponding to the SCI is not excluded.
  • the thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing window based on the priority p TX and the priority p RX.
  • resources within the resource selection window that are candidates for resource reservation information corresponding to resources within the sensing window that are not monitored, for example, for transmission, are excluded.
  • the lower layer of the terminal 20 may report SA to the upper layer.
  • the upper layer of the terminal 20 may perform random selection on the SA to determine the resources to be used.
  • the terminal 20 may perform sidelink transmission using the determined resources.
  • the upper layer may be a MAC layer
  • the lower layer may be a PHY layer or a physical layer.
  • the receiving terminal 20 detects data transmission from another terminal 20 based on the result of sensing or partial sensing, and transmits data to the other terminal 20. Data may be received from 20.
  • FIG. 15 is a flowchart illustrating an example of preemption in NR.
  • FIG. 16 is a diagram showing an example of preemption in NR.
  • step S501 the terminal 20 performs sensing using the sensing window. When the terminal 20 performs power saving operation, sensing may be performed in a predefined limited period.
  • the terminal 20 identifies each resource within the resource selection window based on the sensing results, determines a resource candidate set SA , and selects a resource to be used for transmission (S502). Subsequently, the terminal 20 selects a resource set (r_0, r_1, . . . ) for determining preemption from the resource candidate set SA (S503).
  • the resource set may be notified from the upper layer to the PHY layer as a resource for determining whether or not it has been preempted.
  • step S504 the terminal 20 re-identifies each resource within the resource selection window based on the sensing results and determines a resource candidate set S A at timing T(r_0) -T3 shown in FIG. , further determines whether to preempt the resource set (r_0, r_1, . . . ) based on the priority.
  • r_1 shown in FIG. 16 is not included in SA because the SCI transmitted from another terminal 20 has been detected by re-sensing.
  • preemption is enabled, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is lower than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 uses the resource r_1.
  • the terminal 20 does not exclude resource r_1 from SA . .
  • preemption is valid only for a specific priority (for example, sl-PreemptionEnable is one of pl1, pl2, ..., pl8), this priority is set as prio_pre.
  • the terminal 20 determines that the resource r_1 has been preempted.
  • step S505 if preemption is determined in step S504, the terminal 20 notifies the upper layer of the preemption, reselects resources in the upper layer, and ends the preemption check.
  • step S504 when performing re-evaluation instead of checking preemption, in step S504 described above, after determining the set of resource candidates SA , the resource set (r_0, r_1,...) is assigned to SA . If the resource is not included, the resource is not used and the resource is reselected in the upper layer.
  • FIG. 17 is a diagram illustrating an example of partial sensing operation in LTE.
  • the terminal 20 selects a resource and performs transmission, as shown in FIG. 17.
  • the terminal 20 performs partial sensing for a portion of the sensing window in the resource pool, that is, the sensing target.
  • the terminal 20 receives the resource reservation field included in the SCI transmitted from other terminals 20 and identifies available resource candidates within the resource selection window within the resource pool based on the field. . Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
  • FIG. 17 is an example in which subframe t 0 SL to subframe t Tmax-1 SL is set as a resource pool.
  • the target area of the resource pool may be set using, for example, a bitmap.
  • FIG. 17 it is assumed that the transmission trigger in terminal 20 occurs in subframe n.
  • Y subframes from subframe t y1 SL to subframe t yY SL among subframe n+T 1 to subframe n+T 2 may be set as the resource selection window.
  • the terminal 20 is, for example, another terminal 20 transmitting at one or more sensing targets from subframe t y1-k ⁇ Pstep SL to subframe t yY-k ⁇ Pstep SL , which has a subframe length of Y. can be detected.
  • k may be determined by a 10-bit bitmap, for example.
  • FIG. 17 shows an example in which the third and sixth bits of the bitmap are set to "1" indicating that partial sensing is performed. That is, in FIG. 17, from subframe ty1-6 ⁇ Pstep SL to subframe tyY-6 ⁇ Pstep SL , and from subframe ty1-3 ⁇ Pstep SL to subframe tyY-3 ⁇ Pstep SL. Set as a sensing target.
  • the kth bit of the bitmap may correspond to a sensing window from subframe t y1-k ⁇ Pstep SL to subframe t yY-k ⁇ Pstep SL .
  • y i corresponds to the index (1...Y) within the Y subframe.
  • k may be set or predefined in a 10-bit bitmap, and P step may be 100 ms.
  • P step may be (U/(D+S+U))*100ms.
  • U corresponds to the number of UL subframes
  • D corresponds to the number of DL subframes
  • S corresponds to the number of special subframes.
  • the thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing target based on the transmitting side priority p TX and the receiving side priority p RX .
  • the terminal 20 identifies the resources occupied by other UEs, and identifies the resources excluding the resources. are available resource candidates. Note that the Y subframes do not have to be consecutive. Assuming that the set of available resource candidates is S A , if S A is less than 20% of the resources in the resource selection window, the thresholds Th pTX and pRX set for each sensing target resource are increased by 3 dB and the process is performed again. Resource identification may also be performed.
  • the number of resources that are not excluded because the RSRP is less than the threshold may be increased. Furthermore, the RSSI of each resource in SA may be measured, and the resource with the minimum RSSI may be added to the set SB . The operation of adding the resource with the smallest RSSI included in SA to SB may be repeated until the resource candidate set SB becomes 20% or more of the resource selection window.
  • the lower layer of the terminal 20 may report the SB to the upper layer.
  • the upper layer of the terminal 20 may perform random selection on the SB to determine the resources to be used.
  • the terminal 20 may perform sidelink transmission using the determined resources. Note that, once the terminal 20 secures the resource, it may periodically use the resource without performing sensing for a predetermined number of times (for example, Cresel times).
  • random resource selection and partial sensing of sidelinks in LTE Release 14 may be applied to resource allocation mode 2 of NR Release 16 sidelinks for power saving.
  • the terminal 20 to which partial sensing is applied performs reception and sensing only in specific slots within the sensing window.
  • terminal 20A may share information indicating the resource set with terminal 20B, and terminal 20B may consider this information in selecting resources for transmission.
  • the terminal 20 may perform full sensing as shown in FIG. 14. Furthermore, the terminal 20 may perform partial sensing in which resource identification is performed by sensing only limited resources compared to full sensing, and resource selection is performed from the identified resource set. Furthermore, the terminal 20 sets the resources in the resource selection window as an identified resource set, without excluding resources from the resources in the resource selection window, and performs random selection to select resources from the identified resource set. You may.
  • a method of performing random selection at the time of resource selection and using sensing information at the time of re-evaluation or preemption check may be treated as partial sensing or random selection.
  • sensing and monitoring may be interchanged with each other, and the operation may include at least one of measurement of received RSRP, acquisition of reserved resource information, and acquisition of priority information.
  • Periodic-based partial sensing In a system where only some slots are sensed, the operation of determining the sensing slot based on the reservation periodicity.
  • the reservation period is a value related to a resource reservation period field. Note that the period may be replaced with periodicity.
  • Contiguous partial sensing An operation in which sensing slots are determined based on aperiodic reservation in a system where only some slots are sensed. Note that the aperiodic reservation is a value related to a time resource assignment field.
  • operations may be defined assuming three types of terminals 20. One is type A, and a type A terminal 20 does not have the ability to receive any sidelink signals and channels. However, receiving PSFCH and S-SSB may be an exception.
  • the other one is type B, and the type B terminal 20 does not have the ability to receive any sidelink signals and channels except for PSFCH and S-SSB reception.
  • the other one is type D, and the type D terminal 20 has the ability to receive all sidelink signals and channels defined in Release 16. However, this does not exclude receiving some sidelink signals and channels.
  • UE types other than the above types A, B, and D may be assumed, and the UE type and the UE capability may or may not be associated with each other.
  • SL-DRX discontinuous reception
  • the reception operation is performed only in a predetermined time interval.
  • partial sensing is supported as one of the power saving functions.
  • the terminal 20 may perform the periodic partial sensing described above.
  • the terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and periodic reservation is enabled.
  • FIG. 18 is a diagram for explaining an example of periodic partial sensing. As shown in FIG. 18, Y candidate slots for resource selection are selected from the resource selection window [n+T 1 , n+T 2 ].
  • Sensing may be performed using t y SL as one slot included in the Y candidate slots and t y ⁇ k ⁇ Preserve SL as a target slot for periodic partial sensing.
  • P reserve may correspond to all values included in the configured or predefined set sl-ResourceReservePeriodList.
  • the value of P reserve limited to a subset of sl-ResourceReservePeriodList may be set or predefined.
  • P reserve and sl-ResourceReservePeriodList may be set for each transmission resource pool in resource allocation mode 2.
  • the periods included in the sl-ResourceReservePeriodList other than the limited subset may be monitored.
  • the terminal 20 may additionally monitor opportunities to support P_RSVP_Tx.
  • the terminal 20 may monitor the newest sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time limitations. Additionally, the terminal 20 may additionally monitor periodic sensing opportunities corresponding to a set of one or more k values. For example, as the k value, a value corresponding to the newest sensing opportunity in a certain reservation cycle before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time restrictions, and a value corresponding to the latest sensing opportunity in a certain reservation cycle, and The value corresponding to the sensing opportunity immediately before the most recent sensing opportunity may be set.
  • partial sensing is supported as one of the power saving functions.
  • the terminal 20 may perform the continuous partial sensing described above.
  • the terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and aperiodic reservation is enabled.
  • FIG. 19 is a diagram for explaining an example of continuous partial sensing.
  • the terminal 20 selects Y candidate slots for resource selection from the resource selection window [n+T 1 , n+T 2 ].
  • the beginning of the Y candidate slots is expressed as slot ty1
  • the next slot is expressed as ty2
  • . . . the end of the Y candidate slots is expressed as slot tyY .
  • the terminal 20 performs sensing in the interval [n+T A , n+T B ], and executes resource selection in n+T B or after n+T B (referred to as n+T C ).
  • n+T C resource selection in n+T B or after n+T B
  • T A and T B in the interval [n+T A , n+T B ] may have any value.
  • n may be replaced with the index of any slot among the Y candidate slots.
  • the section [a, b] is a section from slot a to slot b, and includes slot a and slot b.
  • the section (a, b) is a section from slot a to slot b, and does not include slot a and slot b.
  • the candidate resource that is the target of resource selection is described as Y candidate slot, but all slots in the interval [n+T 1 , n+T 2 ] may be candidate slots, or some slots may be candidate slots. There may be.
  • FIG. 20 is a diagram for explaining example (1) of communication status.
  • a terminal 20B attempts to transmit to a terminal 20A
  • a terminal 20C that cannot be detected by the terminal 20A exists in a position that causes interference to the receiving terminal 20B. There is. For example, if the terminal 20C transmits using the time resource reserved by the terminal 20A, resource overlap will occur when the terminal 20B receives.
  • the side link is half-duplex communication, there is a possibility that a resource conflict will occur if both terminals 20 transmit.
  • FIG. 21 is a diagram for explaining example (2) of communication status.
  • the terminal 20B which is detected with low power by the transmitting terminal 20C, causes large interference to the receiving terminal 20A. It may exist in the given position.
  • FIG. 22 is a diagram for explaining example (3) of communication status.
  • the PSFCH transmission resource reserved from the terminal 20B or associated with the PSSCH and the PSFCH transmission resource reserved from the terminal 20C or associated with the PSSCH.
  • the transmission resources may overlap at the terminal 20A. If multiple transmissions overlap, drops or power reductions occur. For example, it is assumed that overlap between PSFCH and PSFCH shown in FIG. 20 or overlap between PSFCH and UL channel will occur.
  • FIG. 23 is a diagram for explaining example (4) of communication status.
  • PSSCH reception on resources reserved from terminal 20B and PSSCH transmission on resources reserved from terminal 20A are may overlap.
  • FIG. 24 is a diagram for explaining example (5) of communication status.
  • the PSFCH associated with the PSSCH reserved from terminal 20B and the PSFCH associated with the PSSCH reserved from terminal 20A There may be overlap at 20A.
  • Inter-terminal cooperation is being considered as a method to improve reliability and delay performance.
  • terminal cooperation method 1 and terminal cooperation method 2 shown below are being considered.
  • the terminal 20 that transmits coordination information will be referred to as UE-A
  • the terminal 20 that receives coordination information will be referred to as UE-B.
  • Inter-terminal cooperation method 1 For the transmission of UE-B, a preferred resource set and/or a non-preferred resource set is transmitted from UE-A to UE-B.
  • Inter-terminal coordination method 2 In the resource indicated by the SCI received from UE-B, the fact that collision with other transmission or reception is expected, there is a possibility of collision, or collision has been detected is notified to UE-B. A transmits to UE-B. Note that the "resource set" may be replaced with the relevant fact.
  • the UE-B may perform the operations as shown in 1)-4) below.
  • UE-B's resources used for resource selection or resource reselection for transmission may be based on both UE-B's sensing results and coordination information received from UE-A. Note that this may be limited to the case where the sensing result of UE-B is available, and if the sensing result of UE-B is not available, it may be performed based only on the cooperation information received from UE-A. You can. 2) UE-B's resources used for resource selection or resource reselection for transmission may be based solely on coordination information received from UE-A. 3) UE-B's resources to be reselected may be determined based on coordination information received from UE-A. 4) UE-B's resources used for resource selection or resource reselection for transmission may be done based on coordination information received from UE-A.
  • the UE-B may perform the operations as shown in 1)-2) below.
  • UE-B may determine the resources to be reselected based on cooperation information received from UE-A. 2) UE-B may decide whether retransmission is necessary based on the coordination information received from UE-A.
  • FIG. 25 is a sequence diagram for explaining an example of cooperation between UEs.
  • UE-A transmits cooperation information to UE-B.
  • UE-B performs a predetermined operation based on the cooperation information.
  • the NR sidelink supports a transmission mode in which the terminal autonomously determines the resources to be used for transmission. Furthermore, a transmission mode in which a terminal autonomously determines resources to be used for transmission is also supported in LTE sidelink. In this transmission mode, terminals detect future resource usage by decoding each other's signals and operate to avoid collisions.
  • the NR sidelink and the LTE sidelink are defined as different signals, and it is not possible to detect each other and avoid collision. Therefore, it has been difficult for the NR sidelink and the LTE sidelink to share resources.
  • FIG. 26 is a diagram for explaining an example of NR-SL and LTE-SL.
  • the NR-SL terminal 20 cannot detect the reservation signal of the LTE-SL terminal 20, It is assumed that transmissions collide using the same time and frequency resources.
  • the network or regulator it was necessary for the network or regulator to appropriately set or predetermine settings so that LTE-SL and NR-SL use separate resources. For example, it is necessary to ensure that the resource pools of LTE and NR do not include the same time/frequency resources.
  • a UE equipped with an NR-SL transmission/reception mechanism acquires information based on the LTE-SL UE's resource reservation from another UE (hereinafter referred to as UE-A).
  • UE-A an NR-SL transmission/reception mechanism
  • the resource reservation information of the LTE-SL UE may include the resources that the UE-A plans to transmit, and the resources may be limited to reserved resources, and the resources that are selected but not reserved. Implementation resources may also be included.
  • FIG. 27 is an example of information sharing in the embodiment of the present invention.
  • the UE-A transmits information based on the resource reservation of the LTE-SL UE to the UE-B.
  • UE-B may receive the information from UE-A via the NR-SL signal.
  • the terminal 20 may perform a resource identification operation related to NR-SL resource selection based on the acquired information, as shown in A) to G) below. Note that the terminal 20 may perform a combination of A) to I). For example, the obtained information may be RSRP detected on one or more resources in LTE-SL. Note that LTE and NR may be replaced with other different RATs.
  • the terminal 20 may execute resource exclusion based on the acquired information.
  • the terminal 20 may perform resource exclusion.
  • the value indicating the priority related to the LTE-SL reservation or PPP may be treated as the same value as the value indicating the NR-SL priority, or may be treated as the same value as the value indicating the NR-SL priority.
  • the association with the value indicating the priority may be defined, set, or set in advance.
  • the RSRP threshold related to resource exclusion based on LTE-SL resource reservation may be the same as the RSRP threshold related to NR-SL resource exclusion, or may be set to a different value or may be set in advance. good.
  • FIG. 28 is a diagram showing an example (1) of resource exclusion in the embodiment of this invention.
  • the times (e.g., slots) and/or frequencies (e.g., subchannels) that delimit NR-SL resources are not aligned with the times (e.g., slots) and/or frequencies (e.g., subchannels) that delimit LTE-SL resources.
  • the times (e.g., slots) and/or frequencies (e.g., subchannels) that delimit LTE-SL resources may be applied.
  • the resource exclusion operation can be performed even if the definition, setting, or pre-setting regarding time-frequency resources is different between LTE-SL and NR-SL.
  • FIG. 29 is a diagram showing an example (2) of resource exclusion in the embodiment of this invention.
  • the PSCCH/PSSCH resources associated with the PSFCH are used as available resource candidates. It may be excluded from the set SA .
  • the priority of NR-SL may be the priority related to transmission data. That is, the priority may be determined in the same manner as the exclusion regarding overlap of PSCCH/PSSCH resources. Further, the priority of NR-SL may be set to a predetermined priority.
  • the predetermined priority may be F) a defined, set or preset priority for operation.
  • the NR-SL RSRP threshold may be the same value as the exclusion related to PSCCH/PSSCH resource overlap. Further, the RSRP threshold value of NR-SL may be set to a predetermined value.
  • the predetermined value may be F) a value that is defined, set, or preset for operation.
  • the terminal 20 may use information acquired by a predetermined time period from the resource selection timing or the timing triggered from the upper layer.
  • T SL proc,0 (see Non-Patent Document 3), that is, a parameter related to the time from the end of the sensing window to the above timing may be applied.
  • T (see Non-Patent Document 4), that is, a parameter related to the time from acquisition of information related to simultaneous LTE-SL/NR-SL transmission to execution may be applied.
  • G a parameter T' defined for operation may be applied.
  • the above operation allows the NR-SL terminal to perform resource selection without colliding with LTE-SL transmission.
  • the terminal 20 may perform operations related to NR-SL re-evaluation or preemption check based on the acquired information related to resource reservations of other terminals 20.
  • the terminal 20 may perform any of the operations shown in A) to G) above.
  • the NR-SL terminal can operate so as not to collide with LTE-SL transmission.
  • the terminal 20 may transmit predetermined information to the gNB 10 based on information related to resource reservations of other terminals 20. For example, the terminal 20 may perform the operations shown in a) to e) below. Note that the terminal 20 may perform a combination of a) to e). Note that the acquired information may be information based on the LTE-SL UE resource reservation received from UE-B.
  • terminal 20 may transmit predetermined information to gNB 10 based on the acquired information.
  • the terminal 20 acquires Predetermined information may be transmitted to gNB 10 based on the information.
  • the terminal 20 may report the acquired information to the gNB 10.
  • the terminal 20 may report the acquired information as CSI, upper layer information, or PUCCH or PUSCH.
  • the terminal 20 may transmit HARQ-ACK to the gNB 10 based on the acquired information. For example, the terminal 20 may perform a collision determination based on the acquired information, and transmit a NACK to the gNB 10 when determining that a collision has occurred. If the terminal 20 determines that the SL resource allocated to the gNB 10 cannot be used based on the acquired information, the terminal 20 may determine that a collision has occurred. Moreover, when the terminal 20 determines that the PSFCH resource for the resource allocated to the gNB 10 is not available based on the acquired information, the terminal 20 may determine that a collision has occurred. The above determination may be performed based on any of the operations A) to I) above.
  • the priority and/or RSRP related to the LTE-SL reservation for the SL resource allocated from the gNB 10 satisfies a predetermined condition, it may be determined that the SL resource is not available.
  • SL transmission using the SL resources allocated from the gNB 10 may not be performed.
  • the terminal 20 may transmit an SR (Scheduling request) to the gNB 10 based on the acquired information. For example, the terminal 20 may perform a collision determination based on the acquired information, and transmit an SR to the gNB 10 when determining that a collision has occurred. If the terminal 20 determines that the SL resource allocated to the gNB 10 cannot be used based on the acquired information, the terminal 20 may determine that a collision has occurred. Moreover, when the terminal 20 determines that the PSFCH resource for the resource allocated to the gNB 10 is not available based on the acquired information, the terminal 20 may determine that a collision has occurred. The above determination may be performed based on any of the operations A) to I) above.
  • the priority and/or RSRP related to the LTE-SL reservation for the SL resource allocated from the gNB 10 satisfies a predetermined condition, it may be determined that the SL resource is not available.
  • SL transmission using the SL resources allocated from the gNB 10 may not be performed. If there are no PUCCH resources for HARQ-ACK transmission in d) above, e) may be applied.
  • network and/or UE operations can be expected to notify the network of LTE-SL reservation information and collision information between LTE-SL and NR-SL and avoid collisions.
  • the terminal 20 may perform resource selection or resource reselection in the MAC layer in NR-SL based on the acquired information regarding resource reservations of other terminals 20.
  • the terminal 20 may perform resource selection or resource reselection after excluding resources based on the acquired information.
  • the SA acquired from the PHY layer may be determined without using the acquired information, or the SA may be determined using the same operation as in the case of only NR-SL. , the operations shown in A) to G) above may not be applied to the SA .
  • the S A obtained from the PHY layer may be determined using the obtained information, or the operations shown in A) to G) above may be applied to the S A.
  • Resources based on information acquired from UE-A may be any of the resources shown in 1)-3) below.
  • Whether the resource corresponds to the “resource based on information acquired from UE-A” indicates the priority (or PPP) related to LTE-SL reservation.
  • the determination may be based on the value and/or RSRP. Details of the priority may be defined in the same manner as in C) above.
  • the resource is selected. may be excluded from the resource. It does not have to be excluded from
  • the relevant resource may be excluded from selection.
  • the RSRP related to LTE-SL reservation is smaller than the RSRP threshold corresponding to the value indicating the priority of data to be transmitted and/or the value indicating the priority related to LTE-SL reservation, the resource does not have to be excluded from selection. Details of the RSRP threshold may be defined in the same manner as in D) above.
  • the operation of executing resource selection after excluding resources based on the information acquired from UE-A is applied to the operation related to re-evaluation or preemption check. You may. If the already selected resource or already reserved resource, that is, the target resource for re-evaluation or preemption check, is the above-mentioned "resource based on information obtained from UE-A", request re-evaluation or preemption check to the PHY layer. Instead, it may be determined that re-evaluation or preemption is required, and resource reselection may be performed.
  • the PHY operation can be the same as the conventional one, and the PHY configuration can be simplified. Further, the NR-SL terminal can perform resource selection so as not to collide with LTE-SL transmission.
  • the terminal 20 may preferentially select resources other than the resources based on the information acquired from the UE-A.
  • the terminal 20 when executing resource selection from the S A acquired from the PHY layer, if the terminal 20 preferentially selects a resource other than the resource based on the information acquired from the UE-A, the terminal 20 selects the resource from the S A acquired from the PHY layer as described above.
  • the resource selection may be performed after excluding resources based on the information obtained from UE-A. Note that the operation of excluding a resource may be replaced with an operation of lowering the priority of the resource.
  • the PHY operation can be made the same as the conventional one, and the PHY configuration can be simplified.
  • the PHY layer may report to the MAC layer both the S A1 determined without using the information obtained from UE-A and the S A2 determined using the information obtained from UE-A. .
  • the MAC layer may preferentially select resources from S A2 , and select resources from S A1 when resources cannot be selected from S A2 .
  • exception handling can be applied when it becomes difficult to execute NR-SL transmission using the information acquired from UE-A.
  • NR-SL transmission can be prioritized when it would be difficult to perform NR-SL transmission using the information obtained from UE-A.
  • the PHY layer may determine the S A using the information obtained from the UE-A and report it to the MAC layer, or if the predetermined condition is not met, the PHY layer may decide the S A using the information obtained from the UE-A and report it to the MAC layer.
  • SA may be determined without using the information obtained from A and reported to the MAC layer.
  • the MAC layer may select resources from the SA reported from the PHY layer.
  • the predetermined condition may be that an RSRP threshold for resource exclusion in a resource allocation operation is less than or equal to a predetermined value.
  • the RSRP threshold may be a threshold that is increased by 3 dB when the number of remaining resource candidates is less than a predetermined value in the procedure for determining SA (see Non-Patent Document 3). That is, if the RSRP threshold is less than or equal to a predetermined value, resource identification may be performed using the information obtained from UE-A, or if the RSRP threshold exceeds a predetermined value, information obtained from UE-A may be used. Resource identification may be performed without using . Further, the RSRP threshold may be the RSRP threshold at the time when the SA to be reported to the MAC layer is determined in the procedure for determining the SA .
  • exception handling can be applied when it becomes difficult to perform NR-SL transmission using the information acquired from UE-A.
  • NR-SL transmission can be prioritized when it would be difficult to perform NR-SL transmission using the information obtained from UE-A.
  • the NR-SL terminal can select resources so as not to collide with LTE-SL transmission.
  • the transmission and reception of information based on LTE-SL resource reservation may be performed based on the operation of the inter-terminal cooperation method 1) described above.
  • UE-B may transmit a signal requesting UE-A to transmit information based on the LTE-SL reservation.
  • the signal may be based on the request signal in the inter-terminal cooperation method 1).
  • the request signal it may be notified whether information based on LTE-SL reservation is requested.
  • UE-A may transmit LTE-SL reservation information to UE-B.
  • UE-A determines a preferred resource set and/or a non-preferred resource set based on the LTE-SL reservation information, and notifies UE-B of the resource set. You can.
  • the UE-A may exclude the resource corresponding to the LTE-SL reservation information from the recommended resources, or may include it among the non-recommended resources.
  • whether or not the operation based on the LTE-SL reservation information is executed may be determined by configuration or pre-configuration, or may be determined by UE-A and/or UE-B. It may be determined based on the UE capabilities of the UE-B, it may be determined based on the request of the UE-B, or it may be determined based on the UE-A implementation.
  • the operation of transmitting and receiving notifications related to LTE-SL reservation information by the above-described inter-terminal cooperation method 1) may be applied to any of the embodiments described above.
  • the UE configuration can be simplified.
  • the transmission and reception of information based on LTE-SL resource reservation may be performed based on the operation of the inter-terminal cooperation method 2) described above.
  • the UE-A may detect a resource collision regarding the reserved resources of the UE-B, and may transmit a notification regarding the collision to the UE-B.
  • the UE-A received a resource reservation signal from a certain NR-UE and an LTE-SL signal for reserving a resource that overlaps in the time domain or in the time domain and frequency domain with the resource reserved by the resource reservation signal.
  • the NR-UE may be determined as the UE-B that sends the notification regarding the collision.
  • the UE-A may determine the NR-UE to be the UE-B. If the NR-UE supports PSFCH reception in the terminal cooperation method 2), UE-A only supports becoming the UE-B in the terminal cooperation method 2). It may be determined to be UE-B.
  • UE-A When UE-A receives a resource reservation signal from UE-B and an LTE-SL signal that reserves a resource that overlaps in the time domain or in the time domain and frequency domain with the resource reserved by the resource reservation signal, , it may be determined that a resource conflict has been detected based on at least one of the RSRP of the resource reservation signal and the LTE-SL signal, the priority, and a set or preset threshold.
  • the conditions for resource collision detection are the overlap between NR-SL resource reservations (that is, intra-RAT) and the overlap between NR-SL resource reservations and LTE-SL resource reservations, even if they are the same. It's okay and it can be different. If they are the same, the UE configuration can be simplified. If the resource reservations are different, it is possible to flexibly set how much priority is given to LTE-SL reservations over NR-SL resource reservations.
  • the above-described or preset thresholds for detecting resource collisions between the NR-SL resource reservation signal and the LTE-SL resource reservation signal may be the same or different. If they are the same, the UE configuration can be simplified. If the resource reservations are different, it is possible to flexibly set how much priority is given to LTE-SL reservations over NR-SL resource reservations.
  • the PSFCH resources (e.g., PSFCH opportunities, PRBs, cyclic shifts) used for sending collision notifications are based on the overlap between NR-SL resource reservations (i.e., intra-RAT) and the overlap between NR-SL resource reservations and LTE.
  • NR-SL resource reservations i.e., intra-RAT
  • LTE Long Term Evolution
  • the overlap between the resource reservations of the SLs which may be the same or different. If they are the same, the UE configuration can be simplified. If the information is different, the UE-B can be notified whether the information is based on LTE-SL reservations or not.
  • whether or not the operation based on the LTE-SL reservation information is executed may be determined by the settings or advance settings, or may be determined by the settings of the UE-A and/or the UE-B. It may be determined based on the UE capabilities or may be determined by the UE-A implementation.
  • the operation of transmitting and receiving a notification regarding a collision based on LTE-SL reservation information by the above-described inter-terminal cooperation method 2) may be applied to any of the embodiments described above.
  • the above embodiments are not limited to the coexistence or cooperative operation of LTE-SL and NR-SL, but may be applied to the coexistence or cooperative operation of multiple RATs.
  • the operation in which the NR-SL side considers the reservation on the LTE-SL side is illustrated, but the operation in the opposite direction may be performed on the LTE-SL side in which the reservation on the NR-SL side is considered.
  • operations may be performed to consider reservations in both directions.
  • the UE-B may perform an operation by understanding whether the information received from the UE-A is information determined based on the LTE-SL reservation. The action may be performed without any action.
  • UE-A may notify UE-B whether the information is determined based on the LTE-SL reservation.
  • the above embodiments are not limited to V2X terminals, but may be applied to terminals that perform D2D communication.
  • the operations according to the embodiments described above may be performed only in a specific resource pool. For example, it may be executed only in resource pools in which terminals 20 of release 17 or later can be used.
  • the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource identification in NR-SL, thereby improving the reliability of resource selection and improving the reliability of resource selection between LTE-SL and NR-SL. resources can be shared.
  • resources can be shared between direct communication between terminals that use different RATs (Radio Access Technologies).
  • RATs Radio Access Technologies
  • Base station 10 and terminal 20 include functionality to implement the embodiments described above. However, the base station 10 and the terminal 20 may each have only some of the functions in the embodiment.
  • FIG. 30 is a diagram showing an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 30 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signal, DL reference signal, etc. to the terminal 20.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • control unit 140 performs processing related to settings for the terminal 20 to perform D2D communication. Further, the control unit 140 transmits the scheduling of D2D communication and DL communication to the terminal 20 via the transmitting unit 110. Further, the control unit 140 receives information related to HARQ responses for D2D communication and DL communication from the terminal 20 via the reception unit 120.
  • a functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
  • FIG. 31 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 31 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, reference signals, etc. transmitted from the base station 10.
  • the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) to another terminal 20 as D2D communication.
  • the receiving unit 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 20 .
  • the setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the content of the setting information is, for example, information related to the setting of D2D communication.
  • the control unit 240 controls D2D communication to establish an RRC connection with another terminal 20. Further, the control unit 240 performs processing related to power saving operation. Further, the control unit 240 performs processing related to HARQ for D2D communication and DL communication. Further, the control unit 240 transmits to the base station 10 information related to HARQ responses for D2D communication and DL communication scheduled from the base station 10 to other terminals 20. Further, the control unit 240 may schedule D2D communication for other terminals 20. Further, the control unit 240 may autonomously select a resource to be used for D2D communication from the resource selection window based on the sensing result, or may perform re-evaluation or preemption.
  • control unit 240 performs processing related to power saving in transmission and reception of D2D communication. Further, the control unit 240 performs processing related to cooperation between terminals in D2D communication.
  • a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 32 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 140 of the base station 10 shown in FIG. 30 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 31 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • FIG. 33 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication.
  • the electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by the communication module 2013 may include information based on the above input.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • the information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • a first RAT Radio Access Technology
  • the communication unit receives information from another terminal indicating that the resource reservation in the first RAT and the resource reservation in the second RAT conflict at least in the time domain, and the control unit At least one of the determination operation of the usable resource set in the first RAT layer and the resource selection operation from the resource set in the MAC (Medium Access Control) layer is performed based on the information indicating the conflict.
  • a terminal is provided in which the communication unit performs transmission to another terminal using the resource selected by the resource selection operation.
  • the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource identification in NR-SL, thereby improving the reliability of resource selection and improving the reliability of resource selection between LTE-SL and NR-SL.
  • Resources can be shared. That is, resources can be shared between direct communication between terminals using different RATs (Radio Access Technologies).
  • the control unit may exclude resources from the resource set based on the information indicating the collision in the MAC layer.
  • the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource exclusion in NR-SL, thereby improving the reliability of resource selection and reserving resources in LTE-SL and NR-SL. can be shared.
  • the communication unit may report information indicating the collision to the base station.
  • the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource exclusion in NR-SL, thereby improving the reliability of resource selection and reserving resources in LTE-SL and NR-SL. can be shared.
  • the communication unit may transmit a signal requesting information indicating the collision to the other terminal.
  • the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource exclusion in NR-SL, thereby improving the reliability of resource selection and reserving resources in LTE-SL and NR-SL. can be shared.
  • the control unit may assume that the resource that receives the information indicating the collision is different from the resource that receives the information related to the resource collision in the first RAT.
  • the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource exclusion in NR-SL, thereby improving the reliability of resource selection and reserving resources in LTE-SL and NR-SL. can be shared.
  • a communication procedure for performing transmission and reception in a first RAT Radio Access Technology
  • a control procedure for controlling communication in the first RAT and a A procedure for receiving information from another terminal indicating that a resource reservation and a resource reservation in a second RAT collide at least in the time domain; and determining a usable resource set in the first RAT in a physical layer.
  • a communication method is provided in which a terminal performs a procedure for performing transmission to another terminal using a method.
  • the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource identification in NR-SL, thereby improving the reliability of resource selection and improving the reliability of resource selection between LTE-SL and NR-SL.
  • Resources can be shared. That is, resources can be shared between direct communication between terminals using different RATs (Radio Access Technologies).
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped.
  • the mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station may have the functions that the user terminal described above has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for the terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP.
  • Note that "cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to the present invention comprises: a communication unit that performs transmission and reception in a first radio access technology (RAT); and a control unit that controls communication in the first RAT, wherein the communication unit receives, from another terminal, information indicating that there is a conflict between a resource reservation in the first RAT and a resource reservation in a second RAT in at least a time domain, the control unit performs, on the basis of the information indicating that there is the conflict, at least one of an operation for determining a resource set usable in the first RAT in a physical layer and an operation for selecting a resource from the resource set in a medium access control (MAC) layer, and the communication unit uses the resource that has been selected by the resource selection operation to perform transmission to the another terminal.

Description

端末及び通信方法Terminal and communication method
 本発明は、無線通信システムにおける端末及び通信方法に関する。 The present invention relates to a terminal and a communication method in a wireless communication system.
 LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、NR(New Radio)(5Gともいう。))では、端末同士が基地局を介さずに直接通信を行うD2D(Device to Device)技術が検討されている(例えば非特許文献1)。 In LTE (Long Term Evolution) and LTE successor systems (for example, LTE-A (LTE Advanced), NR (New Radio) (also referred to as 5G)), D2D is a system in which terminals communicate directly with each other without going through a base station. (Device to Device) technology is being considered (for example, Non-Patent Document 1).
 D2Dは、端末と基地局との間のトラフィックを軽減し、災害時等に基地局が通信不能になった場合でも端末間の通信を可能とする。なお、3GPP(登録商標)(3rd Generation Partnership Project)では、D2Dを「サイドリンク(sidelink)」と称しているが、本明細書では、より一般的な用語であるD2Dを使用する。ただし、後述する実施の形態の説明では必要に応じてサイドリンクも使用する。 D2D reduces traffic between terminals and base stations, and enables communication between terminals even if the base station becomes unable to communicate during a disaster or the like. Note that in 3GPP (registered trademark) (3rd Generation Partnership Project), D2D is referred to as "sidelink," but in this specification, the more general term D2D is used. However, in the description of the embodiments to be described later, side links will also be used as necessary.
 D2D通信は、通信可能な他の端末を発見するためのD2Dディスカバリ(D2D discovery、D2D発見ともいう。)と、端末間で直接通信するためのD2Dコミュニケーション(D2D direct communication、D2D通信、端末間直接通信等ともいう。)と、に大別される。以下では、D2Dコミュニケーション、D2Dディスカバリ等を特に区別しないときは、単にD2Dと呼ぶ。また、D2Dで送受信される信号を、D2D信号と呼ぶ。NRにおけるV2X(Vehicle to Everything)に係るサービスの様々なユースケースが検討されている(例えば非特許文献2)。 D2D communication consists of D2D discovery (also called D2D discovery) for discovering other terminals that can communicate with each other, and D2D communication (D2D direct communication, direct communication between terminals) for direct communication between terminals. (also referred to as communications, etc.). Hereinafter, when D2D communication, D2D discovery, etc. are not particularly distinguished, they will simply be referred to as D2D. Further, a signal transmitted and received by D2D is called a D2D signal. Various use cases of services related to V2X (Vehicle to Everything) in NR are being considered (for example, Non-Patent Document 2).
 例えば、あるRAT(Radio Access Technology)におけるサイドリンクでは、端末が自律的に送信に使用するリソースを決定する送信モードがサポートされる。また、他のRATにおけるサイドリンクにおいても端末が自律的に送信に使用するリソースを決定する送信モードがサポートされる。当該送信モードでは、端末は互いの信号を復号することで将来のリソース使用を検出し、衝突が発生しないように動作する。しかしながら、あるRATのサイドリンクと他のRATのサイドリンクは異なる信号として定義されており、互いを検出して衝突回避を行うことはできない。そのため、あるRATのサイドリンクと他のRATのサイドリンクとはリソースを共有することが困難であった。 For example, a side link in a certain RAT (Radio Access Technology) supports a transmission mode in which a terminal autonomously determines the resources to be used for transmission. Furthermore, a transmission mode in which a terminal autonomously determines resources to be used for transmission is also supported for side links in other RATs. In this transmission mode, terminals detect future resource usage by decoding each other's signals and operate to avoid collisions. However, the side link of one RAT and the side link of another RAT are defined as different signals, and it is not possible to detect each other and avoid collision. Therefore, it has been difficult for the sidelinks of one RAT and the sidelinks of another RAT to share resources.
 本発明は上記の点に鑑みてなされたものであり、異なるRAT(Radio Access Technology)を使用する端末間直接通信間でリソースを共有することを目的とする。 The present invention has been made in view of the above points, and its purpose is to share resources between direct communications between terminals using different RATs (Radio Access Technologies).
 開示の技術によれば、第1のRAT(Radio Access Technology)において送受信を実行する通信部と、前記第1のRATにおける通信を制御する制御部とを有し、前記通信部は、前記第1のRATにおけるリソース予約と、第2のRATにおけるリソース予約とが少なくとも時間領域で衝突することを示す情報を他の端末から受信し、前記制御部は、物理レイヤにおける、前記第1のRATにおける使用可能なリソースセットの決定動作、及び、MAC(Medium Access Control)レイヤにおける、前記リソースセットからのリソース選択動作の少なくとも一方を、前記衝突することを示す情報に基づいて実行し、前記通信部は、前記リソース選択動作により選択されたリソースを使用して他の端末への送信を実行する端末が提供される。 According to the disclosed technology, a first RAT (Radio Access Technology) includes a communication unit that performs transmission and reception, and a control unit that controls communication in the first RAT, and the communication unit receiving information from another terminal indicating that a resource reservation in the first RAT and a resource reservation in the second RAT conflict at least in the time domain; The communication unit executes at least one of an operation of determining a possible resource set and an operation of selecting a resource from the resource set in a MAC (Medium Access Control) layer based on the information indicating the conflict, and the communication unit: A terminal is provided that performs transmission to another terminal using the resource selected by the resource selection operation.
 開示の技術によれば、異なるRAT(Radio Access Technology)を使用する端末間直接通信間でリソースを共有することができる。 According to the disclosed technology, resources can be shared between direct communications between terminals that use different RATs (Radio Access Technologies).
V2Xを説明するための図である。It is a diagram for explaining V2X. V2Xの送信モードの例(1)を説明するための図である。FIG. 2 is a diagram for explaining an example (1) of a V2X transmission mode. V2Xの送信モードの例(2)を説明するための図である。FIG. 7 is a diagram for explaining an example (2) of V2X transmission mode. V2Xの送信モードの例(3)を説明するための図である。FIG. 7 is a diagram for explaining an example (3) of V2X transmission mode. V2Xの送信モードの例(4)を説明するための図である。FIG. 7 is a diagram for explaining an example (4) of V2X transmission mode. V2Xの送信モードの例(5)を説明するための図である。FIG. 7 is a diagram for explaining an example (5) of V2X transmission mode. V2Xの通信タイプの例(1)を説明するための図である。FIG. 2 is a diagram for explaining an example (1) of V2X communication type. V2Xの通信タイプの例(2)を説明するための図である。FIG. 6 is a diagram for explaining an example (2) of V2X communication type. V2Xの通信タイプの例(3)を説明するための図である。FIG. 7 is a diagram for explaining an example (3) of V2X communication type. V2Xの動作例(1)を示すシーケンス図である。It is a sequence diagram which shows the example (1) of V2X operation. V2Xの動作例(2)を示すシーケンス図である。It is a sequence diagram which shows the example (2) of V2X operation. V2Xの動作例(3)を示すシーケンス図である。It is a sequence diagram which shows the example (3) of V2X operation. V2Xの動作例(4)を示すシーケンス図である。It is a sequence diagram which shows the example (4) of V2X operation. センシング動作の例を示す図である。FIG. 3 is a diagram showing an example of sensing operation. プリエンプション動作の例を説明するためのフローチャートである。3 is a flowchart for explaining an example of preemption operation. プリエンプション動作の例を示す図である。FIG. 3 is a diagram illustrating an example of preemption operation. 部分センシング動作の例を示す図である。FIG. 6 is a diagram illustrating an example of partial sensing operation. 周期的部分センシングの例を説明するための図である。FIG. 3 is a diagram for explaining an example of periodic partial sensing. 連続部分センシングの例を説明するための図である。FIG. 3 is a diagram for explaining an example of continuous partial sensing. 通信状況の例(1)を説明するための図である。FIG. 3 is a diagram for explaining an example (1) of communication status. 通信状況の例(2)を説明するための図である。FIG. 7 is a diagram for explaining an example (2) of communication status. 通信状況の例(3)を説明するための図である。FIG. 7 is a diagram for explaining an example (3) of communication status. 通信状況の例(4)を説明するための図である。FIG. 7 is a diagram for explaining an example (4) of communication status. 通信状況の例(5)を説明するための図である。FIG. 7 is a diagram for explaining an example (5) of communication status. UE間協調の例を説明するためのシーケンス図である。FIG. 3 is a sequence diagram for explaining an example of cooperation between UEs. NR-SL及びLTE-SLの例を説明するための図である。FIG. 2 is a diagram for explaining an example of NR-SL and LTE-SL. 本発明の実施の形態における情報共有の例である。It is an example of information sharing in an embodiment of the present invention. 本発明の実施の形態におけるリソース除外の例(1)を示す図である。It is a figure which shows the example (1) of resource exclusion in embodiment of this invention. 本発明の実施の形態におけるリソース除外の例(2)を示す図である。It is a figure which shows the example (2) of resource exclusion in embodiment of this invention. 本発明の実施の形態における基地局10の機能構成の一例を示す図である。1 is a diagram showing an example of a functional configuration of a base station 10 in an embodiment of the present invention. 本発明の実施の形態における端末20の機能構成の一例を示す図である。It is a diagram showing an example of a functional configuration of a terminal 20 in an embodiment of the present invention. 本発明の実施の形態における基地局10又は端末20のハードウェア構成の一例を示す図である。FIG. 2 is a diagram showing an example of the hardware configuration of a base station 10 or a terminal 20 in an embodiment of the present invention. 本発明の実施の形態における車両2001の構成の一例を示す図である。It is a figure showing an example of composition of vehicle 2001 in an embodiment of the present invention.
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。 Embodiments of the present invention will be described below with reference to the drawings. Note that the embodiment described below is an example, and the embodiment to which the present invention is applied is not limited to the following embodiment.
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)、又は無線LAN(Local Area Network)を含む広い意味を有するものとする。 Existing technologies are used as appropriate for the operation of the wireless communication system according to the embodiment of the present invention. However, the existing technology is, for example, existing LTE, but is not limited to existing LTE. Furthermore, unless otherwise specified, the term "LTE" used in this specification has a broad meaning including LTE-Advanced and a system after LTE-Advanced (e.g. NR), or wireless LAN (Local Area Network). shall have.
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。 Further, in the embodiment of the present invention, the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。 Furthermore, in the embodiment of the present invention, "configure" the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
 図1は、V2Xを説明するための図である。3GPPでは、D2D機能を拡張することでV2X(Vehicle to Everything)あるいはeV2X(enhanced V2X)を実現することが検討され、仕様化が進められている。図1に示されるように、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、車両間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、車両と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、車両とITSサーバとの間で行われる通信形態を意味するV2N(Vehicle to Network)、及び、車両と歩行者が所持するモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。 FIG. 1 is a diagram for explaining V2X. In 3GPP, the realization of V2X (Vehicle to Everything) or eV2X (enhanced V2X) by expanding D2D functions is being considered and specifications are being developed. As shown in Figure 1, V2X is a part of ITS (Intelligent Transport Systems), and refers to V2V (Vehicle to Vehicle), which is a form of communication between vehicles. V2I (Vehicle to Infrastructure), which refers to the form of communication between the vehicle and the ITS server (RSU: Road-Side Unit); V2N (Vehicle to Network), which refers to the form of communication between the vehicle and the ITS server; , is a general term for V2P (Vehicle to Pedestrian), which refers to a form of communication performed between a vehicle and a mobile terminal carried by a pedestrian.
 また、3GPPにおいて、LTE又はNRのセルラ通信及び端末間通信を用いたV2Xが検討されている。セルラ通信を用いたV2XをセルラV2Xともいう。NRのV2Xにおいては、大容量化、低遅延、高信頼性、QoS(Quality of Service)制御を実現する検討が進められている。 Additionally, in 3GPP, V2X using LTE or NR cellular communication and terminal-to-terminal communication is being considered. V2X using cellular communication is also called cellular V2X. In NR's V2X, studies are underway to realize large capacity, low latency, high reliability, and QoS (Quality of Service) control.
 LTE又はNRのV2Xについて、今後3GPP仕様に限られない検討も進められることが想定される。例えば、インターオペラビリティの確保、上位レイヤの実装によるコストの低減、複数RAT(Radio Access Technology)の併用又は切替方法、各国におけるレギュレーション対応、LTE又はNRのV2Xプラットフォームのデータ取得、配信、データベース管理及び利用方法が検討されることが想定される。 It is expected that studies on LTE or NR V2X that are not limited to 3GPP specifications will proceed in the future. For example, ensuring interoperability, reducing costs by implementing upper layers, combining or switching multiple RATs (Radio Access Technology), compliance with regulations in each country, data acquisition and distribution of LTE or NR V2X platforms, database management, and It is assumed that the usage method will be considered.
 本発明の実施の形態において、通信装置が車両に搭載される形態を主に想定するが、本発明の実施の形態は、当該形態に限定されない。例えば、通信装置は人が保持する端末であってもよいし、通信装置がドローンあるいは航空機に搭載される装置であってもよいし、通信装置が基地局、RSU、中継局(リレーノード)、スケジューリング能力を有する端末等であってもよい。 In the embodiments of the present invention, a mode in which the communication device is mounted on a vehicle is mainly assumed, but the embodiments of the present invention are not limited to this mode. For example, the communication device may be a terminal held by a person, the communication device may be a device mounted on a drone or an aircraft, the communication device may be a base station, RSU, relay station (relay node), It may also be a terminal or the like that has scheduling capability.
 なお、SL(Sidelink)は、UL(Uplink)又はDL(Downlink)と以下1)-4)のいずれか又は組み合わせに基づいて区別されてもよい。また、SLは、他の名称であってもよい。
1)時間領域のリソース配置
2)周波数領域のリソース配置
3)参照する同期信号(SLSS(Sidelink Synchronization Signal)を含む)
4)送信電力制御のためのパスロス測定に用いる参照信号
Note that SL (Sidelink) may be distinguished from UL (Uplink) or DL (Downlink) based on any one or a combination of 1) to 4) below. Moreover, SL may have another name.
1) Time domain resource allocation 2) Frequency domain resource allocation 3) Reference synchronization signal (including SLSS (Sidelink Synchronization Signal))
4) Reference signal used for path loss measurement for transmission power control
 また、SL又はULのOFDM(Orthogonal Frequency Division Multiplexing)に関して、CP-OFDM(Cyclic-Prefix OFDM)、DFT-S-OFDM(Discrete Fourier Transform - Spread - OFDM)、Transform precodingされていないOFDM又はTransform precodingされているOFDMのいずれが適用されてもよい。 Regarding OFDM (Orthogonal Frequency Division Multiplexing) of SL or UL, CP-OFDM (Cyclic-Prefix OFDM), DFT-S-OFDM (Discrete Fourier Transform-Spread-OFDM), OFDM without Transform precoding or Transform rm precoded Any of the following OFDM methods may be applied.
 LTEのSLにおいて、端末20へのSLのリソース割り当てに関してMode3とMode4が規定されている。Mode3では、基地局10から端末20に送信されるDCI(Downlink Control Information)によりダイナミックに送信リソースが割り当てられる。また、Mode3ではSPS(Semi Persistent Scheduling)も可能である。Mode4では、端末20はリソースプールから自律的に送信リソースを選択する。 In LTE SL, Mode 3 and Mode 4 are defined regarding SL resource allocation to the terminal 20. In Mode 3, transmission resources are dynamically allocated by DCI (Downlink Control Information) transmitted from the base station 10 to the terminal 20. Further, in Mode 3, SPS (Semi Persistent Scheduling) is also possible. In Mode 4, the terminal 20 autonomously selects transmission resources from the resource pool.
 なお、本発明の実施の形態におけるスロットは、シンボル、ミニスロット、サブフレーム、無線フレーム、TTI(Transmission Time Interval)と読み替えられてもよい。また、本発明の実施の形態におけるセルは、セルグループ、キャリアコンポーネント、BWP、リソースプール、リソース、RAT(Radio Access Technology)、システム(無線LAN含む)等に読み替えられてもよい。 Note that the slot in the embodiment of the present invention may be read as a symbol, minislot, subframe, radio frame, or TTI (Transmission Time Interval). Furthermore, a cell in an embodiment of the present invention may be read as a cell group, a carrier component, a BWP, a resource pool, a resource, a RAT (Radio Access Technology), a system (including a wireless LAN), or the like.
 なお、本発明の実施の形態において、端末20は、V2X端末に限定されず、D2D通信を行うあらゆる種別の端末であってもよい。例えば、端末20は、スマートフォンのようなユーザが所持する端末でもよいし、スマートメータ等のIoT(Internet of Things)機器であってもよい。 Note that in the embodiment of the present invention, the terminal 20 is not limited to a V2X terminal, but may be any type of terminal that performs D2D communication. For example, the terminal 20 may be a terminal owned by a user such as a smartphone, or may be an IoT (Internet of Things) device such as a smart meter.
 図2は、V2Xの送信モードの例(1)を説明するための図である。図2に示されるサイドリンク通信の送信モードでは、ステップ1において、基地局10がサイドリンクのスケジューリングを端末20Aに送信する。続いて、端末20Aは、受信したスケジューリングに基づいて、PSCCH(Physical Sidelink Control Channel)及びPSSCH(Physical Sidelink Shared Channel)を端末20Bに送信する(ステップ2)。図2に示されるサイドリンク通信の送信モードを、LTEにおけるサイドリンク送信モード3と呼んでもよい。LTEにおけるサイドリンク送信モード3では、Uuベースのサイドリンクスケジューリングが行われる。Uuとは、UTRAN(Universal Terrestrial Radio Access Network)とUE(User Equipment)間の無線インタフェースである。なお、図2に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード1とよんでもよい。 FIG. 2 is a diagram for explaining an example (1) of the V2X transmission mode. In the sidelink communication transmission mode shown in FIG. 2, in step 1, the base station 10 transmits sidelink scheduling to the terminal 20A. Subsequently, the terminal 20A transmits a PSCCH (Physical Sidelink Control Channel) and a PSSCH (Physical Sidelink Shared Channel) to the terminal 20B based on the received scheduling (Step 2). The transmission mode of sidelink communication shown in FIG. 2 may be referred to as sidelink transmission mode 3 in LTE. In sidelink transmission mode 3 in LTE, Uu-based sidelink scheduling is performed. Uu is a radio interface between UTRAN (Universal Terrestrial Radio Access Network) and UE (User Equipment). Note that the transmission mode of sidelink communication shown in FIG. 2 may be referred to as sidelink transmission mode 1 in NR.
 図3は、V2Xの送信モードの例(2)を説明するための図である。図3に示されるサイドリンク通信の送信モードでは、ステップ1において、端末20Aは、自律的に選択したリソースを使用して、PSCCH及びPSSCHを端末20Bに送信する。図3に示されるサイドリンク通信の送信モードを、LTEにおけるサイドリンク送信モード4と呼んでもよい。LTEにおけるサイドリンク送信モード4では、UE自身がリソース選択を実行する。 FIG. 3 is a diagram for explaining an example (2) of V2X transmission mode. In the sidelink communication transmission mode shown in FIG. 3, in step 1, the terminal 20A uses autonomously selected resources to transmit the PSCCH and PSSCH to the terminal 20B. The transmission mode of sidelink communication shown in FIG. 3 may be referred to as sidelink transmission mode 4 in LTE. In sidelink transmission mode 4 in LTE, the UE itself performs the resource selection.
 図4は、V2Xの送信モードの例(3)を説明するための図である。図4に示されるサイドリンク通信の送信モードでは、ステップ1において、端末20Aは、自律的に選択したリソースを使用して、PSCCH及びPSSCHを端末20Bに送信する。同様に、端末20Bは、自律的に選択したリソースを使用して、PSCCH及びPSSCHを端末20Aに送信する(ステップ1)。図4に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード2aと呼んでもよい。NRにおけるサイドリンク送信モード2では、端末20自身がリソース選択を実行する。 FIG. 4 is a diagram for explaining an example (3) of V2X transmission mode. In the sidelink communication transmission mode shown in FIG. 4, in step 1, the terminal 20A uses autonomously selected resources to transmit the PSCCH and PSSCH to the terminal 20B. Similarly, the terminal 20B uses autonomously selected resources to transmit the PSCCH and PSSCH to the terminal 20A (step 1). The transmission mode of sidelink communication shown in FIG. 4 may be referred to as sidelink transmission mode 2a in NR. In sidelink transmission mode 2 in NR, the terminal 20 itself performs resource selection.
 図5は、V2Xの送信モードの例(4)を説明するための図である。図5に示されるサイドリンク通信の送信モードでは、ステップ0において、サイドリンクのリソースパターンが、基地局10からRRC(Radio Resource Control)設定を介して端末20Aに送信され、あるいは予め設定される。続いて、端末20Aは、当該リソースパターンに基づいて、PSSCHを端末20Bに送信する(ステップ1)。図5に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード2cと呼んでもよい。 FIG. 5 is a diagram for explaining an example (4) of V2X transmission mode. In the sidelink communication transmission mode shown in FIG. 5, in step 0, a sidelink resource pattern is transmitted from the base station 10 to the terminal 20A via RRC (Radio Resource Control) settings, or is set in advance. Subsequently, the terminal 20A transmits the PSSCH to the terminal 20B based on the resource pattern (step 1). The transmission mode of sidelink communication shown in FIG. 5 may be referred to as sidelink transmission mode 2c in NR.
 図6は、V2Xの送信モードの例(5)を説明するための図である。図6に示されるサイドリンク通信の送信モードでは、ステップ1において、端末20AがサイドリンクのスケジューリングをPSCCHを介して端末20Bに送信する。続いて、端末20Bは、受信したスケジューリングに基づいて、PSSCHを端末20Aに送信する(ステップ2)。図6に示されるサイドリンク通信の送信モードを、NRにおけるサイドリンク送信モード2dと呼んでもよい。 FIG. 6 is a diagram for explaining an example (5) of V2X transmission mode. In the sidelink communication transmission mode shown in FIG. 6, in step 1, the terminal 20A transmits sidelink scheduling to the terminal 20B via the PSCCH. Subsequently, the terminal 20B transmits the PSSCH to the terminal 20A based on the received scheduling (step 2). The transmission mode of sidelink communication shown in FIG. 6 may be referred to as sidelink transmission mode 2d in NR.
 図7は、V2Xの通信タイプの例(1)を説明するための図である。図7に示されるサイドリンクの通信タイプは、ユニキャストである。端末20Aは、PSCCH及びPSSCHを端末20に送信する。図7に示される例では、端末20Aは、端末20Bにユニキャストを行い、また、端末20Cにユニキャストを行う。 FIG. 7 is a diagram for explaining an example (1) of the V2X communication type. The communication type of the side link shown in FIG. 7 is unicast. Terminal 20A transmits PSCCH and PSSCH to terminal 20. In the example shown in FIG. 7, the terminal 20A performs unicasting to the terminal 20B, and also performs unicasting to the terminal 20C.
 図8は、V2Xの通信タイプの例(2)を説明するための図である。図8に示されるサイドリンクの通信タイプは、グループキャストである。端末20Aは、PSCCH及びPSSCHを1又は複数の端末20が属するグループに送信する。図8に示される例では、グループは端末20B及び端末20Cを含み、端末20Aは、グループにグループキャストを行う。 FIG. 8 is a diagram for explaining an example (2) of the V2X communication type. The communication type of the side link shown in FIG. 8 is group cast. Terminal 20A transmits PSCCH and PSSCH to a group to which one or more terminals 20 belong. In the example shown in FIG. 8, the group includes a terminal 20B and a terminal 20C, and the terminal 20A performs a group cast to the group.
 図9は、V2Xの通信タイプの例(3)を説明するための図である。図9に示されるサイドリンクの通信タイプは、ブロードキャストである。端末20Aは、PSCCH及びPSSCHを1又は複数の端末20に送信する。図9に示される例では、端末20Aは、端末20B、端末20C及び端末20Dにブロードキャストを行う。なお、図7~図9に示した端末20AをヘッダUE(header-UE)と称してもよい。 FIG. 9 is a diagram for explaining an example (3) of V2X communication type. The communication type of the side link shown in FIG. 9 is broadcast. Terminal 20A transmits PSCCH and PSSCH to one or more terminals 20. In the example shown in FIG. 9, the terminal 20A broadcasts to the terminal 20B, the terminal 20C, and the terminal 20D. Note that the terminal 20A shown in FIGS. 7 to 9 may be referred to as a header-UE.
 また、NR-V2Xにおいて、サイドリンクのユニキャスト及びグループキャストにHARQ(Hybrid automatic repeat request)がサポートされることが想定される。さらに、NR-V2Xにおいて、HARQ応答を含むSFCI(Sidelink Feedback Control Information)が定義される。さらに、PSFCH(Physical Sidelink Feedback Channel)を介して、SFCIが送信されることが検討されている。 Additionally, in NR-V2X, it is assumed that HARQ (Hybrid automatic repeat request) will be supported for sidelink unicast and group cast. Furthermore, SFCI (Sidelink Feedback Control Information) including HARQ responses is defined in NR-V2X. Furthermore, it is being considered that SFCI is transmitted via PSFCH (Physical Sidelink Feedback Channel).
 なお、以下の説明では、サイドリンクでのHARQ-ACKの送信において、PSFCHを使用することとしているが、これは一例である。例えば、PSCCHを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよいし、PSSCHを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよいし、その他のチャネルを使用してサイドリンクでのHARQ-ACKの送信を行うこととしてもよい。 Note that in the following description, PSFCH is used in transmitting HARQ-ACK on the side link, but this is just an example. For example, PSCCH may be used to transmit HARQ-ACK on the side link, PSSCH may be used to transmit HARQ-ACK on the side link, or other channels may be used to transmit HARQ-ACK on the side link. HARQ-ACK may be transmitted on the side link using the HARQ-ACK.
 以下では、便宜上、HARQにおいて端末20が報告する情報全般をHARQ-ACKと呼ぶ。このHARQ-ACKをHARQ-ACK情報と称してもよい。また、より具体的には、端末20から基地局10等に報告されるHARQ-ACKの情報に適用されるコードブックをHARQ-ACKコードブックと呼ぶ。HARQ-ACKコードブックは、HARQ-ACK情報のビット列を規定する。なお、「HARQ-ACK」により、ACKの他、NACKも送信される。 Hereinafter, for convenience, all information reported by the terminal 20 in HARQ will be referred to as HARQ-ACK. This HARQ-ACK may be referred to as HARQ-ACK information. More specifically, a codebook applied to HARQ-ACK information reported from the terminal 20 to the base station 10 etc. is called a HARQ-ACK codebook. The HARQ-ACK codebook defines a bit string of HARQ-ACK information. Note that with "HARQ-ACK", in addition to ACK, NACK is also transmitted.
 図10は、V2Xの動作例(1)を示すシーケンス図である。図10に示されるように、本発明の実施の形態に係る無線通信システムは、端末20A、及び端末20Bを有してもよい。なお、実際には多数のユーザ装置が存在するが、図10は例として端末20A、及び端末20Bを示している。 FIG. 10 is a sequence diagram showing an example of V2X operation (1). As shown in FIG. 10, the wireless communication system according to the embodiment of the present invention may include a terminal 20A and a terminal 20B. Although there are actually many user devices, FIG. 10 shows the terminal 20A and the terminal 20B as an example.
 以下、端末20A、20B等を特に区別しない場合、単に「端末20」あるいは「ユーザ装置」と記述する。図10では、一例として端末20Aと端末20Bがともにセルのカバレッジ内にある場合を示しているが、本発明の実施の形態における動作は、端末20Bがカバレッジ外にある場合にも適用できる。 Hereinafter, unless the terminals 20A, 20B, etc. are particularly distinguished, they will be simply referred to as "terminal 20" or "user device." Although FIG. 10 shows, as an example, a case where both the terminal 20A and the terminal 20B are within the coverage of the cell, the operation in the embodiment of the present invention can also be applied when the terminal 20B is outside the coverage.
 前述したように、本実施の形態において、端末20は、例えば、自動車等の車両に搭載された装置であり、LTEあるいはNRにおけるUEとしてのセルラ通信の機能、及び、サイドリンク機能を有している。端末20が、一般的な携帯端末(スマートフォン等)であってもよい。また、端末20が、RSUであってもよい。当該RSUは、UEの機能を有するUEタイプRSUであってもよいし、基地局装置の機能を有するgNBタイプRSUであってもよい。 As described above, in this embodiment, the terminal 20 is a device mounted on a vehicle such as a car, and has a cellular communication function as a UE in LTE or NR, and a side link function. There is. The terminal 20 may be a general mobile terminal (such as a smartphone). Further, the terminal 20 may be an RSU. The RSU may be a UE type RSU having UE functionality, or a gNB type RSU having base station device functionality.
 なお、端末20は1つの筐体の装置である必要はなく、例えば、各種センサが車両内に分散して配置される場合でも、当該各種センサを含めた装置が端末20であってもよい。 Note that the terminal 20 does not need to be a device in one housing, and for example, even if various sensors are distributed and arranged within the vehicle, the terminal 20 may be a device including the various sensors.
 また、端末20のサイドリンクの送信データの処理内容は基本的には、LTEあるいはNRでのUL送信の処理内容と同様である。例えば、端末20は、送信データのコードワードをスクランブルし、変調してcomplex-valued symbolsを生成し、当該complex-valued symbols(送信信号)を1又は2レイヤにマッピングし、プリコーディングを行う。そして、precoded complex-valued symbolsをリソースエレメントにマッピングして、送信信号(例:complex-valued time-domain SC-FDMA signal)を生成し、各アンテナポートから送信する。 Furthermore, the processing content of the side link transmission data of the terminal 20 is basically the same as the processing content of UL transmission in LTE or NR. For example, the terminal 20 scrambles and modulates the codeword of the transmission data to generate complex-valued symbols, maps the complex-valued symbols (transmission signal) to one or two layers, and performs precoding. The precoded complex-valued symbols are then mapped to resource elements to generate transmission signals (e.g., complex-valued time-domain SC-FDMA signals) and transmitted from each antenna port.
 なお、基地局10については、LTEあるいはNRにおける基地局としてのセルラ通信の機能、及び、本実施の形態における端末20の通信を可能ならしめるための機能(例:リソースプール設定、リソース割り当て等)を有している。また、基地局10は、RSU(gNBタイプRSU)であってもよい。 Note that the base station 10 has a cellular communication function as a base station in LTE or NR, and a function to enable communication of the terminal 20 in this embodiment (e.g., resource pool setting, resource allocation, etc.). have. Further, the base station 10 may be an RSU (gNB type RSU).
 また、本発明の実施の形態に係る無線通信システムにおいて、端末20がSLあるいはULに使用する信号波形は、OFDMAであってもよいし、SC-FDMAであってもよいし、その他の信号波形であってもよい。 Further, in the wireless communication system according to the embodiment of the present invention, the signal waveform used by the terminal 20 for SL or UL may be OFDMA, SC-FDMA, or other signal waveform. It may be.
 ステップS101において、端末20Aは、所定の期間を有するリソース選択ウィンドウから自律的にPSCCH及びPSSCHに使用するリソースを選択する。リソース選択ウィンドウは、基地局10から端末20に設定されてもよい。ここで、リソース選択ウィンドウの所定の期間について、例えば処理時間又はパケット最大許容遅延時間のような端末の実装条件により期間が規定されてもよいし、仕様により予め期間が規定されてもよいし、所定の期間は時間領域上の区間と呼ばれてもよい。 In step S101, the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period. A resource selection window may be set from the base station 10 to the terminal 20. Here, regarding the predetermined period of the resource selection window, the period may be defined by terminal implementation conditions such as processing time or maximum allowable packet delay time, or the period may be defined in advance by specifications, The predetermined period may be called an interval in the time domain.
 ステップS102及びステップS103において、端末20Aは、ステップS101で自律的に選択したリソースを用いて、PSCCH及び/又はPSSCHによりSCI(Sidelink Control Information)を送信するとともに、PSSCHによりSLデータを送信する。例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する又は隣接しない周波数リソースを使用して送信してもよい。 In steps S102 and S103, the terminal 20A uses the resources autonomously selected in step S101 to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH. For example, the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH, and using a frequency resource that is adjacent to or not adjacent to the frequency resource of the PSSCH.
 端末20Bは、端末20Aから送信されたSCI(PSCCH及び/又はPSSCH)とSLデータ(PSSCH)を受信する。受信したSCIには、端末20Bが、当該データの受信に対するHARQ-ACKを送信するためのPSFCHのリソースの情報が含まれてもよい。端末20Aは自律的に選択したリソースの情報をSCIに含めて送信してもよい。 The terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A. The received SCI may include information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data. The terminal 20A may include information on the autonomously selected resource in the SCI and transmit it.
 ステップS104において、端末20Bは、受信したSCIから定まるPSFCHのリソースを使用して、受信したデータに対するHARQ-ACKを端末20Aに送信する。 In step S104, the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
 ステップS105において、端末20Aは、ステップS104で受信したHARQ-ACKが再送を要求することを示す場合すなわちNACK(否定的応答)である場合、端末20BにPSCCH及びPSSCHを再送する。端末20Aは、自律的に選択したリソースを使用してPSCCH及びPSSCHを再送してもよい。 In step S105, the terminal 20A retransmits the PSCCH and PSSCH to the terminal 20B if the HARQ-ACK received in step S104 indicates a request for retransmission, that is, if it is a NACK (negative response). The terminal 20A may retransmit the PSCCH and PSSCH using autonomously selected resources.
 なお、HARQフィードバックを伴うHARQ制御が実行されない場合、ステップS104及びステップS105は実行されなくてもよい。 Note that if HARQ control with HARQ feedback is not performed, step S104 and step S105 may not be performed.
 図11は、V2Xの動作例(2)を示すシーケンス図である。送信の成功率又は到達距離を向上させるためのHARQ制御によらないブラインド再送が実行されてもよい。 FIG. 11 is a sequence diagram showing operation example (2) of V2X. Blind retransmission without HARQ control may be performed to improve transmission success rate or reach.
 ステップS201において、端末20Aは、所定の期間を有するリソース選択ウィンドウから自律的にPSCCH及びPSSCHに使用するリソースを選択する。リソース選択ウィンドウは、基地局10から端末20に設定されてもよい。 In step S201, the terminal 20A autonomously selects resources to be used for the PSCCH and PSSCH from a resource selection window having a predetermined period. A resource selection window may be set from the base station 10 to the terminal 20.
 ステップS202及びステップS203において、端末20Aは、ステップS201で自律的に選択したリソースを使用して、PSCCH及び/又はPSSCHによりSCIを送信するとともに、PSSCHによりSLデータを送信する。例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信してもよい。 In steps S202 and S203, the terminal 20A uses the resources autonomously selected in step S201 to transmit SCI on the PSCCH and/or PSSCH, and also transmits SL data on the PSSCH. For example, the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
 ステップS204において、端末20Aは、ステップS201で自律的に選択したリソースを使用して、PSCCH及び/又はPSSCHによるSCI及びPSSCHによるSLデータを端末20Bに再送する。ステップS204における再送は、複数回実行されてもよい。 In step S204, the terminal 20A uses the resources autonomously selected in step S201 to retransmit the SCI on the PSCCH and/or PSSCH and the SL data on the PSSCH to the terminal 20B. The retransmission in step S204 may be performed multiple times.
 なお、ブラインド再送が実行されない場合、ステップS204は実行されなくてもよい。 Note that if blind retransmission is not performed, step S204 may not be performed.
 図12は、V2Xの動作例(3)を示すシーケンス図である。基地局10は、サイドリンクのスケジューリングを行ってもよい。すなわち、基地局10は、端末20が使用するサイドリンクのリソースを決定して、当該リソースを示す情報を端末20に送信してもよい。さらに、HARQフィードバックを伴うHARQ制御が適用される場合、基地局10は、PSFCHのリソースを示す情報を端末20に送信してもよい。 FIG. 12 is a sequence diagram showing an example (3) of V2X operation. The base station 10 may perform sidelink scheduling. That is, the base station 10 may determine the side link resource used by the terminal 20 and transmit information indicating the resource to the terminal 20. Furthermore, when HARQ control with HARQ feedback is applied, the base station 10 may transmit information indicating PSFCH resources to the terminal 20.
 ステップS301において、基地局10は端末20Aに対して、PDCCHによりDCI(Downlink Control Information)を送ることにより、SLスケジューリングを行う。以降、便宜上、SLスケジューリングのためのDCIをSLスケジューリングDCIと呼ぶ。 In step S301, the base station 10 performs SL scheduling by sending DCI (Downlink Control Information) to the terminal 20A via PDCCH. Hereinafter, for convenience, the DCI for SL scheduling will be referred to as SL scheduling DCI.
 また、ステップS301において、基地局10は端末20Aに対して、PDCCHにより、DLスケジューリング(DL割り当てと呼んでもよい)のためのDCIも送信することを想定している。以降、便宜上、DLスケジューリングのためのDCIをDLスケジューリングDCIと呼ぶ。DLスケジューリングDCIを受信した端末20Aは、DLスケジューリングDCIで指定されるリソースを用いて、PDSCHによりDLデータを受信する。 Furthermore, in step S301, it is assumed that the base station 10 also transmits DCI for DL scheduling (also referred to as DL allocation) to the terminal 20A via PDCCH. Hereinafter, for convenience, the DCI for DL scheduling will be referred to as DL scheduling DCI. The terminal 20A that has received the DL scheduling DCI receives DL data on the PDSCH using the resources specified by the DL scheduling DCI.
 ステップS302及びステップS303において、端末20Aは、SLスケジューリングDCIで指定されたリソースを用いて、PSCCH及び/又はPSSCHによりSCI(Sidelink Control Information)を送信するとともに、PSSCHによりSLデータを送信する。なお、SLスケジューリングDCIでは、PSSCHのリソースのみが指定されることとしてもよい。この場合、例えば、端末20Aは、PSCCHを、PSSCHの時間リソースの少なくとも一部と同じ時間リソースで、PSSCHの周波数リソースと隣接する周波数リソースを使用して送信することとしてもよい。 In steps S302 and S303, the terminal 20A uses the resources specified by the SL scheduling DCI to transmit SCI (Sidelink Control Information) on the PSCCH and/or PSSCH, and transmits SL data on the PSSCH. Note that in the SL scheduling DCI, only PSSCH resources may be specified. In this case, for example, the terminal 20A may transmit the PSCCH using the same time resource as at least part of the time resource of the PSSCH and using a frequency resource adjacent to the frequency resource of the PSSCH.
 端末20Bは、端末20Aから送信されたSCI(PSCCH及び/又はPSSCH)とSLデータ(PSSCH)を受信する。PSCCH及び/又はPSSCHにより受信したSCIには、端末20Bが、当該データの受信に対するHARQ-ACKを送信するためのPSFCHのリソースの情報が含まれる。 The terminal 20B receives the SCI (PSCCH and/or PSSCH) and SL data (PSSCH) transmitted from the terminal 20A. The SCI received on the PSCCH and/or PSSCH includes information on PSFCH resources for the terminal 20B to transmit HARQ-ACK in response to reception of the data.
 当該リソースの情報は、ステップS301において基地局10から送信されるDLスケジューリングDCI又はSLスケジューリングDCIに含まれていて、端末20Aが、DLスケジューリングDCI又はSLスケジューリングDCIから当該リソースの情報を取得してSCIの中に含める。あるいは、基地局10から送信されるDCIには当該リソースの情報は含まれないこととし、端末20Aが自律的に当該リソースの情報をSCIに含めて送信することとしてもよい。 Information on the resource is included in the DL scheduling DCI or SL scheduling DCI transmitted from the base station 10 in step S301, and the terminal 20A acquires the information on the resource from the DL scheduling DCI or SL scheduling DCI and uses the SCI. Include in. Alternatively, the DCI transmitted from the base station 10 may not include information on the resource, and the terminal 20A may autonomously include the information on the resource in the SCI and transmit it.
 ステップS304において、端末20Bは、受信したSCIから定まるPSFCHのリソースを使用して、受信したデータに対するHARQ-ACKを端末20Aに送信する。 In step S304, the terminal 20B uses the PSFCH resource determined from the received SCI to transmit HARQ-ACK for the received data to the terminal 20A.
 ステップS305において、端末20Aは、例えば、DLスケジューリングDCI(又はSLスケジューリングDCI)により指定されたタイミング(例えばスロット単位のタイミング)で、当該DLスケジューリングDCI(又は当該SLスケジューリングDCI)により指定されたPUCCH(Physical uplink control channel)リソースを用いてHARQ-ACKを送信し、基地局10が当該HARQ-ACKを受信する。当該HARQ-ACKのコードブックには、端末20Bから受信したHARQ-ACK又は受信しなかったPSFCHに基づいて生成されるHARQ-ACKと、DLデータに対するHARQ-ACKとが含まれ得る。ただし、DLデータの割り当てがない場合等には、DLデータに対するHARQ-ACKは含まれない。NR Rel.16では、当該HARQ-ACKのコードブックに、DLデータに対するHARQ-ACKは含まれない。 In step S305, the terminal 20A transmits, for example, the PUCCH ( The HARQ-ACK is transmitted using the physical uplink control channel) resource, and the base station 10 receives the HARQ-ACK. The HARQ-ACK codebook may include a HARQ-ACK generated based on the HARQ-ACK received from the terminal 20B or a PSFCH not received, and a HARQ-ACK for DL data. However, if DL data is not allocated, HARQ-ACK for DL data is not included. NR Rel. In No. 16, the HARQ-ACK codebook does not include HARQ-ACK for DL data.
 なお、HARQフィードバックを伴うHARQ制御が実行されない場合、ステップS304及び/又はステップS305は実行されなくてもよい。 Note that if HARQ control with HARQ feedback is not performed, step S304 and/or step S305 may not be performed.
 図13は、V2Xの動作例(4)を示すシーケンス図である。上述のとおりNRのサイドリンクにおいて、HARQ応答はPSFCHで送信されることがサポートされている。なお、PSFCHのフォーマットは、例えばPUCCH(Physical Uplink Control Channel)フォーマット0と同様のフォーマットが使用可能である。すなわち、PSFCHのフォーマットは、PRB(Physical Resource Block)サイズは1であり、ACK及びNACKはシーケンス及び/又はサイクリックシフトの差異によって識別されるシーケンスベースのフォーマットであってもよい。PSFCHのフォーマットとしては、これに限られない。PSFCHのリソースは、スロットの末尾のシンボル又は末尾の複数シンボルに配置されてもよい。また、PSFCHリソースに、周期Nが設定されるか予め規定される。周期Nは、スロット単位で設定されるか予め規定されてもよい。 FIG. 13 is a sequence diagram showing operation example (4) of V2X. As described above, in the NR sidelink, it is supported that the HARQ response is transmitted on the PSFCH. Note that a format similar to PUCCH (Physical Uplink Control Channel) format 0 can be used as the format of PSFCH, for example. That is, the format of the PSFCH may be a sequence-based format in which the PRB (Physical Resource Block) size is 1, and ACKs and NACKs are identified by differences in sequence and/or cyclic shift. The format of PSFCH is not limited to this. The PSFCH resource may be allocated to the last symbol or the last plural symbols of the slot. Furthermore, it is defined in advance whether a period N is set in the PSFCH resource. The period N may be set in units of slots or may be predefined.
 図13において、縦軸が周波数領域、横軸が時間領域に対応する。PSCCHは、スロット先頭の1シンボルに配置されてもよいし、先頭からの複数シンボルに配置されてもよいし、先頭以外のシンボルから複数シンボルに配置されてもよい。PSFCHは、スロット末尾の1シンボルに配置されてもよいし、スロット末尾の複数シンボルに配置されてもよい。なお、上述の「スロットの先頭」「スロットの末尾」は、AGC(Automatic Gain Control)用のシンボル及び送信/受信切替用のシンボルの考慮が省略されていてもよい。すなわち、例えば1スロットが14シンボルで構成される場合、「スロットの先頭」「スロットの末尾」は、先頭及び末尾のシンボルを除いた12シンボルにおいて、それぞれ先頭及び末尾のシンボルであることを意味してもよい。図13に示される例では、3つのサブチャネルがリソースプールに設定されており、PSSCHが配置されるスロットの3スロット後にPSFCHが2つ配置される。PSSCHからPSFCHへの矢印は、PSSCHに関連付けられるPSFCHの例を示す。 In FIG. 13, the vertical axis corresponds to the frequency domain, and the horizontal axis corresponds to the time domain. The PSCCH may be placed in one symbol at the beginning of the slot, in multiple symbols from the beginning, or in multiple symbols starting from a symbol other than the beginning. The PSFCH may be placed in one symbol at the end of the slot, or may be placed in multiple symbols at the end of the slot. Note that the above-mentioned "head of slot" and "end of slot" may omit consideration of symbols for AGC (Automatic Gain Control) and symbols for transmission/reception switching. That is, for example, when one slot is composed of 14 symbols, "the beginning of the slot" and "the end of the slot" mean the first and last symbols, respectively, among the 12 symbols excluding the first and last symbols. It's okay. In the example shown in FIG. 13, three subchannels are set in the resource pool, and two PSFCHs are arranged three slots after the slot in which the PSSCH is arranged. The arrow from PSSCH to PSFCH indicates an example of PSFCH associated with PSSCH.
 NR-V2XのグループキャストにおけるHARQ応答がACK又はNACKを送信するグループキャストオプション2である場合、PSFCHの送受信に使用するリソースを決定する必要がある。図13に示されるように、ステップS401において、送信側端末20である端末20Aが、SL-SCHを介して、受信側端末20である端末20B、端末20C及び端末20Dにグループキャストを実行する。続くステップS402において、端末20BはPSFCH#Bを使用し、端末20CはPSFCH#Cを使用し、端末20DはPSFCH#Dを使用してHARQ応答を端末20Aに送信する。ここで、図13の例に示されるように、利用可能なPSFCHのリソースの個数が、グループに属する受信側端末20の数より少ない場合、PSFCHのリソースをどのように割り当てるか決定する必要がある。なお、送信側端末20は、グループキャストにおける受信側端末20の数を把握していてもよい。なお、グループキャストオプション1では、HARQ応答として、NACKのみ送信され、ACKは送信されない。 If the HARQ response in NR-V2X group cast is group cast option 2, which transmits ACK or NACK, it is necessary to determine the resources to be used for transmitting and receiving the PSFCH. As shown in FIG. 13, in step S401, the terminal 20A, which is the transmitting terminal 20, performs a group cast to the receiving terminals 20, which are the terminals 20B, 20C, and 20D, via the SL-SCH. In the following step S402, the terminal 20B uses PSFCH #B, the terminal 20C uses PSFCH #C, and the terminal 20D uses PSFCH #D to transmit the HARQ response to the terminal 20A. Here, as shown in the example of FIG. 13, if the number of available PSFCH resources is less than the number of receiving terminals 20 belonging to the group, it is necessary to decide how to allocate the PSFCH resources. . Note that the transmitting terminal 20 may know the number of receiving terminals 20 in the group cast. Note that in group cast option 1, only NACK is transmitted as the HARQ response, and ACK is not transmitted.
 図14は、NRにおけるセンシング動作の例を示す図である。リソース割り当てモード2(Resource allocation mode 2)では、端末20がリソースを選択して送信を行う。図14に示されるように、端末20は、リソースプール内のセンシングウィンドウでセンシングを実行する。センシングにより、端末20は、他の端末20から送信されるSCIに含まれるリソース予約(resource reservation)フィールド又はリソース割り当て(resource assignment)フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ(resource selection window)内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。 FIG. 14 is a diagram showing an example of sensing operation in NR. In resource allocation mode 2, the terminal 20 selects a resource and performs transmission. As shown in FIG. 14, the terminal 20 performs sensing using a sensing window within the resource pool. Through sensing, the terminal 20 receives a resource reservation field or a resource assignment field included in the SCI transmitted from another terminal 20, and selects a resource in the resource pool based on the field. Identify available resource candidates within a resource selection window. Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
 また、図14に示されるように、リソースプールの設定は周期を有してもよい。例えば、当該周期は、10240ミリ秒の期間であってもよい。図14は、スロットt SLからスロットtTmax-1 SLまでがリソースプールとして設定される例である。各周期内のリソースプールは、例えばビットマップによって領域が設定されてもよい。 Furthermore, as shown in FIG. 14, the resource pool settings may have a periodicity. For example, the period may be a period of 10240 milliseconds. FIG. 14 is an example in which slot t 0 SL to slot t Tmax-1 SL are set as a resource pool. Areas of the resource pool within each period may be set using, for example, a bitmap.
 また、図14に示されるように、端末20における送信トリガはスロットnで発生しており、当該送信の優先度はpTXであるとする。端末20は、スロットn-Tからスロットn-Tproc,0の直前のスロットまでのセンシングウィンドウにおいて、例えば他の端末20が優先度pRXの送信を行っていることを検出することができる。センシングウィンドウ内でSCIが検出され、かつRSRP(Reference Signal Received Power)が閾値を上回る場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングウィンドウ内でSCIが検出され、かつRSRPが閾値未満である場合、当該SCIに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、優先度pTX及び優先度pRXに基づいて、センシングウィンドウ内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。 Further, as shown in FIG. 14, it is assumed that the transmission trigger in the terminal 20 occurs in slot n, and the priority of the transmission is p TX . The terminal 20 can detect, for example, that another terminal 20 is transmitting priority p RX in the sensing window from slot nT 0 to the slot immediately before slot nT proc,0. . If an SCI is detected within the sensing window and RSRP (Reference Signal Received Power) exceeds a threshold, the resource within the resource selection window corresponding to the SCI is excluded. Further, if an SCI is detected within the sensing window and the RSRP is less than the threshold, the resource within the resource selection window corresponding to the SCI is not excluded. The thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing window based on the priority p TX and the priority p RX.
 また、図14に示されるスロットt SLのように、例えば送信のため、モニタリングしなかったセンシングウィンドウ内のリソースに対応するリソース予約情報の候補となるリソース選択ウィンドウ内のリソースは除外される。 Further, like slot t m SL shown in FIG. 14, resources within the resource selection window that are candidates for resource reservation information corresponding to resources within the sensing window that are not monitored, for example, for transmission, are excluded.
 スロットn+Tからスロットn+T2までのリソース選択ウィンドウは、図14に示されるように、他UEが占有するリソースが識別され、当該リソースが除外されたリソースが、使用可能なリソース候補となる。使用可能なリソース候補の集合をSとすると、Sがリソース選択ウィンドウの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行してもよい。すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させて、リソース候補の集合Sがリソース選択ウィンドウの20%以上となるようにしてもよい。Sがリソース選択ウィンドウの20%未満であった場合、センシングウィンドウのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行する動作は繰り返されてもよい。 As shown in FIG. 14, in the resource selection window from slot n+T 1 to slot n+T 2 , resources occupied by other UEs are identified, and resources from which these resources are excluded become usable resource candidates. Assuming that the set of usable resource candidates is S A , if S A is less than 20% of the resource selection window, the thresholds Th pTX and pRX set for each resource in the sensing window are increased by 3 dB and the resource selection is performed again. Identification may be performed. That is, by increasing the thresholds Th pTX and pRX and performing resource identification again, the number of resources that are not excluded because their RSRPs are less than the thresholds is increased, and the set of resource candidates S A becomes 20% or more of the resource selection window. You may do so. If S A is less than 20% of the resource selection window, the operation of increasing the thresholds Th pTX and pRX set for each resource in the sensing window by 3 dB and performing resource identification again may be repeated.
 端末20の下位レイヤは、Sを上位レイヤに報告してもよい。端末20の上位レイヤは、Sに対してランダム選択を実行して使用するリソースを決定してもよい。端末20は、決定したリソースを使用してサイドリンク送信を実行してもよい。例えば、上位レイヤはMACレイヤであってもよいし、下位レイヤはPHYレイヤ又は物理レイヤであってもよい。 The lower layer of the terminal 20 may report SA to the upper layer. The upper layer of the terminal 20 may perform random selection on the SA to determine the resources to be used. The terminal 20 may perform sidelink transmission using the determined resources. For example, the upper layer may be a MAC layer, and the lower layer may be a PHY layer or a physical layer.
 上述の図14では、送信側端末20の動作を説明したが、受信側端末20は、センシング又は部分センシングの結果に基づいて、他の端末20からのデータ送信を検知して、当該他の端末20からデータを受信してもよい。 In FIG. 14 described above, the operation of the transmitting terminal 20 has been explained, but the receiving terminal 20 detects data transmission from another terminal 20 based on the result of sensing or partial sensing, and transmits data to the other terminal 20. Data may be received from 20.
 図15は、NRにおけるプリエンプションの例を示すフローチャートである。図16は、NRにおけるプリエンプションの例を示す図である。ステップS501において、端末20は、センシングウィンドウでセンシングを実行する。端末20が省電力動作を行う場合、予め規定された限定された期間でセンシングが実行されてもよい。続いて、端末20は、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを識別してリソース候補の集合Sを決定し、送信に使用するリソースを選択する(S502)。続いて、端末20は、リソース候補の集合Sからプリエンプションを判定するリソースセット(r_0,r_1,・・・)を選択する(S503)。当該リソースセットは、プリエンプションされたか否かを判定するリソースとして上位レイヤからPHYレイヤに通知されてもよい。 FIG. 15 is a flowchart illustrating an example of preemption in NR. FIG. 16 is a diagram showing an example of preemption in NR. In step S501, the terminal 20 performs sensing using the sensing window. When the terminal 20 performs power saving operation, sensing may be performed in a predefined limited period. Next, the terminal 20 identifies each resource within the resource selection window based on the sensing results, determines a resource candidate set SA , and selects a resource to be used for transmission (S502). Subsequently, the terminal 20 selects a resource set (r_0, r_1, . . . ) for determining preemption from the resource candidate set SA (S503). The resource set may be notified from the upper layer to the PHY layer as a resource for determining whether or not it has been preempted.
 ステップS504において、端末20は、図16に示されるT(r_0)-Tのタイミングで、センシング結果に基づいてリソース選択ウィンドウ内の各リソースを再度識別してリソース候補の集合Sを決定し、さらに優先度に基づいてリソースセット(r_0,r_1,・・・)に対してプリエンプションを判定する。例えば、図16に示されるr_1は、再度のセンシングにより、他端末20から送信されたSCIが検出されており、Sに含まれていない。プリエンプションが有効である場合、他端末20から送信されたSCIの優先度を示す値prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも低い場合、端末20はリソースr_1をプリエンプションされたと判定する。なお、優先度を示す値はより低い値のほうが、優先度はより高くなる。すなわち、他端末20から送信されたSCIの優先度を示す値prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも高い場合、端末20はリソースr_1をSから除外しない。または、プリエンプションが特定の優先度にのみ有効である場合(例えば、sl-PreemptionEnableがpl1, pl2, ..., pl8のいずれか)、この優先度をprio_preとする。このとき、他端末20から送信されたSCIの優先度を示す値prio_RXが、prio_preよりも低く、かつ、prio_RXが、自端末から送信するトランスポートブロックの優先度を示す値prio_TXよりも低い場合、端末20はリソースr_1をプリエンプションされたと判定する。 In step S504, the terminal 20 re-identifies each resource within the resource selection window based on the sensing results and determines a resource candidate set S A at timing T(r_0) -T3 shown in FIG. , further determines whether to preempt the resource set (r_0, r_1, . . . ) based on the priority. For example, r_1 shown in FIG. 16 is not included in SA because the SCI transmitted from another terminal 20 has been detected by re-sensing. When preemption is enabled, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is lower than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 uses the resource r_1. It is determined that it has been preempted. Note that the lower the value indicating the priority, the higher the priority. That is, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is higher than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, the terminal 20 does not exclude resource r_1 from SA . . Alternatively, if preemption is valid only for a specific priority (for example, sl-PreemptionEnable is one of pl1, pl2, ..., pl8), this priority is set as prio_pre. At this time, if the value prio_RX indicating the priority of the SCI transmitted from the other terminal 20 is lower than prio_pre, and prio_RX is lower than the value prio_TX indicating the priority of the transport block transmitted from the own terminal, The terminal 20 determines that the resource r_1 has been preempted.
 ステップS505において、端末20は、ステップS504においてプリエンプションが判定された場合、上位レイヤにプリエンプションを通知し、上位レイヤにおいてリソースの再選択を行い、プリエンプションのチェックを終了する。 In step S505, if preemption is determined in step S504, the terminal 20 notifies the upper layer of the preemption, reselects resources in the upper layer, and ends the preemption check.
 なお、プリエンプションのチェックに代えて再評価(Re-evaluation)を実行する場合、上記ステップS504において、リソース候補の集合Sを決定した後、Sにリソースセット(r_0,r_1,・・・)のリソースが含まれない場合、当該リソースを使用せず、上位レイヤにおいてリソースの再選択を行う。 Note that when performing re-evaluation instead of checking preemption, in step S504 described above, after determining the set of resource candidates SA , the resource set (r_0, r_1,...) is assigned to SA . If the resource is not included, the resource is not used and the resource is reselected in the upper layer.
 図17は、LTEにおける部分センシング動作の例を示す図である。LTEサイドリンクにおいて部分センシングが上位レイヤから設定された場合、図17に示されるように端末20はリソースを選択して送信を行う。図17に示されるように、端末20は、リソースプール内のセンシングウィンドウの一部すなわちセンシングターゲットに対して部分センシングを実行する。部分センシングにより、端末20は、他の端末20から送信されるSCIに含まれるリソース予約フィールドを受信し、当該フィールドに基づいて、リソースプール内のリソース選択ウィンドウ内の使用可能なリソース候補を識別する。続いて、端末20は使用可能なリソース候補からランダムにリソースを選択する。 FIG. 17 is a diagram illustrating an example of partial sensing operation in LTE. When partial sensing is configured from an upper layer in the LTE sidelink, the terminal 20 selects a resource and performs transmission, as shown in FIG. 17. As shown in FIG. 17, the terminal 20 performs partial sensing for a portion of the sensing window in the resource pool, that is, the sensing target. Through partial sensing, the terminal 20 receives the resource reservation field included in the SCI transmitted from other terminals 20 and identifies available resource candidates within the resource selection window within the resource pool based on the field. . Subsequently, the terminal 20 randomly selects a resource from available resource candidates.
 図17は、サブフレームt SLからサブフレームtTmax-1 SLまでがリソースプールとして設定される例である。リソースプールは、例えばビットマップによって対象領域が設定されてもよい。図17に示されるように、端末20における送信トリガはサブフレームnで発生するものとする。図17に示されるように、サブフレームn+Tからサブフレームn+T2までのうち、サブフレームty1 SLからサブフレームtyY SLまでのYサブフレームがリソース選択ウィンドウとして設定されてもよい。 FIG. 17 is an example in which subframe t 0 SL to subframe t Tmax-1 SL is set as a resource pool. The target area of the resource pool may be set using, for example, a bitmap. As shown in FIG. 17, it is assumed that the transmission trigger in terminal 20 occurs in subframe n. As shown in FIG. 17, Y subframes from subframe t y1 SL to subframe t yY SL among subframe n+T 1 to subframe n+T 2 may be set as the resource selection window.
 端末20は、Yサブフレーム長となるサブフレームty1-k×Pstep SLからサブフレームtyY-k×Pstep SLまでの1又は複数のセンシングターゲットにおいて、例えば他の端末20が送信を行っていることを検出することができる。kは、例えば10ビットのビットマップによって決定されてもよい。図17では、ビットマップの3番目と6番目のビットが、部分センシングを行うことを示す"1"に設定される例を示す。すなわち、図17において、サブフレームty1-6×Pstep SLからサブフレームtyY-6×Pstep SLまでと、サブフレームty1-3×Pstep SLからサブフレームtyY-3×Pstep SLまでとがセンシングターゲットとして設定される。上記のように、ビットマップのk番目のビットは、サブフレームty1-k×Pstep SLからサブフレームtyY-k×Pstep SLまでのセンシングウィンドウに対応してもよい。なお、yはYサブフレーム内のインデックス(1...Y)に対応する。 The terminal 20 is, for example, another terminal 20 transmitting at one or more sensing targets from subframe t y1-k×Pstep SL to subframe t yY-k×Pstep SL , which has a subframe length of Y. can be detected. k may be determined by a 10-bit bitmap, for example. FIG. 17 shows an example in which the third and sixth bits of the bitmap are set to "1" indicating that partial sensing is performed. That is, in FIG. 17, from subframe ty1-6×Pstep SL to subframe tyY-6×Pstep SL , and from subframe ty1-3×Pstep SL to subframe tyY-3×Pstep SL. Set as a sensing target. As mentioned above, the kth bit of the bitmap may correspond to a sensing window from subframe t y1-k×Pstep SL to subframe t yY-k×Pstep SL . Note that y i corresponds to the index (1...Y) within the Y subframe.
 なお、kは10ビットのビットマップで設定されるか予め規定され、Pstepは100msであってもよい。ただし、DL及びULキャリアでSL通信を行う場合、Pstepは(U/(D+S+U))*100msとしてもよい。UはULサブフレーム数、DはDLサブフレーム数、Sはスペシャルサブフレーム数に対応する。 Note that k may be set or predefined in a 10-bit bitmap, and P step may be 100 ms. However, when performing SL communication using DL and UL carriers, P step may be (U/(D+S+U))*100ms. U corresponds to the number of UL subframes, D corresponds to the number of DL subframes, and S corresponds to the number of special subframes.
 上記のセンシングターゲットにおいてSCIが検出され、かつRSRPが閾値を上回る場合、当該SCIのリソース予約フィールドに対応するリソース選択ウィンドウ内のリソースは除外される。また、センシングターゲットにおいてSCIが検出され、かつRSRPが閾値未満である場合、当該SCIのリソース予約フィールドに対応するリソース選択ウィンドウ内のリソースは除外されない。当該閾値は、例えば、送信側優先度pTX及び受信側優先度pRXに基づいて、センシングターゲット内のリソースごとに設定又は定義される閾値ThpTX,pRXであってもよい。 If an SCI is detected in the above sensing target and the RSRP is above the threshold, the resources within the resource selection window corresponding to the resource reservation field of the SCI are excluded. Additionally, if an SCI is detected in the sensing target and the RSRP is less than the threshold, the resources within the resource selection window corresponding to the resource reservation field of the SCI are not excluded. The thresholds may be, for example, thresholds Th pTX, pRX that are set or defined for each resource within the sensing target based on the transmitting side priority p TX and the receiving side priority p RX .
 図17に示されるように、区間[n+T,n+T]のうちYサブフレームに設定されるリソース選択ウィンドウにおいて、端末20は、他UEが占有するリソースを識別し、当該リソースを除外したリソースが、使用可能なリソース候補となる。なお、Yサブフレームは連続していなくてもよい。使用可能なリソース候補の集合をSとすると、Sがリソース選択ウィンドウのリソースの20%未満であった場合、センシングターゲットのリソースごとに設定される閾値ThpTX,pRXを3dB上昇させて再度リソースの識別を実行してもよい。 As shown in FIG. 17, in the resource selection window set in the Y subframe of the interval [n+T 1 , n+T 2 ], the terminal 20 identifies the resources occupied by other UEs, and identifies the resources excluding the resources. are available resource candidates. Note that the Y subframes do not have to be consecutive. Assuming that the set of available resource candidates is S A , if S A is less than 20% of the resources in the resource selection window, the thresholds Th pTX and pRX set for each sensing target resource are increased by 3 dB and the process is performed again. Resource identification may also be performed.
 すなわち、閾値ThpTX,pRXを上昇させて再度リソースの識別を実行することで、RSRPが閾値未満のため除外されないリソースを増加させてもよい。さらに、Sの各リソースのRSSIを測定し、RSSIが最小のリソースを集合Sに追加してもよい。リソース候補の集合Sがリソース選択ウィンドウの20%以上となるまで、Sに含まれるRSSIが最小のリソースをSに追加する動作を繰り返してもよい。 That is, by increasing the thresholds Th pTX and pRX and performing resource identification again, the number of resources that are not excluded because the RSRP is less than the threshold may be increased. Furthermore, the RSSI of each resource in SA may be measured, and the resource with the minimum RSSI may be added to the set SB . The operation of adding the resource with the smallest RSSI included in SA to SB may be repeated until the resource candidate set SB becomes 20% or more of the resource selection window.
 端末20の下位レイヤは、Sを上位レイヤに報告してもよい。端末20の上位レイヤは、Sに対してランダム選択を実行して使用するリソースを決定してもよい。端末20は、決定したリソースを使用してサイドリンク送信を実行してもよい。なお、端末20は、一度リソースを確保した後、所定の回数(例えばCresel回)はセンシングを行わずに周期的にリソースを使用してもよい。 The lower layer of the terminal 20 may report the SB to the upper layer. The upper layer of the terminal 20 may perform random selection on the SB to determine the resources to be used. The terminal 20 may perform sidelink transmission using the determined resources. Note that, once the terminal 20 secures the resource, it may periodically use the resource without performing sensing for a predetermined number of times (for example, Cresel times).
 ここで、NRリリース17サイドリンクにおいて、ランダムリソース選択(random resource selection)及び部分センシング(partial sensing)をベースとする省電力化が検討されている。例えば、省電力化のため、LTEリリース14におけるサイドリンクのランダムリソース選択及び部分センシングが、NRリリース16サイドリンクのリソース割り当てモード2に適用されてもよい。部分センシングが適用される端末20は、センシングウィンドウ内の特定のスロットでのみ受信及びセンシングを実行する。 Here, in the NR Release 17 sidelink, power saving based on random resource selection and partial sensing is being considered. For example, random resource selection and partial sensing of sidelinks in LTE Release 14 may be applied to resource allocation mode 2 of NR Release 16 sidelinks for power saving. The terminal 20 to which partial sensing is applied performs reception and sensing only in specific slots within the sensing window.
 また、NRリリース17サイドリンクにおいて、端末間協調(inter-UE coordination)をベースラインとして、動作が検討されている。例えば、端末20Aはリソースセットを示す情報を端末20Bと共有し、端末20Bは送信のためのリソース選択において当該情報を考慮してもよい。 Furthermore, in the NR Release 17 sidelink, operation is being considered with inter-UE coordination as a baseline. For example, terminal 20A may share information indicating the resource set with terminal 20B, and terminal 20B may consider this information in selecting resources for transmission.
 例えば、サイドリンクにおけるリソース割り当て方法として、端末20は、図14に示されるようなフルセンシングを実行してもよい。また、端末20は、フルセンシングと比較して限定されたリソースのみに対するセンシングによってリソースの識別を実行し、識別されたリソースセットからリソース選択を行う部分センシングを実行してもよい。また、端末20は、リソース選択ウィンドウ内のリソースからリソースの除外を行うことなく、リソース選択ウィンドウ内のリソースを識別されたリソースセットとし、当該識別されたリソースセットからリソース選択を行うランダム選択を実行してもよい。 For example, as a resource allocation method in the side link, the terminal 20 may perform full sensing as shown in FIG. 14. Furthermore, the terminal 20 may perform partial sensing in which resource identification is performed by sensing only limited resources compared to full sensing, and resource selection is performed from the identified resource set. Furthermore, the terminal 20 sets the resources in the resource selection window as an identified resource set, without excluding resources from the resources in the resource selection window, and performs random selection to select resources from the identified resource set. You may.
 なお、リソース選択の時点では、ランダム選択を実行し、再評価又はプリエンプションチェック時にはセンシング情報を使用する方法が、部分センシングとして扱われてもよいし、ランダム選択として扱われてもよい。 Note that a method of performing random selection at the time of resource selection and using sensing information at the time of re-evaluation or preemption check may be treated as partial sensing or random selection.
 なお、センシングにおける動作として、以下に示される1)及び2)が適用されてもよい。なお、センシングとモニタリングとは互いに読み替えられてもよく、受信RSRPの測定、予約リソース情報の取得及び優先度情報の取得のうち少なくとも一つが当該動作に含まれていてもよい。 Note that 1) and 2) shown below may be applied as the sensing operation. Note that sensing and monitoring may be interchanged with each other, and the operation may include at least one of measurement of received RSRP, acquisition of reserved resource information, and acquisition of priority information.
1)周期的部分センシング(Periodic-based partial sensing)
一部のスロットのみセンシングを行う仕組みにおいて、予約周期(Reservation periodicity)に基づいてセンシングスロットを決定する動作。なお、予約周期は、リソース予約周期フィールド(resource reservation period field)に関連する値である。なお、周期は周期性に置き換えられてもよい。
1) Periodic-based partial sensing
In a system where only some slots are sensed, the operation of determining the sensing slot based on the reservation periodicity. Note that the reservation period is a value related to a resource reservation period field. Note that the period may be replaced with periodicity.
2)連続部分センシング(Contiguous partial sensing)
一部のスロットのみセンシングを仕組みにおいて、非周期的予約(aperiodic reservation)に基づいてセンシングスロットを決定する動作。なお、非周期的予約は、時間リソース割り当てフィールド(time resource assignment field)に関連する値である。
2) Contiguous partial sensing
An operation in which sensing slots are determined based on aperiodic reservation in a system where only some slots are sensed. Note that the aperiodic reservation is a value related to a time resource assignment field.
 リリース17においては、3タイプの端末20を想定して動作を規定してもよい。一つは、タイプAであり、タイプAの端末20は、いかなるサイドリンクの信号及びチャネルを受信する能力を有しない。ただし、PSFCH及びS-SSBを受信することを例外としてもよい。 In Release 17, operations may be defined assuming three types of terminals 20. One is type A, and a type A terminal 20 does not have the ability to receive any sidelink signals and channels. However, receiving PSFCH and S-SSB may be an exception.
 他の一つは、タイプBであり、タイプBの端末20は、PSFCH及びS-SSB受信を除くいかなるサイドリンクの信号及びチャネルを受信する能力を有しない。 The other one is type B, and the type B terminal 20 does not have the ability to receive any sidelink signals and channels except for PSFCH and S-SSB reception.
 他の一つは、タイプDであり、タイプDの端末20は、リリース16で定義されたすべてのサイドリンクの信号及びチャネル受信する能力を有する。ただし、一部のサイドリンクの信号及びチャネルを受信することを除外しない。 The other one is type D, and the type D terminal 20 has the ability to receive all sidelink signals and channels defined in Release 16. However, this does not exclude receiving some sidelink signals and channels.
 なお、上記のタイプA、タイプB及びタイプD以外のUEタイプが想定されてもよく、UEタイプとUE能力とは関連付けられなくてもよいし、関連付けられてもよい。 Note that UE types other than the above types A, B, and D may be assumed, and the UE type and the UE capability may or may not be associated with each other.
 また、リリース17においては、あるリソースプールに複数のリソース割り当て方法が設定され得る。また、省電力化機能の一つとして、SL-DRX(Discontinuous reception)がサポートされる。すなわち、所定の時間区間でのみ受信動作が行われる。 Additionally, in Release 17, multiple resource allocation methods can be set for a certain resource pool. Additionally, SL-DRX (Discontinuous reception) is supported as one of the power saving functions. That is, the reception operation is performed only in a predetermined time interval.
 上記の通り、省電力機能の一つとして部分センシングがサポートされる。部分センシングが設定されたリソースプールにおいて、端末20は、上述した周期的部分センシングを実行してもよい。端末20は、部分センシングが設定され、かつ周期的予約が有効に設定されたリソースプールを設定するための情報を、基地局10から受信してもよい。 As mentioned above, partial sensing is supported as one of the power saving functions. In the resource pool in which partial sensing is configured, the terminal 20 may perform the periodic partial sensing described above. The terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and periodic reservation is enabled.
 図18は、周期的部分センシングの例を説明するための図である。図18に示されるように、リソース選択のためのY候補スロットを、リソース選択ウィンドウ[n+T,n+T]から選択する。 FIG. 18 is a diagram for explaining an example of periodic partial sensing. As shown in FIG. 18, Y candidate slots for resource selection are selected from the resource selection window [n+T 1 , n+T 2 ].
 t SLをY候補スロットに含まれる一つのスロットとして、ty-k×Preserve SLを、周期的部分センシングの対象スロットとしてセンシングを行ってもよい。 Sensing may be performed using t y SL as one slot included in the Y candidate slots and t y−k×Preserve SL as a target slot for periodic partial sensing.
 Preserveは、設定されるか予め規定されるセットsl-ResouceReservePeriodListに含まれるすべての値に対応してもよい。あるいは、sl-ResouceReservePeriodListのサブセットに限定されたPreserveの値が、設定されるか予め規定されてもよい。Preserve及びsl-ResouceReservePeriodListは、リソース割り当てモード2の送信リソースプールごとに設定されてもよい。また、UE実装として、限定されたサブセット以外のsl-ResouceReservePeriodListに含まれる周期をモニタリングしてもよい。例えば、端末20は、P_RSVP_Txに対応する機会を追加的にモニタリングしてもよい。 P reserve may correspond to all values included in the configured or predefined set sl-ResourceReservePeriodList. Alternatively, the value of P reserve limited to a subset of sl-ResourceReservePeriodList may be set or predefined. P reserve and sl-ResourceReservePeriodList may be set for each transmission resource pool in resource allocation mode 2. Furthermore, as a UE implementation, the periods included in the sl-ResourceReservePeriodList other than the limited subset may be monitored. For example, the terminal 20 may additionally monitor opportunities to support P_RSVP_Tx.
 k値に関して、端末20は、リソース選択トリガのスロットn以前の、あるいは、処理時間の制限を受けるY候補スロットの先頭スロット以前の、ある予約周期における最も新しいセンシング機会をモニタリングしてもよい。また、端末20は、1以上のk値のセットに対応する周期的なセンシング機会を追加的にモニタリングしてもよい。例えば、k値として、リソース選択トリガのスロットn以前の、あるいは、処理時間の制限を受けるY候補スロットの先頭スロット以前の、ある予約周期における最も新しいセンシング機会に対応する値と、当該ある予約周期における最も新しいセンシング機会の直前のセンシング機会に対応する値とが設定されてもよい。 Regarding the k value, the terminal 20 may monitor the newest sensing opportunity in a certain reservation period before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time limitations. Additionally, the terminal 20 may additionally monitor periodic sensing opportunities corresponding to a set of one or more k values. For example, as the k value, a value corresponding to the newest sensing opportunity in a certain reservation cycle before slot n of the resource selection trigger or before the first slot of Y candidate slots subject to processing time restrictions, and a value corresponding to the latest sensing opportunity in a certain reservation cycle, and The value corresponding to the sensing opportunity immediately before the most recent sensing opportunity may be set.
 上記の通り、省電力機能の一つとして部分センシングがサポートされる。部分センシングが設定されたリソースプールにおいて、端末20は、上述した連続部分センシングを実行してもよい。端末20は、部分センシングが設定され、かつ非周期的予約が有効に設定されたリソースプールを設定するための情報を、基地局10から受信してもよい。 As mentioned above, partial sensing is supported as one of the power saving functions. In the resource pool in which partial sensing is configured, the terminal 20 may perform the continuous partial sensing described above. The terminal 20 may receive from the base station 10 information for configuring a resource pool in which partial sensing is configured and aperiodic reservation is enabled.
 図19は、連続部分センシングの例を説明するための図である。図19に示されるように、端末20は、リソース選択のトリガをスロットnとした場合、リソース選択のためのY候補スロットをリソース選択ウィンドウ[n+T,n+T]から選択する。図19は、Y=7の場合の一例である。図19に示されるように、Y候補スロットの先頭をスロットty1とし、次のスロットをty2とし、・・・、Y候補スロットの末尾をスロットtyYと表記する。 FIG. 19 is a diagram for explaining an example of continuous partial sensing. As shown in FIG. 19, when the resource selection trigger is slot n, the terminal 20 selects Y candidate slots for resource selection from the resource selection window [n+T 1 , n+T 2 ]. FIG. 19 is an example when Y=7. As shown in FIG. 19, the beginning of the Y candidate slots is expressed as slot ty1 , the next slot is expressed as ty2 , . . . the end of the Y candidate slots is expressed as slot tyY .
 端末20は、区間[n+T,n+T]でセンシングを行い、n+T又はn+T以降(n+Tとする)でリソース選択を実行する。なお、上述した周期的部分センシングが追加的に実行されてもよい。なお、区間[n+T,n+T]のTおよびTは何れの値であってもよい。また、nはY候補スロットのうちの何れかのスロットのインデックスに置き換えられてもよい。 The terminal 20 performs sensing in the interval [n+T A , n+T B ], and executes resource selection in n+T B or after n+T B (referred to as n+T C ). Note that the periodic partial sensing described above may be additionally performed. Note that T A and T B in the interval [n+T A , n+T B ] may have any value. Further, n may be replaced with the index of any slot among the Y candidate slots.
 また、記号[は記号(に置き換えられてもよく、記号]は記号)に置き換えられてもよい。なお、例えば、区間[a,b]は、スロットaからスロットbまでの区間であって、スロットa及びスロットbを含む。例えば、区間(a,b)は、スロットaからスロットbまでの区間であって、スロットa及びスロットbを含まない。 Further, the symbol [may be replaced with the symbol (and the symbol] may be replaced with the symbol). Note that, for example, the section [a, b] is a section from slot a to slot b, and includes slot a and slot b. For example, the section (a, b) is a section from slot a to slot b, and does not include slot a and slot b.
 なお、リソース選択の対象となる候補リソースを、Y候補スロットと記載するが、区間[n+T,n+T]のすべてのスロットが候補スロットであってもよいし、一部のスロットが候補スロットであってもよい。 Note that the candidate resource that is the target of resource selection is described as Y candidate slot, but all slots in the interval [n+T 1 , n+T 2 ] may be candidate slots, or some slots may be candidate slots. There may be.
 図20は、通信状況の例(1)を説明するための図である。隠れ端末問題の例として、図20に示されるように、端末20Bから端末20Aに送信しようとするとき、端末20Aからは検出できない端末20Cが、受信側端末20Bに干渉を与える位置に存在する場合がある。例えば、端末20Aが予約した時間リソースにおいて端末20Cが送信を行うと、端末20Bが受信するときリソースのオーバラップが発生する。 FIG. 20 is a diagram for explaining example (1) of communication status. As an example of the hidden terminal problem, as shown in FIG. 20, when a terminal 20B attempts to transmit to a terminal 20A, a terminal 20C that cannot be detected by the terminal 20A exists in a position that causes interference to the receiving terminal 20B. There is. For example, if the terminal 20C transmits using the time resource reserved by the terminal 20A, resource overlap will occur when the terminal 20B receives.
 また、サイドリンクは半二重通信であるため、双方の端末20が送信を行うとリソースの衝突が発生する可能性がある。 Furthermore, since the side link is half-duplex communication, there is a possibility that a resource conflict will occur if both terminals 20 transmit.
 図21は、通信状況の例(2)を説明するための図である。遠近問題の例として、図21に示されるように、端末20Cから端末20Aに送信しようとするとき、送信側端末20Cにおいては小さな電力で検出された端末20Bが、受信側端末20Aに大きな干渉を与える位置に存在する場合がある。 FIG. 21 is a diagram for explaining example (2) of communication status. As an example of the near-far problem, as shown in FIG. 21, when a terminal 20C attempts to transmit to a terminal 20A, the terminal 20B, which is detected with low power by the transmitting terminal 20C, causes large interference to the receiving terminal 20A. It may exist in the given position.
 図22は、通信状況の例(3)を説明するための図である。時間領域における送信リソースと送信リソースの衝突の例として、図22に示されるように、端末20Bから予約された又はPSSCHに関連付けられるPSFCH送信リソースと、端末20Cから予約された又はPSSCHに関連付けられるPSFCH送信リソースとが、端末20Aにてオーバラップする場合がある。複数の送信がオーバラップした場合、ドロップ又は電力低減が発生する。例えば、図20に示されるPSFCHとPSFCHのオーバラップ、あるいはPSFCHとULチャネルのオーバラップ等が発生することが想定される。 FIG. 22 is a diagram for explaining example (3) of communication status. As an example of a collision between transmission resources in the time domain, as shown in FIG. 22, the PSFCH transmission resource reserved from the terminal 20B or associated with the PSSCH, and the PSFCH transmission resource reserved from the terminal 20C or associated with the PSSCH. The transmission resources may overlap at the terminal 20A. If multiple transmissions overlap, drops or power reductions occur. For example, it is assumed that overlap between PSFCH and PSFCH shown in FIG. 20 or overlap between PSFCH and UL channel will occur.
 図23は、通信状況の例(4)を説明するための図である。時間領域における受信リソースと送信リソースの衝突の例として、図23に示されるように、端末20Bから予約されたリソースにおけるPSSCH受信と、端末20Aから予約されたリソースにおけるPSSCH送信とが、端末20Aにてオーバラップする場合がある。 FIG. 23 is a diagram for explaining example (4) of communication status. As an example of a collision between reception resources and transmission resources in the time domain, as shown in FIG. 23, PSSCH reception on resources reserved from terminal 20B and PSSCH transmission on resources reserved from terminal 20A are may overlap.
 図24は、通信状況の例(5)を説明するための図である。時間領域における送信リソースと受信リソースの衝突の例として、図24に示されるように、端末20Bから予約されたPSSCHに関連付けられるPSFCHと、端末20Aから予約されたPSSCHに関連付けられるPSFCHとが、端末20Aにてオーバラップする場合がある。 FIG. 24 is a diagram for explaining example (5) of communication status. As an example of collision between transmission resources and reception resources in the time domain, as shown in FIG. 24, the PSFCH associated with the PSSCH reserved from terminal 20B and the PSFCH associated with the PSSCH reserved from terminal 20A There may be overlap at 20A.
 信頼性及び遅延性能を向上させる手法として、端末間協調が検討されている。例えば、以下に示される端末間協調方法1及び端末間協調方法2が検討されている。以下、協調情報(Coordination information)を送信する端末20をUE-A、協調情報を受信する端末20をUE-Bと記載する。 Inter-terminal cooperation is being considered as a method to improve reliability and delay performance. For example, terminal cooperation method 1 and terminal cooperation method 2 shown below are being considered. Hereinafter, the terminal 20 that transmits coordination information will be referred to as UE-A, and the terminal 20 that receives coordination information will be referred to as UE-B.
端末間協調方法1)UE-Bの送信のため、推奨される(preferred)リソースセット及び/又は推奨されない(non-preferred)リソースセットが、UE-AからUE-Bに送信される。 Inter-terminal cooperation method 1) For the transmission of UE-B, a preferred resource set and/or a non-preferred resource set is transmitted from UE-A to UE-B.
端末間協調方法2)UE-Bから受信したSCIにより指示されたリソースにおいて、他の送信又は受信との衝突が予期される、衝突する可能性がある又は衝突が検出された事実を、UE-AはUE-Bに送信する。なお、「リソースセット」を当該事実に置き換えてもよい。 Inter-terminal coordination method 2) In the resource indicated by the SCI received from UE-B, the fact that collision with other transmission or reception is expected, there is a possibility of collision, or collision has been detected is notified to UE-B. A transmits to UE-B. Note that the "resource set" may be replaced with the relevant fact.
 また、例えば、端末間協調について、以下に示される1)-6)に係る手法を決定してもよい。 Furthermore, for example, methods related to 1) to 6) shown below may be determined regarding cooperation between terminals.
1)いつどのように端末20Aは、リソースセットの内容を決定するか。ULスケジューリングを考慮してもよい。
2)いつ端末20Aは、端末20Bにリソースセットを通知するか、またいずれの端末20がリソースセットを通知するか。
3)どのようにいずれの端末20がいずれの端末20にリソースセットを通知するかを決定するか。
4)どのように端末20Aはリソースセットを通知するか。通知方法をどうするか、明示的又は暗黙的に通知するか。
5)いつどのように、端末20Bはリソースセットを受信するか又は受信しないか。またいつどのように、端末20Bは送信のためのリソース選択に当該受信したリソースセットを反映するか又は反映しないか。
6)どのように端末間協調のサポート及びシグナリングと、キャストタイプとの関連付けを定義するか又は定義しないか。
1) When and how does the terminal 20A determine the contents of the resource set? UL scheduling may also be considered.
2) When will the terminal 20A notify the resource set to the terminal 20B, and which terminal 20 will notify the resource set?
3) How to determine which terminal 20 should notify which terminal 20 of the resource set.
4) How does the terminal 20A notify the resource set? What method of notification will be used; whether to notify explicitly or implicitly.
5) When and how does terminal 20B receive or not receive the resource set? Also, when and how does the terminal 20B reflect or not reflect the received resource set in resource selection for transmission?
6) How to define or not define end-to-end cooperation support and signaling and association with cast types.
 上記端末間協調方法1)において、以下1)-4)に示されるようにUE-Bは動作を実行してもよい。 In the above inter-terminal cooperation method 1), the UE-B may perform the operations as shown in 1)-4) below.
1)送信のためのリソース選択又はリソース再選択に使用されるUE-Bのリソースは、UE-Bのセンシング結果及びUE-Aから受信した協調情報の両方に基づいて行われてもよい。なお、UE-Bのセンシング結果が利用可能な場合に限定されてもよく、UE-Bのセンシング結果が利用不可能であった場合にはUE-Aから受信した協調情報のみに基づいて行われてもよい。
2)送信のためのリソース選択又はリソース再選択に使用されるUE-Bのリソースは、UE-Aから受信した協調情報のみに基づいて行われてもよい。
3)再選択されるUE-Bのリソースは、UE-Aから受信した協調情報に基づいて決定されてもよい。
4)送信のためのリソース選択又はリソース再選択に使用されるUE-Bのリソースは、UE-Aから受信した協調情報に基づいて行われてもよい。
1) UE-B's resources used for resource selection or resource reselection for transmission may be based on both UE-B's sensing results and coordination information received from UE-A. Note that this may be limited to the case where the sensing result of UE-B is available, and if the sensing result of UE-B is not available, it may be performed based only on the cooperation information received from UE-A. You can.
2) UE-B's resources used for resource selection or resource reselection for transmission may be based solely on coordination information received from UE-A.
3) UE-B's resources to be reselected may be determined based on coordination information received from UE-A.
4) UE-B's resources used for resource selection or resource reselection for transmission may be done based on coordination information received from UE-A.
 上記端末間協調方法2)において、以下1)-2)に示されるようにUE-Bは動作を実行してもよい。 In the above inter-terminal cooperation method 2), the UE-B may perform the operations as shown in 1)-2) below.
1)UE-Bは、UE-Aから受信した協調情報に基づいて再選択されるリソースを決定してもよい。
2)UE-Bは、UE-Aから受信した協調情報に基づいて再送が必要か否かを決定してもよい。
1) UE-B may determine the resources to be reselected based on cooperation information received from UE-A.
2) UE-B may decide whether retransmission is necessary based on the coordination information received from UE-A.
 図25は、UE間協調の例を説明するためのシーケンス図である。ステップS601において、UE-Aは、協調情報をUE-Bに送信する。続くステップS602において、UE-Bは、協調情報に基づいて所定の動作を実行する。 FIG. 25 is a sequence diagram for explaining an example of cooperation between UEs. In step S601, UE-A transmits cooperation information to UE-B. In subsequent step S602, UE-B performs a predetermined operation based on the cooperation information.
 ここで、NRサイドリンクでは、端末が自律的に送信に使用するリソースを決定する送信モードがサポートされる。また、LTEサイドリンクにおいても端末が自律的に送信に使用するリソースを決定する送信モードがサポートされる。当該送信モードでは、端末は互いの信号を復号することで将来のリソース使用を検出し、衝突が発生しないように動作する。しかしながら、NRサイドリンクとLTEサイドリンクは異なる信号として定義されており、互いを検出して衝突回避を行うことはできない。そのため、NRサイドリンクとLTEサイドリンクとはリソースを共有することが困難であった。 Here, the NR sidelink supports a transmission mode in which the terminal autonomously determines the resources to be used for transmission. Furthermore, a transmission mode in which a terminal autonomously determines resources to be used for transmission is also supported in LTE sidelink. In this transmission mode, terminals detect future resource usage by decoding each other's signals and operate to avoid collisions. However, the NR sidelink and the LTE sidelink are defined as different signals, and it is not possible to detect each other and avoid collision. Therefore, it has been difficult for the NR sidelink and the LTE sidelink to share resources.
 図26は、NR-SL及びLTE-SLの例を説明するための図である。図26に示されるように、NR-SLとLTE-SLとでリソースが共有されている場合、NR-SLの端末20は、LTE-SLの端末20の予約信号を検出することができず、同一の時間及び同一の周波数リソースを使用して送信が衝突することが想定される。衝突回避のためには、LTE-SLとNR-SLとで、個別のリソースを使用するようにネットワーク又は規制者が適切に設定又は予めの設定を決定する必要があった。例えば、LTE、NR各々のリソースプールが同一の時間/周波数リソースを含まないようにする必要がある。 FIG. 26 is a diagram for explaining an example of NR-SL and LTE-SL. As shown in FIG. 26, when resources are shared between NR-SL and LTE-SL, the NR-SL terminal 20 cannot detect the reservation signal of the LTE-SL terminal 20, It is assumed that transmissions collide using the same time and frequency resources. In order to avoid collisions, it was necessary for the network or regulator to appropriately set or predetermine settings so that LTE-SL and NR-SL use separate resources. For example, it is necessary to ensure that the resource pools of LTE and NR do not include the same time/frequency resources.
 しかしながら、世界各国の決定において、セルラV2Xに使用可能なリソースは豊富ではなく限られた割り当てのみである。したがって、LTE-SLとNR-SLとで完全に個別の時間/周波数リソースを使用しなければならないという制約は望ましくない。 However, in decisions made by countries around the world, the resources available for cellular V2X are not abundant and only limited allocations are available. Therefore, the constraint that LTE-SL and NR-SL must use completely separate time/frequency resources is undesirable.
 そこで、NR-SLの送受信機構を備えるUE(以下、UE-Bとする)は、他のUE(以下、UE-Aとする)から、LTE-SL UEのリソース予約に基づく情報を取得してもよい。なお、LTE-SL UEのリソース予約情報には、UE-Aが送信を行う予定のリソースが含まれてもよく、当該リソースは予約済みでのリソースに限定されてもよく、選択済みかつ予約未実施のリソースが含まれてもよい。 Therefore, a UE equipped with an NR-SL transmission/reception mechanism (hereinafter referred to as UE-B) acquires information based on the LTE-SL UE's resource reservation from another UE (hereinafter referred to as UE-A). Good too. Note that the resource reservation information of the LTE-SL UE may include the resources that the UE-A plans to transmit, and the resources may be limited to reserved resources, and the resources that are selected but not reserved. Implementation resources may also be included.
 図27は、本発明の実施の形態における情報共有の例である。ステップS701において、UE-Aは、LTE-SL UEのリソース予約に基づく情報をUE-Bに送信する。UE-Bは、NR-SLの信号を介して、UE-Aから当該情報を受信してもよい。 FIG. 27 is an example of information sharing in the embodiment of the present invention. In step S701, the UE-A transmits information based on the resource reservation of the LTE-SL UE to the UE-B. UE-B may receive the information from UE-A via the NR-SL signal.
 端末20は、以下A)-G)に示されるように、取得した情報に基づいて、NR-SLのリソース選択に係るリソース識別動作を行ってもよい。なお、端末20は、A)-I)のうち複数を組み合わせて実行してもよい。例えば、取得した情報は、LTE-SLにおける1又は複数のリソースで検出されたRSRPであってもよい。なお、LTE及びNRは、他の異なるRATに置換されてもよい。 The terminal 20 may perform a resource identification operation related to NR-SL resource selection based on the acquired information, as shown in A) to G) below. Note that the terminal 20 may perform a combination of A) to I). For example, the obtained information may be RSRP detected on one or more resources in LTE-SL. Note that LTE and NR may be replaced with other different RATs.
A)NR-SLにおけるリソース予約に基づくリソース除外を実行する直前又は直後に、取得した情報に基づいて端末20はリソース除外を実行してもよい。 A) Immediately before or after executing resource exclusion based on resource reservation in NR-SL, the terminal 20 may execute resource exclusion based on the acquired information.
 上記動作により、NR-SLのリソース予約と同様に、RSRPを考慮してLTE-SLのリソース除外を実行することができる。 With the above operation, it is possible to perform LTE-SL resource exclusion in consideration of RSRP, similar to NR-SL resource reservation.
B)NR-SLにおけるリソース予約に基づくリソース除外が実行され、使用可能なリソース候補の集合Sに十分な候補リソース量があると判定されRSRP閾値の変更が終了した後で、取得した情報に基づいて端末20はリソース除外を実行してもよい。 B) After resource exclusion based on resource reservation in NR-SL is executed, it is determined that there is a sufficient amount of candidate resources in the set of available resource candidates S A , and the change of the RSRP threshold is completed, the obtained information is Based on this, the terminal 20 may perform resource exclusion.
 上記動作により、LTE-SLのリソース予約によらず、NR-SLにおけるリソース予約に基づくリソース除外に使用するRSRP閾値を決定することで、過度なRSRP閾値の増加を避け、NR-SLのリソース予約との衝突増加を回避することができる。 Through the above operation, by determining the RSRP threshold used for resource exclusion based on the resource reservation in NR-SL, not based on the resource reservation in LTE-SL, an excessive increase in the RSRP threshold is avoided, and the resource reservation in NR-SL is Increased collisions can be avoided.
C)LTE-SLの予約に係る優先度又はPPPP(ProSe Per-Packet Priority)を示す値は、NR-SLの優先度を示す値と同一の値として扱われてもよいし、NR-SLの優先度を示す値との対応付けが定義されてもよいし、設定されてもよいし、予め設定されてもよい。 C) The value indicating the priority related to the LTE-SL reservation or PPP (ProSe Per-Packet Priority) may be treated as the same value as the value indicating the NR-SL priority, or may be treated as the same value as the value indicating the NR-SL priority. The association with the value indicating the priority may be defined, set, or set in advance.
 上記動作により、簡易な端末実装又は柔軟な設定を達成することができる。 With the above operations, it is possible to achieve simple terminal implementation or flexible settings.
D)LTE-SLのリソース予約に基づくリソース除外に係るRSRP閾値は、NR-SLのリソース除外に係るRSRP閾値と同一であってもよいし、異なる値が設定されてもいし予め設定されてもよい。 D) The RSRP threshold related to resource exclusion based on LTE-SL resource reservation may be the same as the RSRP threshold related to NR-SL resource exclusion, or may be set to a different value or may be set in advance. good.
 上記動作により、簡易な端末実装又は柔軟な設定を達成することができる。 With the above operations, it is possible to achieve simple terminal implementation or flexible settings.
E)図28は、本発明の実施の形態におけるリソース除外の例(1)を示す図である。図28に示されるように、LTE-SLにおいて予約されたリソースの少なくとも一部が、NR-SLの候補リソースの少なくとも一部とオーバラップする場合、リソース除外動作を実行してもよい。LTEとNRとでSCSが異なる場合にも適用されてもよく、例えば、LTE-SLがSCS=15kHzであってNR-SLが他のSCS(例えば30kHz)である場合、少なくとも一部のシンボル及び/又は少なくとも一部のPRBがオーバラップする場合、NR-SLにおける当該スロットと当該サブチャネルとを使用可能なリソース候補の集合Sから除外してもよい。また、NR-SLのリソースを区切る時間(例えばスロット)及び/又は周波数(例えばサブチャネル)とLTE-SLのリソースを区切る時間(例えばスロット)及び/又は周波数(例えばサブチャネル)とが揃っていない場合にE)は適用されてもよい。 E) FIG. 28 is a diagram showing an example (1) of resource exclusion in the embodiment of this invention. As shown in FIG. 28, if at least some of the resources reserved in LTE-SL overlap with at least some of the candidate resources in NR-SL, a resource exclusion operation may be performed. It may also be applied when the SCS is different between LTE and NR. For example, when LTE-SL has SCS=15kHz and NR-SL has another SCS (for example, 30kHz), at least some symbols and /or If at least some PRBs overlap, the slot and subchannel in NR-SL may be excluded from the set SA of usable resource candidates. Also, the times (e.g., slots) and/or frequencies (e.g., subchannels) that delimit NR-SL resources are not aligned with the times (e.g., slots) and/or frequencies (e.g., subchannels) that delimit LTE-SL resources. In case E) may be applied.
 上記動作により、LTE-SLとNR-SLとで時間周波数リソースに係る定義、設定又は予めの設定が異なる場合にも、リソース除外動作を実行することができる。 With the above operation, the resource exclusion operation can be performed even if the definition, setting, or pre-setting regarding time-frequency resources is different between LTE-SL and NR-SL.
F)図29は、本発明の実施の形態におけるリソース除外の例(2)を示す図である。図29に示されるように、LTE-SLにおいて予約されたリソースが、NR-SLのPSFCHのリソースと少なくとも一部オーバラップする場合、当該PSFCHに関連付けられるPSCCH/PSSCHリソースを使用可能なリソース候補の集合Sから除外してもよい。NR-SLの優先度は、送信データに係る優先度としてもよい。すなわち当該優先度はPSCCH/PSSCHリソースのオーバラップに係る除外と同一の方法で決定されてもよい。また、NR-SLの優先度を所定の優先度としてもよい。当該所定の優先度は、F)動作用に定義されるか設定されるか予め設定される優先度であってもよい。NR-SLのRSRP閾値は、PSCCH/PSSCHリソースのオーバラップに係る除外と同一の値であってもよい。また、NR-SLのRSRP閾値を所定の値としてもよい。当該所定の値は、F)動作用に定義されるか設定されるか予め設定される値であってもよい。 F) FIG. 29 is a diagram showing an example (2) of resource exclusion in the embodiment of this invention. As shown in FIG. 29, when the resources reserved in LTE-SL at least partially overlap with the PSFCH resources in NR-SL, the PSCCH/PSSCH resources associated with the PSFCH are used as available resource candidates. It may be excluded from the set SA . The priority of NR-SL may be the priority related to transmission data. That is, the priority may be determined in the same manner as the exclusion regarding overlap of PSCCH/PSSCH resources. Further, the priority of NR-SL may be set to a predetermined priority. The predetermined priority may be F) a defined, set or preset priority for operation. The NR-SL RSRP threshold may be the same value as the exclusion related to PSCCH/PSSCH resource overlap. Further, the RSRP threshold value of NR-SL may be set to a predetermined value. The predetermined value may be F) a value that is defined, set, or preset for operation.
 上記動作により、対応するPSFCH送受信がLTE-SLによって失敗し得るケースを回避することができる。 With the above operation, it is possible to avoid a case where the corresponding PSFCH transmission/reception may fail due to LTE-SL.
G)リソース選択タイミング又は上位レイヤからトリガされたタイミングから、所定の時間遡ったタイミングまでに取得された情報を端末20は使用してもよい。TSL proc,0(非特許文献3参照)、すなわちセンシングウィンドウの末尾から上記タイミングまでの時間に係るパラメータが適用されてもよい。また、T(非特許文献4参照)すなわち同時LTE-SL/NR-SL送信に係る情報の取得から実行までの時間に係るパラメータが適用されてもよい。また、G)動作向けに定義されたパラメータT′が適用されてもよい。 G) The terminal 20 may use information acquired by a predetermined time period from the resource selection timing or the timing triggered from the upper layer. T SL proc,0 (see Non-Patent Document 3), that is, a parameter related to the time from the end of the sensing window to the above timing may be applied. Further, T (see Non-Patent Document 4), that is, a parameter related to the time from acquisition of information related to simultaneous LTE-SL/NR-SL transmission to execution may be applied. Also, G) a parameter T' defined for operation may be applied.
 上記動作により、LTE-SLの送信に衝突しないようにNR-SL端末がリソース選択を実行することができる。 The above operation allows the NR-SL terminal to perform resource selection without colliding with LTE-SL transmission.
 また、端末20は、取得した他の端末20のリソース予約に係る情報に基づいて、NR-SLの再評価又はプリエンプションチェックに係る動作を実行してもよい。端末20は、上記A)-G)に示されるいずれの動作を実行してもよい。 Furthermore, the terminal 20 may perform operations related to NR-SL re-evaluation or preemption check based on the acquired information related to resource reservations of other terminals 20. The terminal 20 may perform any of the operations shown in A) to G) above.
 上記動作により、NR-SLのリソース選択後に、LTE-SLの予約が発生した場合、LTE-SLの送信に衝突しないようにNR-SL端末は動作することができる。 With the above operation, if an LTE-SL reservation occurs after NR-SL resource selection, the NR-SL terminal can operate so as not to collide with LTE-SL transmission.
 また、端末20は、他の端末20のリソース予約に係る情報に基づいて、gNB10に対して所定の情報を送信してもよい。例えば、以下a)-e)に示される動作を端末20は実行してもよい。なお、端末20は、a)-e)のうち複数を組み合わせて実行してもよい。なお、取得した情報とは、UE-Bから受信したLTE-SL UEのリソース予約に基づく情報であってもよい。 Furthermore, the terminal 20 may transmit predetermined information to the gNB 10 based on information related to resource reservations of other terminals 20. For example, the terminal 20 may perform the operations shown in a) to e) below. Note that the terminal 20 may perform a combination of a) to e). Note that the acquired information may be information based on the LTE-SL UE resource reservation received from UE-B.
a)NRリソースアロケーションモード1として動作を行っている場合、すなわちgNB10の指示に基づいてSL送信を行う動作において、端末20は取得した情報に基づいて所定の情報をgNB10に送信してもよい。 a) When operating in NR resource allocation mode 1, that is, when performing SL transmission based on instructions from gNB 10, terminal 20 may transmit predetermined information to gNB 10 based on the acquired information.
b)LTEリソースアロケーションモード3又は4として動作を行っている場合、すなわちeNB10の指示に基づいてSL送信を行う動作又は端末20が自律的にSL送信リソースを決定する動作において、端末20は取得した情報に基づいて所定の情報をgNB10に送信してもよい。 b) When operating in LTE resource allocation mode 3 or 4, that is, when performing SL transmission based on instructions from the eNB 10 or when the terminal 20 autonomously determines SL transmission resources, the terminal 20 acquires Predetermined information may be transmitted to gNB 10 based on the information.
c)端末20は、取得した情報をgNB10に報告してもよい。端末20は、取得した情報を、CSIとして報告してもよいし、上位レイヤ情報として報告してもよいし、PUCCH又はPUSCHのいずれで報告してもよい。 c) The terminal 20 may report the acquired information to the gNB 10. The terminal 20 may report the acquired information as CSI, upper layer information, or PUCCH or PUSCH.
d)端末20は、取得した情報に基づいてgNB10にHARQ-ACKを送信してもよい。例えば、端末20は、取得した情報に基づいて衝突判定を行い、衝突が起きたと判定した場合gNB10にNACKを送信してもよい。端末20は、取得した情報に基づいてgNB10に割り当てられたSLリソースが利用できないと判定した場合、衝突が起きたと判定してもよい。また、端末20は、取得した情報に基づいてgNB10に割り当てられたリソースに対するPSFCHリソースが利用できないと判定した場合、衝突が起きたと判定してもよい。上記判定は、上記A)-I)のいずれの動作に基づいて実行されてもよい。上記判定において、gNB10から割り当てられたSLリソースに対するLTE-SLの予約に係る優先度及び/又はRSRPが所定の条件を満たす場合に、上記の利用できないと判定されてもよい。上記判定において衝突したと判定されたとき、gNB10から割り当てられたSLリソースを使用したSL送信は実行されなくてもよい。 d) The terminal 20 may transmit HARQ-ACK to the gNB 10 based on the acquired information. For example, the terminal 20 may perform a collision determination based on the acquired information, and transmit a NACK to the gNB 10 when determining that a collision has occurred. If the terminal 20 determines that the SL resource allocated to the gNB 10 cannot be used based on the acquired information, the terminal 20 may determine that a collision has occurred. Moreover, when the terminal 20 determines that the PSFCH resource for the resource allocated to the gNB 10 is not available based on the acquired information, the terminal 20 may determine that a collision has occurred. The above determination may be performed based on any of the operations A) to I) above. In the above determination, if the priority and/or RSRP related to the LTE-SL reservation for the SL resource allocated from the gNB 10 satisfies a predetermined condition, it may be determined that the SL resource is not available. When it is determined that there is a collision in the above determination, SL transmission using the SL resources allocated from the gNB 10 may not be performed.
e)端末20は、取得した情報に基づいてgNB10にSR(Scheduling request)を送信してもよい。例えば、端末20は、取得した情報に基づいて衝突判定を行い、衝突が起きたと判定した場合gNB10にSRを送信してもよい。端末20は、取得した情報に基づいてgNB10に割り当てられたSLリソースが利用できないと判定した場合、衝突が起きたと判定してもよい。また、端末20は、取得した情報に基づいてgNB10に割り当てられたリソースに対するPSFCHリソースが利用できないと判定した場合、衝突が起きたと判定してもよい。上記判定は、上記A)-I)のいずれの動作に基づいて実行されてもよい。上記判定において、gNB10から割り当てられたSLリソースに対するLTE-SLの予約に係る優先度及び/又はRSRPが所定の条件を満たす場合に、上記の利用できないと判定されてもよい。上記判定において衝突したと判定されたとき、gNB10から割り当てられたSLリソースを使用したSL送信は実行されなくてもよい。上記d)においてHARQ-ACK送信用のPUCCHリソースがない場合、e)が適用されてもよい。 e) The terminal 20 may transmit an SR (Scheduling request) to the gNB 10 based on the acquired information. For example, the terminal 20 may perform a collision determination based on the acquired information, and transmit an SR to the gNB 10 when determining that a collision has occurred. If the terminal 20 determines that the SL resource allocated to the gNB 10 cannot be used based on the acquired information, the terminal 20 may determine that a collision has occurred. Moreover, when the terminal 20 determines that the PSFCH resource for the resource allocated to the gNB 10 is not available based on the acquired information, the terminal 20 may determine that a collision has occurred. The above determination may be performed based on any of the operations A) to I) above. In the above determination, if the priority and/or RSRP related to the LTE-SL reservation for the SL resource allocated from the gNB 10 satisfies a predetermined condition, it may be determined that the SL resource is not available. When it is determined that there is a collision in the above determination, SL transmission using the SL resources allocated from the gNB 10 may not be performed. If there are no PUCCH resources for HARQ-ACK transmission in d) above, e) may be applied.
 上記動作により、LTE-SLの予約情報、LTE-SLとNR-SLとの衝突情報をネットワークに通知し、衝突を回避するようなネットワーク及び/又はUE動作が期待できる。 Through the above operations, network and/or UE operations can be expected to notify the network of LTE-SL reservation information and collision information between LTE-SL and NR-SL and avoid collisions.
 また、端末20は、取得した他の端末20のリソース予約に係る情報に基づいて、NR-SLにおけるMACレイヤにおけるリソース選択又はリソース再選択を実行してもよい。 Furthermore, the terminal 20 may perform resource selection or resource reselection in the MAC layer in NR-SL based on the acquired information regarding resource reservations of other terminals 20.
 端末20は、MACレイヤにおいてPHYレイヤから取得したSからリソース選択又はリソース再選択を実行するとき、取得した情報に基づくリソースを除外した後、リソース選択又はリソース再選択を実行してもよい。 When performing resource selection or resource reselection from the SA acquired from the PHY layer in the MAC layer, the terminal 20 may perform resource selection or resource reselection after excluding resources based on the acquired information.
 例えば、PHYレイヤから取得されたSは、取得した情報を使用せずに決定されていてもよいし、当該SはNR-SLのみの場合と同様の動作で決定されていてもよいし、当該Sは上記A)-G)に示される動作を適用されなくてもよい。 For example, the SA acquired from the PHY layer may be determined without using the acquired information, or the SA may be determined using the same operation as in the case of only NR-SL. , the operations shown in A) to G) above may not be applied to the SA .
 例えば、PHYレイヤから取得されたSは、取得した情報を使用して決定されていてもよいし、当該Sは上記A)-G)に示される動作を適用されていてもよい。 For example, the S A obtained from the PHY layer may be determined using the obtained information, or the operations shown in A) to G) above may be applied to the S A.
 「UE-Aから取得した情報に基づくリソース」とは、以下1)-3)に示されるリソースのいずれであってもよい。 "Resources based on information acquired from UE-A" may be any of the resources shown in 1)-3) below.
1)上記G)に示されるようなLTE-SLで予約されたリソースの少なくとも一部とオーバラップしているリソース
2)上記H)に示されるようなLTE-SLで予約されたリソースの少なくとも一部とPSFCHがオーバラップしている場合に当該PSFCHに対応するリソース
3)上記G)に示されるようなリソース選択タイミング又は上位レイヤからトリガされたタイミングから、所定の時間遡ったタイミングまでに取得された情報に基づくリソース
4)UE-Aから取得した情報が、上記端末間協調方法2)における衝突に係る通知である場合、当該衝突に係る通知に対応する予約に係るリソース
1) Resources that overlap with at least some of the resources reserved in LTE-SL as shown in G) above 2) At least one of the resources reserved in LTE-SL as shown in H) above 3) If the resource corresponding to the PSFCH overlaps with the PSFCH, the resource corresponding to the PSFCH is acquired by a predetermined period of time from the resource selection timing shown in G) above or the timing triggered from the upper layer. 4) If the information acquired from UE-A is a notification related to a collision in the above-mentioned inter-terminal cooperation method 2), resources related to the reservation corresponding to the notification related to the collision.
 「UE-Aから取得した情報に基づくリソース」に該当するか否か(すなわち、選択対象から除外するリソースとするか否か)は、LTE-SLの予約に係る優先度(又はPPPP)を示す値及び/又はRSRPに基づいて決定されてもよい。優先度の詳細は、上記C)と同様に定義されてもよい。 Whether the resource corresponds to the “resource based on information acquired from UE-A” (that is, whether the resource is excluded from selection targets) indicates the priority (or PPP) related to LTE-SL reservation. The determination may be based on the value and/or RSRP. Details of the priority may be defined in the same manner as in C) above.
 例えば、送信するデータの優先度を示す値又は送信するデータに対応する閾値より、LTE-SLの予約に係る優先度を示す値が小さい場合(すなわち優先度が高い場合)、当該リソースを選択対象から除外してもよい。一方、送信するデータの優先度を示す値又は送信するデータに対応する閾値より、LTE-SLの予約に係る優先度を示す値が大きい場合(すなわち優先度が低い場合)、当該リソースを選択対象から除外しなくてもよい。 For example, if the value indicating the priority related to LTE-SL reservation is smaller than the value indicating the priority of the data to be transmitted or the threshold value corresponding to the data to be transmitted (in other words, if the priority is high), the resource is selected. may be excluded from On the other hand, if the value indicating the priority related to LTE-SL reservation is larger than the value indicating the priority of the data to be transmitted or the threshold value corresponding to the data to be transmitted (in other words, the priority is low), the resource is selected. It does not have to be excluded from
 例えば、送信するデータの優先度を示す値及び/又はLTE-SLの予約に係る優先度を示す値、に対応するRSRPの閾値よりも、LTE-SLの予約に係るRSRPが大きい場合、当該リソースを選択対象から除外してもよい。一方、送信するデータの優先度を示す値及び/又はLTE-SLの予約に係る優先度を示す値、に対応するRSRPの閾値よりも、LTE-SLの予約に係るRSRPが小さい場合、当該リソースを選択対象から除外しなくてもよい。RSRPの閾値の詳細は、上記D)と同様に定義されてもよい。 For example, if the RSRP related to LTE-SL reservation is larger than the RSRP threshold corresponding to the value indicating the priority of data to be transmitted and/or the value indicating the priority related to LTE-SL reservation, the relevant resource may be excluded from selection. On the other hand, if the RSRP related to LTE-SL reservation is smaller than the RSRP threshold corresponding to the value indicating the priority of data to be transmitted and/or the value indicating the priority related to LTE-SL reservation, the resource does not have to be excluded from selection. Details of the RSRP threshold may be defined in the same manner as in D) above.
 また、PHYレイヤから取得したSからリソース選択を実行するとき、UE-Aから取得した情報に基づくリソースを除外した後、リソース選択を実行する動作を、再評価又はプリエンプションチェックに係る動作に適用してもよい。既に選択されたリソース又は既に予約されたリソース、すなわち再評価又はプリエンプションチェックの対象リソースが、上記「UE-Aから取得した情報に基づくリソース」である場合、PHYレイヤに再評価又はプリエンプションチェックを要求することなく、再評価又はプリエンプションであると判定し、リソース再選択を実行してもよい。 Additionally, when executing resource selection from S A acquired from the PHY layer, the operation of executing resource selection after excluding resources based on the information acquired from UE-A is applied to the operation related to re-evaluation or preemption check. You may. If the already selected resource or already reserved resource, that is, the target resource for re-evaluation or preemption check, is the above-mentioned "resource based on information obtained from UE-A", request re-evaluation or preemption check to the PHY layer. Instead, it may be determined that re-evaluation or preemption is required, and resource reselection may be performed.
 上述のように動作することで、PHY動作を従来と同一にすることができ、PHY構成の簡易化が実現できる。また、LTE-SLの送信に衝突しないようにNR-SL端末がリソース選択を実行することができる。 By operating as described above, the PHY operation can be the same as the conventional one, and the PHY configuration can be simplified. Further, the NR-SL terminal can perform resource selection so as not to collide with LTE-SL transmission.
 また、端末20は、PHYレイヤから取得したSからリソース選択又はリソース再選択を実行するとき、UE-Aから取得した情報に基づくリソース以外のリソースを優先的に選択してもよい。 Furthermore, when executing resource selection or resource reselection from the SA acquired from the PHY layer, the terminal 20 may preferentially select resources other than the resources based on the information acquired from the UE-A.
 例えば、端末20は、PHYレイヤから取得したSからリソース選択を実行するとき、UE-Aから取得した情報に基づくリソース以外のリソースを優先的に選択する場合、上述のようにPHYレイヤから取得したSからリソース選択を実行するとき、UE-Aから取得した情報に基づくリソースを除外した後、リソース選択を実行してもよい。なお、リソースを除外する動作は、リソースの優先度を下げる動作に置換されてもよい。上記のように動作することで、PHY動作を従来と同一にすることができ、PHY構成の簡易化を実現することができる。 For example, when executing resource selection from the S A acquired from the PHY layer, if the terminal 20 preferentially selects a resource other than the resource based on the information acquired from the UE-A, the terminal 20 selects the resource from the S A acquired from the PHY layer as described above. When performing resource selection from the acquired SA , the resource selection may be performed after excluding resources based on the information obtained from UE-A. Note that the operation of excluding a resource may be replaced with an operation of lowering the priority of the resource. By operating as described above, the PHY operation can be made the same as the conventional one, and the PHY configuration can be simplified.
 例えば、PHYレイヤは、UE-Aから取得した情報を使用せずに決定したSA1と、UE-Aから取得した情報を使用して決定したSA2の両方をMACレイヤに報告してもよい。MACレイヤは、SA2から優先的にリソースを選択し、SA2からリソースを選択できない場合にSA1からリソースを選択してもよい。上記のように動作することで、UE-Aから取得した情報を使用するとNR-SLの送信を実行することが困難となる場合に、例外処理を適用することができる。UE-Aから取得した情報を使用するとNR-SLの送信を実行することが困難となる場合に、NR-SLの送信を優先することができる。 For example, the PHY layer may report to the MAC layer both the S A1 determined without using the information obtained from UE-A and the S A2 determined using the information obtained from UE-A. . The MAC layer may preferentially select resources from S A2 , and select resources from S A1 when resources cannot be selected from S A2 . By operating as described above, exception handling can be applied when it becomes difficult to execute NR-SL transmission using the information acquired from UE-A. NR-SL transmission can be prioritized when it would be difficult to perform NR-SL transmission using the information obtained from UE-A.
 また、PHYレイヤは、所定の条件が満たされる場合、UE-Aから取得した情報を使用してSを決定しMACレイヤに報告してもよいし、所定の条件が満たされない場合、UE-Aから取得した情報を使用しないでSを決定しMACレイヤに報告してもよい。MACレイヤはPHYレイヤから報告されたSからリソースを選択してもよい。 Furthermore, if a predetermined condition is met, the PHY layer may determine the S A using the information obtained from the UE-A and report it to the MAC layer, or if the predetermined condition is not met, the PHY layer may decide the S A using the information obtained from the UE-A and report it to the MAC layer. SA may be determined without using the information obtained from A and reported to the MAC layer. The MAC layer may select resources from the SA reported from the PHY layer.
 当該所定の条件は、リソース割り当て動作におけるリソース除外のためのRSRP閾値が所定値以下であることであってもよい。当該RSRP閾値は、Sを決定する手順において残存するリソース候補の数が所定値未満であった場合に3dB上昇させる閾値であってもよい(非特許文献3参照)。すなわち、当該RSRP閾値が所定値以下である場合、UE-Aから取得した情報を使用してリソース識別を行ってもよいし、当該RSRP閾値が所定値を超える場合、UE-Aから取得した情報を使用せずにリソース識別を行ってもよい。また、当該RSRP閾値は、Sを決定する手順においてMACレイヤに報告するSが決定された時点のRSRP閾値であってもよい。 The predetermined condition may be that an RSRP threshold for resource exclusion in a resource allocation operation is less than or equal to a predetermined value. The RSRP threshold may be a threshold that is increased by 3 dB when the number of remaining resource candidates is less than a predetermined value in the procedure for determining SA (see Non-Patent Document 3). That is, if the RSRP threshold is less than or equal to a predetermined value, resource identification may be performed using the information obtained from UE-A, or if the RSRP threshold exceeds a predetermined value, information obtained from UE-A may be used. Resource identification may be performed without using . Further, the RSRP threshold may be the RSRP threshold at the time when the SA to be reported to the MAC layer is determined in the procedure for determining the SA .
 上記のように動作することで、UE-Aから取得した情報を使用するとNR-SLの送信を実行することが困難となる場合に、例外処理を適用することができる。UE-Aから取得した情報を使用するとNR-SLの送信を実行することが困難となる場合に、NR-SLの送信を優先することができる。 By operating as described above, exception handling can be applied when it becomes difficult to perform NR-SL transmission using the information acquired from UE-A. NR-SL transmission can be prioritized when it would be difficult to perform NR-SL transmission using the information obtained from UE-A.
 上述のように動作することで、LTE-SLの送信に衝突しないようにNR-SL端末がリソース選択をすることができる。 By operating as described above, the NR-SL terminal can select resources so as not to collide with LTE-SL transmission.
 また、LTE-SLのリソース予約に基づく情報の送受信は、上述した端末間協調方法1)の動作に基づいて実行されてもよい。 Furthermore, the transmission and reception of information based on LTE-SL resource reservation may be performed based on the operation of the inter-terminal cooperation method 1) described above.
 UE-Bは、UE-Aに対してLTE-SLの予約に基づく情報の送信を要求する信号を送信してもよい。端末間協調方法1)における要求信号に基づく信号であってもよい。当該要求する信号において、LTE-SLの予約に基づく情報が要求されるか否かが通知されてもよい。 UE-B may transmit a signal requesting UE-A to transmit information based on the LTE-SL reservation. The signal may be based on the request signal in the inter-terminal cooperation method 1). In the request signal, it may be notified whether information based on LTE-SL reservation is requested.
 UE-Aは、UE-Bに対して、LTE-SLの予約情報を送信してもよい。 UE-A may transmit LTE-SL reservation information to UE-B.
 UE-AはLTE-SLの予約情報に基づいて、推奨される(preferred)リソースセット及び/又は推奨されない(non-preferred)リソースセットを決定し、UE-Bに対して当該リソースセットを通知してもよい。 UE-A determines a preferred resource set and/or a non-preferred resource set based on the LTE-SL reservation information, and notifies UE-B of the resource set. You can.
 UE-Aは、端末間協調方法1)のリソース決定動作において、LTE-SL予約情報に対応するリソースを推奨されるリソースから除外してもよいし、推奨されないリソースに含めてもよい。端末間協調方法1)のリソース決定動作において、LTE-SL予約情報に基づく動作が実行されるか否かは、設定又は事前設定で決定されてもよいし、UE-A及び/又はUE-BのUE能力に基づいて決定されてもよいし、UE-Bの要求に基づいて決定されてもよいし、UE-A実装により決定してもよい。 In the resource determination operation of the inter-terminal cooperation method 1), the UE-A may exclude the resource corresponding to the LTE-SL reservation information from the recommended resources, or may include it among the non-recommended resources. In the resource determination operation of the inter-terminal cooperation method 1), whether or not the operation based on the LTE-SL reservation information is executed may be determined by configuration or pre-configuration, or may be determined by UE-A and/or UE-B. It may be determined based on the UE capabilities of the UE-B, it may be determined based on the request of the UE-B, or it may be determined based on the UE-A implementation.
 上述の端末間協調方法1)によるLTE-SLの予約情報に係る通知を送受信する動作は、上述した実施例のいずれに適用されてもよい。 The operation of transmitting and receiving notifications related to LTE-SL reservation information by the above-described inter-terminal cooperation method 1) may be applied to any of the embodiments described above.
 上述の動作により、既存の仕組みを再利用してLTE-SLの予約を考慮した動作を実行できる。すなわちUE構成の簡易化を図ることができる。 Through the above-described operations, it is possible to reuse the existing mechanism and perform operations that take LTE-SL reservations into consideration. In other words, the UE configuration can be simplified.
 また、LTE-SLのリソース予約に基づく情報の送受信は、上述した端末間協調方法2)の動作に基づいて実行されてもよい。 Furthermore, the transmission and reception of information based on LTE-SL resource reservation may be performed based on the operation of the inter-terminal cooperation method 2) described above.
 UE-Aは、LTE-SLの予約に基づいて、UE-Bの予約リソースに係るリソースの衝突を検出し、UE-Bに対して衝突に係る通知を送信してもよい。 Based on the LTE-SL reservation, the UE-A may detect a resource collision regarding the reserved resources of the UE-B, and may transmit a notification regarding the collision to the UE-B.
 UE-Aは、あるNR-UEからのリソース予約信号と、当該リソース予約信号により予約されるリソースと時間領域又は時間領域かつ周波数領域でオーバラップするリソースを予約するLTE-SLの信号を受信した場合、当該NR-UEを衝突に係る通知を送信するUE-Bに決定してもよい。当該リソース予約信号及び/又はLTE-SLの優先度によらず、UE-Aは当該NR-UEをUE-Bに決定してもよい。当該NR-UEが端末間協調方法2)のPSFCH受信をサポートする場合すなわち端末間協調方法2)のUE-Bになることをサポートする場合に限定して、UE-Aは当該NR-UEをUE-Bに決定してもよい。 UE-A received a resource reservation signal from a certain NR-UE and an LTE-SL signal for reserving a resource that overlaps in the time domain or in the time domain and frequency domain with the resource reserved by the resource reservation signal. In this case, the NR-UE may be determined as the UE-B that sends the notification regarding the collision. Regardless of the priority of the resource reservation signal and/or LTE-SL, the UE-A may determine the NR-UE to be the UE-B. If the NR-UE supports PSFCH reception in the terminal cooperation method 2), UE-A only supports becoming the UE-B in the terminal cooperation method 2). It may be determined to be UE-B.
 UE-Aは、UE-Bからのリソース予約信号と、当該リソース予約信号により予約されるリソースと時間領域又は時間領域かつ周波数領域でオーバラップするリソースを予約するLTE-SLの信号を受信した場合、当該リソース予約信号及び当該LTE-SLの信号のRSRPと、優先度と、設定又は事前設定された閾値との少なくとも一つに基づいてリソース衝突を検出したと判定してもよい。 When UE-A receives a resource reservation signal from UE-B and an LTE-SL signal that reserves a resource that overlaps in the time domain or in the time domain and frequency domain with the resource reserved by the resource reservation signal, , it may be determined that a resource conflict has been detected based on at least one of the RSRP of the resource reservation signal and the LTE-SL signal, the priority, and a set or preset threshold.
 リソース衝突検出の条件は、NR-SLのリソース予約間(すなわちイントラRAT)におけるオーバラップと、NR-SLのリソース予約とLTE-SLのリソース予約の間におけるオーバラップとで、同一であってもよいし異なってもよい。同一である場合UE構成を簡易化することができる。異なる場合NR-SLのリソース予約に対しLTE-SLの予約をどの程度優先するかを柔軟に設定することができる。 The conditions for resource collision detection are the overlap between NR-SL resource reservations (that is, intra-RAT) and the overlap between NR-SL resource reservations and LTE-SL resource reservations, even if they are the same. It's okay and it can be different. If they are the same, the UE configuration can be simplified. If the resource reservations are different, it is possible to flexibly set how much priority is given to LTE-SL reservations over NR-SL resource reservations.
 NR-SLのリソース予約信号とLTE-SLのリソース予約信号のリソース衝突を検出する上記設定又は事前設定された閾値は、同一であってもよいし異なってもよい。同一である場合UE構成を簡易化することができる。異なる場合NR-SLのリソース予約に対しLTE-SLの予約をどの程度優先するかを柔軟に設定することができる。 The above-described or preset thresholds for detecting resource collisions between the NR-SL resource reservation signal and the LTE-SL resource reservation signal may be the same or different. If they are the same, the UE configuration can be simplified. If the resource reservations are different, it is possible to flexibly set how much priority is given to LTE-SL reservations over NR-SL resource reservations.
 衝突に係る通知の送信に使用されるPSFCHリソース(例えばPSFCH機会、PRB、サイクリックシフト)は、NR-SLのリソース予約間(すなわちイントラRAT)におけるオーバラップと、NR-SLのリソース予約とLTE-SLのリソース予約の間におけるオーバラップとで、同一であってもよいし異なってもよい。同一である場合UE構成を簡易化することができる。異なる場合LTE-SLの予約に基づく情報であるか否かをUE-Bに通知することができる。 The PSFCH resources (e.g., PSFCH opportunities, PRBs, cyclic shifts) used for sending collision notifications are based on the overlap between NR-SL resource reservations (i.e., intra-RAT) and the overlap between NR-SL resource reservations and LTE. - The overlap between the resource reservations of the SLs, which may be the same or different. If they are the same, the UE configuration can be simplified. If the information is different, the UE-B can be notified whether the information is based on LTE-SL reservations or not.
 端末間協調方法2)の動作において、LTE-SLの予約情報に基づく動作が実行されるか否かは、設定又は事前設定により決定されてもよいし、UE-A及び/又はUE-BのUE能力に基づいて決定されてもよいし、UE-A実装により決定されてもよい。 In the operation of the inter-terminal cooperation method 2), whether or not the operation based on the LTE-SL reservation information is executed may be determined by the settings or advance settings, or may be determined by the settings of the UE-A and/or the UE-B. It may be determined based on the UE capabilities or may be determined by the UE-A implementation.
 上述の端末間協調方法2)によるLTE-SLの予約情報に基づく衝突に係る通知を送受信する動作は、上述した実施例のいずれに適用されてもよい。 The operation of transmitting and receiving a notification regarding a collision based on LTE-SL reservation information by the above-described inter-terminal cooperation method 2) may be applied to any of the embodiments described above.
 上述の動作により、既存の仕組みを再利用してLTE-SLの予約を考慮した動作を実行することができ、UE構成を簡易化することができる。 Through the above-described operations, it is possible to reuse the existing mechanism to perform operations that take LTE-SL reservations into consideration, and it is possible to simplify the UE configuration.
 上述の実施例は、LTE-SLとNR-SLの共存又は協調動作に限定されず、複数のRATの共存又は協調動作に適用されてもよい。 The above embodiments are not limited to the coexistence or cooperative operation of LTE-SL and NR-SL, but may be applied to the coexistence or cooperative operation of multiple RATs.
 上述の実施例では、NR-SL側でLTE-SL側の予約を考慮する動作を例示したが、LTE-SL側でNR-SL側の予約を考慮する逆方向の動作が実行されてもよいし、双方向で予約を考慮する動作が実行されてもよい。また、上述の実施例において、UE-Bは、UE-Aから受信した情報がLTE-SLの予約に基づいて決定された情報か否かを把握して動作を実行してもよく、把握せずに動作を実行してもよい。UE-Aは、LTE-SLの予約に基づいて決定した情報か否かをUE-Bに通知してもよい。 In the above-described embodiment, the operation in which the NR-SL side considers the reservation on the LTE-SL side is illustrated, but the operation in the opposite direction may be performed on the LTE-SL side in which the reservation on the NR-SL side is considered. However, operations may be performed to consider reservations in both directions. Furthermore, in the above-described embodiment, the UE-B may perform an operation by understanding whether the information received from the UE-A is information determined based on the LTE-SL reservation. The action may be performed without any action. UE-A may notify UE-B whether the information is determined based on the LTE-SL reservation.
 上述の実施例は、V2X端末に限定されず、D2D通信を行う端末に適用されてもよい。 The above embodiments are not limited to V2X terminals, but may be applied to terminals that perform D2D communication.
 上述の実施例に係る動作は、特定のリソースプールのみで実行されるとしてもよい。例えば、リリース17以降の端末20が使用可能なリソースプールでのみ実行されるとしてもよい。 The operations according to the embodiments described above may be performed only in a specific resource pool. For example, it may be executed only in resource pools in which terminals 20 of release 17 or later can be used.
 上述の実施例により、端末20は、LTE-SLにおけるリソース予約情報を取得し、NR-SLにおけるリソース識別に適用することで、リソース選択の信頼性を向上させ、LTE-SLとNR-SLとでリソースを共有することができる。 According to the above-described embodiment, the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource identification in NR-SL, thereby improving the reliability of resource selection and improving the reliability of resource selection between LTE-SL and NR-SL. resources can be shared.
 すなわち、異なるRAT(Radio Access Technology)を使用する端末間直接通信間でリソースを共有することができる。 That is, resources can be shared between direct communication between terminals that use different RATs (Radio Access Technologies).
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局10及び端末20の機能構成例を説明する。基地局10及び端末20は上述した実施例を実施する機能を含む。ただし、基地局10及び端末20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
(Device configuration)
Next, an example of the functional configuration of the base station 10 and terminal 20 that execute the processes and operations described above will be described. Base station 10 and terminal 20 include functionality to implement the embodiments described above. However, the base station 10 and the terminal 20 may each have only some of the functions in the embodiment.
 <基地局10>
 図30は、基地局10の機能構成の一例を示す図である。図30に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図30に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Base station 10>
FIG. 30 is a diagram showing an example of the functional configuration of the base station 10. As shown in FIG. As shown in FIG. 30, base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140. The functional configuration shown in FIG. 30 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DL参照信号等を送信する機能を有する。 The transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly. The receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals. Further, the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signal, DL reference signal, etc. to the terminal 20.
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、D2D通信の設定に係る情報等である。 The setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary. The content of the setting information is, for example, information related to the setting of D2D communication.
 制御部140は、実施例において説明したように、端末20がD2D通信を行うための設定に係る処理を行う。また、制御部140は、D2D通信及びDL通信のスケジューリングを送信部110を介して端末20に送信する。また、制御部140は、D2D通信及びDL通信のHARQ応答に係る情報を受信部120を介して端末20から受信する。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。 As described in the embodiment, the control unit 140 performs processing related to settings for the terminal 20 to perform D2D communication. Further, the control unit 140 transmits the scheduling of D2D communication and DL communication to the terminal 20 via the transmitting unit 110. Further, the control unit 140 receives information related to HARQ responses for D2D communication and DL communication from the terminal 20 via the reception unit 120. A functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
 <端末20>
 図31は、端末20の機能構成の一例を示す図である。図31に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図31に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<Terminal 20>
FIG. 31 is a diagram showing an example of the functional configuration of the terminal 20. As shown in FIG. 31, the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240. The functional configuration shown in FIG. 31 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号又は参照信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他の端末20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部220は、他の端末20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。 The transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal. The receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals, reference signals, etc. transmitted from the base station 10. For example, the transmitter 210 transmits a PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), PSBCH (Physical Sidelink Broadcast Channel) to another terminal 20 as D2D communication. The receiving unit 220 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from other terminals 20 .
 設定部230は、受信部220により基地局10又は端末20から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、D2D通信の設定に係る情報等である。 The setting unit 230 stores various setting information received from the base station 10 or the terminal 20 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary. The setting unit 230 also stores setting information that is set in advance. The content of the setting information is, for example, information related to the setting of D2D communication.
 制御部240は、実施例において説明したように、他の端末20との間のRRC接続を確立するD2D通信を制御する。また、制御部240は、省電力動作に係る処理を行う。また、制御部240は、D2D通信及びDL通信のHARQに係る処理を行う。また、制御部240は、基地局10からスケジューリングされた他の端末20へのD2D通信及びDL通信のHARQ応答に係る情報を基地局10に送信する。また、制御部240は、他の端末20にD2D通信のスケジューリングを行ってもよい。また、制御部240は、センシングの結果に基づいてD2D通信に使用するリソースをリソース選択ウィンドウから自律的に選択してもよいし、再評価又はプリエンプションを実行してもよい。また、制御部240は、D2D通信の送受信における省電力に係る処理を行う。また、制御部240は、D2D通信における端末間協調に係る処理を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。 As described in the embodiment, the control unit 240 controls D2D communication to establish an RRC connection with another terminal 20. Further, the control unit 240 performs processing related to power saving operation. Further, the control unit 240 performs processing related to HARQ for D2D communication and DL communication. Further, the control unit 240 transmits to the base station 10 information related to HARQ responses for D2D communication and DL communication scheduled from the base station 10 to other terminals 20. Further, the control unit 240 may schedule D2D communication for other terminals 20. Further, the control unit 240 may autonomously select a resource to be used for D2D communication from the resource selection window based on the sensing result, or may perform re-evaluation or preemption. Further, the control unit 240 performs processing related to power saving in transmission and reception of D2D communication. Further, the control unit 240 performs processing related to cooperation between terminals in D2D communication. A functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220.
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図30及び図31)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagrams (FIGS. 30 and 31) used to explain the above embodiments show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Furthermore, the method for realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices. The functional block may be realized by combining software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't. For example, a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施の形態における基地局10、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図32は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station 10, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 32 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure. The base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 Note that in the following description, the word "apparatus" can be read as a circuit, a device, a unit, etc. The hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system to control the entire computer. The processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, the above-described control unit 140, control unit 240, etc. may be implemented by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図30に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図31に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Furthermore, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 140 of the base station 10 shown in FIG. 30 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Further, for example, the control unit 240 of the terminal 20 shown in FIG. 31 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001. Although the various processes described above have been described as being executed by one processor 1001, they may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。 The storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured. The storage device 1002 may be called a register, cache, main memory, or the like. The storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc. The above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of. For example, a transmitting/receiving antenna, an amplifier section, a transmitting/receiving section, a transmission line interface, etc. may be realized by the communication device 1004. The transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 The base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). A part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented using at least one of these hardwares.
 図33に車両2001の構成例を示す。図33に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。 FIG. 33 shows an example of the configuration of the vehicle 2001. As shown in FIG. 33, the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013. Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。 The drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor. The steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。 The electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010. The electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。 Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。情報サービス部2012は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service department 2012 controls various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide (output) various information such as driving information, traffic information, and entertainment information, and these devices. It is composed of one or more ECUs. The information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like. The information service department 2012 may include an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, a touch panel, etc.) that accepts input from the outside, and an output device that performs output to the outside (for example, display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden. The system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。 Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port. For example, the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。 The communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication. The communication module 2013 may be located either inside or outside the electronic control unit 2010. The external device may be, for example, a base station, a mobile station, or the like.
 通信モジュール2013は、電子制御部2010に入力された上述の各種センサ2021-2028からの信号、当該信号に基づいて得られる情報、及び情報サービス部2012を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部2010、各種センサ2021-2028、情報サービス部2012などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール2013によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 2013 receives signals from the various sensors 2021 to 2028 described above that are input to the electronic control unit 2010, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 2012. At least one of the information based on the information may be transmitted to an external device via wireless communication. The electronic control unit 2010, various sensors 2021-2028, information service unit 2012, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by the communication module 2013 may include information based on the above input.
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。情報サービス部2012は、情報を出力する(例えば、通信モジュール2013によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。 The communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001. The information service unit 2012 is an output unit that outputs information (for example, outputs information to devices such as a display and a speaker based on the PDSCH (or data/information decoded from the PDSCH) received by the communication module 2013). may be called. Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、第1のRAT(Radio Access Technology)において送受信を実行する通信部と、前記第1のRATにおける通信を制御する制御部とを有し、前記通信部は、前記第1のRATにおけるリソース予約と、第2のRATにおけるリソース予約とが少なくとも時間領域で衝突することを示す情報を他の端末から受信し、前記制御部は、物理レイヤにおける、前記第1のRATにおける使用可能なリソースセットの決定動作、及び、MAC(Medium Access Control)レイヤにおける、前記リソースセットからのリソース選択動作の少なくとも一方を、前記衝突することを示す情報に基づいて実行し、前記通信部は、前記リソース選択動作により選択されたリソースを使用して他の端末への送信を実行する端末が提供される。
(Summary of embodiments)
As described above, according to the embodiment of the present invention, a first RAT (Radio Access Technology) includes a communication unit that executes transmission and reception, and a control unit that controls communication in the first RAT. The communication unit receives information from another terminal indicating that the resource reservation in the first RAT and the resource reservation in the second RAT conflict at least in the time domain, and the control unit At least one of the determination operation of the usable resource set in the first RAT layer and the resource selection operation from the resource set in the MAC (Medium Access Control) layer is performed based on the information indicating the conflict. A terminal is provided in which the communication unit performs transmission to another terminal using the resource selected by the resource selection operation.
 上記の構成により、端末20は、LTE-SLにおけるリソース予約情報を取得し、NR-SLにおけるリソース識別に適用することで、リソース選択の信頼性を向上させ、LTE-SLとNR-SLとでリソースを共有することができる。すなわち、異なるRAT(Radio Access Technology)を使用する端末間直接通信間でリソースを共有することができる。 With the above configuration, the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource identification in NR-SL, thereby improving the reliability of resource selection and improving the reliability of resource selection between LTE-SL and NR-SL. Resources can be shared. That is, resources can be shared between direct communication between terminals using different RATs (Radio Access Technologies).
 前記制御部は、MACレイヤにおいて、前記リソースセットから前記衝突することを示す情報に基づいてリソースの除外を実行してもよい。当該構成により、端末20は、LTE-SLにおけるリソース予約情報を取得し、NR-SLにおけるリソース除外に適用することで、リソース選択の信頼性を向上させ、LTE-SLとNR-SLとでリソースを共有することができる。 The control unit may exclude resources from the resource set based on the information indicating the collision in the MAC layer. With this configuration, the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource exclusion in NR-SL, thereby improving the reliability of resource selection and reserving resources in LTE-SL and NR-SL. can be shared.
 前記通信部は、前記衝突することを示す情報を基地局に報告してもよい。当該構成により、端末20は、LTE-SLにおけるリソース予約情報を取得し、NR-SLにおけるリソース除外に適用することで、リソース選択の信頼性を向上させ、LTE-SLとNR-SLとでリソースを共有することができる。 The communication unit may report information indicating the collision to the base station. With this configuration, the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource exclusion in NR-SL, thereby improving the reliability of resource selection and reserving resources in LTE-SL and NR-SL. can be shared.
 前記通信部は、前記衝突することを示す情報を要求する信号を前記他の端末に送信してもよい。当該構成により、端末20は、LTE-SLにおけるリソース予約情報を取得し、NR-SLにおけるリソース除外に適用することで、リソース選択の信頼性を向上させ、LTE-SLとNR-SLとでリソースを共有することができる。 The communication unit may transmit a signal requesting information indicating the collision to the other terminal. With this configuration, the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource exclusion in NR-SL, thereby improving the reliability of resource selection and reserving resources in LTE-SL and NR-SL. can be shared.
 前記制御部は、前記衝突することを示す情報を受信するリソースと、前記第1のRATにおけるリソース衝突に係る情報を受信するリソースとが、異なることを想定してもよい。当該構成により、端末20は、LTE-SLにおけるリソース予約情報を取得し、NR-SLにおけるリソース除外に適用することで、リソース選択の信頼性を向上させ、LTE-SLとNR-SLとでリソースを共有することができる。 The control unit may assume that the resource that receives the information indicating the collision is different from the resource that receives the information related to the resource collision in the first RAT. With this configuration, the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource exclusion in NR-SL, thereby improving the reliability of resource selection and reserving resources in LTE-SL and NR-SL. can be shared.
 また、本発明の実施の形態によれば、第1のRAT(Radio Access Technology)において送受信を実行する通信手順と、前記第1のRATにおける通信を制御する制御手順と、前記第1のRATにおけるリソース予約と、第2のRATにおけるリソース予約とが少なくとも時間領域で衝突することを示す情報を他の端末から受信する手順と、物理レイヤにおける、前記第1のRATにおける使用可能なリソースセットの決定動作、及び、MAC(Medium Access Control)レイヤにおける、前記リソースセットからのリソース選択動作の少なくとも一方を、前記衝突することを示す情報に基づいて実行する手順と、前記リソース選択動作により選択されたリソースを使用して他の端末への送信を実行する手順とを端末が実行する通信方法が提供される。 Further, according to an embodiment of the present invention, a communication procedure for performing transmission and reception in a first RAT (Radio Access Technology), a control procedure for controlling communication in the first RAT, and a A procedure for receiving information from another terminal indicating that a resource reservation and a resource reservation in a second RAT collide at least in the time domain; and determining a usable resource set in the first RAT in a physical layer. and a procedure for executing at least one of a resource selection operation from the resource set in a MAC (Medium Access Control) layer based on the information indicating the conflict, and a resource selected by the resource selection operation. A communication method is provided in which a terminal performs a procedure for performing transmission to another terminal using a method.
 上記の構成により、端末20は、LTE-SLにおけるリソース予約情報を取得し、NR-SLにおけるリソース識別に適用することで、リソース選択の信頼性を向上させ、LTE-SLとNR-SLとでリソースを共有することができる。すなわち、異なるRAT(Radio Access Technology)を使用する端末間直接通信間でリソースを共有することができる。 With the above configuration, the terminal 20 acquires resource reservation information in LTE-SL and applies it to resource identification in NR-SL, thereby improving the reliability of resource selection and improving the reliability of resource selection between LTE-SL and NR-SL. Resources can be shared. That is, resources can be shared between direct communication between terminals using different RATs (Radio Access Technologies).
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplementary information on the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art will understand various modifications, modifications, alternatives, replacements, etc. Probably. Although the invention has been explained using specific numerical examples to facilitate understanding of the invention, unless otherwise specified, these numerical values are merely examples, and any appropriate values may be used. The classification of items in the above explanation is not essential to the present invention, and matters described in two or more items may be used in combination as necessary, and matters described in one item may be used in another item. may be applied to the matters described in (unless inconsistent). The boundaries of functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical components. The operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components. Regarding the processing procedures described in the embodiments, the order of processing may be changed as long as there is no contradiction. Although the base station 10 and the terminal 20 have been described using functional block diagrams for convenience of process description, such devices may be implemented in hardware, software, or a combination thereof. Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。 Furthermore, the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods. For example, the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Further, RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。 Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these. The present invention may be applied to at least one of the next generation systems. Furthermore, a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in this specification may be changed as long as there is no contradiction. For example, the methods described in this disclosure use an example order to present elements of the various steps and are not limited to the particular order presented.
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In this specification, specific operations performed by the base station 10 may be performed by its upper node in some cases. In a network consisting of one or more network nodes including a base station 10, various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to). Although the case where there is one network node other than the base station 10 is illustrated above, the other network node may be a combination of multiple other network nodes (for example, MME and S-GW). .
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 The information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。 The input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Additionally, software, instructions, information, etc. may be sent and received via a transmission medium. For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc., which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, at least one of the channel and the symbol may be a signal. Also, the signal may be a message. Further, a component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 As used in this disclosure, the terms "system" and "network" are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed. For example, radio resources may be indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters mentioned above are not restrictive in any respect. Furthermore, the mathematical formulas etc. using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (e.g. PUCCH, PDCCH, etc.) and information elements may be identified by any suitable designation, the various names assigned to these various channels and information elements are in no way exclusive designations. isn't it.
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)," "wireless base station," "base station," "fixed station," "NodeB," "eNodeB (eNB)," and "gNodeB ( gNB)”, “access point”, “transmission point”, “reception point”, “transmission/reception point”, “cell”, “sector”, Terms such as "cell group," "carrier," "component carrier," and the like may be used interchangeably. A base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head). The term "cell" or "sector" refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
 本開示において、基地局が端末に情報を送信することは、基地局が端末に対して、情報に基づく制御・動作を指示することと読み替えられてもよい。 In the present disclosure, the base station transmitting information to the terminal may be read as the base station instructing the terminal to control/operate based on the information.
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)," "user terminal," "User Equipment (UE)," and "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。 At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc. Note that at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like. The moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. The mobile objects include, for example, vehicles, transport vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, ships and other watercraft. , including, but not limited to, airplanes, rockets, artificial satellites, drones (registered trademarks), multicopters, quadcopters, balloons, and objects mounted thereon. Furthermore, the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good. Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Additionally, the base station in the present disclosure may be replaced by a user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.). Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the terminal 20 may have the functions that the base station 10 described above has. Further, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be replaced with side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be replaced with a base station. In this case, the base station may have the functions that the user terminal described above has.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 As used in this disclosure, the terms "determining" and "determining" may encompass a wide variety of operations. "Judgment" and "decision" include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a "judgment" or "decision." In addition, "judgment" and "decision" refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access. (accessing) (e.g., accessing data in memory) may include considering something as a "judgment" or "decision." In addition, "judgment" and "decision" refer to resolving, selecting, choosing, establishing, comparing, etc. as "judgment" and "decision". may be included. In other words, "judgment" and "decision" may include regarding some action as having been "judged" or "determined." Further, "judgment (decision)" may be read as "assuming", "expecting", "considering", etc.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected", "coupled", or any variations thereof, refer to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are "connected" or "coupled." The bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be replaced with "access." As used in this disclosure, two elements may include one or more wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges, and the like.
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used in this disclosure, the phrase "based on" does not mean "based solely on" unless explicitly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 As used in this disclosure, any reference to elements using the designations "first," "second," etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configurations of each of the above devices may be replaced with "unit", "circuit", "device", etc.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include", "including" and variations thereof are used in this disclosure, these terms, like the term "comprising," are inclusive. It is intended that Furthermore, the term "or" as used in this disclosure is not intended to be exclusive or.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。 A slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot. PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. It's okay. In other words, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be. Note that the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit for scheduling in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Note that when one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum time unit for scheduling. Further, the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that long TTI (for example, normal TTI, subframe, etc.) may be read as TTI with a time length exceeding 1 ms, and short TTI (for example, short TTI, etc.) It may also be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on newerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Additionally, the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI, one subframe, etc. may each be composed of one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。 Note that one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Additionally, a resource block may be configured by one or more resource elements (REs). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A bandwidth part (BWP) (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. Here, the common RB may be specified by an RB index based on a common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP). One or more BWPs may be configured for the terminal 20 within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be replaced with "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the present disclosure may include that the nouns following these articles are plural.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." Note that the term may also mean that "A and B are each different from C". Terms such as "separate" and "coupled" may also be interpreted similarly to "different."
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in this disclosure may be used alone, in combination, or may be switched and used in accordance with execution. In addition, notification of prescribed information (for example, notification of "X") is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear for those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be implemented as modifications and variations without departing from the spirit and scope of the present disclosure as determined by the claims. Therefore, the description of the present disclosure is for the purpose of illustrative explanation and is not intended to have any limiting meaning on the present disclosure.
 本国際特許出願は2022年5月11日に出願した日本国特許出願第2022-078446号に基づきその優先権を主張するものであり、日本国特許出願第2022-078446号の全内容を本願に援用する。 This international patent application claims priority based on Japanese Patent Application No. 2022-078446 filed on May 11, 2022, and the entire content of Japanese Patent Application No. 2022-078446 is incorporated into this application. I will use it.
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)
10 Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Driving part 2003 Restoration Part 2004 Axel Pedal 2005 Brake Pedal 2006 Shift Lever 2007 Front wheels 2008 Bearing 2009 Axis 2010 Electronic Control Division 2012 Electronic Control Division 20133 Communication Modular 2021 Current sensor 2022 Round Sensor 2023 Air pressure sensor 2024 vehicle speed Sensen Sa 2025 acceleration sensor 2026 brake Pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM)
2033 Communication port (IO port)

Claims (6)

  1.  第1のRAT(Radio Access Technology)において送受信を実行する通信部と、
     前記第1のRATにおける通信を制御する制御部とを有し、
     前記通信部は、前記第1のRATにおけるリソース予約と、第2のRATにおけるリソース予約とが少なくとも時間領域で衝突することを示す情報を他の端末から受信し、
     前記制御部は、物理レイヤにおける、前記第1のRATにおける使用可能なリソースセットの決定動作、及び、MAC(Medium Access Control)レイヤにおける、前記リソースセットからのリソース選択動作の少なくとも一方を、前記衝突することを示す情報に基づいて実行し、
     前記通信部は、前記リソース選択動作により選択されたリソースを使用して他の端末への送信を実行する端末。
    a communication unit that executes transmission and reception in a first RAT (Radio Access Technology);
    a control unit that controls communication in the first RAT;
    The communication unit receives information from another terminal indicating that a resource reservation in the first RAT and a resource reservation in the second RAT conflict at least in the time domain,
    The control unit performs at least one of an operation for determining an available resource set in the first RAT in a physical layer and an operation for selecting resources from the resource set in a MAC (Medium Access Control) layer. perform based on information indicating that
    The communication unit is a terminal that executes transmission to another terminal using the resource selected by the resource selection operation.
  2.  前記制御部は、MACレイヤにおいて、前記リソースセットから前記衝突することを示す情報に基づいてリソースの除外を実行する請求項1記載の端末。 The terminal according to claim 1, wherein the control unit executes resource exclusion from the resource set based on the information indicating the collision in the MAC layer.
  3.  前記通信部は、前記衝突することを示す情報を基地局に報告する請求項1記載の端末。 The terminal according to claim 1, wherein the communication unit reports information indicating the collision to a base station.
  4.  前記通信部は、前記衝突することを示す情報を要求する信号を前記他の端末に送信する請求項1記載の端末。 The terminal according to claim 1, wherein the communication unit transmits a signal requesting information indicating the collision to the other terminal.
  5.  前記制御部は、前記衝突することを示す情報を受信するリソースと、前記第1のRATにおけるリソース衝突に係る情報を受信するリソースとが、異なることを想定する請求項1記載の端末。 The terminal according to claim 1, wherein the control unit assumes that the resource for receiving the information indicating the collision is different from the resource for receiving the information regarding the resource conflict in the first RAT.
  6.  第1のRAT(Radio Access Technology)において送受信を実行する通信手順と、
     前記第1のRATにおける通信を制御する制御手順と、
     前記第1のRATにおけるリソース予約と、第2のRATにおけるリソース予約とが少なくとも時間領域で衝突することを示す情報を他の端末から受信する手順と、
     物理レイヤにおける、前記第1のRATにおける使用可能なリソースセットの決定動作、及び、MAC(Medium Access Control)レイヤにおける、前記リソースセットからのリソース選択動作の少なくとも一方を、前記衝突することを示す情報に基づいて実行する手順と、
     前記リソース選択動作により選択されたリソースを使用して他の端末への送信を実行する手順とを端末が実行する通信方法。
    A communication procedure for performing transmission and reception in a first RAT (Radio Access Technology);
    a control procedure for controlling communication in the first RAT;
    receiving information from another terminal indicating that the resource reservation in the first RAT and the resource reservation in the second RAT conflict at least in the time domain;
    Information indicating that at least one of an operation for determining an available resource set in the first RAT in a physical layer and an operation for selecting resources from the resource set in a MAC (Medium Access Control) layer will conflict with each other. the steps to be taken based on;
    A communication method in which a terminal executes a procedure of transmitting to another terminal using the resource selected by the resource selection operation.
PCT/JP2023/015580 2022-05-11 2023-04-19 Terminal and communication method WO2023218879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022078446 2022-05-11
JP2022-078446 2022-05-11

Publications (1)

Publication Number Publication Date
WO2023218879A1 true WO2023218879A1 (en) 2023-11-16

Family

ID=88730268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015580 WO2023218879A1 (en) 2022-05-11 2023-04-19 Terminal and communication method

Country Status (1)

Country Link
WO (1) WO2023218879A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLE: "On Co-channel Coexistence for LTE Sidelink and NR Sidelink", 3GPP DRAFT; R1-2204249, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153430 *
NTT DOCOMO, INC.: "Discussions on co-channel coexistence of LTE-SL and NR-SL", 3GPP DRAFT; R1-2204384, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153512 *
SONY: "Discussion on co-channel coexistence for LTE sidelink and NR sidelink", 3GPP DRAFT; R1-2203736, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220509 - 20220520, 29 April 2022 (2022-04-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052153153 *
VIVO: "Remaining issues on mode 2 enhancements", 3GPP DRAFT; R1-2201112, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052109175 *

Similar Documents

Publication Publication Date Title
WO2023058206A1 (en) Terminal and communication method
WO2023218879A1 (en) Terminal and communication method
WO2023203658A1 (en) Terminal and communication method
WO2024004056A1 (en) Terminal and communication method
WO2024004055A1 (en) Terminal and communication method
WO2024057551A1 (en) Terminal and communication method
WO2024029053A1 (en) Terminal and communication method
WO2024062579A1 (en) Terminal and communication method
WO2024062580A1 (en) Terminal and communication method
WO2024029052A1 (en) Terminal and communication method
WO2024057552A1 (en) Terminal and communication method
WO2024034104A1 (en) Terminal and communication method
WO2023175692A1 (en) Terminal and communication method
WO2024029051A1 (en) Terminal and communication method
WO2023139709A1 (en) Terminal and communication method
WO2023139710A1 (en) Terminal and communication method
WO2024062581A1 (en) Terminal and communication method
WO2023140232A1 (en) Terminal and communication method
WO2023170802A1 (en) Terminal and communication method
WO2024034103A1 (en) Terminal and communication method
WO2023248400A1 (en) Terminal and communication method
WO2023170801A1 (en) Terminal and communication method
WO2024062578A1 (en) Terminal and communication method
WO2024034105A1 (en) Terminal and communication method
WO2024034106A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803361

Country of ref document: EP

Kind code of ref document: A1